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The fish processing sector is experiencing increased pressure to reduce its energy consumption and carbon
footprint as a response to (a) an increasingly stringent energy regulatory landscape, (b) rising fuel prices, and
(c) the incentives to improve social and environmental performance. In this paper, a standalone forecasting
computational platform is developed to optimise energy usage and reduce energy costs. This short-term
forecasting model is achieved using an artificial neural network (ANN) to predict power and temperature at
thirty-minute intervals in two cold rooms of a fish processing plant. The proposed ANN function is optimised
by genetic algorithms (GA) with simulated annealing algorithms (SA) to model the relationships between
future temperature and power and the system variables affecting them. To assess the accuracy of the proposed
method, extensive experiments were conducted using real-world data sets. The results of the experiments
indicate that the proposed ANN model performs with higher accuracy than (a) the long short-term memory
(LSTM) as an artificial recurrent neural network (RNN) architecture, (b) peephole-LSTM, and (c) the gated
recurrent unit (GRU). This paper finds that using GA & SA algorithms; ANN parameters can be optimised. The
RMSE obtained by the ANN compared with the second-ranked method GRU was consequently 16% and 4% less
for the predicted temperature and power. The results in one particular site demonstrate energy cost savings in
the range of 15%-18% after applying the forecast-optimiser approach. The proposed prediction model is used
in a fish processing plant for energy management and is scalable to other sites.

1. Introduction up of frost, the cold rooms’ energy efficiency, and energy costs must

be considered in an optimal energy management system of the cold

Fish processing involves sizeable and increasing levels of energy
consumption and carbon emissions due to continuous needs for refriger-
ation, air conditioning, and ice making, as well as the reliance on fossil
fuels [1-3]. Recent technological advancements in areas such as the In-
ternet of Things (IoT) and Artificial Intelligence have paved the way to
a digital transformation of the industry reflected by the more informed
use of resources with significant carbon and cost reductions [4]. The
coordination of energy flows and optimisation of energy use through
clean energy generation and storage can decarbonise fishery ports while
stimulating the development of energy communities in the local ecosys-
tem [5]. One key area of the fish processing plant is the cold room.
Dedicated temperature-controlled cold rooms are commonplace as fish
is very perishable. Maintaining a constant temperature in cold rooms is
challenging due to the dynamic nature of the processes involved with
the regular transport of products, equipment and people entering and
leaving the port. Furthermore, other constraints such as the build-
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rooms [6].

This study aims to research, design, and develop a set of prediction,
simulation, and optimisation modules to deliver more informed energy
management in the fish processing industry. Our primary research
questions are:

(a) How hybridising an ANN with evolutionary algorithms such as
genetic algorithm (GA) and simulated annealing algorithm (SA)
can enhance the mapping capability of the ANN?

(b) How does modelling the usage profile of the fish processing
industry and predicting and optimising real-time energy interac-
tion with pricing schemes and power demand help reduce energy
costs and carbon footprint?

(c) What are the benefits of the proposed ANN framework in imple-
menting smart energy grids and energy transition for industries?
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Nomenclature

Al Artificial Intelligence

ALO Ant Lion Optimizer

ANN Artificial Neural Network

AR Auto-Regressive

ARIMA Auto-Regressive Integrated Moving Aver-
age

DNN Deep Neural Network

ELU Exponential Linear Unit

GA Genetic Algorithms

GHG Green-House Gas

GOA Grasshopper Optimization Algorithm

GRU Gated Recurrent Unit

IMPVP International Performance Measurement &
Verification Protocol

IoT Internet of Things

LSTM Long Short-Term Memory

MA Moving Average

MAE Man Absolute Error

MAPE Mean Absolute Percentage Error

MLP Multi-Layer Perceptron neural network

MSE Mean Square Error

PSO Particle Swarm Optimisation

ReLU Rectified Linear Unit

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SA Simulated Annealing

The above research questions involve a common objective to develop
a data-driven predictive model that can predict the power and tem-
perature of cold rooms in thirty-minute intervals. Power consumption
and temperature can be considered as typically univariate time series.
As such, general time series forecasting methods are commonplace
for electric load forecasting. These include autoregressive (AR), mov-
ing average (MA), autoregressive integrated moving average (ARIMA)
models and a number of their variants. However, the abovementioned
techniques are applicable when the observed and future time series
are assumed to be linearly related. These methods are inferior for time
series, which possess significant non-linear characteristics [7]. Another
forecasting method class is based on artificial neural networks (ANNs).
ANNs mimic the human nervous system in their parallel distributed
processing. They can be applied to solving complex problems, including
approximating functions and pattern recognition. Forecasting variables
are multifaceted and complicated so a wholly accurate forecast is
impossible. Nevertheless, a suitable model with intermittent monitoring
of results can improve periodic forecasting accuracy to identify whether
any errors are concordant with the predetermined ranges. Contrasting
the linear forecasting of the ARIMA-based methods, ANNs can use a
set of non-linear methods which are both data-driven and self-adaptive.
ANNSs are considered capable of approximating any non-linear function,
with sufficient efficacy, especially for complex models [8,9].

The significant contribution of this paper is the introduction a pre-
cise multilayer perceptron neural network (MLP) as a subset of a deep
neural network (DNN) model for power and temperature forecasting. A
comparison of the efficacies of several DNN forecasting methods is then
made. This paper explores how a predictive model can be integrated
with an optimiser to achieve optimal energy management to reduce
carbon footprint and energy costs. This is achieved using an optimiser
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(prediction data) in situ at a fish processing site. The proposed approach
is informed by an in-depth energy audit conducted on the pilot. The
optimisation model is based on sensitivity analysis that determines the
degree of importance of a variable concerning the stipulated objectives.

