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angiogenesis and thrombosis
to enhance immunotherapy
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This review focuses on the immunosuppressive effects of tumor angiogenesis

and coagulation on the tumor microenvironment (TME). We summarize previous

research efforts leveraging these observations and targeting these processes to

enhance immunotherapy outcomes. Clinical trials have documented improved

outcomes when combining anti-angiogenic agents and immunotherapy.

However, their overall survival benefit over conventional therapy remains

limited and certain tumors exhibit poor response to anti-angiogenic therapy.

Additionally, whilst preclinical studies have shown several components of the

tumor coagulome to curb effective anti-tumor immune responses, the clinical

studies reporting combinations of anticoagulants with immunotherapies have

demonstrated variable treatment outcomes. By reviewing the current state of the

literature on this topic, we address the key questions and future directions in the

field, the answers of which are crucial for developing effective strategies to

reprogram the TME in order to further the field of cancer immunotherapy.

KEYWORDS

immunotherapy, tumor microenvironment, angiogenesis, thrombosis, vascular
normalization, hypoxia, treatment resistance
1 Introduction

Immunotherapies have revolutionized cancer treatment; however, their efficacy

remains limited to a certain select tumor types primarily due to tumor immune evasion

mechanisms. A key pathway through which tumors evade the immune system is the

reprogramming of cellular constituents of the tumor microenvironment (TME) towards an

immunosuppressive phenotype. Thus, enhancing the effectiveness of immunotherapies by

manipulating the TME is a major focus of current research.
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The tumor vasculature is key in controlling immune cell

infiltration into tumors. However, tumor blood vessels can be

highly abnormal, characterized by tortuous, primitive, and leaky

vessels with an erratic blood flow, impeding effective immune cell

trafficking into tumors. Such an abnormal vasculature results in

areas of the tumor not receiving adequate oxygen, leading to tumor

hypoxia that has separate downstream immunosuppressive effects.

From a therapeutic standpoint, anti-angiogenic drugs have been in

the market for nearly 20 years and have been shown to enhance

tumor blood flow by normalizing the tumor vasculature and

mitigating the downstream immunosuppressive effects of

neoplastic angiogenesis. In recent years, several clinical trials have

evaluated the efficacy of combining anti-angiogenic agents with

immune checkpoint inhibitors (ICIs), and these combination

regimens are now approved for the treatment of lethal cancers

such as renal cell carcinoma (RCC) and hepatocellular

carcinoma (HCC).

Tumor coagulation, broadly known as cancer-associated

thrombosis (CAT), manifested in the form of venous

thromboembolisms (VTEs) is a frequent complication in cancer

patients. Components within the TME involved in hemostasis,

collectively termed the tumor coagulome, have recently been

shown to reshape the TME, thereby modulating immunotherapy

response. These findings have paved the way for studies

aiming to enhance immunotherapy responses by administering

concomitant anticoagulation.

In this review, we aim to provide a comprehensive analysis of

these processes, shedding light on their roles in fostering an

immunosuppressive TME and current challenges regarding their

potential as therapeutic targets in clinical settings.
2 Tumor angiogenesis

2.1 The angiogenic shift in tumors

Tumors initially exist in an avascular stage (i.e., without blood

vessels), which limits their growth and metastatic potential. The

“angiogenic shift” is pivotal for tumor survival, marking their

transition from an avascular state to a vascularized one. This shift

involves significant adaptations in the TME to create a pro-

angiogenic environment (1).

One prominent metabolic alteration observed in cancer cells is

the upregulation of glycolysis even under well-oxygenated

conditions, known as “aerobic glycolysis” or the “Warburg effect”

(2). Hypoxia-inducible factors (HIFs), which are transcription

factors activated in response to low oxygen levels, play a central

role in this metabolic rewiring of cancer cells by inducing a state of

“pseudohypoxia”, redirecting cellular metabolism towards

glycolysis (3, 4). This metabolic shift leads to the accumulation of

lactate and tumor acidosis (5), exacerbated by poor tumor perfusion

and the high metabolic demands of rapidly dividing cancer cells,

which promote hypoxia and anaerobic glycolysis (6). In the hypoxic

and acidotic TME, HIF-mediated gene expression changes enable

tumor cells to survive in an otherwise inhospitable milieu (7).
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HIFs are heterodimeric, composed of an alpha subunit (HIF-a)
and a beta-subunit (HIF-b) (8). Activation of HIF-1a triggers the

upregulation of pro-angiogenic mediators, including vascular

endothelial growth factors (VEGF), platelet-derived growth

factors (PDGF), and fibroblast growth factors (FGF) (9). Among

these, VEGF plays a particularly crucial role in tumor angiogenesis

(10–12).
2.2 Dysfunctional vessels in
neoplastic angiogenesis

However, tumor angiogenesis often results in the formation of

tortuous and leaky blood vessels with an erratic blood flow, leading

to regions with poor blood flow and inadequate oxygenation (13).

Tumor endothelial cells harbor numerous cytogenetic

abnormalities, rendering them molecularly and morphologically

unstable (14). VEGF signaling disrupts gap junctions between

endothelial cells, increasing vascular permeability and interstitial

hydrostatic pressure (15, 16). Furthermore, the detachment of

pericytes from endothelial cells promotes vessel fragility and

intra-tumoral hemorrhage (17–19). Additionally, the proteolytic

degradation of the vascular basement membrane facilitates tumor

cell intravasation and metastasis (20).
3 Angiogenesis reprograms the
tumor microenvironment
towards immunosuppression

In this section, we will delve into the multifaceted

immunosuppressive effects of neoplastic angiogenesis on the

TME, focusing on the direct effects of VEGF, tumor hypoxia,

and acidosis.
3.1 Direct effects of angiogenic factors

VEGF downregulates the expression of leukocyte adhesion

molecules such as ICAM-1 and VCAM-1 on endothelial cells,

thereby inhibiting the infiltration of CD8+ T-cells into tumors

(21–23). Strategies aimed at vascular normalization, such as anti-

VEGF medications or p21-activated kinase-4 (PAK4) inhibition,

can restore the expression of adhesion molecules and enhance

CD8+ T-cell infiltration (24, 25). Endothelial cells express PD-L1

and Fas ligand, which suppress CD8+ T-cell effector functions and

promote Tregs-mediated immunosuppression (26, 27). Anlotinib, a

VEGF receptor blocker, has been shown to downregulate

endothelial PD-L1 and increase the ratio of CD8+ T-cell

infiltration to Tregs (27). Additionally, VEGF promotes T-cell

exhaustion, impairs dendritic cell (DC) maturation and function,

recruits immunosuppressive cells like VEGR+ Tregs, MDSCs, and

pro-tumor M2 tumor-associated macrophages (TAMs), and

contributes to an hypoxic and acidotic environment through the

generation of dysfunctional vasculature (28–30).
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3.2 Tumor hypoxia

