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contained	 in	 the	 replicates	 by	 a	 random	 effect	 model	 and	 horizontally	 the	 information	 about	 the	 CpG	1 

methylation	levels	correlation	by	a	LGF.	2 

The	model	is	completed	by	specification	in	(7)	and	(8)	of	the	random	effect	and	LGM	prior	precision,	i.e.	3 

the	 inverse	 of	 the	 variance.	 For	 computational	 convenience	 we	 introduce	 a	 CpG	 site	 spacing	 and	4 

decompose	!!"
! 	into	!!

! !! ! !!!! ,	where	!!
!	is	the	global	smoothing	parameter	specific	for	each	group	that	5 

needs	 to	be	estimated	and	!! 	and	!!!!	are	 the	chromosomal	 locations	of	 two	consecutive	CpG	sites.	This	6 

implies	that	the	correlation	between	!!"	and	!!!!!!,	depends	on	the	distance	between	the	two	consecutive	7 

CpG	 sites	 and	 in	 particular,	 it	 decreases	 as	 this	 distance	 increases	 in	 keeping	 with	 empirical	 evidence	8 

reported	in	Bell	JT	et	al.	2011,	Zhang	(2015)	and	in	our	real	data	set	(see	Supplementary	Figure	1).	With	9 

this	 formulation	 only	!!
!	and	!!

!	need	 to	 be	 estimated	 for	 each	 group.	 It	 also	 implies	 a	 sparse	 precision	10 

matrix	!!!!	for	the	LGF	in	(2)	making	the	overall	inferential	process	efficient.		11 

Finally,	 non-informative	 priors	 are	 assigned	 to	 the	 precision	 parameters	 !!
!! 	and	 !!

!! 	which	 are	12 

distributed	as	a	gamma	density	with	mean	1	and	variance	10	(default	INLA	values).	Sensitivity	analysis	on	13 

the	 gamma	 density	 parameterization	 shows	 no	 departure	 from	 the	 results	 obtained	 using	 the	 default	14 

values.	 See	 Supplementary	 Table	 1	 for	 details	 on	 the	 posterior	 density	 of	!!
!!	and	!!

!!	under	 INLA	15 

default	and	alternative	parameterization	on	selected	simulated	examples.	16 

When	a	single	replicate	is	available,	since	!!
! ! !,	(4)	and	(5)	simplify	to	17 

	 !!"!!!"!!!!"#$%"&' !!"! !!" ,	18 

	 !"#$% !!" ! !!"!	19 

While	some	methods	 for	DMR	detection	(Feng	et	al.	2014;	Wu	et	al.	2015),	allow	for	over-dispersion	by	20 

assuming	 a	 beta-binomial	 model,	 (4)	 and	 (5)	 imply	 a	 logistic-normal	 model.	 After	 integrating	 out	 (6),	21 

!!!"#$%!!!"#!!!!"! 𝜎!!!!!!!"!!!!!!!! !!"
! !! !!" = !!!!"#$%!!!"#!!!!!!!!! !!

! ! !!"
! ! ,	 it	 can	 be	 shown	 that	22 

marginally	23 

	 !!!!"!!!
!! !!"

! ! ! !!"!!"!! ! !!"! ! ! !!!
! ! !!"

! !!!!" ! !!!!"!! ! !!"! ,	24 

where!!!" ! !"# !!" !!! ! !"#!!!!"!!.	The	above	equation	illustrates	that	a	priori	the	marginal	degree	of	25 

variability	per	CpG	site	under	ABBA	model	 is	 the	variance	of	 the	binomial	model	multiplied	by	an	over-26 

dispersion	 factor	 that	 depends	 on	 the	 combined	 effect	 of	!!
! ,	 the	 replicates	 variability,	 and	!!"

! ,	 the	27 
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variance	of	the	unobserved	methylation	profile.	When	a	single	replicate	 is	available,	 the	over-dispersion	1 

depends	only	on	𝜌!"! .	2 

ABBA	algorithm.	The	ABBA	algorithm	consists	of	two	steps:	3 

1. 	Compute	the	approximation	to	the	marginal	posteriors	of	𝜎!!,	the	variance	of	the	random	effect,	and	𝜌!!,	4 

𝑔 = 1,2	the	smoothing	parameters;	given	the	model	specification	𝜌!"! = 𝜌!! 𝑝! − 𝑝!!! ,	 it	 is	also	possible	5 

to	derive	the	marginal	posteriors	of	𝜌!"! ;	6 

2. 	Compute	 the	 approximation	 to	marginal	posterior	𝜋 𝜇!"|𝒚 ,	where	𝒚 = 𝑦!"# !!!,⋯,!;!!!,!;!!!,⋯,! 
;	 then	7 

the	marginal	posterior	of	the	unobserved	methylation	profile	𝜋 𝜋!"|𝒚 	is	obtained	by	using	the	inverse	8 

logit	transformation	of	𝜇!",	𝑧 ≡ exp logit 𝑧 / 1 + exp logit 𝑧 .	9 

Global	 differential	 methylation	 and	 FDR	 calculation.	 ABBA	 inference	 about	 DMRs	 is	 based	 on	 the	10 

posterior	methylation	 probability	 (PMP)	𝜋 𝜋!"|𝒚 	and	 the	 posterior	 differential	methylation	 probability	11 

(PDMP)	𝜋 𝜋!!|𝒚 − 𝜋 𝜋!!|𝒚 .	 The	 posterior	 mean	 methylation	 probability	E 𝜋!"|𝒚 	summarizes	 the	12 

information	 contained	 in	 the	 PMP	 and	 it	 is	 used	 to	 define	 the	 posterior	mean	 differential	methylation	13 

between	two	groups,	𝑑! = E 𝜋!!|𝒚 − E 𝜋!!|𝒚 .	Once	the	LGF	has	been	integrated	out	by	INLA	inferential	14 

process,	  𝜋 𝜋!"|𝒚 ,	 𝑖 = 1,⋯ , 𝑛 ,	 and	 in	 turn	 𝑑! s	 become	 marginally	 independent.	 This	 allows	 the	15 

straightforward	application	of	a	non-parametric	false	discovery	rate	(FDR)	procedure	without	the	burden	16 

of	 correlated	 signals.	 To	distinguish	between	 the	null	 distribution	 (no	differential	methylation)	 and	 the	17 

alternatives,	we	fit	a	mixture	of	three	truncated	normal	densities	18 

	 𝑑!~𝜋!N[!!,!] 𝜃!, 𝜉!! + 𝜋!N[!!,!] 𝜃!, 𝜉!! + 𝜋!N[!!,!] 𝜃!, 𝜉!! ,	 (9)	19 

where	N[!!,!]	is	 a	normal	density	 truncated	between	[−1,1],	𝜋!,𝜋!,𝜋! ∈ 0,1 	with	𝜋! + 𝜋! + 𝜋! = 1	are	20 

the	mixing	weights	of	the	“negative”	differentially	methylated,	no	differentially	methylated	and	“positive”	21 

differentially	methylated	with	respect	the	control	group,	respectively,	𝜃!, 𝜃!, 𝜃!	are	the	unknown	centers	22 

of	 the	 differentially	 methylated	 groups	 and	 𝜉!! , 𝜉!!, 𝜉!! 	are	 the	 unknown	 variances.	 Under	 the	 null	23 

hypothesis	we	set	𝜃! = 0.	For	identifying	the	components	of	mixture	model	we	also	impose	the	condition	24 

𝜋! ≥ 𝜋! + 𝜋!	under	the	assumption	that	the	large	majority	of	CpG	sites	are	not	differentially	methylated.	25 

Although	 the	 choice	 of	 a	 three	 component	 mixture	 model	 works	 well	 in	 real	 data	 examples	 (see	26 

Supplementary	 Figure	 2),	 this	 assumption	 can	 be	 relaxed.	 For	 instance,	 as	 suggested	 in	 Sun	 and	 Cai	27 

2009,	the	non-null	distribution	𝑓!	can	have	more	than	two	components.	This	allows	a	better	fitting	of	the	28 

tails	of	distribution	of	𝑑! ’s	and	 the	 identification	of	more	 than	 two	differentially	methylated	groups.	For	29 
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instance	the	choice	of	the	number	of	components	can	be	based	on	Bayesian	Information	Criterion	(BIC).	1 

However	 this	 requires	 running	 the	 FDR	 procedure	 several	 times	 for	 each	 choice	 of	 the	 number	 of	2 

components.	Another	possibility	which	 is	 less	computational	 intensive	relies	on	 the	approximation	of	𝑓!	3 

by	using	a	non-parametric	Gaussian	kernel	density	estimation	(Kuan	and	Chiang	2012).	4 

Maximum	 likelihood	 estimates	 of	 (9)	 are	 obtained	 by	 the	 EM	 algorithm	 (Dempster	 et	 al.	 1977)	 taking	5 

particular	care	to	avoid	local	maxima	in	the	likelihood	surface	by	running	the	EM	algorithm	from	different	6 

starting	points.	Using	 the	EM	algorithm,	 the	posterior	probability	of	a	CpG	site	belonging	 to	each	of	 the	7 

three	component	is	8 

	 P 𝑧! = " − "  =   !!![!!,!] !!;!!,!!
!

!
,	9 

	 P 𝑧! = "0"  =   !!![!!,!] !!;!,!!
!

!
,	10 

	 P 𝑧! = " + "  =   !!![!!,!] !!;!!,!!
!

!
	11 

with	𝐶 = 𝜋!N[!!,!] 𝑑!; 𝜃!, 𝜉!! + 𝜋!N[!!,!] 𝑑!; 0, 𝜉!! + 𝜋!N[!!,!] 𝑑!; 𝜃!, 𝜉!! .	12 

Similarly	to	Broët	et	al.	2004,	for	a	constant	𝑡,	we	define	the	estimated	FDR 𝑡 	as	13 

	 FDR 𝑡  =
! !!!""" ! ! !!!"""!∈ℐ!!∈ℐ!

