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A B S T R A C T

The fast proliferation of edge devices for the Internet of Things (IoT) has led to massive volumes of data explosion.
The generated data is collected and shared using edge-based IoT structures at a considerably high frequency.
Thus, the data-sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious re-
quests for filching sensitive information from a cloud storage system through edge nodes. To address the iden-
tified issue, we present evolutionary privacy preservation learning strategies for an edge computing-based IoT
data sharing scheme. In particular, we introduce evolutionary game theory and construct a payoff matrix to
symbolize intercommunication between IoT devices and edge nodes, where IoT devices and edge nodes are two
parties of the game. IoT devices may make malicious requests to achieve their goals of stealing privacy.
Accordingly, edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed.
They dynamically adjust their own strategies according to the opponent's strategy and finally maximize the
payoffs. Built upon a developed application framework to illustrate the concrete data sharing architecture, a novel
algorithm is proposed that can derive the optimal evolutionary learning strategy. Furthermore, we numerically
simulate evolutionarily stable strategies, and the final results experimentally verify the correctness of the IoT data
sharing privacy preservation scheme. Therefore, the proposed model can effectively defeat malicious invasion and
protect sensitive information from leaking when IoT data is shared.
1. Introduction

The Internet of Things (IoT) can be described as a network that
connects all entities with the internet through information sensing de-
vices to realize the function of intelligent identification, operation, and
management. The IoT is attracting considerable attention with the
continuous development of wireless communications, radio frequency
identification, and low-cost sensors. However, IoT network problems,
such as security and privacy, are rapidly emerging, and thus, privacy
protection is of paramount importance [1–5].

Edge-based IoT [6] is experiencing rapid growth because traditional
cloud computing is unable to immediately handle the massive data
generated by edge nodes with the rapid development and wide appli-
cation of the IoT, big data, and 5G/6G networks [7]. In this architecture,
edge computing provides parts of cloud services for IoT devices on the
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edge of the network. It focuses on solving the problems of high latency,
network instability, and low bandwidth [8]. Its applications are initiated
on the edge side, resulting in the faster response of cloud services, which
meets the basic IoT requirements in real-time business, application in-
telligence, and privacy preservation.

However, privacy issues while sharing edge-based IoT data are still
challenging due to physical attacks, privacy exposure, service control,
and data tampering [9], although edge computing mitigates the
communication delays caused by cloud computing. Malware intrusions
in IoT networks are becoming increasingly widespread [10,11]. Specif-
ically, if nodes are attacked and high-privilege systems, such as the
operating system are controlled by the attacker, it becomes easy to filch
the data stored in a cloud storage system, which places privacy data at
great risk [12]. Existing data sharing protocols divulge data with a cen-
tral node, exposing the source file directly to the platform. Encrypting
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Table 1
Symbol definitions.

Symbol Definition

α Detection rate
β False alarm rate
γ False alarm lose
δ Rate of successful diffusion
ϵ Privacy risk factor
ξA Gain obtained by successful access to privacy
ξP Gain obtained by successful privacy preservation
ϱ Gain obtained by the trust of normal requests
ξD Gain obtained by malware diffusion
ξC Gain obtained by normal requests
ξS Gain obtained by successful detection
ςD Cost incurred by malware diffusion
ςC Cost incurred by normal requests
ςS Cost incurred by successful detection
p Probability of IoT devices requesting maliciously
q Probability of edge nodes denying IoT devices requests
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data reduces the possibility of data leaking during transmission, but it
does not restrain malware from stealing documents from the cloud
storage system through edge nodes. Hence, preserving data privacy at the
edge is becoming progressively important [13,14].

To solve privacy issues, various scenarios have been proposed, which
commonly originate from cache-based architectures [15–17], trust
computing mechanisms [18,19], and Radio Frequency Identification
(RFID) techniques [20,21]. Nonetheless, there are several limitations in
the existing scenarios. Although the cache-based strategy is always uti-
lized in conjunction with k-anonymity, the user movements are easily
divulged in the location-based service on the basis of information cach-
ing. The trusted platform module, to some extent, enhances the security
of the computing platform via cryptography. However, it is vulnerable to
malignant attacks due to the exposure of platform configuration. The
RFID technique makes it difficult for sensitive user information to be
tampered with secure authentication, while this data is probably mali-
ciously revealed.

Moreover, game theory has also been widely utilized in privacy
preservation in the last few years [22], providing a theoretical basis for
IoT security-associated decision-making. In these models, each player's
payoff depends not only on its own strategy but also on the strategies of
other participants. Therefore, each player continuously adjusts their
strategies according to the opponent's strategy to maximize their own
payoffs. In such cases, the choice of a stable strategy is usually worth
investigating. Specifically, in the domain of IoT network security, when
attackers attempt to filch users' privacy via malicious node attacks or
malware dissemination, defenders are required to take appropriate
measures to strengthen the security defense mechanism of IoT systems.

In the current work, we proposed a privacy preservation model based
on evolutionary game theory and edge computing during IoT data
sharing, considering the detection rate, successful diffusion rate, privacy
risk factor, and trust gain. An evolutionary game can achieve an equi-
librium through constant simulations and strategy adjustment in the
whole process, where there exists a Nash equilibrium called an evolu-
tionarily stable strategy. Herein, this game model based on replication
dynamics was used to describe the IoT privacy preservation learning
strategies considering intrusion detection. The dynamic equations were
reproduced to describe the changes while adopting different strategies,
and eventually, the optimal strategy was obtained. We eventually
analyzed the influence of the above four impact factors on the node
evolution stability strategy and provided suggestions for the cloud stor-
age system to refuse the malicious requests from the source and upgrade
the privacy preservation. To the best of our knowledge, this is an early
work to study optimal privacy preservation strategies based on evolu-
tionary game theory for the edge-based IoT data sharing scheme.

The main contributions of the current work are epitomized as follows:

� We establish an evolutionary IoT data sharing game based on game
theory and edge computing. In addition, we further analyze whether
the eigenvalues of the model are greater than zero. Then, we assess
the stability by the eigenvalues and eventually derive the equilibrium
points of this model. Through mathematical modeling, we can
observe the stability of each point in every case more intuitively.

� We develop a data sharing framework after analyzing the game pro-
cess of the privacy preservationmodel based on replication dynamics,
which demonstrates the specific process of decision-making by edge
nodes.

� We propose a solution to solve the established evolutionary learning
algorithm and derive optimal privacy preservation strategies for the
edge-based IoT data sharing scheme. Through a constant trial and
error, the strategy is adjusted and improved with time, maximizing
the expected revenue and returning the optimal evolutionary
strategy.

� We numerically simulate the evolutionary privacy preservation
model for edge-based IoT data sharing, illustrating evolutionarily
stable strategies of IoT devices and edge nodes. The reliability of this
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model is verified by observing the convergence of the curve by
adjusting the parameters. The simulation experiments ultimately
provide suggestions for enhancing the privacy preservation of edge
nodes while sharing data.

The rest of the current work is organized as follows: In Section 2, we
separately review edge computing-oriented and game theory-based pri-
vacy preservation and expound on the differences between our model
and existing models. In Section 3, we construct an edge computing ar-
chitecture for IoT data sharing. In addition, we propose an evolutionary
privacy preservation learning game based on edge computing, providing
replication dynamic equations and analyzing evolutionarily stable stra-
tegies. Moreover, we develop an application framework and an evolu-
tionary learning algorithm for the edge-computing oriented privacy
preservation model. In Section 4, we numerically simulate the model to
attain the optimal evolutionarily stable strategies of IoT devices and edge
nodes. Then, we investigate the impact of related parameters on strate-
gies selected by IoT devices and edge nodes, which is followed by a
conclusion in Section 5.