Hypoxia skews cells of the TME towards immunosuppressive

phenotypes (Figure 1). Hypoxic regions within tumors serve as

niches where immunosuppressive cells, such as myeloid-derived

suppressor cells (MDSCs), M2 TAMs, exhausted CD8+ T-cells, and

Tregs, preferentially accumulate (31). Pharmacologically inhibiting

HIF-1/2 by 32-134D has been shown to downregulate genes

involved in angiogenesis, glycolysis, and immune evasion. It also

decreases the number of pro-tumorigenic M2 TAMs and MDSCs

while increasing the infiltration of anti-tumor CD8+ cytotoxic T-

cells and NK cells (32). Combining 32-134D with anti-PD-1

immune checkpoint inhibitors (ICIs) enhances therapy response

(32). Additionally, inhibiting HIF-1a with echinomycin decreases

PD-L1 expression on tumor cells, TAMs, and MDSCs when

combined with anti-CTLA4 ICI therapy (33).Importantly,

echinomycin augmented PD-L1 expression in normal tissues,

promoting tolerance and protecting against immune-related

adverse effects of ICIs (33).

TAMs play crucial roles in tumor growth, survival, and therapy

resistance, which are directly correlated with HIF-1a- expression in

these cells (34–36). Hypoxia upregulates the triggering receptor on

myeloid cells-1 (TREM-1) receptor on TAMs, which skews naïve T-

cells towards Tregs (37). Additionally, hypoxia induces an

immunosuppressive M2 phenotype in TAMs by upregulating

HIF-2a (38–40). If HIF-1a and HIF-2a are upregulated
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simultaneously in TAMs, whether one isoform predominates over

the other, and the temporal dynamics based on type of hypoxia

(intermittent vs continuous) or tumor stage remain unclear (41).

Tumor-associated neutrophils (TANs) have both pro-tumor

and anti-tumor roles in cancer (42). Hypoxia prolongs neutrophil

lifespan, enhances their degranulation function (43, 44), but

attenuates the respiratory burst (45). Tumor hypoxia induces

TAN recruitment through IL-8 and skews their phenotypes

towards PMN-MDSCs, which suppress anti-tumor T-cell

responses and promote tumor proliferation through neutrophil

elastase (NE) (46–48). Reversing this phenotype by hyperoxia

enhances anti-tumor immunity and tumor cell apoptosis (48).

VEGF impairs the differentiation of immature DCs into effective

antigen-presenting mature DCs (49–51). Hypoxic regions of

hepatocellular carcinoma harbor type-2 conventional dendritic cells

(cDC2s) and immunosuppressive plasmacytoid dendritic cells, linked

to the Tregs accumulation and CD8+ T-cell suppression (31, 52). Tregs,

in turn, can downregulate surface HLA-DR expression on cDC2s,

impairing their antigen-presenting function (53). Contrarily, hypoxia

activates various anti-tumor functions in DCs such as pro-

inflammatory cytokine secretion (54). cDC2s have also been shown

to modulate tumor evasion from CD8+ T-cell cytotoxicity (55). Such

data indicate that all-or-none approaches targeting dendritic cells

may be unsuccessful and/or exert unwanted pro-tumorigenic side

effects, highlighting the need for elucidating the extrinsic

(environmental) and intrinsic regulators of DC plasticity (56).
FIGURE 1

Pro-angiogenic signaling within the TME fosters tumor hypoxia. Tumor hypoxia generates an immunosuppressive tumor microenvironment—
promoting the infiltration of MDSCs, M2 TAMs, Tregs, and exhausted CD8+ T-cells—that negatively impacts the efficacy of cancer immunotherapies.
Abbreviations: TME, tumor microenvironment; MDSCs, myeloid-derived suppressor cells; TAMs, tumor-associated macrophages.
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The upregulation of HIF-1a in naïve T-cells favors Treg

differentiation (57) and indirectly augments Treg recruitment

through CCL28 and TGF-b production in the TME (58, 59).

Persistent hypoxia and antigen stimulation drive CD8+ T-cell

exhaustion (60), with HIF-1a driving AMP production, which

contributes to T-cell suppression and therapy resistance (60–62).

However, conflicting data that observe HIF-1a and HIF-2a also

support CD8+ T-cell proliferation and anti-tumor activity (36, 63,

64). Different types of tumor hypoxia (continuous vs. intermittent)

may have varying effects on HIF-1a and HIF-2a (65, 66). Future

research is required to elucidate the major hypoxia-related signaling

pathways driving T-cells into anti-tumor or immunosuppressive

phenotypes, along with their associated cell surface receptors and

extrinsic regulators in the TME.

Cancer-associated fibroblasts (CAFs) play diverse roles in

tumor progression (see (67) for detailed review). Increased CAFs

presence in esophageal cancer correlates with decreased CD8+

cytotoxic T-cells and increased Tregs infiltration (68). CAFs

secrete IL-6, which activates HIF-1a in tumor cells, augmenting

their glucose uptake and glycolysis (69), which may stabilize Tregs.

IL-6 also induces the differentiation of fibroblasts into CAFs and

TAMs to adopt an M2 polarization (69). An anti-IL-6 antibody

slows tumor growth by increasing CD8+ T-cell infiltration and

decreasing Tregs presence (68).
3.3 Tumor acidosis

Mechanistically, tumor acidosis induces an M2 phenotype on

TAMs (70, 71), which release HMGB1 and arginase-1 that activate

signaling pathways enhancing aggressive cancer phenotypes (72,

73). Tumor-derived lactic acid suppresses antigen-presenting

functions of DCs to blunt T-cell activation (74), as well as directly

attenuating CD8+ T and NK cell effector functions (75–79).

Increasing extracellular pH by administering bicarbonate slows

tumor growth and increases the infiltration of anti-tumor CD8+

T-cell s (80). Additionally, combining bicarbonate with anti-CTLA4

or anti-PD-L1 ICI improves therapy response (80).

The rapid consumption of glucose by tumor cells due to the

Warburg effect limits glucose availability for CD4+ and CD8+

effector T-cells, favoring their suppression (81–87). This low

glucose environment favors the functional stabilization of Tregs

(88–91), as they can preferentially utilize fatty acids and lactate as

metabolic substrates (92, 93). Tregs largely avoid glycolysis because

high glucose concentrations in the TME and cellular uptake impair

Treg function (93). The Treg avoidance of glucose is controlled by

surface CTLA-4 and PD-1 (94, 95). However, chronic exposure to

lactate, when studied apart from its acidic TME, increases the

stemness of CD8+ T-cells and augments anti-tumor CD8+

immunity to suppress tumor growth (96, 97). Therefore, current

research indicates that there exists a combinatorial influence of TCR

signaling, hypoxia, low glucose, tumor acidosis, and lactate on the

T-cell phenotype in the TME, with their combined effects

potentially overshadowing lactate’s anti-tumor effects.
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4 The tumor coagulome
and thrombosis

Venous thromboembolic events (VTEs) are a common

complication in several cancer types and remain a leading cause

mortality in these patients (98–100). This discussion focuses on key

aspects of the tumor coagulome as a mediator of CAT.
4.1 Coagulation cascade

The extrinsic coagulation pathway is initiation by tissue factor

(TF), a transmembrane protein usually expressed by perivascular

cells that is normally shielded from circulation, only being exposed

after blood vessel damage. Once exposed, TF binds and activates

factor VII, leading to the cleavage and activation of factor X into

factor Xa (fXa), ultimately generating thrombin.

