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Antimicrobial effects of XF
drugs against Candida
albicans and its biofilms

E. L. Board-Davies1, W. Rhys-Williams2, D. Hynes2, W. G. Love2

and D. W. Williams1*

1School of Dentistry, Cardiff University, Cardiff, United Kingdom, 2Destiny Pharma plc,
Brighton, United Kingdom
Compared with antibiotics for treating bacterial infections, there are a limited

number of antifungal agents. This is due to several factors, including the

difficulties of identifying suitable antifungals that target the fungal cell without

damaging host cells, and the reduced rates of diagnosis of fungal infections

compared with those caused by bacteria. The problem of treating fungal

infections is exacerbated by an increasing incidence of antifungal resistance

among human fungal pathogens. Three XF drugs (XF-73, XF-70, and DPD-207)

have previously displayed innate bactericidal effects and a low propensity for

microbial resistance, with XF-73 and XF-70 having a second, light-activated

mechanism of action [known as photodynamic therapy (PDT)]. In an effort to

expand the repertoire of antifungal agents, this research assessed the in vitro

activity of XF drugs via both mechanisms of action against six strains of the fungal

pathogen Candida albicans in both planktonic and biofilm cultures. In addition,

this research examined the effects of XF drug treatment on biofilms ofC. albicans

in a reconstituted human oral epithelium model. All C. albicans strains tested

were susceptible to XF-73 and XF-70, with minimum inhibitory concentrations

(MICs) between 0.25 µg/mL and 2 µg/mL; DPD-207 was less potent, with MICs

between 4 µg/mL and 16 µg/mL, and light activation did not enhance these MICs.

Complete biofilm eradication was not reported at the tested XF drug

concentrations. However, live and dead staining of C. albicans cells in biofilms

after XF drug treatment demonstrated that XF-73 and XF-70 were active against

most Candida biofilms tested from 64 µg/mL; again, light activation did not

enhance anti-biofilm activity. Candida biofilms were more resistant to DPD-207,

with fungicidal effects occurring from 256 µg/mL. XF-73 and XF-70 reduced

penetration of C. albicans biofilm into reconstituted human oral epithelium

(RHOE) and resulted in less damage (as determined by reduced lactate

dehydrogenase release) than untreated biofilms. Overall, the results highlight

the potential of XF drugs as new drugs for the management of topical infections

caused by C. albicans. Further studies are warranted on the development of XF

drugs as antifungals, particularly for XF-73 and XF-70.
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Introduction

The fungal genus of Candida contains over 150 species, with

several species associated with human infection (candidosis). The

most prevalent cause of candidosis is Candida albicans, which

typically colonises humans as a harmless commensal but can

cause infections when conditions allow (Patel, 2022). The

majority of these infections are topical, affecting the oral and

vaginal mucosa, but in severely immunocompromised

individuals, serious systemic infection can arise (Brown et al.,

2012). Globally, C. albicans is responsible for > 150 million

mucosal infections, with an estimated 200,000 deaths per

annum occurring due to invasive and disseminated disease in

susceptible populations, (Richardson, 2022).

Four clinical presentations of primary oral candidosis are

recognised: chronic erythematous candidosis, chronic hyperplastic

candidosis (Lorenzo-Pouso et al., 2022), acute erythematous

candidosis (Gonsalves et al., 2008), and acute and chronic

pseudomembranous candidosis (Baumgardner, 2019). In addition,

there are oral conditions associated with secondary Candida

infection, including angular cheilitis, central papillary atrophy

(median rhomboid glossitis), and lichen planus. Host-associated

risk factors for oral candidosis include nutritional deficiencies,

hormonal imbalances, receipt of broad-spectrum antibiotics or

immunosuppressive therapies, poor oral hygiene, and inappropriate

denture care and use (Pankhurst, 2013). To instigate infection, several

putative C. albicans virulence factors are recognised, including the

ability to generate tissue-invading filamentous forms (hyphae and

pseudohyphae) and production of hydrolytic enzymes, such as

secreted aspartyl proteinases (SAPs) and phospholipases (PLs) (Bu

et al., 2022). There is also the prerequisite for Candida to be able to

adhere to oral surfaces and form biofilms (Rautemaa and

Ramage, 2011).

