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Abstract 

Background 
Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of                
resident fibroblasts. The global post-transcriptional mechanisms underlying       
fibroblast-to-myofibroblast conversion in the heart have not been explored. 

Methods 
Genome-wide changes of RNA transcription and translation during human cardiac fibroblast           
activation were monitored with RNA sequencing and ribosome profiling. We then used            
miRNA- and RNA-binding protein-based analyses to identify translational regulators of          
fibrogenic genes. To reveal post-transcriptional mechanisms in the human fibrotic heart, we            
then integrated our findings with cardiac ribosome occupancy levels of 30 dilated            
cardiomyopathy patients. 

Results 
We generated nucleotide-resolution translatome data during the TGFβ1-driven cellular         
transition of human cardiac fibroblasts to myofibroblasts. This identified dynamic changes of            
RNA transcription and translation at several time points during the fibrotic response,            
revealing transient and early-responder genes. Remarkably, about one-third of all changes           
in gene expression in activated fibroblasts are subject to translational regulation and            
dynamic variation in ribosome occupancy affects protein abundance independent of RNA           
levels. Targets of RNA-binding proteins were strongly enriched in post-transcriptionally          
regulated genes, suggesting genes such as MBNL2 can act as translational activators or             
repressors. Ribosome occupancy in the hearts of patients with dilated cardiomyopathy           
suggested an extensive post-transcriptional regulatory network underlying cardiac fibrosis.         
Key network hubs include RNA-binding proteins such as PUM2 and QKI that work in concert               
to regulate the translation of target transcripts in human diseased hearts. 

Conclusions 
We reveal widespread translational effects of TGFβ1 and define novel post-transcriptional           
events that control the fibroblast-to-myofibroblast transition. Regulatory networks that affect          
ribosome occupancy in fibroblasts are paralleled in human heart disease. Our findings show             
the central importance of translational control in fibrosis and highlight novel pathogenic            
mechanisms in heart failure. 
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Introduction 
Cardiac remodelling and heart failure syndromes are frequently associated with fibrosis,           
which is a common late stage pathology in many human diseases1. Cardiac fibrosis is seen               
in numerous cardiac conditions, including atrial fibrillation 2, hypertrophic cardiomyopathy         
(HCM)3, dilated cardiomyopathy (DCM)4 and heart failure with preserved ejection fraction 5.           
Fibrosis of the heart is driven primarily by the activation of resident fibroblasts6,7. A better               
understanding of the molecular mechanisms underlying fibroblast activation is of great           
importance for the development of novel anti-fibrotic therapies8. 
 
While there are various cues known to initiate the cellular conversion of fibroblasts,             
Transforming growth factor β1 (TGFβ1) is considered the master regulator9. However,           
anti-fibrotic therapeutic approaches based on TGFβ1 inhibition have side effects due to the             
pleiotropic roles of this cytokine, especially in cancer and inflammation 10,11. Thus, unravelling            
the fibroblast-specific footprint of TGFβ1 signalling is an important step towards the            
identification of novel downstream drivers of cardiac disease. Whilst RNA expression           
changes via TGFβ1-induced SMAD signalling have been studied previously12, the          
independent impact of TGFβ1 on RNA translation remains unknown.  
 
To address this gap in knowledge, we profiled genome-wide RNA transcription and            
translation levels13 in human primary cardiac fibroblasts at several time points after TGFβ1             
stimulation. A tailored computational analysis14 identified post-transcriptional regulatory        
patterns underlying fibroblasts activation. To corroborate our findings in an independent and            
disease-relevant context, we performed ribosome profiling (Ribo-seq) of cardiac samples          
from patients with DCM. This integrative approach provided a detailed perspective on            
post-transcriptional regulatory hubs in human heart disease. 

Results 

Translational profiling during the activation of human cardiac fibroblasts 
During the fibrotic response, resident fibroblasts become pro-fibrotic myofibroblasts that          
express α-smooth muscle actin (ACTA2) and secrete extracellular matrix (ECM) proteins           
such as collagen I and periostin (POSTN)15. To understand better this transition in the              
human heart, we isolated primary cardiac fibroblasts from atrial biopsies of four individuals             
undergoing coronary artery bypass grafting (Supplementary table 1). TGFβ1 stimulation          
(5ng/ml) resulted in a significant increase of ACTA2 +ve cells and an upregulation of             
ECM-related proteins indicating activation of fibroblasts within 24h (Figure 1a-g). This           
cellular transformation was accompanied by rapid phosphorylation of SMAD as well as ERK,             
which is a key factor in non-canonical signalling pathways and known to regulate             
post-transcriptional processes (Figure 1h)12. 
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Figure 1: Time-resolved stimulation of the fibrotic response. a. Primary human cardiac fibroblasts were              
isolated from the atrial biopsies of four individuals and stimulated with TGFβ1 (5ng/ml). Microscopic images show                
fibroblasts at five timepoints (B: Baseline, 45m, 2h, 6h, 24h after TGFβ1 stimulation) with immunostaining for                
Collagen I, ɑ-smooth muscle actin (ACTA2) and Periostin (POSTN). Scale bar equals 200µm. Fluorescence was               
quantified on the Operetta high-content imaging platform after immunostaining for Collagen I ( b), ACTA2 ( c ) and                
POSTN ( d ) (28 measurements across four wells) and normalized for cell count ( c) or cell area, I/A: Intensity/Area                  
( b , d ). Total secreted collagen ( e), concentration of MMP-2 ( f) and TIMP-1 ( g) in the supernatant of TGFB1                  
stimulated cardiac fibroblasts (n=3, biologically independent samples) was quantified by Sirius red collagen assay              
( e ) and by ELISA ( f, g) respectively. P-values were determined by one-way ANOVA and corrected for                
comparisons to the same sample (Baseline) using Dunnett’s test. * p-value<5x10-2, ** p-value<10-4, ***              
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p-value<10-8, **** p-value<2x10-16. h. Western blotting showed rapid activation of SMAD2 and ERK signalling              
molecules. B: baseline (0 minutes).  
 