TF is the most extensively studied pro-coagulant in cancer-

associated VTEs (101–105). TF levels are elevated in cancer patients

due to TF upregulation on the surface of cancer cells, promoting

extravascular thrombosis. Tumor cells and non-tumor immune

cells in the TME also secrete extracellular vesicles (EVs)

expressing TF (TF+-EVs), promoting intravascular thrombosis

(106). TF-expressing tumor cells can also enter the circulation

and induce CAT (107). TF upregulation in cancer is influenced

by multiple factors, including genetic mutations, growth factors,

inflammatory cytokines, and hypoxia (108). Beyond thrombosis, TF

promotes cancer cell survival, proliferation, invasion, and

metastasis (108). A recent study developed TF-chimeric antigen

receptor natural killer (NK) cells that effectively target TF-

overexpressing triple-negative breast cancer cells to decrease

tumor growth without significant systemic adverse effects (109).
4.2 Platelets

Many cancer patients also display elevated serum levels of

platelet-derived EVs and p-selectin in their serum, indicating

systemic platelet activation. Tumor cell-induced platelet activation

(TCIPA) involves multiple mechanisms (110–112). For example,

the glycoprotein podoplanin (PDPN) expressed on the surface of

many tumor cells binds the C-type lectin receptor-2 (CLEC-2) on

the platelets leading to platelet aggregation and thrombus formation

(113–115). Similarly, TF can directly activate platelets or facilitate

tumor cell-platelet interactions (116, 117). EVs released by triple-

negative breast cancer cells contain uPAR and PDGFRb that can

induce platelet aggregation (118). Platelet activation leads to

degranulation and release of ADP and thromboxane A2, which

can function in an autocrine manner to amplify platelet activation

and aggregation (119). Other than CAT, platelets promote various

other aspects of tumor progression, including sustained

proliferative signaling, angiogenesis, epithelial-to-mesenchymal

transition, immune evasion, and metastasis (120, 121).
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4.3 Neutrophil extracellular traps

Neutrophils are known to produce neutrophil extracellular

traps (NETs), which have been implicated in various pro-

thrombotic diseases, including CAT (122). In cancer patients,

NET markers such as extracellular DNA, myeloperoxidase

(MPO), citrullinated histones, and NE are elevated and correlate

positively with the incidence of VTEs (123–126). Moreover, NET

components like DNA and cit-H3 are richly found in cancer-

associated thrombi in mice and humans (125, 127–131).

Circulating neutrophils retrieved from the blood of tumor-bearing

mice or cancer patients are more prone to form NETs ex vivo (132).

Cancer cells create a systemic environment that promotes NETosis

(132). Factors such as GM-CSF, IL-1b, CXCR1/CXCR2 agonists,

cathepsin C, complement 5a, and EVs have been shown to promote

NET formation in animal tumor models (133–139). Alternatively,

tumors can stimulate NETosis through TCIPA, as activated platelets

directly interact with neutrophils via p-selectin and high-mobility

group box-1 (HMGB1), leading to NET production (140–142).

Studies have shown that exogenous administration of Dnase-1, an

enzyme that degrades NETs, or genetic deletion of peptidyl arginine

deaminase-4 (PAD4) a protein essential for NETosis, significantly

reduce thrombotic events and organ damage in mouse models of

cancer (127, 128, 143). However, it is important to consider the risk of
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adverse events, such as infections, when using Dnase-1 therapy in

immunosuppressed cancer patients (144).
5 The coagulome reprograms
the tumor microenvironment
towards immunosuppression

Preclinical studies have demonstrated that the tumor

coagulome fosters an immunosuppressive TME (Figure 2).
5.1 Coagulation cascade

Within the TME, TAM-derived fXa promotes the expansion of

MDSCs while inhibiting CD8+ and NK cell functions, resulting in

immunosuppression (145). Genetic depletion or pharmacologic

inhibition of fXa using rivaroxaban enhances the anti-tumor

response and improves the efficacy of ICIs in murine models of

colorectal cancer and melanoma (145). Similarly, high levels of

plasminogen activator inhibitor-1 (PAI-1) in murine lung

carcinoma models increases increase the recruitment of TAMs

and polarization towards an M2 phenotype whereas reducing

PAI-1 levels decreases M2 TAMs and increases M1 TAMs (146).
FIGURE 2

The coagulome describes various components of the tumor microenvironment that modulate coagulation. CAT involves the activation of multiple
pathways, including platelet activation, the coagulation cascade, and NETs production. These pathways also interact with various cells of the tumor
immune microenvironment to facilitate tumor immune evasion and immunotherapy resistance. Abbreviations: CAT, cancer-associated thrombosis;
NETs, neutrophil extracellular traps.
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Thrombin and protease-activated receptor 1(PAR1) signaling

has been shown to promote tumor growth, metastasis, and immune

evasion in murine pancreatic adenocarcinoma (PDAC) models

(147). Mechanistically, PAR1 signaling in PDAC cells

downregulates their antigen-processing machinery, resulting in

these cells being less efficiently recognized by anti-tumor immune

responses, and upregulates immunoregulatory proteins like GM-

CSF, involved in recruiting immunosuppressive M2 TAMs and

MDSCs. Furthermore, PAR1-dependent tumor growth is mediated

through the upregulation of cyclooxygenase-2 (COX-2) and GM-

CSF, indicating that these mediators could be potential targets for

therapies inhibiting PDAC growth (148).

However, thrombin has also been shown to induce effector T-

cell activation, proliferation, and cytokine production in various

non-neoplastic contexts (149–151). Furthermore, several mediators

of the coagulation cascade besides thrombin also activate PARs,

indicating that the outcomes of PAR signaling is multifactorial,

depending on the specific ligands, PAR subtypes, and tumor context

(152). For example, thrombin-PAR1 signaling does not promote

tumor progression in transgenic adenocarcinoma mouse prostate

(TRAMP) models, while protein C binding to PAR1 promotes

tumor cell apoptosis and slows the progression of prostate and

intestinal cancers (153). Based on these discrepancies, we advocate

for caution when considering long-term thrombin or PAR1

inhibition as an anti-cancer strategy.

