
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 2 2 4 2/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Gao, Yan, Wu, Jing, Yang, Xinton g a n d Ji, Ze 2 0 2 3. Efficien t hi e r a r c hic al

r einfo rc e m e n t lea r ning for m a ple ss n avig a tion wi th p r e dic tive n eig h bo u ring s p a c e

sco rin g. IEEE Tra n s ac tions on Auto m a tion Scienc e a n d E n gin e e ring

1 0.1 1 0 9/TASE.20 2 3.33 1 2 2 3 7

P u blish e r s p a g e: h t t p s://doi.o rg/10.11 0 9/TASE.20 2 3.33 1 2 2 3 7

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Efficient Hierarchical Reinforcement Learning for

Mapless Navigation with Predictive Neighbouring

Space Scoring

Yan Gao1, Jing Wu2, Xintong Yang1, Ze Ji1

Abstract—Solving reinforcement learning (RL)-based mapless
navigation tasks is challenging due to their sparse reward and
long decision horizon nature. Hierarchical reinforcement learning
(HRL) has the ability to leverage knowledge at different abstract
levels and is thus preferred in complex mapless navigation tasks.
However, it is computationally expensive and inefficient to learn
navigation end-to-end from raw high-dimensional sensor data,
such as Lidar or RGB cameras. The use of subgoals based on
a compact intermediate representation is therefore preferred for
dimension reduction. This work proposes an efficient HRL-based
framework to achieve this with a novel scoring method, named
Predictive Neighbouring Space Scoring (PNSS).

The PNSS model estimates the explorable space for a given
position of interest based on the current robot observation.
The PNSS values for a few candidate positions around the
robot provide a compact and informative state representation
for subgoal selection. We study the effects of different candidate
position layouts and demonstrate that our layout design facilitates
higher performances in longer-range tasks. Moreover, a penalty
term is introduced in the reward function for the high-level (HL)
policy, so that the subgoal selection process takes the performance
of the low-level (LL) policy into consideration. Comprehensive
evaluations demonstrate that using the proposed PNSS module
consistently improves performances over the use of Lidar only
or Lidar and encoded RGB features.

Note to Practitioners—This paper seeks to improve robot map-
less navigation capabilities where the robot is expected to navigate
to a goal location without knowing the map of the environment.
This ability is highly demanded in many applications that require
autonomous operations in unstructured environments, including
both indoor and outdoor scenarios, involving tasks such as
service robots for domestic and public environments, logistics
in industrial warehouses, urban search and rescue missions,
and disaster relief efforts, where detailed and accurate maps
are difficult to obtain in advance. In this work, we focus on
reinforcement learning-based mapless navigation. It is known
that such methods struggle in complex long-range tasks, e.g.
stuck in a local region by multiple objects. Therefore, this paper
proposes a novel mapless navigation method inspired by human
navigation behaviours.

We enable a robot to split a long-range navigation task into
multiple segments, by selecting and navigating to short-term
goals. These subgoals are selected each time from a number
of candidate positions located around the robot. The process
stops when the robot reaches the final target location. When

Manuscript received: Month, Day, Year; Revised Month, Day, Year; Ac-
cepted Month, Day, Year.

This paper was recommended for publication by Editor Editor A. Name
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by (organizations/grants which supported the work.)

1School of Engineering, Cardiff University, Cardiff, UK {gaoy84, jiz1,
yangx66}@cardiff.ac.uk (Corresponding author: Ze Ji)

2School of Computer Science and Informatics, Cardiff University, Cardiff,
UK wuj11@cardiff.ac.uk

selecting a short-term goal, we use a deep neural network to
predict the openness around each candidate subgoal position,
named the Predictive Neighbouring Space Scoring (PNSS), from
raw images and Lidar scans. In addition, we study the effects
of different arrangements of candidate subgoal locations and
select the optimal one. Experiments conducted in photo-realistic
simulation environments demonstrate the effectiveness of our
method, showcasing superior performance over baselines. It
is worth noting that our agent is only trained in domestic
environments using the iGibson simulator. For applications in
other environments, additional training in more representative
settings specific to corresponding scenarios will be necessary. In
the future, our intention is to validate our methods in complex
real-world environments and narrow the simulation-to-reality
gap for long-horizon navigation tasks.

Index Terms—Mapless navigation, Deep Reinforcement Learn-
ing, Collision Avoidance, Motion Planning, Hierarchical rein-
forcement learning

I. INTRODUCTION

Mapless navigation refers to the task of finding a collision-

free path for a mobile robot with only partial observations

of the environment. This ability is highly demanded for

many applications in unstructured environments, such as urban

search, rescue, disaster relief, or domestic service robots,

where an accurate global map is not always available. Ex-

tensive research [1] has been carried out on path planning for

navigation, and has seen advancements to tackle challenges

such as planning under perception uncertainty [2]. However,

conventional path planning algorithms typically require hand-

crafted heuristic functions, which do not generalise well and,

hence, would require considerable customisation for different

environments [3], [4].

In recent years, deep reinforcement learning (DRL) has

shown promising performance in many research fields, includ-

ing mapless navigation tasks [5]–[9]. The working principle

of DRL-based mapless navigation is straightforward, i.e., to

reward the robot for getting closer to the target. The reward

function is commonly based on the Euclidean distance from

the robot to the target location with other terms such as

penalties on collisions [5], [7]–[9]. Similarly, the performance

is usually evaluated based on the success rates of achieving

a goal or collision avoidance [8], [10]. The current work [5],

[7] of DRL-based mapless navigation have shown promising

performance in simple environments. However, they struggle

in complex environments due to long decision horizons and

sparse rewards that can only be earned when reaching the

target location. As a result, the agent tends to be stuck in local

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

regions, i.e, the local minimum problem, when encountering

unknown and complex environments.

Hierarchical reinforcement learning (HRL) has been proven

to be an efficient and promising framework to tackle this

local minimum problem in navigation tasks [11]–[14]. This is

because HRL enables a robot to decompose a long-horizon

navigation task into several intermediate destinations (sub-

goals), which are much easier to reach than the long-term

distant goal. Analogous to human navigation, a navigation

system can be decomposed into two levels, where a high-level

(HL) planning policy selects subgoals as short-term targets,

and a low-level (LL) policy moves the robot to these short-term

targets at the locomotion level [11]–[14]. Such hierarchical

navigation systems tend to be more interpretable than non-

hierarchical methods [15].

RGB Image

Downsampled

Lidar Scan

PNSS
Model

Target Location

High
Level
Policy

PNSS Values

Subgoal

Last Wheel
Velocities

Low
Level
Policy

Wheel
Velocities

Predictive Neighbouring Space Scoring Values

Figure 1. Overall Framework. The HL policy selects a subgoal based on the
predicted PNSS values, the Lidar observation and the coordinates of the target
coordinates. The PNSS values are predicted by the PNSS model for a set of
explorable positions in front of the robot. The LL policy controls the robot
to reach the subgoal. The process repeats until the robot reaches the target
location.

Xi Yi

0.2500.6

0.450.60.25

0.350.40.5

Free
Occupied
Unknown

Occupancy View

Nf

Nt
Robot and its facing direction

Predicted PNSS values

Figure 2. An example of the predicted PNSS values of 3×3 positions, which
are located in the forward direction of its ego-centric view.

However, designing an HRL framework for mapless navi-

gation is non-trivial and this paper seeks to improve existing

frameworks in three directions as discussed below.

First of all, in mapless navigation, the subgoal layouts of

most HRL algorithms are defined based on a local grid map.

For example, a 3 × 3 grid centred around the robot, which

allows 8 subgoals in the neighbouring cells [12]. Such a

subgoal space limits the robot’s exploration within a small area

around its current location, while it would be more desirable

to explore locations further away from the current location.

Secondly, many HRL methods assume that the low-level

tasks are always achievable, i.e., the robot can always reach the

subgoal selected by the HL policy [16], [17]. This assumption

is unrealistic as it is common for the robot to encounter

unreachable locations in complex environments.

Thirdly, mapless navigation can be based on different sen-

sors including Lidar, cameras, or the combination of both [5],

[10]. Training RL agents from raw images or Lidar scans has

been proven highly inefficient [18], [19]. Although downsam-

pled Lidar scans can provide sufficient information for short-

term RL-based navigation [5], [7]–[9], it does not provide

sufficient information for long-term navigation. On the other

hand, image data contain much richer information, but has

more redundancy and is more difficult to process. Existing

works propose to represent images using an intermediate state

space that covers essential information in a more compact

way, but they generalise poorly in unseen environments or

new tasks [12], [14].