For better clarification, we provide symbol definitions as shown in
Table 1.

2. Related work

It is worth mentioning that data privacy in cloud storage systems has
always been a concern of end users. The distributed parallel data pro-
cessing method causes diverse challenges, including physical attacks,
privacy exposure, service control, and data tampering. Therefore,
research on data privacy preservation techniques, such as access control
and identity authentication, has become important to support and ensure
the sustainable development of edge computing. To construct an intel-
ligent and secure network environment, Stergiou et al. [15] proposed a
cache decision system in a secure caching scenario combined with IoT,
cloud computing, edge computing, and big data. Mukherjee et al. [23]
highlighted that although there is less of a delay, intelligent edge
computing causes additional security issues, such as malignant assaults
focusing on intelligent engines. Rao and Bertino [24] analyzed and
proposed several privacy solutions for various types of data in edge ap-
plications. To better allocate privacy tasks, Zhang et al. [25] imported a
privacy-preserving framework, which can be executed in an actual edge
computing platform. Gu et al. [26] raised a dynamic privacy preservation
model to ensure the security of data transmission between edge nodes
and clients. In Ref. [27], Xu et al. suggested an optimization scheme
developed on edge computing, improving resource utilization and syn-
chronically protecting privacy. To protect the privacy of requesters and
clients, Zhou et al. [28] contrived a context-aware scheme for mobile
crowdsensing under an edge computing system. Zhen and Liu [29]
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proposed a privacy preservation scheme on the basis of mobile edge
computing to improve wireless body area networks. They also designed a
Merkle tree model and a hybrid signature algorithm to ensure the secu-
rity performance of IoT nodes. To ensure the security of private data on
terminal devices, Li et al. [30] developed an outline for IoT applications
accordant with mobile edge computing. It could not only guarantee the
integrity of the source but it could also decrease the cost of communi-
cation. In Ref. [31], Liu et al. unified federated learning with edge
computing, providing a privacy preservation framework, which can
minimize privacy leakage during data transmission. To prevent sensitive
information from being exposed, Du et al. [32] utilized differential pri-
vacy to execute intelligent edge machine learning. He et al. [33] attached
importance to mobile-edge computing. Their conception ensures user
experience and privacy at the same time. Zhao et al. [34] proposed a
privacy preservation approach to prevent poisoning attacks in
mobile-edge computing, which could also identify the specific location of
poisoning through the network. Du et al. noticed that distributed nodes
are easy to hack, and thus, privacy preservation in multiaccess edge
computing was studied in Ref. [35]. Li et al. [36] researched a reliable
and distributed algorithm upon edge nodes, preserving confidential in-
formation during outsourcing.

With the popularity of the IoT, privacy preservation has received
increasing attention. Based on this, to prohibit sensitive information from
leaking, game theory has already been widely applied in IoT data privacy
preservation. Do et al. [37] presented game models and defense mech-
anisms of cyberspace privacy to address specific privacy issues with
game-theoretic approaches. In Ref. [38], Ezhei and Tork Ladani intro-
duced a differential game model, utilizing the data sharing thresholds to
assess whether a firm shares security information with central author-
ities, such as ISACs, which ensured a social optimum. Cui et al. [39]
constructed a personalized differential privacy game model to enhance
data utility. Qu et al. [40] utilized a dynamic zero-sum game to explore
the optimal strategy for protecting location and identity privacy in
cyber-physical social networks. In Ref. [41], the authors modeled a
Stackelberg game for k-anonymity among leaders, followers, and a
third-party platform. To tackle the privacy leak caused by IoT devices, Li
et al. [42] simulated a trilateral game among users, providers, and an-
tagonists, presenting guidance for scheming a privacy preservation
strategy. Xiong et al. [43] also provided a three-party game that sup-
ported artificial intelligence for preventing privacy invasion in mobile
edge crowdsensing. Similarly, in Ref. [44], the authors presented a pri-
vacy framework based on a switch-controller mapping mechanism. It
could minimize the privacy leak in software-defined networking derived
from cyber physical systems. To protect sensitive information, Jin et al.
[45] proposed game models, considering the collaboration gain and
privacy loss between assailants and collaborators. Riahi Sfar et al. [46]
nominated a privacy preservation model between data owners and re-
ceivers by utilizing Markov chains. It can protect personal privacy while
exchanging the data in intelligent transportation systems. Nosouhi et al.
[47] developed an unlinkable coin protocol to desensitize privacy data
through an anonymity technique, which protects Bitcoin users’ sensitive
information. Liu et al. [48] designed a game model for participants to
acquire an optimal payment strategy, providing sufficient privacy pres-
ervation in crowdsensing. In Ref. [49] Liu et al. modeled a bilateral game
framework to achieve profit maximization and privacy preservation
simultaneously in spectrum sharing. Wu et al. [50] propounded a game
model of security assault and guard, considering the actions of attackers.
Mengibaev et al. [51] introduced a heterogeneous interaction mecha-
nism to establish an evolutionary game framework for investigating se-
curity assurance on the internet. Du et al. [52] associated evolutionary
dynamics with a game theoretic framework, urging individuals to focus
on their privacy preservation online. Sun [53] built an evolutionary game
model and obtained the optimal privacy preservation strategy for early
adaptation in the network.

Compared to the above work, we concentrate on seeking evolutionary
privacy preservation learning strategies for edge-based IoT data sharing.
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The current privacy preservation schemes are mainly divided into three
categories: k-anonymity [41,54], access control [55,56], and differential
privacy [57–59]. K-anonymity requires publishers to desensitize data
prior to publication. Access control restricts access to privacy informa-
tion. Differential privacy distorts sensitive data via noise addition tech-
niques. However, we notice that there is a prisoner's dilemma between
IoT devices and edge nodes. Therefore, to solve the problem of privacy
preservation from the source more effectively, data-sharing privacy
preservation based on evolutionary game theory is studied from the
perspective of obtaining revenue in the current work, and a privacy
preservation data sharing model is established for edge-based IoT net-
works. We next display the comparison between our proposed method
and other games in Table 2 for further emphasizing our contributions.

3. Evolutionary privacy preservation learning game for edge-
based IoT networks

3.1. Problem statement

The IoT data sharing architecture of edge computing studied in the
current work is shown in Fig. 1, which mainly includes a core infra-
structure, edge nodes, and an IoT layer. Data sharing starts from a cloud
storage system deployed in the core infrastructure, which provides access
to the core network and the management of centralized cloud computing
for edge devices. Note that edge nodes are ones of the core components in
edge computing while sharing IoT data. They provide users with nearby
edge computing services instead of sending all data back to a central
place for processing, increasing bandwidth, and reducing latency. Ulti-
mately, the shared data is received by the IoT layer, consisting of various
IoT networks, each of which includes all sorts of smart devices, such as
mobile terminals and IoT equipment.