A recent study found that reducing prothrombin levels in mice

before treatment with ICIs led to decreased CD8+ T-cell infiltration

and compromised anti-tumor immunity, resulting in a complete

loss of therapeutic efficacy (154). Inoculating human CD8+ T-cells

with thrombin increased their activation, even cells lacking PAR1

and PAR2, indicating the presence of independent mechanisms for

thrombin-induced CD8+ T-cell activation. However, the study also

revealed that PAR2 signaling suppresses T-cell activation and

attenuates thrombin/PAR1-dependent activation of anti-tumor

CD8+ T-cells (154). Therefore, identifying the specific ligand-PAR

receptor interactions that mediate beneficial or pathologic effects in

different tumor types can aid the development of targeted therapies

that avoid unintended pro-tumorigenic effects.
5.2 Platelets

Platelets play a significant role in promoting immunosuppressive

T-cell phenotypes and impairing the cytotoxic function of NK cells

(155). Platelets also promote the development of tumors such as

colitis-associated cancer (CAC) by inducing polarization of myeloid

cells toMDSCs and reducing the accumulation of CD8+ T-cells in the

colonic mucosa (156). Inhibiting platelet activation by clopidogrel

decreases MDSCs and increases CD8+ T-cell infiltration, thereby

delaying CAC development (156).

In the circulation, platelets can surround tumor cells, forming

tumor microthrombi that are protected from immune surveillance

and anoikis (i.e., detachment-triggered apoptosis) (157–160). In the

TME, thrombin cleaves glycoprotein A repetitions predominant

(GARP) on the platelet surface, liberating surface-bound TGF-ß

(161), which activates CAFs to lay down ECM that restricts CD8+
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T-cells to the periphery of the tumor (162). Platelet-derived TGF-ß

also converts effector T-cells to Tregs (163, 164). Preventing GARP

cleavage, either by inhibiting thrombin or genetically deleting the

GARP cleavage site through CRISPR/Cas9 technology, enhances

CD8+ T cell activation and survival (161).

Tumor-associated platelets also upregulate the surface molecule

TLT-1, which promotes CD8+ T-cell exhaustion by upregulating

checkpoints PD-1 and TIM-3 (165). Furthermore, tumor cells can

directly contact platelets in the TME and transfer PD-L1 to them

(166, 167). Conversely, platelets can upregulate PD-L1 on ovarian

cancer cells through physical contact and indirectly through TGF-b
(168). High platelet PD-L1 expression is associated with an

immunosuppressive TME by depleting effector T-cells, which

lower OS and progression-free survival (PFS) in non-small cell

lung cancer patients (NSCLC) (166). Serum levels of platelet PD-L1

might serve as a more accurate indicator of tumor PD-L1 burden

and the likelihood of response to ICI therapy compared to the

standard immunohistochemical-based quantification of PD-L1 on

biopsy specimens (166). Interestingly, PD-L1-expressing platelets

may partially explain the efficacy of ICIs even in PD-L1-negative

tumors (169). Additionally, PD-L1 was found to activate platelets

and amplify thrombosis (170).
5.3 Neutrophil extracellular traps

Studies have shown that a higher burden of TANs and NETs

correlates with reduced T-cell infiltration in the TME, indicating

their immunosuppressive effects (171–176). NETs induce exhausted

states in CD8+ T-cells in murine models (177), and PD-1 within

NETs leads to the loss of T-cells by apoptosis (177, 178).

Furthermore, NETs have been shown to promote the

differentiation of helper T-cells into Tregs in murine models of

non-alcoholic steatohepatitis (NASH), facilitating the development

of NASH-associated HCC (179). Reducing NETs by genetic PAD4-

KO or Dnase-1 treatment in HCC mice reduces the activity of Tregs

and enhances anti-tumor NK cell responses (179).

Aside from their direct immunosuppressive effects, NETs also

constitute physical barriers that restrict the access of CD8+ T-cells

and NK cell to tumors (139). In murine models of PDAC,

neutrophil recruitment and NETosis induced by IL-17 protect

tumor cells against cytotoxic CD8+ T-cells, leading to reduced

efficacy of immunotherapy (180). Moreover, in radiotherapy

treatment for treating bladder cancer, the release of DAMPs such

as HMGB1 within dead cell debris triggers NET production

through binding TLR4 on the surface of TANs (181). These

NETs then create a physical barrier between the tumor and

infiltrating CD8+ T-cells, reducing anti-tumor immunity (181).

Interestingly, NETs induced by intravesical BCG therapy

contribute to anti-tumor immunity by recruiting anti-tumor T-

cells and TAMs and enhance therapeutic efficacy of this treatment

(182, 183). Tillack et al. showed that NETs primed T-cells by

reducing their activation threshold, increasing T-cell responses

against specific antigens or even suboptimal stimuli (184). These

findings highlight the dual roles of NETs, which can either hinder or

augment effective T-cell responses, which may depend on different
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NET-inducing stimuli, different NET compositions, or perhaps the

influence of other, yet undetermined factors in the TME that drive

NETs to protective or pathologic functions depending on tumor

stage and extent. Hence, exploring the mechanistic aspects of NETs

beyond their mere production and physical presence in tumors is

crucial. The extrinsic/environmental cues that regulate pro-

tumorigenic and anti-tumor phenotypes of NETs remain

unknown. Uncovering the specific pathological components of

NETs will inform targeted therapeutic strategies mitigating their

pathological functions while preserving their beneficial aspects.
6 Reprogramming the tumor
microenvironment to
enhance immunotherapy

6.1 Targeting angiogenesis to
enhance immunotherapy

Anti-angiogenic therapies were originally developed to inhibit

vascular formation, but they inadvertently caused excessive vessel

pruning, tumor hypoxia, and decreased anti-tumor immune

responses (185, 186). To overcome these limitations, Rakesh Jain

proposed the concept of vascular normalization, which involves

administering low-dose anti-angiogenic therapy to equilibrate

angiogenic signaling within the TME (187). This approach would

aim to achieve a state of vascular normalization, characterized by

improved tumor blood flow and decreased hypoxia. Numerous

studies since have reported findings consistent with the theory of

vascular normalization, encapsulated within the idea of a

‘normalization window’ (188). The normalization window

represents a brief period of time after administering anti-

angiogenic therapy where the tumor vasculature is structurally

normalized, during which administered therapeutics can achieve

good infiltration into tumor sites (189).

The effectiveness of immunotherapies relies on the infiltration

of T-cells into tumor sites in sufficient numbers (190). Tumors that

are inflamed and have good immune cell infiltration, referred to as

“hot” tumors, exhibit favorable responses to immunotherapies

compared to “immune-desert” or “cold” tumors that lack

inflammation (190, 191). A normal tumor vasculature, which is

not leaky and exhibits a proper pattern of blood flow, is a

prerequisite for effective T-cell trafficking into tumor sites.