Biofilms are defined as microbial communities that adhere to

biotic and abiotic surfaces, with the microbial cells being

embedded in a self-produced extracellular polymeric substance

(EPS) (Mishra et al., 2023). The biofilm cells are protected from

removal from the surface largely because the EPS provides

adhesive and cohesive forces of attachment and impedes access

by host immune factors and administered antimicrobials.

Importantly, biofilm cells can be up to 1,000 times more

resistant to antimicrobials than their planktonic or free-living

counterparts (Rogers et al., 2010). The successful treatment of

fungal biofilms is hindered by their inherent barrier resistance, the

relatively limited numbers of effective antifungal drugs compared

with the numbers of antibiotics, and the emergence of antifungal

drug resistance (Gong et al., 2023).

The majority of currently licensed antifungals belong to one of

four classes (i.e., azoles, polyenes, echinocandins, and allylamines)

and these largely exert their effects through disruption or inhibition

of peripheral cell structures, including the plasma membrane or cell

walls of fungi. Antifungal resistance to all of these agents has been

detected, although in the case of polyenes, which disrupt the fungal
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cell membrane through binding to ergosterol, this is of lower

prevalence and poorly characterised. Unfortunately, polyene

agents have the notable disadvantage of having the highest host

cell toxicity profiles and being poorly adsorbed, which limits their

application. Azole antifungals inhibit synthesis of the cell

membrane by interfering with the cytochrome P450-dependent

enzyme lanosterol 14-alpha-demethylase. This enzyme converts

lanosterol to ergosterol, which is the principal sterol in fungal cell

membranes. Mutations in the Candida ERG11 gene (Whaley et al.,

2017), which encodes lanosterol demethylase, can lead to azole

resistance. Echinocandins inhibit glucan synthesis in the cell wall of

Candida and mutations of the FKS1 gene, which produces the b-D-
1,3-glucan synthase complex, which is frequently involved in

resistance (Dudiuk et al., 2015). Other mechanisms of resistance

to antifungals exist, and include the overexpression of efflux pumps,

the use of surrogate or external sources of sterols, and also the

growth of Candida within biofilms. Biofilms are, indeed, the main

form of growth through which Candida colonises both abiotic and

biotic surfaces in the human body. Importantly, these Candida

biofilms exhibit an inherently higher tolerance to antifungal agents

(Pereira et al., 2021).

Therefore, there is a clear need for the development of

alternative antifungal agents, and new agents should preferably

have antibiofilm activity and a low propensity for generating

microbial resistance. This article reports on the further study of

a new class of antimicrobial drugs as potential antifungal

candidates, XF drugs (Pereira Gonzales and Maisch, 2010;

Gonzales et al., 2013). The studied XF drugs (XF-73, XF-70, and

DPD-207) are synthetic porphyrins that have intrinsic

antibacterial effects through binding and disrupting bacterial cell

membranes (Ooi et al., 2009). As XF-73 and XF-70 contain a

porphyrin ring within their structure, this facilitates a second,

light-activated antibacterial mechanism of action, known as

photodynamic therapy (PDT), whereby XF-73 and XF-70

release reactive oxygen species when activated by light at a

wavelength of 420 nm (Maisch et al., 2005), which can enhance

antibacterial activity. By design, DPD-207 does not exhibit PDT

activity. Although several investigations have assessed the

antibacterial effects of XF drugs (Farrell et al., 2010; Board-

Davies et al., 2022), studies into their antifungal activity remain

comparatively limited. XF-73 has recently completed a Phase 2

clinical trial demonstrating significant antibacterial activity

against intranasal carriage of Staphylococcus aureus in patients,

(Mangino et al., 2023), and, therefore, clinical safety data for this

compound are available for multiple, topical dosing in the mucous

membrane, opening a potential pathway for the development as a

new antifungal treatment.