Under such an edge-based IoT data sharing architecture, the massive
data generated by edge devices involve personal privacy, which makes
the privacy preservation problem particularly prominent. It is also
notable that private data is partially or completely stored in edge data
centers, causing the separation of ownership and control. In this case, it is
easy to bring about data security problems, such as data leaks and illegal
data operation. The data confidentiality and integrity cannot be guar-
anteed. In addition, there is a contradiction that it must effectively pre-
vent IoT devices from trying to make a malicious request for stealing this
kind of information while allowing access to privacy-related information.
Thus, an urgent problem to be solved is researching privacy preservation
from the perspective of payoff, establishing a privacy preservation model
based on game theory, and further seeking an optimal privacy preser-
vation strategy to protect user privacy, while also sharing edge-based IoT
data.
3.2. Game construction
Definition 1. The evolutionary privacy preservation learning game for
edge-based IoT networks is denoted by a quad ðP;R;D;EÞ, where:

� P ¼ {IoT devices o, Edge nodes ε} represents a set of players.
� R ¼ RM � RN represents a set of IoT devices requests, where RM

represents malicious requests and RN represents normal requests.
� D ¼ DG �DD represents a set of edge nodes responses, where DG

represents granting IoT requests and DD represents denying IoT
requests.
� E ¼ {IoT devices revenue υ, Edge nodes revenue ξ} represents a set
of expected revenue.

In the proposed game, two players, namely, IoT devices o and edge
nodes ε are considered. IoT devices may make malicious requests, rep-
resented by RM , or make normal requests, represented by RN . Similarly,
edge nodes may grant the requests through intrusion detection,



Table 2
Comparison between the proposed method and other games.

Paper Scenario Game Type Advances Drawbacks

Ezhei et al. [38] Network security information
sharing systems

Differential game � Obtain a data sharing threshold determining whether a
company shares their security information

� Belong to a perfectly rational
game

Cui et al. [39] Personalized differential
privacy schemes

Differential game,
Bayesian game

� Propose a model requiring less overall privacy budget and
higher data utility

� Eliminate the uncertainty of data utility measurement

� Belong to a perfectly rational
game

Qu et al. [40] Cyber physical social networks Dynamic multistage zero-
sum game

� Preserve location privacy and identity privacy
� Achieve a fast convergence with a reinforcement learning

algorithm

� Belong to a perfectly rational
game

Zhang et al. [41] Social networks Stackelberg game � Propose a model achieving high security in location-based
services

� Analyze the security and performance in different
situations

� Belong to a perfectly rational
game

Li et al. [42] IoT netwroks Three-party game � Address private data transactions in IoT networks � Belong to a perfectly rational
game

Xiong et al. [43] Mobile edge crowdsensing Three-party game � Protect the privacy of perceived data
� Obtain a Nash equilibrium among player strategies, player

profits, and constraint conditions

� Belong to a perfectly rational
game

Sivaraman et al.
[44]

Smart grids based on software
defined networks

noncooperative game � Present a privacy framework with a switch-controller
mapping mechanism

� Belong to a perfectly rational
game

Jin et al. [45] Collaborative security systems Zero sum game, non-zero
sum game

� Attain collaborative security scenarios with privacy
awareness

� Deduce the optimal strategy in a complete cooperative
game

� Demonstrate the existence of Nash equilibrium in an
incomplete cooperative game

� Belong to a perfectly rational
game

Liu et al. [48] Crowdsensing Dynamic game � Learn a Payment-privacy Protection Level (PPL) of plat-
forms and participants

� Speed up the acquisition of payment-PPL strategy

� Belong to a perfectly rational
game

Liu et al. [49] Spectrum Sharing Systems Stackelberg game � Protect users' location information
� Show the payoff between the privacy protection levels and

user utilities

� Belong to a perfectly rational
game

Wu et al. [50] Local differential privacy Zero sum game � Construct a zero-sum game between a defender and an
attacker to solve the privacy issue

� Raise a mutual information privacy protection method

� Belong to a perfectly rational
game

Mengibaev et al.
[51]

Social networks Evolutionary game � Introduce a heterogeneous interaction pattern to discuss
the privacy protection in social networks

� Not highlight IoT network
features

Du et al. [52] Social networks Evolutionary game � Analyze information protection through user interactions
and decisions

� Not highlight IoT network
features

Sun [53] Cloud service systems Evolutionary game � Increase the accuracy of replication dynamic equation
� Propose an optimal protection strategy selection algorithm

� Lead to serious delay in cloud
service systems

Current work Edge-based IoT schemes Evolutionary game � Construct an evolutionary privacy preservation learning
game describing edge-based IoT features

� Propose an algorithm maximizing the expected revenue
and returning the optimal evolutionary strategy

� Approximately obtain the
equilibrium point

Fig. 1. Edge computing architecture for IoT data sharing.

Table 3
Payoff matrix.

IoT devices Edge Nodes

Detect & Grant (DG) Detect & Deny (DD)

Request Maliciously (RM) ð1� αÞδξD þ ϵξA � αξS � ςD , δξD � αξS � ςD,
αξS � ð1� αÞδξD � ϵξA � ςS δξS þ ϵξA � δξD � ςS

Request Normally (RN) ξC þ ϱ � ςC, ξC þ ϱ � ςC,
ξP � ςS, � βγ � ςS
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represented by DG, or deny the requests through intrusion detection,
represented by DD. Additionally, E represents the set of the expected
revenue of IoT devices o and edge nodes ε, represented by υ and ξ,
respectively.

Utilizing the symbols defined in Table 1, we construct a payoff matrix
of the evolutionary privacy preservation learning game, as presented in
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Table 3. In the first case, IoT devices make malicious requests and edge
nodes grant the requests, which means malware diffuses successfully. At
that time, IoT devices receive a malware diffusion gain (1 � α)δξD,
whereas they incur a malware diffusion cost ςD and need to bear a
detection loss αξS. During this period, the privacy is accessed by the IoT
devices that receive a gain ϵξA. In contrast, the edge nodes will earn a
gain due to a successful detection, but they stand a loss (1 � α)δξD due to
an error detection. Edge nodes should also bear the loss ϵξA caused by
privacy leaks and a detection cost ςS. Therefore, the revenue of IoT de-
vices and edge nodes are (1 � α)δξD þ ϵξA � αξS � ςD and αξS � (1 �
α)δξD � ϵξA � ςS, respectively.

In the second case, IoT devices make malicious requests and edge
nodes deny the requests, which means the nodes successfully defend the
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malware. At that time, IoT devices receive a gain δξD due to malware
diffusion but incur a malware diffusion cost ςD, and bear a detection loss
αξS. In contrast, the edge nodes earn a gain αξS due to a successful
detection, but they stand a loss δξD due to malware diffusion and a suc-
cessful detection cost ςS. Edge nodes also earn a gain ϵξA because of
successful privacy preservation. Therefore, the revenue of IoT devices
and edge nodes are δξD � αξS � ςD and αξS þ ϵξA � δξD � ςS, respectively.

In the third case, IoT devices make normal requests and edge nodes
grant the requests, which means that the nodes have secure access to
privacy data. At that time, the IoT devices acquire a gain ξC and an
additional trust gain ϱ due to the normal request, but they also sustain a
cost loss ςC. In terms of the edge nodes, they acquire a gain ξP because of
successful privacy preservation, while there is a successful detection cost
ςS. Therefore, the revenue of IoT devices and edge nodes are ξC þ ϱ � ςC
and ξP � ςS, respectively.

In the fourth case, IoT devices make normal requests and edge nodes
deny the requests, which means the nodes make an error detection. The
expected revenue of IoT devices is similar to that of the third case.
Furthermore, the edge nodes must pay a loss βγ due to the false alarm and
a detection cost ςS. Therefore, the revenue of IoT devices and edge nodes
are ξC þ ϱ � ςC and � βγ � ςS, respectively.
Fig. 2. Phase diagram of replication dynamic equation of IoT devices, such
that q > αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
.

