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T H E S I S A B S T R AC T

Advanced radiotherapy delivery approaches have substantially increased oppor-

tunities for sparing organs at risk with proven clinical impact. Ideally, for each

individual patient, the treatment plan maximally exploits the full potential of the

applied delivery technique. Currently, most treatment plans are generated with

interactive trial-and-error planning (‘manual planning’). It is well-known that plan

quality in manual planning may be sub-optimal, e.g. depending on experience

and ambition of the planner, and on allotted planning time. In recent years, sev-

eral systems for automated plan generation have been developed, often resulting

in enhanced plan quality compared to manual planning. Both in manual and au-

tomated planning, human evaluation and judgement of treatment plans is crucial.

During plan generation, planners usually develop a range of plans, but generally

only one or two competing plans are discussed with the radiation oncologist (RO).

A necessary assumption for this process to work well, is that (unknown) disparity

between planners and ROs on characteristics of good/optimal plans is absent or

minor. Radiotherapy is gradually evolving towards real-time adaptive radiotherapy

(ART). ART has the clinical rationale of reducing normal tissue toxicity and im-

proving tumour control through plan adaptation. In this thesis the research in ART

was focused on automated methods to standardize ART in predicting the even-

tual need for re-planning and to assess the goodness of the process. In this thesis

the differences between users in perceived quality of plans has been quantified

and analysed. Inter-observer differences in plan quality scores were substantial

and may result in inconsistencies in generated treatment plans. A method for ART

verification, with the ability to quantify registration spatial errors and assess their

dose impact at the voxel level, is presented. A systematic workflow to identify ef-

fective OAR sparing in re-planning using knowledge-based methods, has been

established as a step toward an on-line ART process.
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1
O U T L I N E

“Begin at the beginning,”. the King said

gravely, “and go on till you come to the end:

then stop.”

Lewis Carroll-Alice in Wonderland

1.1 A I M O F T H E W O R K

The main object of this thesis is the automation of the radiation oncology treat-

ment planning process. In more details, this thesis investigates the implementa-

tion and use of automated tools, such as automation in plan generation, plan eval-

uation and plan adaptation into radiation therapy clinical practice and their impact

on treatment quality. Two aspects are focused on, the first being modulated radia-

tion therapy treatment plans (a term including both Intensity Modulated Radiation

Therapy, IMRT, and Volumetric Modulated Arc Therapy, VMAT) and the second

being to adaptive radiotherapy, including image registration and plan modification.

The study was centred mainly on head and neck cancer treatment, however on-

going research using the methods developed during the thesis work, applied to

breast cancer treatment is presented (chapter 8 and chapter 11).

1.2 T H E S I S S T RU C T U R E

Figure 1.1 gives a schematic thesis map to show the flow and relationships be-

tween chapters. Chapter 2 provides background to the work presented. An intro-

duction to key concepts of radiotherapy and a brief general literature overview

are provided, with more critical discussion of the specific literature in subsequent

chapters. Part II, composed of chapter 3, 4 and 5 describes the tools used in

the research projects of this thesis. Chapter 3 describes multicriteria optimisation

3



4 O U T L I N E

 
Part II

Tools for automated planning and evaluations 
 

Chapter 3
Automated multicriteria optimisation in head and neck

treatments
 

Chapter 4
Knowledge-based planning tool for

head and neck treatments
 

Chapter 5
Tools for plan evaluation procedure analysis

Part V 
On-going research

 
Chapter 11 

General conclusions, current and future work

Chapter 9
 Evaluating the quality of deformable image registration

in adaptive radiotherapy using a digitally enhanced
phantom

Chapter 10
Enhancing automated re-planning 

strategies in adaptive radiotherapy   

 
Part III 

Application to planning and evaluation
  

Chapter 6 
Variations in head and neck treatment plan quality

assessment

Chapter 7
Analysis of the radiotherapy plan evaluation process 

Chapter 8 
Automation for breast treatments planning  

Part IV 
Application to Adaptive Radiotherapy

Part I
Overview

Chapter 1 
Overview

Chapter 2 
Introduction and  Literature review

Figure 1.1: Thesis map

(MCO) tool used for automated planning used for the research presented in Part

III -chapter 6, chapter 7 and chapter 8. Chapter 4 reports a knowledge based

radiotherapy planning tool, Rapidplan tool, used in a research study described

in Part IV- chapter 10. Chapter 5 describes the tools used in the plan evaluation

assessment analysis presented Part III -chapter 7. These included a commercial
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tool for plan evaluation (planIQ) and an in-house developed ideal dose concept,

used as baseline for real plan evaluation (gUIDE).

The thesis is then split into two parallel parts: Part III – Application to planning

and evaluation (chapters 6, 7 and 8) and Part IV – Application to adaptive radio-

therapy (chapters 9 and 10).

Chapter 6 reports on a multicentre study performed at AUSL-IRCCS of Reggio

Emilia. The aim of this chapter is to gain an understanding of the level of agree-

ment between medical physicists, who perform treatment plans, and radiation

oncologists on plan quality criteria. Good agreement is essential for consistent

planning. In this chapter the use and application of automated treatment plan-

ning, and its impact on plan quality is introduced. Differences between radiation

oncologists (ROs) and planning medical physicists (MPs) in perceived quality of

head and neck plans were assessed using both automated and manual planning.

The results were used to consider beam modelling investigations in the follow-

ing chapter. This chapter was published in the journal Frontiers in Oncology in

September 2021.

Chapter 7 analyses the data of the previous chapter and investigates the rea-

sons for large variation in scoring of different evaluators using both statistical and

machine learning tools. The specific aim of this chapter is to determine which pa-

rameters in the plans have the greatest impact on the quality judgement and to

explore differences to improve consistency between users in evaluation.

Chapter 8 This chapter uses the methods developed in chapter 6 for head and

neck automated treatment planning applied to breast cancer. This study is part of

a multi-institute plan quality assessment evaluation for the breast site (described

in the final chapter 11).

Chapter 9 presents a registration-based method for deformable image registra-

tion quality assurance for head and neck patients using digitally post-processed

anthropomorphic phantom image sets. The findings of this work underline that

spatial and dose errors are a function of the magnitude of the deformation and

of the gradient of the dose distribution. This emphasizes the importance of per-

forming patient specific image registration verification. This work contributes to

the standardization and automation of verification methods for deformable image

registration accuracy. The aim of this work is to automate the step of verification of
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image registration in adaptive head and neck planning. This chapter is intended

to be submitted in a peer-reviewed journal.

Chapter 10 presents a novel application of a commercial knowledge-based

planning (KBP) tool for radiotherapy planning, using potential organ at risk spar-

ing estimation in the replanning strategy for head and neck adaptive radiotherapy.

The work demonstrates the utility of a KBP model trained with Pareto optimised

plans to estimate the potential organ sparing gain in a replanning strategy. A sys-

tematic workflow for identifying effective organ sparing in replanning strategies

based on KBP prediction is presented. This method could provide an important

KBP application for adaptive radiotherapy and estimation of organ sparing. This

chapter has been published in the Physics in Medicine and Biology in June 2021.

Finally, Part V, contains the general conclusions of the thesis, along with current

and future work.

Chapter 11 discusses the body of work as a whole, highlighting on-going and

potential future research resulting from this work.



2
I N T R O D U C T I O N A N D L I T E R AT U R E R E V I E W

When radium was discovered, no one knew

that it would prove useful in hospitals. The

work was one of pure science. And this

is a proof that scientific work must not be

considered from the point of view of the direct

usefulness of it.