The aim of this research was, therefore, to undertake the in vitro

evaluation of XF drugs for activity against six strains of the fungal

pathogen C. albicans in both planktonic and biofilm cultures. The

effect of treatment on reducing the damage caused by the C. albicans

SC5314 biofilm infection of an in vitromucosal epithelial model was

also assessed. It was envisaged that successful demonstration of
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antifungal activity would contribute to expanding the repertoire of

candidate antifungal therapies.
Materials and methods

Assessment of anti-candidal activity of
XF drugs

Several experimental approaches were used to assess the

antifungal activity of the XF drugs. These included minimum

inhibitory concentration (MIC) measurements using a modified

bro th mic rod i lu t i on me thod , the de t e rmina t i on o f

minimum biofilm eradication concentrations (MBECs), the

live/dead staining of biofilms, and the assessment of C.

albicans biofilm-induced damage to a reconstituted human

oral epithelium (RHOE).
Preparation of Candida species and strains

The strains of C. albicans (n = 6) (Table 1) used to assess the

antifungal effects of the XF drugs were maintained by culture on

Sabouraud dextrose agar (SDA) at 37°C until required for the

experiments. Apart from C. albicans SC5314, all test strains

originated from the oral cavity. One strain (C. albicans PB1)

was derived from a healthy oral mucosa, the remaining strains

were from patients attending the School of Dentistry, Cardiff

University, with oral candidosis. The strains were, therefore,

representative of a range of oral conditions and pathologies

(Malic et al., 2007). All incubations unless otherwise stated were

under stationary conditions.
Preparation of XF drugs

Three XF drugs (XF-73, XF-70, and DPD-207; Destiny Pharma

plc) were resuspended in distilled water to generate stock

concentrations of 10 mg/mL. These preparations were stored for

up to 1 week at 4°C prior to use in these studies.
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Minimum inhibitory concentration of XF
drugs against Candida albicans

Broth microdilution was used to measure the minimum

inhibitory concentration (MIC) of each XF drug against

planktonic cultures of six strains of C. albicans. The method was

based on the broth microdilution method of the Clinical and

Laboratory Standards Institute (CLSI, formerly NCCLS) (The

National Committee for Clinical and Laboratory Standards,

2002). Briefly, 100 mL of the XF drug (XF-73, XF-70, and DPD-

207) at concentrations between 0 mg/mL and 512 mg/mL in Roswell

Park Memorial Institute (RPMI) 1640 medium was added to the

wells of 96-well microtitre plates. The cultures of C. albicans in

RPMI 1640 medium were adjusted to a 0.5 McFarland standard and

further diluted 10-fold. A 5-mL volume of these cultures was added

to the wells containing the different drug concentrations. For

selected plates containing XF-73 and XF-70, the effect of 15

minutes of PDT was also assessed by illumination using a

modified light source (Waldmann Medizintechnik, Villingen-

Schwenningen, Germany; at wavelengths ranging from 380 nm to

480 nm, with peak output at 420 nm) delivering 14 J/cm2 of light.

Controls included the absence of the drugs (growth control) and

also the absence of C. albicans (sterility control). All the plates were

incubated aerobically at 37°C for 16–20 hours and visually analysed

for the growth of Candida. The MICs were defined as the lowest

concentrations that inhibited Candida growth when compared with

the drug-free controls. All the tests were performed in triplicate.
Determination of the minimum biofilm
eradication concentration

The XF drug treatment of C. albicans biofilms was tested based

on a minimum biofilm eradication concentration (MBEC) assay

(Board-Davies et al., 2022). Briefly, the cultures of all six strains of

C. albicans were grown in Sabouraud dextrose broth (SDB)

overnight at 37°C. The broth cultures were then diluted in SDB

to an optical density (OD) at 620 nm of 1.0 (equivalent to 1–5 × 106

cells/mL). This preparation was then diluted 20-fold into the wells

of a microtitre plate containing SDB. The plates were incubated for
TABLE 1 Minimum inhibitory concentrations of XF drugs against strains of Candida albicans.