3.3. Evolutionary privacy preservation strategies analyses

In this section, we analyze the replication dynamics of IoT devices and
edge nodes, as well as obtain the equilibrium point by solving the
replication dynamic equations. Finally, we investigate the evolutionarily
stable strategies of the two sides of the game. The conclusion can provide
suggestions for edge nodes to realize privacy preservation during the
process of IoT data sharing.

3.3.1. Replication dynamic equations
According to Table 3, the expected revenue of IoT devices making

malicious requests is as follows

EðRMÞ ¼ qðð1� αÞδξD þ ϵξA � αξS � ςD Þ þ ð1� qÞðδξD � αξS � ςDÞ (1)

and the expected revenue of IoT devices making normal requests is as
follows

EðRNÞ ¼ qðξC þ ϱ� ςCÞ þ ð1� qÞðξC þ ϱ� ςCÞ ¼ ξC þ ϱ� ςC (2)

Therefore, the average expected revenue of IoT devices according to
Refs. [10,60] is as follows

E ðRÞ ¼ p*EðRMÞ þ ð1� pÞ*EðRNÞ (3)

Furthermore, the replication dynamic equation of IoT devices is as
follows

RðpÞ ¼ dp
dt

¼ p*ðEðRMÞ � EðRÞ Þ
¼ p*ð1� pÞ*ðEðRMÞ � EðRNÞ Þ
¼ p*ð1� pÞ*ðq*ð � αδξD þ ϵξAÞ þ δξD � αξS � ςD � ξC � ϱþ ςC Þ

(4)

However, the expected revenue of edge nodes denying a request is as
follows

EðDDÞ ¼ pðαξS þ ϵξA � δξD � ςSÞ þ ð1� pÞð � βγ � ςSÞ (5)

and the expected revenue of edge nodes granting a request is as follows

EðDGÞ ¼ pðαξS � ð1� αÞδξD � ϵξA � ςS Þ þ ð1� pÞðξP � ςSÞ (6)

Therefore, the average expected revenue of edge nodes is as follows

E ðDÞ ¼ q*EðDGÞ þ ð1� qÞ*EðDDÞ (7)

Furthermore, the replication dynamic equation of edge nodes is as
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follows

DðqÞ ¼ dq
dt

¼ ð1� qÞ*ðEðDDÞ � EðDÞ Þ
¼ q*ð1� qÞ*ðEðDDÞ � EðDGÞ Þ
¼ q*ð1� qÞ*ðp*ð2ϵξA � αδξD þ βγ þ ξPÞ � βγ � ξP Þ

(8)

3.3.2. Evolutionarily stable strategy analyses
According to Eq. (4), we let R(p) ¼ 0; there are three states as follows

p ¼ 0 (9)

p ¼ 1 (10)

q ¼ αξS þ ςD þ ξC þ ϱ� ςC � δξD
�αδξD þ ϵξA

(11)

According to Eq. (8), we let D(p) ¼ 0; there are three states as follows

q ¼ 0 (12)

q ¼ 1 (13)

p ¼ βγ þ ξP
2ϵξA � αδξD þ βγ þ ξP

(14)

Theorem 1. While q > αξSþςDþξCþϱ�ςC�δξD
�αδξDþϵξA

, p ¼ 1 is the only point of
convergence of IoT devices selecting an action, meaning that IoT devices make
a malicious request to the edge nodes after evolutionarily playing the game.

Proof. See Appendix A.
According to Eqs. (A.2) and (A.3), the phase diagram of Eq. (4) is

demonstrated in Fig. 2. It is shown that this curve tends to 1, illustrating
that if q > αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
, then p ¼ 1 is the only point of convergence

of IoT devices selecting an action.
Theorem 1 indicates that regardless of if the edge nodes choose to

grant or deny the request, the revenue of IoT devices making normal
requests is always less than that of making malicious requests when the
probability of edge nodes denying IoT device requests is greater than the
value of an evolutionarily stable strategy. Hence, IoT devices make ma-
licious requests to edge nodes. This strategy behavior incurs IoT data
privacy leaks. Therefore, administrators should try to configure the
IDSaaS and adjust the parameters of edge-based IoT networks in practice
to avoid satisfying the condition of Theorem 1 to maximally preserve
data privacy during the process of IoT data sharing.



Fig. 4. Phase diagram of replication dynamic equation of IoT devices, such
that q < αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
.

Fig. 5. Phase diagram of replication dynamic equation of edge nodes, such
that p > βγþξP

2ϵξA�αδξDþβγþξP
.
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Theorem 2. While q ¼ αξSþςDþξCþϱ�ςC�δξD
�αδξDþϵξA

, there is no convergence point.

Proof: To reach a stable state, it needs to satisfy R0(p)< 0. However, if
q ¼ αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
, then R(p) ¼ 0 for 8p, as shown in Fig. 3. Hence,

there is no stable status in this case. This completes the proof.

Theorem 3. While q < αξSþςDþξCþϱ�ςC�δξD
�αδξDþϵξA

, p ¼ 0 is the only point of
convergence of IoT devices selecting an action, meaning that IoT devices make
normal requests to the edge nodes after evolutionarily playing the game.

Proof. See Appendix B.
From Eqs. (B.1) and (B.2), the phase diagram of Eq. (4) is given in

Fig. 4. It is proven that this curve tends to 0, emphasizing that if
q < αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
, then p ¼ 0 is the only point of convergence in IoT

devices selecting an action.
Theorem 3 indicates that regardless of if the edge nodes choose to

grant or deny requests, the revenue of IoT devices making malicious
requests is always less than that of making normal requests when the
probability of edge nodes denying IoT devices requests is less than the
value of the evolutionarily stable strategy. Hence, IoT devices make
normal requests to the edge nodes, which is beneficial for preserving data
privacy during the process of IoT data sharing. Therefore, administrators
should keep the current configuration of the IDSaaS and edge-based IoT
networks to satisfy the condition of Theorem 3, such that the privacy
preservation of IoT data sharing is consistent.

Theorem 4. While p > βγþξP
2ϵξA�αδξDþβγþξP

, q ¼ 1 is the only point of conver-
gence of edge nodes selecting an action, meaning that the edge nodes deny the
requests of IoT devices after evolutionarily playing the game.

Proof. See Appendix C.
Based on Eqs. (C.2) and (C.3), the phase diagram of Eq. (8) is dis-

played in Fig. 5. It is indicated that this curve tends to 1, clarifying that if
p > βγþξP

2ϵξA�αδξDþβγþξP
, then q ¼ 1 is the only point of convergence of edge

nodes selecting an action.
Theorem 4 explains that regardless of if IoT devices make malicious

or normal requests, the revenue of edge nodes granting requests is always
less than that of denying requests when the probability of IoT devices
making malicious requests is greater than the value of an evolutionarily
stable strategy. Hence, the edge nodes eventually deny IoT device re-
quests, preventing the IoT data from leakage.

Theorem 5. While p ¼ βγþξP
2ϵξA�αδξDþβγþξP

, there is no convergence point.

Proof: To reach a stable state, it needs to satisfyD0(q)< 0. However, if
p ¼ βγþξP

2ϵξA�αδξDþβγþξP
, then D(q) ¼ 0 for 8q, as shown in Fig. 6. Hence, there
Fig. 3. Phase diagram of replication dynamic equation of IoT devices, such that
q ¼ αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
.