To capture a time-resolved snapshot of the molecular changes that underlie the transition of              
fibroblasts into myofibroblasts, we performed RNA-seq and Ribo-seq for baseline, 45m, 2h,            
6h and 24h after TGFβ1 stimulation. Ribo-seq entails deep sequencing of ribosomal            
footprints, which are short RNA fragments protected from nuclease treatment by ribosomes            
(RPF; ribosome protected fragments). RPFs therefore quantify both mRNA abundance and           
ribosome occupancy of protein-coding genes and as such are a superior proxy for protein              
levels compared to RNA-seq 16. On average we generated ~51M (RNA-seq) and ~12M            
(Ribo-seq) uniquely mapped reads per sample. Ribo-seq reads mapped predominantly to           
the coding sequence and had an average read length of 29bp (Supplementary Figure             
1a-d), both of which are characteristic of high-quality RPF data 13. We then inferred the exact               
position of the Peptidyl-site (P-site), the site in the ribosome where transfer RNAs recognize              
their complementary codon, based on RPFs (see methods). On average, 89% of all P-sites              
mapped to the coding frame in known genes, indicating that captured ribosomes translate             
the known reading frame of transcripts (Figure 2a, b). Plotting of P-site density around the 3’                
location of expressed CDS revealed that ribosomes recognised the stop codon and            
disengaged from RNA transcripts (Figure 2c). High triplet periodicity and a strong            
dissociation signal reveal the stepwise movement of the ribosome along the coding regions             
of the transcripts and indicate the positions of actively translating ribosomes being captured             
at single nucleotide resolution. 
 

Figure 2: Ribosome profiling of TGFβ1 stimulated primary human cardiac fibroblasts. a . Sample level              
periodicity: Distribution of inferred P-site (Peptidyl-site) locations (+12 offset) for each sample (4 patients over 5                
time points) at annotated translation start sites reveals ribosomes located on the canonical start codon (AUG)                
and majority of the P-sites downstream of the start codon located in-frame. b. The 3nt-periodicity for all 20                  
samples (P1-P4 patients, 5 time points) is >86% indicating the majority of reads represent actively translating                
ribosomes. R represents random 3nt-periodicity of 33%. c. Gene-level periodicity: P-site location across all              
annotated expressed (Transcript Per Million mapped reads, TPM>1) genes (combined data from 4 patients over               
5 time points), shows efficient ribosome drop-off at the canonical stop codon (UGA/UAG/UAA, represented by *). 
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Dynamic translational regulation during the fibrotic response 
Differentially transcribed genes (DTGs) can be detected on a genome-wide scale with RNA             
sequencing alone. Conversely, genes that are translationally regulated between conditions          
will display a significant change in translational efficiency (TE), i.e. the gene-wise ratio             
between ribosome occupancy and transcript abundance, requiring both RNA- and Ribo-seq           
for detection. We recently developed an analytical approach (which we refer to as ΔTE) that               
integrates RNA-seq and Ribo-seq data to reveal differential translational-efficiency genes          
(DTEGs)14. An output of this approach is a ΔTE value (and associated adjusted P-value) for               
each gene describing the log fold-change of TE at each time point. This analysis allowed               
reliable detection of DTEGs in our data despite patient-related batch effects           
(Supplementary Figure 2 ). Using the ΔTE approach we identified 1,691 DTEGs during the             
fibrotic response. For instance, ribosome occupancy of both FTL ( Ferritin Light Chain,            
ΔTE=3.24; Padj.=2x10 -2) and FTH1 (Ferritin Heavy Chain 1, ΔTE=3.12; Padj.=1x10 -2) increased           
significantly upon TGFβ1 stimulation, despite underlying transcript levels remaining the          
same. Translating ribosomes located on ITGA3 (Integrin Subunit Alpha 3, ΔTE=-1.9;           
Padj.=2x10 -3) transcripts decreased despite constant levels of RNA. These dynamic and often            
transient post-transcriptional changes in gene expression were sufficient to affect protein           
expression (Figure 3a, Supplementary Figure 3a-d). Globally, TGFβ1 signalling had an           
immediate effect on the ribosome occupancy of 67 genes after 45 minutes (Figure 3b). The               
most enriched gene ontology (GO) term in these early responding genes was “transcription             
regulator activity” (Padj.= 3x10 -3), suggesting that the following transcriptional response may           
be modulated by these DTEGs. The impact on translation then gradually decreased at 2h              
and 6h but was very pronounced again at 24h (Supplementary File 1, Supplementary             
Figure 3g-j ).  
 
We also detected a total of 4,216 DTGs, which gradually increased across time points.              
Several genes were detected as both DTG and DTEG; This occurs when TGFβ1 affects              
both RNA levels and TE of the same gene. In order to describe the relationship of this                 
overlap in transcriptional and translational regulation, we categorise each of the DTGs and             
DTEGs into one of eight regulatory groups (Figure 3c, Supplementary File 2). For more              
than 29% of DTGs, differences in transcription were not forwarded to the translational level              
but were translationally buffered or intensified. Of these, translational buffering was most            
prominent, i.e. changes in transcript expression detected with RNA-seq were less           
pronounced in the Ribo-seq data. This effect can be due to either a less efficient translation                
of genes whose RNA levels are increasing (568 genes, buffered down) or vice-versa, more              
efficient translation of genes whose RNA levels are decreasing (479 genes, buffered up). In              
particular, out of these 1,047 buffered genes, 419 (231 down, 188 up) had transcriptional              
regulation that was completely counter-acted by translational regulation, resulting in a similar            
density of translating ribosomes despite underlying TGFβ1-driven transcriptional changes.         
For example, RNA-seq suggests a downregulation of the protein kinase PRKG1 upon            
TGFβ1 stimulation. However, this effect is not forwarded to the translational level and thus              
protein levels do not decrease (Figure 3d, Supplementary Figure 3f). 
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For a defined subset of transcripts, RNA expression differences were intensified at the level              
of translation during the fibrotic response. These genes (n=180) responded even more            
strongly to TGFβ1 treatment than would be expected from RNA-seq based analyses alone.             
For instance, the concerted upregulation of the transcription factor HES1 on both the             
transcriptional and translational level resulted in a very strong increase in RPFs, which             
resulted in a profound increase in HES1 protein (Figure 3e, Supplementary Figure 3e).             
Interestingly, intensified genes were over-represented for functions such as “SMAD-protein          
signal transduction” (Padj.=6.5x10 -3) and “Regulation of ERK1 and ERK2 cascade”          
(Padj.=1.4x10 -2) (see Supplementary file 3 ).  
 
