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A B S T R A C T   

Industrial applications of carbonation such as self-healing and carbon capture and storage have been limited, due to a lack of reliable predictive models linking the 
chemistry of carbonation at the molecular scale to microstructure development and macroscopic properties. This work proposes a coarse-grained Kinetic Monte Carlo 
(KMC) approach to simulate microstructural evolution of a model cement paste during carbonation, along with evolution of pore solution chemistry and saturation 
indexes of solid species involved. The simulations predict the effective rate constants for Ca(OH)2 dissolution and CaCO3 precipitation as kCa(OH)2 = 2.20 × 10− 5 kg/ 
m3/s and kCaCO3 = 4.24 × 10− 6 kg/m3/s. These values are directly fed to a macroscale reactive transport model to predict carbonate penetration depth. The rate 
constants from the molecular scale are used in a boundary nucleation and growth model to predict self-healing of cracks. Subsequently these results are compared 
with experimental data, and provide good agreement. This proposed multiscale approach can help understand and manage the carbonation of both traditional and 
new concretes, supporting applications in residual lifetime assessment, carbon capture, and self-healing.   

1. Introduction 

Carbonation in hardened, Ordinary Portland Cement (OPC) pastes 
refers to the dissolution of hydrates releasing calcium ions into solution, 
which react with dissolved carbonates to produce CaCO3 [1]. Excessive 
carbonation lowers the pH of the pore solution, causing disintegration of 
hydration products, corrosion of reinforcing steel, and ultimately cracks 
that reduce the durability of a structure [2–4]. In some cases, carbon-
ation also favours the penetration of chlorides into concrete, which 
further deteriorates the structure [5,6]. However, when properly 
directed and controlled, carbonation can be beneficial for applications 
such as carbon capture and storage (CCS) and self-healing concrete 
(SHC). 

In CCS, concrete is cured in a CO2 rich atmosphere [7,8] using CO2 
that was previously captured at the point source [9–11]. This leads to 
unconventional concretes that are rich in carbonate minerals, for which 
it is challenging to ensure satisfactory performance while still preserving 
environmental benefits (e.g. not adding more OPC to compensate for 
strength losses) [12]. SHC instead aims at increasing the durability of 
concrete structures, thus reducing the environmental footprint of 
cement production, which currently causes 7-8% of the global anthro-
pogenic CO2 emissions [13]. Crack formation in concrete enables the 

ingress of water and dissolved CO2, which can be exploited to trigger 
autogenous or autonomous self-healing. In autogenous self-healing, 
unreacted oxides (e.g. belite, C2S) and other soluble phases (e.g. cal-
cium hydroxide) undergo delayed dissolution in aged concrete after 
cracking; the dissolved ions form new hydration products, such as C-S-H 
or CaCO3, sealing the cracks. In autonomous self-healing, sealing agents 
are encapsulated in the cement matrix, e.g. bacteria [14], enzymes [15] 
or other sealing substances [16]. These become active when cracks and 
moisture ingress change the local exposure conditions, triggering 
chemical reactions and forming new phases that ultimately seal the 
cracks (e.g. CaCO3 from enzymatic self-healing in Fig. 1). Microbial 
Induced Carbonate precipitation (MICP) and biomineralization is of 
particular interest in autonomous healing SHC applications [17–22]. 
The interested reader can find a review on the modelling possibilities of 
MICP and its challenges in Ref. [23]. SHC typically restores the low, 
original permeability of concrete, but issues persist especially due to 
residual strength loss after CaCO3 precipitation and, in some cases, a 
lowering of the pH that favours the corrosion of the reinforcement. 
Applications of both CCS and SHC are still largely empirical and would 
benefit from a better understanding of how the mineralization process 
and the possible use of admixtures might be fine-tuned to ensure per-
formance. Predictive models would be particularly useful for the 
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adoption of new concretes based on unconventional cements, with lower 
embodied carbon and energy than OPC, but for which there is little if 
any experimental data on long-term changes during carbonation. 

Analytical and numerical models of carbonation and self-healing in 
OPC-based concretes are relatively abundant at the macroscale. Papa-
dakis et al. [24] proposed a physiochemical model based on diffusion 
kinetics, describing the progression of the carbonation front in concrete 
samples. Saetta et al. [25] developed a distributed parameter model for 
the carbonation of calcium hydroxide (CH in cement notation [26]) in 
the pore structure of concrete, which describes the spatial and temporal 
evolution of heat, moisture, CO2 consumption, and the reduction in 
porosity due to CaCO3 deposition. Chitez et al. and Freeman et al. [27, 
28] proposed a model of reactive transport that simulates the early-stage 
autogenous healing of regular cement-based materials. The primary 
healing mechanisms considered in the model were the hydration of 
unreacted cement particles and carbonation. However, all these 
macroscale models rely on heuristic constitutive assumptions; in 
particular, reaction rates are often described using effective rate con-
stants that summarize the complex result of multiple microstructural 
details and processes, such as eigenstress evolution, relative volume 
fraction and specific surface area of various solid phases, and chains of 
individual chemical reactions. Macroscale models do not resolve these 
details, hence they employ effective rate constants that are empirically 
calibrated to fit experimental data; this is clearly limiting the predictive 
ability of the simulations, especially when dealing with new material 
chemistries. As a result, the current state of the art in macroscale sim-
ulations features the ability to fit, but not to predict, typical 

experimental data such as those on carbonation depth shown in Fig. 2. 
An alternative approach would be to inform the macroscale models 

using constitutive laws obtained from more detailed simulations at the 
microstructural level. Ab initio and molecular simulations would be the 
fundamental starting point to produce such laws, but they cannot yet 
cover the complexity and large length and time scales of the processes at 
play during carbonation; indeed, the few existing applications of such 
simulations to concrete carbonation are still returning conflicting re-
sults, e.g. on the beneficial or detrimental role of water during carbon-
ation [30,31]. The need for dedicated mesoscale models, to bridge the 
gap between molecular, microstructural, and macroscale models, is well 
recognized, including in the concrete modelling community [32]. For 
carbonation, however, there are currently no mesoscale simulations 
describing how chemical reactions and internal stresses together drive 
the evolution of microstructure and strength in concrete. 

This paper presents coarse-grained, mesoscale, particle-based simu-
lations of carbonation in a cement paste, using a recently developed 
Kinetic Monte Carlo (KMC) framework that accounts for both slow 
chemical reactions and mechanical interactions. The interested reader 
can refer to Ref. [23] for a discussion of the new capabilities that this 
KMC framework offers, for simulating autogenous and autonomous 
self-healing systems, both pivoted on the carbonation process. A simu-
lation cell containing C-S-H gel and crystalline CH is modelled and the 
interaction potentials between solid particles are parameterized. The 
pore solution is modelled through the concentration values of relevant 
species, such as Ca2+, OH− , CO3

2− etc. During the simulations, particles 
of C-S-H and CH dissolve while CaCO3 particles precipitate based on rate 
equations that are derived from fundamental Transition State Theory 
(TST). The simulations predict microstructural evolution during 
carbonation as well as the effective reaction rate constants of CH 
dissolution and CaCO3 precipitation, which depend on the evolving 
microstructural morphology and chemical environment in the system. 
These effective rate constants are applied in a macroscale reactive 
transport model, predicting the experimental data on carbonation depth 
from Fig. 2. In addition to this, the rate constants for CaCO3 precipitation 
from molecular scale are fed into a new boundary nucleation and growth 
model (BNG) for predicting carbonation based self-healing of cracks. All 
this outlines a multiscale modelling approach that can now be exploited 
to simulate self-healing, CCS, and deterioration of concrete during 
carbonation, both when traditional OPC and when new and unconven-
tional cements are used. 

2. Methodology 

This work examines the carbonation and autogenous healing of a 
fully hydrated, model cement paste, containing only calcium silicate 
hydrate (C-S-H) and calcium hydroxide (CH) and without any added 
self-healing agent (only CO2 from the atmosphere). Solid domains are 
initially created in a simulation box by arranging spherical 

Fig. 1. Reproduced from Rosewitz et al. [15] showing the crystalline CaCO3 
growth at the solid-water interface i.e. the crack surface. 

Fig. 2. Experimental results on carbonation degree and depth of penetration at 14 and 28 days [29] The dotted line shows the carbonation depth measured from 
phenolphthalein discoloration; the blue dots show the same quantity measured with more accurate thermogravimetric analysis. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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monodisperse particles of CH in a crystalline face centred cubic (FCC) 
lattice, and by filling part of the remaining space with spherical mono-
disperse particles of C-S-H in a disordered arrangement whose maximum 
density is dictated by the random close packing (RCP) limit: see Fig. 3. 
CaCO3 particles form later during the simulation; they are also spherical 
and monodisperse and they spontaneously arrange to form both disor-
dered and crystalline clusters. All particles interact via effective poten-
tials (energy as a function of distance), e.g. the harmonic pair potential 
in Fig. 4, whose spatial derivatives provide the interaction forces. The 
features of the interaction potentials determine in which lattice 
arrangement the particles are mechanically stable; for the radial in-
teractions and monodisperse spherical particles in this work, the densest 
mechanically stable lattices for the solids are FCC for CH and CaCO3, and 
RCP for C-S-H (in this latter case, C-S-H cannot form a crystalline FCC 
lattice simply because it is forced into a disordered arrangement from 
the very beginning). Some space remains empty between the particles; 
this describes the pore structure of the paste, within which the implicit 
pore solution is modelled as average concentrations of multiple ionic 
species: [Ca2+], [OH− ], [CO3

2− ], [H+] and [H4SiO4]. 
In this work, each solid particle represents only one molecule of the 

corresponding phase, which is the minimum possible coarse-graining 
above atomistic simulations; the advantage of this choice is that reac-
tion rate equations can be obtained directly from Transition State The-
ory (TST) with a minimum number of assumptions. By contrast a coarser 
graining, with each particle representing thousands or millions of mol-
ecules, would require additional assumptions on nucleation and growth 
mechanisms (e.g. see Shvab et al. [33]) and this would reduce the pre-
dictive ability of the simulations. Minimum coarse-graining limits the 
length scale that can be modelled with these particles. For instance 
larger cracks in the order of micrometre cannot be simulated using these 
nanometre sized particles as the computations will be impractically 
costly. Other limitations that stem from the choice of minimum 
coarse-graining will be pointed out and discussed where relevant in the 
article. The simulations of particle dissolution and precipitation are 
performed using MASKE, a recently developed Kinetic Monte Carlo 
software [33]. 

