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Autonomous bridge visual inspection is a real-world challenge due to various materials, surface coatings, and
changing light and weather conditions. Traditional supervised learning relies on massive annotated data to
establish a robust model, which requires a time-consuming data acquisition process. This work proposes a few-
shot learning (FSL) approach based on improved ProtoNet for damage detection with just a few labeled exam-
ples. Feature embedding is achieved through cross-domain transfer learning from ImageNet instead of episodic
training. The ProtoNet is improved with embedding normalization to enhance transduction performance based
on Euclidean distance and a linear classifier for classification. The approach is explored on a public dataset
through different ablation experiments and achieves over 94% mean accuracy for 2-way 5-shot classification via
the pre-trained GoogleNet after fine-tuning. Moreover, the proposed fine-tuning methods based on a fully con-
nected layer (FCN) and Hadamard product are demonstrated with better performance than the previous method.
Finally, the approach is validated using real bridge inspection images, demonstrating its capability of fast

implementation for practical damage inspection with weakly supervised information.

1. Introduction

Autonomous bridge visual inspection has become a real-world
challenge due to various materials, surface coatings, changing light
and weather conditions, and possible overlapping of different damages
(Mundt et al., 2019a). Traditional supervised learning approaches for
damage detection require a large number of labeled examples to
establish a model, which results in a time-consuming and labor-intensive
process for image acquisition (Nuthalapati and Tunga, 2021). It is also
impractical to always collect sufficient defects from various damage
scenarios. Furthermore, the supervised model can only identify specific
defects and needs further training with new examples for novel classes.
Transfer learning was expected to solve this issue, but conventional
supervised transfer learning tends to be overfitting or challenging to
converge with just a few annotated examples (Gidaris et al., 2018).
However, humans can recognize novel classes with just a little super-
vised information, e.g., only one or a few examples, and generalize the
knowledge to new images, which differs from inductive supervised
learning, i.e., the capability of few-shot learning (FSL). Hence, many
efforts have been made in this field currently. A typical FSL problem is
few-shot classification, which aims to identify objects with very few
examples (Lake et al., 2011), which can compensate for the deficiency of
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supervised learning in many fields. Therefore, developing an FSL
approach for vision-based bridge damage detection with weakly su-
pervised information, such as changing light, different materials, and
novel defects, is significant. It should be available for fast implementa-
tion in real-world bridge inspection with drones or robots under com-
plex circumstances.

This work proposes an approach based on improved ProtoNet (pro-
totypical network) (Snell et al., 2017) for few-shot damage detection.
Firstly, the inspection image is split into multiple patches. Feature
embedding is achieved through cross-domain transfer learning from
ImageNet. It enables the embedding function to be exempt from episodic
training and become “training-free” (no need to be trained from
scratch). Then, normalization is integrated after feature embedding to
reduce domain variation and enhance the ProtoNet performance based
on Euclidean distance by bridging the gap between Euclidean distance
and cosine similarity as the metric for transduction inference. Secondly,
the mean embedding vector is computed as the prototype for each class.
Then, the transductive inference can be taken on each patch to show the
initial performance by determining if the patch has the specific defect of
the support set. The transduction alleviates the issue encountered by
conventional transfer learning with only a few examples, such as over-
fitting or difficulty in convergence. Furthermore, a linear classifier
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WTx + b is added at the end of the ProtoNet for classification, and
fine-tuning is taken based on the support set because the model aims to
be trained before seeing query items in the practical inspection. Finally,
the obtained prototypes and the fine-tuned classifier can be applied to a
new inspection image, which is also split into multiple patches.

The proposed approach and architecture are explored in a public
dataset for autonomous bridge crack detection (Dhillon et al., 2020).
The dedicated CNN with the atrous spatial pyramid pooling (ASPP)
module and depth-wise separable convolution for this dataset based on
supervised learning can reach 96.37% accuracy in the test set. Extensive
ablation studies are conducted to explore the approach performance,
including hardcoded transformation, embedding normalization, various
supervised or unsupervised DNN (deep neural network) backbones, and
different fine-tuning methods. It achieves over 94% mean accuracy via
GoogleNet after fine-tuning for 2-way 5-shot classification in the test set,
which is already close to the performance of supervised learning (Xu
et al.,, 2019a). Moreover, three different fine-tuning methods are
compared in the experiment, including the transductive fine-tuning (i.e.,
Baseline) based on embedding vectors in the previous research (Dhillon
et al., 2020), (Chen et al., 2019a), and the proposed methods based on
Euclidean distance using a fully connected network (FCN) and the
Hadamard product, respectively. It demonstrates that the proposed
FCN-based and Hadamard-product fine-tuning methods can perform
better than the previous method. Early stopping should be taken at the
epoch number where the query accuracy reaches its peak and can be
determined empirically for real damage detection. It also demonstrates
that entropy regularization will slow down the fine-tuning. The entropy
is calculated based on the support set because the model aims to be
trained and fine-tuned before seeing query items. Hence, fine-tuning
without entropy regularization is suggested for practical application.

The approach is also validated using real bridge inspection images,
demonstrating its capability of fast implementation for practical damage
detection without a time-consuming and labor-intensive process for data
acquisition. The time cost of the approach for damage detection on each
patch (84 x 84) can be 0.08s through the embedding functions of pre-
trained VGG neural networks based on ImageNet, which demonstrates
the approach’s potential for damage detection in near real-time.
Although the approach has the above advantages, it still has a few
limitations, such as the robustness for noise (like stains and marks) and
similar defects (but different kinds). Meanwhile, because different sup-
port sets will result in different performance in few-shot damage
detection, how to determine support examples need further study.

The contribution of this work is four-fold.

1) This work proposes an approach for few-shot damage detection
based on improved ProtoNet, wherein feature embedding is achieved
by cross-domain transfer learning from ImageNet instead of episodic
training.

2) The ProtoNet is improved with embedding normalization to reduce
domain variation and enhance transduction performance based on
Euclidean distance and a linear classifier for classification.

3) By comparison, the proposed classifier based on Euclidean distance
and fine-tuning using FCN and the Hadamard product is recom-
mended for practical application. The early-stopping time can be
determined empirically in the experiment.