The proposed model can forecast the temperature and power for
intervals of half an hour. The inputs to the MLP are set-point, the
engaged capacity of cold rooms, the season of the year, current tem-
perature and current power. The outputs are predicted temperature and
power. The forecasting model is trained and validated with measured
cold-room data. The model was prepared to forecast temperature and
power in a real trial site at Atlantic Dawn in Killybegs, Ireland. The
accuracy of the proposed MLP’s model was subsequently compared
with the accuracy of long short-term memory (LSTM), peephole-LSTM,
and gated recurrent unit (GRU) forecasting techniques.

The remaining contents of this paper are organised as follows. Sec-
tion 2 discusses related work and provides an overview of ANNs. The
methodology is described in several steps in Section 3. The data from
testing and validating the model is described in Section 4. This includes
an evaluation of the proposed model against other DNN approaches.
Section 5 discusses and contextualises the energy cost savings for a
fishery site. The findings are evaluated and concluded in Section 6.

2. Related work

Forecasting energy consumption holds significant practical impor-
tance when addressing net-zero emissions, sustainability, and energy
efficiency. Precise energy usage forecasts enable governments, poli-
cymakers, and organisations to plan for the future energy landscape,
facilitating the creation of informed policies and strategies promoting
renewable energy adoption, energy efficiency measures, and sustain-
ability initiatives. Integrating renewable energy sources effectively is
critical to achieving net-zero emissions and sustainability objectives.
Energy usage forecasts facilitate the optimal deployment of renewable
energy during peak demand, ensuring a stable and reliable energy
supply from clean sources. Responsible resource management is essen-
tial for sustainable energy usage, and energy usage forecasts aid in
identifying areas where energy-saving measures and energy-efficient
technologies can be implemented to reduce consumption.

One potential solution to the infrastructural challenges in energy
supply is the digitalisation of energy management systems. This can
also help integrate renewable energy sources into the energy man-
agement system. To achieve digitalisation, smart technologies such
as Artificial intelligence (AI) in forecasting and smart grids can be
implemented to strive for environmental sustainability [10]. Intelligent
software can optimise decision-making and operations within the en-
ergy management system by controlling the power demand relative to
the system’s energy supply. However, there are still some limitations
to the implementation of smart technologies. Business owners’ primary
concern is the significant initial investment needed to achieve digi-
tisation and incorporate a smart system into their facilities. Another
consideration is the difficulty in finding causes for malfunctions in
the system, which may rarely arise in complex automation controller
algorithms. Finally, a greater demand for computational capacity is
often needed for smart technologies to solve complex problems. There-
fore, regulators and policymakers look for evidence of the impact of
intelligent technologies on the energy system, with incentives to reduce
greenhouse gas emissions and energy costs where possible [11,12].

The indoor temperature of buildings and the associated energy
consumption can be estimated in two ways. These include white-box
(or physical) versus black-box (or empirical) models. Both models
use weather parameters and indoor actuators’ variables as inputs and
predict energy or temperature as outputs [13]. In white-box or physical
modelling, heating and cooling demands can be estimated by an energy
simulation program, from which the system capacity and zone tempera-
tures are calculated [14]. Conversely, black-box modelling implements
a data mining technique to extract information from models. These
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models, one example of which is neural networks, rely on experimental
data.

With the developments in Al, novel machine-learning (ML) methods
have been used for power forecasting in cases where energy data
needs to be carefully managed. Compared to traditional statistical
forecasting methods, Al technology displays clear advantages in its
ability to analyse significant amounts of data quickly [15,16]. Some
commonly used load forecast methods are linear regression [17,18],
autoregressive methods [19], and artificial neural networks [15,20,21].
A cold room’s power and temperature forecast is associated with the
season (weather), capacity changes and set-point characteristics. Time
series models use mathematical formulation and are often less suitable
than AI methods in forecasting multi-variable scenarios [14].

ML is utilised for energy usage forecasting due to the complexity and
non-linearity of energy data influenced by external factors like weather,
economic conditions, and human behaviour. ML models, particularly
neural networks such as ANN, LSTM, and GRU, are adept at capturing
intricate patterns and dependencies present in such data, resulting
in accurate energy usage predictions. ML algorithms efficiently han-
dle large datasets, extracting valuable insights and generating precise
forecasts from extensive historical energy consumption data. The adapt-
ability of ML models is crucial as energy demand patterns may change
due to emerging technologies, policy shifts, or societal changes, and
ML can adapt and update predictions based on new data. Additionally,
ML techniques automate feature identification, reducing the need for
manual feature engineering and improving prediction accuracy by
understanding the factors significantly impacting energy usage. As ML
models continuously learn and improve with more energy usage data,
they remain up-to-date with evolving consumption patterns [22-25]. In
conclusion, the application of machine learning in forecasting energy
usage is of utmost importance in addressing contemporary challenges
related to net-zero emissions, sustainability, and energy efficiency.
Accurate energy forecasts facilitated by ML aid in developing strategies
to reduce carbon emissions, optimise energy utilisation, and contribute
to achieving net-zero emissions goals. This paper addresses the theo-
retical and practical aspects of ML for smart technologies in the fishery
industry.