The particles in the simulations interact via harmonic pair potentials 
as described in Coopamootoo & Masoero (2020) [34]. For two inter-
acting particles of the same type, e.g. CH interacting with CH, the 
interaction energy U as a function of interparticle distance r is plotted in 
Fig. 4 and its expression is: 

U(r)=

⎧
⎨

⎩

1
2

k(r − r0)
2
− ε0

0

if r < rc
if r ≥ rc

(1)  

where k = EA/r0, E being Young’s modulus of the solid in the particle 
and A = πD2/4, where D is the diameter of the particle. Assuming that 
the molecules are spherical, D is calculated from the molar volume VM of 

the phase that the particle represents, D =
(

6VM
πNA

)1/3
, where NA is the 

Avogadro number. The molar volumes of the three solids considered in 
this work are provided in Table 1; the molar volume of C-S-H includes 
the inter-layer pores but not the gel pores, since the latter are explicitly 
considered in the simulations as part of the remaining empty space be-
tween C-S-H particles: see Fig. 3. For the equilibrium distance between 
particles, r0, one may be tempted to equate it to D, but that would leave 
artificial pores in-between particles even when they are arranged in 
their densest possible lattice: e.g. see CH in Fig. 3. Indeed, the intrinsic 
porosity of the FCC and RCP lattices in this work are respectively 26% 
and around 34%. To compensate for this artificial porosity, see Coopa-
mootoo et al. [34] obtained an expression to reduce the interparticle 
distance to r0 = Df1/3. Here f is the packing fraction of the densest lattice 
(for FCC, f=0.74, RCP, f=0.64). This returns the correct molar volume of 
solid domains when the particles forming them are arranged in their 
densest possible configuration. 

Still in Equation (1), ε0 is the minimum energy at equilibrium. 

ε0 =
γΩ
nkink

(2)  

where γ is the water-solid interfacial energy for the solid in the inter-
acting particles; Ω is the surface area of the particle and nkink is the 
average number of neighbors for a particle occupying a kink position in 
their densest lattice. For crystalline lattices, nkink is simply half the 
number of neighbors of a particle in the bulk, e.g. 12/2 = 6 for FCC 
lattices. The cut-off distance, rc is associated with the failure strain of the 
solids at the length-scale of the particle diameter, which is the nano-
metre here. At such length-scales, molecular simulations of typical 
crystalline cement minerals indicate an rc

ro 
ratio that is usually around 

1.05–1.10 [35]. The parameters used for the calculation of the interac-
tion potentials between same-species particles are provided in Table 1. 
Later sections will extend Equation (1) to the case of interacting particles 
from different solids (e.g. CH with CaCO3) and will explain how nkink is 
determined for C-S-H in its non-crystalline, RCP arrangement. 

Among the different polymorphs of CaCO3 we assume that calcite, 
the most abundant and stable form, will be precipitated. For CaCO3, we 
do not assign a lattice a priori and the interactions in Equation (1) will 
lead to the formation of both RCP and FCC domains. However, because 
of the ability of CaCO3 to crystallise, we will assign lattice constants 
based on the FCC lattice for CaCO3. The CaCO3 -water interfacial energy 
provided is based on the surface energy of amorphous calcite. Experi-
ments show that calcite formed at early stages may not be crystalline 
[36] (which has a high interfacial energy with water); instead, 

Fig. 3. Configuration of particle species during a typical simulation, CH in a 
face centred cubic FCC lattice, C-S-H in a disordered arrangement with 
maximum density dictated by the random close packing RCP limit, and CaCO3 
forming both FCC and RCP domains during its simulated precipitation. 

Fig. 4. The CH-CH harmonic pair potential showing the minimum energy at 
equilibrium (ε0), equilibrium distance (r0) and cut-off distance (rc). 
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nucleation and growth of calcite typically starts with an intermediate 
amorphous form of calcite with lower interfacial energy with water, 
which lowers the energy barrier to overcome initially. We use this lower 
energy to calibrate our potentials for CaCO3. 

The species that are considered in the implicit model of the pore 
solution are: Ca2+, CO3

2− , H4SiO4, H+, OH− , and H2O. Table 2 shows the 
concentrations assigned to these species at the start of the simulation, as 
well as their charges. The initial concentration of H4SiO4 is taken from 
Jennings et al. [44], where aqueous solubility curves of C-S-H show that 
typical experimental values for silicate ion concentrations in solution 
range between 10− 2 and 10− 1 mmol/L. The concentration of OH− is set 
to impose a pH of 12.5, which is typical for OPC-based concrete during 
its early stages of carbonation [45]. The presence of other alkali ions 
such as Na+, K+ etc., have an impact on buffering the pH of solution. 
However, in this work we are not presenting a realistic solution speci-
ation model. Such a model would involve a free energy minimization for 
the solution, mass balance of ionic species. thus predicting the correct 
thermodynamics of the solution (example see Valentina et al., 2019 
[46]). This is a direction which needs to be explored and a potential 
future implementation in MASKE. However, in this work a simplifica-
tion is made by which the pH is fixed by fixing the OH− ion concen-
tration. This pH is considered to be the grant product of all the chemical 
speciation, and effect of alkalis and mass balance taking place in 
solution. 

The initial concentration of CO3
2− was calculated based on Henry’s 

law which gives the concentration of CO2 in water at equilibrium with 
the atmosphere. The concentrations of OH− , H4SiO4 and CO3

2− are fixed 
throughout the simulation run and only the concentration of Ca2+, viz. 
[Ca2+], is allowed to vary. [Ca2+] is initially set to zero, which triggers a 
rapid dissolution of CH for the first few steps of the simulations, before it 
stabilizes around an equilibrium value once precipitation of CaCO3 
starts. Since [H4SiO4] is fixed, in principle C-S-H could indefinitely form 
or dissolve during a simulation, but the results will show that this does 
not happen and the number of C-S-H particles in the system remain 
approximately constant while carbonation progresses, and CH is still 
present. This model of the solution is clearly simplified, in that 
numerous other ionic species may form even when just considering a 
calcium-silicate-carbonate solution [26]. However, the species modelled 
here are usually considered as the main ones contributing to the re-
actions underlying the carbonation of OPC pastes. Charge neutrality in 
the solution is ensured by tuning the concentration of H+ ions, which 
effectively represents any positive ion in solution since none of the 
chemical reactions in this work involve H+ directly. 

The conversions between solids and solution are determined by 
chemical reactions; Table 3 collects those considered in this work, along 

with their key kinetic and thermodynamic parameters. More details on 
how these parameters appear in the reaction rate equations will follow 
later in this section. 

The MASKE software employs the following expressions for the 
unimolecular rates of particle dissolution and precipitation (as shown in 
Fig. 5): 

rdiss =
kBT

h
c‡

γ‡
exp

[

−
ΔG‡

diss

kBT

]

exp
[
− ΔUdiss − Ukink

kBT

]

Qr,dVα/3
t (3)  

rprec =
kBT

h
c‡

γ‡
exp

[

−
ΔG‡

prec

kBT

]

Qr,pΔV.Vα/3
t (4) 

kB is the Boltzmann constant, T is the temperature, h is the Planck 
constant, γ‡ and c‡ are the activity coefficient and standard state con-
centration of the activated complex. Reaction rates for dissolution and 
precipitation are typically expressed in number of reactions per unit area 
and per unit time, in which case c‡ is in number of activated complexes 
per unit area as well. ΔV is a user-defined small volume (usually in the 
order of D3) by which the simulation box is discretized when sampling 
possible positions for the precipitation of new particles: see Shvab et al. 
[33]. Vt is the tributary volume of a particle, which is the volume of the 
attractive interaction basin within which a particle would attract to-
wards itself another neighbor particle; one can take Vt ~ D2 rc for a 
particle being part of the surface of a larger crystal. ΔG‡ is the standard 
state activation energy, ΔG‡

diss for dissolution and ΔG‡
prec for precipita-

tion. Qr,p and Qp,p are the activity products of the reactant and product 
molecules of a precipitation reaction; Qr,d and Qp,d are the analogues for 
a dissolution reaction. In all the reactions considered here, listed in 
Table 3, the reactants in dissolution reactions are only solid molecules, 
as well as the products in precipitation reactions, hence Qr,d = Qp,p = 1 
(because stress-free solids are conventionally taken as being in the 
standard state). ΔUdiss is the change in interaction energy following the 
dissolution of a particle, and Ukink is the interaction energy between a 
kink particle and its nearest neighbors. α is the spatial dimensionality of 
c‡, with α = 3 if c‡ is per unit volume and α = 2 if c‡ is per unit surface 
area. The derivation and physical meaning of these equations and their 
validation are discussed in earlier works [33,34]. 