To address these limitations, we propose a new HRL-based

mapless navigation framework with three novel improvements,

as shown in Fig. 1. Similar to existing HRL frameworks,

our framework also has a high-level (HL) policy that selects

subgoals and a low-level (LL) policy that controls the wheels

to reach the selected subgoals. However, we first design a

novel subgoal layout that encourages the robot to explore far

places ahead (the blue grid in Fig. 1 and 2). Secondly, we

include a penalty term in the reward function for the HL policy,

so that the subgoal selection process would avoid subgoals that

are physically unrealistic to achieve. Last yet most importantly,

we propose a novel abstract state representation to reduce

the input dimension for the HL policy, a method named

Predictive Neighbouring Space Scoring (PNSS). The PNSS

model extracts the essential information from raw images and

Lidar, providing the HL policy with estimated values that

measure the explorable space for each of the candidate subgoal

locations, as shown by the matrix values in Fig. 2.

The main contributions are summarised below:

• We introduce a new learning-based framework for map-

less navigation using RGB images and Lidar scans;

• A new metric, the PNSS, that evaluates the worthiness of

navigating to a location, is introduced as part of the HL

policy observation, providing a compact and informative

input representation;

• We design a novel subgoal layout that improves naviga-

tion performance over existing subgoal layouts;

• We propose to penalise the HL policy for selecting sub-

goals that are not achievable by the LL policy, resulting

in more reliable subgoal selection;

• Extensive comparative and ablation experiments are con-

ducted to prove that our method generalises better and

outperforms state-of-the-art methods within the iGibson

environment [20].

The rest of this paper is organised as follows. Section II

discusses the related work. Section III provides important

preliminaries, and Section IV describes the proposed method

in detail. Section V introduces our experiment setup followed

by the results reported in Section VI. Section VII summarises

the work.

II. RELATED WORK

Mapless navigation [5], [6] was proposed to address some

limitations of conventional navigation solutions, which require

a series of operational steps, such as Simultaneous Localiza-

tion and Mapping (SLAM) [21] or other map construction

methods like [22], [23], path planning [24], [25], etc. The con-

trol performance of conventional methods highly depends on

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

the simplified mathematical models, which lead to unreliable

navigation systems [5], [6].

In contrast, RL enables an agent to learn control poli-

cies directly from high-dimensional sensory inputs, skipping

several intermediate computation modules as used in classic

navigation methods. For example, Tai et al. [5] use Lidar

observations as the input for an RL policy, and trained it

to generate motions for the robot to navigate and obstacle

avoidance without a pre-built map.

Goal-conditioned Reinforcement Learning (GRL)-based

methods have shown state-of-the-art performance for map-

less navigation problems [5]–[9]. Unlike standard RL, GRL

requires the agent to take different goals into consideration

while making decisions [26], [27]. A typical goal space is a

subspace of a state space, such as an image [28] or a feature

vector [29], which describes the desired conditions that the

agent is required to satisfy. In addition, language [30], rewards

[31] and commands [32] are also used as representations of

goals for different tasks.

While standard RL only requires the agent to complete a

specific task defined by a reward function, GRL focuses on

more general problems with multiple goals. In mapless nav-

igation tasks, a robot is expected to have the generalisability

to this class of tasks, for example by navigating to different

target locations in different scenarios, where the different

target locations can be modeled as goals in different episodes

[5].

However, most of the RL-based approaches are tested using

simple environments [8] and are mostly based on random

exploration strategies or maximizing the entropy of the policy,

which are insufficient for complex real-world environments.

In addition, most RL-based mapless navigation models have

long decision-making horizons, so that the rewards are sparse

as they are usually only obtained when the target location is

reached or the robot has a collision with an obstacle.

HRL has been shown to be well suited for learning

goal-conditioned behaviours in long-horizon and complex

tasks [18], [19], [33]. This approach typically designs HL

policies that operate on a coarser time scale and controls the

execution of LL policies. The main working principle of recent

HRL methods, such as Option Critic [34], Feudal Networks

(FuN) [35] and HiRO Networks [19], is to combine the ideas

of subgoal generation and policy combination with neural

networks and RL. FuN and HiRO combine an HL policy

that can generate a subgoal at a lower frequency with an LL

policy that receives intrinsic rewards for reaching subgoals.

In goal-conditioned tasks, the HL policy usually selects a

subgoal to provide to the LL model, which is easier for the

LL policy to reach than the distant final goal [16], [17]. The

HL policy can be learned to iteratively predict sequences

of intermediate subgoals, which can then be used as targets

for LL policies [19], [36], [37]. Also, as an alternative to

iterative planning, some methods generate the sequence of

subgoals using a divide-and-conquer approach [38], [39]. HRL

method can be divided into several categories according to

the HL representations, such as symbolic representation [17],

predicate-logic-based representation [16], and learned skills

[40]. In addition, some methods do not set the representation

form for the HL model in advance, and connect the experience

in the buffer to a graph to form the representation through the

accessibility estimation network [41].

Several methods are proposed to apply HRL to robot

navigation tasks [11]–[14]. A rough map of the environment

is usually required, represented in the format of small grids or

hex-grids that provide occupancy information of neighbouring

regions [12], [42]. Usually, such navigation tasks can be

employed in two layers, where the higher layer decomposes

the trajectory in discrete primitives corresponding to the de-

composed grids, and the lower layer deals with movement

control [12], [14].

However, some HRL methods do not take into account

the LL policy performance in the HL planning [16], [17].

Also, some existing HRL-based navigation models [12], [14]

would require prior knowledge, such as the grid map of the

environment, which is not realistic. Additionally, we have

observed that many HRL methods struggle to perform well

in complex environments, due to the unrepresentative features

or high-dimensional redundant data to represent the state as

the HL policy input [18], [19]. The simplicity of subgoal

space layout [12] could also impede the performance. In this

work, we propose a new HRL-based mapless navigation model

with a new subgoal space form. Our HL policy can select

a distant subgoal based on a more informative and compact

state representation. To the best knowledge of the authors,

there is no previous work of HRL for mapless navigation in

photo-realistic environments containing rich visual features,

such as iGibson or Habitat [43], [44]. Most HRL-based

mapless navigation methods are tested in simple synthetic

environments, such as ROS/Gazebo, and would require a rough

map in advance [12]–[14], which is different from our problem

definition of mapless navigation.

III. PRELIMINARIES

We formulate both the HL policy and the LL policy as

goal-conditioned reinforcement learning (GRL) problems. We

use two different RL methods to train our policies, which are

DQN [45] and DDPG [46]. In this section, we briefly recall

the related preliminaries.

Markov Decision Process: An MDP can be represented

by a tuple ⟨S,A,R, p, γ, ρ0⟩. S is the state space, A the

action space, R(s, a) the reward function, p(s′|s, a) the system

transition model, γ the discount factor and ρ0 the initial state

distribution. A policy π(a|s) is a mapping of a state to an

action. A state value function V π(s) is the expected value

of the sum of rewards following policy π from state s, i.e.,

V π(s) = Ea∼π,s∼p[
∑T

t=0
γtR(st, at)]. A state-action value

function Qπ(s, a) represents the same quantity when an action

a is taken at state s. The objective of RL is to find an optimal

policy that maximises the value function [47].

Goal-conditioned Reinforcement Learning: The GRL

problem adds a goal space G to the MDPs of the standard

RL paradigm. Standard RL is to achieve a single goal, while

a GRL agent tries to maximise a multi-goal reward function

R(st, at, g), resulting in a goal-conditioned value function

Qπ(s, g, a) or policy π(a|s, g) [26]. The HL and LL policies

in our method are both goal-conditioned.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

Deep Q-Network: DQN is an off-policy algorithm appli-

cable to discrete action space. It uses a neural network to

approximate the Q function. In practice, researchers often use

a target network to stabilise training processes [45]. During

learning, the agent uses a common epsilon-greedy exploration

method. It takes a random action with a probability ϵ and takes

an action according to the learnt Q function with a probability

1 − ϵ. ϵ is decayed linearly during the course of training. In

our method, DQN is used to train the HL planning policy.

Deep Deterministic Policy Gradient: DDPG is an off-

policy actor-critic RL algorithm for continuous control tasks.

It uses two neural networks to approximate Q-function and a

deterministic policy, updating the two parameters alternately

[46]. The target network is proven to reduce the ’overesti-

mation’ of DDPG and improve the learning performance of

the agent [46]. During learning, the agent uses an exploration

strategy that takes random actions with a probability ϵ and

takes learnt actions with Gaussian noises with a probability

1 − ϵ. In our method, DDPG is used to train the LL control

policy.

IV. METHODS

We propose a novel HRL framework, in which an HL policy

selects subgoals in an abstract space and an LL policy is

responsible for the locomotion control of the robot to reach

the corresponding subgoals, as illustrated in Fig.1. For the

selection of subgoals, we introduce a prediction mechanism

to evaluate the worthiness level of a location for further

exploration, named Predictive Neighbouring Space Scoring

(PNSS). Briefly, the PNSS module is to predict the area of

unoccupied space that can be observed at a corresponding

location. A deep neural network is trained for the prediction of

the PNSS values given the measurement of local surroundings.