Overall these results demonstrate that more than one-third of all gene expression changes             
during fibroblast activation involve translational regulation and that these changes can affect            
protein levels. 
 

 
Figure 3: Genome-wide temporal transcriptional and translational landscape in cardiac fibrosis. a.            
Western blots showing ribosome occupancy determining changes in protein levels independent of mRNA             
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changes for translationally exclusive genes, FTL, FTH1 , ITGA3. B: Basal. b. Log-fold changes in the mRNA and                 
ribosome occupancy at 45 minutes after TGFβ1 stimulation. DTG: Differentially transcribed genes, DTEG:             
Differential translational-efficiency genes. c. The interplay between DTGs and DTEGs showing several            
categories of gene expression regulation. Forwarded genes, where the occupancy changes are explained by the               
mRNA changes; Exclusive, where changes occur exclusively in TE without underlying mRNA changes; Buffered              
and Intensified, where both the TE and the mRNA are changing. d-e. Western blotting of genes detected as d.                   
buffered, PRKG1 and e. intensified, HES1. f. Forwarded gene clusters (F2, F26, F11, F21) with transient                
changes in expression following TGFβ1 stimulation. n: Number of genes in the cluster, FC: fold change. 
 
Transcriptional and translational regulation downstream of TGFβ1 appears to be closely           
interlinked and tightly regulated over time. To further stratify these effects over time, we              
performed unsupervised clustering of the temporal profiles of Forwarded, Buffered,          
Exclusive and Intensified genes. This revealed 64 distinct regulatory patterns during the            
fibrotic response (Supplementary Figure 4 ). The clustering highlights the fact that there are             
a substantial number of transiently regulated genes during the fibrotic response (Figure 3f).             
Transient differences in expression would not be apparent when quiescent fibroblasts are            
compared to myofibroblasts at 24h, but may be crucial for the cellular transition and              
therefore important in disease. Transient clusters were predominantly enriched for          
processes involved in the regulation of gene expression(regulation of RNA metabolic           
process, 2.5x10 -7; regulation of transcription, DNA-templated, 1.7x10 -5), further        
substantiating their role in fibroblast transformation (Supplementary File 4 ). 

Post-transcriptional regulators of TGFβ1 signalling 
Having identified different regulatory groups and temporal profiles we sought to identify            
possible regulators. It is known that both RNA binding proteins (RBPs) and micro-RNAs             
(miRNAs) bind to target transcripts and affect protein production 16,17, a number of which been              
previously linked to heart disease 18,19. To identify key post-transcriptional regulators during           
the fibrotic response, we integrated expression data of possible regulators (miRNAs/RBPs)           
with transcriptome-wide target binding data. We performed global miRNA sequencing at           
Baseline, 45m, 2h, 6h and 24h after TGFβ1 stimulation in human primary cardiac fibroblasts              
(n=4), revealing 15 differentially expressed miRNAs (Supplementary Figure 5,         
Supplementary Table 2). For each of these miRNAs, a permutation test was used to detect               
a significant over-representation of their targets (‘Very High’ confidence, mirDip 20) in each of             
the eight regulatory groups defined above (Figure 4a). Targets of downregulated miRNAs            
miR-3182 (Padj.=0.0364), miR-335-3p (Padj.=0.0024) and miR-101-3p (Padj.=4.9x10 -05) were        
significantly enriched mainly in the ‘buffered up’ group (Supplementary File 5). However,            
the overall role of miRNA regulation appears to be limited in the TGFβ1-driven             
fibroblast-to-myofibroblast transition. 
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Figure 4: Post-transcriptional regulators in fibroblast activation . a. miRNA and b. RBP target             
over-representation test in the regulatory groups within DTGs and DTEGs. Z-score is the effect size of                
over-representation. Regulators per member represent the number of miRNAs or RBPs over-represented per             
member of the group. c. RBP over-representation test (FDR<1%) for regulatory patterns separate translationally              
activated and repressed clusters. RBP expression in response to TGFβ1 is determined using significant RPF               
changes. RBPs that are not over-represented for their targets in any cluster are not shown. Cluster IDs are                  
denoted by their regulatory groups and cluster number. B: Buffered, B’: Completely buffered (special case) and                
E: Exclusive. Clusters with less than 50 genes, or with no RBP over-representation are not shown.  
 
Using the same methodology, we tested for an overrepresentation of RBP targets in             
differentially expressed genes during the activation of fibroblasts. To construct reliable           
RBP-target networks, we utilized experimental evidence for RBP-RNA binding derived from           
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eCLIP (n=117), PAR-CLIP21 (n=58), HITS-CLIP (n=23) and iCLIP (n=22) data provided by            
ENCODE22 and POSTAR23. RBP targets were predominantly enriched in DTEGs but not in             
DTGs, which suggests that RBPs shape the fibrotic response mainly through translational            
regulation and rarely influence transcript levels (Figure 4b). Most targets of individual RBPs             
were overrepresented in clusters with similar translational regulation profiles (Figure 4c).           
Distinct enrichments in unidirectional ΔTE patterns suggest RBPs tend to act either as             
translational repressors or activators during the fibrotic response.  

Translational regulation by RBPs in fibrotic DCM heart  
We reported previously an in-depth view of the cardiac transcriptome in health and DCM24.              
Fibrotic markers6,25 were upregulated in the hearts of end-stage DCM patients (Figure 5a). In              
total, 45 of the 47 RBPs identified previously were also detected in DCM hearts (Transcripts               
per million mapped reads, TPM>5) and 22 were differentially expressed between healthy            
and diseased individuals (FC≧|1.2|, Padj.≦0.05) (Figure 5b). To quantify translation levels in            
the fibrotic human heart, we performed ribosome profiling of left ventricular tissue collected             
from a subset of DCM patients. In total, we were able to generate high depth and                
high-quality Ribo-seq data of 30 individuals (Supplementary Figure 6 , see methods for            
details of data generation).  