By training through previous data sets, ANNs imitate the human ner-
vous system and can identify non-linear, complex relationships between
variables. ANNs successfully predicted energy consumption or produc-
tion at time intervals after training on a historical data set. Several
papers have considered using ANNs to predict room temperatures and
power consumption [26,27]. Further work has proposed using these
predictions in energy-saving control strategies when air-conditioning
systems are in use [13]. D. Yang et al. presented ANN use in research-
ing optimal start and endpoints in operation used to control cooling
systems [28]. This was done to reduce energy consumption effectively.
ANNs were also used to control air-conditioning systems by predicting
indoor temperature data [29]. Zhao et al. reviewed many techniques
which aimed to predict building energy consumption [30]. The idea
of utilising ANNs for load and temperature prediction was introduced
back in 1995, where an ANN model was shown short-term load for
daily load predictions [31]. ANNs have become popular amongst ap-
plications controlling heating, ventilation, energy consumption and
power in buildings or rooms [32]. Ekonomou et al. used an ANN-
based method alongside the wavelet denoising algorithm [33]. This was
used to establish electricity load data into different frequency signals.
The wavelet denoising algorithm provides neural network training with
valid electricity load data, thus improving load forecasting accuracy.

Combination models integrating energy simulation and GA can be
used to select optimal design parameters and help conserve energy
usage [34-37]. The most common applications of GAs are for designing
neural network architectures or for improving their learning rate [38].
Several related studies make use of GA for various energy management
applications. N.Kampelis et al. have used ANN and GA for an energy
management problem focusing on optimising the ANN prediction at a
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building and district level [39]. Similar works, [40,41], demonstrate
how energy systems using solar power are optimised using GA to
achieve improved efficiency. O. Hazem Mohammed et al. provides
an example of a standalone hybrid energy system optimising using
GA [42]. H. Lu et al. analysed energy quality management for a micro-
energy network and applied GA to optimise the energy distribution
in a tourist area [43]. Some authors [44,45] showed that sorting
GA could reduce water pumps’ electricity requirements and pollution
emissions. A double-injection diesel engine is optimised by using a
hybrid model of ANN and GA [46]. The model was able to reduce fuel
consumption and computational time deficiency. S. Nikbakht expanded
on the ANN model by assigning weights to multiple trained models and
subsequently coupled them with the non-dominated sorting GA (NSGA-
I). This resulted in a significant increase in neural network prediction
accuracy [47].

This study aims to research, design, model, and develop a multilayer
perceptron neural network (MLP) as a subset of a deep neural network
(DNN) to deliver a smarter and optimised energy management in the
fish processing industry. We model, predict and optimise the operation
profile in the cold rooms of a site and explore how the real-time energy
optimisation interacts with pricing schemes and power demand.

3. Methodology

This study aims to reduce energy costs and carbon footprint by
modelling the usage profile of particular selected sites and optimising
their energy use. This is done by exploring the interaction of real-time
energy optimisation with pricing schemes and power demand.

The motivation for creating models of the usage profiles of se-
lected sites is to establish an approach that can be scaled to similar
sites in the future with similar energy management requirements. We
use an ANN model to determine a relationship between inputs and
outputs to support further modelling, identification, and prediction
analysis [48,49]. We developed an optimiser that uses tabular data
sets with an ANN forecasting model selected over other deep learning
methods. The ANN provides improved flexibility and the ability to learn
a mapping from inputs to outputs. As such, an optimisation strategy
considering energy management is proposed by combining hour-ahead
and real-time scheduling (Fig. 1).

This section presents the prediction framework and associated re-
quired mechanisms for conducting near-real-time energy optimisation
in the fish processing plant. The proposed prediction framework con-
sists of four main stages:

(a) analysis of environmental variables;
(b) data collection and cleansing/filtering;
(c) ANN-based prediction; and

(d) model evaluation

In the stage of analysing environmental variables, data sensitivity
analysis is implemented to determine the inputs of MLP. The data
collection and cleansing/filtering stage covers gathering environmental
variables and removing abnormal noise from the data. Data filtering is
usually used as a time series modelling tool. The ANN-based prediction
stage covers the development of a prediction engine. Finally, GA and
SA are embedded in this MLP to enhance outputs, and the accuracy of
the prediction models was validated by statistical measures, compared
with other established forecasting models and tested against real-time
data by an optimisation platform.

3.1. Analysis of environmental variables

The study aims to model the usage profile of sites and explore
how real-time energy optimisation interacts with the price of power
and power demand; therefore, the primary analysis’s objective was
to identify the data necessary for accurate temperature and power
forecasts.
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Input data & optimisation goal Optimisation model Hour-ahead scheduling of set points

Current season & capacity

Predicted temperature & power for
one hour-ahead from ANN

Real-time temperature, power & set
point

Optimal energy cost for one
hour-ahead
goal

1 Input data

Optimisation

Hour-ahead scheduling plan

Optimisation Energy system operates according
model to the plan

Real-time set point adjustment

Fig. 1. The architecture of the optimisation strategy. The predicted temperature and power are obtained using the ANN, with inputs illustrated in Fig. 2.

In [50], a simulation model of the pilot project has been developed
and calibrated using the open-source EnergyPlus simulation engine that
considers a wide range of parameters linked to the building envelope
and constituents materials, such as the “U” value, which factors in heat
transfers and energy losses across the pilot building. The calibrated
simulation model has informed the model’s accuracy in the forecasting
model’s development.

The calibrated energy model that was developed factored in all the
equipment and machinery for the fish processing, using both perfor-
mance data gleaned from the manufacturer documentation (including
power capacity) and on-site performance and operational data. The en-
ergy model did not factor in the relationship between the refrigeration
power and the mechanical power of the compressor (e=Pf /pm) due to
a lack of credible data. This is identified as a limitation and direction
for follow-on research.

The other potential parameters influencing temperature and power
prediction in cold rooms were identified. These included current power
& temperature, the volume of products in the cold rooms (capac-
ity states), set points and weather characteristics. Weather factors
such as wind, ambient temperature and humidity were obtained using
historical weather data.