!!!!!
	 (10)	14 

where	ℐ! = 𝑖: 𝑑! ≤ −𝑡 ,	ℐ! = 𝑖: 𝑑! ≥ 𝑡 ,	𝑛! = # ℐ! 	and	𝑛! = # ℐ! .	 (10)	 defines	 the	 global	 FDR	 as	 the	15 

average	 local	 FDR	 which,	 for	 posterior	 probabilities,	 is	 defined	 as	1 −  P 𝑧! = " − " − P 𝑧! = " + " =16 

P 𝑧! = "0" .	Finally	the	constant	𝑡	is	chosen	such	that	FDR 𝑡 ≤ FDR.	17 

In	summary,	the	FDR	procedure	for	ABBA	consists	of	two	steps:	18 

1. 	Fit	 a	 mixture	 of	 truncated	 normal	 densities	 with	 three	 components	 on	 the	𝑑!s	 values;	 obtain	 the	19 

posterior	probability	that	each	𝑑! 	belongs	to	each	of	the	three	components;	20 

2. 	Calculate	the	constant	𝑡	such	that	FDR 𝑡 ≤ FDR	for	a	desired	level	of	FDR;	21 

For	computational	efficiency	our	FDR	procedure	can	be	run	on	each	chromosome	separately	and	then	the	22 

results	can	be	aggregated	at	 the	genome-wide	 level	(Efron	2008).	Besides	the	computational	speed,	 this	23 

strategy	 does	 not	 assume	 the	 existence	 of	 a	 global	 methylation	 level	 difference	 between	 the	 two	24 

conditions	that	may	not	hold	in	practice.	The	separate-class	model	(Efron	2008),	can	be	used	to	combine	25 

separate	chromosome-wide	FDRs.	26 
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WGBS	data	simulation.	WGBS	data	have	a	number	of	intrinsic	characteristics	that	can	vary	depending	on	1 

the	cell-types/tissue	complexity	being	studied	or	on	technical	 issues	related	to	 the	sequencing.	 In	order	2 

assess	which	method	is	the	most	robust	for	analyzing	WGBS	data	it	 is	 important	that	changes	in	each	of	3 

these	characteristics	are	taken	into	account.	Here	we	take	advantage	of	our	previously	published	WGBS-4 

data	 simulator	 (Rackham	 et	al.	 2015)	 that	 allows	 us	 to	 generate	 unbiased	 benchmarking	 datasets	with	5 

several	varying	parameters.	Wherever	possible	we	will	refer	to	the	notation	used	in	Rackham	et	al.	2015;	6 

the	parameters	are	the	following:	7 

1. Number	of	replicates	-	the	parameter	𝑟	was	set	to	vary	between	𝑟 = 1,2,3	within	each	group;	8 

2. Average	 read	 depth	 –	 at	 each	 CpG	 site	 for	 all	 replicates	 and	 groups,	 the	 number	 of	 reads	𝑛!"# ,	9 

𝑖 = 1,⋯ ,𝑚	and	𝑔 = 1,2,	 is	 simulated	 using	 a	 Poisson	 distribution	 with	 average	 read	 depth	𝜆.	 The	10 

parameter	𝜆	was	set	to	be	either	10	or	30	reads	on	average	per	CpG	site;	11 

3. Level	of	noise	 -	 the	parameter	𝑠! controls	 the	 level	of	noise	added	the	probability	of	methylation	at	12 

each	CpG	site	for	all	replicates	and	groups	and	simulates	the	measurement	error	resulting	from	the	13 

sampling	of	DNA	segments	during	sequencing	14 

	 𝜋!"# = logit!! logit(𝜋!") + ε! ,	15 

where	𝜋!"	is	 the	global	probability	of	methylation	of	 the	binomial	 (emission)	distribution	based	on	16 

the	real	dataset	analyzed	(see	details	in	Rackham	et	al.	2015)	and	ε!~N(0, 𝑠!),	𝑖 = 1,⋯ ,𝑚.	𝑠!	was	set	17 

to	 vary	 between	 0.1,	 0.2	 and	 0.3	 to	 model	 different	 level	 of	 noise.	 To	 calibrate	 the	 value	 of	𝑠!,	18 

Supplementary	 Table	 2	 provides	 a	Monte	Carlo	 estimation	of	 the	 effect	 of	 different	 values	 of	 the	19 

noise	level	on	𝜋!"#.	20 

4. Methylation	probability	difference	-	the	parameter	Δmeth	reported	in	Rackham	et	al.	2015	as	“phase	21 

difference”	controls	the	magnitude	of	the	difference	between	the	probabilities	of	methylation	in	each	22 

group	and	was	set	to	vary	between	20%,	30%,	50%	or	70%.	This	difference	is	obtained	on	CpG	sites	23 

where	 both	 case	 and	 control	 samples	 share	 the	 same	 methylated	 status	 (methylated	 or	24 

unmethylated),	by	adding	a	given	value	to	the	probability	in	either	cases	or	controls.	The	total	length	25 

of	the	sequence	where	this	difference	appears	in	no	greater	than	5%	(WGBSSuite	default	value)	of	the	26 

total	length	of	the	simulated	region.	27 

5. We	 also	 considered	 an	 additional	 parameter	𝛿	(not	 available	 for	 modeling	 in	 WGBSSuite),	 which	28 

introduces	a	further	error	associated	with	the	methylation	call.	After	selecting	at	random	with	a	given	29 

probability	𝛿	a	CpG	site	in	the	𝑔th	group	for	all	replicates,	we	switch	its	methylation	status	between	30 

the	two	groups.	In	our	simulation	study,	the	parameter	𝛿 has	been	varied	from	0,	0.05	and	0.1.	31 
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To	 perform	 the	 benchmarking	 we	 generate	 5	 replicates	 of	 5,000	 CpGs	 for	 each	 combination	 of	 the	1 

above	 parameters.	 The	 resulted	 in	 a	 total	 of	 216	 benchmarking	 datasets	 (3	 cases	 for	 the	 number	 of	2 

replicates,	2	cases	 for	 the	average	read	depth,	3	cases	 for	 the	 level	of	noise,	4	cases	 for	 the	methylation	3 

probability	difference,	3	cases	for	the	parameter	𝛿)	which	are	replicated	5	times	(5,400,000	CpGs	in	total)	4 

to	assess	the	Monte	Carlo	average	performance	for	each	combination	of	parameters.	In	these	datasets	the	5 

size	of	the	differentially	methylated	regions	has	a	median	size	of	15	CpGs	(see	Supplementary	Figure	3).	6 

The	proportion	of	differentially	methylated	CpGs	cannot	exceed	20%	of	all	CpGs	(i.e.,	~1000	CpGs).	7 

Receiver	operator	curve	(ROC)	construction	for	benchmarking.	 	 In	order	to	generate	the	ROC	curve	8 

the	performance	is	calculated	CpG-wise.	For	a	given	DMR,	detection	of	each	of	the	CpG	contained	within	is	9 

considered	as	a	true	positive,	whilst	CpGs	that	are	not	detected	are	considered	false	negatives.	Outside	of	10 

the	DMR	the	opposite	criteria	is	applied.	We	choose	this	assignment	criteria	rather	than	calling	detection	11 

of	 a	 each	 DMR	 since	 it	 provides	 a	 useful	 quantification	 of	 the	 extent	 each	 DMR	 is	 captured	 by	 each	12 

technique,	for	instance	if	one	technique	correctly	identifies	all	the	CpGs	in	a	DMR,	the	method	is	deemed	to	13 

perform	better	than	an	approach	that	identifies	correctly	only	80%	of	the	CpGs	within	the	same	DMR.	14 

WGBS	 data	 pre-processing	 for	 ABBA.	 To	 run	 ABBA	 efficiently	 at	 the	 genome-wide	 level	 we	 took	15 

advantage	 of	 cluster-computing	 environment	 that	 enables	 parallel	 computation,	 and	 to	 this	 aim	 we	16 

preprocessed	 the	WGBS	data	 as	 follows.	After	 the	 raw	WGBS	data	were	 aligned,	we	 removed	CpG	 sites	17 

where	less	than	50%	of	the	samples	contain	reads.	Next,	we	split	the	WGBS	data	into	chunks	such	that	the	18 

distance	 between	 the	 last	 CpG	 site	 in	 one	 chunk	 and	 the	 first	 CpG	 in	 the	 next	 chunk	 is	 greater	 than	19 

3,000bp.	It	has	been	previously	shown	that	the	correlation	of	DNA	methylation	levels	between	CpG	sites	20 

decreases	 dramatically	 after	 400bp	 (Zhang	 et	 al.	 2015),	 so	 splitting	 the	 data	 in	 this	 way	 implies	 a	21 

particular	 conditional	 dependence	 structure	 in	 our	 data	 defined	 by	 a	 sparse	 block-diagonal	 precision	22 

matrix	𝑸(𝜽)	where	each	block	corresponds	 to	a	WGBS	chunk.	Chunks	are	 then	analyzed	 in	parallel	 in	a	23 

cluster-computing	environment.	We	calculated	the	time	required	by	ABBA	to	analyse	chunks	of	different	24 

length	 (that	 span	 from	100	CpGs	 to	 15,000	CpGs)	 on	 a	 single	machine	with	 20	 2.3GHz	 hyper-threaded	25 

cores	 and	32GB	of	RAM	and	 found	 that	 the	 computational	 time	 (seconds)	 scales	with	 the	 chunk	 length	26 

(NCpG,	number	of	CpG	sites)	following	the	power	function:	time	(seconds)	=	0.0045	NCpG	1.3985	(R²	=	0.997).	27 

Depending	on	the	genome	length	and	data	dimensionality	a	complete	WGBS	analysis	ABBA	might	require	28 

days	 (e.g.,	 it	 took	 ~2	 weeks	 to	 analyse	WGBS	 data	 in	 the	 rat).	 The	 total	 computational	 time	 of	 ABBA	29 

analysis	can	be	significantly	shortened	by	splitting	the	genome	into	smaller	chunks	and	then	assemble	the	30 

result.	The	results	provided	by	the	“whole-genome”	ABBA	analysis	and	“smaller-chunks”	ABBA	analyses	31 
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are	 highly	 consistent,	 with	 no	 differences	 in	 the	 distribution	 probabilities	 obtained	 with	 and	 without	1 

splitting	 the	 genome	 in	 chunks	 (Supplementary	 Figure	 4). Scripts	 for	 the	 pre-processing	 step	 are	2 

embedded	within	ABBA	at	abba.systems-genetics.net	3 

WGBS	of	 rat	macrophages.	Bone-marrow	derived	macrophages	(BMDM)	were	 isolated	 from	WKY	and	4 