 
Figure 5: Post-transcriptional regulators in fibrosis and dilated cardiomyopathy. a. Periostin (POSTN) and             
Latent TGFB binding protein 2 (LTBP2) are upregulated in DCM patients. (Fold change, FDR-adjusted P value)                
b. Cardiac expression (Transcripts per million mapped reads, TPM) and differential expression (fold change,              
p-adjusted: p-value corrected by Benjamini-Hochberg) of RNA binding proteins in DCM patients compared to              
non-diseased donors. c. RBPs with significantly more correlated targets than expected by chance (RBP RPF vs                
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target TE, p-values are nominal, FDR are corrected for False Discovery Rate by the Benjamini-Hochberg               
method), indicating translational control also in DCM patients. 
 

Post-transcriptional regulatory networks in DCM patients 
Genetic variation and differences in disease severity contribute to varied gene transcription            
and translation levels in the diseased heart. If the RBPs are truly regulators of ribosome               
occupancy in fibrosis, then RBP expression levels should correlate with the translational            
efficiency of the target transcripts. We observed a total of 3,771 RBP:target pairs correlating              
significantly in our human heart datasets. Fourteen translational regulators (targeting 926           
transcripts) remained significantly correlated with their targets based on permutation          
analyses (Figures 5c, 6a,b, Supplementary File 6 ), identifying them as regulatory hubs            
controlling ribosome occupancy during cardiac fibroblast activation and in the hearts of DCM             
patients. This substantiates further the influence of RBPs on ribosome occupancy in an             
independent dataset and provides evidence for post-transcriptional regulatory networks in          
human heart. 
 
Modules of this post-transcriptional regulatory network are enriched for distinct biological           
functions related to actin remodelling and other processes important in fibrosis           
(Supplementary File 7 ). One module in the heart is controlled by PUM2, which is known to                
drive glial scar formation, a fibrotic and TGFβ1-dependent process in the brain 26. Others are              
regulated by QKI, important in heart development27, or PCBP2 which is known to inhibit              
cardiac hypertrophy driven by the fibrogenic stimulus Angiotensin 2 28. Interestingly, we           
detected a large overlap between targets of regulators, suggesting that the concerted action             
of several RBPs determine the translational efficiency of bound transcripts. Both QKI and             
PUM2 appear to cooperate, with more than 21% of their targets (103 genes) overlapping              
between the RBPs, both of which appear to be acting as translational repressors. 
 
To test whether the differentially regulated RBPs we discovered in the DCM samples             
contribute to cardiac fibrosis, we determined whether the expression of these RBPs            
correlated with the same fibrosis markers used in figure 1. All fourteen identified regulatory              
hubs were correlated significantly with at least one marker gene such as ACTA2, COL1A1 or               
POSTN ( Supplementary Fig. 7a ), which supports their involvement in fibrosis in the DCM             
heart. Unsupervised clustering revealed different degrees of fibrogenic marker gene          
expression (low, moderate, high) in the DCM hearts (Figure 6c, Supplementary Fig. 7b ).             
Nine regulators of the network were significantly elevated in patients with high severity (vs              
low severity) cardiac fibrosis molecular signature (two-tailed t-test significance p-value<0.05,          
Figure 6d ).  
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Figure 6: Post-transcriptional regulatory network in dilated cardiomyopathy. a. Exemplars of RBP-target            
pairs correlated in the DCM heart. Cor: Spearman ranked correlation value, p: p-value for correlation test. b.                 
RBP-target network in disease based on permutation tests (|ρ| ≥ 0.45 for visualisation). c. Patient stratification                
based on severity of fibrosis assessed using marker gene expression (only low and high severity groups shown,                 
full clustering in supplementary figure 8b) d. RBP expression differences between patients with low and high                
severity of fibrosis. In red, p value for two-tailed t-test.  

Discussion 
Here we show that TGFβ1 stimulation of human atrial fibroblasts causes rapid changes in              
translation of a distinct set of key fibrosis transcripts, some of which occur within minutes               
after stimulation. While the transcriptional effects of TGFβ1 are well studied 12, we show for              
the first time a genome-wide snapshot of the post-transcriptional effect of the pathway: over              
one-third of all changing genes are regulated at the translational level. Buffering or             
intensifying RNA differences and exclusive translational regulation robustly modify protein          
abundance during the cellular transformation to myofibroblasts. These results shed some           
new light on the extent of post-transcriptional regulation in response to extracellular            
signalling in human disease. 
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We found that targets of specific miRNAs or RBPs are significantly enriched in translationally              
but not transcriptionally regulated genes, revealing their post-transcriptional regulatory         
footprint during cardiac fibroblast activation. miR-101 was previously reported to inhibit           
cardiac fibrosis via the TGFβ1 pathway29, block fibroblast activation 30 and is reduced in the              
lung and serum of IPF patients31. We show that TGFβ1 stimulation results in a loss of                
anti-fibrotic miRNA-101 in atrial fibroblasts, which is significantly associated with an increase            
in ribosome occupancy on a select number of target transcripts (Supplementary File 5).             
These observations are consistent with the recognized role of miRNAs in the repression of              
translation 32. 
 
Integration of more than 150 protein-RNA binding data sets with our ΔTE analysis revealed              
an unprecedented view of the RBP-driven landscape of translational regulation. CELF233,           
PUM226 and KHSRP34 are known to repress whereas MBNL235 and LARP436 to activate the              
translation of single target genes. Our results expose their interrelated larger target network             
in fibrotic disease and confirm they predominantly function as either translational repressors            
or activators, respectively. Multi-functional RBPs can regulate many post-transcriptional         
processes such as mRNA splicing, localization, translation and turnover in parallel 37.           
Quaking (QKI) and MBNL2 are mostly associated with alternative splicing 38–40, but our            
findings suggest that both also regulate the translational efficiency of hundreds of target             
transcripts during the fibrotic response. This is likely related to their role in the subcellular               
localization of target transcripts40. Some isoforms of QKI shuttle between the nucleus and             
the cytoplasm41 and have been shown to regulate the translation of luciferase reporter             
RNAs42. 
 