The straight rate Equations (3) and (4) can be combined to express 
net rates of particle dissolution and precipitation: 

Table 1 
Parameters for the calculation of interaction potentials between same-species particles.  

Solid 
Species 

Molar Volume, V 
(cm3/mol) 

Particle Diameter, D 
(nm) 

Young Modulus, E 
(GPa) 

Packing fraction of 
solid lattice, f 

Number of neighbors for a kink 
position, nkink 

Water-solid interfacial 
energy, γ (mJ/m2) 

Ca(OH)2 32.81 [37] 0.47 48 [38] 0.74 6 68.4 [39] 
C-S-H 110 [40] 0.81 63.6 [41] 0.64 4.44 (Section 2.1) 87.6 [42] 
CaCO3 36.90 [37] 0.49 69.9 [43] 0.74 6 32 [36]  

Table 2 
Initial composition of the pore solution in the simulations. ai and bi are pa-
rameters that will be introduced and used later for the calculation of activity 
coefficients.  

Species in 
solution 

Initial concentrations 
(mmol/L) 

Charge 
(zi) 

ai (nm) 
[47] 

bi 

[47] 

Ca2+ 0 2 0.486 0.150 
H4SiO4 0.1 0 0.000 0.000 
OH− 30 − 1 1.065 0.064 
CO3

2- 0.01132 − 2 0.540 0.064 
H+ 30.02264 1 0.900 0.000  

Table 3 
Chemical reactions considered in the simulations, along with their corre-
sponding equilibrium constants Keq and activation free energies ΔG‡

diss/prec.  

Reaction (dissolution) Keq,d ΔG‡

diss 

Ca(OH)2 → Ca2+ + 2 OH− 6.30866 × 10− 6 [47] 122.85 [48] 
C-S-H → 2 Ca2+ + H4SiO4 +4 OH- 1 × 10− 17 [49] 145.121 [42] 
CaCO3 → Ca2+ + CO3

2- 3.31157 × 10− 9 [47] 119.41525 [50] 
Reaction (precipitation) Keq,p =

1
Keq,d 

ΔG‡
prec 

Ca2+ + 2 OH− → Ca(OH)2 1.58512 × 105 [47] 74.052 [48] 
2 Ca2+ + H4SiO4 +4 OH- → C-S-H 1 × 1017 [49] − 44.4 [42] 
Ca2+ + CO3

2− → CaCO3 3.02× 108[47] 39.064 [50]  
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rdiss = rd − rd− =
kBT

h
c‡

γ‡
exp

[

−
ΔG‡

diss

kBT

](

exp
[
− ΔUdiss − Ukink

kBT

]

Qr,d −
Qp,d

Keq,d

)

Vα/3
t (5)  

rprec = rp − rp− =
kBT

h
c‡

γ‡
exp

[

−
ΔG‡

prec

kBT

](

Qr,p − exp
[
− ΔUdiss − Ukink

kBT

]
Qp,p

Keq,p

)

ΔV.V
α
3
t (6) 

rd- and rp- are the backward rates of dissolution and precipitation 
which are analogous to rdiss and rprec respectively in Equations (3) and 
(4). Simulations using net rates, instead of straight ones, are less 
computationally expensive because they avoid resolving all fluctuations 
between individual events of particle dissolution cancelling previous 
events of particle precipitation and vice versa, focussing instead only on 
the averaged net difference between such events. However, for some 
phenomena, such fluctuations can be very important, e.g. to simulate the 
formation and evolution of pre-nucleation clusters (see Shvab et al. [33] 
for more discussion). This work will mainly adopt net rates, but some 
comparisons with simulations using straight rates will be provided too in 
the results. 

Equation (5) can be rearranged to recover the usual form of disso-
lution rates from Transition State Theory (TST), viz. rTST

diss = kdiss(1 − β). 

In doing so, the expression for the rate constant becomes kdiss =

kBT
h

c‡
γ‡ exp

[
−

ΔG‡

diss
kBT

]
. The exponential term exp

[
− ΔUdiss − Ukink

kBT

]
is equal to 1 for 

kink particles, and indeed an underlying assumption of TST is that all 
surface particles are treated as if they are occupying a kink position (see 
more discussion in Coopamooto et al. [34]). For the reactions considered 
here, Qr,d = 1 as already mentioned, and the saturation index β of the 
solid finds its usual definition as β =

Qp,d
Keq,d

. The last term in Equation (5), 

Vα/3
t , is proportional to the surface area of a particle and returns the 

usual normalization of the TST rates, which is indeed per unit area, i.e. 
rTST
diss = rdiss/Vα/3

t . Following similar steps, also Equation (6) can be 
reduced to the form rTST

prec = kdiss(β − 1) where β =
Qr,p
Keq,d 

(note that Qr,p = Qp, 

d, hence β here is exactly the same as for the TST version of the disso-
lution equation above; also note that the rate constant for precipitation 
is correctly the same one as for dissolution). The saturation index β of a 
solid species determines whether a particle will dissolve or precipitate, 
with equilibrium at β = 1, dissolution being favoured when β < 1, and 
β > 1 favouring precipitation. 

The constants used in Equations (3)–(6), ΔG‡ and Keq are provided in 
Table 3. The activity product depends on the chemical reaction that is 
being considered and is calculated as: 

Qr,p =
∏nr

i=1
γici (7)  

where nr is the number of molecules involved in the reaction and ci is the 
concentration of the ith molecule involved in the reaction, whose ac-
tivity coefficient γi is computed using the Debye Huckel Theory as: 

log10(γi)=
− z2

i A
̅̅
I

√

1 + Bai
̅̅
I

√ + bi
̅̅
I

√
(8) 

A and B are solvent-specific constants which are equal to 0.51 and 
3.29 nm− 1 for water, ai is the hydrated radius of the molecule and bi is a 
molecule-specific constant as given in Table 2. The ionic strength (I) of 
the solution is computed as: 

I =
∑ns

i=1
ciz2

i (9)  

where ns is the number of molecular species in solution, ci is the 

Fig. 5. Dissolution of Ca(OH)2 and precipitation of CaCO3 from the implicit solution. Calcite growth over CH, as observed from SEM images [51] is compared to 
calcite growth from the simulations. 
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concentration of the ith ionic species, and zi its charge as provided in 
Table 2. 

2.1. Parameterising amorphous C-S-H for solubility 

The previous section mentioned that, for particles in a crystalline 
lattice such as CH, nkink = nbulk/2. For amorphous particles such as C-S-H, 
the densest arrangement imposed in the simulations here is RCP, which 
one could also use to compute an average value for nbulk, and thus of nkink 
which in turn informs ε0 in Equation (2) and its contribution to ΔUdiss 
and the rates. However, working with an average value of nbulk from a 
random arrangement would not return a system that is at equilibrium 
when β = 1 for two reasons: (i) particles on the surface of an RCP solid 
domain with approximately nkink neighbors will actually feature a range 
of number of neighbors including and around nbulk/2, hence some par-
ticle and surface sites will still support dissolution or precipitation also 
at β = 1; (ii) all particles in an RCP are under a self-equilibrated and 
spatially heterogeneous state of local stress (see Fig. 6(a)) which affects 

exp
[
− ΔUdiss − Ukink

kBT

]
in the rate equations, meaning that also for particles 

with approximately nbulk/2 neighbors, the rate is not controlled solely by 
(β − 1). 

To overcome these two issues we adopted a trial and error method to 
determine an equivalent nkink for the amorphous C-S-H system, which 
would give equilibrium at β = 1 when used to parametrize the interac-
tion energy scale ε0 in Equation (2) The method is based on the obser-
vation in Ref. [43] that the solubility of a spherical domain of particles 
arranged in a crystalline lattice is indeed controlled by kink particles 
[52], leading to equilibrium when β = 1. We generalise the same 
approach and create a spherical domain of particles, as shown in Fig. 6 
(a), carving it out from a box that was previously filled with C-S-H 
particles at RCP using the random space-filling algorithm in Masoero & 
Di Luzio 2020 [41]. The carved domain is let to relax by energy mini-
mization, to zero the average pressure in the domain. We then tune the 
equivalent nkink in the expression of ε0 until we get dissolution for β < 1, 
no dissolution for β > 1, and equilibrium at β = 1. The equivalent nkink 
for C-S-H resulting from this approach was determined to be 4.44, which 
returns the dissolution curves in Fig. 6(b), which satisfy indeed equi-
librium when β ≈ 1. 