LEW	rat	strains.	WGBS	libraries	were	produced	as	follows:	6μg	of	genomic	DNA	was	spiked	with	10ng	of	5 

unmethylated	cl857	Sam7	lambda	DNA	(Promega)	and	sheared	using	a	Covaris	System	S-series	model	S2.	6 

Sheared	DNA	was	purified	and	then	end-repaired	in	a	100μl	reaction	using	NEBNext	End	Repair	kit	(New	7 

England	Biolabs)	 incubated	at	20C	 for	30	minutes.	End-repaired	DNA	was	next	A-tailed	using	NEBNext	8 

dA-tailing	 reaction	 buffer	 and	 Klenow	 Fragment	 (also	 New	 England	 Biolabs)	 incubated	 at	 37C	 for	 30	9 

minutes	and	then	purified	with	the	MinElute	PCR	purification	kit	(Qiagen)	in	a	total	final	elution	volume	of	10 

28μl.	Illumina	Early	Access	Methylation	adapter	oligos	(Illumina)	were	then	ligated	to	a	total	of	25μl	of	the	11 

A-tailed	DNA	sample	using	NEBNext	Quick	Ligation	Reaction	Buffer	and	Quick	T4	DNA	ligase	(both	New	12 

England	Biolabs)	in	a	reaction	volume	of	50μl.	This	mixture	was	incubated	for	30	minutes	at	20C	prior	to	13 

gel	purification.	Bisulphite	conversion	of	450ng	of	the	purified	DNA	library	was	achieved	using	the	Epitect	14 

Bisulfite	kit	(Qiagen)	in	a	total	volume	of	140μl.	Samples	were	incubated	with	the	following	program:	95C	15 

for	5	minutes,	60C	for	25	minutes,	95C	for	5	minutes,	60C	for	85	minutes,	95C	for	5	minutes,	60C	for	175	16 

minutes	 and	 then	 3x	 repeat	 of	 95C	 for	 5	 minutes	 and	 60C	 for	 180	 minutes	 and	 held	 at	 20C.	 Treated	17 

samples	 were	 then	 purified	 as	 per	 manufacturers	 instructions.	 Adapter	 bound	 DNA	 fragments	 were	18 

amplified	 by	 a	 10-cycle	 PCR	 reaction	 and	 then	 purified	 using	 Agencourt	 AMPure	 XP	 beads	 (Beckman	19 

Coulter)	 before	 gel	 extraction	 and	 quantification	 using	 the	 Agilent	 Bioanalyzer	 2100	 Expert	 High	20 

Sensitivity	 DNA	Assay.	 Then,	 libraries	were	 quantified	 using	 quantitative	 PCR	 and	 then	 denatured	 into	21 

single	 stranded	 fragments.	 These	 fragments	 were	 then	 amplified	 by	 the	 Illumina	 cluster	 robot	 and	22 

transferred	 to	 the	 HiSeq	 2000	 for	 sequencing.	 WGBS	 reads	 were	 aligned	 and	 filtered	 according	 to	 a	23 

previously	published	pipeline	 (see	 (Johnson	et	al.	 2012)	 and	 (Johnson	et	al.	 2014)).	Briefly,	 reads	were	24 

pre-processed	by	 in	 silico	 conversion	of	C	bases	 to	T	bases	 in	 read	1	and	G	bases	 to	A	bases	 in	 read	2,	25 

followed	 by	 clipping	 of	 the	 first	 base	 from	 each	 read.	 Pre-processed	 reads	 were	 aligned	 to	 the	 rat	26 

reference	genome	(RGSC3.4)	using	BWA	version	0.6.1	(Li	and	Durbin	2009)	with	3’	end	quality	trimming	27 

using	a	Q	score	cutoff	of	20.	Converted	and	clipped	reads	1	and	2	were	mapped	to	two	in	silico	converted	28 

versions	of	the	reference	sequence,	firstly	with	Cs	converted	to	Ts	to	allow	forward	strand	mapping,	and	29 

secondly	 with	 Gs	 converted	 to	 As	 to	 allow	mapping	 of	 reverse	 strand.	 Aligned	 reads	 were	 filtered	 by	30 

removal	 of	 clonal	 reads,	 reads	 with	 a	 mapping	 quality	 of	 <20,	 reads	 that	 mapped	 to	 both	 in	 silico	31 

converted	forward	and	reverse	strands,	and	reads	with	an	invalid	mapping	orientation.	We	obtained	79.9	32 
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billion	‘mappable’	bases	across	both	rat	strains,	with	13.5x	(average)	coverage	in	the	Lew	strain	and	17.6x	1 

(average)	in	WKY,	where	the	greatest	depth	of	coverage	was	observed	within	CpG	islands. 	2 

Despite	ABBA	being	 able	 to	detect	methylation	 changes	 at	 all	 genomic	 locations	we	 focused	only	 on	3 

those	methylation	changes	that	occur	at	CpG	sites,	and	considered	CpG	sites	where	at	least	4	out	of	the	8	4 

samples	contain	reads	(resulting	in	a	total	of	14,976,632	CpG	sites	genome-wide	in	BMDM	from	WKY	and	5 

LEW	rats).	DMRs	were	called	with	ABBA	(see	above)	using	a	5	CpG	minimum,	a	33%	or	greater	difference	6 

in	methylation	and	a	5%	FDR	 threshold.	Genomic	 region	annotations	 and	Ensembl	 gene	 IDs	 for	 the	 rat	7 

reference	 genome	 4	 (rn4)	 were	 downloaded	 from	 the	 UCSC	 genome	 browser.	 Significant	 over-8 

representations	 of	 genomic	 features	 (intron,	 exons,	 etc.)	 were	 determined	 empirically	 from	 1,000	9 

randomly	 sampled	 length	 and	 GC-matched	 regions	 per	 DMR.	 The	 genes	 overlapping	 with	 DMRs	 were	10 

further	 annotated	 and	 tested	 for	 enrichment	 in	 Kyoto	 Encyclopedia	 of	 Genes	 and	 Genomes	 (KEGG)	11 

pathways	using	WebGestalt	(Wang	et	al.	2013).	12 

Identification	of	enriched	transcription	factor	binding	site	(TFBS)	motifs	within	the	DMRs	identified	by	13 

ABBA	was	performed	using	HOMER	(Heinz	et	al.	2010).	HOMER	was	used	to	scan	for	motifs	obtained	from	14 

the	JASPAR	2014	database	(Mathelier	et	al.	2014).	Threshold	used	for	motifs	identification	was	a	p-value	15 

of	10-4.	Enrichments	were	calculated	by	comparing	the	motifs	present	in	the	DMRs	against	a	large	set	of	16 

background	sequences	(𝑁 = 10!)	corrected	for	CpG	content.	17 

RNA-seq	 and	 ChIP-seq	 analysis	 of	 rat	 macrophages.	 RNA-seq	 data	 from	 BMDM	 in	 WKY	 and	 LEW	18 

strains	were	retrieved	from	(Rotival	et	al.	2015)	and	reanalyzed	in	the	context	of	WGBS	analysis	reported	19 

here.	Briefly,	total	RNA	was	extracted	from	BMDM	at	day	5	of	differentiation	in	three	WKY	rats	and	three	20 

LEW	rats	using	Trizol	(Invitrogen).	1	μg	of	total	RNA	was	used	to	generate	RNA-seq	libraries	using	TruSeq	21 

RNA	sample	preparation	kit	 (Illumina,	UK).	Libraries	were	run	on	a	single	 lane	per	sample	of	 the	HiSeq	22 

2000	platform	(Illumina)	to	generate	100bp	paired-end	reads.	An	average	depth	of	72M	reads	per	sample	23 

was	achieved	(minimum	38	M).	RNA-seq	reads	were	aligned	to	the	rn4	reference	genome	using	tophat2.	24 

The	 average	 number	 of	 mapped	 was	 67M	 (minimum	 36M)	 corresponding	 to	 an	 average	 mapping	25 

percentage	 of	 93%.	 Sequencing	 and	mapping	were	 quality	 controlled	 using	 the	 FastQC	 software.	 Gene-26 

level	read	counts	were	computed	using	HT-Seq-count	(Anders	et	al.	2015)	with	 ‘union’	mode	and	genes	27 

with	 less	 than	 10	 aligned	 reads	 across	 all	 samples	 were	 discarded	 prior	 to	 analysis	 leading	 to	 15,155	28 

genes.	Differential	gene	expression	analysis	between	WKY	and	LEW	BMDMs	was	performed	using	DESeq2	29 

(Love	et	al.	2014)	and	significantly	differentially	expressed	genes	were	reported	at	the	5%	FDR	level.	The	30 

visualizations	of	the	expression	levels	with	gene	structure	were	created	with	DEXSeq	(Anders	et	al.	2012).	31 
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ChIP-seq	data	from	BMDM	isolated	from	the	WKY	and	WKY.LCrgn2	congenic	strains	(in	which	the	LEW	1 

Crgn2	QTL	was	introgressed	onto	the	WKY	background)	were	retrieved	from	(Hull	et	al.	2013;	Srivastava	2 

et	al.	2013)	and	re-analyzed	with	respect	to	the	Ifitm3	locus.	This	congenic	model	(WKY.LCrgn2)	has	been	3 

extensively	 studied	 in	 previous	 studies	 where	 it	 has	 been	 shown	 that	 JunD	 expression	 levels	 are	4 

significantly	higher	 in	WKY	when	compared	with	 the	 congenic	 (Hull	et	al.	 2013)	and	 that	 the	 canonical	5 

binding	of	AP-1	is	significantly	greater	in	WKY	compared	to	WKY.LCrgn2	(Behmoaras	et	al.	2008).	Briefly,	6 