In turn, the effect of adding each of the inputs was considered
and assessed. This process was repeated for each permutation of input
variables until the extra variables’ addition did not equate to signifi-
cant improvements in the model’s performance. For example, ambient,
humidity and wind speed were found to have no significant impact on
the model’s accuracy and were not considered. Our analysis showed
that power use and temperature prediction are affected by the volume
of products, season, set point, start temperature and power. The season
of the year is used to consider ambient temperature changing across
the year. Other parameters could be analysed in further investigations.
These include the size of cold rooms, product surface temperature and
layout of products in the rooms.

3.2. Data collecting and cleansing/filtering

The historical data sets comprised the sensory data collected by
ten sensors and data produced using the calibrated simulation model.
Around one-year historical data were consolidated (between 28 Jan-
uary till the end of November 2019) that informed the development
of the forecasting model. Some of the historical data were sourced
from the same sensor units as permitted by the project facilities or
pilot facilities, whereas the second part was data from the calibrated
simulation model. From these two sources, a total data set of around
95,000 samples were obtained after reprocessing. Based on the ambient
characteristic of the particular site in Ireland, two seasons were consid-
ered from March to August for the summer trial and October to April for
the winter trial. Extensive site data streams were cleaned and modelled

Table 1
Statistical parameters of the inputs.
Minimum Maximum Mean Deviation

Set-point -25 0 -17.77 9.45
Season 0 1 N/A N/A
Power 1.89 138.46 69.19 35.21
Temperature -23.94 -15.82 -20.41 1.89
Capacity 0.5 1 N/A N/A

to facilitate accurate profiles. This helps to deliver applicable prediction
algorithms that reflect live scenarios. The data set for this study were
disorganised and incomplete due to many factors. Consequently, a
novel method was required to restore the data for use in ML models,
so a deep learning-based model of missing data was applied.

This task was based on temperatures and power consumption in two
cold rooms. The temperature and power consumption measurements
were carried out through two defined seasons (generally labelled winter
and summer). Temperature measurements are an average of temper-
atures obtained from ten sensors in two cold rooms at five-minute
intervals.

Based on our literature survey [51,52], a common sampling interval
for monitoring cold room temperatures in a fish processing factory
is every 30 min to 1 h. This interval allows for frequent enough
measurements to detect any temperature fluctuations or anomalies that
may affect the quality and safety of the stored fish. Therefore, for the
scenarios selected, the authors chose a conservative time interval of five
minutes to allow sensing to be aligned with the actuation. For efficient
energy management, the process needs to use sensor input for the latest
configuration of the building and return adequate setpoints within the
same interval. As such, an actuation performed at 30-minute intervals
using five minutes intervals for sensing is satisfactory, given the nature
of the activity in the room and possible changing scenarios [53].

The data set was cleaned and explored using visualisation tools. The
data relating to two daily defrost, and some abnormal fluctuations were
removed from the data set. The data set’s basic statistics are presented
in Table 1, which shows the minimum, maximum, mean and deviation
of all the data set variables. Following the gathering of historical data,
the next step in training was its normalisation.

3.3. ANN-based prediction

In an ANN, the processing units are layered neurones, with the input
and output layers separated by hidden layers.

On each hidden layer, the ith neuron sums the weighted outputs x;
of the previous layer and adds a bias b;; to the sum. The sums are then
processed by the activation function ¢(-) to generate outputs y;, which
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Fig. 2. The architecture of the proposed ANN.

work as the inputs for neurons on the following layer:

N
y,~=(p<2wijxj+b,~j> (€8]
j=1

where N is the total number of outputs received from the previous
layer, x; is jth output from the previous layer, y; is the output of the
ith neuron on the current layer, w;; and b;; are the weight and bias of
the jth input on the ith neuron, and ¢(-) is the activation function. ANN
parameters (the weight w;; and bias b;;) are determined from learning
data in a supervised training process [54].

Power forecasts are usually performed a few steps ahead of the
current time, mainly when the forecast’s accuracy is essential for the
economy and reliability of the power being provided [55,56]. In this
task, accurate forecasting is performed for up to six steps ahead,
with each step being in five-minute intervals. The optimum number
of lags, neurons and hidden layers and the activation function had
to be considered to produce an optimal model. A set of potential
training methods were selected based on the nature of the data, and
the optimum combination of the parameters above was implemented
and used to generate a forecast. A neural network was trained to create
a relationship between variables (environmental and control variables)
and objectives based on historical data. A trial and error approach was
employed to find the optimal number of hidden neurons, starting with
just one hidden neuron in the hidden layer. The number of hidden
neurons was incrementally increased until the MSE value was achieved.
Finally, ANN is modelled, with five neurons in the first layer and three
hidden layers, each containing nine neurons and two in the output
layer.

The first layer (input layer) receives inputs as follows: Current
temperature, Current power, Capacity, Set-point and Season. The last
layer supplies the power and temperature assessed by the network and
organises the responses obtained (Fig. 2).

After choosing relevant input variables, an appropriate number of
lags for each variable had to be determined. This is fundamental for
complex problems with numerous inputs, and no prior knowledge exists
to identify possible lags. A set of different activation functions are
compared in terms of forecast accuracy. A hyperbolic tangent activation
function is used in the current model because of its squashing effect
on minimal and massive values while maintaining near-linearity for
mid-range values. Training a neural network involves setting the most
suitable weights on the input of each unit. Here, the total number
of instances is 95000. The instance splitting method is random. The
percentage of training instances is set to 60%, the number of selection
instances set to 20%, and the number of testing instances set to 20%.