These PNSS values are then provided to the HL policy for the

selection of the next subgoal. We design a reward function for

training the HL policy including a penalty that occurs when

the LL policy fails to reach a subgoal. Our framework contains

three key modules:

• PNSS module for estimating the PNSS values based on

the current observation,

• HL policy that decides the next subgoal, and

• LL policy that is responsible for the locomotion control

of the robot to reach the target subgoals selected by the

HL policy.

A. PNSS model

As mentioned, we introduce a metric to score the ex-

plorable worthiness of a given location. As illustrated in

Fig. 2, the explorability of a location is estimated from the

current egocentric observation of the robot. The worthiness for

exploration is related to the free neighbouring space available

at each corresponding location. We introduce the PNSS metric,

defined as the proportion of the observable free space of a local

region (see Fig. 2), formulated as:

s(xi, yi) =
Nf

Nt

(1)

where xi and yi represent the coordinate of the ith cell with

respect to the robot’s coordinate frame, for which the score is

calculated. Nt represents the area of the local region of interest

(represented by 128× 128 cells), and Nf represents the area

of free space (i.e. number of non-occupied cells) measurable

with Lidar observations at [xi, yi], s ∈ [0, 1].

The PNSS model is trained in a supervised manner. We use

the iGibson simulation environment [20] to obtain the ground-

truth scores as training labels. For data collection, the robot

is randomly placed at any arbitrary position of concern. As

illustrated in Fig. 2, since the robot is equipped with a Lidar

with the Field of View (FoV) of 360 degrees, the occupancy

view can be obtained directly from the Lidar data. We then

count the number of free cells Nf in the occupancy view and

calculate the PNSS using Eq. (1).The higher the score is, the

more free space the robot observes in the local region. A score

of 0 indicates that the neighbouring areas are fully occupied.

In addition, for predicting PNSS, we also use a standard

forward-looking camera that can only provide RGB images

with a horizontal FoV of 58 degrees (Asus Xtion pro). We

believe that the visual features from the RGB images with

rich information will improve the prediction accuracy. This is

validated in Section VI-B.

RGB

ResNet-18

Lidar
Observation

 Occupancy View
Free

Occupied

Unknown

fr

fo

Encode Decode

Merge

Unet

PNSS Values

Sensor Processing

Figure 3. The PNSS model extracts features from the RGB image firstly.
The Lidar observation is then projected into a 2D occupancy view. A UNet
network is used for predicting the PNSS values for a 3× 3 grid map.

We adopt a network architecture inspired by the occupancy

anticipation model [48]. The PNSS network predicts the PNSS

values for a few candidate locations based on the current obser-

vation of RGB images and Lidar data. The main components

are shown in Fig. 3 and summarised below:

• The sensor pre-processing module contains two parts: 1)

feature extraction from RGB images using a pre-trained

ResNet-18 model, and 2) the current Lidar observation

that will be transformed into the occupancy view.

• Given the RGB features and the occupancy view, we

encode them using UNet encoders [49] individually.

The RGB features are encoded using a stack of three

convolutional blocks denoted as fr. The occupancy view

is processed by a stack of five convolutional blocks into

a feature vector, denoted by fo.

• We then combine fr with fo through the Merge module

to construct a combined feature fg . The Merge module

contains layer-specific convolution blocks to merge all

layers in [fr
i , f

o
i] [48]. It can be formulated as fg =

Merge(fo, fr).

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

• The combined feature, fg , is decoded using a Unet

decoder that outputs the PNSS values for the corre-

sponding positions in the subgoal space, formulated as

SPNSS = σ(Decode(fg)). Fig. 3 shows a 3× 3 subgoal

space, as an example.

B. High-Level policy

The HL policy is used to generate the next short-term

navigation subgoal for a robot to navigate. The following

subsections describe the main components of the HL policy,

namely 1) the observation, 2) the action/subgoal space, and 3)

the reward function.

1) Observation: The observation for the HL policy

comprises three main components, denoted by oHt =
{oL||oPNSS ||g

H
p t}, where || represents vector concatenation

combining two vectors into one higher-dimensional vector. oL
is the Lidar reading at the robot’s current location, oPNSS =
Flatten(SPNSS) is the vector of PNSS values by flattening the

SPNSS matrix, whose size depends on the subgoal space, and

gHp t = (rt, θt) represents the polar coordinates of the target

location with respect to the robot frame. Our work is based

on the assumption that the global coordinates of the target and

robot locations are available for a mapless point navigation

task, usually known as the PointNav task [50].

2) Action space (Subgoals): The action space of the HL

policy produces the subgoals for navigation that will serve as

the goals for the LL policy, i.e., AH = GL, where, AH is the

high-level action space and GL is the low-level goals.

Efficient robot learning for the high-level policy requires

careful consideration of the action space in terms of the

locations of the subgoals and the complexity of the subgoals

(number of actions). Some previous works use the surrounding

neighbour regions centred at the robot’s current pose and

most of them rely on 360 Lidar only. In this work, we

propose to deploy a 3 × 3 grid subgoal space, located in

front of the robot’s current view. We consider the method

more intuitive because the forward-looking camera in our

work would provide rich information about the environment

in front of the robot, hence predicting more accurate PNSS

values. On the other hand, these positions cover a larger

range of explorable areas compared to those used by existing

works [12]. We compare the performance of different choices

of such explorable positions in section VI-E. Due to the spatial

constraints with the introduced subgoal space, when the above

subgoals are invalid, (e.g., falling outside of the environment),

we also introduce some additional rotation actions in the

subgoal space (14 angles in our work). In such cases, the

HL policy would encourage the robot to rotate with an angle.

Therefore, there are in total 23 subgoals, i.e., HL actions,

available for selection.

3) Reward function: The HL policy will be rewarded or

penalised in the different cases, as formulated below:

RH =

rHarrive if dt ≤ δH

rHcollision if collision

rHovertime if tL ≥ T

rHapproach if approaching the subgoal

rHrotate if rotate

(2)

where

• rHarrive is a positive value when the robot reaches the

target location, i.e., when its distance to the final target

location, dt, is within a radius δH ;

• rHcollision and rHovertime are the penalty values that occur

when the LL policy fails to reach a selected position due

to collision or timeout;

• rHapproach = dt−1 − dt is the change of distance from

the robot to the target location between two consecutive

time steps. rHapproach is positive when the robot is getting

closer to the target, and negative when moving away;

• rHrotate = −cr(|
7θ
pi
|) is a term that penalises when the HL

policy selects a subgoal to rotate. The greater the rotation

angle θ, the greater the penalty. cr is a weighting factor

that scales the penalty value. The term rHrotate is used to

encourage smoother motions.

It is worth noting that, as discussed before, the reward func-

tion above takes the LL policy’s capabilities into consideration

for HL decision making. It is not realistic to assume that all

LL tasks can be completed. We, therefore, introduce rewards,

e.g. rHcollision and rHovertime, for the HL model such that it is

penalised when the LL model fails to reach a subgoal. This

will encourage the HL model to consider reachability in its

subgoal selection.

C. Low-level policy

The LL policy is used to train a robot to learn how to reach

any given goal in a short range. It interacts directly with the

environment selecting actions for the robot.

This subsection describes the details of the LL policy

in three parts: the observation, the actions and the reward

function.

1) Observation: The observation of the LL policy com-

prises three parts, denoted as oLt = {oL||a
L
t−1||g

L
p t}, where ||

denotes vector concatenation. oL denotes the Lidar data of its

local surroundings. The action from the last timestep, at−1,

is included in the observation because, due to the inertia, the

robot’s motion commands will have effects on its successor

steps. Last, gLp t is the target location represented in the polar

coordinates of the robot frame.

2) Action: The LL policy directly controls the wheel ve-

locities of the robot (a TurtleBot in our experiments), aLt =
{vleft, vright}. Each velocity action lasts for 0.1 seconds.

3) Reward function: The reward function for training the

LL policy is as follows:

RL(oLt , a
L
t , g

L) =

rLarrive if dt ≤ δL

rLcollision if collision

rLapproach otherwise

(3)

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

where

• rLarrive is a positive value, when the robot reaches the

target location, i.e., when its distance to the target dt is

within a radius δL.

• rLcollision is the penalty value that occurs when the robot

collides with an obstacle; and

• rLapproach = cd(dt−1 − dt) is the distance reward, where

(dt−1 − dt) is the change of the distance from the robot

to the target location at two consecutive time steps, and

cd is a weighting factor.