4) The approach is validated using real bridge inspection images,
demonstrating its capability of fast implementation for damage
detection with just a few annotated examples and its potential for
practical inspection in near real-time.

The rest of this paper is organized as follows: Section 2 introduces the
related work about damage detection and few-shot learning for images;
Section 3 presents the proposed approach and architecture as well as the
theoretical foundation; Section 4 conducts the ablation studies and
validation for the approach; Section 5 concludes the work.
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2. Related work
2.1. Damage classification and detection

For bridge visual inspection, a fundamental task is to determine if
there are certain kinds of damage in an image, such as surface cracking,
spalling, or rebar corrosion, i.e., damage classification (Konig et al.,
2022). The task can be defined as the binary classification for each
defect or a multi-defect classification. It can also be extended to deter-
mine whether damages exist and deduce the exact damage type, such as
longitudinal crack, transverse crack, and alligator crack (Konig et al.,
2022). Furthermore, damage detection aims to provide more informa-
tion about the damage, such as location, area, skeleton, and direction,
which is helpful because classification only indicates the existence of
defects in an image but leaves the task of finding the actual defect to
inspectors (Konig et al., 2022). A typical damage detection approach can
be achieved by sliding the window or splitting the image into patches
and then applying classification on each window or patch, followed by
stitching them back, as shown in Fig. 1. Another type of damage
detection utilizes bounding boxes to indicate defects, like object detec-
tion tasks in many competition datasets, such as COCO (Lin et al., 2014)
and Pascal VOC (Everingham et al., 2010). However, this method is not
always the best option to locate damage because defects have various
shapes. The created bounding box can include many undefective
sub-regions, e.g., an oblique crack is marked by a sizeable bounding box
determined by its diagonal points.

The image-processing methods for damage detection underperform
on practical inspection images due to the interference of surface tex-
tures, changing light, stains, etc. (Fu et al., 2021). Therefore, many
data-driven approaches have been developed based on artificial intel-
ligence (AI) for damage classification and detection to assist visual in-
spection. They can be categorized based on feature extraction, i.e.,
traditional machine learning (with handcrafted features) and deep
learning (without handcrafted features). The former include support
vector machine (SVM) (Wang et al., 2017a)- (Chen et al., 2017a),
Random Forest (Wang et al., 2018a)- (Frias and Hidalgo, 2021),
Adaptive boosting (Adaboost) (Wang et al., 2018b), (Cord and Cham-
bon, 2012), artificial neural network (ANN) (Wang et al., 2019)- (Cheng
et al., 2001), etc. In traditional ML-based approaches, image processing
is still required to implement pre-defined feature extraction. Various
features have been utilized in research, such as statistical information,
feature map projection, and defined defects’ characteristics (Hsieh and
Tsai, 2020). For example, Chen et al. (2017b) utilized local binary
patterns (LBP), SVM, and Bayesian decision theory to detect cracks;
Wang et al. (2017b) employed crack characteristics (i.e., density and
connectivity) and SVM to discriminate alligator and transverse cracking.
Meanwhile, ML can also be used to find optimal parameters for feature
extraction, such as threshold values (Cheng et al., 2001), (Prasanna
et al., 2016). The major problem with traditional ML approaches is that
they still require handcrafted features and contain shallow learned in-
formation (or representation) (Hsieh and Tsai, 2020).

Deep learning (DL) can extract features automatically with multi-
layer neural networks. Cha et al. (2017) proposed a convolutional
neural network (CNN) to identify cracks without calculating hand-
crafted features for the first time. The model was trained on 40 k images
(256 x 256), including crack and non-crack, and then combined with
the sliding window to scan any image larger than 256 x 256 for crack
detection, which shows better performance and can detect concrete
cracks in practical scenarios. Subsequently, a few datasets and DL ap-
proaches were created for damage detection based on supervised
learning, including CNN (Fu et al., 2021), (Mohammed et al., 2020; Nie
and Wang, 2019; Xu et al., 2019b), transformer (Wu et al., 2019; Liu
et al., 2021; Fang et al., 2022; Pan et al., 2020; Xiang et al., 2022), etc.
For example, Xu et al. (2019b) created an image set for automatic bridge
crack detection. They proposed a CNN architecture by leveraging the
atrous spatial pyramid pooling (ASPP) module and depth-wise separable
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Fig. 1. Crack detection by patch splitting and classification (Cha et al., 2017).

convolution, which can achieve 96.37% accuracy on the test set. Xiang
et al. (2022) integrated a transformer module in YOLOVS5 for road crack
detection. Cha et al. (2018) created a dataset including five typical de-
fects — concrete rack, steel corrosion with two levels (medium and high),
bolt corrosion, and steel delamination. Then, they employed the faster
region-based convolutional neural network (Faster-RCNN) and the re-
gion proposal network (RPN) for multiple damage detection. Further-
more, Mundt et al. (2019b) developed a concrete defect bridge image
dataset (CODEBRIM) of five commonly appearing concrete defects. They
employed two meta-learning approaches based on reinforcement
learning, i.e., MetaQNN and efficient neural architecture search, to find
suitable CNN architectures for multi-class and multi-target damage
detection.

The above ML and DL approaches are all based on inductive super-
vised learning, in which the performance relies on the pre-collected
annotated examples before the inspection. They must work with pre-
trained models to detect specific types of damage and cannot adapt
themselves to novel defects quickly. However, annotation is usually
time-consuming and tedious, and collecting sufficient defect images
from various damage scenarios is not always practical. Traditional su-
pervised transfer learning was expected to solve this issue, but it tends to
be overfitting or challenging in convergence with only a few labeled
examples. To our best knowledge, little research exists about weakly
supervised learning for few-shot image-based bridge damage classifi-
cation and detection. The only related one is an attribute-based
approach (Xu et al.,, 2021) for structural damage identification
through meta-learning, which relies on episodic training through a se-
ries of pre-collected tasks and is not developed to the level of damage
detection.

In summary, the previous research about damage detection and their
approaches are illustrated in Table 1. As can be seen, proposing an
efficient transductive FSL approach, which can be exempt from episodic
training, is beneficial to assist vision-based bridge damage detection
without a tedious data acquisition process before the inspection. It will
also promise fast implementation for damage detection under complex
circumstances with weakly supervised information.