Candida strain Minimum inhibitory concentrations (µg/mL) of XF-drugs

XF-73 XF-73 with PDT XF-70 XF-70 with PDT DPD-207

C. albicans 480/00 0.5 0.5 2 1 8

C. albicans PB1/93 0.5 0.5 2 0.5 8

C. albicans 480/99 0.5 0.25 2 0.25 16

C. albicans PTR/93 0.25 0.5 0.5 0.5 8

C. albicans 109/93 0.5 0.25 0.25 0.25 4

C. albicans SC5314 0.5 0.5 1 1 8
fr
The MICs represent the mode of the results from the triplicate broth microdilution assays. No minimum biofilm eradication concentration values were reported at concentrations up to 1,024 µg/
mL. Photodynamic therapy (PDT).
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24 hours at 37°C to facilitate biofilm formation. Planktonic Candida

was then removed using a pipette and the biofilm was washed with

100 µL of phosphate-buffered saline (PBS). Following this, the XF

drugs were added in a twofold dilution series (final concentration

range 0.5–1024 µg/mL in SDB) to the appropriate wells. The control

wells were those with no drug added or an absence of C. albicans.

Selected plates for PDT were placed on a light box for 15 minutes, as

described above. Microtitre plates were then incubated at 37°C for

24 hours. The medium was removed and the biofilm in the wells

was washed (× 2) with PBS. The biofilm was then resuspended by

repeat pipetting in 100 µL of SDB and the OD at 620 nm measured.

After a further 24-hour incubation at 37°C, the OD at 620 nm was

again measured and the differences in the values used to establish

biofilm regrowth. The changes in turbidity were initially assessed

visually and MBECs were subsequently defined as the XF drug

concentrations where a < 20% change in the OD at 620 nm occurred

between the two measurements. All the experiments were

conducted in triplicate.
Assessment of antifungal effects of
XF drugs by confocal laser
scanning microscopy

Candida albicans SC5314 biofilm was grown on polycarbonate

coupon surfaces in a CDC biofilm reactor (Biosurface Technologies,

Bozeman, MT, USA). Candida albicans SC5314 was selected for

use, as it is considered a reference strain (Bartelli et al., 2018), and

was confirmed to be an adept biofilm-forming isolate from the

MBEC determination work. Briefly, C. albicans was cultured

overnight at 37°C in SDB and the cell concentration standardised

by adjusting to an OD at 620 nm of 1.0 with fresh culture medium.

A 4-mL volume of this C. albicans inoculum was then added to a

bioreactor containing SDB, which was incubated, with stirring,

under batch conditions for 24 hours. After incubation, bioreactor

rods holding the polycarbonate coupons were transferred to a new

bioreactor and incubated for a further 24 hours under continuous

flow conditions. The polycarbonate coupons with biofilms were

then removed from the bioreactor and immersed in different

concentrations of XF drugs for 24 hours, with selected treatments

also incorporating light activation, as described above. The biofilms

were then live/dead stained (Live/Dead™ BacLight™ viability kit;

Thermo Fisher Scientific, Paisley, UK) and imaged by confocal laser

scanning microscopy (CLSM) to assess the biocidal effects of the

XF drugs.
Effect of XF drug treatment on Candida
albicans biofilm infection of a
reconstituted human oral epithelium

For these studies, only C. albicans SC5314 was employed due to

the limited availability of reconstituted human oral epithelium. The

Candida albicans SC5314 biofilm was generated using the CDC

bioreactor, as described above. The biofilm was then treated with
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the XF drugs (1,024 µg/mL ± light activation) and overlaid on a

reconstituted human oral epithelium (RHOE; Skin Ethic

Laboratories), which was incubated for 16 hours at 37°C. The

RHOE specimens were removed from the maintenance medium

and fixed overnight in 10% formal saline solution. The tissues were

then subjected to dehydration and paraffin wax embedding in

pathology cassettes using a Leica ASP300S processor. The tissue

sections (5 µm thick) were obtained from the rehydrated tissues and

stained using a C. albicans peptide nucleic acid (PNA) probe (Yeast

Traffic Light® PNA FISH® kit; AdvanDx, Vedbæk, Denmark) and

a nucleic acid stain, as described in previous studies (Silva et al.,

2011; Cavalcanti et al., 2015). The levels of lactate dehydrogenase

(LDH) in the RHOE maintenance medium were measured using

the Invitrogen CyQUANT™ LDH cytotoxicity assay (Fisher

Scientific UK Ltd, Loughborough, UK) in accordance with the

manufacturer’s recommended protocol. Higher levels of LDH

would be indicative of increased tissue damage.
Statistical analyses

Results for the MIC and MBEC for each isolate are expressed as

the modal averages for the replicates for each isolate. One-way

ANOVA followed by Tukey’s multiple comparisons test was used to

evaluate the statistical differences in LDH levels between samples at

95% confidence.
Results

XF drug antifungal activity against Candida
albicans using broth microdilution, MBEC
and live/dead staining assays