Algorithm 1: HL policy of our HRL model

Given:

• Pretrained LL policy πLL ;

• HL policy πHL, HL buffer DHL ;

Initialise DQN of HL policy

for m← 0 to M epoch do
Sample training environment Env 1, 2, 3...(once

m is changed, sample another different

environment in turn)

for j ← 0 to J training episode do
tHL = 0,

done = 0
Sample a target location gt
while do

Obtain a subgoal gs
gs ∼ epsilon-greedy(πHL(o

H
t))

while do
tLL = 0
atLL

∼ πLL(o
L
t)

tLL = tLL + 1
oLt = oLt+1

if tLL ≥ TLL, or gs reached, or

collision then
break

tHL = tHL + 1
if tLL ≥ TLL, or gt reached, or collision,

or tHL ≥ THL then
done = 1

DHL ← (oHt , gs, R
H , oHt+1, done)

λtHL+1
← Adam (λtHL

, DHL)
oHt = oHt+1

if done = 1 then
break

V. EXPERIMENTS

A. Simulation environment

The iGibson simulator [20] is used in our work. It is based

on the Gibson dataset [51] that includes a large number of

complex and photo-realistic 3D indoor environments, such

as houses, offices, restaurants and coffee shops. We use a

Turtlebot provided by the simulator in our experiments. It is

equipped with a camera that generates 3 × 480 × 640 RGB

images and a Lidar with 360 laser beams covering a FoV of

360 degrees.

In our work, 23 environments are selected from the Gibson

dataset, where 10 are used for the PNSS model training, 10

are used for the HL policy and the LL policy training and 3

are used for testing (shown in Fig. 4).

One main cause of failures is the local minimum prob-

lem, i.e., robot being trapped in a local region. To better

demonstrate the improvement of our work in terms of solving

the local minimum problem, the tests are performed at three

difficulty levels. The difficulty levels are defined based on

the distances from the robot to the destinations. Respectively,

the three difficulty levels correspond to tasks with distance

ranges of [2, 5], [5, 8], and [8, 10]. Tasks in each of the above

categories are initialised with randomly generated starts and

destinations that range between the corresponding bounds

above. For example, tasks in the first category have target

distances of between [2, 5] meters. Tasks with large ranges

would be more challenging and would include scenarios with

more complex local maps that tend to lead to local minima.

Each test is performed with 500 episodes to compute the

average success rate. The same start and goal positions are

used for different algorithm configurations to ensure fair

comparisons.

B. PNSS model training

In the iGibson environment, we can directly acquire the

ground-truth occupancy view of a given location. In this work,

the occupancy view is represented as a 128 × 128 matrix,

with each cell labeled as occupied, free, or unknown. Then

from the occupancy view, the PNSS value for the location can

be calculated. We obtained 5000 sets of data from randomly

selected poses in each environment, each consisting of the

egocentric RGB image, the Lidar scan and the calculated

ground-truth PNSS value. In total 50000 sets of data are

collected, where 40000 of them are used for training, 5000
are for validation and 5000 are for testing.

C. LL policy training

The LL policy is trained separately. For each episode, the

robot is randomly placed in an environment. Since the LL

policy is only concerned about short-range navigation, we limit

the distance to the destination for each LL episode. The target

is randomly sampled at least 0.5 meters away from the robot,

but within a square that is centred at the robot, with each side

of 4 meters. The parameters in Eq. 3 are set as below. The

arrival reward, rLarrive = 20, is given, when the robot is no

more than δL = 0.36 meters away from the target position

(the chassis radius of the Turtlebot is 0.36m). The collision

penalty is set as rLcollision = −3. The hyperparameter cd in the

distance reward, rLapproach, is set to 10 empirically. The full

length of an episode is 1500 timesteps. We train the LL policy

for 20000 timesteps in one environment and then continue to

the next environment, until a total of 1 million timesteps is

reached. At each timestep, the agent explores the environment

by taking random actions with a probability ϵ = 0.2 and learnt

actions with Gaussian noises with a probability 1− ϵ = 0.8.

We use DDPG to train the LL policy. The actor network

for DDPG has three MLP layers with the same size of 512.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

(a) Env 1 (Allensville)

(b) Env 2 (Bolton)

(c) Env 3 (Chireno)

Figure 4. Experiment environments for testing.

The critic network also has three MLP layers, the size of the

first and last layers is 512, and the dimension of the second

layer is 514, with two extra dimensions for the action. ReLU

activation is used for each layer on both the actor and the critic

networks except for the output layers. Hyperbolic tangent is

used for the actor networks to activate the last layer, while the

critic network has no activation on the output.

D. HL policy training

After the PNSS model and the LL policy are trained, we

then train the HL policy. For each episode, the robot is placed

at a random location in an environment. We randomise the

target positions within a sphere centred at the robot’s position,

with a distance between the corresponding range bounds, as

introduced in subsection V-A. An episode ends in three cases:

1) when the LL policy cannot reach the subgoal within 1500
timesteps; 2) when the HL policy cannot reach the target

position within 400 selections of subgoals; and 3) the robot

collides with an obstacle. An episode is considered successful,

when the robot is no more than δH = 0.86 meters away from

the target position, and an arrival reward, rHarrive = +20, is

given. The hyperparameter cr in the rotation penalty term is

empirically set to 0.05. The collision and overtime penalties

are set as rHcollision = −3 and rHovertime = −3.

We train the HL policy for 150 episodes in one environment

and continue to the next environment, until a total number of

60000 episodes is reached. The HL policy uses a epsilon-

greedy to explore the environment, with epsilon decaying

linearly from 1 to 0.05 within the first 42, 000 episodes, and

being kept 0.05 to the end of training. These parameters are

empirically set after trial-and-errors.

We use Deep Q Learning to train our HL model. The

network is represented by two MLP layers of sizes 512 and

256. ReLU activation is used only on the output of the first

layer. The output of the network is the Q values of selecting

the subgoals with a given observation.

E. Subgoal layouts

Since there are infinite combinations of subgoal layouts (HL

action space), it is impractical to evaluate all of them. We focus

on three subgoal layouts, as shown in Fig. 5. Each cell in the

layouts is 0.5 meter in width and length.

• Layout 1 simply takes the 8 neighbouring cells as its next

candidate subgoals. This is the same as used in [12].

• Layout 2 includes another 3 cells in the forward direction

of the robot. This would allow a robot to explore its next

subgoal with a larger range.

• Layout 3 is used in our work, as introduced in section

IV-B2. We eliminate the cells behind the robot and

introduce a 3 × 3 grid in the forward direction of the

robot. This will encourage the robot to explore further

distance in the forward direction. We also include 14

rotation subgoals to avoid the robot being stuck in local

minimum.

(c) Layout 3(b) Layout 2(a) Layout 1

Facing Direction

Figure 5. Three different layouts we mainly focus on (a) Layout 1 simply
takes the 8 neighbouring grids as its subgoal space. (b) Layout 2 adds three
more grids in front of the robot on the basis of Layout 1. (c) Layout 3 includes
9 subgoals in the forward direction and 14 rotation subgoals.

VI. RESULTS AND DISCUSSIONS

To study the performance of our proposed method, we

carried out comprehensive experiments and analyses from

various aspects, as follows:

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

• Overall performance of our work in comparison with

other RL-based mapless navigation approaches

• Performance of the PNSS value prediction

• Choice of RL algorithms for training

• Effectiveness of the PNSS module in comparison with

using Lidar data and encoded RGB image features

• Comparison of different subgoal layout configurations

• Effectiveness of the proposed reward function

A. Performance comparison with other RL-based approaches

To evaluate the performance of our work, we compare our

method with three other RL-based algorithms, including non-

hierarchical and hierarchical methods respectively.

1) Non-hierarchical RL-based methods: There are a num-

ber of non-hierarchical RL-based mapless navigation methods.

Most of them are inheritance of the work proposed in [5].

For comparative evaluation, we choose two approaches to

compare with our proposed method, including one DDPG-

based approach for the continuous action space [5] and one

Double DQN-based algorithm [52] in the discrete space [7].

The input for both methods includes Lidar observations

and the polar coordinates of the target. The work in [5] also

includes the velocity at the previous timestep. The output is the

velocity commands, except that one is in the continuous action

space and the other one is discrete. It is worth mentioning that

the same network architecture as used in [5] is deployed for

the LL policy in our work, with the same reward function.

As mentioned, one reason for choosing the above methods

is that it is known to be the most popular solution for RL-based

mapless navigation. It should be noted that there is no widely-

deployed non-hierarchical navigation solution that uses both

Lidar and raw images, which are also found inefficient based

on our preliminary experiments. Also, the PNSS module is not

compatible with this non-hierarchical configuration. Therefore,

in this work, we could not perform a direct comparison here,

and only perform the comparison between our method using

PNSS and the above-mentioned methods without PNSS.

The experiments were performed in three environments with

different difficulty levels with all methods. The success rates of

the testing tasks are shown in Table I. It is obvious from the

table that our method outperforms both the non-hierarchical

approaches [5], [7] in all three cases, except for tests with

ranges of 2 − 5m in Environment 3. The improvement is

considered significant, especially for tasks with longer ranges.