Fig. 6. Phase diagram of replication dynamic equation of edge nodes, such that
p ¼ βγþξP

2ϵξA�αδξDþβγþξP
.
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is no stable status in this case. This completes the proof.

Theorem 6. While p < βγþξP
2ϵξA�αδξDþβγþξP

, q ¼ 0 is the only point of conver-
gence of edge nodes selecting an action, meaning that the edge nodes grant the
requests of IoT devices after evolutionarily playing the game.

Proof. See Appendix D.
Considering Eqs. (D.1) and (D.2), the phase diagram of Eq. (8) is

explicated in Fig. 7. It is presented that this curve tends to 0, meaning that
if p < βγþξP

2ϵξA�αδξDþβγþξP
, then q ¼ 0 is the only point of convergence of edge

nodes selecting an action.
Theorem 6 indicates that regardless of if IoT devices make malicious

or normal requests, the revenue of edge nodes denying requests is always
less than that of granting requests when the probability of IoT devices
making malicious requests is less than the value of an evolutionarily
stable strategy. Hence, the edge nodes eventually grant IoT device
requests.

3.4. Evolutionary privacy preservation stability analysis

Stability analysis provides the optimal choice for the game model. To
be specific, the edge nodes can be seen as the players, which are bounded
rationally in the game, and it is unable to search out the evolutionarily
stable point at the beginning. Thus, they must learn constantly and cor-
rect their strategic mistakes gradually in the gaming process. At the end
of the game, both sides of the game tend to converge to a stable strategy.
Therefore, they acquire a satisfactory result concurrently by stability
analyses based on trial and error. Based on Eqs. (4), (8), (A.1), and (C.1),
we obtain the Jacobian matrix J according to Ref. [61] as follows

J ¼

2
66664

∂RðpÞ
∂p

∂RðpÞ
∂q

∂DðqÞ
∂p

∂DðqÞ
∂q

3
77775

(15)

where the equations are as follows

∂RðpÞ
∂p

¼ ð1� 2pÞ*ðq*ð � αδξD þ ϵξAÞ þ δξD � αξS � ςD � ξC � ϱþ ςC Þ
(16)

∂RðpÞ
∂q

¼ pð1� pÞð � αδξD þ ϵξAÞ (17)
Fig. 7. Phase diagram of replication dynamic equation of edge nodes, such
that p < βγþξP

2ϵξA�αδξDþβγþξP
.
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∂DðqÞ
∂p

¼ qð1� qÞð2ϵξA �αδξD þ βγþ ξPÞ (18)
∂DðqÞ
∂q

¼ ð1� 2qÞðp*ð2ϵξA � αδξD þ βγ þ ξPÞ � βγ � ξP Þ (19)

Then, we analyze the stability of each equilibrium point illustrated in
Table 4.

In Table 4, we have the equations as follows

q* ¼ αξS þ ςD þ ξC þ ϱ� ςC � δξD
�αδξD þ ϵξA

(20)

p* ¼ βγ þ ξP
2ϵξA � αδξD þ βγ þ ξP

(21)

X* ¼ ðβγ þ ξPÞð2ϵξA � αδξDÞð � αδξD þ ϵξAÞ
ð2ϵξA � αδξD þ βγ þ ξPÞ2

(22)

and

Y* ¼ U* V*W*

ð � αδξD þ ϵξA � αξSÞ2
(23)

where the equations are as follows

U* ¼ ðαξS þ ςD þ ξC þ ϱ� ςC � δξDÞ (24)

V* ¼ ð � αδξD þ ϵξA � 2αξS þ δξD � ςD � ξC � ϱþ ςCÞ (25)

and W* is as follows

W* ¼ ð2ϵξA � αδξD þ βγþ ξPÞ (26)

From Table 3, we obviously attain the equations as follows

ξC þ ϱ� ςC > δξD � αξS � ςD ⇒ δξD � αξS � ςD � ξC � ϱþ ςC < 0 (27)

ξP � ςS > �βγ � ςS ⇒ �βγ � ξP < 0 (28)

and the equation as follows

αξS þ ϵξA � δξD � ςS > αξS � ð1� αÞδξD � ϵξA � ςS ⇒ 2ϵξA � αδξD > 0

(29)

We next derive evolutionarily privacy preservation stable points under
two cases.

Case 1 ξC þ ϱ � ςC > (1 � α)δξD þ ϵξA � αξS � ςD. This case represents
that the revenue of IoT devices making normal requests is more
than that of making malicious requests when edge nodes grant
IoT devices requests.

Case 2 ξCþ ϱ� ςC< (1� α)δξDþ ϵξA � αξS� ςD. This case indicates that
the revenue of IoT devices making normal requests is less than
Table 4
Stability of each equilibrium point.

Equilibrium
Point

∂RðpÞ
∂p

∂RðpÞ
∂q

∂DðqÞ
∂p

∂DðqÞ
∂q

(0, 0) δξD � αξS � ςD � ξC � ϱ þ ςC 0 0 � βγ � ξP
(0, 1) � δξD þ αξSþ ςD þ ξCþ ϱ� ςC 0 0 2ϵξA �

αδξD
(1, 0) � αδξD þ ϵξA � αξS þ δξD � ςD

� ξC � ϱ þ ςC

0 0 βγ þ ξP

(1, 1) αδξD � ϵξA þ αξS � δξD þ ςD þ
ξC þ ϱ � ςC

0 0 �2ϵξA þ
αδξD

(q*, p*) 0 X* Y* 0



Table 6
Stability of each equilibrium point in each case.

Equilibrium
Point

Case 1 Case 2 Result

τ1 τ2 stability τ1 τ2 stability

(0, 0) � � ESS � � ESS ESS
(0, 1) � þ Saddle

point
þ þ Unstable Uncertain

(1, 0) þ þ Unstable þ þ Unstable Unstable
(1, 1) þ � Saddle

point
� � ESS Uncertain

(q*, p*) þ � Saddle
point

þ � Saddle
point

Saddle
point
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that of those making malicious requests when edge nodes grant
IoT device requests.

Theorem 7. Under both Cases 1 and 2, only (0, 0) is evolutionarily stable

and
�
αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
; βγþξP
2ϵξA�αδξDþβγþξP

�
is the saddle point.

Proof: We assume the matrix as follows

A ¼

���������

∂RðpÞ
∂p

∂RðpÞ
∂q

∂DðqÞ
∂p

∂DðqÞ
∂q

���������
(30)

and introduce

τE ¼
����
τ 0
0 τ

���� (31)

then obtain

jτE� Aj ¼
�����
τ 0

0 τ

������

����������

∂RðpÞ
∂p

∂RðpÞ
∂q

∂DðqÞ
∂p

∂DðqÞ
∂q

����������
¼

����������

τ � ∂RðpÞ
∂p

�∂RðpÞ
∂q

�∂DðqÞ
∂p

τ � ∂DðqÞ
∂q

����������
(32)

Based on “stability theory for ordinary differential equations” [62], if
and only if both the eigenvalues of the Jacobian matrix are negative, the
equilibrium point is stable; if one eigenvalue is positive and the other is
negative, it is a saddle point; if both eigenvalues are positive, it is un-
stable. Thus, we can summarily tabulate the eigenvalues of each point, as
shown in Table 5.