We documented highly significant correlation of fourteen RBPs with the translational           
efficiency of more than 900 transcripts in the DCM heart and identified key regulatory hubs               
of the diseased cardiac translatome. Regulatory footprints of the network often overlap,            
suggesting that RBPs act in concert to control the final protein levels of shared targets. This                
is especially evident with the repressors PUM2 and QKI with more than 21% of their targets                
overlapping. Translational repression by PUM2 in astrocytes is known to cause astrogliosis            
and the formation of glial scarring, which is a TGFβ1 dependent process26 and we reveal               
here the target gene network for PUM2-regulated translation in cardiac scarring.  
 
More than 1,500 RBPs are encoded in the human genome 43, but their role in the translation                
of target mRNAs remains largely unexplored. From our studies it is apparent that there is a                
major regulation of cardiac fibroblast gene expression at the level of translation and that this               
level of control, which is equally important as transcriptional regulation, has not been             
appreciated in this context. Translational control may be particularly pertinent in fibroblasts            
that produce huge amounts of ECM protein with limited changes in the expression of the               
correspondingly ECM transcript44. Whether such processes are important in cardiac          
myocytes or other cells in the heart is still to be determined, but their role in the regulation of                   
disease is clear, opening the possibility of alternative targets for treatment. 
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Methods 

Human primary fibroblast culture 
Human atrial fibroblasts were prepared and cultured as described previously12. All the            
experiments were carried out at low cell passage (<P4). In all experiments, cells were              
starved in serum-free DMEM for 16 hours prior to TGFβ1 stimulation. Stimulated fibroblasts             
were compared to unstimulated fibroblasts that have been grown for the same duration             
under the same conditions (serum-free DMEM), but without the stimuli. 

Operetta high-content imaging 
Operetta phenotyping assay was performed as described previously12. Briefly, atrial          
fibroblasts were seeded in 96-well black CellCarrier plates (PerkinElmer) at a density of 10 4              
cells/well. Following TGFβ1 stimulation, cells were fixed in 4% paraformaldehyde (28908,           
Life Technologies), permeabilized with 0.1%Triton X-100 (Sigma) and non-specific sites          
were blocked with 0.5% BSA and 0.1% Tween -20 in PBS. Cells were incubated overnight               
(4°C) with the following primary antibodies (1:500): alpha-smooth muscle actin (ACTA2,           
ab7817, abcam), Collagen I (ab34710, abcam) and periostin (POSTN, ab14041, abcam),           
followed by incubation with the appropriate AlexaFluor 488 secondary antibodies (1:1000),           
and counter-staining with rhodamine-phalloidin (1:1000, R415, Life Technologies) and DAPI          
(1µg/ml, D1306, Life Technologies). Each condition was imaged from at least two wells and              
a minimum of 7 fields per well using Operetta high-content imaging system 1483             
(PerkinElmer).The quantification of ACTA2 positive cells were measured using Harmony          
v3.5.2 (PerkinElmer). The measurement of fluorescence intensity per area of Collagen I and             
POSTN fluorescence intensity per area (normalized to the number of cells) were performed             
with Columbus 2.7.1 (PerkinElmer). 

Enzyme-linked immunosorbent assay (ELISA) 
The amount of MMP-2 and TIMP-1 in equal volume of cell culture media was quantified               
using Total MMP-2 (MMP200, R&D Systems) and TIMP-1 Quantikine ELISA kit (DTM100,            
R&D Systems) as per the manufacturer’s instructions. 

Colorimetric Assay 
Quantification of total secreted collagen in the cell culture supernatant was performed using             
Sirius red collagen detection kit (9062, Chondrex) according to the manufacturer’s protocol. 

Western blotting 
Atrial fibroblasts were washed with ice-cold PBS and solubilized by gentle rocking in             
radioimmunoprecipitation assay (RIPA) buffer containing protease and phosphatase        
inhibitors (Roche). Protein concentrations were determined by Bradford assay (Bio-Rad).          
After centrifugation, equal amounts of protein lysates were separated by SDS-PAGE,           
transferred to PVDF membrane, and subjected to immunoblot analysis for: p-ERK1/2 (4370,            
CST), ERK1/2 (4695, CST), FTL (ab109373, Abcam), FTH1 (4393, CST), GAPDH (2118,            
CST), HES1 (11988, CST), Integrin α3 (ITGA3, sc-374242, SantaCruz), PKG-1 (3248, CST),            
p-SMAD2 (5339, CST), SMAD2 (3108, CST). Proteins were visualized using the ECL            
detection system (Pierce) with the appropriate secondary antibodies. 
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Statistical analysis 
Statistical analyses of high content imaging was performed using GraphPad Prism software            
(version 6.07). Outliers (ROUT 2%, Prism Software) were removed before analysis.           
Dunnett’s test was used to calculate multiple testing corrected p-values for comparison of             
several time points to baseline.  

Ribosome profiling and RNA sequencing 
Primary cells: Primary human atrial fibroblasts outgrown from cardiac tissues biopsies of four             
patients undergoing coronary artery bypass grafting were expanded to reach 80%           
confluency in several 10cm dishes. Cells were stimulated with 5 ng/ml TGFβ1 for 45 min, 2h,                
6h and 24h. Per condition, three 10cm dishes were employed in order to obtain enough               
material for Ribo-seq (two dishes) and RNA-seq (one dish). 
 
Heart tissue: As part of a larger consortium effort (manuscript in preparation) to characterize              
the cardiac translatome, we generated ribosome profiling data of left ventricular tissue            
samples collected during left ventricular device implantation or cardiac transplantation from           
patients with end-stage DCM (n = 30). We specifically selected these 30 DCM patients as               
they were obtained from the same site of tissue collection (Cardiovascular Research Centre             
Biobank at Royal Brompton and Harefield NHS Trust.), in order to reduce technical variability              
and facilitate accurate patient stratification based on the degree of cardiac fibrosis.  
 