In the most difficult experiments (target range: 8 − 10m) in

three environments, the success rate of our method is nearly

40% higher than the discrete non-hierarchical method [7],

indicating that our method outperforms the non-hierarchical

methods when faced with complex scenarios. We speculate

that this is attributed to the ability of our method to tackle

the local minimum problem which is more often encountered

with longer ranges.

Fig. 6 illustrates a few cases of the local minimum problem,

where a robot is trapped by a corner, a wall, or furniture. As

can be seen in the figure, with the HL subgoals, our method

would encourage the robot to explore further and could more

effectively tackle such situations. This is attributed to the

PNSS values for tackling the local minimum problem, which

is more often encountered with longer ranges.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Examples of the robot being trapped by obstacles. The red and
blue circles are the start positions and the target positions. The green lines
are ground-truth paths. The red arrows are the robot’s heading directions. (a),
(c), (e) are three cases where the robot keeps heading towards the direction of
the target and cannot get around the obstacle, using the non-hierarchical Lidar-
based mapless navigation method [5]. (b), (d), (f) are the solutions provided
by our model in these situations. The yellow circles are the subgoals given
by our HL policy that leads the robot to bypass the obstacles.

2) HRL method: HiRO [19] is a state-of-the-art HRL

method. Its HL policy uses conventional MLP neural net-

works, trained by TD3 [53], operating in the continuous

state space as the LL policy. Since the subgoal space is

continuous, it is not compatible to use our proposed PNSS

model. Therefore, the inputs to the HL policy for this study

include Lidar observations and the polar coordinates of the

target location. In [19], they train their HL and LL policies

jointly. The reward functions for both policies are distance-

based. To ensure a fair comparison, we utilise the same reward

function as defined in our work. The average reward per 1000

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

Table I
PERFORMANCE COMPARISON WITH TWO NON-HIERARCHICAL METHODS IN THE CONTINUOUS AND DISCRETE SPACE RESPECTIVELY [5], [7]

Env Target range Continuous space [5] Discrete space [7] Ours

1
2-5m 55.0% 38.4% 59.4%

5-8m 50.4% 23.4% 58.8%

8-10m 38.0% 14.2% 52.6%

2
2-5m 68.0% 45.0% 71.6%

5-8m 57.6% 21.6% 61.2%

8-10m 42.0% 14.0% 52.0%

3
2-5m 74.8% 65.0% 71.6%

5-8m 65.0% 29.8% 65.6%

8-10m 61.0% 26.2% 64.6%

episodes for training the HL policy of HiRO is shown in Fig. 7.

Figure 7. Average HL rewards achieved by the agent (HiRO), the shaded
area represents the standard deviation.

As shown in the figure, the average rewards achieved by the

agent do not show a sign of improvement by increasing the

number of episodes for training. The rewards are all negative

values too. Therefore, we consider that HiRO is unsuitable for

such navigation tasks. It suggests that a continuous subgoal

space may not be suitable for the HL policy, due to the

large search space of subgoals for efficient policy training.

Furthermore, simultaneous training of the HL and LL policies

is more challenging for this problem due to the nonstationary

problem. Efficient training of the HL policy requires a stable

LL policy, which would need random explorations before it

stabilises. The untrained LL policy would yield an unstable HL

policy training and hence causes inefficiency or even failure

in learning effective policies.

B. PNSS value prediction

In this section, we evaluate the performance of the PNSS

prediction module and test our hypothesis that RGB observa-

tion will help predict the PNSS value of a location. We show

the results with 1) only Lidar observation and 2) both Lidar

and RGB observations. The model is trained to predict the

PNSS values using three subgoal layouts, as shown in Fig. 5.

The performance of the prediction is measured using the L1

distance between the model’s predicted PNSS values and the

ground truth.

Table II
PERFORMANCE OF PNSS VALUES PREDICTION USING DIFFERENT

SENSING MODALITIES AND SUBGOAL LAYOUTS BASED ON THE L1
DISTANCE METRIC.

Subgoal Space Lidar Lidar + RGB

Layout 1 0.0996 0.0921

Layout 2 0.0889 0.0791

Layout 3 0.1016 0.0813

As shown in Table II, it is clear that the accuracy of PNSS

estimation is higher, when RGB observation is considered

in addition to Lidar data, producing smaller errors based

on the L1 distance metric. We have evaluated several NN

structures and loss functions and found that it is difficult

to further reduce the training errors. However, the effect of

adding RGB observations is rather notable. This is expected

as our hypothesis is that visual observations embed richer

semantic information that would help in determining available

free space for navigation. For the above reasons, we will only

use RGB and Lidar data for PNSS estimation in the rest of

the experiments.

To statistically evaluate the PNSS prediction module, we

record the average prediction errors (L1 distance) for each

of the 5000 groups in the test dataset. Fig. 8 shows the

distributions of the prediction errors. The prediction errors for

each subgoal in each layout are also plotted on a heat map,

as shown in Fig. 9.

As can be seen in Fig. 8, Layout 1 has the largest error

distribution that mainly ranges in 0.04-0.13. In contrast, Lay-

out 2 has the smallest error distribution range. Considering

that Layout 2 is similar to Layout 1 except the three extra

subgoals in front of the robot, the reduction of prediction

errors indicates that the model is more accurate in predicting

the PNSS values of the subgoals in the front region of the

robot, resulting in a lower mean error. Layout 3 contains more

subgoals in front of the robot. The overall error distribution is

similar to the other two layouts, except that it has the smallest

median value, hence higher accuracy. On the other hand, the

results further suggest that RGB images can contribute to the

prediction of PNSS values, as the camera’s FoV is only for

the forward direction.

The heat map (Fig. 9) shows the prediction errors of the

PNSS values for each subgoal in three layouts. The maximum

error is around 0.11, which shows good reliability and accu-

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

Figure 8. Box plot for average PNSS prediction errors with three layouts.

racy of our model. In addition, the prediction is less accurate

in the PNSS of the subgoals on the rear and two sides than

the forward direction of the robot. This demonstrates that the

RGB images contribute to the improvement of the prediction

accuracy, as mentioned above. Considering that Layout 3

has the lowest median PNSS value and overall more evenly

distributed errors across all subgoals, we choose Layout 3 for

our work.

C. RL algorithms used to train the HL and LL policies

To decide on the algorithms for training the HL and LL poli-

cies, we select several widely used RL algorithms respectively.

We first use the TD3 [53], SAC [54], and DDPG [46] to train

the LL policy separately. The training strategies and reward

functions for the three methods are identical, as described in

Sections IV-C and V-C. Since the LL policy is responsible

for short-range navigation, we set the distance between the

target location and the robot’s initial location to 1 − 3m for

each episode. For testing, each test lasts for 100 episodes and

the success rates of the three methods are as follows. DDPG

produces the highest success rate of 77%, and the success

rates trained by the TD3 and SAC are close, 72% and 71%
respectively. This suggests that DDPG is more suitable among

the three tested algorithms for short-term navigation tasks.

Therefore, we select DDPG as the RL algorithm to train our

LL policy.

For the HL policy, since the action space is discrete, we

choose two widely used algorithms designed for discrete

action space, namely DQN [45] and Double DQN [52].

Both methods have identical training strategies and reward

functions, and utilise the same LL policy trained above.

In the process of training, we test both methods every 3000
episodes, with 50 episodes per test. The success rates are

shown in Fig. 10.

The success rates of both methods start to rise after

about 30000 training episodes, with the method using DQN

maintaining a higher success rate than DDQN. The DQN-

based policy stabilises at approximately 50% success rate and

can reach up to 56%. In contrast, the DDQN-based method

(a) Layout 1

(b) Layout 2

(c) Layout 3

Figure 9. Heat map for the prediction errors for each subgoal in each layout.
In (a) and (b), 0 represents the location of the robot.

maintains a stable success rate of about 40% and remains

below 50% overall.

Both methods are tested in the three environments (Fig. 4).

The success rates are shown in Table III. The agent trained by

DQN achieves the best performance in 7 out of the 9 tasks.

DDQN is only better in two configurations in Env 3, where,

however, the gap between the two is considered insignificant at

about 4%. However, in other configurations, the improvement

by using DQN is considerably more obvious. Considering the

overall higher success rates and simpler implementation, the

DQN is deployed as a more suitable choice for our HL policy.

D. Ablation study: observation modality

In this section, we evaluate the importance of the PNSS

prediction in improving the HL policy and conduct ablation

studies with different observation modalities, as follows:

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

Figure 10. Success rates of the DQN and Double DQN algorithms for training
the HL policy

Table III
TEST SUCCESS RATES WITH DIFFERENT RL ALGORITHMS USED TO TRAIN

THE HL POLICY

Env Target range DDQN DQN

1
2-5m 59.2% 59.4%

5-8m 54.0% 58.8%

8-10m 43.6% 52.6%

2
2-5m 68.6% 71.6%

5-8m 55.8% 61.2%

8-10m 46.8% 52.0%

3
2-5m 74.6% 71.6%

5-8m 65.0% 65.6%

8-10m 68.8% 64.6%

• Only Lidar observations

• Lidar observations concatenated with RGB image fea-

tures, which are extracted based on [10] using ResNet18.