2.2. Parameterising interaction potentials between dissimilar particles 

Equation (1) is the interaction potential between pairs of particles 
from the same solid phase. For two particles representing different 
phases, 1 and 2, such as C-S-H and CH, Equation (1) can be re-written as: 

U12(r)=

⎧
⎨

⎩

1
2
k12(r − r12)

2
− ε12

0

if r < rc,12
if r ≥ rc,12

(10)  

where k12 is the effective stiffness of the spring between 2 particles of 
different size and different Young’s modulus. k12 is calculated as the 
harmonic average of k1 = E1A1/r1 and k2 = E2A2/r2, where r1 and r2 are 
the equilibrium distances for the two particles of each species when they 
are interacting with particles of their same type (cf. r0 in Equation (1)); 
this gives k12 = k1k2

k1+k2
. The equilibrium distance between the two parti-

cles of different species is is r12 = r1+r2
2 and similarly the cut-off distance 

rc,12 is the average of the individual cut-offs. ε12, the minimum inter-
action energy between two particles of different species, is determined 
by modifying Equation (2) for ε0, where γ was the water-solid interfacial 
energy when the two interacting particles were of the same species. 
Now, for two particles representing dissimilar phases, 1 and 2, such as C- 
S-H and CH, γ needs to be replaced by a term accounting for both the 
interfacial energy in particle 1 at contact with particle 2, γ12, and the 
interfacial energy in particle 2 at contact with particle 1, γ21. These 
values of interfacial energies are typically unknown from experiments; 
atomistic simulations could help estimate them, but the result of such 
simulations would likely entail large uncertainties. Hereafter, therefore, 
we derive an expression for ε12 by assuming that γ12 and γ21 are fractions 
of the respective water-solid interfacial energies, i.e. γ12 = γ1(1 − κ12)

and γ21 = γ2(1 − κ21), with scalar parameters κ between 0 and 1, where 
0 means that the interface with the other solid brings no energetic 
advantage compared to having a free surface in contact with water. 

To express ε12 from these premises, consider the scenario in Fig. 7, 
where a large particle of species 1, with surface area A1, is fully sur-
rounded by smaller particles of species 2, with surface area A2. Fig. 7 is 
in 2D for clarity, but the derivation below is for the 3D case. Now assume 
that particle 1 dissolves, leaving a hole (i.e., a water-particle 2 interface) 
with surface area A1 where there was previously an interface between 
particles of type 2 and particle 1. From a macroscopic perspective, the 
change in system energy ΔU can be expressed exclusively in terms of 
interfacial energies (assuming stress-free conditions): ΔU(macro) = γ2 A1 
– γ12 A1– γ21 A1. In the microscale MASKE simulations, instead, the same 
dissolution event would cause a change in energy that is due both to the 
surface energy of particle 1 (embedded in the Ukink term in Equation (3)) 
and the interaction energy between particle 1 and its n12 neighbors of 
type 2: ΔU(micro) = - γ1 A1 + n12ε12. By equating ΔUdiss(macro) with 
ΔUdiss(micro) and remembering the definition above for the parameters 
κ we obtain: 

Fig. 6. (a) Spherical domain carved from an RCP arrangement of C-S-H particles. The colours of the particles highlight the heterogeneous distributions of stress 
which makes equilibrium not directly relatable to a purely topological quantity such as the number of neighbor particles. (b) Zero-rate dissolution-precipitation 
parametrization for C-S-H. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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ε12 = ε21 =(κ12γ1 + κ21γ2)
A1

n12
(11) 

We set ε12 = ε21 because we expect the interaction potential between 
particles of types 1 and 2 to be symmetric. Not knowing the exact values 
of κ, in this work our first attempt is with κ12 = κ21 = 0.5. The impact of 
assuming other values of κ on microstructure development and me-
chanical properties will be explored later in Section 3.5. 

The last term to be quantified in Equation (11) is the number of 
neighbors n12 when particle 1 is fully surrounded by particles of type 2. 
A purely geometric estimate is shown in Fig. 7, where n12 is obtained by 
dividing the surface area of the dashed sphere, centred onto particle 1 
and with diameter D1+D2, by the cross-sectional area of a particle of 
type 2 (i.e. πD2

2). This expression is accurate when there is a large size 
difference between the particles, but it overpredicts the number of 
neighbors for an FCC lattice with similar-sized particles (i.e., if D1 = D2); 
for such FCC lattice, indeed, the correct number of neighbors would be 
12, whereas the equation in Fig. 7 would predict n12 = 16. Since the 
particles in this work will have a quite similar size, we thus apply a 

correction factor of 12/16 obtaining n12 =
3(D1+D2)

2

D2
2

. 

2.3. The initial configuration 

The initial configuration was created by the following steps. Starting 
from an initially empty simulation box, a CH crystal was created by 
arranging CH particles in an FCC lattice, filling 28% of the box volume 
(fCH). This is the theoretical volume fraction of CH in a paste obtained 
from fully hydrating C3S, forming C-S-H gel and CH [40]. The CH crystal 
was pre-dissolved for a few steps to create some imperfections on the 
surface from where dissolution can progress also when βCH ≈ 1 (Fig. 8 
(a)). The porosity (η) for the C-S-H gel was taken as 34.5% [40], the 
amount computed for so-called ‘low density’ C-S-H in Jenning’s 
colloidal model [53,54]. From this, the volume occupied by C-S-H par-
ticles (fC− S− H) was calculated as 47% using the relation fC− S− H = (100 −

fCH)× η. Then C-S-H particles were added at random locations using the 
algorithm in Masoero and Di Luzio [41] whereby the insertion of 1000 
particles is attempted at each packing step but then overlaps with 
existing particles are removed. When the target volume fraction of solid 
C-S-H (47%) is reached, the remaining 25% of empty space in the 
simulation box represents the gel porosity, as shown in Fig. 8(c). 

A large cavity of size 6.322 nm (corresponding to ~10% of total 
volume fraction) was then carved out from the C-S-H at the center of the 
box, leaving the CH intact. The system was then relaxed by changing the 
box size until reaching zero average axial stresses in all directions using 
conjugate gradient energy minimization method. A seed of CaCO3 is 
placed within the cavity (Fig. 8(d)). This larger void was created, and the 
calcite seed placed to provide space and a convenient location for CaCO3 
particles to cluster and grow into an extended crystalline domain, should 

the system kinetics favor such an outcome. The volume fraction of the 
larger void is in line with typical capillary porosity in cement paste. 
However, we do not call this a capillary pore because of its small size 
(<10 nm). Nevertheless, there is a clear difference in size between this 
larger cavity (6.322 nm) and to the smaller pores between C-S-H parti-
cles in his model, whose typical size in the order of a C-S-H particle 
diameter, i.e. 0.81 nm. 

The dissolution-precipitation reactions were carried out using the 
simulation box in Fig. 8(d). The chemical evolution of the solution and 
the microstructural evolution of the solid were monitored and they will 
be presented and analysed in Section 3.2. The effective reaction rate 
constants determined from these simulations were then applied to a 
reactive chemical transport model as detailed in the next section. 

2.4. Reactive chemical species transport 

In the present work, the effective reaction rate constants determined 
from the above simulations were then applied to a reactive chemical 
transport model to simulate a carbonation problem at the macroscale. 
The carbonation of cementitious materials is characterised by the 
diffusion of carbon dioxide from the environment into the specimen 
through the pore network, its subsequent dissolution into the moisture 
phase, and the reaction of the dissolved carbon with calcium ions 
(produced through the dissolution of mineral phases), to form calcium 
carbonate. 

To simulate the carbonation problem, we employed the 2D reactive 
transport finite element model presented in Freeman et al., 2019 [28]. In 
the example problem considered, see Fig. 9, the saturation degree of the 
sample with pore water is uniform at 0.2928 and as such, moisture 
transport does not take place, though it is included in the model; only 
diffusion of CO2 and Ca2+ therefore take place. In addition, we assume 
that both changes in porosity (and therefore diffusion coefficients) and 

Fig. 7. Interactions and interfaces between particles of dissimilar types and 
sizes, and geometric expression for the number of neighbors n12. 

Fig. 8. (a) Pre-dissolved CH with imperfections, occupying a volume fraction of 
28% of box, (b) C-S-H particles early during the C-S-H packing process and (c) 
after reaching a volume fraction of 47% of the box, leaving a gel porosity of 
25%. (d) Large pore carved out, with a CaCO3 seed placed in it. 
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solution volume due to the reactive transport are negligible. The 
chemical species considered were CO2(g), CO2−

3 (aq) and Ca2+(aq). The 
reactive solid species considered were Ca(OH)2(s) and CaCO3(s), whilst 
the remaining solid volume was assumed inert. In this work, the 
chemical species and reactive solid species were considered in terms of 
concentrations (mol/L). The initial concentration of Ca(OH)2(s) was 
calculated from the percentage by weight given in the experimental 
data, whilst the initial concentration of CaCO3(s), was assumed to be 
zero (see Section 3.3). 

2.4.1. Transport of chemical species 
The transport of species is governed by the mass balance equation 

that reads: 

∂
(
nSjcj

i

)

∂t
+∇ •

(
− nSjDmol

i ∇cj
i
)
+ f j

i = 0. (12)  

where j = g ∨ l indicates a gaseous or aqueous species respectively, n is 
the porosity, Sj is the degree of saturation of the pores (with gas or 
liquid), cj

i denotes the concentration of species, i, Dmol
i is the molecular 

diffusivity of species, i, and f j
i = nSjr is the sink/source term arising from 

dissolution/precipitation reactions, where r is the reaction rate. 
In the present work, we consider the transport of CO2(g) and 

Ca2+(aq), governed by Equation (11), whilst the CO2−
3 (aq) content is 

determined through a local equilibrium condition (see next section). It is 
noted that the diffusion of CO2−

3 (aq) is not considered as it is much 
slower than the rate of transport of CO2(g) and the dissolution reaction 
(CO2(g)⇌CO2−

3 (aq)).As such, transport of CO2−
3 (aq) into the sample is 

governed by the diffusion and dissolution of CO2(g). 