Mean square error (MSE), (Eq. (2)) of the MLP model is used as criteria
for the performance of the model. MSE is the standard error value used
to measure fitness for predictive values. The neural network algorithm
aims to minimise MSE [57].

| X
MSE =~ ¥ (3= 5,)” ©)

n=1

where y, denotes the measured value, j, is the estimated value, and
N represents the sample size. The quasi-Newton method algorithm
was used here for training as the optimisation algorithm stops when
a specific condition is satisfied. The initial value of the training loss
was 3.8265, and the final value after 509 iterations was 0.124476. The
initial value of the selection loss was 3.84683, and the final value after
509 iterations was 0.118187.

3.4. Applying genetic algorithm & Simulated annealing in MLP

Despite the ability of the NN to have a feature selection function
if given some regularisation penalty or sparsity to the connections
between input nodes and the hidden layer, and despite advancements in
learning theory which have proven many properties of gradient descent
techniques, in this paper, we apply GA and SA to optimise the NN.

Feature selection algorithms are used to deal with high-dimensional
data. These algorithms encompass identifying relevant features and
eliminating inapplicable and repetitious features. Choosing a subset of
data can reduce the data size and storage space needed, affecting the
processing time and storage costs [58]. The weights in the MLP are
updated periodically by the gradient descent method. However, errors
in the initial weight selection can result in the MLP quickly falling into
the local minimum or a slow convergence rate, affecting the system’s
accuracy.

When considering Al-based algorithms, widely used choices of al-
gorithms for feature selection include; GA, particle swarm optimisation
(PS0O), Grasshopper Optimization Algorithm (GOA), Ant lion optimizer
(ALO), and SA. At first, GOA and GA were considered. GOA is a “swarm
intelligence algorithm” inspired by grasshoppers foraging and swarm-
ing behaviour. The literature contains examples of the hybridisation
of GOA with other optimisation algorithms, such as metaheuristics and
ML [59-63]. When comparing GA and GOA implementation, the results
in this study show that both algorithms are similar in terms of accuracy.
Therefore, we used GA as an optimiser of feature selection. GA is a
metaheuristic algorithm used for solving constrained and unconstrained
optimisation problems. It solves optimisation problems by emulating
the natural selection process in organisms’ biological evolution. A GA
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is advantageous due to its global optimisation and fast convergence
rate. Consequently, a GA can be incorporated into an MLP model to
optimally find the proper weights and thus maximise the prediction
capabilities of the model. The optimisation of a GA is dependent on the
population size. As per the natural selection process, the GA operates
because the fitter an individual in the population is, the better they will
be represented in the population over time [64-66]. In this process, the
individual’s fitness consistently increases, and the error norm is reduced
over time. The reciprocal of the error norm of the MLP is taken as the
fitness function of the GA. The fitness calculation method is presented
as follows:

Fo__ 3

% Z,’,\Ll (yn - j’n)z

The superior operation is carried out in the GA, dependent on the
fitness of the individuals within the population. A proportion of the
population with higher fitness values is selected for the next generation.
Variations within the individuals of the population are introduced
through crossover and mutation to form a unique next generation.
It is then assessed whether enough generations have been produced
and the iterations completed or whether a certain performance by
the population has been achieved, which is considered satisfactory. If
these conditions are not met, the iterations continue, or the strategy is
modified before the process starts again. Once the optimal termination
conditions are achieved, the initial weightings for that process are
taken, and the optimal weighting is known. Fig. 3 is a flowchart
outlining the optimisation of a NN using the GA.

3.4.1. Genetic algorithm parameters tuning

The parameters the GA used in this study are presented: with a
population size of 100, the error values of the NN model were at a
minimum, which had the best prediction performance. Therefore, the
GA here is used with a population size of 100 and a tolerance of 0.01
for selection loss in training. Fixed length chromosome representation
is the most predominant in the field of GA [67]. The problem posed in
this paper is suitable for a fixed-length solution. For the input variables
to evolve, one individual in the population represents a set of possible
inputs. A chromosome represents the features with a length equal to
the total number of inputs features [68]. For the GA, binary encoding
is applied to the chromosomes, with selected features holding one value
and non-feature selected items being given zero. A uniform crossover
method with a probability of 0.8 and a ranked-based fitness assignment
method was used in the algorithm. The bit flip mutation allows for
variations in the features included in the population. This involves
flipping each bit and allows more exploration of the population. A low
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mutation rate of 0.02 was used to strike a balance between enough
variation to explore the space of features but not an excess of variation.

Simulated Annealing (SA) is another metaheuristic algorithm that
can approximate the global optimum of a given function. It is named af-
ter the metallurgy annealing process, which applies heating and cooling
in a specific manner to affect a metal’s behaviour and properties.

To prevent overfitting, the cross-validation method is commonly
used [54,69]. Two algorithms, GA and SA, are used to approximate
global optimisation in the search space to implement cross-validation.
The input selection obtains the optimal subset of inputs for the model’s
best loss. After several analyses, GA is chosen to search for the subset
of inputs, producing minimal selection error. To be consistent with the
best prediction outcome, GA is used with a population size of 380 and
a tolerance of 0.01 for selection loss in training. For the GA, selected
features were given one value, and all others were zero. A balance
of crossover and mutation had to be achieved to introduce variation
of the desired amount. A uniform crossover of probability 0.8 and a
lower mutation rate of 0.03 were used to produce an appropriate but
not excessive variation.