2.2. Few-shot learning for images

The time-consuming and labor-intensive data acquisition process is
the bottleneck for applying supervised ML in many fields. FSL aims to
solve this issue by learning from a limited number of annotated images,

Table 1
Related works for image-based structural damage detection.

including few-shot classification and segmentation, which is essentially
related to the data-efficiency problem. This work focuses on the few-shot
classification, which is usually taken as an example of meta-learning. A
meta-learner is trained through a series of related works (episodic
training) to perform well to unseen but related tasks with just a few
examples. Meanwhile, transduction has been widely adopted for FSL
tasks in learning and inference because it is more effective at using only
a few labeled examples than induction with supervised models (Vapnik,
1999).

Many great efforts have been made in this field, including a few
specific image datasets (Lake et al., 2019; Bertinetto et al., 2019; Tri-
antafillou et al., 2019; Wah et al., 2011) (such as Omniglot, CIFAR-FS,
CUB, and mini-ImageNet) and various approaches. For example, a few
works (Hu et al., 2019; Hariharan and Girshick, 2017; Chen et al.,
2019b, 2019c¢; Zhou et al., 2022) aim to use data augmentation based on
different methods to solve the few-shot classification with limited
training samples, such as self-augmentation (Chen et al., 2019b),
deformation (Chen et al., 2019¢), and generation from DCGAN (Hu
et al., 2019). Some other works aim to learn good model initialization
(Rusu et al., 2019a), (Nichol and Schulman, 2018) or an optimizer (Ravi
and Larochelle, 2017), (Finn et al., 2017a) to achieve rapid adaption
with a limited number of training examples for new classes. In contrast,
the other approaches aim to learn latent embeddings that can be used to
compare (Chopra et al., 2005) or cluster (Laenen and Bertinetto, 2021)
query items using appropriate metrics. It includes creating the exemplar
for each class from the support set and selecting a metric for evaluation
(Dhillon et al., 2019). For example, ProtoNet (Snell et al., 2017) calcu-
lates the mean vector of feature embedding as the prototype for each
class in the support set and classifies query items as the nearest proto-
type based on the Euclidean distance because its case study fits Bregman
divergence (Chen et al., 2021a) some other approaches prefer cosine
similarity (Gidaris et al., 2018), (Chen et al., 2019a). Relation Network
further developed the ProtoNet using a relation module as a learning
metric in training (Sung et al., 2018).

However, the sophisticated meta-learning FSL approaches are based
on episodic training through an intentionally collected series of related
works, which is still time-consuming. Recently, a few works (Dhillon
et al., 2020), (Chen et al., 2019a) have challenged the efficiency and
effectiveness of this way by replacing episodic training with inter-class
transfer learning (except the classes in the target FSL tasks). They can
achieve similar state-of-the-art performance as the meta-learning ap-
proaches in the CUB and mini-ImageNet datasets. Furthermore, they

Names Approaches Research Advantage/Disadvantage
Supervised Learning Traditional (Wang et al., 2017a, 2018a, 2018b, 2019; Fujita et al., 2017; Chen et al., 2017a; Shi Fast with good interpretability but require
(Inductive) ML et al., 2016; Luo et al., 2019; Frias and Hidalgo, 2021; Cord and Chambon, 2012; handcrafted features
Moon and Kim, 2011; Hoang, 2018; Cheng et al., 2001)
DL (Fuetal., 2021), (Mohammed et al., 2020; Nie and Wang, 2019; Xu et al., 2019b; Wu  No need for handcrafted features but heavy and
et al., 2019; Liu et al., 2021; Fang et al., 2022; Pan et al., 2020; Xiang et al., 2022) require time-consuming image acquisition
Few-shot Learning Meta- Xu et al. (2021) Transductive inference with only a few
(Weakly Supervised) learning examples but requires episodic training
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have also indicated that the proper feature embeddings learned from
cross-domain transfer learning (e.g., CUB — mini-ImageNet) can achieve
competitive performance for FSL to the sophisticated meta-learning
approaches (Dhillon et al., 2020), (Chen et al., 2019a). Moreover, the
latest work (Cheng et al., 2022) has demonstrated the availability of
cross-domain transfer learning (i.e., ImageNet — MSCOCO and PASCAL
VOC) for few-shot segmentation. It is achieved by leveraging a “train-
ing-tree” module (i.e., a pre-trained CNN backbone from ImageNet) to
learn the feature representation.

Therefore, leveraging cross-domain transfer learning for few-shot
damage detection is promising. However, the domain differences in
the previous studies (Dhillon et al., 2020), (Chen et al., 2019a), (Cheng
et al., 2022) are not distinct enough compared to the domain difference
from a public dataset to a specific engineering scenario, such as
ImageNet — bridge structural defects (e.g., cracks, spalling, and corro-
sion). Therefore, this work aims to develop a transductive FSL approach
for bridge damage detection using cross-domain transfer learning from a
public dataset. It should be available for fast implementation under
practical scenarios without episodic training and supervised learning, i.
e., achieve similar “training-free” (Cheng et al., 2022). Hence, it is
necessary to find a reliable source domain to perform effective feature
embedding for few-shot damage detection and compare the perfor-
mance of different pre-trained DNN backbones derived from supervised
or unsupervised learning. Based on the transduction in the ProtoNet, it is
also helpful to explore the performance of different metrics (i.e.,
Euclidean distance and cosine similarity) and propose a proper
fine-tuning method for practical application.

3. Proposed approach and architecture
3.1. Theoretical foundation

3.1.1. Few-shot problem definition

Machine learning is said to learn from experience E to some classes of
task T, and the performance is measured by P (Mitchell, 1997), e.g., E —
ImageNet dataset, T — object recognition, and P - classification accuracy.
Few-shot learning is a specific type of machine learning problem where
E contains only a little supervised information for the task T. In the
few-shot setting, the dataset D is separated into Dgyp porr and Dgyery, as
shown in Eq. (1) and Eq. (2). I is a very small integer, commonly from 1
to 5. In a standard N-way K-shot classification task, Dgpor: comes from N
categories (N-way) with K samples (K-shot) per category, so there are
I =N x K support examples. Dy, contains samples from the same N
categories with Q samples per category. The goal is to classify the Nx Q
images into N categories based on the limited supervised information
from Dgypore (Chen et al.).