2.4.2. Chemical reactions 
The chemical reactions considered are the dissolution of CO2(g) into 

the liquid phase, and the precipitation/dissolution of Ca(OH)2(s) and 
CaCO3(s). The dissolution of CO2(g) is assumed to be sufficiently fast 
such that a local equilibrium exists given as (where KH is Henry’s 
constant): 

CO2−
3 (aq)=KHCO2(g) (13) 

It is assumed that all dissolved carbon is in the form of CO2−
3 (aq) ions. 

This is a valid assumption at the high pH typically associated with 
cementitious materials, but may not be as the pH drops with carbon-
ation. In such cases, a simple correction could be employed based on a 
Bjerrum plot (Turley et al., 2004) [55]. 

The dissolution/precipitation of Ca(OH)2(s) and CaCO3(s) are gov-
erned by the following rate equations, where the kinetic rate constants k 
will later be calibrated from the results of the MASKE simulation: 

rCa(OH)2 = kCa(OH)2
(
1 − βCa(OH)2

)
S3.7

l (14)  

rCaCO3 = − kCaCO3(1 − βCaCO3)S3.7
l (15)  

where the effect of pore saturation degree on the reaction rate has been 
accounted for [56]. 

An important consideration is the effect of the chemical reactions on 
the pH of the pore solution, which is important for a range of issues, 
including reinforcing bar corrosion [57]. The pH depends upon the 
concentration and interaction of ions in the pore solution. In the present 
work, such interactions are not accounted for and the pH is kept constant 
during the simulations. An indication of the possible pH change can be 
estimated from the degree of carbonation of the sample according to the 
results of Chang and Chen, 2006 [58]: 

pH =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

12.5,∀Dcarb ≤ 1

a1 + a2 tanh− 1
(

1 −
Dcarb

a3

)

,∀Dcarb ≥ 1⋀

7.5, ∀Dcarb ≥ 90

Dcarb ≤ 90 (16)  

where a1 = 9.157, a2 = 1.329, a3 = 50 and Dcarb is the degree of 
carbonation given as: 

Dcarb = 100 ∗

(
CaCO3(s)

CaCOmax
3 (s)

)

(17) 

in which the max superscript indicates the value at complete 
carbonation (i.e. when all of the locally available CH has been 
carbonated). 

2.5. Boundary nucleation and growth 

The boundary nucleation and growth (BNG) model is a heterogenous 
version of the classical Avrami nucleation and growth model. The key 
difference is that nuclei appear only on surfaces and crystals grow as 
hemispheres from these surfaces (Masoero, 2018) [59]. The extended 
area fraction (Ye) of all spherical crystals nucleated on a crack face at 
time t = 0 and at a distance y from the boundary is given as: 

Ye =Nsπ
{
(G0 ∗ ξ(t))2

− y2} (18)  

where {} are Macaulay brackets, Ns are the number of nuclei per unit 
surface area, t is the time and ξ(t) is an effective time defined such that 
(Bullard et al., 2015) [60]: 
∫ t

0
G(t)dt =G0 ∗ ξ(t) (19)  

where G(t) is the crystal growth rate given as: 

Fig. 9. Schematic of reactive transport of carbonation problem.  
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G(t)=G0(βCaCO3(t) − 1) (20) 

in which G0 is a linear growth rate constant. 
From probabilistic considerations, the true area fraction (i.e. the area 

fraction once overlapping regions are removed), is equal to the proba-
bility that a randomly chosen point, c, belongs to the transformed 
(crystallised) phase. If we let X be the distance from c to the nearest 
nucleus, assuming that nucleation sites are randomly distributed on the 
crack face, this is equivalent to: 

P{X ≤ r}=Y = 1 − exp(− Ye) (21)  

where r is the radius of the crystals. 
In the above, the area related to overlapping crystals in the tangential 

direction to the crack faces has already been removed, but the areas 
related to overlapping crystals in the normal direction to the crack faces 
has not. For crystal growth from two crack faces, at some point the 
crystals will begin to overlap in the centre of the crack. The next step is 
to find the true volume fraction, following the removal of these regions 
of overlap. The true volume fraction considers areas of transformed 
phase from each crack face, and disregards areas that overlap. This is 
accounted for using probabilistic arguments. At a given point within the 
crack the true area fraction is given as: 

Yp =P{Xr ≤ xr} ∨ P{Xl ≤ xl} − P{Xr ≤ xr}

∧ P{Xl ≤ xl}=
[
1 − exp

(
− Ye

r

)]
+
[
1 − exp

(
− Ye

l

)]
−
[
1 − exp

(
− Ye

r

)]

∗
[
1 − exp

(
− Ye

l

)]

(22)  

where Yp represents the area fraction at a given point in the crack and 
the l and r subscripts indicate the left and right crack faces respectively. 
In the above, it is implicitly assumed that the random spatial distribution 
of nuclei on each crack face is independent of the other. To get the 
volume fraction, Z, this term needs to be integrated across the crack 
width, wc: 

Z =Ob
v

∫wc

0

[[
1 − exp

(
− Ye

r (wc − y)
)]

+
[
1 − exp

(
− Ye

l (y)
)]

−
[
1 − exp

(

− Ye
r (wc − y)

)]
∗
[
1 − exp

(
− Ye

l (y)
)]]

dy (23)  

where Ob
v is the crack face area per unit volume. 

Note that in the above, the dependencies of the area fractions on the 
distance from the crack face have been included to show that for the left 
crack face distance is measured from left to right and for the right crack 
face vice versa. 

The flowchart in Fig. 10 summarises the overall methodology and 
the communication of parameters across length scales described in 
methodology. The relevant equations, tables and results in the manu-
script are referred to in the flowchart. 

3. Results and discussion 

In the following sections we first examine the relative effect of using 
net rates vs straight rates and find that both give comparable results, 
although the simulations with net rates are approximately 2.5 times 
faster. Following this we use net rates to run the MASKE simulation on 
the initial configuration described in Section 2.3; we examine two 
emerging regimes, one of CaCO3 covering preexisting domains of CH 
and C-S-H, and the other regime of CaCO3 particles assembling to form 
growing crystals. In both cases we quantify solution properties such as 
concentration of ions and saturation indices of solids. We then fit the 
reaction rates from the growth regime to the standard rate Equations 
(14) and (15) above, thus computing values for the effective rate con-
stants in said equations. These constants are subsequently supplied to 
the macroscale reactive transport model, obtaining results on carbon-
ation depths to compare to the experimental results in Fig. 2. 

3.1. Dissolution-precipitation using net and straight rates 

Three reaction mechanisms govern the carbonation in the model 
cement paste considered here: dissolution of CH and C-S-H, raise in the 

Fig. 10. Flowchart depicting the overall methodology and communication of parameters across length scales. (a) The input parameters for solid, solution and the 
reaction which is the conversion between solid and solution are provided to MASKE (b) MASKE performs the KMC run according to the molecular rate equations 
defined. (c) The updated microstructure and solution properties during the run are used to determine the effective rate constants (d) The effective rate constants are 
supplied to the higher scale models and comparison with experimental results are obtained. 
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concentration of Ca2+ ions in solution, and subsequent precipitation of 
CaCO3. When adopting the straight rates in Equations (3) and (4), 
however, also the reverse reactions must be modelled, especially in near- 
equilibrium conditions, i.e. CH and C-S-H precipitation and CaCO3 
dissolution, as shown in Table 3. When adopting net rates instead 
(Equations (5) and (6)), one can limit the allowed mechanisms to only 
CH and C-S-H dissolution, and CaCO3 precipitation. Therefore, a test run 
on a small simulation box (10x10 × 14 nm) was performed to compare 
whether more-efficient simulations, using net rate equations, would 
yield comparable results as more accurate simulations using straight 
rates. 

Fig. 11 shows the number of particles of CH, C-S-H and CaCO3 during 
the test runs. CH dissolves, CaCO3 precipitates and C-S-H remains 
essentially constant. Note that [H4SiO4] is fixed, so C-S-H could poten-
tially grow or dissolve indefinitely thus contributing significantly to the 
amount of Ca2+ in solution. However, the simulation predicts the real-
istic result whereby C-S-H kinetics does indeed contribute negligibly to 
early carbonation, with only a few C-S-H particles dissolving and rep-
recipitation in isolated regions with particularly low connectivity with 
the rest of the C-S-H amorphous domain. Hence, CaCO3 precipitation is 
tightly linked to the dissolution of CH, since only the latter provides a 
continuous supply of Ca2+ ions throughout the simulation. The results 
show that both net and straight rates give similar results; however, the 
simulation using net rates in Fig. 6(b) was ~2.5 times faster than that 
using straight rates in Fig. 6(a), hence net rates will be used for the larger 
simulations in the following sections. 