Marie Curie

Globally, cancer is diagnosed in around 15 million patients each year, and radio-

therapy is used in ≈ 50% of cases, sometimes in combination with chemotherapy

or surgery ([1, 2]). Radiation therapy (radiotherapy) is one of the main treatment

modalities, together with surgery and chemotherapy. It can be used for curative

tumour eradication, tumour size reduction, tumour bed cleansing or palliative pur-

poses. Radiotherapy uses ionizing radiation to inflict damage on tumour cells. The

main delivery technique involves the use of external X-ray photon beams that in-

teract with tissue, resulting in the deposition of radiation dose within the patient.

This is called external beam radiation therapy (EBRT), which was the technique

used in all the studies described in this thesis.

2.1 E X T E R N A L B E A M R A D I AT I O N T H E R A P Y W O R K F L OW

The delivery of a radiotherapy treatment is a complex process which involves

several parties, including physicians, physicists and technicians. Figure 2.1 shows

a scheme of radiotherapy workflow.

When a patient is diagnosed with cancer and radiation therapy is a selected

treatment, a computerised tomography (CT) scan is acquired with a specific im-

mobilisation technique to obtain a precise localization of the anatomical region to

7
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Immobilisation CT scan

Pre-treatment
imaging  

(on board CBCT)

Targets and
volume delineation

Treatment plan
study and

optimisation

Treatment 
 Delivery

Treatment plan
verification

Plan adaptation 
(Adaptive

Radiotherapy)

Treatment plan
evaluation

Multimodality
imaging

registration

CBCT-CT  
registration 
within TL

yes

no

repeated each fraction

Figure 2.1: Radiation treatment planning workflow.

treat. On this acquisition, all regions of interest, i.e. the organs at risk (OARs) and

the tumour (also referred to as the target) are delineated by the radiation oncol-

ogist. This is one of the most crucial phases of treatment planning, as it actually

determines which area is going to be irradiated. During target delineation, there

are precise protocols to be followed. If necessary, the CT scan is registered with

other types of imaging such as magnetic resonance imaging (MRI) or positron

emission tomography (PET). ICRU (International Commission on Radiation Units

and Measurements) guidelines are widely accepted to prescribe the dose deliv-

ered during the treatment [3]. Specific margins are to be added to the contoured

region to treat in order to account for uncertainties that could arise during the

next phases of the treatment. After this, the medical physicist is tasked to design

a treatment plan with the aim to deliver enough dose to the target, while keeping

the dose to the healthy tissues below acceptable levels. To achieve this, modifi-

cations to a treatment plan depend on the radiation beam quality and its energy,

collimation, intensity and interactions within the patient’s local environment (such

as position of targets, density along beam path, scattering conditions,...). After

the medical physicist has devised an acceptable plan, the dose distribution as-

sociated with the plan is analysed with a radiotherapist. This important phase of

the process determines whether a plan is suitable to be delivered; the steps of

treatment plan optimisation and plan approval can be done iteratively until a fi-

nal solution is found. Then, after the necessary dosimetric verifications following

specific protocols in each institution, the plan is ready to be delivered. Generally,

setup verification before delivery using, on-board, imaging cone beam CT (CBCT)

is performed and verified. The total plan dose is delivered by a series of (usually)
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daily ’fractions’. During the course of the treatment, the patient can undergo inter-

nal and external anatomical modifications. In this case, the plan adaptation task

is required.

2.2 L I N E A R AC C E L E R ATO R

The ionising radiation beams used in EBRT are generated by a linear accelerator

(LINAC) and directed toward the patient. LINACs are machines that consist of

a number of discrete components Figure 2.2 functioning together to accelerate

electrons to a high energy using radiofrequency (RF) waves before the electrons

hit a target to produce X-rays. After this the X-ray profile is flattened, shaped

(collimated) and measured before clinical use. LINACs are now also capable of

producing X-ray beams of different energy ( multi-energy units ) and/or produc-

ing both X-rays and electrons (multi-modal units) [4]. The LINAC has undergone

many innovations in technology during the years since its initial medical applica-

tion [4]. Among these, the most important ones are:

- the standard application of multi-leaf collimators (MLC) to define highly con-

formal fields;

- intensity modulated radiation therapy (IMRT) allowing MLC to generate com-

plex shapes of dose distributions through not uniform beam fluences, in-

versely optimized for each patient, introduction of kilovoltage imaging sys-

tems built in standard clinical accelerators, enabling high quality image guid-

ed radiation therapy (IGRT). They are usually coupled with image registra-

tion with CBCT imaging acquired at the time of treatment for confident and

accurate patient positioning;

- volumetric modulated arc therapy (VMAT) which extended the degrees of

modulation in IMRT to include the gantry angle entry, dose rate and gantry

speed between several 3D points in space (control points).

The described developments permitted the implementation of precise and per-

sonalized radiotherapy which improved outcomes and quality of life after treat-

ment by conforming the dose distributions to the desired target and sparing the
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Figure 2.2: Major components of LINAC.

healthy organs around it. As such, modern RT makes use of many complex ma-

chines and techniques and, over the past decades, many planning techniques

have been developed and implemented for routine clinical use. Given the potential

risks associated with any RT method, it is essential that treatments are planned

and delivered safely and correctly.

While the beam passes through the patient, it interacts and delivers dose to all

tissues, not only the malignant ones. Healthy cells can therefore also be affected

by the treatment. It is physically impossible to fully spare them while also deliver-

ing a dose to eradicate the tumour. Thus, an important goal of a treatment is to

minimize the possible negative impact of the irradiation on the patient’s quality of

life by limiting dose delivery to healthy tissues.

In order to minimize dose to healthy tissues, multiple beams are targeted at the

tumour, essentially creating a ’cross-fire’ arrangement. As a result, the surround-

ing dose is relatively low, which contributes to reducing the damage to healthy

tissues. An important challenge lis 1) to deliver the desired minimum dose to the

tumour, and 2) maximally reduce the dose to the surrounding healthy tissues.

Since some healthy tissues are more radiation sensitive than others, different

trade-offs are generally required, e.g. it may be desirable to reduce the radiation
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on specific tissues. This type of knowledge on the healthy tissues surrounding

the tumour has to be taken into consideration when beam geometry and beam

contributions (intensity profiles) are defined.

2.3 R A D I OT H E R P Y T R E AT M E N T P L A N E VA L UAT I O N

It is important to evaluate the plan as a whole before its approval for clinical

use. There are three principal tools to aid the evaluation of the plan quality and

decision-making [5]:

- Numerical data

- Dose-volume histograms (DVH)

- Visual inspection of the dose distribution on patient’s CT slices.

The numerical data either result directly from the criteria used for plan optimiza-

tion or are based on evaluating the (final) dose distribution. Sometimes advanced

models are available that link delivered dose to a probability of developing a cer-

tain complication. To evaluate the therapeutic ratio, defined as the relationship

between the probability of tumour control and the likelihood of normal tissue dam-

age, generally radio-biologically indices, such as the tumour control probability

(TCP) and normal tissue complication probability (NTCP) are used [6]. TCP and

NTCP are mathematical models, describing the probability of complete tumour

eradication and any complication resulting from the radiotherapy treatment, re-

spectively; for more details see [6]. In specific cases this metric could also be

added to the list above as a tool for plan evaluation.

Some aspects of the 3D dose distribution can be summarized in a 2D plot by us-

ing Dose-Volume Histograms (DVH) (see Figure 2.3). Each DVH curve represents

a structure, depicting the portion of the volume of that structure which receives

that amount of dose or higher. The DVH is equal to the complement of the ob-

served cumulative distribution function (CDF) if the dose distribution is viewed as

an empirical probability function. For OARs, the curves are ideally close to the ori-

gin, where the part of the volume that receives a high dose is minimal. For PTVs,
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Figure 2.3: An example of DVH comparisons for a left breast cancer patient be-
long to patient set of PartIII study (see chapter 8). 2 plans are compared in term
of DVH: a manual plan (solid line) and a Pareto optimal plan generated using au-
tomated tool (MCO).

on which often a minimum and a maximum dose is imposed, the curve is ex-

pected to be as far as possible towards at the right, with a steep slope downward

at the end (see Figure 2.3).