3.4.2. Simulated annealing algorithm parameters tuning

Furthermore, SA is used for the selection loss in training to identify
the optimal number of neurons and order selection. SA metaheuristic
is inspired by annealing’s physical process, where a piece of metal
takes on a more stable state following heat treatment and subsequent
cooling. To avoid falling into the local optimum, SA accepts a possible
worsening move m in its neighbourhood at a certain probability that is
inversely affected by §E, the energy variation before and after the given
move. Parameter temp (temperature) is introduced, which controls how
frequently worsening moves are accepted. Initially, remp is set to a value
that can be computed heuristically, and is then updated according to a
cooling schedule with time. Given a remp, the probability of selecting a
move m is computed;

-(E
P(SE)=¢ ‘femp (€))

Commonly, using a cooling rate parameter y, the temperature can be
decreased and updated as Eq. (5) [28,70].

temp = y.temp 5)

To be consistent with the best prediction outcome, the initial temper-
ature used was 1000. The final temperature, in this case, was 0.1. A
cooling rate of 0.5 and a tolerance of 0.01 were selected.

GA and SA parameters were made by trial and error. Parameters
were identified that provided the best results in a reasonable amount
of time. As per NN models (supervised)-MLP regressor—scikitlearn.org,
the time complexity of backpropagation can be shown as O(i.t.m.h*.1),
where i is the number of iterations, m is the number of features, 4 is
the number of nodes per hidden layer, k is the number of hidden layers
and / is the output layer neurons [71].

4. Model evaluation

For performance evaluation of the model, statistical parameters,
including mean absolute percentage error (MAPE), root mean square
error (RMSE) and mean absolute error (MAE) were used. MAPE is used
as a measure of prediction accuracy given by a percentage of deviation
error. RMSE is a quadratic scoring rule that can also measure the
average magnitude of the error. Similarly, MAE measures the average
magnitude of the errors in a set of predictions without considering their
direction. The MAPE and RMSE, and MAE are defined by Egs. (6a), (6b)
and (6¢), respectively, where y, denotes the measured value, , is the
estimated value, and N represents the sample size.

L
MAPE = — D

n=1

Lo Vnl s 100% (62)

Yn
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Table 2
Errors for training, selection and testing.
Training Selection Testing
Sum squared error 481701 166 858 167574
Mean squared error 223.943 233.694 237.356
Root mean squared error 14.9647 15.2871 15.4064
RMSE = VMSE (6b)
1 N
MAE = = 3 |y, = 5| (60)
n=1

Table 2 illustrates all errors measured for the training, selection and
testing stages.

4.1. Comparison with other DNN approaches

LSTM and GRU networks are both types of NNs, but they are
specifically designed for processing sequential data. LSTM and GRU are
specialised variants of recurrent neural networks (RNNs) designed to
overcome the limitations of traditional RNNs in processing sequential
data. They both have internal mechanisms to capture long-term de-
pendencies and handle vanishing/exploding gradient problems, making
them practical for tasks involving sequences [72]. Ferreira et al. pro-
posed a complete and self-contained presentation of the mathematical
foundations of LSTM and GRU [73]. Their ability to handle sequential
data and capture long-term dependencies makes them well-suited for
various tasks. Therefore they are applied in Natural Language Process-
ing (NLP), Time Series Forecasting, Healthcare, Weather Prediction,
Robotics and Speech Recognition. Skrobek et al. [74] employed LSTM,
Bidirectional Long Short-Term Memory (BiLSTM), and GRU to predict
the mass of an adsorption bed in the fixed and fluidised bed. The GRU
overcame the others in predicting the mass of both the fluidised and
fixed beds. Also, LTSM and GRU are used in energy management, such
as load forecasting, demand response, and fault detection. LSTMs have
been applied successfully for building energy optimisation using deep
reinforcement learning. GRUs have shown exemplary performance in
energy load forecasting, which helps grid planning and management.
Overall, LSTM and GRU models can potentially represent temporal
dynamics in energy systems and improve energy management [75].
Sahhad et al. [76] performed experiments on LSTM, CNN-LSTM and
CNN-GRU Short-Term Residential Load Forecasting. Phan et al. [77]
proposed a model for forecasting solar power generation using GRU
and LSTM. They showed that a GRU could deal with a larger dataset
because it has fewer parameters and a shorter training time than LSTM.

The presented MLP was compared with the following methods:
LSTM, peephole-LSTM and GRU. Most techniques for predicting power
demand include recurrent neural network (RNN)-based LSTMs using
time-series data and natural language processing [78-80]. RNN is used
to assign missing values and to accommodate for the nonlinearity
of meteorological time-series data [81]. RNNs, are a type of neural
network that allows for a previously generated output to be used as a
subsequent input while having hidden states. Given an input sequence
X = (xy,...,xp), a standard RNN computes the hidden vector sequence
h = (hy,...,hy) and output vector sequence y = (y,, ..., yy) by iterating
the following equations from r =1 to T

h, = @Wy,x, + Wyph,_y +by) (7a)
Vi =Wpyhi + b, (7b)

where the W terms denote weight matrices, the b terms denote bias
vectors and ¢ is the hidden layer function [82]. Fig. 4 shows a simple
unrolled RNN.

The recurrent layer of RNNs contains feedback loops so they can
hold information in memory over time. However, the training of stan-
dard RNNs to successfully solve problems that require learning long-
term temporal dependencies is challenging. The vanishing gradient
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Fig. 4. A schematic of a simple unrolled RNN.
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Fig. 5. A schematic of an LSTM memory cell.

problem can explain this. Hochreiter and Schmidhuber [83] introduced
a type of RNN and a subset of DNN in 1997; the LSTM networks.