ChIP	was	performed	with	a	JunD	antibody	(Santa	Cruz	sc74-X)	and	a	negative	IgG	control	(sc-2026).	Single	7 

read	library	preparation	and	high	throughput	single	read	sequencing	for	36	cycles	was	carried	out	on	an	8 

Illumina	 Genome	 Analyser	 IIx	 and	 sequencing	 of	 the	 ChIP-seq	 libraries	 was	 carried	 out	 on	 the	 high	9 

throughput	Illumina	Genome	Analyzer	II.	Initial	data	processing	was	performed	using	Illumina	Real	Time	10 

Analysis	(RTA)	v1.6.32	software	(equivalent	to	Illumina	Consensus	Assessment	of	Sequence	and	Variation,	11 

CASAVA	 1.6)	 using	 default	 settings.	 Quality	 filtered	 reads	 were	 then	 realigned	 to	 the	 rn4	 using	 the	12 

Burrows	Wheeler	 Alignment	 tool	 v0.5.9	 (BWA).	 Read	 ends	 were	 trimmed	 if	 Phred-scaled	 base	 quality	13 

scores	dropped	below	20.	For	 the	ChIP-seq	analysis	presented	 in	Figure	3g,	differences	 in	 JunD	binding	14 

were	assessed	only	within	a	700bp	region	spanning	the	Ifitm3	gene	promoter,	which	included	the	600	bp-15 

long	DMR	identified	by	ABBA	at	this	locus.	ChIP-seq	differences	were	assessed	by	means	of	Fisher’s	exact	16 

test	on	 the	ChIP-seq	counts	 (normalized	 for	 library	 size)	 in	WKY	LCrgn2	 and	LEW	strains,	 respectively,	17 

using	 a	 sliding	 window	 of	 50bp.	 This	 locus-specific	 analysis	 identified	 a	 single	 50bp	 window	 with	18 

differential	 JunD	 binding	 with	 FET	 p-value<0.05	 that	 overlapped	 with	 JunD	 TFBS	 motifs	 identified	 by	19 

HOMER	(see	above).	20 

Software	 and	 data	 availability.	 ABBA	 is	 implemented	 as	 a	 Perl/R	 program,	 which	 is	 available	 with	21 

instructions	 for	 download	 at	 abba.systems-genetics.net	 or	 via	 http://www.mrc-22 

bsu.cam.ac.uk/software/bioinformatics-and-statistical-genomics/.	 The	 data	 is	 available	 on	 Gene	23 

Expression	Omnibus	(GEO),	https://www.ncbi.nlm.nih.gov/geo/,	under	the	accession	number	GSE84719.	24 

RESULTS	25 

We	employ	a	fully	Bayesian	approach	(a	Bayesian	structured	generalized	mixed	additive	model	with	a	26 

latent	Gaussian	field)	which	models	the	random	sampling	process	of	the	WGBS	experiment	(the	number	of	27 

methylated/unmethylated	 reads	 distributed	 as	 non-Gaussian	 response	 variable)	 and	 where	 all	 the	28 

unknown	 quantities	 are	 specified	 by	 probability	 distributions.	 To	 perform	 inference	 ABBA	 takes	29 

advantage	of	the	Integrated	Nested	Laplace	Approximation	(INLA)	(Rue	et	al.	2009),	a	new	inferential	tool	30 

for	latent	Gaussian	models.	INLA	provides	approximations	to	the	posterior	distribution	of	the	unknowns.	31 
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These	 approximations	 are	 both	 very	 accurate	 and	 extremely	 fast	 to	 compute	 compared	 to	 established	1 

exact	 sampling-based	 methods	 such	 as	 Markov	 chain	 Monte	 Carlo	 (Gilks	 et	 al.	 1996)	 (MCMC)	 or	2 

Sequential	Monte	Carlo	 (Doucet	et	al.	 2001)	 (SMC).	Our	new	proposed	algorithm	ABBA	 is	 therefore	 the	3 

combination	of	an	approximate	inferential	procedure	with	a	fully	Bayesian	model	tailored	for	bisulphite	4 

sequencing	analysis.	5 

ABBA	calculates	the	posterior	methylation	probability	(PMP)	at	each	CpG	site	based	on	an	estimate	of	6 

the	 posterior	 probability	 of	 a	 smoothed	 unobserved	 methylation	 profile.	 It	 also	 identifies	 DMRs	 at	 a	7 

specified	FDR	by	contrasting	PMPs	across	the	whole-genome	between	two	groups,	e.g.	cases	and	controls.	8 

Several	 intrinsic	 features	of	WGBS	data	are	 incorporated	 into	ABBA:	 for	 instance,	 the	variability	 in	DNA	9 

methylation	between	the	(experimental)	replicates	within	each	group	is	modeled	through	a	random	effect	10 

with	a	specific	within-group	variance	(Fig.	1a).	The	correlation	of	DNA	methylation	patterns	is	encoded	in	11 

the	 latent	 Gaussian	 field	 equation,	 which	 reflects	 the	 neighborhood	 structure	 of	 the	 model	 and	12 

automatically	adapts	to	the	changes	in	the	underlying	data.	In	particular,	the	a	priori	correlation	between	13 

neighbouring	CpGs’	methylation	profiles	depends	on	 the	distance	between	 them,	as	 it	 decreases	 as	 this	14 

distance	 increases	 (Fig.	 1b).	Rather	 than	relying	on	a	user-defined	value	 to	parameterize	 it	 (e.g.,	kernel	15 

bandwidth	 or	 window	 size)	 or	 fixing	 it	 by	 an	 automatic	 procedure	 (for	 instance	 through	 an	 empirical	16 

Bayes	 approach),	 ABBA	 assigns	 a	 prior	 distribution	 on	 the	 parameters	 of	 the	 latent	 Gaussian	 field	17 

equation,	thus	fully	accounting	for	the	uncertainty	about	these	quantities.	This	specification	is	key	in	our	18 

model	 since	 the	 data-adaptivity	 of	 the	 degree	 of	 smoothing	 conforms	 better	 to	 the	 data	 than	 assuming	19 

fixed	values.	All	these	features	allow	our	model	to	adjust	routinely	to	real-world	scenarios,	providing	an	20 

automatic	way	 to	 describe	 the	WGBS	data	without	 requiring	 any	user-defined	parameters	 (Yu	 and	 Sun	21 

2016b).	Full	technical	details	of	ABBA	algorithm	can	be	found	in	the	Materials	and	Methods.	22 

We	benchmarked	ABBA	and	compared	it	against	recently	proposed	methods	(MethylKit	(Akalin	et	al.	23 

2012),	 MethylSig	 (Park	 et	 al.	 2014),	 DSS/DSS-single	 (Feng	 et	 al.	 2014;	 Wu	 et	 al.	 2015),	 simply	 DSS	24 

hereafter,	BSmooth	(Hansen	et	al.	2012),	metilene	(Jühling	et	al.	2015)	and	the	univariate	Fisher’s	exact	25 

test	(FET)).	All	methods	were	 run	using	 their	default	 parameterization	 and	 for	 the	FET	we	pooled	data	26 

from	 different	 replicates.	 To	 ensure	 a	 fair	 comparison,	 we	 used	 WGBSSuite	 (Rackham	 et	 al.	 2015)	 to	27 

generate	a	large	number	of	diverse	datasets	that	were	independent	of	the	underlying	statistical	models	of	28 

ABBA	and	of	the	other	methods.	Briefly,	we	simulated	in-silico	datasets	to	assess	the	performance	of	each	29 

method	under	several	scenarios,	which	reflect	differences	 in	data	 integrity	and	quality	of	the	signal	that	30 

can	occur	as	a	 result	of	biological	and	experimental	phenomenon.	The	parameters	 considered	were	 the	31 
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following:	 the	number	of	 replicates	within	each	group	 (𝑟),	 the	average	 read	depth	per	CpG,	 the	 level	of	1 

noise	 variance	 (𝑠!),	 the	 methylation	 probability	 difference	 between	 the	 two	 groups	 (Δmeth)	 and	 the 2 

switching	of	methylation	status	of	CpG	sites	between	 the	 two	groups	(𝛿)	 (see	Methods	 for	details).	For	3 

each	simulated	case	we	generate	five	replicates	and	we	compared	the	accuracy	of	the	CpGs	called	as	being	4 

contained	within	 DMRs	 by	 each	 technique	with	 the	 true	 simulated	 DMRs.	 To	 quantitatively	 assess	 the	5 

performance	of	ABBA	with	respect	to	competing	methods,	we	evaluated	false-positive	and	false-negative	6 

rates	of	CpG	sites	 and	generated	 receiver	operator	 characteristic	 (ROC)	 curves.	We	 focus	on	 the	partial	7 

area	under	the	ROC	curve	(or	pAUC)	at	a	specificity	of	0.75.	The	pAUC	is	considered	to	be	more	practically	8 

relevant	than	the	area	under	the	entire	ROC	curve	(Ma	et	al.	2013)	since	in	typical	genomics	studies	only	9 

the	features	identified	at	very	low	false	positive	rates	are	selected	for	further	biological	validation.	10 