A DVH is a convenient tool to compare two or more treatment plans for the

same patient. In general, the closer the correspondence of the DVHs for two

plans, the more likely it is that both plans are similar. The representation is not

unique because spatial information is lost in the conversion. Two completely dif-

ferent dose distributions can in theory have identical DVHs, so a visual inspection

of the spatial 3D dose distribution is always necessary to fully assess acceptabil-

ity or favourably of a plan. Nevertheless, the DVH it generally gives a concise

overview of a 3D dose. When visually assessing dose distributions there are sev-

eral undesirable aspects to be considered, e.g. conformality and how the high

dose “leaks” outside the PTV into the normal tissue, hot spots (isolated high dose

points distant from the PTV), high dose streaks, and high doses in regions where

it is not expected. Sufficient coverage of the PTV should also always be visually

inspected.
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2.4 R A D I OT H E R A P Y T R E AT M E N T P L A N O P T I M I S AT I O N

The goal of treatment plan optimisation, or treatment planning, is to find set-

tings of the applied treatment unit that result in an optimal therapeutic balance

for the patient. Treatment plans are generated with the aid of a dedicated soft-

ware application, called a Treatment Planning System (TPS). Traditionally, most

conventional planning is done in an interactive trial-and-error procedure (manual

planning). Based on the initially selected beam geometry, the planner defines a

mathematical optimization problem (i.e. cost functions, objectives, weights and/or

additional parameters) (see Figure 2.4 and Figure 2.5) that is subsequently used

by the computer to generate beam intensity profiles. If the result is a not high

quality plan, the planner could modify the optimization problem or change beam

geometry for another run of optimization. This interactive and iterative process

stops if the plan is considered adequate, or if there are no more ideas or time,or

if significant improvements with further optimization are considered unlikely.

2.5 AU TO M AT I O N I N T R E AT M E N T P L A N N I N G

Efforts to streamline and standardise the treatment planning process are ongoing.

In the last few years, there has been significant progress into research and devel-

opment of automated inverse treatment planning approaches, with most commer-

cial manufacturers now offering some form of solution. There is a rapidly grow-

ing body of research published in the literature. These algorithms could signifi-

cantly improve the efficiency, consistency, and quality of treatment planning, lead-

ing potentially to improved patient access and improved patient outcome through

maintaining and improving high-quality radiotherapy. In 2014, the National Health

Service in England and Cancer Research UK published a 10 year ‘Vision for

Radiotherapy’ in the UK to allow patients to receive advanced and innovative ra-

diotherapy that is cost-effective, and one suggestion to facilitate this is through

the implementation of software that automate parts of the planning process [7].
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Figure 2.4: A typical manual IMRT treatment planning pathway. The example
shown is for a prostate + seminal vesicle case. The steps are as follows: (1) CT
scan with PTVs and OARs delineated; (2) create a range of “helper” (ROI) to aid
the optimiser. Step (3) set-up beam geometry. (4) Define the initial optimisation
objectives either from scratch or from a class solution. (5) Run the inverse opti-
miser until it converges to a solution, calculate dose distribution. (6) Evaluate the
resulting plan, if it is clinically acceptable proceed to Step 8, otherwise go to Step
7 to adjust the optimisation objectives. The part shaded in green (steps 5, 6, 7) is
the iterative process of optimisation required by the planner to arrive at a clinically
acceptable treatment plan to be approved by the clinician in Step 8 [7].

2.5.1 Multi-criteria treatment planning

Radiotherapy planning is a multi-criteria problem, balancing the dose between the

tumour and different healthy organs with the aim of achieving the highest possible

quality of life for the patient. This involves balancing up to 30 highly correlated cri-

teria, and because each patient is anatomically unique, requires an individualized

solution for each patient.

Therefore, in multi-criterial optimization, multiple objectives are in competition

with each other, so that reaching one objective can lead to not fulfilling the others.

A solution is called Pareto-optimal, described in Figure 2.6, if none of the objec-

tive functions can be improved without detriment to other objective values. Without



2.5 AU TO M AT I O N I N T R E AT M E N T P L A N N I N G 15

Figure 2.5: Example of TPS module (Eclipse) for inverse planning optimization.
The DVH endpoints with their relative importance in the whole treatment planning
are showed on the left and on the DVH which is produced during the iterative
process.

additional preference information, all Pareto optimal solutions can be considered

mathematically equally good. Thus, it is necessary to introduce user-defined pref-

erences to differentiate between various solutions.

Figure 2.6: Schematic diagram of two competing criteria. The graph shows a
large number of different feasible planning solutions, representing a variety of dif-
ferent permutations for criteria 1 and 2. The solid line represents the pareto front
where improving one criterion inevitably leads to the worsening of the other and
vice versa. Plans that lie on this front are the “pareto optimal solutions”, shown
as blue circles in the schematic. The plans shown as diamonds are referred to as
“dominated” because there is always a solution on the pareto front where at least
one criterion can be improved. Reference [7].
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Usually, in a manual planning scenario, it is not even assured that one is going

to reach the Pareto surface. In fact, this surface is to be considered as a lower

bound in terms of possible achievable solutions (in our case, plan dose distribu-

tions). It is true that, with a sufficiently high number of iterations, it is possible to

get sufficiently close to the surface; however, the navigation on its boundary is

made manually and as in the previous section, it is subject to variability according

to the different planners involved. In contrast, in an automatic planning optimiza-

tion scenario, an algorithm to reach the Pareto surface is employed [8].

Figure 2.7: Radiotherapy problem decomposition. Top panel: Ionizing radiation
originates from the beam source point and falls onto a collimator which allows
shaping of the beam and its discretisation into beamlets. The longer a beamlet is
“open”, the higher the intensity through that beamlet, and the higher the resulting
dose in the patient. Dose, measured in Gray (Gy), is equivalent to the absorbed ra-
diation, and a higher dose results in more cell damage. The patient is discretized
in voxels. Delivering a series of different shapes allows intensity modulation. Bot-
tom panel: physics of a photon-based pencil beam, where red indicates highest
dose. The irradiation is from the right for a single beamlet opening with the width
indicated by the size of the black square. Due to the particle scattering effect, the
pencil beam dose is wider than the beamlet opening. As a consequence, tissue
at the lateral sides of the pencil beam will also be damaged. Reference [5].

The numerical decomposition of the radiotherapy problem is based on ‘beam-

lets’ (see Figure 2.7). The radiation beam is discretized into beamlets, which are

the fundamental decision-variables for the numerical optimization problem. The

numerical value of the decision variable represented by a single beamlet is equal

to the fluence, defined as the time-integrated flux of radiation, that passes through
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the grid element of that beamlet; fluence results in dose in the patient. The patient

is discretized into voxels. The relation between the beamlets x (from the entire set

of fluence maps) and the voxel doses to the patient is a linear relation:

d(x) = Ax (2.1)

where A is called the pencil-beam matrix or dose influence matrix.

The MCO algorithm considers the treatment planning problem as a multi-objec-

tive optimization exercise. In such a problem, a vector of objective functions is op-

timized instead of a single objective function (manual optimisation), as described

in the equation 2.2. Contrary to optimization of a single objective function, no sin-

gle best objective function value exists, but a set of best-compromise points which

constitute the Pareto surface of the problem.

min
x∈X

−→
f(x),

−→
g(x) 6 0 (2.2)

Where, x is the optimization parameters (fluence), X is the set of available op-

timization parameters,
−→
f(x) represents the vector of n objective functions f1. . . fn

and
−−→
g(x) a vector of r constraint functions g1. . . gr.

2.5.2 Knowledge based treatment planning

An approach to improving the speed, efficiency and reducing variability in treat-

ment planning is using a ‘knowledge-based planning’ (KBP) optimization approach.