When the equilibrium point is (0, 0), the matrix is as follows

A ¼
�����
δξD � αξS � ςD � ξC � ϱþ ςC 0

0 �βγ � ξP

����� (33)

We can obtain two eigenvalues τ1 and τ2 as follows

τ1 ¼ δξD � αξS � ςD � ξC � ϱþ ςC < 0 (34)

and

τ2 ¼ �βγ � ξP < 0 (35)

From Eqs. (34) and (35), both eigenvalues τ1 and τ2 are less than zero
under Cases 1 and 2. Therefore, point (0, 0) is evolutionarily stable.
Similarly, for (0, 1), (1, 0), and (1, 1), it is easy to obtain eigenvalues τ1
and τ2. Then, comparing these two eigenvalues with 0, we can eventually
attain that (1, 0) is an unstable point, and the stability of (0, 1) and (1, 1)
are unable to be assessed. For, (q*, p*), it can be expressed as follows
Table 5
Eigenvalues of each equilibrium point.

Equilibrium
Point

Eigenvalues

(0, 0) τ1 ¼ δξD � αξS � ςD � ξC � ϱ þ ςC, τ2 ¼ �βγ � ξP
(0, 1) τ1 ¼ �αδξD þ ϵξA � αξS þ δξD � ςD � ξC � ϱ þ ςC, τ2 ¼ 2ϵξA �

αδξD
(1, 0) τ1 ¼ �δξD þ αξS þ ςD þ ξC þ ϱ � ςC, τ2 ¼ βγ þ ξP
(1, 1) τ1 ¼ αδξD � ϵξA þ αξS � δξD þ ςD þ ξC þ ϱ � ςC, τ2 ¼ �2ϵξA þ

αδξD
(q*, p*) τ1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
X*Y*

p
; τ2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
X*Y*

p
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A ¼
����
0 X*

*

���� (36)
�

Y 0

�

We can obtain two eigenvalues τ1 and τ2 as follows

τ1 ¼
ffiffiffiffiffiffiffiffiffiffi
X*Y*

p
(37)

and

τ2 ¼ �
ffiffiffiffiffiffiffiffiffiffi
X*Y*

p
(38)

The eigenvalues obviously satisfy ξ1 > 0 and ξ2 < 0 in both Cases 1
and 2. Hence, (q*, p*) is a saddle point. Furthermore, for ease of check-
ing, we tabulate the stability of each case, as shown in Table 6. This
completes the proof.

Theorem 7 considers the stability of each equilibrium point under the
two above cases and seeks out that the equilibrium point (0, 0) is an
evolutionarily stable strategy through trial and error. In practice, (0, 0)
represents that IoT devices make normal requests, and the edge nodes
grant the requests, preserving sensitive information privacy while
sharing IoT data.
3.5. Application framework

Based on the evolutionary privacy preservation learning game, we
present a specific data-sharing architecture model as an application
framework of our game, which is divided into three parts, as shown in
Fig. 8. IoT devices choose to take a malicious request or a normal request
and send their requests to the corresponding edge nodes. After receiving
these requests, edge nodes then call the IDSaaS deployed in the cloud to
detect the requests, and the IDSaaS returns the analysis report back to the
edge nodes to determine whether to grant or deny the IoT device re-
quests. If the edge nodes make a decision “grant”, it is transmitted to the
cloud storage system. In the end, IoT devices finally successfully access
the data across edge nodes. This completes a cycle. When a new IoT
Fig. 8. Application framework of our evolutionary privacy preservation
learning game.
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device would like to access IoT data stored in the cloud storage system,
the above cycle starts again. In our framework, attaining the optimal
learning strategy for preserving privacy while sharing data is the core,
which guides edge nodes to optimally choose the response.

3.6. Evolutionary learning algorithm

Here, we develop an evolutionary learning algorithm to obtain the
optimal privacy preservation strategy for edge nodes while sharing IoT
data from the perspective of practice. During the loop, the expected
revenue of IoT devices making malicious and normal requests is first
calculated according to Eqs. (1) and (2). Based on this, the average ex-
pected revenue of IoT devices is obtained by Eq. (3), and then the rele-
vant replication dynamic equation is obtained by Eq. (4). Similarly, the
expected revenue of edge nodes denying and granting IoT device requests
are calculated according to Eqs. (5) and (6). We next acquire the expected
revenue and the replication dynamic equations of edge nodes from Eqs.
(7) and (8). This process is not suspended until the difference between
two probabilities of IoT devices making malicious requests and the dif-
ference between two probabilities of edge nodes denying IoT device re-
quests are both less than the predefined minimum boundary. Thus, the
optimal strategy of denying malicious IoT device requests is eventually
obtained, which can provide a potent foundation for IoT data-sharing
privacy preservation.
Fig. 9. Evolution curves of IoT devices strategy selection
when q < αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
.

4. Experimental performance evaluations

We utilize MATLAB R2021a to conduct experimental simulations and
validate evolutionarily stable strategies for privacy preservation while
sharing IoT data. We observe the evolutionary process of IoT devices and
edge nodes, as well as verify the correctness of the above evolutionarily
stable strategy analyses. Furthermore, we investigate the influence of the
detection rate, successful diffusion rate, privacy risk factor, and trust gain
on the edge node evolution stability strategy and the influence of the
false alarm rate on the IoT device evolution stability strategy. The results
provide experimental verification for the design of an IoT data sharing
privacy preservation scheme.
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4.1. Verifying evolutionarily stable strategies of IoT devices

For this experiment, we set initial parameters α ¼ 0.85, β ¼ 0.3, γ ¼
30, δ ¼ 0.3, ϵ ¼ 0.75, ξA ¼ 70, ξP ¼ 80, ϱ ¼ 10, ξD ¼ 20, ξC ¼ 10, ξS ¼ 40,
ςD ¼ 5, ςC ¼ 10, ςS ¼ 20. It can be obtained that

q ¼ αξS þ ςD þ ξC þ ϱ� ςC � δξD
�αδξD þ ϵξA

� 0:9072 (39)

Therefore, we next analyze the strategy selection of IoT devices under
two cases q < 0.9072 and q > 0.9072.

4.1.1. Case 1: Probability of edge nodes denying requests is less than the
value obtained by the initial parameters

In this case, the probability of IoT devices making malicious requests
is initially set as p ¼ 0.8, and the probabilities of the edge nodes denying
IoT devices requests q are set as 0.80, 0.88, and 0.90. It shows a down-
ward trend, as shown in Fig. 9. It is notable that the lower the probability
of the edge nodes denying IoT device requests, the faster it converges to
0, which means that the IoT devices tend to choose normal requests. For
instance, it sharply decreases to 0 during the 2nd game when the prob-
ability of edge nodes denying IoT device requests is 0.8, whereas it comes
to 0 in the 20th game when the probability of edge nodes denying IoT
device requests is 0.9. It is indicated that the normal request is the
evolutionarily stable strategy of IoT devices when q < αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
.

4.1.2. Case 2: Probability of edge nodes denying requests is greater than the
value obtained by the initial parameters

Then, we set the probability of IoT devices making malicious requests
as p ¼ 0.2 and the probabilities of the edge nodes denying IoT devices
requests q are set as 0.9072, 0.9100, and 0.9200. There is an upward
trend, as shown in Fig. 10. The probability of IoT devices adopting a
malicious request remains stable when the probability of the edge nodes
denying IoT device requests is 0.9072, meaning that there is no evolution
at that time. Furthermore, the higher the probability of the edge nodes
denying IoT device requests, the faster it converges to 1, which means
that IoT devices tend to choose malicious requests. For instance, it in-
creases to 1 in the 15th game when the probability of the edge nodes
denying IoT device requests is 0.92, while it increases to 1 during the
55th game when the detection rate is 0.91. From the analyses above,
there is no evolutionarily stable strategy for the edge nodes when q ¼
αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
, and the malicious request is the evolutionarily stable

strategy of IoT devices when q > αξSþςDþξCþϱ�ςC�δξD
�αδξDþϵξA

.