D.supparz = {(xhyi)}fj\lxl( (1)

Dyiery = {3}, ¢ @)

Where N is the number of categories; K is the number of samples (i.e.,
the support items); x; is the support item; y; is the corresponding cate-
gory for the support item; x; is the query item.

Letp(x,y) as the joint probability distribution of input x and label y. h
is the hypothesis model mapping from x to y. Few-shot classification
aims to learn h from Dyppor: for prediction and then test it in Dgyer,. Here,
h is parameterized as h(6). The algorithm aims to find the optimal 6 for
Dgypport in the vector space H. The model h performance is evaluated
through the loss function L(y,y) between the prediction value y = h(x; 6)
and the actual value y.

Assuming vector space H, task T, and distribution p(x,y), to mini-
mize the loss function L(y,y) equals to minimize the expected risk R(h)
with appropriate §, which can be indicated in Eq. (3).
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min R(h) = min /L(h(x; 0),y)dp(x,y) = min E[L(h(x;6),y)] 3

In practice, posterior distribution from data sampling is utilized to
approach p(x,y) through machine learning. However, as p(x, y) is unable
to know, the empirical risk R;(h) is used to estimate R(h), as indicated in
Eq. (4).

RO~ Ri() = " L(h(x:6), ) @

Hence, there will be three different optimal solutions (Wang et al.,
2020), which are: 1) h = argminR(h) — global optimal solution; 2) h* =
argmin,_,R(h) - optimal solution in hypothesis space H; 3) h =
argmin,,;R;(h) — optimal solution in H for R,(h). Moreover, with model h
trained from a random set for a task, its total error consists of two parts:
1) approximation error eq,(H) caused by the difference between the
hypothesis space H and the global space; 2) estimation error &..(H,I) is
the impact of using empirical risk R;(h) instead of expected risk R(h).
Here, / is the set of training data. In theory, as the training set increases,
€.st(H,I) converges to zero, as shown in Eq. (5).

limeey (H,I) = limE[R(hy) — R(h")] = 0 (5)

However, as few-shot learning lacks plenty of training data, it be-
comes difficult to use R;(h) approaching R(h) accurately. Therefore, the
most difficulty of few-shot learning is the gap between the empirical best
h;(I) and hypothesis best h*(H).

3.1.2. Meta-learning and feature embedding

Meta-learning approaches aim to learn prior knowledge from a series
of training tasks to solve a new task. It includes hallucination-based
(learning to augment), initialization-based (learning to fine-tune), and
metric-based (learning to compare) approaches. The hallucination-
based approaches (Hariharan and Girshick, 2017)- (Zhou et al., 2022)
aim to generate more training examples of novel classes through data
augmentation to alleviate the issue of insufficient data. The
initialization-based approaches, e.g., MAML (Finn et al., 2017b), Rep-
tiles (Nichol and Schulman, 2018), and LEO (Rusu et al., 2019b), aim to
learn the optimal hyperparameter initialization to reach convergence
with only a small number of data samples. The metric-based approaches,
e.g., MatchingNet (Vinyals et al., 2016), ProtoNet (Snell et al., 2017),
and RelationNet (Sung et al., 2018), aim to project data into an
embedding space in which similar objects are close to each other and
vice versa. The transductive inference process is to calculate the distance
(or similarity) between x; € Dyyppors and Xj € Dguery, then the label y; with
the closest distance (or highest similarity) in Dgypor: is assigned as y; in
Dguery- In detail, MatchingNet uses attention calculated from the cosine
similarity of extracted features for classification; ProtoNet uses the mean
vector of each class as the cluster center and Euclidean distance as the
metric for classification; RelationNet employs relation module instead of
Cosine similarity and Euclidean distance, generating a non-linear clas-
sifier based on relation score. These sophisticated meta-learning ap-
proaches are usually based on episodic training through a series of
related tasks (episodes) sampled from the base dataset to simulate
reasoning scenarios (Cheng et al., 2022).

Feature embedding (representation) is used to represent a data point
x; € XcR? in a low-dimension space z; € ZCR™ (m < d), which is sup-
posed to have three essential assumptions (Devgan et al., 2020), i.e.,
smoothness, clustering, and manifold. Feature embedding must retain
consistent similarities or differences among data points in the original
space. Embedding functions are usually in the form of DNN architec-
tures. Note that feature representations through different embedding
functions can have different properties, even if they are from the same
data point, which can significantly impact the performance of down-
stream tasks. The hyper-parameters of the embedding function can be
learned from prior knowledge or task-specific information, e.g., multiple



Y. Gao et al.

sophisticated tasks or a related source domain.

The support embedding function and query embedding function are
usually the same. The most straightforward way to learn the embedding
function is training a model in the support set through supervised
learning, but its parameters are prone to overfitting or difficult to
converge under few-shot conditions. Hence, many existing few-shot
learning works tackle this problem based on meta-learning, i.e.,
trained on a series of invariant tasks and then generalized to the target
task. However, cross-domain transfer learning has been recently
demonstrated as an effective way to initialize the feature embedding
functions for few-shot classification (Dhillon et al., 2020), (Chen et al.,
2019a) instead of meta-learning.

3.1.3. Transfer learning and fine-tuning

Transfer learning focuses on storing the knowledge learned while
solving one task Ts in a source domain Rg and applying it to a different
but related task Tr in a target domain Ry. The correlative research
problems, such as multi-task learning and domain adaption, are also
related to few-shot learning and meta-learning (Panigrahi et al., 2021).
In multi-task learning, the hypothesis space of each task strongly cor-
relates with each other. This correlation (i.e., prior knowledge) can be
represented through sharing hyperparameters of DNNs. According to
explicit or implicit constraints in parameter space, the sharing methods
can be classified into soft parameter sharing, which does not place a
strong constraint on parameters but encourages them to meet some re-
quirements, such as regulation function L; or Ly, and hard parameter
sharing, such as freezing specific layers in DNN. The frozen layers can be
part of the embedding function or just the classifier, which solidifies the
prior knowledge learned from the source task Ts. At the same time, the
rest of the network will be updated (i.e., fine-tuning) to adapt the target
task T in the target domain.