Ribosome profiling was performed as previously described 16. Briefly, snap-frozen cell pellets           
or 50-100 mg of tissue, previously powdered under liquid nitrogen, were lysed in 1ml cold               
lysis buffer (formulation as in TruSeq Ribosome Profile, Illumina) supplemented with           
0.1mg/ml cycloheximide (CHX) to stabilize ribosomal subunits and prevent post-lysis          
translocation. Homogenized and cleared lysates were then footprinted with Truseq Nuclease           
(Illumina) according to manufacturer’s instructions. Ribosomes were purified using Illustra          
Sephacryl S400 columns (GE Healthcare) and the protected RNA fragments were extracted            
with standard phenol:chloroform:isoamylalcohol technique. Following ribosomal RNA       
removal (Mammalian RiboZero Magnetic Gold, Illumina), sequencing libraries were prepared          
out of the footprinted RNA. Ribo-seq libraries were pooled to perform multiplex sequencing             
on Illumina Hiseq machines. 
 
The RNAseq data for the heart tissue was derived from Henig et al 24. To prepare polyA+                
RNA-seq libraries from primary cardiac fibroblasts, total RNA was extracted with Trizol from             
one 10cm dish per condition. Following cleanup with RNeasy kit (Qiagen), ~500ng of each              
sample were further processed with the Truseq Stranded mRNA kit (Illumina). Barcoded            
RNA-seq libraries were pooled and sequenced on the Illumina HiSeq platform.  
 
Informed Consent: DCM tissue studies complied with UK Human Tissue Act guidelines and             
were carried out with approval from the Royal Brompton and Harefield local ethical review              
committee and the National Research Ethics Service Committee South Central, Hampshire           
B (reference 09/H0504/104) 

Data processing for RNA-sequencing and Ribosome profiling 
Raw sequencing data were demultiplexed with bcl2fastq V2.19.0.316 and the adaptors were            
trimmed using Trimmomatic45 V0.36, retaining reads longer than 20 nt post-clipping.          
RNA-seq reads were further clipped with FASTX Toolkit V0.0.14 to 29nt, to allow             
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comparison directly with Ribo-seq reads. Reads were aligned using bowtie 46 to known rRNA,             
tRNA and mt-rRNA sequences (RNACentral 47, release 5.0), aligned reads were filtered out            
to obtain only RPFs. Alignment to the human genome (hg38) was done using STAR48. Gene               
expression was quantified on the CDS (coding sequence region) using uniquely mapped            
reads (Ensembl database release GRCh38 v86 combined with additional transcripts from           
RefSeq GRCh38, latest version downloaded January 2018) with feature counts49. Genes           
with mean transcripts per million mapped reads, TPM < 1 in either RNA-seq or Ribo-seq               
across all conditions were removed before downstream analysis. Ribotaper50 was used to            
obtain the in-frame reads around the start and stop codon. These p-sites were then              
visualized across samples and genes. Heatmap for the ribosome drop-off was generated            
using pheatmap 1.0.8 R package 51. Data quality check was done using MultiQC52. Principal             
component analysis was carried out using prcomp function in R. Individual gene batch effect              
for ITGA7 was removed using limma package 53 in R (see details in Supplementary table 1).  

Detection of Differential translational-efficiency genes (DTEGs) using       
DESeq2 
The calculation of ΔTE for human fibroblast data was done using an interaction term while               
accommodating for patient effect in the statistical model within DESeq2 54 (~ Patient + Time +               
Sequencing + Time:Sequencing). This allows for the identification of significant differences           
between time-points that are discordant between sequencing methodologies, i.e. for          
changes in ribosome occupancy that are not explained by changes in RNA abundance. The              
ΔTE fold change derived with this approach is comparable to traditional TE, but also              
accounts for variance and level of expression. In addition, the statistical model reveals if ΔTE               
is statistically significant. Since the RNA and RPF fold changes can be obtained by the same                
process using DESeq2, the fold changes are also directly comparable with ΔTE. In             
combination, these three fold changes can help predict the regulation status of the gene at               
transcriptional and translational level. Results were combined from Wald test for each time             
point and likelihood ratio test across all time points. Published tools for DTEG detection were               
run using default parameters (Supplementary table 4). 

Classification of DTGs and DTEGs into regulatory classes 
A gene’s regulation class was inferred using significant p-adjusted value threshold of 0.05 for              
ΔTE, differential expression of RPF and RNA, as shown in Supplementary table 3.             
Forwarded genes, change at the RPF and RNA levels but do not have a significant change                
in TE. Exclusive genes had a significant change in RPFs and TE, but no change on the                 
mRNA levels. Buffered and Intensified genes had all three levels significantly changing, but             
the relative direction of RNA and TE changes were used to determine the gene’s regulation               
status. Buffered genes were ones where the mRNA changes were counteracted by TE             
changes. Hence, genes with fold changes of RNA and TE in opposite directions were              
considered buffered. A special case of buffered genes, were significant at the RNA levels,              
with a counteracting significant change in TE, and no significant change in RPF indicating              
complete translational buffering. Intensified genes had TE changing in the same direction as             
RNA, hence reinforcing the transcriptional effect. The changes that were significant were            
used for hierarchical clustering within each category of DTEGs and DTGs. For instance             
forwarded genes were clustered using the RPF and mRNA fold changes. Hierarchical            
clustering was carried out using euclidean distances and ward.D method in hclust function 55             
in R stats package. Clusters were obtained using cutreeDynamic56 with default settings. 
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miRNA sequencing 
Purified RNA was quantified using Qubit RNA high sensitivity assay kit (Life Technologies)             
and RNA integrity number (RIN) was measured using the Bioanalyzer RNA 6000 Nano             
assay (Agilent Technologies). TruSeq Small RNA Library Preparation Kit (Illumina) was used            
to assess miRNA abundance following manufacturer’s protocol. Briefly, 3’ and 5’ ends of             
50ng purified RNA with RIN value >6 was ligated with RNA adaptors before reversed              
transcribed into cDNA and amplified. The amplified cDNA constructs were resolved using            
denaturing PAGE purification in Novex TBE 6% gel (Thermo Fisher Scientific). Targeted            
cDNA constructs with size between 145-160bp containing ~22nt mature miRNA were           
recovered and concentrated using ethanol precipitation. The final libraries were quantified           
using KAPA library quantification kits (KAPA Biosystems) on StepOnePlus Real-Time PCR           
system (Applied Biosystems) according to manufacturer's guide. The quality and average           
fragment size of the final libraries were determined using LabChip GX DNA High Sensitivity              
Reagent Kit (Perkin Elmer). Libraries with unique indexes were pooled and sequenced on a              
NextSeq 500 benchtop sequencer (Illumina) using NextSeq 500 High Output v2 kit and             
single-end 50bp sequencing chemistry. 4SeqGUI, docker4seq reproducible pipeline was         
used to process the miRNA-seq 57. DESeq2 was used for differential expression analysis,            
using patient as a covariate. Results were combined from Wald test and likelihood ratio test. 