All	 results	 of	 the	 benchmark	 are	 detailed	 in	 Supplementary	 Figures	 5-7.	 In	 Fig	 2a	 we	 show	11 

representative	ROC	curves	from	a	specific	combination	of	parameters	whilst	in	Fig.	2b	we	summarize	the	12 

performance	over	all	combinations	of	parameters	by	displaying	the	best	performing	method	based	on	its	13 

pAUC.	Specifically,	in	Fig.	2b	the	color	code	in	the	“benchmark	grid”	indicates	the	best	performing	method	14 

for	each	of	the	216	simulated	scenarios.	For	instance,	in	Fig.	2a	the	top	left	panel	(i)	shows	the	ROC	curves	15 

for	 all	methods	 considered	 under	 a	 simulated	 dataset	with	𝑠!	=	 0.1,	Δmeth	 =	 30%,	 r	 =	 1,	 average	 read	16 

depth	 per	 CpG	 of	 10x	 and	𝛿	=	 0.	 For	 this	 combination	 of	 parameters	 we	 compared	 the	 pAUC	 of	 each	17 

approach,	which	shows	that	ABBA	is	the	best	performing	method.	Accordingly,	in	Fig.	2b	the	square	in	the	18 

grid	that	represents	this	parameter	set	(indicated	by	(i)	in	the	figure)	is	coloured	black	(ABBA).	Examples	19 

of	 other	 ROC	 curves	 for	 specific	 combinations	 of	 parameters	 are	 reported	 in	 Fig.	 2a	 (i-vi)	 and	 the	20 

corresponding	best	performing	methods	are	indicated	in	Fig.	2b.	In	some	simulated	cases	(e.g.,	with	high	21 

levels	of	𝛿 = 10%)	 the	ROC	curves	and	corresponding	pAUC	do	not	distinguish	unambiguously	 the	best	22 

performing	method	 (e.g.,	Fig.	 2a	 –	 panel	 (vi)).	 In	 these	 cases	when	 the	pAUC	of	 two	methods	 are	 very	23 

similar	 (±1%)	we	report	 the	 colours	of	both	methods,	 e.g.,	 black	and	red	colours	 in	 the	 same	square	 to	24 

indicate	similar	performance	of	ABBA	and	DSS	(Fig.	2b).	For	the	metilene	approach	(Jühling	et	al.	2015)	25 

(which	was	run	using	its	default	parametrization)	we	noticed	that	ROC	curve	analysis	was	not	suitable	to	26 

compare	its	perfomance	with	other	methods.	Specifically,	for	metilene	we	found	that	it	was	not	possible	to	27 

assess	 both	 specificity	 and	 sensitivity	 across	 the	 wide	 range	 of	 DMRs	 and	 scenarios	 simulated	 in	 our	28 

study.	Representative	examples	for	the	ROC	curves	obtained	by	running	metilene	(and	other	approaches)	29 

on	the	simulated	data	are	provided	in	Fig.	2a	and	in	Supplementary	Figure	8.		30 
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Considering	all	216	simulated	datasets	and	comparing	the	pAUCs	obtained	by	each	approach	across	all	1 

combinations	of	parameters,	ABBA	(black)	showed	to	be	the	best	performing	method	in	139	(64%)	cases	2 

(Fig.	 2b-c).	 The	 two	 other	 competitive	 methods	 were	 DSS	 and	 BSmooth,	 which	 show	 to	 be	 the	 best	3 

performing	 approach	 only	 in	 26	 (12%)	 and	 22	 (10%)	 simulated	 cases,	 respectively	 (Fig.	 2b-c).	 In	 28	4 

(13%)	cases	different	methods	showed	very	similar	performance	(i.e.,	pAUCs	±1%),	and	in	17	simulations	5 

ABBA	and	DSS	showed	to	have	comparable	performance.	Looking	at	the	detailed	ROC	curves	reported	in	6 

Supplementary	Figures	5-7,	we	notice	that	while	ABBA	was	the	best	method	across	all	simulations	(Fig.	7 

2c),	its	performance	diminished	for	simulated	datasets	with	very	small	methylation	probability	difference	8 

between	the	two	groups.	 In	particular,	 for	most	of	 the	simulated	scenarios	with	Δmeth	=	20%,	BSmooth	9 

showed	very	good	and	robust	performance,	while	DSS	was	consistently	the	best	performing	method	when	10 

r	=	1	and	Δmeth	=	20%,	Fig.	 2b.	However,	we	highlight	 that	such	small	differences	 in	DNA	methylation	11 

(i.e.,	Δmeth	≤	20%)	are	unlikely	to	have	an	important	biological	effect,	and	the	most	commonly	observed	12 

effect	sizes	for	DMR	range	between	20	and	40%,	as	previously	reported	(Ziller	et	al.	2015).	In	the	range	13 

Δmeth	≥	30%,	ABBA	was	the	best	performing	method	in	132	(81%)	simulations,	while	DSS	was	the	best	14 

performing	method	 only	 in	 10	 (6%)	 simulated	 cases	 and,	 notably,	 BSmooth	was	 never	 the	 best	 single	15 

performing	method	(BSmooth	showed	similar	performance	of	ABBA	in	only	one	simulated	case)	(Fig.	2b).	16 

Specific	 observations	 have	 to	 be	 addressed	 when	 high	 levels	 of	 errors	 due	 to	 the	 switching	 of	17 

methylation	status	of	CpG	sites	between	the	 two	groups	have	been	simulated.	 In	 these	scenarios,	 it	was	18 

more	difficult	to	single	out	a	method	that	outperforms	all	competing	approaches.	However,	when	𝛿	was	as	19 

high	as	10%	(i.e.,	1	in	10	CpGs	is	misclassified	as	unmethylated	or	vice	versa),	we	observed	that	ABBA	was	20 

the	best	single	method	in	33	(46%)	of	72	simulated	scenarios,	whereas	DSS	and	BSmooth	performed	as	21 

the	best	method	in	16	(22%)	and	7	(10%)	of	cases,	respectively,	and	in	other	10	cases	ABBA	and	DSS	have	22 

comparable	performance.	The	latter	was	more	apparent	when	large	probability	differences	between	the	23 

two	groups	were	simulated	(Δmeth	=	50%	or	70%).	24 

We	then	explored	whether	non-homogeneous,	spatially	correlated	read	depth	has	an	effect	on	ABBA’s	25 

performance.	 In	 order	 to	 capture	 spatially	 correlated	 read	 depth	 from	 real	 data	 we	 sampled	 5,000	26 

contiguous	CpGs	from	WGBS	data	(generated	in	rat	macrophages,	see	below	and	Methods	for	details)	and	27 

then	varied	other	parameters	(𝑟	and	Δmeth)	using	WGBSSuite	as	described	above.	In	these	“data-derived”	28 

simulated	 datasets	 the	 read	 depth	 was	 correlated	 with	 the	 distance	 between	 CpGs	 (Supplementary	29 

Figure	9a).	The	results	of	the	benchmark	using	read	depth	taken	from	real	data	were	very	similar	to	those	30 

obtained	 using	 read	 depth	 simulated	 by	means	 of	 a	 Poisson	 distribution	 (see	Methods).	 Regardless	 of	31 
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whether	 “data-derived”	 or	 “Poisson-simulated”	 read	 depth	was	 used	 in	 our	 simulations,	 ABBA	was	 the	1 

best	performing	method	to	recall	DMRs	(representative	examples	are	reported	in	Supplementary	Figure	2 

9b).	While	heterogeneous	 levels	of	read	depth	 impact	on	the	single	base	probability	of	methylation,	 the	3 

hierarchical	model	underlying	ABBA	borrows	information	across	the	sequence	analyzed,	it	turns	out	that	4 

ABBA	posterior	estimates	are	less	sensitive	to	different	levels	of	the	read	depth.	5 

Taken	together	our	simulation	study	shows	that	while	individual	approaches	can	be	very	powerful	in	6 

detecting	DMRs	under	specific	scenarios	(notably,	DSS	with	r	=	1	and	BSmooth	with	Δmeth	=	20%),	their	7 

performance	 can	 vary	 (and	 drop)	 significantly	 for	 different	 choices	 of	 the	 parameters	 tested	 in	 our	8 

simulations	 (at	 least	 within	 the	 parameter-space	 considered	 here).	 In	 contrast,	 we	 show	 that,	 on	 the	9 

whole,	ABBA	is	the	best	performing	method	across	a	large	number	of	parameters’	combination	tested	and	10 

accurately	 identifies	 DMRs	 in	 the	 large	 majority	 of	 simulated	 cases	 (Fig.	 2c).	 Specifically,	 ABBA’s	11 

performance	 was	 the	 highest	 in	 the	 detection	 of	 biologically	 meaningful	 changes	 in	 DNA	 methylation	12 

(Δmeth	≥	30%)	and	when	little	or	no	errors	due	to	random	switching	of	methylation	status	of	CpG	sites	13 

between	the	two	groups	are	present	in	the	data.	14 

DNA	methylation	 is	emerging	as	a	major	contributing	 factor	 in	several	human	disorders	 (Zoghbi	and	15 

Beaudet	2016),	 including	important	autoimmune	diseases	 like	systemic	 lupus	erythematosus	(SLE)	(Wu	16 

et	 al.	 2016).	 For	 instance,	 differential	 DNA	 methylation	 analysis	 in	 CD4+	 T	 cells	 in	 lupus	 patients	17 

compared	to	normal	healthy	controls	identified	several	genes	with	known	involvement	in	autoimmunity	18 

(Jeffries	et	al.	2011).	Here,	to	illustrate	the	practical	utility	of	ABBA	for	differential	methylation	analysis	in	19 

disease,	 we	 generated	 WGBS	 data	 in	 an	 established	 experimental	 rat	 model	 of	 crescentic	20 

glomerulonephritis	(CRGN)(Aitman	et	al.	2006).	In	this	model,	we	and	others	have	previously	shown	that	21 

susceptibility	to	CRGN	is	mediated	by	macrophages	(Behmoaras	et	al.	2008;	Page	et	al.	2012);	therefore,	22 

we	 assayed	CpG	methylation	 at	 single-nucleotide	 resolution	 by	WGBS	 in	 primary	macrophages	 derived	23 

from	Wistar	Kyoto	(WKY)	and	Lewis	(LEW)	isogenic	rats	(two	strains	discordant	for	their	predisposition	24 

to	 develop	 CRGN).	 We	 used	 ABBA	 to	 carry	 out	 genome-wide	 differential	 DNA	methylation	 analysis	 in	25 

primary	bone-marrow	derived	macrophages	(BMDM)	derived	from	the	disease-prone	rat	strain	(WKY,	r	=	26 