Some meta-learning works have been developed to leverage transfer
learning by learning the scaling and shifting functions of DNN weights
through episodic training for each task, such as meta-transfer learning
(Sun and Chua, 2019). Research (Chen et al., 2019a) has recently
demonstrated that cross-domain transfer learning can achieve the
comparable performance of (or even overperform) many state-of-the-art
meta-learning approaches in few-shot classification. Moreover,
fine-tuning can enhance average accuracy by 1%-2% on the CUB and
ImageNet datasets (Dhillon et al., 2020), (Chen et al., 2019a). This
progress enables few-shot classification to be exempt from episodic
training and become “training-free” like (Cheng et al., 2022) by using
pre-trained DNN backbones from a large-scale public dataset (e.g.,
ImageNet) for feature embedding.

Crack Image Support Set
Crack
—
Non-crack
(2-way 3-shot)
l{l Query set
—_ I

Image Splitting
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3.2. Few-shot damage detection approach

3.2.1. Proposed architecture

The proposed approach for bridge damage detection is derived from
the ProtoNet (Snell et al., 2017), which consists of episodic training
through a series of related tasks and prototypical transduction based on
Euclidean distance for few-shot classification. Its improvement includes
three aspects: (1) previous episodic training is replaced with
cross-domain transfer learning from ImageNet for “training-free” feature
embedding; (2) embedding normalization is integrated to reduce
domain variation and enhance the original ProtoNet performance based
on Euclidean distance; (3) the fine-tuning methods based on fully con-
nected network (FCN) and the Hadamard product can achieve better
performance in fewer epochs compared to the previous transductive
fine-tuning (Dhillon et al., 2020).

The approach architecture is shown in Fig. 2 with an example of 2-
way 3-shot crack detection, and the steps are shown below.

1) Image splitting into support and query sets — an inspection image
is split into multiple patches, in which the support and the query
items are selected, respectively. Here, the patches marked with the
blue boundary are picked up as the support set, while the rest patches
are taken as the query set.

2) Feature embedding (cross-domain transfer learning) — the pre-
trained DNN backbones from ImageNet are applied on both sup-
port and query items for feature embedding, which not only enables
the feature embedding to be exempt from episodic training but also
makes the process become “training-free” (no need to be trained
from scratch).

3) Feature normalization — normalization is employed after feature
embedding to reduce domain variation.

4) Calculating prototypes — the mean vector of the support feature
embeddings is calculated as the prototype for each class, and the
initial transductive inference can be taken based on Euclidean
distance.

5) Fine-tuning - fine-tuning is employed to improve the linear classi-
fier further using the support examples and the derived prototypes.

6) Inference - finally, the damage type, location, and skeleton can be
obtained based on the inference for each patch. Meanwhile, the
obtained prototypes and fine-tuned classifier can be applied to a new
image to detect the specific defect.

The pseudocode of the algorithm is shown below.

Crack Detection

Ssas

Feature Embedding

}

Embedding Normalization

Inference

Fine-Tuning
, | Euclidean
— i [ Distances | ** %{ Scitmax
T+ *
W=[w,w,]ER™  b=[b,h]ER™

Calculating Prototypes

Fig. 2. Proposed approach for few-shot damage detection.
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Algorithm 1 Few-shot damage detection (n-way, k-shot) based on cross-domain transfer

learning. n is the number of classes. k is the number of support items for each class

Input: Support set S = {s;;}, Query set Q@ = {q;;}, 7 € [1,n],j € [1,k], and pre-trained

embedding function fy
Output: Predicted query labels Yy
1 v = fa(s)andv =
2w = mean(v)
ds= (> (v— w)?)?

3
a4 p, = softmax(Wds +b)
1

v
maz(||v]|)

5 0 = argming(—= > y.log(ps) + Regulation)

n

6 u= fy(q) and u = mastial)

7 dy = (S(u—w)?)}

8 return Yy < py = softmax(Wd, + b)

> Support Feature embedding and normalization

> Compute prototype for each class
> Calculate support Euclidean distance
> FEstablish a linear classifier

> Finetuning with target function

> Query feature embedding and normalization

> Calculate query Fuclidean distance

> Prediction for query set

3.2.2. Domain adaption and transduction

In principle, the pre-trained DNN backbones and weights based on
prior knowledge (e.g., from the related source domain) can help to
constrain the hypothesis space into a smaller one for few-shot classifi-
cation, as shown in Fig. 3, thereby achieving less ¢, quickly and better
R;(h) (see Eq. (4) and Eq. (5)). The left ellipse in Fig. 3 shows the normal
st based on a large dataset, which is the goal to pursue. The middle one
shows a bigger ¢, based on a small dataset (i.e., under FSL conditions),
while the right one shows a decreased ¢,y in a constrained hypothesis
space by prior knowledge.

In the embedding module, the pre-trained DNN backbone (feature
extractor) learned from 1000-class ImageNet of 12 million images is
employed as the embedding function f(x;) for both support and query
sets. Note that the object classes of ImageNet do not include the specific
defects for detection, i.e., the source domain has a vast difference from
the target domain. The embedding function fy(x;) can be derived from
supervised learning or self-supervised learning, as shown in Fig. 4. The
former includes different DCNNs and vision transformers. The latter
mainly involves masked image modeling (MIM) approaches, such as
masked autoencoder (MAE) (He et al., 2022) or BEiT (Bao et al., 2021).

Although the hardcoded mean and the standard deviation obtained
statistically from ImageNet, i.e., u = [0.485,0.456,0.406] and ¢ =
[0.229,0.224,0.225] can be employed for image transformation, it
cannot guarantee the normalization in the target domain. Hence,
normalization according to Eq. (6) (v is the embedding vector) is
required for the obtained feature embeddings to minimize domain
variation.

Global optimal: J;

Best in H:

empericgl best: 7,

v

Vnorm = (6)

max(|[vl],)

In the transductive inference, the mean vector of the support em-
beddings is computed as the prototype for each class. Then, the distances
from the query embedding to each prototype are calculated. Conse-
quently, the query item can be predicted as the closest prototype. The
commonly used metrics include Euclidean distance and cosine similar-
ity, as indicated in Eq. (7) and Eq. (8). Here, v and w are the query and
prototype embedding vectors, respectively. As seen, embedding
normalization enables the transduction based on Euclidean distance and
cosine similarity to start from the same circumstance.