• Our method, which is similar to the above, but uses

predicted PNSS values instead of extracted ResNet18

features.

Fig. 11 shows the average reward per 3000 episodes and

the test success rates of Layout 1 (Fig. 5a), which is one

commonly used subgoal space [12]. As mentioned above,

RGB images are encoded using ResNet18 to obtain a compact

representation, as used in [10]. Fig. 11a shows that the

agent with PNSS achieves the highest reward (blue line).

The one with only Lidar and target information achieves the

second (orange line) and the one with RGB image observation

achieves the least (green line). Moreover, the shaded region of

each curve is corresponding to the standard deviation of the

rewards. It can be seen that both the upper and lower bounds

of the rewards obtained by the agent with the PNSS values are

higher than the other two methods, indicating that our method

has a better overall performance. Although the increase in

reward does not demonstrate a statistical significance visually,

this is considered primarily attributed to the inclusion of a

large number of random episodes for training, encompassing

varying levels of difficulty. During training, we also conduct

testing for each method by running 100 episodes per test

and calculating the success rates correspondingly. These tests

are performed at regular intervals of every 3000 episodes of

training. The success rates are shown in Fig. 11b for layout

1. It is clear that after 30000 training episodes, the success

rates of all methods start to rise. Our proposed method (PNSS

values and Lidar) clearly reaches a higher success rate than the

other two methods, and stabilises at around 38%. The methods

with only Lidar data and both RGB features and Lidar reach

about 33% and 20% respectively.

The success rates of tests in unseen environments (Envi-

ronment 1, 2, and 3) are shown in Table IV for Layout 1.

The results demonstrate that our proposed method using both

the PNSS values and Lidar outperforms the other two sensing

modalities in all cases. Combining RGB ResNet18 features

and Lidar produces the least performance overall, while the

Lidar-based method performs in between the other two. We

observe that directly using the ResNet18 features or RGB data

would not contribute to the performance improvement. This is

due to the redundancy in the RGB features, where the HL

policy struggles to extract information helpful for the task.

For the above reason, we do not consider ResNet18-encoded

features for the other two layouts here.

The same experiments are conducted with Layout 2 and

Layout 3 too. The average reward per 3000 episodes and the

test success rates during training are shown in Fig. 12 and

Fig. 13 respectively. The corresponding success rates of tests

in Environments 1, 2, and 3 are illustrated in Table V and

Table VI.

These results suggest that extracting task-relevant infor-

mation by pre-processing raw observations encoded as the

PNSS values has played an important role in improving its

performance. On the other hand, directly using the Lidar

observations makes it more challenging to train the policy,

because Lidar observation can only provide information about

the robot’s observed surroundings. It should be also noted that

the tasks with larger ranges show more obvious performance

improvement while using the PNSS data as observations.

Table IV
TEST SUCCESS RATES WITH DIFFERENT OBSERVATION

MODALITIES-LAYOUT 1

Env Target range Lidar Lidar + RGB Lidar + PNSS

1
2-5m 50.8% 48.2% 53.4%

5-8m 44.6% 33.4% 54.0%

8-10m 31.8% 25.8% 39.8%

2
2-5m 60.2% 55.0% 64.8%

5-8m 47.0% 34.2% 49.6%

8-10m 30.6% 22.6% 38.8%

3
2-5m 68.0% 66.6% 73.2%

5-8m 57.8% 55.0% 63.2%

8-10m 55.8% 46.8% 62.2%

Despite the promising results with our proposed approach,

the overall success rates still present a gap from reliable

deployment for real-world problems. One of the main reasons

is the limited sensing capability and the complexity of the

indoor environments in our work. The iGibson environment

includes complex layouts and furniture of various shapes.

Due to the sensing limitation, some furniture parts cannot

be detected by Lidar, such as the legs of chairs which can

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

(a)

(b)

Figure 11. Average rewards (a) and test success rates (b) achieved by the
agent with different observation modality-layout 1

Table V
TEST SUCCESS RATES WITH DIFFERENT OBSERVATION

MODALITIES-LAYOUT 2

Env Target range Lidar Lidar + PNSS

1
2-5m 52.2% 57.0%

5-8m 47.0% 55.6%

8-10m 31.2% 42.2%

2
2-5m 60.0% 67.8%

5-8m 48.2% 56.4%

8-10m 32.2% 41.8%

3
2-5m 72.6% 72.8%

5-8m 63.2% 66.6%

8-10m 56.4% 62.4%

easily lead to collisions. Also, some obstacles, like coffee

tables, are above the horizontal scanning plane of the Lidar

but can collide with the robot. The collisions will trigger

signals for terminating corresponding episodes, hence limiting

the average success rate. Overall, our method improves the

success rate in most of the difficult tasks compared to other

methods.

On the other hand, we also consider the practicality of

deploying the policy for real-world control. The average com-

(a)

(b)

Figure 12. Average rewards (a) and test success rates (b) achieved by the
agent with different observation modality-layout 2

Table VI
TEST SUCCESS RATES WITH DIFFERENT OBSERVATION

MODALITIES-LAYOUT 3

Env Target range Lidar Lidar + PNSS

1
2-5m 55.8% 59.4%

5-8m 49.8% 58.8%

8-10m 33.4% 52.6%

2
2-5m 59.6% 71.6%

5-8m 39.6% 61.2%

8-10m 25.4% 52.0%

3
2-5m 70.4% 71.6%

5-8m 61.6% 65.6%

8-10m 57.2% 64.6%

putational times of the models with different input modalities

are measured too. Our proposed method takes about 0.358s for

calculating the PNSS values and the subsequent action. The

method that uses Lidar and RGB image features takes about

0.186s for computation. The method with only Lidar needs

the least computational time of 0.172s. This is reasonable

as our work introduces another tailored step of predicting

the PNSS values for the navigation task. Despite the longest

computational time required, we consider our work highly

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

(a)

(b)

Figure 13. Average rewards (a) and test success rates (b) achieved by the
agent with different observation modality-layout 3

feasible for real-world indoor robots that are usually operating

at a low speed, as used in our work.

In addition, we also compare the training time required for

the three methods. All methods are computationally expensive

and would take a long time to run. Our method using both

Lidar and PNSS values would take the longest time of about 8

days. The methods with ’Lidar’ and ’Lidar + RGB features’ as

inputs require similar time durations of about 6 days. We use a

workstation with an Intel i9-10900X CPU (3.7GHz x 20) and

an NVidia RTX-2080 TI GPU. This is partially attributed to the

fixed number of episodes (60,000) for all three configurations.

With the neighbour scoring mechanism of the PNSS method, a

more valid sub-goal could usually be chosen by the HL policy

for the LL policy to execute. The lower chance of collision

with the PNSS-based method would lead to a longer time for

each episode of the LL policy. The other methods, however,

tend to have higher chances of earlier terminations due to

collisions, hence shorter overall training time.

E. Ablation study: subgoal layouts

In order to investigate whether our choice of subgoal

layout (see Fig. 5c) helps improve navigation performance, we

Table VII
TEST SUCCESS RATES WITH DIFFERENT SUBGOAL SPACES

Env Target range Layout 1 Layout 2 Layout 3

1
2-5m 53.4% 57.0% 59.4%

5-8m 54.0% 55.6% 58.8%

8-10m 39.8% 42.2% 52.6%

2
2-5m 64.8% 67.8% 71.6%

5-8m 49.6% 56.4% 61.2%

8-10m 38.8% 41.8% 52.0%

3
2-5m 73.2% 72.8% 71.6%

5-8m 63.2% 66.6% 65.6%

8-10m 62.2% 62.4% 64.6%

conduct experiments with all three different subgoal layouts

(Fig. 5). The HL policy reward function for the case of ’Layout

3’ subgoal space is described in subsection IV-B, while the

reward functions for the other two cases are the same except

that they have no rotation penalties.

We first report the test success rates of each layout in

Table VII. One can see that our subgoal space design helps

the agent achieve the best performance in 7 out of 9 tasks.

Our proposed method has the highest success rate in all ex-

periments executed in Env 1 and 2. In Env 3, which is slightly

less complex than the other two (higher average success rates

and more regular geometric features), the performances for

the three layouts are considered similar, except that Layout

3 outperforms in the long range case. Our chosen layout

shows clear overall superior results and is considered more

suitable for the majority of tasks. Especially in the difficult

tasks (8 − 10m), the HRL model using ’Layout 3’ form has

an average success rate 56.4%, while the average rates of the

models using ’Layout 2’ and ’Layout 1’ are 48.8% and 46.9%
respectively. The result supports our hypothesis in that the

proposed subgoal space helps the robot navigate better as it

allows the robot to explore subgoals with a larger range.