KBP is defined as any approach which directly utilises prior knowledge and ex-

perience to either predict an achievable dose in a new patient of a similar popu-

lation or to derive a better starting point for further trial-and-error optimisation by

a planner. There are two distinct approaches to this: the atlas-based approach

and the model-based approach. In the atlas-based method, the knowledge base

is used to select the closest matching patient(s) to give a better starting point for

the inverse optimisation than would be provided by conventional template-based

approaches [7].
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Figure 2.8: An example of DVH prediction KBP in a 3-dose level localised
prostate cancer case. The shaded lines are the predicted range of achievable
DVHs for the different OARs. The solid lines are the actual achieved DVH in the
plan. This example is from Varian RapidPlan and the dashed lines and arrows
are the optimisation objectives that have been generated by RapidPlan. Courtesy:
Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK. DVH, dose-
volume histogram; KBP, knowledge-based planning; OAR, organ at risk. Refer-
ence [7].

An example of DVH prediction KBP in a 3-dose level localised prostate cancer

case is shown in Figure 2.8. The shaded lines are the predicted range of achiev-

able DVHs for the different OARs. The solid lines are the actual achieved DVH in

the plan. This example is from Varian RapidPlan and the dashed lines and arrows

are the optimisation objectives that have been generated by RapidPlan.

Dose-volume histogram (DVH)-guidance is one of the approaches of model-

based KBP [3, 7, 9–15], [16–24]. In this approach, a large number of clinically

accepted treatment plans and contours are used to characterise the relationships

between anatomical and geometric features for a given anatomical site to build

a predictive DVH model for that site. For any new patient treated in the same

anatomical site, this knowledge can be used to predict the achievable DVH based

on the features of similar contours and quality of treatment plan; see an exam-

ple in Figure 2.8. A range of different implementations of DVH-guided KBP has

been proposed and developed. Commercially, the DVH-guidance KBP approach

is utilised by the Varian Eclipse Treatment Planning System as RapidPlan (Varian

Medical Systems, Palo Alto, CI). This module is described in chapter 4.
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2.6 A DA P T I V E R A D I AT I O N T H E R A P Y

Adaptive radiotherapy (ART) enables the treatment to be changed, or adapted,

to respond to a signal that additional information is known about the patient or

that the patient has changed from the original state at the time of planning [25].

In an adaptive workflow, the main steps are: creating a treatment plan, perform-

ing periodic imaging (e.g. cone beam CT (CBCT)), and deciding to create a new

or modified treatment plan when deemed necessary by the clinical team. This

may be performed without any of the sophisticated tools now available (such as

deformable image registration (DIR), automated planning, dose accumulation or

decision-making) with the new treatment plan generated using the same clinical

criteria as the original plan. However, this process is typically ad hoc and does

not allow the clinical team to gain knowledge about the delivered dose, the toxicity

rates, and the benefit of adaptation. In current practice, RT treatment plans are

designed individually for each patient as was described in Figure 2.1). However,

several factors can lead to anatomic changes of both the target volumes and

OARs leading to deviations between the actual anatomy of the patient and the

one represented on the planning CT. These factors include daily setup variations,

primary tumour or nodal volume regression or progression, alteration in muscle

mass and/or fat distribution, fluid shift within the body and weight loss [26, 27]. If

unnoticed or unattended, these changes might lead to discrepancies in dose de-

livery, with loss of tumour control, and/or to overdosage of the normal structures,

potentially producing unexpected side effects [28, 29]. A possible solution to this

problem is ART, which aims at correcting anatomical modifications by adapting

the initial dose plan to the current patient status [30]. This process requires re-

peated imaging with sufficient quality for treatment planning, re-contouring and

re-planning.

As radiotherapy and its associated information technology have developed, the

sophistication of adaptive therapy has increased accordingly. Volumetric CBCT

imaging and DIR process allow decisions on adaptation to be made based on

dosimetric information rather than geometric information alone. The procedure

consists of deformably registering the planning CT on the daily CBCT and apply-

ing the deformation matrix (deformation vector field (DVF)) obtained from DIR to
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planning CT contours to transpose them into daily CBCT. DIR allows also for the

accumulation of dose over the course of treatment, adaptation based on the accu-

mulated dose rather than independent snapshots, by means of applying the DVF

to daily dose to warp it into planning CT, and the recording of the final estimated

delivered dose on planning CT, including adaptations.

2.6.1 Image Registration

Image registration is the process of determining the geometric transformation that

relates identical (anatomic) points in two image series: a ‘moving’ dataset and a

‘stationary’ source dataset [25].

The general image registration process can be illustrated as shown in Fig-

ure 2.9. In this process, the new image will be transformed to the reference im-

age space iteratively by an optimization process. The success of the registration

will be measured by a similarity metric. According to the nature of the geometric

transformation, the image registration methods are normally categorized into rigid

image registration methods and deformable image registration methods.

Reference 
Image

New Image

Similarity  
metrics

Interpolator

Optimisation

Trasformation

Figure 2.9: The generalized image registration process consists of the following
components: (1) a pair of images to be registered, (2) a similarity metric to mea-
sure the success of registration, (3) an optimization algorithm to drive the direction
and the magnitude of transformation, and (4) the transformation and interpolation
modules to change one image to match with the other image. The transformation
can be either rigid or deformable.

Rigid registration between two images only allows rotations and translations.

Rigid transformation is a special case of a more general transformation, that is,

a global or affine transformation. An affine transformation may be composed of

rotations, translations, scaling, and shearing.
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DIR is now playing a central role in modern ART, as it was described in sec-

tion 2.6 [31], [32–34], [35]. Deformable image registration is essential to link the

anatomy at one time point to another, while maintaining the desirable one-to-one

geographic mapping. In addition, DIR can be used to map secondary images or

treatment parameters, such as structure set and dose distribution.

2.6.2 Re-planning

Generating new plans, once deemed necessary, is time consuming – especially

for complex IMRT and VMAT plans which require running optimisation algorithms.

Clearly, methods of automatic planning would help improve the situation and ven-

dors are starting to release these systems [36–39]. More details on automatic

solutions are presented in chapter 3 and chapter 4. Moreover chapter 10, reports

a study performed in this thesis work to automate the re-planning phase.

2.7 C L I N I C A L R A D I AT I O N O N C O L O G Y

Approximately 50–60% of all cases of cancer require radiotherapy at some stage

during their treatment [40]. The radiation oncologist decides whether radiation

therapy is indicated. However, it is best to take a multidisciplinary approach (surge-

ry, medical oncology, nuclear, medicine, radiology) when deciding on the final

treatment in clinical practice.

We can define 3 types of radiotherapy according to aim [40]:

• Curative radiotherapy. This is the application of radiotherapy to cure. Used in

cases of early-stage Hodgkin’s lymphoma, head and neck cancer, prostate

cancer, breast cancer and some skin cancers.

• Palliative radiotherapy. This is the alleviation of cancer symptoms by apply-

ing palliative doses of radiation. Used in cases of brain and bone metas-

tases for example.

• Prophylactic (preventative) radiotherapy. This is the prevention of possible

metastases or recurrences through the application of radiotherapy. An ex-

ample is whole-brain radiotherapy for small cell lung cancer.
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According to timing, we can define 3 type of radiotherapy [40]:

• Adjuvant radiotherapy. Radiotherapy given after any kind of treatment modal-

ity (i.e. If given after surgery, postoperative radiotherapy).

• Neoadjuvant radiotherapy. Radiotherapy given before any kind of treatment

modality (i.e. if given before surgery, preoperative radiotherapy).

• Radiochemotherapy (chemoradiotherapy). Radiotherapy given concurrently

with chemotherapy.