Over-representation analysis 
R package topGO58 and KEGGrest59 were used to carry out (GO: BP, MF and KEGG               
pathways) over-representation tests for each gene cluster. Genes that are classified as            
either DTG or DTEG were used as background. miRNA-target enrichment was carried out             
for miRNA target data (for miRNAs with CPM > 1) downloaded from mirDIP using the ‘Very                
High’ confidence score class20. For each miRNA, actual number of targets in each gene              
class or cluster were determined using the database. Expected distribution for miRNA            
targets in each group was calculated by randomly selecting gene sets of the same size and                
quantifying the targets found within the group. This was repeated 100,000 times to obtain an               
empirical p-value. These p-values were further corrected for multiple testing using           
Benjamini-Hochberg method. The groups with BH corrected p-value < 0.05 for a miRNA             
were considered over-represented for its targets. Z-scores were calculated to evaluate the            
effect size of this over-representation. RBP’s target over-representation was also identified in            
regulatory groups using a similar permutation analysis, but using CLIP-seq data for target             
binding. Peak files from eCLIP experiments on ENCODE were downloaded and filtered for 8              
fold-enrichment and 10 -5 p-value over the input. Peak files were also downloaded from             
POSTAR23 and used with default filters. Similar to miRNAs, for each RBP we compared the               
number of actual targets in a regulation group to the number of targets found in a random                 
gene set of the same size to obtain an empirical p-value and z-score (n=100,000              
permutations). Benjamini-Hochberg corrected p-values were used for significance. 

DCM disease patient network analysis 
Spearman ranked correlation was calculated between the RBP’s log 10(TPMRPF) and target’s           
log 10(TE) across patient population (n=30, using all Ribo-seq and RNA-seq matched           
samples) with the cor.test R function. A permutation (n=10,000) test was carried out to              
determine expected number of correlated pairs (RBP:target) that would be found in a             
random set. Empirical p-value was calculated and Benjamini-Hochberg correction was          
applied for multiple testing. RBPs correlating with more pairs than random at FDR > 5%               
were selected as network hubs. The network was visualized using Cytoscape 60. To maximise             
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the number of comparisons for the correlation between RBPs and disease severity, we used              
all 97 patient RNA-seq data. Spearman ranked correlation was calculated between the            
RBP’s log 10(TPMmRNA) and fibrosis marker’s log 10(TPMmRNA) with the cor.test R function.           
Patient clustering was carried out using hclust R package in default settings based on              
marker gene expression levels across all 97 patients. Treecut R package was used to obtain               
four (k=4) levels of severity in fibrosis. Student’s t-test was used to determine significance of               
the difference between RBP expression for low and high fibrosis severity patients.  
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Supplementary Figures 

 
Supplementary Figure 1: a. Percentage of trimmed reads mapping to abundant sequences            
(ribosomal RNA, transfer RNA, mitochondrial rRNA). b. Length distribution of reads after removal of              
abundant sequences showing 28,29,30 as the predominant lengths of ribosome protected fragments            
(RPFs). c. Average expression (Transcripts per million mapped reads) in each region of protein              
coding genes showing higher coverage on coding sequence (CDS) compared to the untranslated             
regions as expected for RPFs. d. Number of reads mapping to the human genome (hg38) per sample                 
using STAR aligner. 
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Supplementary Figure 2: a. Principal component analysis (top 500 genes, ranked by variance across              
samples) of the RNA-seq and b. Ribo-seq data across the fibrotic response. PC1 accounts for 46%/45% of the                  
variance in the gene expression and samples grouped by patient. After batch correction, PC1 accounts for                
62%/59% of the variance and samples grouped by time-point. c. Ribo-seq and RNA-seq counts from Integrin 7A                 
exhibit a strong patient effect, not allowing detection as a DTEG (i), which is ameliorated after batch correction on                   
normalized VST counts (ii). d. Number of DTEGs detected and overlap of DTEGs across different published                
methods in TGFβ1 stimulated primary human fibroblasts. 
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Supplementary Figure 3: a-f: Western blotting of exclusive (FTL (a), FTH1 (c ), ITGA (d )), intensified               
(HES1 (e)) and buffered (PRKG1 (f)) genes with control (GAPDH (b)) in two patients at baseline and                 
4 time points after TGFβ1 stimulation in primary human cardiac fibroblasts. g-i: Log-fold changes in the                
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mRNA and ribosome occupancy at 2 hours ( g), 6 hours (h) and 24 hours ( i) after TGFβ1 stimulation. DTG:                   
Differentially transcribed genes, DTEG: Differential translational-efficiency genes. j: DTGs and DTEGs detected            
at each time point after TGFβ1 stimulation. 
 

 
Supplementary Figure 4: Hierarchical clustering of different regulatory groups including a. F:            
forwarded b. E: exclusive c. B: buffered, B’: completely buffered (special case) and d. I: intensified at                 
the translational level. The cluster IDs are represented as (gene regulatory class)(#):(Number of             
genes in that cluster). For instance, F1:359 is the first forwarded cluster with 359 genes. The clusters                 
are ordered based on cluster size in each regulatory class. 
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Supplementary Figure 5: miRNA sequencing of TGβ1 stimulated patient-derived fibroblasts a.           
Principal component analysis before and after patient effect removal b. Counts per million (CPM) for               
all miRNAs for basal vs 24hrs after TGFB1 stimulation. c. Volcano plots for each time point after                 
stimulation, X axis: Log fold change of miRNAs and Y axis: BH corrected p-value. Significantly               
changing miRNAs are labelled. 
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Supplementary Figure 6: Genome-wide translational profiling of dilated cardiomyopathy         
patients. a. Ribosome profiling of left ventricle tissues from 30 DCM patients b. Percentage of               
trimmed reads mapping to abundant sequences (rRNA, tRNA, mitochondrial rRNA). c. Length            
distribution of reads after removal of abundant sequence mapped reads showing 28,29,30 as the              
predominant lengths of ribosome protected fragments (RPFs). d. Average expression (TPM) in each             
region of protein coding genes showing higher coverage of coding sequence (CDS) as expected for               
RPFs. e. Number of reads mapping to the human genome (hg38) per sample. f. Average periodicity                
of 90% across all 30 samples. 
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Supplementary Figure 7: a. Gene expression correlation (spearman ranked) of RBPs with fibrosis             
markers across 97 DCM patients. Only significant correlations based on p-value < 0.05 are shown. b.                
Hierarchical clustering to stratify patients based on fibrosis marker gene expression. Tree was cut into               
four clusters, resulting in four groups of fibrogenic marker expression severity.  
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Supplementary table 1: Patient information  
for four male chinese individuals undergoing coronary  
artery bypass grafting 