Fig. 14 illustrates an example of a long-range navigation

task with different subgoal layouts. As can be seen, the policies

using subgoal Layout 1 and Layout 2 do not perform well.

The robot is trapped in local regions in both cases. However,

our method would encourage the robot to explore further and

effectively tackle the local minimum problem.

By further investigating the results between the ’Layout 1’

and ’Layout 2’ cases, one can see that the robot performs

better when it includes more subgoal options in front of it,

i.e. Layout 2 in this case. This then suggests that predicting

whether there is more free space further ahead is useful for

navigation tasks.

To understand how the subgoals are selected in the actual

navigation tasks, we tested 100 episodes in Env 1 (Fig. 4a),

and counted the occurrences that each subgoal was selected in

the successful episodes. Fig. 15 shows the results grouped into

the three difficulty settings. We observe that all the subgoals

in Layout 3 were selected. When the task is relatively simple,

that is, when the target position is close to the initial position,

the subgoals selected by our HL policy are concentrated in the

9 grids directly in front of the robot, indicating that the robot

is more confident in performing forward translation motions.

However, with the increase in the difficulty of the tasks, the

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 14

(a) Layout 1

(b) Layout 2

(c) Layout 3

Figure 14. An example of the local minimum problem in a long-range
navigation task. Red and blue circles represent the start position and the target
position respectively. Green circles are the subgoals selected by the policies
with different layouts.

robot has to face a more complex scenario, so the proportion of

rotation subgoals increases considerably, especially with small

angle rotations to the left (subgoal 10) or right (subgoal 17),

because, in our reward setting, the larger the rotation angle the

HL policy selects, the greater the penalty will be. Only when

necessary will the robot choose to rotate at a large angle in

place.

Although the subgoal space layout is set arbitrarily in

our work, this provides another insight into HRL mapless

navigation problems that subgoal layouts could be optimised

or even learned in future work.

(a) 2-5m

(b) 5-8m

(c) 8-10m

Figure 15. We record the total number of occurrences different subgoals were
selected in all successful episodes when our model is tested in Env 1 (Fig. 4a)
on tasks of different difficulty settings. 1-9 refers to the 9 grids in front of the
robot from near to far and from left to right. 10-16 indicates that the robot
rotates to the right. The higher the number, the greater the rotation angle.
Similarly, 17-23 represents HL policy selects the left-rotating subgoals.

F. Reward function

To validate the design of our reward function, we perform

the ablation experiment by removing the timeout penalty

element from the HL reward function, which is proposed with

considerations of the LL policy’s capability. Specifically, we

remove the item rHovertime that penalises the agent if it could

not reach the selected subgoal within a certain period of time,

and keep the rest the same. After training, we test the two

methods, with and without the timeout penalty. The success

rates are shown in Table VIII.

The result shows that the inclusion of the timeout penalty

can overall improve the success rates in most tasks. As

hypothesised, unreachable or difficult-to-reach subgoals are

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 15

Table VIII
TEST SUCCESS RATES WITH DIFFERENT REWARD FUNCTIONS FOR

TRAINING THE HL POLICY

Env Target range Without timeout penalty With timeout penalty

1
2-5m 60.6% 59.4%

5-8m 56.4% 58.8%

8-10m 46.8% 52.6%

2
2-5m 71.4% 71.6%

5-8m 59.2% 61.2%

8-10m 48.2% 52.0%

3
2-5m 74.4% 71.6%

5-8m 65.4% 65.6%

8-10m 68.2% 64.6%

not desired and the long time costed for the LL policy to

attempt navigating to these subgoals should be integrated into

the reward function as penalty. Without the timeout penalty,

the agent will continue choosing unreachable subgoals and

subsequently impair the overall performance.

VII. CONCLUSION

In this paper, we proposed a novel HRL-based mapless

navigation method, where the high-level policy generates a

subgoal for the low-level policy, while the low-level policy is

responsible for maneuvering the robot to the given subgoal at

the locomotion control level. For the HL policy, we introduce

a novel scoring method, namely the Predictive Neighbouring

Space Scoring (PNSS), to obtain a compact state representa-

tion. The PNSS values indicate the explorable space around

a given position, and a PNSS model is trained to predict the

PNSS values for candidate positions around the robot based

on the robot’s current view. The PNSS values can be then

deployed by the HL policy as observations in addition to Lidar.

Extensive experiments have been carried out to demonstrate

the effectiveness of the proposed methods. This PNSS-based

observation has shown significant improvements in success

rate, due to its compactness and task-related nature. We

demonstrated that our work outperformed Lidar-based policy

or policy with both Lidar and ResNet18-based RGB image

features.

Different layouts for the subgoals are also studied, demon-

strating the effectiveness of our proposed method. One notable

improvement of the navigation performance is for longer range

navigation, where Lidar-based methods or non-hierarchical

methods would more likely be stuck in local minimum.

For future research, we will scale up our model to handle

more difficult tasks, focusing on the local minimum problem.

The framework could be further extended with other predictive

metrics in future, rather than only the PNSS metric. We will

also investigate the mechanism for efficient parallel train-

ing, as achieving stable parallel training remains a challenge

in mapless navigation tasks that lack a task decomposition

scheme [33]. In addition, model-based learning will be con-

sidered in the future to allow efficient sampling of data for

training the agent [55]. Moreover, real-life environments are

mostly dynamic. We will focus on addressing the problem of

RL-based mapless navigation in dynamic environments [56].

Ultimately, we will aim to deploy this work on real robots and

evaluate the performance in real-world environments, which

present many challenges in ensuring safety and filling the gap

between the real world and simulation.

ACKNOWLEDGEMENT

We are grateful to Dr Rob Deaves from Dyson with whom

we have discussed some of the ideas in this work. Yan Gao

thanks the China Scholarship Council (CSC) for providing the

living stipend for his Ph.D. programme (No. 202008230171).

This work was partially supported by the Royal Academy of

Engineering under the Industrial Fellowships programme for

Dr Ze Ji (Grant No. IF2223-199).

REFERENCES

[1] B. Patle, A. Pandey, D. Parhi, A Jagadeesh, et al.,

“A review: On path planning strategies for navigation

of mobile robot”, Defence Technology, vol. 15, no. 4,

pp. 582–606, 2019.

[2] H. Kurniawati, “Partially observable markov decision

processes and robotics”, Annual Review of Control,

Robotics, and Autonomous Systems, vol. 5, pp. 253–277,

2022.

[3] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser,

“Heuristic approaches in robot path planning: A sur-

vey”, Robotics and Autonomous Systems, vol. 86,

pp. 13–28, 2016.

[4] A. H. Qureshi and M. C. Yip, “Deeply informed neural

sampling for robot motion planning”, in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tems (IROS), IEEE, 2018, pp. 6582–6588.

[5] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep

reinforcement learning: Continuous control of mobile

robots for mapless navigation”, in 2017 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems

(IROS), IEEE, 2017, pp. 31–36.

[6] L. Xie, “Reinforcement learning based mapless robot

navigation”, Ph.D. dissertation, University of Oxford,

2019.

[7] E. Marchesini and A. Farinelli, “Discrete deep rein-

forcement learning for mapless navigation”, in 2020

IEEE International Conference on Robotics and Au-

tomation (ICRA), IEEE, 2020, pp. 10 688–10 694.

[8] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Bur-

gard, “Curiosity-driven exploration for mapless naviga-

tion with deep reinforcement learning”, arXiv preprint

arXiv:1804.00456, 2018.

[9] M. Dobrevski and D. Skočaj, “Deep reinforcement

learning for map-less goal-driven robot navigation”,

International Journal of Advanced Robotic Systems,

vol. 18, no. 1, p. 1 729 881 421 992 621, 2021.

[10] Y. Zhu, R. Mottaghi, E. Kolve, et al., “Target-driven

visual navigation in indoor scenes using deep rein-

forcement learning”, in 2017 IEEE international confer-

ence on robotics and automation (ICRA), IEEE, 2017,

pp. 3357–3364.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 16

[11] W. Ding, S. Li, H. Qian, and Y. Chen, “Hierarchical

reinforcement learning framework towards multi-agent

navigation”, in 2018 IEEE International Conference

on Robotics and Biomimetics (ROBIO), IEEE, 2018,

pp. 237–242.

[12] J. Wöhlke, F. Schmitt, and H. van Hoof, “Hierar-

chies of planning and reinforcement learning for robot

navigation”, in 2021 IEEE International Conference

on Robotics and Automation (ICRA), IEEE, 2021,

pp. 10 682–10 688.

[13] X. Zhou, T. Bai, Y. Gao, and Y. Han, “Vision-based

robot navigation through combining unsupervised learn-

ing and hierarchical reinforcement learning”, Sensors,

vol. 19, no. 7, p. 1576, 2019.