And finally, the factors that should be taken into account for a radiotherapy

treatment [40]:

• Aim: palliation or cure;

• tumour: stage, histology, location, radio-sensitivity, previous treatments;

• patient: age, performance, morbidity, cosmesis, patient preference.

In the next subsection a brief overview of the cancers that are investigated in

this thesis work, head and neck and breast, is provided.

2.7.1 Head and Neck cancer radiotherapy

Head and neck (HN) cancer is one of the most common types of cancer world-

wide, with approximately 1.5 million new cases and 0.9 million deaths in 2018

alone [41]. In current clinical practice, a vast majority of patients with locally ad-

vanced HN cancer require radiotherapy, with or without concomitant chemother-

apy. In the past decades, the treatment paradigm for radiotherapy, has evolved

to IMRT, which is the current gold standard [42]. The highly conformal dose dis-

tributions produced by IMRT lead to steep dose gradients surrounding the tar-

get volumes, which are extremely sensitive to positional errors and anatomic

changes. This is particularly critical in HN cases, since there are several struc-

tures at risk very close to, and sometimes overlapping with, the target volumes

[43]. The proximity of up to 25 organs at risk, with recommendations of critical or-

gans at risk to contour, multiple target dose levels, complex anatomy, and multiple
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tissue/air/bone interfaces, make the head and neck one of the most challenging

sites in treatment planning [40].

To achieve adequate target coverage while protecting numerous OARs, IMRT

plans for HN cancer require highly conformal dose distributions and a steep dose

fall-off between the boundary of tumour volumes and sensitive structures. With

limited clinical resources (time and manpower), a major challenge in HN IMRT

planning is large variations in plan quality between different treatment planners,

in part due to varied planning skills and limited planning time [42], [43], [44]. For

any radiation oncology clinic, particularly in a low-resource setting, these factors

may hinder the creation of high-quality HN radiation treatment plans and delay

the ability to start treatment while waiting for a treatment plan. Automatic planning

could help to overcome these issues.

2.7.2 Breast cancer radiotherapy

Breast cancer is the most commonly occurring cancer in women and the sec-

ond most common cancer overall, making it one of the main causes of mortality

and morbidity in females worldwide [45]. Breast-conserving therapy with limited

surgery followed by homogenous irradiation of the whole breast (WBI) is often the

procedure of choice for management of early-stage breast cancer [46].

The conventional radiotherapy technique for WBI consists of two opposing tan-

gential fields (TF) with wedges. Wedge filters are commonly used to improve

dose uniformity within the target volume and are of two types: physical and non-

physical. A physical wedge is usually constructed from a high-density material,

such as lead or steel, which attenuates the beam progressively across the entire

field. Nonphysical wedges produce modulated dose distributions that are similar

to those of physical wedges, for instance by dynamic movements of a pair of in-

dependent collimating jaws during beam delivery.

IMRT with static beams, and more recently also VMAT, have been proposed to

improve breast dose homogeneity and possibly reduce dose to OARs. IMRT is

mostly delivered with two opposing tangential fields with patient-specific intensity

modulated profiles, sometimes combined with two open tangential fields (hybrid

approach [47, 48]). For VMAT, the two static tangential IMRT fields are often re-
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placed by two small tangential arcs or by a single, larger partial arc [49], [50]. Im-

proving dose homogeneity in the target and reducing OARs doses in WBI can be

clinically advantageous [51–58]. So far, clinical trials comparing IMRT and VMAT

for WBI have not been performed. There are few published treatment planning

studies for left-sided WBI (left side breast tumour where the sparing of OARs is

more critical than right side breast due to the presence of heart close to the target)

that compare tangential IMRT with tangential VMAT, all with low numbers of pa-

tients [59–63]. Overall, the literature is inconclusive regarding the choice of IMRT

or VMAT for WBI. Apart from the low patient numbers, this may also be related to

the applied conventional trial-and-error treatment planning with well-known chal-

lenges for consistent high-quality plan generation [64].
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3
AU TO M AT E D M U LT I - C R I T E R I A O P T I M I S AT I O N W I T H

E R A S M U S - I C Y C L E

In mathematics, computer science, physics

and economics, an optimization problem is

the problem of finding the best solution from

all feasible solutions.

Wikipedia

3.1 P R E V I E W

Chapter 3 is preparatory to the next chapters of Part III of the thesis (chapter 6,

chapter 7 and chapter 8) and presents the methods used in the studies described

in that part.

3.2 E R A S M U S - I C Y C L E : S Y S T E M F O R AU TO M AT E D P L A N N I N G

Erasmus-iCycle is an algorithm for multi-criteria optimization of beam intensity

profiles (see also chapter 2) and beam angles. Erasmus-iCycle has been devel-

oped at Erasmus Medical Center Cancer Institute since 2012 [65, 66] and repre-

sents a powerful tool in an automated planning strategy. Erasmus-iCycle is cur-

rently the most well known system with these features [5]. The plan generation

is multi-criterial and the generated solutions are Pareto-optimal. Of course, the

generation of high quality plans is dependent on the setting of the constraints and

the objectives with their priorities. Several studies have demonstrated the con-

sistently high quality of Erasmus-iCycle plans, superior to conventional ‘trial and

error’ planning [67–69].

27
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3.2.1 Wish-list

In Erasmus-iCycle the optimization operation is based on a user defined wish-

list which contains hard constraints and objectives with given priorities. Every

element of the wish-list consists of a specific cost function, a priority and a goal:

• Constraints must be strictly met, otherwise the plan is considered invalid.

It is proper to consider that too strict constraints may limit possibilities to

generate acceptable plans.

• Objectives are cost functions whose goals have to be met as much as pos-

sible (without violating the imposed constraints).

In Erasmus-iCycle the objectives are optimized one by one in order of priority.

Priorities play a crucial role in determining the outcomes. In Erasmus-iCycle, a

later objective is optimized as far as it does not affect the result of the previous

ones: even inverting priorities of two objectives, especially for complex anatomies,

may strongly affect the entire outcome.

3.2.2 Brief introduction to 2pec optimization method

Erasmus-iCycle uses the 2pec algorithm for prioritized optimization. This algo-

rithm, proposed by Breedveld et al. [66], is an extension of the e constraint method

[70], in which one objective at a time is optimized while keeping the others (higher

prioritized) constrained. The method is extended to a 2-phase constraint optimiza-

tion (hence 2pec), where a goal can be assigned to each objective in the first

phase of the optimization, while in the second phase a full optimization of the

objectives is applied. Hard constraints and prioritized objectives are given in a

wish-list which completely regulates the whole optimization process. The idea at

the base of the approach is that when it is possible to minimize the dose below

a certain threshold (i.e., its goal) for one objective, it is often more desirable to

minimize the dose for the other (lower prioritized) objectives first than to directly

minimize the dose for the higher objectives to its fullest extent. The wish-list de-

fines hard constraints and a list of n objectives fi(x) characterized by a priority
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i and a goal bi. During the first iteration of the first phase, the objective having

highest priority is optimized:

subject to
−−→
g(x) 6 0

minimize f1(x)
(3.1)

f1(x) is the objective with priority 1 and
−−→
g(x) is a vector which represents the

list of the constraints which are to be met at all times. Based on the solution x∗ of

this optimisation, a new bound for the optimised objective is defined and it is set

as constraint during the optimisation of the following objective. The new bound is

chosen according to the following rule:

ε1 =


b1, if f1(x∗) < b1

f1(x∗)δ, if f1(x∗)δ > b1

(3.2)

where bi and ε1 are respectively the goal and the new bound of the objective

with priority 1, f1(x∗) is the obtained value for the objective , f1(x) and δ is a slight

relaxation to create some space for the subsequent optimisation (usually set to

1.03, i.e. 3 %). In practice this relaxation is mandatory to avoid the optimisation

algorithm from stalling due to a numerical problem. The next step is the optimisa-

tion of the second objective, f2(x), while the obtained result for f1 is added to the

constraints list:

minimize f2(x)

subject to
−−→
g(x) 6 0, f1(x) 6 ε1

(3.3)

This is repeated for all n objectives. In the second phase of the multi-criterial

optimisation, all the objectives which met their goals are minimized to their fullest,

while keeping all others constrained: so, for each fi which met its goal bi, the

following problem is solved:
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minimize fi(x)

subject to
−−→
g(x) 6 0, fk(x) 6 εk, k ∈ 1, ...., n

(3.4)

3.2.3 Wish-list generation optimisation functions

Many cost functions are available, allowing a large degree of freedom in the gen-

eration of the wish-list.