The MICs for XF-73, XF-70 and DPD-207 (± light activation,

where appropriate) were determined for six different C. albicans

strains. Table 1 summarises the MICs, which, for XF-73 and XF-70,

were between 0.25 µg/mL and 2 µg/mL, depending on the C.

albicans strain. The MICs for DPD-207 were higher and ranged

between 4 µg/mL and 16 µg/mL. Light activation did not impact

MICs for XF-73 or XF-70, which ranged between 0.25 µg/mL and 1

µg/mL with PDT.

The effectiveness of XF drugs against the biofilms of the six C.

albicans strains was also examined using the MBEC assay. However,

no MBECs were measurable (up to the maximum concentration

tested of 1,024 µg/mL) in this microtitre plate-based assay.

The effects of XF drugs on a C. albicans SC5314 biofilm attached

to polycarbonate coupons were also assessed by live/dead staining

and CLSM. Figure 1 shows that XF-73 and XF-70 resulted in a

significant killing of C. albicans SC5314 biofilm cells at a

concentration of 64 µg/mL, as seen by the predominance of red

(propidium iodide) staining (images C and D), irrespective of

inclusion of light activation. DPD-207 reduced the number of

viable C. albicans SC5314 biofilm cells at a concentration of 256

µg/mL.
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Effect of XF drug treatment of Candida
albicans biofilm on pathogenicity

The final antifungal assessment examined the effects of XF

drug-treated and untreated C. albicans SC5314 biofilms on the

subsequent infection of a RHOE. Figure 2 presents the CLSM

images of the RHOE following exposure to biofilms previously

exposed to different XF drug treatment types. Both XF-73 and XF-

70 reduced C. albicans SC5314 invasion of the RHOE. In most

cases, no Candida cells were detected in the tissue exposed to

treated biofilms, irrespective of inclusion of light activation.

Figure 3 presents the relative damage to the RHOE tissue based

on measuring LDH activity in the conditioning medium occurring

as a response to biofilm infection. XF-70, XF-73, and DPD-207 all

significantly reduced tissue damage when compared with

untreated biofilm infected tissue (positive control). No further

reduction of tissue damage was observed when light activation was

also used in the presence of the XF drugs, although the biofilm

exposed to light activation alone showed lowered LDH levels,

which was unexpected given the absence of a biocidal effect on C.

albicans from light activation only, which was based on live/dead

staining (Figure 1).
Discussion

Given the clear need for new effective antifungals, which are also

effective in combating biofilms containing Candida, this study
Frontiers in Fungal Biology 05
aimed to determine the effectiveness of three antibacterial XF

drugs in inhibiting strains and species of Candida. Six strains of

C. albicans were used in the study and the effects against planktonic

and biofilm growth were determined.

Initially, the effectiveness of the XF drugs (XF-73, XF-70, and

DPD-207) was assessed by determining both the MICs and MBECs

of each drug (± light activation, where appropriate). The innate

anti-Candida activity of XF drugs was confirmed for all of the

agents tested. Both XF-73 and XF-70 have a non-metalated

porphyrin ring within their structures, which on light activation

leads to the release of reactive oxygen species and may provide a

second mechanism of anti-candidal action. However, when light

activation was tested, no enhanced antifungal effect was observed.

Gonzales et al. (2013) previously showed enhanced fungicidal PDT

effects with XF-73 against a single planktonic strain of C. albicans

(ATCC-MYA-273) and its biofilm. This previous research was

based on immediately quantifying colony-forming units (CFUs)

post PDT; a six-log reduction of viable planktonic CFUs was

reported but, importantly, not the complete killing of all the

fungal cells. The methodology was, therefore, different to the MIC

methodology used in the present study, which would have allowed

the surviving cells to regrow. In this study, the failure to record an

MBEC value was not indicative of an absence of antibiofilm activity,

as any viable cells that persisted after treatment would lead to

subsequent regrowth (even if the majority of biofilm cells had been

killed). Indeed, although Gonzales et al. (2013) did not report

MBEC values at the tested concentrations, they did report a five-

log reduction of C. albicans biofilm cells using PDT with XF-73,
FIGURE 1

Effect of XF-drug treatment on Candida albicans SC5314 biofilms. (A) Untreated control; (B) light alone; (C) XF-73 (64 µg/mL); (D) XF-70 (64 µg/mL); and