4)	 and	 control	 strain	 (LEW,	 r	=	 4)	 -	 see	Methods	 for	 additional	 details	 on	WGBS	 data	 generation	 and	27 

processing.	Briefly,	 in	our	ABBA	analysis	of	the	macrophage	methylome,	we	used	the	following	(default)	28 

settings:	a	minimum	of	5	CpG	and	at	 least	33%	difference	 in	DNA	methylation	between	the	disease	and	29 

control	macrophages	 to	 identify	 DMRs.	 This	 choice	was	motivated	 and	 supported	 by	 data	 on	 the	 local	30 

topology	of	CpG	sites	in	the	methylome	showing	the	vast	majority	of	the	CpG	clusters	are	in	the	range	of	31 
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1–11	CpGs	(Lövkvist	et	al.	2016)	and	to	increase	true	positive	rate	in	our	DM	analysis,	following	previous	1 

assessment	and	recommendations	for	methylation	analysis	using	WGBS	data	(Ziller	et	al.	2015).		2 

Using	an	FDR	cutoff	 of	5%,	ABBA	 identified	1,004	DMRs	genome-wide,	with	1.07%	 falling	within	 an	3 

annotated	CpGI	and	6.78%	within	an	annotated	CpGS	(Fig.	 3a).	For	comparative	purposes	we	also	used	4 

DSS	(since	 this	method	performed	very	similarly	 to	ABBA	 in	several	 simulated	cases,	Fig.	 2)	 to	 identify	5 

DMRs	 genome-wide,	 which	 resulted	 in	 only	 207	 regions	 with	 significant	 differential	 methylation	6 

(uncorrected	p-value	threshold	=	10-3,	using	the	default	parameters	of	DSS).	Of	the	1,004	DMRs	identified	7 

by	ABBA,	427	overlapped	with	annotated	genes	 (Supplementary	 Table	 3),	and	 there	was	a	significant	8 

enrichment	 for	 DMRs	 occurring	 within	 1kb	 of	 the	 gene	 boundaries	 (p-value<0.001),	 within	 exons	 (p-9 

value<0.05)	and	introns	(p-value<0.05),	Fig.	 3b.	The	genes	that	are	within	1kb	of	a	DMR	were	enriched	10 

for	 pathways	 relevant	 to	 the	 pathophysiology	 of	 CRGN,	 including	 MAPK	 signalling	 (Ryan	 et	 al.	 2011),	11 

Phosphatidylinositol	 signalling	 (Wu	 et	 al.	 2014)	 and	 Fc	 gamma	 R-mediated	 phagocytosis	 (Page	 et	 al.	12 

2012)	 (Fig.	 3c).	 For	 comparison,	 the	 207	 DMRs	 identified	 by	 DSS	 overlapped	 with	 45	 genes	13 

(Supplementary	Table	4),	which	were	enriched	only	for	RNA	degradation	and	metabolic	pathways.	The	14 

analysis	of	real	WGBS	data	by	DSS	highlighted	how	the	choice	of	parameters	(in	this	case	related	to	the	15 

size	of	the	moving	average	window	in	the	smoothing	procedure)	can	affect	the	results.	Since	the	window	16 

size	 in	 DSS	 is	 a	 user-defined	 parameter,	 we	 performed	 the	 analysis	 with	 DSS	 using	 three	 different	17 

windows	 (50	 bp,	 100	 bp,	 1,000	 bp)	 in	 addition	 to	 the	 default	window	 size	 of	 500	 bp.	 Each	 of	 the	 four	18 

window	sizes	identified	a	different	number	of	DMRs,	which	overlap	with	different	genes	(Supplementary	19 

Figure	10a)	and	have	varying	distributions	of	DMR	lengths	(Supplementary	Figure	10b-e).	The	genes	20 

identified	by	DSS	when	a	window	of	50	bp	is	used	showed	no	significant	enrichment	for	pathways,	while	21 

the	 results	 obtained	 for	 100	 bp	 and	 1,000	 bp	 windows	 showed	 a	 significant	 enrichment	 for	 RNA	22 

degradation.	 These	 analyses	 highlight	 how	 the	 arbitrary	 choice	 of	 parameters	 related	 to	 the	 degree	 of	23 

smoothing	 can	 affect	 greatly	 the	 results	 of	 a	 genome-wide	 DM	 analysis	 as	 well	 as	 the	 downstream	24 

annotation	 of	 the	 genes	 overlapping	 with	 DMRs.	 In	 contrast,	 ABBA	 automatically	 adapts	 to	 different	25 

correlation	structures	 in	DNA	methylation	 levels	across	 the	genome	without	requiring	any	user-defined	26 

parameters	related	to	the	smoothing	procedure.	27 

As	 DNA	methylation	 can	 affect	 gene	 expression	 by	 interfering	with	 transcription	 factor	 binding,	 we	28 

performed	 a	 transcription	 factor	 binding	 site	 (TFBS)	 analysis	 of	 the	 DMRs	 (Fig.	 3d).	 This	 revealed	29 

significant	 enrichment	 for	 several	 TFs,	 including	 the	 ETS	 transcription	 factors	 family	 and	 a	 number	 of	30 

proteins	that	make	the	AP-1	TF	complex	(JUNB,	FOS,	JUN	and	JUND),	which	have	been	previously	linked	31 

with	CRGN	(Behmoaras	et	al.	2008),(Raffetseder	et	al.	2004).	To	further	investigate	the	potential	effect	of	32 
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the	changes	in	DNA	methylation	identified	by	ABBA,	we	carried	out	differential	expression	(DE)	analysis	1 

in	 macrophages	 from	WKY	 and	 LEW	 rats	 by	 RNA-seq	 (see	Methods	 for	 details).	 The	 list	 of	 DE	 genes	2 

(n=910,	Benjamini–Hochberg	(BH)-corrected	p-value<0.05)	was	crosschecked	with	the	genes	impacted	by	3 

DMRs	 (above),	 identifying	 48	 genes	 with	 both	 significant	 differential	 methylation	 and	 differential	4 

expression	 (Supplementary	 Table	 5).	We	observed	 the	 “textbook”	model	 describing	DNA	methylation	5 

regulating	transcription	via	the	promoter	region	(i.e.,	hypermethylation	in	the	promoter	associated	with	6 

transcriptional	repression,	see	below)	as	well	as	widespread	methylation	changes	in	the	genes	body	and	7 

3’UTR	 associated	 with	 both	 gene	 repression	 and	 activation.	 The	 genes	 with	 concordant	 promoter	8 

hypermethylation	 and	 transcriptional	 repression,	 Ifitm3,	 Ydjc	 and	 Cd300Ig	were	 investigated	 in	 more	9 

detail	since	the	gene’s	promoter	is	a	key	regulatory	region	where	the	effect	of	DNA	methylation	is	more	10 

clearly	 understood.	 We	 found	 the	 biggest	 change	 in	 mRNA	 expression	 was	 in	 interferon	 induced	11 

transmembrane	protein	3	 (Ifitm3),	with	mRNA	 from	this	gene	being	almost	undetected	 in	unstimulated	12 

WKY	macrophages	(Fig.	3e).	This	observation	is	consistent	with	the	differential	methylation	status	of	the	13 

promoter	of	Ifitm3,	where	the	WKY	rats	had	higher	levels	of	methylation	than	the	LEW	rats	(Fig.	3f).	To	14 

further	support	the	identification	of	differential	methylation	at	the	Ifitm3	gene	we	checked	whether	other	15 

methods	 identified	 the	 same	 DMR.	 While	 MethylSig	 failed	 to	 identify	 significant	 DMR	 and	 BSmooth	16 

identified	a	large	and	unspecific	genomic	area	as	differentially	methylated,	DSS	provides	highly	consistent	17 

results	with	 ABBA,	 identifying	 differential	methylation	 at	 the	 same	 region	 at	 the	 Ifitm3	gene	 promoter	18 

(Supplementary	Figure	11).	19 

We	have	previously	 shown	 that	 JunD	 (AP-1)	 transcription	 factor	 is	 a	major	 determinant	 of	 CRGN	 in	20 

WKY	rats	(Behmoaras	et	al.	2008)	and	others	have	shown	that	AP-1	is	methylation	sensitive	(Ogawa	et	al.	21 

2014).	 Therefore	 we	 scanned	 the	 DMR	 (spanning	 600	 bp)	 for	 canonical	 JunD	 binding	 site	 motifs,	 and	22 

identified	 three	putative	 regions	 in	 the	promoter	 region	of	 Ifitm3	(Fig.	 3g).	 In	 addition,	we	 re-analyzed	23 

ChIP-seq	data	for	JunD	transcription	factor	in	BMDM	derived	from	WKY	and	a	congenic	strain	from	LEW	24 

(see	Methods	 for	details).	This	analysis	 identified	significant	differences	 in	 JunD	binding	between	WKY	25 

and	LEW-congenic	strain	that	overlapped	with	two	of	the	four	TFBS	identified	at	the	Ifitm3	promoter	(Fig.	26 

3g).	 The	 combined	 evidence	 provided	 by	 our	 ABBA	 analysis	 and	 RNA-seq/ChIP-seq	 data	 therefore	27 

suggests	 that	 the	effect	of	DNA	methylation	of	 the	 Ifitm3	 gene	promoter	 in	WKY	rats	 (prone	 to	develop	28 

CRGN)	may	be	restricting	the	binding	of	transcription	factors	such	as	JunD	and,	as	a	consequence,	the	gene	29 

is	almost	not	expressed	(<1	TPM)	in	unstimulated	macrophages	of	WKY	rats.		 	30 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 20, 2017. ; https://doi.org/10.1101/041715doi: bioRxiv preprint 

https://doi.org/10.1101/041715


 