3.2. CaCO3 precipitation into a larger pore 

Full simulations of carbonation were run on the larger simulation 
box (20x20 × 28 nm), with initial configuration featuring crystalline 
CH, amorphous C-S-H and a relatively large void providing space for 
CaCO3 particles to cluster and form larger solid domain, mimicking what 
happens in the capillary pores and cracks of concrete: see Fig. 12. Pre-
cipitation of CaCO3 would normally favor any tiny pores within the C-S- 
H gel phase, because that would reduce the internal water-solid inter-
facial energy of the C-S-H gel itself. Such a process of intra-gel precipi-
tation, however, is not very impactful in real carbonation of concrete, 
because limited by slow ion diffusion into the C-S-H gel. The simulations 
overestimate this process because they implicitly assume instantaneous 
diffusion by considering a uniform distribution of ion concentrations 
everywhere in the simulation box. Therefore, to favor a more realistic 
formation of extended CaCO3 domains in larger pores, precipitation of 
CaCO3 particles has been allowed only within the larger spherical void 
plus the first couple of layers of C-S-H gel on the pore surface. 

The initial configuration in Fig. 12 (a) also includes a small seed of 
solid CaCO3 in the larger spherical void; this is done to investigate 
whether and to what an extent the precipitation of new CaCO3 particles 

would benefit from or rely on such a favorable site; it will turn out 
however that the impact of this seed on the overall kinetics and 
morphology is very limited. 

Fig. 13 shows the precipitation curve for CaCO3 obtained here, which 
follows a qualitatively similar trend as for the preliminary simulations 
on a smaller box presented in Section 3.1. The curve in Fig. 13 displays 
two distinct regimes: (1) Coverage, during which the CaCO3 particles 
form a single layer covering the existing interfaces between the large 
spherical void and the surfaces of the C-S-H gel and CH domains; (2) 
Growth, during which CaCO3 organizes into crystalline domains that 
grow three-dimensionally into the volume of the spherical void. The 
inset in Fig. 13 shows the concentration of Ca ions in solution during 
both the coverage and growth regimes; the faster precipitation rate 
during coverage is consistent with the concentration of Ca ions being 
smaller during this regime, 1-2 mmol/L against 6-7 mmol/L during the 
slower, subsequent regime of growth. Throughout the simulation, the 
concentration of Ca ions remains correctly below the equilibrium value 
of approx. 20 mmol/L for CH dissolution, at the pH of 12.5 imposed 
here. 

Coverage is fast and dominates the first part of the simulation here. 
Growth is initially slower because it requires a sufficiently large solid 
cluster to form before it can significantly impact the rates. The initial 
prevalence of coverage therefore is likely a product of the small-scale 
simulation and minimal coarse graining employed here, which means 
that full coverage is reached before larger crystalline clusters can grow 
enough to take over the rate. At the larger scale of micrometre-sized 
crystals, some coverage may still take place initially but, after some 
time, the growth process of larger CaCO3 crystals will become the main 
contributor to the rate, as evidenced in experimental SEM images 
showing large crystals of calcite forming in carbonated pastes (e.g., in 
Fig. 1 and in Fig. 5). Furthermore, the importance of the coverage 
regime in the simulations relies on the interfacial energies between C-S- 
H and CaCO3 and between CH and CaCO3, which impact the ΔUdiss term 
in the net rate equation. In this work the solid-solid interfacial energies 
are established through a rather arbitrary choice of the κ12 factors, as 
discussed in Section 2.2, therefore the impact of different values of such 
interfacial energies on the coverage and growth regimes will be inves-
tigated later in Section 3.5. By contrast, the value of the CaCO3-water 
interfacial energy is better known, and it controls growth. Therefore, 
putting together the artifact of the length scale favouring coverage, over 
growth, the uncertainty on the CaCO3-CSH and CH-CaCO3 interfacial 
energies, and the likelihood that macroscopic rates will be controlled by 
growth rather than by coverage, we have decided to refer to the growth 
regime for the following calculations of rate constants to be passed to the 
larger scale model. 

The saturation indexes β of CH and CaCO3, shown in Fig. 14, were 
computed from the composition of the solution during the growth 
regime, i.e., between 800 and 2000 s of simulated carbonation. The β of 

Fig. 11. Number of particles during small-box preliminary simulations, comparing the kinetics emerging from the use of (a) straight rates and (b) net rates.  
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calcite averages around 10, and for CH it is around 0.3. Both these values 
are far from equilibrium (β = 1), thus neither CH dissolution nor CaCO3 
precipitation are rate-controlling; instead, both contribute in 

commensurable ways to establishing the steady state kinetics of the 
system. This is conceptually similar to the simulation results in Bullard 
et al. [61] on alite hydration, with neither dissolution nor diffusion 
being rate-controlling per se. 

3.3. Obtaining effective rate constants for the macroscale simulations 

The calculation of effective rate constants for macroscale simulations 
is based on analytically fitting the simulation results through the two 
rate equations below, which are the same as the macroscale Equations 
(14) and (15) except that water saturation is unit in the MASKE 
simulations: 

rCa(OH)2 = kCa(OH)2
(
1 − βCa(OH)2

)
(24)  

rCaCO3 = − kCaCO3(1 − βCaCO3) (25) 

We start with a first assumption for the values of the rate constants. 
Initial values of β are calculated for CH and CaCO3 using the concen-
tration of ions in the first step of the simulation, their charges, and the 
equilibrium constant Keq,diss of CH and CaCO3 as described in the 

Fig. 12. Precipitation of CaCO3 into a relatively large spherical pore. (a) A small seed of CaCO3 is also placed in the large pore to investigate whether and to what 
extent it might impact growth. The simulation cell is sliced to provide a better view of (b) the growth of CaCO3 into the large pore. 

Fig. 13. CaCO3 precipitation curve, displaying two distinct regimes of coverage and growth. The inset shows the evolution of the concentration of Ca ions in solution 
during the simulation. The pink shaded envelope shows the mean and standard deviation of the scattered concentration data points. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 14. Solution properties in the growth regime. The shaded envelopes show 
the mean and standard deviation of the scatter plot. 
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methodology. With all these values, a suitably small time-step is used to 
perform a first integration step of the rate Equations (24) and (25), 
yielding an updated, analytically predicted number of CH and CaCO3 
particles, as well as the accompanying change in number of predicted 
Ca2+ ions in solution (the rest of the ion concentrations being fixed as in 
the simulations). With the updated composition of the solution, new 
values of β are computed prompting a new advance in time, and so forth 
until covering the total simulated time. All this produces analytically 
predicted curves for the temporal evolution of the number of CH and 
CaCO3 particles in the system, as well as Ca2+ ions in solution. These 
curves are compared to the simulated ones during the calcite growth 
regime, and the analytical integration of the rate Equations (24) and 
(25) is repeated with new values for the rate constants until a satisfac-
tory match (minimum least square error) between analytical and 
simulated results is reached. The final values of k obtained in this way 
were kCa(OH)2 = 2.20 × 10− 5 kg/m3/s and kCaCO3 = 4.24 × 10− 6 kg/m3/ 
s, which produce the fits in Fig. 15. These values of effective rate con-
stants were then supplied to the reactive transport model to estimate the 
depth of penetration of carbonation. This multi-scale approach of sup-
plying the effective rates obtained from the molecular scale model to the 
reactive transport model at higher scale is due to the size limitation of 
our particle coarse graining (i.e., 1 particle = 1 molecule). If our model is 
coarse-grained to higher scale (say 1 particle = 1 μm) the results from 
the simulation can be directly compared with experimental data. 

3.4. Bottom-up informed macroscale simulations 

3.4.1. Carbonation of lime mortar 
The validity of the model and upscaling procedure are demonstrated 

through an example problem concerning the carbonation of a non- 
hydraulic lime mortar, presented in Lawrence et al., 2006 [29]. The 
mortar samples were cured for 7 days at a relative humidity (RH) of 
90%, followed by a reduction to an RH of 60% prior to testing. The 
samples were then left at 60% RH and exposed to an atmospheric carbon 
concentration of 0.035%, for 180 days, with measurements of the 
carbonation depth being taken at 14, 28, 90 and 180 days exposure time, 
using both thermogravimetric analysis, TGA, and a phenolphthalein 
indicator. For the numerical simulation, one-dimensional reactive 
transport of carbon from the environment was considered, the degree of 
saturation of the sample was assumed uniform at 29.28%, and the initial 
concentration of Ca2+(aq) was calculated assuming an initial chemical 
equilibrium (with respect to CH dissolution) based on an initial pH of 
12.5. It is noted that the initial concentration is similar to the steady 
state value from the MASKE simulations (see Fig. 14(a)). The samples 
were assumed to be fully cured prior to the carbonation test such that the 
hydration reaction was complete, and aging was due solely to the 
carbonation processes. The model parameters can be seen in Table 4, 
except the rate constants for CH dissolution and CaCO3 precipitation, 
that were taken from the MASKE simulations and computed in Section 
3.3 above. The finite element mesh used an element size of 0.1 mm, 
whilst the time step size was 360 s. 

A comparison between the numerical predictions and the experi-
mental data can be seen in Fig. 16. The predicted profiles of Ca(OH)2(s)
and CaCO3(s), in addition to the pH profile estimated using the empir-
ical relation in Equation (15), can be seen in Fig. 17. The model pre-
dictions compare well with the experimental data after both 14 and 28 
days. In addition, the chemical favourability of CaCO3(s) precipitation is 
clear, with almost all of the Ca(OH)2(s) being dissolved in the carbon-
ated region. 