(E) DPD-207 (256 µg/mL). Green SYTO™ 9 staining represents live C albicans cells. Red propidium iodide staining represents dead C albicans cells.
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although their approach employed an immediate assessment of

effects without the opportunity of biofilm regrowth. As a

consequence, antibiofilm effects were further examined in this

study. In these experiments, the C. albicans SC5314 biofilm on

polycarbonate coupons was treated with each XF drug (up to a

concentration of 1,024 µg/mL) and the effects analysed by live/dead

staining. In these assays, it was clear that all of the XF drugs

possessed significant Candida antibiofilm activity.

Previously, research has used the RHOE to compare Candida

virulence (Silva et al., 2011), investigate immune responses (Schaller

et al., 2002), and evaluate antifungal effects (Boros-Majewska et al.,

2014) based on subsequent tissue damage. In this study, a biofilm of

C. albicans SC5314 on polycarbonate coupons was produced and

treated with XF drugs (with and without light activation).

Importantly, the XF drug-treated Candida biofilm caused

significantly reduced damage to the RHOE than the untreated

infected controls, confirming the potential of these agents to have

a clinical impact. Interestingly, light alone also reduced the

subsequent LDH activity of infection, which was unexpected as
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no anti-candidal biofilm effect from light (without XF drug

treatment) had been previously observed. Indeed, Gonzales et al.

(2013) reported that light alone did not kill C. albicans based on the

measurements of cell growth. Further investigations are, therefore,

warranted to establish the basis of the reduction of LDH activity

with light alone observed in this study, but it might be indicative of

some detrimental effect on C. albicans biofilms that was not

highlighted by live/dead staining. A favourable clinical safety

profile at higher concentrations of XF-73 than was tested within

the RHOE tissue model has previously been reported (Mangino

et al., 2023), but the efficacy and safety profile of XF-73 will need to

be further investigated using suitable in vivo models, such as the

murine model described by Segal and Frenkel (2018).
Conclusions

This research demonstrated that XF drugs were effective

antifungal agents against C. albicans and its biofilms via the
FIGURE 2

Confocal laser scanning microscopy of reconstituted human oral epithelium infected with Candida albicans SC5314 biofilms. (A) Non-infected
control; (B) infected (untreated); (C) infected (light alone); (D) infected (XF-73 treated); (E) infected (XF-70 treated); and (F) infected (DPD-207
treated). Blue, epithelial cell nuclei; Green and arrowed, Candida albicans SC5314 cells. The bracket indicates the epithelium layer.
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drugs’ innate antimicrobial mechanism of action. XF-73 and XF-

70 were the most potent antifungal agents tested, whereas DPD-

207 required higher drug concentrations for an antifungal effect.

The induction of the secondary PDT mechanism of action via

light activation did not enhance antifungal activity against

planktonic or biofilm cultures with XF-73 and XF-70. The low

MIC values reported, coupled with antibiofilm effects leading to

protection from tissue damage, would suggest that XF drugs can

be considered as potential treatment alternatives for superficial

candidoses. Further work is warranted to assess XF drug activity

against other Candida species and strains with known

resistance to traditional antifungals and to optimise delivery

mechanisms to facilitate the translation to clinical use on

mucosal membranes.
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FIGURE 3

Comparative lactate dehydrogenase (LDH) activity in conditioning medium of reconstituted human oral epithelium infected with Candida albicans
SC5314 biofilms treated with XF-73, XF-70 (1024 µg/mL with or without light activation) and DPD-207 (1,024 µg/mL). LDH activity was the 680nm
absorbance value (background) subtracted from the 480nm absorbance value The bars show averages and SDs within each group. *** denotes
significance at a p-value < 0.005. (One-way ANOVA followed by Tukey’s multiple comparisons test).
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