1

d = dist(v,w) = (Z [v— W‘2>f @)
T
s=cosf=—"" ®
[IVIl-[lwll,

3.2.3. Loss function and fine-tuning

In the proposed architecture, the linear classifier Wx + b is utilized
for few-shot classification. x can be either the query embedding vector v
or the distances d between the query item and the prototypes. The
softmax function is utilized as the output layer to convert the result to a
probability distribution p; € [0, 1] for each class, as shown in Eq. (9).

et

& o ©
n=1

pi = soft max(x;) =

Prior knowledge -\

Fig. 3. Decreased ¢, in constrained hypothesis space by prior knowledge (Wang et al., 2020).
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|
[ ]

Encoder Decoder

(2)

Fig. 4. (1) fy(x;) from supervised learning; (2) fy(x;) from self-supervised learning.

Low entropy

Probability Density

High entropy

Probability Density

Fig. 5. Entropy increases along with uncertainty increasing in binary classification.

Then, the loss function L is defined based on binary cross-entropy, as
indicated in Eq. (10).

1 1
L= ]T/ZLi =y Zb’i log, (pi) + (1 = yi)logy (1 — pi)] (10)

Where, y; is the example label (0 or 1); p; is the probability of y; for the
example i.

As the support set is quite small under few-shot conditions, the
Shannon Entropy (Eq. (11)) is introduced as the regularization item to
alleviate overfitting due to increased uncertainty in classification, as
shown in Fig. 5. This is similar to the transductive fine-tuning method in
(Dhillon et al., 2020), but the entropy H(x) is calculated based on the
support set rather than the query set because the model aims to be
trained and fine-tuned before seeing all the query items in the practical
inspection.

1
H(x) = =) prlogy- an

Hence, the fine-tuning step solves ©* to minimize the target function
indicated in Eq. (12).

R . 1 1
o _ngmm<NZ[)’i log, (pi) + (1 —yi)logy(1—p;)] *NEP:' lng(Pi))
(12)

4. Experiments and approach validation
4.1. Experiment preparation

An image dataset created for automatic bridge crack detection in (Xu
et al., 2019b) is employed for ablation studies using the proposed ar-
chitecture for few-shot crack classification. The images were collected

from real concrete bridges, including the 2014 background and 4055
crack images (224 x 224). The dedicated CNN in the previous research

(Xu et al., 2019b) can reach 96.37% accuracy on the test set (train-test
split of 80%:20%) based on supervised learning. Here, the experiment
aims to explore the performance of the proposed approach for few-shot
crack classification (2-way 1-shot or 2-way 5-shot) on the test set, i.e.,
with no access to the training set for supervised learning. It can mimic
the situation for crack identification without a pre-trained supervised
model. The query accuracy is illustrated in a boxplot based on 5000
samplings, recommended to compare FSL performance by (Dhillon
et al., 2020). The random state remains unchanged to guarantee the
reliability of ablation experiments. The experiments are taken on Google
CodeLabs. The code is generated based on the original ProtoNet from a
public GitHub project (https://github.com/sicara/easy-few-shot
-learning).

4.2. Ablation studies

4.2.1. Domain adaption and normalization

The experiment starts with 2-way 1-shot and 2-way 5-shot crack
identification. The ResNet18 backbone, popular in previous few-shot
learning research (Dhillon et al., 2020), (Chen et al., 2021b), (Chen
et al., 2019d), is employed as the feature embedding function. Its pa-
rameters are pre-trained on ImageNet, and the hardcoded mean u =
[0.485,0.456,0.406] and standard deviation ¢ = [0.229,0.224,0.225],
derived from ImageNet statistically, are utilized for image trans-
formation. The raw and hardcoded-transformed images can be shown in
Fig. 6. The image size is 224 x 224.

The performance of architecture with and without embedding
normalization is explored in the experiment. Moreover, Euclidean dis-
tance and cosine similarity are tested as the evaluation metric. The re-
sults are shown in Fig. 7. Here, the annotation with raw and hard
represents raw and hardcoded-transformed images, respectively; Eu
indicates that the result is based on Euclidean distance of raw embed-
ding vectors, while Eu_norm stands for Euclidean distances of embed-
ding vectors after normalization; Cosine means using cosine similarity of
raw embedding vectors.
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Raw images (left) and hardcoded-transformed images (right).
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Fig. 7. 1-shot and 5-shot crack identification with pre-trained ResNet18 (224 x 224).

As can be seen, hard-coded transformation (i.e., hard) can signifi-
cantly improve both 1-shot and 5-shot performance. After hard-coded
transformation, it is shown with higher mean accuracy and narrower
value distribution, i.e., interquartile range (IQR). IQR is calculated as
IQR = Q3 — Q1 (Qq - the first quartile; Q3 — the third quartile). More-
over, the Euclidean distance of normalized embeddings (i.e., Eu_norm)
performs much better than the raw Euclidean distance (i.e., Eu_raw).
The former has the equivalent performance as the cosine similarity,
demonstrating that embedding normalization can bridge the gap be-

tween Euclidean distance and cosine similarity in the metric-based
transduction for the few-shot classification in this dataset. Further-
more, 5-shot performs much better than 1-shot in both accuracy and
IQR, which is promising to be enhanced as comparable to the dedicated
supervised learning in previous research. Meanwhile, as the experiment
aims to validate the proposed approach and figure out the appropriate
conditions (such as feature embedding functions and fine-tuning
methods) for practical application under weakly supervised scenarios,
the 2-way 5-shot classification is adopted for the following experiment.

Query Accuracy
o
©
o

Fig. 8. 2-way 5-shot performance of ResNet backbones in different depths (84 x 84).
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4.2.2. Different embedding functions

A series of ResNet backbones in different depths are employed in the
experiment to explore the impact of DNN architecture depths on the few-
shot performance. Their parameters are pre-trained on ImageNet. The
experiment is conducted for 2-way 5-shot classification, and the
approach integrates hard-coded transformation and embedding
normalization. Euclidean distance and cosine similarity are tested as the
evaluation metric in the experiment. The results are shown in Fig. 8.