Fig. 10. Evolution curves of IoT devices strategy selection
when q > αξSþςDþξCþϱ�ςC�δξD

�αδξDþϵξA
.

Fig. 11. Evolution curves of edge nodes strategy selection
when p < βγþξP

2ϵξA�αδξDþβγþξP
.
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4.2. Verifying evolutionarily stable strategies of edge nodes

For this experiment, we set the initial parameters α ¼ 0.85, β ¼ 0.3, γ
¼ 30, δ¼ 0.3, ϵ¼ 0.75, ξA¼ 70, ξP¼ 80, ϱ¼ 10, ξD¼ 20, ξC¼ 10, ξS¼ 40,
ςD ¼ 5, ςC ¼ 10, ςS ¼ 20. It can be obtained that

p ¼ βγ þ ξP
2ϵξA � αδξD þ βγ þ ξP

� 0:4711 (40)

Therefore, we next analyze the strategy selection of edge nodes under
two cases p < 0.4711 and p > 0.4711.

4.2.1. Case 1: Probability of IoT devices making malicious requests is less
than the value obtained by the initial parameters

In this case, the probability of edge nodes denying IoT device requests
is set as q ¼ 0.7 and the probabilities of IoT devices making malicious
requests p are set as 0.40, 0.43, and 0.46. There is a downward trend, as
shown in Fig. 11. Noticeably, the lower the probability of IoT devices
making malicious requests, the faster it converges to 0, which means the
edge nodes tend to grant the requests. Taking p ¼ 0.40 and p ¼ 0.46 as
examples, the former plunges to 0 in approximately a half game, while
the latter requires the 3rd game to fall to 0. It is implied that the granting
request is the evolutionarily stable strategy of edge nodes when
p < βγþξP

2ϵξA�αδξDþβγþξP
.

4.2.2. Case 2: Probability of IoT devices making malicious requests is greater
than the value obtained by the initial parameters

Then, we set the probability of IoT devices making malicious requests
as q ¼ 0.3, and the probabilities of the edge nodes denying IoT devices
requests p are set as 0.4711, 0.4800, and 0.5200. It shows an upward
trend in Fig. 12. The probability of the edge nodes denying requests
stabilizes when the probability of making malicious requests is 0.4711,
meaning that there is no evolution at that time. Moreover, the higher the
probability of IoT devices making malicious requests, the faster it con-
verges to 1, whichmeans that the edge nodes tend to deny the requests. A
case in point is that it shoots up to 1 in a half game when the probability
of IoT devices making malicious requests is 0.52, while it comes to 1 in
approximately the 5th game when the probability of requesting mali-
ciously is 0.48. In short, there is no evolutionarily stable strategy for edge
nodes when p ¼ βγþξP

2ϵξA�αδξDþβγþξP
, and denying requests is an evolutionarily

stable strategy for edge nodes when p > βγþξP
2ϵξA�αδξDþβγþξP

.

Fig. 12. Evolution curves of edge nodes strategy selection when
p > βγþξP

2ϵξA�αδξDþβγþξP
.

4.3. Verifying evolutionarily stable strategies on both sides

For this experiment, we set the initial parameters α ¼ 0.85, β ¼ 0.3, γ
915
¼ 30, δ¼ 0.3, ϵ¼ 0.75, ξA¼ 70, ξP¼ 80, ϱ¼ 10, ξD¼ 20, ξC¼ 10, ξS¼ 40,
ςD ¼ 5, ςC ¼ 10, ςS ¼ 20. We next analyze the strategy selection of IoT
devices and edge nodes under two cases ξC þ ϱ� ςC < (1� α)δξD þ ϵξA �
αξS � ςD and ξC þ ϱ � ςC > (1 � α)δξD þ ϵξA � αξS � ςD.

4.3.1. Case 1: Revenue of IoT devices making normal requests is more than
that of making malicious requests when the edge nodes grant IoT device
requests

According to Table 6, we can see that (0, 0) and (1, 1) are evolu-
tionarily stable points when ξCþ ϱ� ςC < (1� α)δξD þ ϵξA � αξS� ςD. As
shown in Fig. 13, the game strategy eventually evolves into (Request
Normally, Detect & Grant) or (Request maliciously, Detect & Deny), simul-
taneously verifying that the analysis in Table 6 is true.

4.3.2. Case 2: Revenue of IoT devices making normal requests is less than
that of making malicious requests when the edge nodes grant IoT device
requests

Then, we reset ξC to 20. From Table 6, only (0, 0) is an evolutionarily
stable point when ξCþ ϱ� ςC> (1� α)δξDþ ϵξA� αξS� ςD, meaning that
the game strategy eventually evolves into (Request Normally, Detect &
Grant). As shown in Fig. 14, they all converge to 0, illustrating that (0, 0)
is the stable point, which verifies that the analysis in Table 6 is true. In
other words, the edge nodes tend to choose granting requests, and IoT
devices tend to adopt requesting normally.



Fig. 13. Evolutionarily stable strategies on both sides while ξC þ ϱ � ςC < (1 �
α)δξD þ ϵξA � αξS � ςD.

Fig. 14. Evolutionarily stable strategies on both sides while ξC þ ϱ � ςC > (1 �
α)δξD þ ϵξA � αξS � ςD.

Fig. 16. Influence of the successful diffusion rate on IoT device strat-
egy selection.
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4.4. Influence of related parameters on IoT device strategy selection

For this experiment, we set initial parameters α ¼ 0.85, β ¼ 0.3, γ ¼
30, δ ¼ 0.3, ϵ ¼ 0.75, ξA ¼ 70, ξP ¼ 80, ϱ ¼ 10, ξD ¼ 20, ξC ¼ 10, ξS ¼ 40,
ςD ¼ 5, ςC ¼ 45, ςS ¼ 20. We next analyze the influence of the detection
rate, successful diffusion rate, trust gain, and privacy risk factor on IoT
Fig. 15. Influence of the detection rate on IoT device strategy selection.
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device strategy selection.

4.4.1. Influence of detection rate α on the strategy selection of IoT devices
To assess the effect of the detection rate on IoT device strategy se-

lection, we set p ¼ 0.5, q ¼ 0.1, and reset α to 0.7, 0.75, 0.8, and 0.9.
According to Fig. 15, when the detection rate is low, IoT devices tend to
choose malicious requests. Meanwhile, the poorer the detection rate is,
the faster it converges to 1. For instance, it almost reaches 1 in the 2nd
game when the detection rate is equal to 0.7, while it approaches 1 in the
6th game when the detection rate is equal to 0.75. In contrast, when the
detection rate is high, IoT devices tend to choose normal requests.
Similarly, the higher the detection rate is, the faster it converges to 0. As a
proof, it decreases to 0 in the 1st game when the detection rate is equal to
0.8, while it reaches 0 in the 4th game when the detection rate is 0.9. It is
demonstrated that advancing the detection rate can decrease the prob-
ability that IoT devices adopt the malicious request strategy, which
protects IoT data privacy.