- Linear: when used in conjunction to minimize maximum, this cost function

regulates the maximum allowed dose. It is mainly employed to settle unde-

sired overdoses and to strictly govern the maximum allowed dose to organs

at risk characterized by serial complication mechanism (i.e., organs in which

the cost of increasing the dose to an already dosimetrically ‘hot’ sub-volume

rises tremendously, following a strongly non-linear behaviour, such as the

spinal cord [71].

- Mean dose cost function.

- Logarithmic tumor control probability (LTCP):

LTCP = 1/m
m∑

j=1

exp(α(dj – DP)) (3.5)

LTCP is defined as above, where m is the number of voxels in the target

structure, DP is the prescribed dose, dj is the dose in voxel j and α is cell

sensitivity parameter. LTCP is able to guarantee a proper target coverage.

- Quadratic overdose (QUOP) that allows a maximum dose to the target to

not exceed a defined root mean square value of tolerance over all target

voxels.

- Equivalent uniform dose (EUD):
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EUD = k

√√√√1/m m∑
j=1

dk
j (3.6)

This function is regulated by the parameter k in the formula where m is the

number of voxels in the target structure, dj is the dose in voxel j. For k=1 the

meaning of EUD is the same as the arithmetic mean; for k>1 the high dose

regions gain more importance in the weighted sum and, ideally, for k=∞,

EUD is equal to the maximum dose in the structure.

- Dose-volume reference points: these cost functions try to force the DVH

related to a certain structure to achieve the requested value. Due to non-

convexity, the use is discouraged because it may lead to sub-optimal so-

lutions of the problem. A convex optimization problem is a problem where

all of the constraints are convex functions, and the objective is a convex

function if minimizing, or a concave function if maximizing. With a convex

objective and a convex feasible region, there can be only one optimal so-

lution, which is globally optimal. A non-convex optimization problem is any

problem where the objective or any of the constraints are non-convex. Such

a problem may have multiple feasible regions and multiple locally optimal

points within each region.

Because radiotherapy treatment planning is in general a large-scale noncon-

vex optimization problem, it is often split into several (often convex) subprob-

lems. Typical cost-functions used in radiotherapy are linear mini- mum/maxi-

mum dose functions, (generalized) mean dose (which is termed generalized

equivalent uniform dose (gEUD) in the radiotherapy field), single or double-

sided quadratic penalty functions. There are also functions particularly used

for radiotherapy, such as a nonconvex DVH cost-function (the fraction of an

organ that receives more than a certain pre-set dose level, as mentioned

above), and biological functions that relate physical dose to probability of

developing a complication [67], [68, 69].

Wish-lists are stored in .xml format by the Erasmus Institue’s in-house devel-

oped software, called Lucy, part of the Erasmus-iCycle module.
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3.3 E R A S M U S - I C Y C L E H N P L A N G E N E R AT I O N

Erasmus-iCycle is specifically suitable to IMRT plans because it does not need

to define a priori the number of orientations in a plan. Nevertheless, it is possible

to simulate VMAT delivery mode with adequate accuracy: in this study, the pre-

selected configuration consisted of 23 equi-angular beams. It has previously been

proven that further increasing the number of beams increased calculation time but

did not lead to an improvement in plan quality [72].

3.3.1 Patients selection and target delineation

Between January 2015 and December 2018, 15 patients with histologically con-

firmed cancer of the oropharynx underwent radiotherapy at Azienda USL-IRCCS

Hosptial (AUSL) of Reggio Emilia (Italy). Patients were immobilized in the supine

position with a 5-point thermoplastic head-neck-shoulder mask to ensure daily

reproducibility of treatments. For each patient a CT image set was acquired both

with and without contrast medium. FDG-PET scans were obtained using the same

CT acquisition patient set-up. All patients were treated using a Simultaneous In-

tegrated Boost (SIB) technique: the prescribed dose was 70 Gy in 2.12 Gy daily

fractions over 33 days to the PTVhigh; 59.4 Gy in 1.80 Gy daily fractions to the

PTVmedium; and 54 Gy in 1.64 Gy daily fractions to the PTVlow [73–75]. Sur-

rounding critical normal structures, including the spinal cord, mandible, parotid

glands, oral cavity, larynx, oesophagus, pharyngeal constricted muscles and sub-

mandibular gland were considered [73] and outlined for oropharyngeal cancer.

In nasopharyngeal patients right and left cochlea, brainstem, eyes, optic nerves

and chiasm were also outlined in addition to the aforementioned critical organs.

In comparison to international protocols [73, 74],[76] and JAVELIN protocols [75],

branchial plexus was not considered because it is difficult to localize the brachial

plexus on CT. Pharyngeal constrictor muscles were added to the list of protocol’s

suggested OARs to reduce the risk of dysphagia, which remains a side effect

influencing the quality of life of HN patient after radiotherapy [75].



3.3 E R A S M U S - I C Y C L E H N P L A N G E N E R AT I O N 33

3.3.2 Construction of the head and neck WLa best wish-list

An initial wish-list was composed based on previous clinical experience, the plan-

ning protocol, and intent of treating physicians on how to improve clinically ap-

plied plans. It was used to automatically generate a plan for the first 10 patients

included in this study. These plans were then evaluated together with physicians,

and the wish-list was modified according to their input. Several optimisation func-

tions, described in subsection 3.2.3, were used in a trial-and-error process, until

the expected solution was obtained. This iterative procedure continued until no

further improvements in plan quality were achieved for the 10 training patients.

The final wish-list, referred to in this study as the ‘best’ wish-list, is shown in Fig-

ure 3.1. This wish-list referred in its major clinical constraints to RTOG protocols

[74] and the JAVELIN protocol [75].

Figure 3.1: Erasmus-iCycle wish-list for HN cancer treatment in Lucy module,
that is part of iCycle system.

For each patient in the database one plan was generated with the same wish-

list (with no adjustment by planners). This optimal wish-list is referred to “WLa”.
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Figure 3.1 shows the WLa wish-list built into the Lucy module. The wish-list con-

sists of 12 hard constraints that are met per definition and 23 objectives that are

optimized in order of priority. Once the goal of an objective is achieved or when

further optimization is no longer possible, the optimizer fixes the achieved value of

the objective as a constraint and continues with the next objective. 5 constraints

were used to minimize the maximum dose to PTVs, brainstem and spinal cord.

The other 3 constraints maximize the minimum dose to PTVs (95 % of the pre-

scription dose). Then, constraints to a maximum dose to the generic tissue out-

side the PTVs (ring of 1.5 cm thick up to 4cm from PTVs) was considered. Finally,

3 more constraints require a steep dose fall-off outside PTV: shell5mmPTVhigh,

shell5mmPTVmedium and shell5mmPTVlow. The first priority was PTV coverage,

ensured by the use of the LTCP and QUOP cost functions. When the spinal cord

was close to the target or overlapped it, the objective was applied to the target

volume from which the spinal cord or brainstem was subtracted. There is an ob-

jective only for PTVhigh which aims to reduce the maximum dose within 107% of

the prescribed dose. The next objectives try to reduce the dose to several OARs

considered in the optimisation. Parotids were optimized together using the parts

of the parotids external to PTVhigh expanded by 10 mm. Two priorities were as-

signed to this structure, 20 and 25, for each priority different mean dose reduction

was asked. Similarly, the oral cavity was optimised in Erasmus-iCycle using the

external structure to PTVs, Oralcavity-PTVs. At the end of the lists 3 more ob-

jectives (ExternalRing, GeneralTissues, ExternalRing2) were used to reduce the

isodoses 30 and 45 Gy in the general tissues outside PTVs.