Here, the images are resized to 84 x 84 to fit deep ResNets (such as
ResNet152) due to CUDA memory limitation, so the ResNet18 perfor-
mance differs from its previous result in Fig. 7 (224 x 224), i.e., the
minimum accuracy drops to nearly 70%. Although the deeper ResNet
has higher accuracy for image recognition in ImageNet, the experiment
with different pre-trained ResNets for feature embedding cannot see a
significant proportional relationship between the performance and the
DNN depths for 2-way 5-shot classification, as shown in Fig. 8. There-
fore, when using the pre-trained DNN backbones as embedding func-
tions, their cross-domain few-shot performance does not necessarily
correspond to their original performance in the source domain.

Moreover, different ResNets can perform diversely, even for the same
sample. For example, ResNet18 has only 76.5% query accuracy for a
sample (i.e., 5-shot for crack and 5-shot for non-crack), while ResNet152
can reach 91% for the same sample. Meanwhile, Euclidean distance and
cosine similarity have the equivalent performance as the evaluation
metric. Here, the pre-trained backbone ResNet34 has the best perfor-
mance with the highest mean accuracy of 91.7% and narrower IQR in
the series of ResNets for 2-way 5-shot classification in this dataset (im-
ages resized to 84 x 84).

Furthermore, the other prevalent DNN backbones are involved in the
experiment, including multiple DCNN architectures and vision trans-
formers (i.e., Swim Transformer and MAE). Their parameters are still
pre-trained on ImageNet. The employed DNN models and their
embedding dimensions are shown in Table 2.

The approach in the experiment is the same as the above for the
ResNets, which integrates both hard-coded transformation and embed-
ding normalization, and the experiment is taken under nearly the same
condition. The only difference is that the pre-trained MAE can only be
applied on the 224 x 224 images, which cannot take all the rest images
(except the support images) as the query set due to CUDA limitation.
Hence, the experiment with the pre-trained MAE for feature embedding
is taken on the original 224 x 224 images with the randomly selected 50
images per class as the support set every time. In contrast, the experi-
ment with the other pre-trained DNN backbones is taken under the same
condition as the above, i.e., with resized images (84 x 84) and all the left
images as the support set. Both Euclidean distance and cosine similarity
are tested in the experiment. The results are shown in Fig. 9.

As can be seen, the pre-trained DNN backbones can achieve excellent
performance for 2-way 5-shot classification. The improved ProtoNet can
reach a mean accuracy of over 93% via GoogleNet and Swim Trans-
former, which proves that ImageNet is a reliable source domain for few-
shot crack detection. Note that the pre-trained MAE encoder is derived

Table 2

Pre-trained embedding functions and embedding dimensions.
Embedding Pre-trained Models Embedding Input size
function dimensions
AlexNet alexnet 9216 84 x 84
VGG vggl6 25,088 84 x 84
DenseNet densenet161 2208 84 x 84
EfficientNet efficientnet_v2 1208 84 x 84
ResNet resnet34 512 84 x 84
MobileNet mobilenet_v3_large 960 84 x 84
GoogleNet googlenet 1024 84 x 84
Swim Transformer swim_t 768 84 x 84
MAE mae_visualize_vit_base 768 224 x

224
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from self-supervised learning, demonstrating the availability of a
training embedding function without supervised information (i.e., la-
bels). It also demonstrates that ImageNet is a reliable source domain for
few-shot crack identification based on cross-domain transfer learning.
Moreover, the Euclidean distance of the normalized embeddings can
achieve the equivalent performance as cosine similarity for the trans-
ductive inference.

4.2.3. Fine-tuning and comparison

Fine-tuning aims to improve the few-shot classification performance
based on transduction after feature embedding through the pre-trained
DNN backbones. Its target function can be seen in 3.2.3. Here, three
different fine-tuning methods are compared in the experiment,
including the Baseline and FCN-based (modified Baseline++) methods,
which are inspired by previous research (Dhillon et al., 2020), (Chen
etal., 2019a), and a proposed method based on Hadamard product (i.e.,
element-wise product). Meanwhile, fine-tuning with and without the
Shannon Entropy regularization (see Eq. (11)) is also explored in the
experiment. The entropy is calculated based on the support set rather
than the query set because the model aims to be trained and fine-tuned
before seeing all the query images. This process is different from the
previous research (Dhillon et al., 2020).

1) The first linear classifier is implemented by adding a linear layer
after the normalized feature embedding, similar to the Baseline in
(Chen et al., 2019a) and transductive fine-tuning in (Dhillon et al.,
2020). Its formula is indicated in Eq. (13), where n is the number of
classes (n = 2), and m is the embedding dimension. x;x; is the
normalized feature embedding of each support example. Wyypm is
initialized with the prototype matrix M., (i.e., the stack of proto-
type embedding vectors [w;,ws] € R1*™) because it can help hyper-
parameters converge quickly and achieve better performance, as
suggested in (Dhillon et al., 2020). b, is the bias and initialized
from 0.

Yaxt = SOft max(Wosm Xmx1 + bux1) (13)

2) The second one is adding an FCN after Euclidean distance, as indi-
cated in Eq. (14), which is similar to the Baseline++ in (Chen et al.,
2019a) and taken as the modified Baseline++. d,x1 represents
Euclidean distances from a support example to each prototype. Wy,
and bpy; are initialized from an identity matrix and 0, respectively.

Yux1 = SOft max(vvnxn'dnxl + bnxl) (14)

3) The third one is based on the Hadamard product by adding a linear
layer with fewer hyperparameters after Euclidean distance, as indi-
cated in Eq. (15). dnx1 represents Euclidean distances from a support
example to each prototype. W;,1 and b, are initialized from 1 and
0, respectively.

Yux1 = 50ft max(Wy1 © dyxi + buxr) (15)

Here, the experiment employs the GoogleNet result for fine-tuning as it
performs well in both query accuracy and IQR. The experiment is taken
using RMSProp optimizer at the learning rate of 0.01 until 2000 epochs.
The mean query accuracies and 95% confidence interval of different
fine-tuning methods with and without entropy regularization are shown
in Figs. 10 and 11.

As can be seen, both the FCN-based (i.e., modified Baseline++) and
the Hadamard product fine-tuning methods perform much better than
the Baseline (i.e., transductive fine-tuning (Dhillon et al., 2020)), which
can enhance the mean query accuracy from 93.4% to over 94%.
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Fig. 9. Comparison of different pre-trained DNN embedding functions.
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Fig. 10. Fine-tuning without entropy regularization.
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Fig. 11. Fine-tuning with entropy regularization.