4.4.2. The influence of the successful diffusion rate δ on the strategy selection
of IoT devices

To assess the effect of the diffusion rate on IoT device strategy se-
lection, we set p ¼ 0.5, q ¼ 0.1 and reset δ to 0.2, 0.4, 0.6, and 0.8,
respectively. As seen from Fig. 16, when the diffusion rate is low, IoT
devices tend to choose normal requests. Moreover, the poorer the
diffusion rate is, the faster it converges to 0. For example, it plunges to
0 in the 1st game when the diffusion rate is 0.2, while it falls to 0 in the
4th game when the detection rate is equal to 0.4. In contrast, when the
Fig. 17. Influence of the trust gain on IoT device strategy selection.



Fig. 18. Influence of the privacy risk factor on IoT device strategy selection.
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diffusion rate is high, IoT devices tend to choose malicious requests. The
higher the diffusion rate is, the faster it converges to 1. For δ ¼ 0.6, and δ
¼ 0.8, the former soars to 1 during the 1st game, and the latter grows to 1
in approximately the 3rd game. It is illustrated that minimizing the
diffusion rate can decrease the probability that IoT devices adopt the
malicious request strategy, which protects privacy while sharing IoT
data.

4.4.3. Influence of trust gain ϱ on the strategy selection of IoT devices
To assess the effect of trust gain on IoT device strategy selection, we

set p ¼ 0.5, q ¼ 0.1, and reset ϱ to 5, 7, and 9. As shown in Fig. 17, when
the trust gain is low, IoT devices tend to choose malicious requests. For
instance, it ascends to 1 in the 3rd game when the trust gain is equal to 5.
Conversely, when the trust gain is high, IoT devices tend to choose
normal requests. Noticeably, the higher the trust gain is, the faster it
converges to 0. A case in point is that it drops to 0 in the almost 20th
game when the trust gain is 7, while it plummets to 0 in the 2nd game
when the trust gain is 9. It is proven that improving trust gain can in-
crease the probability that IoT devices adopt the normal request strategy
to protect privacy while sharing IoT data.

4.4.4. Influence of the privacy risk factor ϵ on the strategy selection of IoT
devices

To assess the effect of the privacy risk factor on IoT device strategy
selection, we set p¼ 0.8, q¼ 0.1, and reset ϵ to 0.05, 0.7, and 0.95. There
is a downward trend, as shown in Fig. 18. It is noteworthy that the poorer
the privacy risk factor is, the faster it converges to 0. For ϵ¼ 0.05, ϵ¼ 0.7,
Fig. 19. Influence of the false alarm rate on the edge node strategy selection.
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and ϵ ¼ 0.95, they all decline to 0 in the 1st, 2nd, and 4th games,
respectively. It is verified that decreasing the privacy risk factor can in-
crease the probability that IoT devices adopt the normal request strategy
to protect IoT data-sharing privacy.

4.5. Influence of false alarm rate β on the strategy selection of the edge
nodes

We next analyze the influence of the false alarm rate on the edge node
strategy. Thus, we set the initial parameters α¼ 0.85, γ ¼ 10, δ¼ 0.3, ϵ¼
0.75, ξA¼ 70, ξP¼ 30, ξD¼ 20, ξS¼ 40, ςS¼ 20, p¼ 0.1, q¼ 0.8, and set β
to 0.03, 0.05, and 0.08. According to Fig. 19, it is noteworthy that
changes in the false alarm rate have little effect on the overall situation.
They all converge to 0 with the same trend, whichmeans that in this case,
the edge nodes adopt the strategy of granting requests.

5. Conclusion and future work

In the current work, we have proposed an edge computing-oriented
and evolutionary game-based privacy preservation model to acquire
the optimal learning strategy for IoT data sharing. In our scheme, the
edge nodes first assess whether the request is normal or malicious and
then react with action grants or denies when data is released from the
cloud storage system. Under this circumstance, malicious requests can be
precisely identified and effectively prohibited from the source. Further-
more, we have analyzed the stability of each equilibrium point via the
replication dynamic equations and raised a framework and an algorithm
for this model, optimizing the expected gain and receiving the best
evolutionary strategy. Additionally, the relevant experimental simula-
tions verify that our scheme is superior from the perspectives of reli-
ability and privacy preservation.

For future work, we will focus on other game models, such as
signaling games and repeated games, to handle privacy preservation
during IoT data sharing. In addition, we will take the privacy preserva-
tion of a data sender into consideration instead of a data receiver,
minimizing the probability of IoT nodes sending malicious requests.
Furthermore, it is highly likely to incur malicious attacks in the process of
merging data from different IoT devices. Therefore, privacy preservation
under IoT data aggregation is another direction with great promise.
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Appendix A. Proof of Theorem 1

We take the derivative of both sides of Eq. (4) and obtain the equation
as follows

R'ðpÞ ¼ ð1� 2pÞ*ðq*ð � αδξD þ ϵξAÞ þ δξD � αξS � ςD � ξC � ϱþ ςC Þ
(A.1)

To reach a stable state, it needs to satisfy R0(p) < 0. Let p ¼ 0 and p ¼
1; we obtain the equation as follows
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R'ð0Þ ¼ q*ð � αδξD þ ϵξAÞ þ δξD � αξS � ςD � ξC � ϱþ ςC > 0 (A.2)
and the equation as follows

R'ð1Þ ¼ �ðq*ð � αδξD þ ϵξAÞ þ δξD � αξS � ςD � ξC � ϱþ ςC Þh0 (A.3)

Obviously, p ¼ 1 is the only point of convergence of IoT devices selecting an action. This completes the proof.

Appendix B. Proof of Theorem 3

To reach a stable state, it needs to satisfy R0(p) < 0. Let p ¼ 0 and p ¼ 1 in Eq. (A.1), we obtain the equation as follows

R'ð0Þ ¼ q*ð � αδξD þ ϵξAÞ þ δξD � αξS � ςD � ξC � ϱþ ςC < 0 (B.1)

and the equation as follows

R'ð1Þ ¼ �ðq*ð � αδξD þ ϵξAÞ þ δξD � αξS � ςD � ξC � ϱþ ςC Þi0 (B.2)

Obviously, p ¼ 0 is the only point of convergence of IoT devices selecting an action. This completes the proof.

Appendix C. Proof of Theorem 4

We take the derivative of both sides of Eq. (8) and obtain the equation as follows

D'ðqÞ ¼ ð1� 2qÞ*ðp*ð2ϵξA � αδξD þ βγ þ ξPÞ � βγ � ξP Þ (C.1)

To reach a stable state, it needs to satisfy D0(q) < 0. Let q ¼ 0 and q ¼ 1; we obtain the equation as follows

D'ð0Þ ¼ p*ð2ϵξA � αδξD þ βγ þ ξPÞ � βγ � ξP > 0 (C.2)

and the equation as follows

D'ð1Þ ¼ �ðp*ð2ϵξA � αδξD þ βγ þ ξPÞ � βγ � ξP Þh0 (C.3)

Obviously, q ¼ 1 is the only point of convergence of edge nodes selecting an action. This completes the proof.

Appendix D. Proof of Theorem 6

To reach a stable state, it needs to satisfy D0(q) < 0. Let q ¼ 0 and q ¼ 1 in Eq. (C.1). We obtain the equation as follows

D'ð0Þ ¼ p*ð2ϵξA � αδξD þ βγ þ ξPÞ � βγ � ξP < 0 (D.1)

and the equation as follows

D'ð1Þ ¼ �ðp*ð2ϵξA � αδξD þ βγ þ ξPÞ � βγ � ξP Þi0 (D.2)

Obviously, q ¼ 0 is the only point of convergence of edge nodes selecting an action. This completes the proof.
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