Thus, vascular normalization with anti-angiogenic drugs can be

an effective strategy to enhance therapy response by increasing T-

cell infiltration into tumors. Additionally, anti-VEGF medications

can counteract the direct immunosuppressive effects of VEGF on

various cell types, as discussed earlier (29). Notably, ICIs and anti-

angiogenic drugs can synergize in normalizing the tumor

vasculature (192), as ICIs can independently improve vessel

perfusion, evidenced by improved vessel morphology, increased

pericyte coverage, and elevated vessel normalization markers (a-
SMA and NG-2) in the TME (192, 193). Therefore, the possibility of

combining immunotherapies and anti-angiogenic drugs has

garnered significant research interest in recent years, aiming to
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enhance treatment responses and survival outcomes for

cancer patients.

Preclinical studies have demonstrated the potential benefits of

combining anti-angiogenic therapies with ICIs, showing increased

T-cell infiltration, enhanced local anti-tumor immunity, and

improved survival in murine models of different cancer types

(194–197). Clinical trials evaluating the efficacy of ICI + anti-

angiogenic regimens have shown superior outcomes in various

cancers, based on which the FDA has approved the use of these

combinations for the treatment of renal cell carcinoma, HCC,

NSCLC, and endometrial carcinoma (198–201). We limited our

discussion here because other extensive reviews have already been

published on this topic (29, 196, 202).

However, combining ICIs and anti-angiogenic therapy has not

been effective in highly desmoplastic tumors, such as

cholangiocarcinoma, glioblastoma multiforme, and pancreatic

adenocarcinoma (203). In these tumors, the dense stroma

compresses tumor blood vessels, impeding perfusion and

reducing the local delivery of these medications (204). The

approach of “stromal normalization” aims to overcome this

resistance by reducing stromal density. Angiotensin-converting

enzyme (ACE) inhibitors (ACEi) and angiotensin-receptor

blockers (ARBs) can inhibit CAFs and reduce ECM production,

thus decreasing stromal density and contributing to stromal

normalization (204, 205). Clinical studies have shown improved

outcomes with anti-VEGF and adjuvant renin-angiotensin system

(RAS) inhibitors across tumor types, including glioblastoma, renal

cell carcinoma, hepatocellular carcinoma, and metastatic colorectal

carcinoma (206–210). However, pancreatic ductal adenocarcinoma

remains highly resistant to stromal normalization approaches (211,

212). Recently, a phase-II clinical trial found that adding losartan to

chemoradiation therapy for locally advanced unresectable

pancreatic cancer resulted in downstaging the tumor and a

complete resection rate of 61% (213). This was recently shown to

be due to losartan enhancing CD8+ T-cell infiltration and

decreasing Tregs in the TME and reducing immunosuppressive

FoxP3+ cancer cells, thus enhancing anti-tumor immunity and

tumor cell killing (214).
6.2 Targeting CAT to
enhance immunotherapy

Another potential synergistic approach to reprogram the TME

is combining ICIs with anticoagulants. Inhibiting TF has been

shown to reduce tumor survival across many in vitro studies

(215–217). Dabigatran, a thrombin inhibitor, can restrict tumor

growth and modify the TME in favor of anti-tumor immunity

(218). Rivaroxaban and low-molecular-weight heparin can limit

tumor metastasis in mice fibrosarcoma models (145), with

rivaroxaban additionally amplifying cytotoxic T-cell responses

and stimulating antigen-presenting cells by modulating the FXa-

PAR2 axis (145).

The higher risk of thrombotic events associated with ICIs is

another compelling reason for combining anticoagulants with ICIs,

albeit the mechanisms behind this association remain unclear A
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retrospective study of 2854 patients receiving ICI found a four-fold

increase in the risk of VTE after starting ICI therapy (219).

Similarly, a large pharmacovigilance study identified a strong

association between the use of ICI and thrombotic complications

(220). Combining anticoagulants with immunotherapies could

potentially mitigate this risk.

However, clinical evidence for the synergistic effects of ICIs and

anticoagulants is conflicting. For instance, Nichetti et al.

investigated the impact of the synergistic combination of anti-

PD-L1 therapy and anti-platelet agents amongst NSCLC patients,

concluding that this synergetic combination did not significantly

improve PFS or OS in the multivariate analysis (221). A large study

of 728 patients with advanced malignancies found no difference in

OS and disease-free survival (DFS) when synergistically combining

ICIs and various anticoagulants (including apixaban/rivaroxaban,

dabigatran, heparin, and warfarin) (222). However, a recent

retrospective study on 280 patients with advanced melanoma

demonstrated that treatment with fXa inhibitors enhances the

effects of ICIs and confers statistically significant superior PFS

and OS (223).

In summary, while preclinical evidence suggests a crucial role

for coagulation in fostering an immunosuppressive TME, clinical

studies investigating the efficacy of combining anticoagulants and

ICIs have yielded varying results. It is essential to recognize that the

coagulome of malignant tumors differs significantly across tumor

types (224). Interestingly, tumors with highly pro-coagulant

properties, such as glioblastoma multiforme and pancreatic

adenocarcinomas, are often resistant to ICIs (225). The complex

interplay between the TME and coagulome needs further research

to better appreciate the impact of targeting the coagulome on TME

normalization. Studies into the therapeutically relevant variations in

the coagulome among different tumor types are needed. Rigorous

clinical trials encompassing different tumor subtypes are required to

evaluate the impact of combining anticoagulants and ICIs on tumor

progression and patient survival in order to substantiate the

encouraging preclinical data.
7 Concluding remarks

Several factors need further exploration to improve the

effectiveness of ICI + anti-angiogenic regimens, including the

optimal dosing and duration of treatment for anti-angiogenic

therapy across different tumor types, the underlying mechanisms

driving therapeutic responses and resistance, the identification of

predictive biomarkers enabling appropriate patient selection and

effective therapy response monitoring, and optimizing drug delivery

systems. An excellent recent review by Cao et al. covered in detail

the applications of anti-angiogenic drugs in cancer and associated

challenges (10). Despite the remarkable evolution of these drugs

from bench to bedside, survival benefit compared to conventional
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therapies remains incremental, hence the need for combinatorial

approaches (10).