 	 21	

DISCUSSION	1 

As	the	cost	of	genome	sequencing	technologies	continues	to	drop,	it	will	soon	become	commonplace	to	2 

perform	comprehensive	methylome	analyses,	using	WGBS	or	other	high-throughput	techniques	that	allow	3 

the	unbiased	genome-wide	quantification	of	DNA	methylation	at	a	single	base-pair	resolution.	However,	4 

high-resolution	 data	 generation	 is	 only	 the	 first	 step	 towards	 the	 identification	 of	 genomic	 loci	 and	5 

eventually	 genes	 with	 altered	 methylation	 levels	 associated	 with	 a	 given	 disease,	 phenotype	 or	6 

developmental	stage.	The	number	of	DNA	methylation	datasets	available	in	the	public	domain	is	expected	7 

to	grow;	 therefore,	 it	becomes	necessary	 to	provide	 the	 scientific	 community	with	analytical	 tools	 for	a	8 

reliable	 and	 reproducible	 identification	 of	 differential	 methylation,	 and	 facilitate	 large	 epigenome-9 

mapping	projects	and	epigenome-wide	association	studies	(Bock	2012).	10 

Beyond	statistical	power	considerations	specifically	related	to	the	sample	size	(Rakyan	et	al.	2011)	or	11 

interpretability	 of	 epigenome-wide	 association	 studies	 (Birney	 et	 al.	 2016),	 our	 ability	 to	 identify	12 

accurately	 changes	 in	 DNA	methylation	 localized	 to	 specific	 genomic	 loci	 (genes)	 is	 also	 influenced	 by	13 

multiple	 factors	 inherently	correlated	to	data	quality.	These	 include	the	within-group	heterogeneity,	 the	14 

level	 of	 noise,	 the	 presence	 of	 known	 genetic	 covariates	 (Zhang,	 2015)	 and	 non-genetic	 confounding	15 

factors	(e.g.,	batch	effects)	as	well	as	features	such	as	sequencing	depth	(Ziller	et	al.	2015)	or	errors	due	16 

incomplete	bisulphite	conversion	(Genereux	et	al.	2008).	Therefore,	any	analytical	 tool	 that	can	account	17 

for	 all	 these	 factors	 will	 reduce	 the	 number	 of	 false	 positives	 maximizing	 the	 sensitivity	 and	 call	 the	18 

regions	of	interest	(i.e.,	differentially	methylated)	as	accurately	as	possible.	With	this	in	mind,	we	designed	19 

a	 differential	 methylation	 analysis	 tool	 (ABBA)	 that	 is	 robust	 to	 different	 experimental	 and	 technical	20 

variables	(see	Fig.	2),	and	that	adapts	automatically	to	the	varying	genomic	context	and	local	topology	of	21 

CpG	 sites	 affecting	 methylation	 levels.	 In	 particular,	 the	 automatic	 adaptation	 to	 different	 correlation	22 

structures	 in	 CpG	 methylation	 levels	 (without	 requiring	 user-defined	 parameters	 about	 the	 degree	 of	23 

smoothing)	as	well	as	the	ability	of	modelling	its	decay	as	the	function	of	the	genomic	distances	between	24 

CpGs allow	ABBA	 to	 adapt	 routinely	 to	methylation	 changes	 that	 occurs	with	 different	 scales	 and	non-25 

uniform	rates	across	the	genome.	The	importance	of	the	genomic	context	in	the	methylome	and	the	local	26 

topology	of	CpG	sites	have	been	recently	investigated,	showing,	amongst	other	features,	that	methylation	27 

at	small	CpG	clusters	is	more	likely	to	induce	stable	changes	in	DNA	methylation	(Lövkvist	et	al.	2016).	28 

From	 a	 user's	 perspective,	 ABBA	 treats	 WGBS-seq	 data	 in	 a	 general	 way	 with	 no	 specification	 of	29 

parameters	 related	 to	 the	 level	 of	 data	 smoothing	 (such	 as	 window	 size	 or	 kernel	 bandwidth),	 thus	30 

allowing	 for	 a	 great	 deal	 of	 automation.	 This	 also	 facilitates	 the	WGBS	 analysis	when	 the	 values	 of	 the	31 
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parameter	 settings	 (that	may	 largely	 affect	 the	 accuracy	 of	DM	 identification)	 are	 not	 known.	Our	 fully	1 

Bayesian	approach	can	be	also	easily	modified	to	include	covariates	and	non-genetic	confounding	 factors	2 

through	random	effects,	beyond	the	replicates	level.	It	also	allows	the	specification	of	covariates	that	are	3 

informative	about	the	methylation	profiles	by	adding	prior	biological	information	to	the	linear	predictor	4 

𝜇!"	in	 (6).	While	 these	alterations	can	be	done	 in	our	model	with	a	simple	modification	of	 the	code	and	5 

with	negligible	further	computational	costs,	non-parametric	smoothing	techniques	(spline-	(Hansen	et	al.	6 

2012),	kernel	 (Hebestreit	et	al.	 2013)-	and	moving	average-based	smoothing	 (Feng	et	al.	 2014))	do	not	7 

possess	the	same	straightforward	flexibility	nor	alternative	approaches	based	on	Hidden	Markov	Models	8 

(Yu	and	Sun	2016a),	(Kuan	and	Chiang	2012),	(Sun	and	Yu	2016).	9 

Our	 extensive	 simulation	 studies	 (Fig.	 2)	 and	 differential	 DNA	 methylation	 analysis	 in	10 

glomerulonephritis	(Fig.	3)	showed	that	ABBA	is	a	powerful	approach	for	the	identification	of	DMRs	from	11 

WGBS	single-base	pair	resolution	methylation	data.	While	individual	methods	such	as	BSmooth	(Hansen	12 

et	al.	2012)	or	DSS	(Feng	et	al.	2014;	Wu	et	al.	2015)	showed	a	very	good	power	to	detect	DMRs	under	13 

specific	scenarios	and	conditions,	ABBA	retained	a	high	degree	of	robustness	of	the	results	with	respect	to	14 

a	wider	 range	 of	 factors	 (parameters)	 affecting	WGBS	 data	 integrity	 and	 quality,	 including	 sequencing	15 

coverage,	number	of	replicates	or	different	noise	structures.	This	is	particularly	appealing	in	cases	when	16 

considerable	efforts	have	been	expended	toward	generation	of	large-scale	WGBS	data	from	heterogeneous	17 

systems,	e.g.,	 the	ENCODE	project	(Bernstein	et	al.	2012),	and	data	quality	can	vary	across	experimental	18 

conditions	and	 laboratories.	As	proof	of	concept	of	ABBA’s	application	 to	real	data	analysis,	we	used	an	19 

established	experimental	model	system	of	glomerulonephritis	(Aitman	et	al.	2006)	to	identify	changes	in	20 

DNA	methylation	 associated	with	disease.	 In	 this,	we	 employed	ABBA	 to	 analyze	~15	million	CpG	 sites	21 

genome-wide	 in	 primary	 bone-marrow	 derived	 macrophages	 derived	 from	 WKY	 and	 LEW	 rats	 and	22 

identified	 >1,000	 significant	 DMRs	 at	 5%	 FDR	 level.	 A	 comparative	 analysis	 using	 DSS	 (the	 most	23 

competitive	approach	from	our	simulation	study)	did	not	provide	the	same	level	of	biological	insight	both	24 

in	 terms	 of	 significant	 pathway	 enrichments	 and	 in	 robustly	 identifying	 DMRs	 across	 user-defined	25 

parameters.	To	highlight	this	point,	we	showed	how	the	results	of	DSS	were	greatly	affected	by	the	choice	26 

of	the	window	size.		27 

Furthermore,	we	have	shown	how	 integrating	 the	DMR	results	provided	by	ABBA	with	other	 ‘omics’	28 

data	 (RNA-seq	 and	 ChIP-seq	 generated	 in	 the	 same	 experimental	 system),	 enabled	 us	 to	 generate	 new	29 

hypotheses	 for	 the	 mechanism	 underpinning	 the	 disease,	 revealing	 a	 candidate	 gene	 (Ifitm3)	 for	 the	30 

susceptibility	 to	 glomerulonephritis.	 These	 findings	 on	 Ifitm3	 in	 rat	 glomerulonephritis	 merit	 further	31 

discussion.	Ifitim3	has	a	known	role	in	viral	resistance,	a	central	part	of	innate	immunity,	and	is	inducible	32 
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by	 both	 interferon	 (IFN)	 types	 I	 and	 II	 (Everitt	 et	 al.	 2012).	 Notably,	 type	 II	 IFN	 signaling	 has	 been	1 

implicated	 in	 the	 pathogenesis	 of	 nephrotoxic	 nephritis	 and	 other	 “planted”	 antigen	 models	 of	 CRGN	2 

(Kitching	et	al.	2004),	although	DNA	methylation	has	not	previously	been	examined	in	this	context.	With	3 

regards	to	type	I	IFN,	recent	genome-wide	DNA	methylation	analysis	of	T-cells,	B-cells	and	monocytes	has	4 

shown	that	patients	with	SLE,	a	frequent	autoimmune	cause	of	CRGN,	have	severe	hypomethylation	near	5 

to	genes	involved	in	type	I	IFN	signaling	(Absher	et	al.	2013).	In	addition,	DNA	methylation	alterations	in	6 

IFN-related	 genes,	 including	 Ifitm3,	 have	 been	 previously	 observed	 and	 proposed	 to	 contribute	 to	 the	7 

pathogenesis	of	other	autoimmune	diseases	such	as	primary	Sjögren's	syndrome	(Gottenberg	et	al.	2006).	8 

Regarding	 the	 role	 of	 Ifitm3	 gene,	 it	 has	 been	 shown	 to	 directly	 interact	 in	 vivo	 and	 in	 vitro,	 with	9 

osteopontin,	a	matricellular	protein,	whose	transcription	is	mediated	by	the	AP-1	TF	family	(El-Tanani	et	10 

al.	2010).	Furthermore,	osteopontin	has	been	also	previously	associated	with	SLE	(Rullo	et	al.	2013)	and	11 