3.4.2. Sensitivity of the macroscale simulations on the reaction rate 
constants 

The example problem presented is governed by both chemical spe-
cies transport and carbonation reactions. To assess the confidence level 
in the upscaled rate constants, we investigate the effect the rates have on 
the results shown in Fig. 16. To this end, the example problem was 
simulated with the rate constants increased and decreased by an order of 
magnitude respectively. The results of the investigation can be seen in 
Fig. 18, where Num – Upper and Num – Lower indicate the results with 
rate constants increased and decreased by a factor 10 respectively. 

The profiles at 14 days show that there is a significant disagreement 
between the simulation predictions and the experimental data when the 
lower rates are used. Increasing the rate constants above the values 
obtained from MASKE, instead, does not change the resulting curves of 
penetration depth. Larger rate constants for CH dissolution and CaCO3 
carbonation make the problem increasingly transport-controlled; the 
rate-limiting effect of transport also increases with time, as indeed at 28 
days in Fig. 18. Also the simulation results with lower rate end up 
coinciding with those with higher rates. It is possible therefore that we 

Fig. 15. Comparison between (a) MASKE-simulated vs analytical [Ca] and 
number of particles of (b) CH and (c) CaCO3. 

Table 4 
Model Parameters for macroscale simulations of reactive transport.  

Parameter Value Parameter Value 

n (%) 28.20 [29] KH (mol/L.Patm) 3.40 × 10− 2 [62] 
Sl (%) 29.28 [29] Ca(OH)

init
2 (s)

(mol/L) 
3.36 [29] 

Dmol
Ca2+ (m2/ 
s) 

0.79 × 10− 11 

[63] 
Ca2+,init(aq) (mol/ 
L) 

6.48 × 10− 3 (based on pH 
= 12.5) 

Dmol
CO2 

(m2/s) 1.60 × 10− 8 

[63] 
COinit

2 (g) (%) 0.00 [29]  
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would have seen a greater difference between the MASKE-informed and 
the increased rates if we considered the carbonation profile after 7 days 
only. 

All in all, Fig. 18 shows that the magnitude of the rate constants does 
play a role, but that transport also impacts the rates significantly in the 
example considered here. This however is not the case in general since 
transport sometimes is far from being rate-controlling, e.g. in carbon-
ation when cracks are present (which is always true for self-healing 
problems). The presence of cracks leads to rates of transport that are 
orders of magnitude higher than in an intact material. This has been 
shown in Wang et al. (1997) [64] where the permeability coefficient for 
a matrix containing cracks of 0.3 mm width, was found to be 104 times 
higher than that of an intact matrix (and even higher still when the 
specimen was unloaded). In this case the transport is unlikely to be rate 
limiting and the reaction rates would need to be accurately captured, not 
simply “fast enough” as the results in Fig. 17 might suggest at first sight. 

3.4.3. Comparison to rates in the literature 
To further investigate the validity of the upscaled rate constants, the 

reaction rates were also compared to those reported in the literature. To 
this end several reaction models were considered and the reaction rates 
calculated for given chemical conditions. A direct comparison of rate 
constants is not possible because different models adopt different 
functional forms for the dissolution and precipitation reactions, some 
merging the two together into a single effective reaction; however a 
comparison of overall rates for similar if not identical chemical envi-
ronments is possible. The dissolution reaction of Papadakis et al. (1991) 
[65], assuming a volume fraction of aqueous film on the pore walls of 1, 
a BET specific surface area of 6.2 m2/g (Phung et al., 2016) [56], and 
substituting in values given in (Papadakis et al., 1991) [65] is given by: 

rdiss = a1kpap
diss

(
[OH − (aq)]eq − [OH − (aq)]

)
(26) 

Fig. 16. Comparison of simulated carbonation profiles (Num in the legend) and the experimental data of Lawrence et al. (2006) presented in the Introduction.  

Fig. 17. Simulated profiles of Ca(OH)2(s), CaCO3(s) and estimated pH (Equation (15)).  

Fig. 18. Predicted carbonation profiles with altered rate constants and the results of Lawrence et al. (2006).  
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where a1 = 27605. The precipitation reaction, assuming a temperature 
of 298 K, is given by: 

rprec = a2kpap
prec[OH − (aq)]eq[CO2(g)] (27)  

where a2 = 0.836. The initial carbonation reaction rate considered by 
Van Balen and Van Gemert (1994) [66], assuming no effect of satura-
tion, is given by: 

rcarb = kvanb
carb [CO2(g)] (28) 

A similar reaction was considered by Li et al. (2020) [67]: 

rcarb = kli
carb

[
Ca(OH)2(aq)

]
[CO2(g)] (29) 

Chen et al. (2019) [68]: 

rcarb = kchen
carb [OH − (aq)]eq[CO2(aq)] (30) 

and Talukdar et al. (2012) [69]: 

rcarb = ktaluk
carb

[
Ca(OH)2(aq)

]
[CO2(aq)] (31) 

The reactions rates in the present work are given by Equations (14) 
and (15), with the degree of saturation (Sl) set to 1. 

Fig. 19 shows a comparison of the reaction rates predicted by the 
various methods; the parameters used in the comparison can be seen in 
Table 5. The saturation indexes β of the solid species were taken as the 
average values from the MASKE simulations (see Section 3.2, Fig. 13), 
whilst the ion concentrations in solution were chosen to be consistent 
with said β values. The reaction rates in this work are well within the 
range of those predicted using models from the literature: see Fig. 19. 
The Ca(OH)2 dissolution and CaCO3 precipitation rates do not coincide 
because, in the macroscale simulations, there is also a term of Ca2+(aq)
transport contributing to the rate balance at steady state. Specifically, in 
the carbonation problem, the consumption of Ca2+(aq) by the precipi-
tation reaction leads to both further dissolution of Ca(OH)2(s) due to the 
reduction in βCa(OH)2 and transport of Ca2+(aq) from the intact part of the 
specimen to the reaction site (i.e. in the opposite direction to the CO2(g)
transport). As a result, the precipitation is balanced by both the disso-
lution and the flux of Ca2+(aq) ions and as such, the average values of β 
at steady in the macroscale simulations generally differs from the 
steady-state β from the MASKE simulations, shown in Fig. 17 and 
Table 5, as no transport is simulated at the microscale in MASKE. 

3.4.4. Self-healing of cracks 
To demonstrate the validity of the upscaled rate constants and BNG 

model for crack filling, an example problem concerning the self-healing 
of cracks in mortar specimens, presented in Van Tittelboom et al. [70], is 

considered. Mortar samples of dimension 160x40 × 40 mm were cured 
for 28 days at an RH of >95%, before being subjected to cracking in a 
three-point bending test. Following this, the cracked samples were 
immersed in tap water for a period of 1–42 days, at which times the 
crack widths were measured using a stereo microscope. The crack 
self-healing ratio was given as the reduction in crack width over the 
healing period, whilst the healing product was reported to be CaCO3. For 
the numerical simulation, the BNG model reported in Section 2.5 was 
employed; whilst the healing of a 62.5μm crack was considered for the 
comparison. The model parameters can be seen in Table 6. The linear 
growth rate G0, was calculated from molecular scale equation for rate 
constants (Equation (5),(6)) as described in methodology, and is in good 
agreement with values found in the literature [60,71], whilst the num-
ber of nuclei per unit surface area Ns, was assumed to be 10 × 103/mm2, 
which again, is in agreement with values found in the literature [71]. 
The initial solution saturation index (βinitial

CaCO3) was taken as the average 
value from the MASKE simulations (see Section 3.2, Fig. 13). Bullard 
et al. [60] showed that the growth of a product layer with high opacity 
(which is a measure of the effect of surface coverage on inhibiting the 
dissolution that produces reactants and rate of transport of those re-
actants), leads to a rapid decrease in the solution saturation index (see 
Fig. 6 in Bullard et al. [60]). To account for this, we employ the 
following exponential function: 

βCaCO3(t)= βinitial
CaCO3e− Ct + βfinal

CaCO3
(
1 − e− Ct) (32)  

where C = 5.9 × 10− 6 s− 1 is a constant and βfinal
CaCO3 is the final saturation 

index, taken here to be near to 1. 
The comparison of the predictions of the BNG model with the 

experimental values can be seen in Fig. 20. It can be seen from the figure 
that the BNG model is in good agreement with the experiment. 

3.5. Effect of interfacial energy 

Section 2.2 discussed how solid-solid interfacial energies, which are 
controlled by the κ12 parameters in our MASKE simulations, are 
important in determining the chemo-mechanical behaviour of the sys-
tem. The values of κ12 are generally not known; atomistic simulations 
might help estimating them but they will still involve large un-
certainties, whereas direct experimental assessment is currently beyond 
capability. Hence a small study into the sensitivity of our results on κ12 is 
provided here. Thus far this work has assumed κ12 = 0.5 for all solid- 

Fig. 19. Reaction rates predicted by various models.  

Table 5 
Parameters used in the comparison.  

Species Concentrations/ 
Saturations 

Value Rate 
Constants 

Value 

[OH− (aq)]eq 43 (mmol/l) kpap
diss 5 × 10− 5 (m/s) 

[OH− (aq)] 17 (mmol/l) kpap
prec 8.3 (m3/mol/s) 

[CO2(g)] 0.00616 
(mmol/l) 

kvanb
carb 0.7062 (1/s) 

[CO2(aq)] 0.00511 
(mmol/l) 

kli
carb 9.9 × 10− 3 (m3/ 

mol/s) 
[Ca(OH)2(aq)] 6.48 (mmol/l) kchen

carb 3.9 (m3/mol/s) 
βCa(OH)2 0.3 (-) ktaluk

carb 1.35 × 10− 4 (m3/ 
mol/s) 

βCaCO3 10 (-)    

Table 6 
Parameters used in the BNG model.  