LSTM implements gate and memory cells in each hidden layer. A
memory block includes an input gate i, a forget gate f, an output gate o,
and self-connected memory cells C. The input gate controls the entry of
the activations to the memory cell; similarly, the output gate functions
to filter cell activations appropriately and output to the successive
network. The forget gate aims to help the network remove past input
data and reset the memory cell. For LSTM, the following composite
function is implemented:

iy = o(Wyx, + Wyh,_y + Woe_y +b;) (8a)
fi=0Wy X+ Wyph ) + Wore +by) (8b)
¢, = f,x,_y +i tanh(W,.x, + Wy, h,_| +b,) (8c)
0, = c(Wyox, + Wyohy_i + W, + b,) (8d)
h, = o, tanh(c,) (8e)

where ¢ is the sigmoid, the W terms denote weight matrices and the
b terms denote bias vectors [82]. The access and storage of informa-
tion for a long time period is made possible by the careful use of
multiplicative gates. Consequently, this construct aims to alleviate the
vanishing gradient problem [84], making LSTM suitable for problems
with long-term dependencies. Fig. 5 shows a single LSTM memory cell
[82].

One problem with the LSTM is that the gates cannot access infor-
mation from the memory cell output when the output gate is closed.
As such, the LSTM cannot know how long the memory should be held
for the model.

To overcome this, peephole connections introduced by Gers and
Schmidhuber [85] can be implemented in the LSTM memory cells, and
the gate layers can then observe the cell state [86]. Also, a variation
of the LTSM is GRU, introduced by Cho et al. [87]. GRU implements
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The accuracy of DNN approaches expressed in terms of the statistical measures.

Algorithms Temp. Power

MAPE (%) RMSE MAE MAPE (%) RMSE MAE
Proposed model 1.695 0.514 0.348 63.643 19.954 12.448
LSTM 1.857 0.623 0.386  66.065 25.459  15.634
Peephole-LSTM 1.835 0.633  0.380  65.959 24991 15.519
GRU 1.827 0.612 0.376 64.680 20.766  13.046

a single update gate by combining the forget and input gates. GRU
also merges cell states and hidden states. As such, the model becomes
simpler than conventional LSTM models [86]. Cheng et al. [88] used
an LSTM model to predict the power demand for small power systems
with non-linear non-critical characteristics.

Power usage was considered in smaller groups and divided further
to consider the power usage of individual households. Subsequently, a
study using an LSTM model was conducted to forecast each household’s
power usage [88]. Future power demand was forecast using current
power production in a solar power farm.

To produce an optimal model, the following had to be considered
and optimised: the number of neurons, the number of hidden layers, the
learning rate, batch size and the number of epochs. Exponential linear
unit (ELU) was set as an activation function of the LSTM model, and
leaky rectified linear unit (ReLU) as an activation function of peephole-
LSTM and GRU models. While ELU smooths slowly until its output
equals —a, leaky ReLU sharply converges. ReLU does not allow for
negative inputs, but leaky ReLU provides for a small, non-zero, constant
gradient a.

MAPE, RMSE and MAE were used to evaluate the performance of
the forecasting models. The results of these are summarised in Table 3.

Temperature forecasting performances.

These scores are reported as averages across different runs of the
models.

Among the included DNN approaches, the proposed model and GRU
showed significantly lower error measures than LSTM and peephole-
LSTM. GRU performed better in temperature and power predictions
than LSTM and peephole-LSTM; it showed notably higher accuracy in
power predictions than these two approaches. For temperature, the
proposed model had MAPE of 1.695% compared to the 1.827% of
GRU. Similarly, scores of 0.514 and 0.348 in RMSE and MAE, respec-
tively, showed the proposed model had, on average, the least error in
temperature predictions. For power predictions, the proposed model
had a MAPE of 63.643%, which was better than the GRU measure of
64.680%. The proposed model produced a minimum MAE of 12.448
and an RMSE of 19.954. While the error measures for GRU and the
proposed model are slightly similar, the accuracy and the proposed
model’s ability to utilise tabular data sets make it the ideal approach
for the application of this paper.

Figs. 6 and 7 represent the behaviour of ANN, LSTM, peephole-
LSTM and GRU against real data (power and temperature). They show
more details of the forecasting trends. Fig. 6 shows the fluctuations for
one day of real power compared to the DNN approaches’ predictions.
When the set-point is set to zero (shown by a vertical drop in real
power towards zero), power consumption is followed most closely by
predicting the proposed model. The most significant forecasting errors
of the other DNN approaches occur when the set-point changes to zero.
Peephole-LSTM shows variation compared to that of real data. Fig. 7
shows the DNN models’ behaviour against real temperature data for
one day. At the point of the set-point changing to zero, the proposed
model’s prediction closely follows the actual temperature initially but
overshoots its prediction and shows fluctuations in its behaviour. LSTM
prediction follows the actual temperature more closely.
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Fig. 9. Simulation results from an optimisation platform using one-day ahead prediction. The optimiser was developed by the telecommunications software and systems group

(TSSG), Waterford, Ireland.
4.2. Evaluating the accuracy of the proposed model against actual data

Real-world data was used to evaluate the developed model’s stan-
dard performance indices and the relationship between variables. Fig. 8
shows the predicted temperature and power accuracy for half an hour
intervals against fourteen days of historical trial data.

5. Energy cost savings

The proposed model was developed as an optimiser in an industry’s
energy management system. As forecasting is an ongoing goal, and MLP
is used, the forecasting process is never-ending, constantly monitoring
accuracy. There will be occasions where the forecasting models must be
adapted to coincide with changes in data or the future goal. For model
performance evaluation, observed data from 2020 was compared to the
previous year’s validation period. After slight calibration of the model
using 2020 data, the model was validated by real-time data from 2020
for the same period as 2019. Almost all models need to be calibrated
in this way using observed data. Year to year, models like the proposed
MLP may encounter uncertainties from different sources. These include
data, parameter, and model structure uncertainty [89].