3.3.3 Generation of Erasmus-iCycle Pareto MCOa plans

Pareto-optimal 23-beam IMRT plans with 6 MV beams were generated with Erasmus-

iCycle, using WLa. The process of optimisation with Erasmus-iCycle has been de-

scribed in detail previously [66], [65, 77–79] and is briefly summarized here. For

each patient, the template ensures generation of a clinically deliverable VMAT

plan that mimics the 23-beam Erasmus-iCycle plan. Consequently, the dose dis-

tributions used in this study are highly similar to VMAT dose distributions. Plan
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generation with Erasmus-iCycle was performed using WLa, described in the pre-

vious section. Plans generated in this way were labelled as MCOa plans.

3.3.4 Construction of suboptimal wish-lists and generation of Erasmus-iCycle

MCOx plans

Several alternative wish-lists WLs, “WLx” (x = b, c, d, . . . ),, referred as suboptimal

wish-lists, were also generated with different levels of agreement starting from

best wish-list (WLa). The WLx were derived from WLa by randomly varying the

priorities of PTVmedium and PTVlow objectives and of the OARs (object priorities

from 4 to 20 (see Figure 3.1 )). As for WLa, the 20 WLx enforced adherence to

the hard planning constraints for brainstem, optic chiasm, and spinal cord, as in

clinical planning. Moreover, the highest priorities (1-3) referred to PTVhigh cov-

erage and homogeneity which were left unchanged in WLx to generate clinically

acceptable plans. This process was done to generate plans with different levels

of quality in an automatic way. These MCOx solutions are applied in the studies

described in Part III of this thesis, see chapter 6.





4
K N OW L E D G E BA S E P L A N N I N G TO O L F O R H E A D A N D N E C K

T R E AT M E N T S

Experience is not what happens to you; it’s

what you do with what happens to you.

Aldous Huxley

The only source of knowledge is experience.

Albert Einstein

4.1 P R E V I E W

Chapter 4 is preparatory to the chapters of Part IV of the thesis and presents the

planning automation methods used in the studies described therein.

4.2 K B P R A P I D P L A N TO O L

RapidPlan (RP) is a commercially available KBP tool (Varian Medical System

(USA)), implemented into the Eclipse TPS as an optional module [80]. Given a

certain delivery/planning technique and treatment site, existing clinical treatment

plans may be modelled in the form of DVH-estimation model to individually esti-

mate the most likely dosimetric features expected in new patients (Figure 4.1); RP

is actually configured to model plans delivered with IMRT or VMAT. The data from

the existing treatment plan are extracted and used first to train the DVH-estimation

model. Then, for a new patient the DVH-estimation model generates an estimated

DVH-range that shows where the DVH curve of a structure will most likely land;

the plan may be automatically optimized using automatic line constrains or build-

ing a template based on the KBP individually optimized constraints.

37
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Figure 4.1: Typical KBP workflow: existing clinical treatment plans are used to
train the DVH-estimation model (configuration phase). From this modelled patient
data, the KB-model generates an estimated DHV range suggesting where the
DVH of a structure will most likely be (implementation phase). Reference [80].

4.3 K B P - R P DV H - E S T I M AT I O N A L G O R I T H M

The DVH-estimation model is site-specific and contains several separate single

OAR models. The estimation models of different OARs are entirely separated;

correlations with different OARs are not considered. For this reason, a single

structure can be removed from a model without affecting the estimates. During

the extraction phase, the OAR structures and the target structures are treated

differently. For each training plan and for each structure matched to any model

OAR structure, the data extraction phase first divides the volume of the structure

into functionally different regions (Figure 4.2 a-b)):

• Out-of-field region, is the part of the structure not visible from the jaw aper-

ture of any of the fields (or in case of an arc-field, from any of the control

points).

• Leaf-transmission region, is the part of the structure visible at least from one

jaw aperture, but has no overlap with the target projection from any of the

fields.
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• In-field region, is the part of the structure that has overlap with target projec-

tion at least from one field.

• Overlap region, is the part of the volume that is also inside any structure

matched to one of the model target structures.

Together the four regions (overlap, in-field, leaf transmission and out-of-field)

define all structure volumes inside the body. During the training phase, the DVH

estimates are generated separately for each sub-volumes and the total DVH es-

timates are built by combining the sub-volume estimates, weighting different sub-

volumes with their relative volumes (Figure 4.2 c). All OARs are evaluated on the

basis of their relative position to the targets. A maximum of three target structures

may be handled by the RP-tool. DVH-estimation model generates an estimated

DVH-range (upper and lower bounds as in Figure 4.1) to show the one confi-

dence interval around the most likely estimate: with both upper and lower bounds

one standard deviation away from the most probable estimates. The confidence

intervals are determined separately for each sub-volume.

Figure 4.2: a) and b) DVH-estimation algorithm for the in-field partition: during the
extraction phase GEDVH and DVH for a given OAR are retrieved; during the train-
ing phase a PCA is performed both for GEDVH and DVH; after parametrization
of geometry and dose features for the whole training set, the regression model
is trained. c) DVH computation for each region of OAR showed in a). Reference
[80].
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For out-of-field, leaf-transmission and target-overlap sub-volumes a simplified

model is used to evaluate their contribution to the estimate of the DVH-range. The

model is only based on just the observed variation of DVH of that particular sub-

volume in the training set: mean and standard deviations curves are calculated

for each sub-volume. At least two instances in the training set needs to have non-

zero sub-volume of each kind in order to configure the models: otherwise, default

models are used. In contrast with previous cases, the in-field sub-volume is sub-

ject to the greatest modulation during the optimization, thus it requires the most

complex estimation process. The DVH-estimation algorithm for the in-field sub-

volume implements a regression model that permits estimation of the parameters

describing the DVH-shapes once certain geometric parameters are known. The

evaluation of the geometry for the in-field partition is based on the so-called ‘ge-

ometry based expected dose’ (GED) which is actually an effective distance metric,

where the distance to target is converted into dose units in order to handle situa-

tions where multiple targets with different dose levels are present. Once the GED

field is constructed, the geometrical position of individual OARs is evaluated by

calculating a GED cumulative volume histogram (GEDVH) inside the OAR volume

(Figure 4.3). Once both GEDVH and DVH for a given OAR in-field partition are re-

trieved, the algorithm tries to find correlation between them. During the training

phase, the parametrization is done by performing PC analysis for both GEDVH

and DVH. This process is described in Figure 4.3.

PC analysis involves a set of curves that represent the variation of DVHs ob-

served in the training set: together with the mean DVH curve (see Figure 4.3 a),

the PCs can be used to decompose any DVH curve to a couple of parameters

representing the multipliers of each DVH-PC. The number of PCs needed to de-

compose a DVH curve may vary depending on how large a variation occurs in

the DVH set: in practice, two or three PCs are generally sufficient. Once the DVH

parameters have been estimated, the DVH curves are determined by multiplying

each DVH-PC by the estimated score and summing them together with the mean

DVH curve. GEDVH curve parameterization is done in the same way. After both

geometry and dose features have been parameterized for the whole training set,

the regression model is trained. The regression model is determined in a step-

wise process and the coefficients, needed to calculate best fitting DVH parame-
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Figure 4.3: DVH-estimation algorithm for the in-field partition (a): during the ex-
traction phase GEDVH and DVH for a given OAR are retrieved (b); during the
training phase the PC analysis is performed both for GEDVH and DVH (c); after
parametrization of geometry and dose features for the whole training set, the re-
gression model is trained (c). Reference [80].
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ters estimates based on the geometric parameters, are retrieved (Figure 4.3). The

standard error of the regression is used to calculate the upper and lower bounds

of the DVH-estimate.