Parameter Value 

G0 (mm/s) 2.0 × 10− 8 

Ns (1/mm2) 10 × 103 

βinitial
CaCO3 (-) 10 

βfinal
CaCO3 (-) 1.01  

A. Alex et al.                                                                                                                                                                                                                                     



Cement and Concrete Composites 144 (2023) 105281

15

solid interfaces between different solid species; this means that the solid- 
solid interfacial energy is the average of the water-solid energies of the 
two dissimilar particles coming in contact. The ideal way to determine 
this value would be to run rigorous reactive atomistic simulations be-
tween the dissimilar solid surfaces. Even such simulations may not give 
reliable values because atomistic simulations usually come with huge 
uncertainties. Thus, we go with the guess here and perform a study on 
how a variation in these values can influence the microstructure and 
mechanical properties of the final structure. 

This choice of κ12 can have an important effect on mechanisms, such 
as the relative prevalence of coverage and growth. For instance, κ12 =

0.5 produces both a coverage and a growth regime, whereas a signifi-
cantly smaller κ12 = 0.05 between C-S-H and CaCO3 and between CH 
and CaCO3 (i.e. unfavourable interactions between them, since the 
interfacial energies determines the interaction strength ε12 as per 
Equation (11)) would hinder the precipitation of calcite on C-S-H and 
CH surfaces, thus yielding to prevalent growth around the pre-placed 
calcite seed as shown in Fig. 21. Both simulations with κ12 = 0.5 and 
κ12 = 0.05 led to comparable reaction rates during the growth- 
dominated regimes, as expected since growth depends only on calcite- 
calcite interactions, viz. on the calcite-water interfacial energy which 
was the same in both simulations in Fig. 21. 

The parameter κ12 also impacts the mechanical properties of the 
system. Fig. 22(b) shows an initially intact model paste of CH and C-S-H 
akin to the one used in this work to simulate carbonation. The paste is 
cracked in Fig. 22(b), simply by deleting all particles from a thin slice at 
mid height. Carbonation is then simulated until complete healing, 

leading to the systems in Fig. 22(d). Here we show only the initial and 
final fully precipitated state of the system. However, the comparison of 
stress-strain curves at different time intervals before attaining full 
dissolution-precipitation are presented in the conference paper [72]. 
The stress-strain curves in Fig. 22(a) were then computed by imposing a 
progressive elongation of the periodic simulation box in the vertical 
direction, and minimizing the interaction energy in the system. The 
curves in Fig. 22(a) are both for the intact system in Fig. 22(b) and for 
the healed system in Fig. 22(d), but for this latter we considered two 
cases: one with CH-C-S-H and CH-CaCO3 interactions dictated by κ12 =

0.5, the other one with κ12 = 0.05. Expectedly, the stronger inter-phase 
forces sustained by κ12 = 0.5 lead to healed system that is even stiffer 
and stronger in tension than the original intact paste; however, this is 
contrary to the experimental observations, where strength recovery in 
healed systems is usually partial at best. The stress-strain curves for κ12 
= 0.05 instead display a more realistic loss of strength compared to the 
intact system. Thus, getting an accurate estimate of interfacial energy is 
important to correctly predict both the precipitation mechanisms and 
the mechanical performance of carbonated systems and, more in gen-
eral, of any system with chemically heterogeneous microstructures; this 
warrants further studies in the future. 

4. Conclusions 

The Kinetic Monte Carlo (KMC) model in this work successfully 
simulated the 3D evolution of microstructure during carbonation, while 
tracking information on the evolving solution chemistry and of the 
mechanical interactions between phases controlling the overall evolu-
tion of mechanical properties of the system. The following conclusions 
emerged: 

• During carbonation, the simulations correctly predict that CH dis-
solves providing a constant supply of ions for CaCO3 to precipitate, 
while the amount of C-S-H in the system remains approximately 
constant despite it is in principle allowed to dissolve or precipitate 
indefinitely. 

• Simulations using straight rate expressions are knowingly more ac-
curate than simulations using net rates, but the latter are signifi-
cantly more efficient (~2.5 times faster) and were shown to produce 
similar dissolution-precipitation profiles and overall rates in regimes 
where rapid fluctuations between dissolution and precipitation 
events are not critical to morphology evolution (in particular during 
coverage and growth, as opposed to initial nucleation).  

• The calcite precipitation curves show two distinct regimes of (i) 
coverage and (ii) growth, during which the predicted concentration 

Fig. 20. Comparison of predicted self-healing of 62.5μm crack with experi-
mental data from Van Tittelboom et al. [70]. 

Fig. 21. Varying the interaction potential through κ12 between C-S-H-CaCO3 and CH-CaCO3. Coverage and growth were observed for (a) κ12 = 0.5 whereas pre-
dominant growth from the calcite seed was obtained with (b) κ12 = 0.05. 
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of calcium ions in solution remains in the order of few mmol/L, in 
good agreement with expected values from the literature.  

• The values of saturation indexes βCa(OH)2 and βCaCO3 predicted by the 
KMC simulations were both far from unity, meaning that neither CH 
dissolution nor CaCO3 precipitation were rate-controlling during 
steady-state carbonation.  

• Effective reaction rate constants for CH dissolution and carbonate 
precipitation were derived from the KMC simulations, with reference 
to the carbonate growth regime. These constants, applied to a reac-
tive transport model at the macroscale, provided a satisfactory pre-
diction of carbonation depth profiles as from experiments in 
Lawrence et al. [29]. Reaction rates estimated for CH dissolution and 
CaCO3 precipitation were also within the range reported in various 
works in the literature.  

• The molecular reaction rate for CaCO3 precipitation, when applied to 
a new boundary nucleation and growth model, provided a satisfac-
tory prediction of self-healing of a crack from experiments in Van 
Tittelboom et al. [70].  

• An expression is proposed to estimate the interaction energy between 
solid particles of dissimilar species and dissimilar size, all based on a 
single parameter κ12 that determines the solid-solid interfacial en-
ergy between the species. κ12 is a significant parameter affecting the 
morphology and mechanical performance of the system. The bulk of 
the results in this manuscript refer to a choice of κ12 = 0.5, but 
dedicated simulations with other values of κ12 showed that the rate 
in the growth regime (hence the effective rates passed to the 
macroscale model) did not depend significantly on κ12, since the 
carbonate growth regime depends on CH-CH interactions rather than 
interactions between CH and other solid phases. Further in-
vestigations are required to obtain an accurate value of κ12. 

The work in this paper can now be extended in several directions. 
The method presented here can be immediately used to improve the 
mechanistic hypotheses underlying the macroscale models of 

carbonation, also beyond the expressions of reaction rate constants 
addressed in this work. At the microscopic scale, then, further insight 
can be gained into the values of κ12 or, more in general, of solid-solid 
interfacial energies and interaction energies between particles of dis-
similar species. This would likely entail a combination of bottom-up 
efforts starting from atomistic simulations, and top-down parameter 
optimization targeting experimental results at larger length scales. 

Another desirable development is to further the coarse-graining 
beyond the one-particle = one-molecule level chosen here. Pushing 
the coarse-graining to micrometre-sized particles, for example, would 
allow simulating the chemo-mechanical evolution of microstructures at 
a length scale where direct comparison with experimental results is 
possible, e.g., from imaging techniques. The micro-to-millimetre scale is 
also the appropriate one to apply the presented approach to the engi-
neering challenge of designing microbial-self-healing concretes [23]. On 
the other hand, coarser graining requires modifications to the unim-
olecular rate equations in this work, and one would have to make as-
sumptions on the molecular-scale mechanisms of nucleation, growth, 
and dissolution that the coarse-grained rate equations will consider 
implicitly: e.g., see Shvab et al. [33]. In this regard, having started from 
an unimolecular coarse graining here provides a good starting point to 
devise reasonable mechanistic assumptions to be used in following 
studies with coarse graining. 

Finally, even with the minimal coarse graining adopted here, the 
proposed method is readily available to study systems with different 
chemical compositions and coupled chemo-mechanical processes other 
than carbonation, such as dissolution-precipitation at grain boundaries, 
interaction between minerals and admixtures, or degradation induced 
by pressure solution or crystallization pressure [52]. The system can also 
be used to study the crack filling effects of other forms of calcium car-
bonate (e.g., vaterite and aragonite) provided the chemo-mechanical 
input parameters are available for those forms. All in all, this work 
has demonstrated how chemo-mechanical, particle-based, KMC simu-
lations at the microscale can predict the evolution of morphology, 

Fig. 22. (a) Stress-strain plots of intact vs fully precipitated with κ12 = 0.5 and κ12 = 0.05, (b) intact system with C-S-H and CH, (c) cracked with a crack width of 1 
nm, (d) fully precipitated system with calcite bridging the crack. 
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mechanical properties, and reaction rates during carbonation and 
carbonation based self-healing of concrete, all of which can be used to 
inform macroscale models thus reducing their reliance on heuristic 
constitutive assumptions that limit their predictive ability. This provides 
a new avenue to support the current endeavours towards a 
simulation-assisted management of degradation of both traditional and 
innovative cementitious materials. 
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