Moreover, the FCN-based method can reach the peak faster than the
Hadamard-product method in terms of accuracy during fine-tuning.
Entropy regularization will slow down the fine-tuning of both methods
and postpone their time to reach the peak. After the peak, there is
overfitting for both methods. Hence, early stopping should be taken at
the epoch number where query accuracy reaches the peak. As can be
seen, early stopping can be determined empirically for few-shot crack
detection as 600 epochs and 1000 epochs when using the proposed

10

methods without regularization. Similarly, 1000 epochs and 1500
epochs are recommended for both methods with regularization.

In principle, it is difficult to avoid overfitting in few-shot classifica-
tion because it is triggered by the discrepancy between the support ex-
amples and the overall items. If the support examples are representative,
fine-tuning by fitting the model to the selected examples can enhance
the query accuracy. On the contrary, fine-tuning will deteriorate the
model and decrease its generalization capability if the support examples
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are unrepresentative. It can also be observed that the support set with
increased accuracy after the Baseline fine-tuning can get more incre-
ment after the FCN and Hadamard-product fine-tuning. At the same
time, the other two methods can also amplify the accuracy decrement
after the Baseline fine-tuning.

4.3. Few-shot damage detection

The approach is also validated with the real bridge inspection images
from the CODEBRIM dataset (Mundt et al., 2019a). The images are
resized to 1260 x 840 and split into 150 patches (84x 84). A few
patches with and without target defects are selected as the support set,
while the others are taken as the query set. The embedding function is
selected from the pre-trained DNN backbones based on ImageNet, and
the classifier is fine-tuned with the support examples. Subsequently, the
transductive inference is applied on each query patch using the obtained
prototypes and fine-tuned classifier for damage detection. The
pre-trained VGG16, VGG19, Swim Transformer, and MAE performed
well as embedding functions in the experiment. Here, the results are
shown based on the MAE encoder derived from self-supervised learning
for feature embedding, in which each patch is resized to 224 x 224 for
inference as required by Vision Transformer (i.e., ViT-Base). Moreover,
the time cost is also tested for damage detection using different
embedding functions.

An example of 2-way 2-shot crack detection on the real bridge in-
spection images is shown in Fig. 12. The support examples are from the
first image in the top right, which is marked with a blue boundary, and
the approach can recognize the crack skeleton with only two shots. The
obtained prototypes and fine-tuned classifier can be applied on a new
image directly for crack detection in the bottom right. As can be seen,
most crack areas can be identified correctly, but a few crack patches
were not recognized due to stains, which is related to the approach’s
robustness.

Spalling with rebar corrosion is another typical defect on the rein-
forced concrete bridge. An example of 2-way 5-shot spalling detection
on the real bridge inspection images is shown in Fig. 13. The support
patches are from the first image in the top right, marked with a blue
boundary, and the approach can recognize the most spalling areas.
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Similarly, when applied on a new image in the bottom right through the
identical prototypes and fine-tuned classifier, the spalling areas can also
be identified well.

The time cost of the approach by using different embedding func-
tions for each patch (84 x 84) is shown in Table 3. As seen, the time cost
increases as the model complexity and input image size increase.

5. Conclusion

The current image-based approaches for drone-enabled bridge in-
spection still mainly rely on supervised learning, which requires time-
consuming data acquisition and labor-intensive data annotation. These
inductive approaches are inappropriate for practical damage detection
under complex circumstances without enough supervised information,
such as different materials, novel defects, and changing light. To solve
this issue, this work proposes an approach based on improved ProtoNet
for bridge damage detection under few-shot conditions (with only a few
annotated examples).

In the approach, feature embedding is achieved by cross-domain
transfer learning from ImageNet, which enables the embedding func-
tion to be not only exempt from episodic training but also become
“training-free”, i.e., no need to be trained from scratch. Moreover, after
feature embedding, normalization is integrated into the ProtoNet to
reduce the domain variation and enhance the transduction performance
based on Euclidean distance. The linear classifier is added at the end of
the ProtoNet for classification, and fine-tuning based on the support set
can be further leveraged to improve the performance.

The approach is explored in a public automatic bridge crack detec-
tion dataset through extensive ablation studies. The experiment proves
that ImageNet is a reliable source domain for few-shot damage detection
and can achieve a mean accuracy of over 94% for 2-way 5-shot classi-
fication in the test set via the pre-trained GoogleNet after fine-tuning.
The performance is already close to supervised learning using a dedi-
cated CNN architecture. Moreover, the proposed fine-tuning methods
based on the FCN and the Hadamard product demonstrated better per-
formance than those in previous research (Dhillon et al., 2020), (Chen
etal., 2019a). The time for early stopping can be determined empirically
in the experiment. Furthermore, the approach is also validated using
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Fig. 12. Few-shot crack detection through the approach based on MAE.
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Fig. 13. Few-shot spalling detection through the approach based on MAE.

Table 3

Time costs of the approach using different embedding functions.
Embedding Pre-trained Models Patch size Time cost
function
VGG16 vgglé 84 x 84 0.08s/patch
VGG19 vggl9 84 x 84 0.08s/patch
Swim Transformer swim_t 84 x 84 0.101s/

patch
MAE mae_visualize_vit_base 224 x 224 0.25s/patch
(resized)

real bridge inspection images, demonstrating its capability of fast
implementation for damage detection with weakly supervised infor-
mation and the potential for practical application in near real-time.

Although the approach has the above advantages, it still has a few
limitations. Firstly, the approach is sensitive to noise, such as oil stains,
road marks, shadows, and bridge joints. Therefore, enhancing the
approach’s robustness in the next step would be helpful. Secondly, the
current approach only focuses on binary classification in fixed patches.
Hence, it is difficult to identify a specific defect in a step when different
kinds of defects coexist in one image, especially for similar damage with
different ROI (region of interest) sizes, such as potholes and cracks. The
hierarchical ensemble learning and flexible region proposals are prom-
ising to solve this issue. Secondly, the support examples should be
representative across the overall items because different support sets
will result in different performances in damage detection. However, it
requires a combination of machine learning and domain knowledge.
Hence, how to select the support examples needs further study.
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