Despite tremendous basic science progress, clinical data on the

efficacy of combinatorial approaches, particularly regarding

anticoagulation and ICI therapy, are confl icting. The

heterogeneity of the coagulome across various tumor types needs

to be considered if anticoagulants and ICI combinations are to be

furthered. Different components of the coagulome are related to

different aspects of the tumor. For instance, levels of TF are closely

related to the tumor type, whereas fibrinolysis is highly dependent

on TME components (224). The spatial and temporal heterogeneity

of the TME is also poorly understood, thereby contributing to

discrepant findings attributing both pro-tumor and anti-tumor

functions to various components in the TME. Such uncertainties

confound translational efforts aimed at targeting these mediators, as

there is a risk of inadvertently augmenting pro-tumorigenic

processes. We find it likely that, given profound TME

heterogeneity across tumor types, future studies will pave the way

for a more personalized assessment of patient coagulation status, in

l ine with the major trend of precis ion medic ine in

oncology practice.
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Abengozar-Muela M, et al. Heterogenous presence of neutrophil extracellular traps in
human solid tumours is partially dependent on IL-8. J Pathol (2021) 255(2):190–201.
doi: 10.1002/path.5753

177. Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S.
Neutrophil extracellular traps promote T cell exhaustion in the tumor
microenvironment . Front Immunol (2021) 12 :785222. doi : 10.3389/
fimmu.2021.785222

178. Vesely MD, Zhang T, Chen L. Resistance mechanisms to anti-PD cancer
immunotherapy. Annu Rev Immunol (2022) 40:45–74. doi: 10.1146/annurev-
immunol-070621-030155

179. Wang H, Zhang H, Wang Y, Brown ZJ, Xia Y, Huang Z, et al. Regulatory T-cell
and neutrophil extracellular trap interaction contributes to carcinogenesis in non-
alcoholic steatohepatitis. J Hepatol (2021) 75(6):1271–83. doi: 10.1016/
j.jhep.2021.07.032

180. Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A,
et al. Interleukin-17–induced neutrophil extracellular traps mediate resistance to
checkpoint blockade in pancreatic cancer. J Exp Med (2020) 217(12):e20190354. doi:
10.1084/jem.20190354

181. Shinde-Jadhav S, Mansure JJ, Rayes RF, Marcq G, Ayoub M, Skowronski R,
et al. Role of neutrophil extracellular traps in radiation resistance of invasive bladder
cancer. Nat Commun (2021) 12(1):2776. doi: 10.1038/s41467-021-23086-z

182. Mao C, Xu X, Ding Y, Xu N. Optimization of BCG therapy targeting neutrophil
extracellular traps, autophagy, and miRNAs in bladder cancer: implications for
personalized medicine. Front Med (2021) 8. doi: 10.3389/fmed.2021.735590

183. Liu K, Sun E, Lei M, Li L, Gao J, Nian X, et al. BCG-Induced formation of
neutrophil extracellular traps play an important role in bladder cancer treatment. Clin
Immunol (2019) 201:4–14. doi: 10.1016/j.clim.2019.02.005

184. Tillack K, Breiden P, Martin R, Sospedra M. T Lymphocyte priming by
neutrophil extracellular traps links innate and adaptive immune responses. J
Immunol (2012) 188(7):3150–9. doi: 10.4049/jimmunol.1103414

185. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, et al.
Vascular normalizing doses of antiangiogenic treatment reprogram the
immunosuppressive tumor microenvironment and enhance immunotherapy. Proc
Natl Acad Sci U S A. (2012) 109(43):17561–6. doi: 10.1073/pnas.1215397109

186. van Beijnum JR, Nowak-Sliwinska P, Huijbers EJ, Thijssen VL, Griffioen AW.
The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev
(2015) 67(2):441–61. doi: 10.1124/pr.114.010215

187. Jain RK. Normalization of tumor vasculature: an emerging concept in
antiangiogenic therapy. Science. (2005) 307(5706):58–62. doi: 10.1126/science.1104819

188. Verduzco D, Lloyd M, Xu L, Ibrahim-Hashim A, Balagurunathan Y, Gatenby
RA, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase
survival, invasion, and therapy resistance. PloS One (2015) 10(3):e0120958.
doi: 10.1371/journal.pone.0120958

189. Li S, Zhang Q, Hong Y. Tumor vessel normalization: a window to enhancing
cancer immunotherapy. Technol Cancer Res Treat (2020) 19:1533033820980116.
doi: 10.1177/1533033820980116
frontiersin.org

https://doi.org/10.1126/scitranslmed.aan8292
https://doi.org/10.1126/scitranslmed.aan8292
https://doi.org/10.1016/j.thromres.2021.04.028
https://doi.org/10.1126/sciimmunol.aaw8405
https://doi.org/10.1016/j.celrep.2018.10.082
https://doi.org/10.1016/j.celrep.2018.10.082
https://doi.org/10.1158/0008-5472.CAN-18-3206
https://doi.org/10.1158/0008-5472.CAN-18-3206
https://doi.org/10.1111/jth.15115
https://doi.org/10.3389/fimmu.2022.980462
https://doi.org/10.1111/j.1440-1711.2006.01456.x
https://doi.org/10.1093/eurheartj/ehac544.3037
https://doi.org/10.1182/blood-2015-11-636472
https://doi.org/10.1111/jth.14277
https://doi.org/10.4049/jimmunol.208.Supp.121.12
https://doi.org/10.4049/jimmunol.208.Supp.121.12
https://doi.org/10.1136/jitc-2021-003655
https://doi.org/10.1111/jth.13959
https://doi.org/10.1182/blood-2004-06-2272
https://doi.org/10.3389/fimmu.2018.00476
https://doi.org/10.1182/blood-2007-01-065995
https://doi.org/10.1182/blood-2007-01-065995
https://doi.org/10.1007/s13402-023-00773-1
https://doi.org/10.1126/scitranslmed.aay4860
https://doi.org/10.1126/scitranslmed.aay4860
https://doi.org/10.1038/nature25501
https://doi.org/10.3390/cancers12123653
https://doi.org/10.1126/sciimmunol.aai7911
https://doi.org/10.1084/jem.20212218
https://doi.org/10.1038/s41467-021-27303-7
https://doi.org/10.18632/oncotarget.25446
https://doi.org/10.3390/cancers14102498
https://doi.org/10.1038/s41598-020-76351-4
https://doi.org/10.3389/fphar.2022.921414
https://doi.org/10.1038/ncomms14381
https://doi.org/10.1038/nrc.2016.52
https://doi.org/10.1038/s41568-020-0281-y
https://doi.org/10.1038/nm.3909
https://doi.org/10.3389/fimmu.2022.1075260
https://doi.org/10.3389/fimmu.2022.1075260
https://doi.org/10.1002/path.5753
https://doi.org/10.3389/fimmu.2021.785222
https://doi.org/10.3389/fimmu.2021.785222
https://doi.org/10.1146/annurev-immunol-070621-030155
https://doi.org/10.1146/annurev-immunol-070621-030155
https://doi.org/10.1016/j.jhep.2021.07.032
https://doi.org/10.1016/j.jhep.2021.07.032
https://doi.org/10.1084/jem.20190354
https://doi.org/10.1038/s41467-021-23086-z
https://doi.org/10.3389/fmed.2021.735590
https://doi.org/10.1016/j.clim.2019.02.005
https://doi.org/10.4049/jimmunol.1103414
https://doi.org/10.1073/pnas.1215397109
https://doi.org/10.1124/pr.114.010215
https://doi.org/10.1126/science.1104819
https://doi.org/10.1371/journal.pone.0120958
https://doi.org/10.1177/1533033820980116
https://doi.org/10.3389/fimmu.2023.1200941
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shafqat et al. 10.3389/fimmu.2023.1200941
190. Tiwari A, Oravecz T, Dillon LA, Italiano A, Audoly L, Fridman WH, et al.
Towards a consensus definition of immune exclusion in cancer. Front Immunol (2023)
14. doi: 10.3389/fimmu.2023.1084887

191. Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: firing up the
tumor microenvironment. Trends Cancer. (2020) 6(7):605–18. doi: 10.1016/
j.trecan.2020.02.022

192. Zhou S, Zhang H. Synergies of targeting angiogenesis and immune checkpoints
in cancer: from mechanism to clinical applications. Anticancer Agents Med Chem
(2020) 20(7):768–76. doi: 10.2174/1871520620666200207091653

193. Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, et al. Increased vessel
perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest. (2018) 128
(5):2104–15. doi: 10.1172/JCI96582

194. Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, et al.
Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through
HEV formation. Sci Transl Med (2017) 9(385):eaak9679. doi: 10.1126/
scitranslmed.aak9679

195. Meder L, Schuldt P, Thelen M, Schmitt A, Dietlein F, Klein S, et al. Combined
VEGF and PD-L1 blockade displays synergistic treatment effects in an autochthonous
mouse model of small cell lung cancer. Cancer Res (2018) 78(15):4270–81. doi: 10.1158/
0008-5472.CAN-17-2176

196. Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-
angiogenic treatments and vice versa. Nat Rev Clin Oncol (2018) 15(5):310–24.
doi: 10.1038/nrclinonc.2018.9

197. Yasuda S, Sho M, Yamato I, Yoshiji H, Wakatsuki K, Nishiwada S, et al.
Simultaneous blockade of programmed death 1 and vascular endothelial growth factor
receptor 2 (VEGFR2) induces synergistic anti-tumour effect. vivo. Clin Exp Immunol
(2013) 172(3):500–6. doi: 10.1111/cei.12069

198. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al.
Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N
Engl J Med (2019) 380(12):1116–27. doi: 10.1056/NEJMoa1816714

199. Cheng AL, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Updated
efficacy and safety data from IMbrave150: atezolizumab plus bevacizumab vs. sorafenib
for unresectable hepatocellular carcinoma. J Hepatol (2022) 76(4):862–73. doi: 10.1016/
j.jhep.2021.11.030

200. Makker V, Rasco D, Vogelzang NJ, Brose MS, Cohn AL, Mier J, et al.
Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: an
interim analysis of a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol
(2019) 20(5):711–8. doi: 10.1016/S1470-2045(19)30020-8

201. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N,
et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl
J Med (2018) 378(24):2288–301. doi: 10.1056/NEJMoa1716948

202. Hack SP, Zhu AX, Wang Y. Augmenting anticancer immunity through
combined targeting of angiogenic and PD-1/PD-L1 pathways: challenges and
opportunities. Front Immunol (2020) 11:598877. doi: 10.3389/fimmu.2020.598877

203. Yang T, Xiao H, Liu X,Wang Z, Zhang Q,Wei N, et al. Vascular normalization:
a new window opened for cancer therapies. Front Oncol (2021) 11:719836.
doi: 10.3389/fonc.2021.719836

204. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to
alleviating hypoxia. Cancer Cell (2014) 26(5):605–22. doi: 10.1016/j.ccell.2014.10.006

205. Pinter M, Jain RK. Targeting the renin-angiotensin system to improve cancer
treatment: implications for immunotherapy. Sci Transl Med (2017) 9(410):eaan5616.
doi: 10.1126/scitranslmed.aan5616

206. McKay RR, Rodriguez GE, Lin X, Kaymakcalan MD, Hamnvik OP, Sabbisetti
VS, et al. Angiotensin system inhibitors and survival outcomes in patients with
metastatic renal cell carcinoma. Clin Cancer Res (2015) 21(11):2471–9. doi: 10.1158/
1078-0432.CCR-14-2332

207. Izzedine H, Derosa L, Le Teuff G, Albiges L, Escudier B. Hypertension and
angiotensin system inhibitors: impact on outcome in sunitinib-treated patients for
metastatic renal cell carcinoma. Ann Oncol (2015) 26(6):1128–33. doi: 10.1093/annonc/
mdv147

208. Osumi H, Matsusaka S, Wakatsuki T, Suenaga M, Shinozaki E, Mizunuma N.
Angiotensin II type-1 receptor blockers enhance the effects of bevacizumab-based
chemotherapy in metastatic colorectal cancer patients. Mol Clin Oncol (2015) 3
(6):1295–300. doi: 10.3892/mco.2015.630
Frontiers in Immunology 13
209. Levin VA, Chan J, Datta M, Yee JL, Jain RK. Effect of angiotensin system
inhibitors on survival in newly diagnosed glioma patients and recurrent glioblastoma
patients receiving chemotherapy and/or bevacizumab. J Neurooncol. (2017) 134
(2):325–30. doi: 10.1007/s11060-017-2528-3

210. Pinter M, Weinmann A, Wörns MA, Hucke F, Bota S, Marquardt JU, et al. Use
of inhibitors of the renin-angiotensin system is associated with longer survival in
patients with hepatocellular carcinoma. United Eur Gastroenterol J (2017) 5(7):987–96.
doi: 10.1177/2050640617695698

211. Hakim N, Patel R, Devoe C, Saif MW. Why HALO 301 failed and implications
for treatment of pancreatic cancer. Pancreas (Fairfax). (2019) 3(1):e1–4. doi: 10.17140/
POJ-3-e010

212. Van Cutsem E, Tempero MA, Sigal D, Oh D-Y, Fazio N, Macarulla T, et al.
Randomized phase III trial of pegvorhyaluronidase Alfa with nab-paclitaxel plus
gemcitabine for patients with hyaluronan-high metastatic pancreatic
adenocarcinoma. J Clin Oncol (2020) 38(27):3185–94. doi: 10.1200/JCO.20.00590

213. Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, et al. Total
neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by
chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial.
JAMA Oncol (2019) 5(7):1020–7. doi: 10.1001/jamaoncol.2019.0892

214. Boucher Y, Posada JM, Subudhi S, Kumar AS, Rosario SR, Gu L, et al. Addition
of losartan to FOLFIRINOX and chemoradiation reduces immunosuppression-
associated genes, tregs, and FOXP3+ cancer cells in locally advanced
pancreatic cancer. Clin Cancer Res (2023) 2023:OF1–OF15. doi: 10.1158/1078-
0432.22633054

215. Magnus N, Meehan B, Garnier D, Hashemi M, Montermini L, Lee TH, et al.
The contribution of tumor and host tissue factor expression to oncogene-driven
gliomagenesis. Biochem Biophys Res Commun (2014) 454(2):262–8. doi: 10.1016/
j.bbrc.2014.10.041