Fig. 9 shows the application of this model by the optimiser in real-
time. In this application, the optimiser makes a one-hour prediction
using two predictions of thirty-minute intervals. The output of the

first prediction is used as the second’s input to produce a one-hour
temperature prediction. The use of a multi-stage prediction is expected
to make a cumulative error. However, the model performs within the
0.5 °C accuracy threshold required for this application. The optimiser
then assesses the real-time energy cost and adjusts the combination
of set points for the next hour. The prediction model’s ability to stay
within the 0.5 °C error limit while experiencing cumulative error
reflects the accuracy of the proposed model.

In the next stage, using a homogeneous method for all pilots, energy
efficiency and greenhouse gas (GHG) emissions were assessed, and eco-
nomic efficiency factoring in this project was considered. The IMPVP
(International Performance Measurement & Verification Protocol) was
used to measure economic efficiency. Option B, the Retrofit Isolation
option from IPMVP, is selected. It was essential to keep the facility’s
conditions as consistent as possible before and after implementation
measurement periods. The savings calculation was made using the
simplified equation as any calibration error would affect both the
baseline and post-implementation period equally:

Expected savings (kWh) = Expected old energy use (kWh) - Ex-
pected new energy use (kWh).

Two baseline periods in a particular site in Ireland were considered.
The first period was from the 1st of September to the 31st of October
2019. For one cold room with 75% of capacity engaged, the hourly
average energy saving is 2.77 kWh, and the hourly average cost saving
is €162.6. The daily average energy-saving and cost-saving are 66.4
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Table 4
Measured consumption and savings obtained in the nominated pilot.

Renewable and Sustainable Energy Reviews 186 (2023) 113653

# of cold rooms - Before retrofit

Capacity engaged

Period

After retrofit

Energy savings [kWh] Cost avoided [€] CO, emissions

avoided [kg]

EC [kWh] EC [kWh]
First baseline One- %75 67291 62253 4037 237193 1716
Second baseline Two- %100 133436 126712 6224 320081 2645

kWh and €3901.7. This equates the first baseline period as energy
saving and cost saving of 4038 kWh and €237,193 respectively. The
second period was from the 20th of April to the 30th of June 2019. For
two cold rooms with 100% of capacity engaged, the hourly average
energy saving is 4 kWh, and the hourly average cost saving is €187.4.
The daily average energy-saving and cost-saving are 94.5 kWh and
€4497.6. This equates the first baseline period as energy saving and
cost saving of 4038 kWh and €237,193 respectively. The CO, emission
intensity (kg CO,/kWh) is calculated as the ratio of CO, emissions
from electricity production. CO, emission avoided during the baseline
periods is obtained using the conversion rate for Ireland (0.425 kg
CO, per kWh, source: The European Environment Agency - 2016).
Table 4 shows the average power usage for both periods and the savings
calculated. The results in the site show energy cost savings in the range
of 15%-18% after applying the forecast-optimiser platform.

6. Conclusion

This paper aims to develop an accurate forecasting model using cold
rooms’ short-term temperature and power to optimise energy across
the fish processing chain. The resulting prediction model provides
the optimised decision capability to respond to real-time changes in
energy demand through monitored real-time data. The real-time gen-
erated decision can actuate on-site control facilities to take actions
according to any pre-defined optimisation objectives, either single or
multi-objectives. For its applicability to the optimiser, the prediction
models’ accuracy was validated by statistical measures and testing
against real-time data by an optimisation platform. Furthermore, the
proposed model was evaluated and compared to several forecasting
models to predict power and temperature. These included LSTM as an
artificial RNN architecture, peephole-LSTM and GRU. We can see that
the proposed model and GRU had error measures, although Figs. 6
and 7 for power and temperature, respectively, show very similar
behaviours in DNN models when the set-point is zero. We conclude that
the proposed MLP is superior in its use for the application above due
to its accuracy and flexibility. This MLP allows two-fold or multi-stage
prediction required for one-hour ahead forecasting and uses tabular
data. Furthermore, the findings show that the model can substantially
improve with GA and SA methods. The deep learning approach for tem-
perature and energy predictions is scalable for other similar industries
using site-specific data predictions.

This model is then used as an input to the optimisation module,
directing the system to follow the most economical path while main-
taining site constraints. The real-time optimiser aimed to change the
energy demand of the cold rooms by controlling the set points for
the cooling system based on the predicted temperature behaviour.
The economic approach is derived from live market data in electrical
market pricing and available on-site renewable energy generation. Con-
sequently, the optimiser could change the energy-management system
to minimise energy usage with the most cost-efficient times relative
to the grid’s power pricing. The IPMVP protocols were used to assess
the economic efficiency of the energy management system. The results
show significant cost savings after applying the forecast-optimiser plat-
form. Furthermore, there is a reduction in carbon dioxide emissions.
These modules combine to deliver a scalable, intelligent solution for the
fish processing industry, which relies on innovative systems to compete
with other sectors reliant on the energy market. Thus, we conclude

10

that hybridising an ANN with evolutionary algorithms can enhance its
modelling capability. This modelling can predict the energy profile of
a fishery site in situ and optimise real-time energy use with real-time
energy cost.

We conclude that these approaches can be used with an economic
mindset, using live market data in electrical market pricing and avail-
able on-site renewable energy generation. This can lead to a reduction
in energy costs and carbon footprint. This study shows how digital tech-
nologies can support smart energy grids to improve the performance
gap and ensure a successful transition towards sustainable industries.

Proposed future work includes implementing methodologies for
parameter tuning, which can further enhance forecasting accuracy. It
may be beneficial for this application to consider parameters such as the
size of cold rooms, product surface temperature and layout of products
in the rooms. The season categories used in the prediction model could
be expanded by using a broad set of new data across different times
in the year. Alternatively, real-time ambient temperature could be
implemented as an input to replace season categories, which would
accommodate unpredictable changes in weather during a season.
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