Patient Age 

P1 59 

P2 52 

P3 57 

P4 51 

 
 
Supplementary table 2: Differentially expressed miRNAs 

miRNA  Time point 
vs Basal 

Log 2(Fold change) p-adjusted 

hsa-miR-27a-5p 45mins  1.184228 0.004888401 

hsa-miR-3135b 45mins -1.659315 0.001264819 

hsa-miR-3180-5p 45mins 1.621175 0.013024706 

hsa-miR-101-3p 2hrs -0.772709147 0.0181312164 

hsa-miR-143-5p 2hrs 1.081196984 0.01598394 

hsa-miR-26a-2-3p 2hrs -1.4631523784 0.01598394 

hsa-miR-3180-5p 2hrs 1.5437827151 0.01598394 

hsa-miR-374a-3p 2hrs -1.0687095537 0.0313592745 

hsa-miR-4284 2hrs 0.6185961048 0.01598394 

hsa-miR-663a 2hrs 0.8701085878 0.01598394 

hsa-miR-9901 2hrs 0.9156435417 0.0348222108 

hsa-miR-4284 6hrs 0.759730895 0.0009399791 

hsa-let-7e-3p 24hrs 0.6627012246 0.0305164045 

hsa-miR-335-3p 24hrs -1.1751396741 0.012351793 

hsa-miR-663a 24hrs 1.0699233457 0.0015832685 
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Supplementary table 3: Classification of genes into regulation categories based on significance and fold change               
relationship. s: Significant changes calculated using DESeq2 with FDR<0.05; n.s: Not significant. FC: Fold              
change. Concordant: Significant fold changes are in the same direction. Counteracting: Significant fold changes              
are in the opposite direction. Schematic: RPF: gray, RNA: Blue, ΔTE: Red. 

Category RPF RNA ΔTE FC relationship DTG/DTEG Schematic 

Forwarded s s n.s. RPF concordant with RNA DTG 
 

Exclusive s n.s. s RPF independent of RNA DTEG 

 

Buffered 
(special 
case) 

n.s. s s ΔTE counteracting 
RNA; RPF FC = 0  

DTG & DTEG 
 

Buffered s s s ΔTE counteracting RNA  DTG & DTEG 
 

Intensified s s s ΔTE intensifying RNA DTG & DTEG 

 

 
 
Supplementary table 4: Software and tools used for data analysis  

Purpose Tool Version Command 

Demultiplexing bcl2fastq V2.19.0.316 bcl2fastq --no-lane-splitting 

Adaptor 
trimming 

Trimmomatic V0.36 Ribo-seq: java -jar trimmomatic-0.36.jar SE 
-phred33 infile outfile 
ILLUMINACLIP:All_TruSeqForTrimmomatic.fa:2:3
0:10 MAXINFO:20:0.5 MINLEN:20 
RNA-seq: java -jar trimmomatic-0.36.jar PE 
-phred33 infiles outfiles 
ILLUMINACLIP:All_TruSeqForTrimmomatic.fa:2:3
0:10 MAXINFO:35:0.5 MINLEN:35 

Read clipping Fastx toolkit V0.0.14 fastx_trimmer -l 29 -Q33 -z 

Abundant 
sequence 
removal 

Bowtie2 V2.2.9 bowtie2 -L 20 -x human_abundant_combine  

Genome 
alignment 

STAR 020201 STAR --alignSJDBoverhangMin 1 
--alignSJoverhangMin 51 
--outFilterMismatchNmax 2 --alignEndsType 
EndToEnd 
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Gene 
expression 
quantification 

Feature 
Counts 

1.5.1 featureCounts -t CDS -g gene_id -O -s 1 -J -R -G 
Homo_sapiens.GRCh38.dna.primary_assembly.f
a -a GTF  

DTEG 
identification 

DESeq2 1.18.1 
 

https://github.com/SGDDNB/DTG-detection/blob/
master/getDTG.md 

DTEG 
identification 

Xtail 1.1.5 xtail(counts_rna, counts_ribo, conditions) 

DTEG 
identification 

RiboDiff 0.2.1 python TE.py -e condition_data -c count_file -o 
output 

DTEG 
identification 

RiboRex 2.3.4 riborex(counts_rna, counts_ribo, conditions_rna, 
conditions_ribo, engine=DESeq2/edgeR/voom) 

DTEG 
identification 

Anota2Seq 1.0.1 Step 1: anota2seqDataSetFromMatrix(dataP, 
dataT,  phenoVec, batchVec, dataType = 
"RNAseq",  filterZeroGenes = TRUE, normalize = 
TRUE,  transformation = "TMM-log2",  varCutOff 
= NULL) 
 
Step 2: anota2seqRun(Anota2seqDataSet, 
thresholds = list(maxPAdj = 0.05, minEff = 1.5), 
performQC = TRUE, performROT = TRUE, 
useRVM = TRUE)  
 
Step 3: anota2seqGetOutput(object = ads, 
output="regModes", selContrast = contrast, 
analysis="translation"/"buffering ”, getRVM = 
TRUE)[, c("apvSlope", "apvEff", "apvRvmP", 
"apvRvmPAdj", "singleRegMode")] 

Batch effect 
removal 

Limma 3.34.9 removeBatchEffect(counts, batch) 
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