216. Gessler F, Voss V, Dützmann S, Seifert V, Gerlach R, Kögel D. Inhibition of
tissue factor/protease-activated receptor-2 signaling limits proliferation, migration and
invasion of malignant glioma cells. Neuroscience. (2010) 165(4):1312–22. doi: 10.1016/
j.neuroscience.2009.11.049

217. Versteeg HH, Schaffner F, Kerver M, Petersen HH, Ahamed J, Felding-
Habermann B, et al. Inhibition of tissue factor signaling suppresses tumor growth.
Blood. (2008) 111(1):190–9. doi: 10.1182/blood-2007-07-101048

218. Alexander ET, Minton AR, Hayes CS, Goss A, Van Ryn J, Gilmour SK.
Thrombin inhibition and cyclophosphamide synergistically block tumor progression
and metastasis. Cancer Biol Ther (2015) 16(12):1802–11. doi: 10.1080/
15384047.2015.1078025

219. Gong J, Drobni ZD, Alvi RM, Murphy SP, Sullivan RJ, Hartmann SE, et al.
Immune checkpoint inhibitors for cancer and venous thromboembolic events. Eur J
Cancer. (2021) 158:99–110. doi: 10.1016/j.ejca.2021.09.010

220. Ye X, Hu F, Zhai Y, Qin Y, Xu J, Guo X, et al. Hematological toxicities in
immune checkpoint inhibitors: a pharmacovigilance study from 2014 to 2019. Hematol
Oncol (2020) 38(4):565–75. doi: 10.1002/hon.2743

221. Nichetti F, Ligorio F, Zattarin E, Signorelli D, Prelaj A, Proto C, et al. Is there an
interplay between immune checkpoint inhibitors, thromboprophylactic treatments and
thromboembolic events? mechanisms and impact in non-small cell lung cancer
patients. Cancers (Basel). (2019) 12(1):67. doi: 10.3390/cancers12010067

222. Johannet P, Sawyers A, Gulati N, Donnelly D, Kozloff S, Qian Y, et al.
Treatment with therapeutic anticoagulation is not associated with immunotherapy
response in advanced cancer patients. J Transl Med (2021) 19(1):47. doi: 10.1186/
s12967-021-02712-w

223. Haist M, Stege H, Pemler S, Heinz J, Fleischer MI, Graf C, et al.
Anticoagulation with factor xa inhibitors is associated with improved overall
response and progression-free survival in patients with metastatic malignant
melanoma receiving immune checkpoint inhibitors-a retrospective, real-world cohort
study. Cancers (Basel). (2021) 13(20):5103. doi: 10.3390/cancers13205103

224. Saidak Z, Soudet S, Lottin M, Salle V, Sevestre MA, Clatot F, et al. A pan-cancer
analysis of the human tumor coagulome and its link to the tumor immune
microenvironment. Cancer Immunol Immunother. (2021) 70(4):923–33.
doi: 10.1007/s00262-020-02739-w

225. Galmiche A, Rak J, Roumenina LT, Saidak Z. Coagulome and the tumor
microenvironment: an actionable interplay. Trends Cancer. (2022) 8(5):369–83.
doi: 10.1016/j.trecan.2021.12.008
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1084887
https://doi.org/10.1016/j.trecan.2020.02.022
https://doi.org/10.1016/j.trecan.2020.02.022
https://doi.org/10.2174/1871520620666200207091653
https://doi.org/10.1172/JCI96582
https://doi.org/10.1126/scitranslmed.aak9679
https://doi.org/10.1126/scitranslmed.aak9679
https://doi.org/10.1158/0008-5472.CAN-17-2176
https://doi.org/10.1158/0008-5472.CAN-17-2176
https://doi.org/10.1038/nrclinonc.2018.9
https://doi.org/10.1111/cei.12069
https://doi.org/10.1056/NEJMoa1816714
https://doi.org/10.1016/j.jhep.2021.11.030
https://doi.org/10.1016/j.jhep.2021.11.030
https://doi.org/10.1016/S1470-2045(19)30020-8
https://doi.org/10.1056/NEJMoa1716948
https://doi.org/10.3389/fimmu.2020.598877
https://doi.org/10.3389/fonc.2021.719836
https://doi.org/10.1016/j.ccell.2014.10.006
https://doi.org/10.1126/scitranslmed.aan5616
https://doi.org/10.1158/1078-0432.CCR-14-2332
https://doi.org/10.1158/1078-0432.CCR-14-2332
https://doi.org/10.1093/annonc/mdv147
https://doi.org/10.1093/annonc/mdv147
https://doi.org/10.3892/mco.2015.630
https://doi.org/10.1007/s11060-017-2528-3
https://doi.org/10.1177/2050640617695698
https://doi.org/10.17140/POJ-3-e010
https://doi.org/10.17140/POJ-3-e010
https://doi.org/10.1200/JCO.20.00590
https://doi.org/10.1001/jamaoncol.2019.0892
https://doi.org/10.1158/1078-0432.22633054
https://doi.org/10.1158/1078-0432.22633054
https://doi.org/10.1016/j.bbrc.2014.10.041
https://doi.org/10.1016/j.bbrc.2014.10.041
https://doi.org/10.1016/j.neuroscience.2009.11.049
https://doi.org/10.1016/j.neuroscience.2009.11.049
https://doi.org/10.1182/blood-2007-07-101048
https://doi.org/10.1080/15384047.2015.1078025
https://doi.org/10.1080/15384047.2015.1078025
https://doi.org/10.1016/j.ejca.2021.09.010
https://doi.org/10.1002/hon.2743
https://doi.org/10.3390/cancers12010067
https://doi.org/10.1186/s12967-021-02712-w
https://doi.org/10.1186/s12967-021-02712-w
https://doi.org/10.3390/cancers13205103
https://doi.org/10.1007/s00262-020-02739-w
https://doi.org/10.1016/j.trecan.2021.12.008
https://doi.org/10.3389/fimmu.2023.1200941
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy
	1 Introduction
	2 Tumor angiogenesis
	2.1 The angiogenic shift in tumors
	2.2 Dysfunctional vessels in neoplastic angiogenesis

	3 Angiogenesis reprograms the tumor microenvironment towards immunosuppression
	3.1 Direct effects of angiogenic factors
	3.2 Tumor hypoxia
	3.3 Tumor acidosis

	4 The tumor coagulome and thrombosis
	4.1 Coagulation cascade
	4.2 Platelets
	4.3 Neutrophil extracellular traps

	5 The coagulome reprograms the tumor microenvironment towards immunosuppression
	5.1 Coagulation cascade
	5.2 Platelets
	5.3 Neutrophil extracellular traps

	6 Reprogramming the tumor microenvironment to enhance immunotherapy
	6.1 Targeting angiogenesis to enhance immunotherapy
	6.2 Targeting CAT to enhance immunotherapy

	7 Concluding remarks
	Author contributions
	Acknowledgments
	References