[14] B. Bischoff, D. Nguyen-Tuong, I. Lee, F. Streichert, A.

Knoll, et al., “Hierarchical reinforcement learning for

robot navigation”, in Proceedings of The European Sym-

posium on Artificial Neural Networks, Computational

Intelligence And Machine Learning (ESANN 2013),

2013.

[15] R. A. Epstein, E. Z. Patai, J. B. Julian, and H. J.

Spiers, “The cognitive map in humans: Spatial naviga-

tion and beyond”, Nature neuroscience, vol. 20, no. 11,

pp. 1504–1513, 2017.

[16] M. Eppe, P. D. Nguyen, and S. Wermter, “From seman-

tics to execution: Integrating action planning with rein-

forcement learning for robotic causal problem-solving”,

Frontiers in Robotics and AI, vol. 6, p. 123, 2019.

[17] K. Yamamoto, T. Onishi, and Y. Tsuruoka, “Hierar-

chical reinforcement learning with abductive planning”,

arXiv preprint arXiv:1806.10792, 2018.

[18] A. Levy, G. Konidaris, R. Platt, and K. Saenko,

“Learning multi-level hierarchies with hindsight”, arXiv

preprint arXiv:1712.00948, 2017.

[19] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-

efficient hierarchical reinforcement learning”, Advances

in neural information processing systems, vol. 31, 2018.

[20] B. Shen, F. Xia, C. Li, et al., “Igibson 1.0: A simula-

tion environment for interactive tasks in large realistic

scenes”, in 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), IEEE, 2021,

pp. 7520–7527.

[21] H. Durrant-Whyte and T. Bailey, “Simultaneous local-

ization and mapping: Part i”, IEEE robotics & automa-

tion magazine, vol. 13, no. 2, pp. 99–110, 2006.

[22] C. Wang, W. Chi, Y. Sun, and M. Q.-H. Meng, “Au-

tonomous robotic exploration by incremental road map

construction”, IEEE Transactions on Automation Sci-

ence and Engineering, vol. 16, no. 4, pp. 1720–1731,

2019.

[23] W. Zhao, R. Lin, S. Dong, and Y. Cheng, “A study

of the global topological map construction algorithm

based on grid map representation for multirobot”, IEEE

Transactions on Automation Science and Engineering,

2022.

[24] H. Wang, Y. Yu, and Q. Yuan, “Application of dijk-

stra algorithm in robot path-planning”, in 2011 second

international conference on mechanic automation and

control engineering, IEEE, 2011, pp. 1067–1069.

[25] X. Zhou, X. Yu, Y. Zhang, Y. Luo, and X. Peng,

“Trajectory planning and tracking strategy applied to

an unmanned ground vehicle in the presence of obsta-

cles”, IEEE Transactions on Automation Science and

Engineering, vol. 18, no. 4, pp. 1575–1589, 2020.

[26] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Univer-

sal value function approximators”, in International con-

ference on machine learning, PMLR, 2015, pp. 1312–

1320.

[27] M. Andrychowicz, F. Wolski, A. Ray, et al., “Hindsight

experience replay”, Advances in neural information

processing systems, vol. 30, 2017.

[28] S. Nair, S. Savarese, and C. Finn, “Goal-aware pre-

diction: Learning to model what matters”, in Interna-

tional Conference on Machine Learning, PMLR, 2020,

pp. 7207–7219.

[29] M. Zhu, M. Liu, J. Shen, et al., “Mapgo: Model-

assisted policy optimization for goal-oriented tasks”,

arXiv preprint arXiv:2105.06350, 2021.

[30] H. Chan, Y. Wu, J. Kiros, S. Fidler, and J. Ba,

“Actrce: Augmenting experience via teacher’s advice

for multi-goal reinforcement learning”, arXiv preprint

arXiv:1902.04546, 2019.

[31] A. Kumar, X. B. Peng, and S. Levine, “Reward-

conditioned policies”, arXiv preprint arXiv:1912.13465,

2019.

[32] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaśkowski, and

J. Schmidhuber, “Training agents using upside-

down reinforcement learning”, arXiv preprint

arXiv:1912.02877, 2019.

[33] X. Yang, Z. Ji, J. Wu, et al., “Hierarchical reinforcement

learning with universal policies for multistep robotic

manipulation”, IEEE Transactions on Neural Networks

and Learning Systems, 2021.

[34] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic

architecture”, in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 31, 2017.

[35] A. S. Vezhnevets, S. Osindero, T. Schaul, et al., “Feudal

networks for hierarchical reinforcement learning”, in

International Conference on Machine Learning, PMLR,

2017, pp. 3540–3549.

[36] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Haus-

man, “Relay policy learning: Solving long-horizon tasks

via imitation and reinforcement learning”, in Confer-

ence on Robot Learning, PMLR, 2020, pp. 1025–1037.

[37] S. Nair and C. Finn, “Hierarchical foresight: Self-

supervised learning of long-horizon tasks via visual

subgoal generation”, arXiv preprint arXiv:1909.05829,

2019.

[38] T. Jurgenson, O. Avner, E. Groshev, and A. Tamar,

“Sub-goal trees a framework for goal-based reinforce-

ment learning”, in International Conference on Machine

Learning, PMLR, 2020, pp. 5020–5030.

[39] G. Parascandolo, L. Buesing, J. Merel, et al., “Divide-

and-conquer monte carlo tree search for goal-directed

planning”, arXiv preprint arXiv:2004.11410, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 17

[40] A. Sharma, S. Gu, S. Levine, V. Kumar, and K.

Hausman, “Dynamics-aware unsupervised discovery of

skills”, arXiv preprint arXiv:1907.01657, 2019.

[41] B. Eysenbach, R. R. Salakhutdinov, and S. Levine,

“Search on the replay buffer: Bridging planning and re-

inforcement learning”, Advances in Neural Information

Processing Systems, vol. 32, 2019.

[42] Y. Zhu, Z. Wang, C. Chen, and D. Dong, “Rule-based

reinforcement learning for efficient robot navigation

with space reduction”, IEEE/ASME Transactions on

Mechatronics, vol. 27, no. 2, pp. 846–857, 2021.

[43] E. Wijmans, A. Kadian, A. Morcos, et al., “Dd-ppo:

Learning near-perfect pointgoal navigators from 2.5

billion frames”, arXiv preprint arXiv:1911.00357, 2019.

[44] M. Rosano, A. Furnari, L. Gulino, and G. M. Farinella,

“On embodied visual navigation in real environments

through habitat”, in 2020 25th International Conference

on Pattern Recognition (ICPR), IEEE, 2021, pp. 9740–

9747.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-

level control through deep reinforcement learning”,

Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[46] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continu-

ous control with deep reinforcement learning”, in 4th

International Conference on Learning Representations,

ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,

Conference Track Proceedings, Y. Bengio and Y. Le-

Cun, Eds., 2016. [Online]. Available: http://arxiv.org/

abs/1509.02971.

[47] R. S. Sutton and A. G. Barto, Reinforcement learning:

An introduction. MIT press, 2018.

[48] S. K. Ramakrishnan, Z. Al-Halah, and K. Grauman,

“Occupancy anticipation for efficient exploration and

navigation”, in European Conference on Computer Vi-

sion, Springer, 2020, pp. 400–418.

[49] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convo-

lutional networks for biomedical image segmentation”,

in International Conference on Medical image comput-

ing and computer-assisted intervention, Springer, 2015,

pp. 234–241.

[50] Abhishek Kadian*, Joanne Truong*, A. Gokaslan, et al.,

“Sim2Real Predictivity: Does Evaluation in Simulation

Predict Real-World Performance?”, 4, vol. 5, 2020,

pp. 6670–6677.

[51] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and

S. Savarese, “Gibson env: Real-world perception for

embodied agents”, in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,

2018, pp. 9068–9079.

[52] H. Van Hasselt, A. Guez, and D. Silver, “Deep rein-

forcement learning with double q-learning”, in Proceed-

ings of the AAAI conference on artificial intelligence,

vol. 30, 2016.

[53] S. Fujimoto, H. Hoof, and D. Meger, “Addressing

function approximation error in actor-critic methods”, in

International conference on machine learning, PMLR,

2018, pp. 1587–1596.

[54] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft

actor-critic: Off-policy maximum entropy deep rein-

forcement learning with a stochastic actor”, in Interna-

tional conference on machine learning, PMLR, 2018,

pp. 1861–1870.

[55] L. Kaiser, M. Babaeizadeh, P. Milos, et al., “Model-

based reinforcement learning for atari”, arXiv preprint

arXiv:1903.00374, 2019.

[56] Z. Wang, C. Chen, H.-X. Li, D. Dong, and T.-J. Tarn,

“Incremental reinforcement learning with prioritized

sweeping for dynamic environments”, IEEE/ASME

Transactions on Mechatronics, vol. 24, no. 2, pp. 621–

632, 2019.