ANCA-associated	vasculitis	(Lorenzen	et	al.	2010)	another	frequent	cause	of	CRGN.	Therefore,	our	ABBA	12 

analysis	of	WGBS	data	in	primary	macrophages	from	a	rat	model	of	CRGN	allowed	us	to	propose	an	AP-1-13 

mediated	 role	 for	 Ifitm3	 in	 glomerulonephritis.	 While	 a	 role	 for	 IFN-signaling	 genes	 in	 autoimmune	14 

disease	 has	 been	 previously	 suggested,	 our	 findings	 on	 methylation	 alteration	 of	 the	 Ifitm3	 gene	15 

associated	 with	 glomerulonephritis	 in	 the	 rat	 might	 suggest	 future	 directions	 for	 the	 study	 of	 the	16 

pathogenesis	and	to	develop	treatments	of	CRGN.	17 

In	a	wider	context,	the	role	of	methylation	is	dependent	on	the	location	with	respect	to	the	gene	body	18 

and	regulation	functions.	Methylation	in	a	CpGI-depleted	promoter,	such	as	the	promoter	region	of	Ifitm3	19 

gene	 (according	 to	 UCSC	 genome	 browser	 (RN4)),	 is	 associated	 with	 repression	 that	 maybe	 due	 to	20 

interference	 with	 transcription	 factor	 binding.	 Conversely,	 methylation	 in	 the	 gene	 body	 is	 positively	21 

associated	 with	 active	 transcription	 as	 methylation	 can	 be	 caused	 by	 transcriptional	 elongation	22 

(Schübeler	 2015).	 Methylation	 within	 a	 gene	 body	 can	 also	 act	 as	 an	 insulator	 for	 repetitive	 and	23 

transposable	elements	or	distal	 intronic	enhancers,	on	which	the	methylation	would	have	no	regulatory	24 

effect	on	the	gene	in	which	it	resides	(Jones	2012).	Given	the	complexity	of	these	regulatory	functions	of	25 

methylation,	 the	 ability	 of	 our	 approach	 to	 accurately	 identify	 changes	 in	 DNA	 methylation	 that	 are	26 

localized	to	specific	regions	is	likely	to	facilitate	our	understanding	of	the	complex	relationships	between	27 

methylation	and	gene	regulation.	As	exemplified	by	our	integrative	analysis	of	the	of	the	Ifitm3	locus,	we	28 

anticipate	 that	 the	 ABBA	 results	 for	 differential	 DNA	methylation	 should	 be	 integrated	with	 additional	29 

transcriptional	 and	 epigenetic	 data	 in	 order	 to	 better	 define	 hypotheses	 on	 specific	 regulatory	30 

mechanisms.	31 
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In	 summary,	we	 show	how	ABBA	provides	 a	 flexible	 and	user-friendly	 automatic framework	 for	 the	1 

identification	of	differential	methylation	that	is	robust	across	a	wide	range	of	experimental	parameters,	an	2 

approach	 that	 we	 have	 also	 applied	 to	 identify	 changes	 in	 macrophage	 DNA	 methylation	 in	3 

glomerulonephritis.	4 

	 	5 
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FIGURES	1 

	2 
Figure	 1.	 ABBA	 model.	 ABBA	 estimates	 the	 unobserved	 methylation	 profiles,	 i.e.	 the	 DNA	 average	3 

methylation	levels	across	replicates,	of	two	groups	from	WGBS	data	(blue	diamonds	and	read	stars).	(a)	A	4 

random	 effect	 accounts	 for	 the	 variability	 of	 experimental	 replicates.	 At	 each	 CpG	 the	 methylation	5 

probability	difference	 is	 the	difference	between	the	methylation	profile	of	 the	two	groups	(blue	and	red	6 

dots).	 (b)	 The	 methylation	 profiles	 of	 each	 group	 are	 smoothed	 by	 a	 latent	 Gaussian	 field	 that	7 

probabilistically	connects	them	(dotted	lines).	 In	particular	“Smoothing	scenario	1”	shows	that	 if	a	 large	8 

spacing	 (distance)	 between	 two	 consecutive	 CpGs	 (CpG:A	 and	 CpG:B)	 exists,	 the	methylation	 profile	 at	9 

CpG:B	 does	 not	 depend	 on	 the	 previous	 one	 at	 CpG:A	 (blue	 dotted	 line).	 The	 opposite	 happens	 in	10 

“Smoothing	scenario	2”	where	the	methylation	profile	at	CpG:D	is	largely	influenced	by	the	previous	one	11 

at	CpG:C	(red	dotted	line)	despite	some	high	levels	of	methylation	(red	stars)	which	are	treated	by	ABBA	12 

as	 outliers.	 The	 degree	 of	 the	 smoothing,	 i.e.	 the	 correlation	 between	 DNA	 methylation	 profiles,	 is	13 
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controlled	 automatically	 by	 the	 marginal	 variance	 of	 the	 Latent	 Gaussian	 Field	 (blue	 and	 red	 vertical	1 

bars):	the	correlation	is	higher	(lower)	when	the	variance	is	small	(large).	On	the	other	hand,	the	variance	2 

decreases	as	the	distance	between	neighbouring	CpGs’	decreases	(Smoothing	scenario	2)	while	increases	3 

as	the	distance	increases	(Smoothing	scenario	1).	4 
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Figure	 2.	 Benchmarking	 results.	 (a)	ROC	curves	 for	selected	combinations	of	parameters:	 (i)	s0	=	0.1,	1 

Δmeth	=	30%,	r	=	1,	average	read	depth	per	CpG	of	10x,	 	δ	=	0;	(ii)	s0	=	0.3,	Δmeth	=	30%,	r	=	3,	average	2 

read	depth	per	CpG	of	10x,	δ	=	0;	(iii)	s0	=	0.2,	Δmeth	=	70%,	r	=	2,	average	read	depth	per	CpG	of	30x,		δ	=	3 

0;	(iv)	s0	=	0.1,	Δmeth	=	70%,	r	=	1,	average	read	depth	per	CpG	of	30x,		δ	=	5%;	(v)	s0	=	0.2,	Δmeth	=	30%,	r	4 

=2,	average	read	depth	per	CpG	of	10x,		δ	=	10%;	(vi)	s0	=	0.3,	Δmeth	=	70%,	r	=	3,	average	read	depth	per	5 

CpG	of	30x,	 	δ	=	10%.	For	each	of	this	combination	of	parameters,	the	corresponding	best	method	based	6 

on	its	pAUC	is	indicated	in	the	benchmark	grid	below.	In	(i)	and	(iv)	ROC	curves	are	reported	only	for	the	7 

methods	 that	 can	 analyze	WGBS	data	generated	 from	one	biological	 sample.	 (b)	Global	 snapshot	of	 the	8 

method’s	performance	across	216	simulated	datasets.	A	given	combination	of	parameters	is	indicated	by	a	9 

square	 in	 the	 benchmark	 grid,	 and	 for	 each	 square	 we	 calculated	 the	 pAUC	 for	 each	 method	 and	10 

determined	 which	 method	 had	 the	 overall	 best	 pAUC	 (i.e.,	 pAUCmethod_1	 >	 pAUCmethod_2).	 Colours	 in	 the	11 

benchmark	grid	indicate	which	method	had	the	best	performance.	When	pAUC	of	two	methods	are	similar	12 

(±1%)	we	 report	 the	 colours	 of	 both	methods	 (e.g.,	 black	 and	 red	 colours	 in	 the	 same	 square	 indicate	13 

similar	performance	of	ABBA	and	DSS).	 The	 six	 selected	 combination	of	 parameters	 for	which	 the	ROC	14 

curves	are	reported	 in	panel	 (a)	are	 indicated	within	 the	benchmark	grid:	 (i,	 ii,	 iii,	 iv,	v	and	vi).	All	ROC	15 

curves	are	reported	 in	Supplementary	 Figures	5-7.	 (c)	For	the	three	best	performing	methods	(ABBA,	16 

DSS	and	BSmooth)	we	report	the	percentage	of	simulated	scenarios	in	which	each	method	resulted	to	be	17 

the	best	based	on	the	pAUC	comparison.	“Tie”	indicates	the	proportion	of	simulated	scenarios	in	which	the	18 

pAUCs	of	any	two	methods	were	similar	(i.e.,	pAUCs	±1%)	and	 it	was	not	possible	 to	single	out	a	single	19 

best	performing	approach.	20 
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	1 

Figure	3.	ABBA	analysis	of	WGBS	in	rat	macrophages.	(a)	CpG-based	annotation	1,004	DMR	between	2 

WKY	and	LEW	macrophages	showing	significantly	higher	proportions	of	CpGI	and	CpGS	than	those	that	3 

would	be	expected	by	chance	(p-value<0.009	for	CpGI	and	p-value<0.001	for	CpGS,	respectively,	obtained	4 

by	1,000	randomly	sampled	datasets	of	1,004	CpG-matched	regions).	(b)	Proportions	of	DMRs	in	different	5 

genomic	 features	 of	 overlapping	 genes.	 Feature	 annotation	 was	 retrieved	 from	 UCSC	 genome	 browser	6 

(RN4).	(c)	KEGG	pathway	enrichment	for	the	genes	overlapping	with	DMRs.	Only	significant	pathways	are	7 

reported	(FDR<1%).	(d)	Enrichment	 for	 the	TFBS	within	the	DMRs	was	when	compared	to	CG	matched	8 

regions	 of	 the	 genome	 (FDR<0.05).	 (e)	 RNA-seq	 analysis	 in	WKY	 and	 LEW	macrophages	 shows	 lack	 of	9 

Ifitm3	expression	in	WKY	rats.	(f)	Percentage	methylation	at	each	CpG	in	WKY	(crosses)	and	LEW	(plus)	10 

and	 smoothed	 average	 methylation	 profiles	 by	 ABBA.	 The	 pink	 box	 highlights	 the	 significant	 DMR	11 

identified	 by	 ABBA	 (FDR<5%).	 (g)	 ChIP-seq	 analysis	 for	 JunD	 in	 LEW.LCrgn2	 (LEW*)	 and	 WKY	12 

macrophages	identified	a	single	region	with	differential	binding	of	JunD	(p-value<0.05,	Sign	Diff	row,	black	13 

box).	 Units	 on	 the	 y-axis	 refer	 to	 relative	 ChIP-seq	 coverage	 with	 respect	 to	 the	 control.	 This	 region	14 
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overlapped	with	two	(out	of	four)	JunD	binding	sites	motifs	identified	within	the	gene	promoter	(±500bp	1 

around	the	TSS).	ABBA	DMR,	differentially	methylated	region	identified	by	ABBA.	TSS,	transcription	start	2 

site.	*,	p-value<0.05,	***,	p-value<0.001		3 

	 	4 
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