4.4 K B P - R P DV H E S T I M AT E S A N D O P T I M I Z AT I O N O B J E C T I V E S

Once the regression model is trained, for a new patient the model should be able

to predict the corresponding achievable dose starting from the geometric features.

Schematic process of DVH estimation for a new patient is shown in Figure 4.4.

For instance, considering a new patient and the contours of PTVs and OARs,

the geometry information is calculated: partitions, volumes and GED. Then, the

GED PCs from the training set are calculated and the parameterization of the

GEDVH for the in-field partitions of OARs of the current plan are optimized. Once

the coefficients of the GED-PC for the current plan are known, the regression

model is used to determine the DVH principal component coefficients from the

training set. Then, the PCs of the DVHs are used to obtain the most probable

in-field partitions of the OAR DVH. For the other sub-volume partitions, the mean

value of the training set is used. Therefore, the most probable DVH is determined:

the estimation range (upper and lower bounds) is created by considering the vari-

ation in the training data set for each OAR volume partition separately. The stan-

dard deviation of the training set is added and subtracted from the most probable

DVH for each partition regions. However, for the in-field partition where the re-

gression model is used to create the most probable DVH, the standard error of

the regression is considered in creating the bands. Furthermore, the estimated

DVHs may be used to generate automatic objectives for the planning optimiza-

tion. All objectives are positioned below the estimated range. The most general

objective is the automatically generated line, otherwise point objectives can be

added. Priorities can be user defined or generated by the DVH-estimation algo-

rithm. The system considers the entered prescribed dose as the 100% dose and

all DVHs are rescaled using this estimate. Target upper and lower bounds depend

only on the prescribed dose; no machine-learning is used to predict them as is

the case for the OARs. At least 20 plans are required in order to generate the
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Figure 4.4: Schematic process of DVH estimation for a new patient: the GED-PCs
are calculated and the GEDVH for the in-field partitions of OAR is retrieved from
the model; the regression model is used to determine the DVH-PC and using to
obtain the most probable DVH. The standard deviation of the training set is added
and subtracted from the most probable DVH for each partition region. Reference
[80].
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regression model. However, as discussed in the literature, training sets with less

than 30 plans need to be avoided [81, 82].

4.5 V E R I F Y I N G A N D VA L I DAT I N G T H E K B P - M O D E L

Once a KBP-model has been configured, one should verify the performance of

the model. During model configuration, the model needs to be interactively fine-

tuned, aiming at maximizing its robustness. Then, an internal validation of the

model should be performed in order to verify how well the model is able to esti-

mate DVHs (and consequently to optimize plans) that were included in the train-

ing set. Finally, an external validation should be carried out to verify how well

the model is able to estimate new patient cases. The tuning of the model can

be performed by using statistical tools available in the RP system [80] and the

so called Model Analytic platform (MA) [80]. Both systems permit the operator

to evaluate and possibly exclude potential outliers. These “outlier” plans are ex-

pected to deviate from the general trend of the model because they do not meet

the clinical goal of dosimetric parameters or show a geometry that significantly

differs from the rest of the training set [82, 83]. Generally, in the first case the

outliers are sub-optimal plans and they should be removed from the training set.

In the second situation, plans with geometrical outliers may provide useful infor-

mation for the model to estimate DVHs in future patients with similar properties:

they should not be removed when building the model, apart from selected atyp-

ical (far from standard) anatomies, such as for instance a full rectum, or rectum

contining a large air cavity or an empty bladder. After this fine tuning process, the

resulting KB-model may be used to predict DVHs and for each a boundary of ex-

pected values is individually generated. DVH estimates may be used to produce

automatic objectives for the planning optimization or to generate an individually

optimized template for the optimization. Also, this phase requires an appropriate

fine tuning to find the right compromise between the priority of PTV coverage and

OAR sparing [18, 24, 83–85]. Generally, the resulting RP-based optimization has

been shown to generate acceptable quality plans, at least comparable to previ-

ously optimized clinical plans [3, 16, 84, 86–89]. An interaction with the planner

may further improve planning performance [84, 90]. Furthermore, intra-operator
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and inter-operator variability has been shown to be significantly reduced by the

assistance of RP during the optimization [90], as well as providing a reduction of

the planning time [20, 22, 91, 92] and the avoidance of sub-optimal plans [93].

4.6 K B P - R P M O D E L C O N F I G U R AT I O N U S I N G M A N UA L P L A N S F O R H N

In line with examples used in previous work [24, 81, 82], a dataset of 80 Head and

Neck (HN) VMAT patients previously treated at AUSL-IRCCS of Reggio Emilia

was used as training set. Treatment plans following two different fractionation

schemes were included in this work, 69.96 Gy/59.4 Gy/54.12 Gy in 33 fractions

(46 patients) and 66 Gy/60 Gy/54 Gy in 30 fractions (34 patients), both schemes

using a simultaneous integrated boost (SIB) technique. For all plans, the goal

was to deliver 100% of the prescribed dose to 95% of every PTV. All plans were

generated with the Eclipse Treatment Planning System (TPS) (Varian Medical

Systems, Palo Alto, CA) using 3 fully coplanar arcs with collimator rotated to 30◦,

315◦ and 90◦, with 6 MV energy. The dataset was used to train a KBP RapidPlan

DVH prediction model using Eclipse v.15.6. Using the training set, KBP DVH pre-

diction models were created for the following OARs: brainstem, spinal cord, left

parotid gland, right parotid gland, mandible, oral cavity, oesophagus, and larynx.

This model trained with manual plans was identified as the KBP model. Once the

model was trained, selected DVH constraints may be extracted from the KBP pre-

diction model to generate an individually optimized template for plan optimization.

The template created for this study is shown in Table 4.1.

4.7 T R A D E - O F F M U LT I C R I T E R I A O P T I M I S AT I O N

A MCO approach based on trade-off exploration modules is implemented in the

Eclipse TPS (MCO Trade-Off). The inclusion of MCO in radiotherapy planning

aims to allow the exploration of the trade-offs of the treatment objectives in an

efficient way to then select a plan that best fulfils the prescribed clinical goals. In

MCO, a range of different Pareto solution plans is generated, based on a selec-

tion of optimisation objectives. The priority of each objective may vary from plan to

plan but all plans belong to a ‘Pareto surface’. The user can explore the trade-offs
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Structure   Objective   Volume(%)   Dose    Priority 
                  
PTVhigh   upper   0   103%   185 
    lower   100   99%   180 
                  
PTVmedium   upper   0   101%   100 
    lower   100   99%   180 
                  
PTVlow   upper   0   101%   100 
    lower   100   99%   180 
                  
brainstem    upper   0   generated   generated 
                  
esophagous   mean       generated   70 
                  
larynx   mean       generated   70 
    upper   10   generated   70 
    upper   70   generated   70 
    upper   80   generated   80 
                  
mandible   upper   0   generated   generated 
    upper   1   generated   generated 
    upper   5   generated   generated 
                 
oral cavity   mean       generated   70 
                  
parotids   upper   generated   30 Gy   generated 
    mean       generated   100 
    line   generated   generated   generated 
                  
parotids   upper   generated   30 Gy   generated 
    mean       generated   100 
    line   generated   generated   generated 
                  
spinal cord   upper   3   generated   generated 
    upper   0   generated   130 
                  
RINGa   upper   0   64 Gy   150 
    upper   10   generated   generated 
                  
RINGb   upper   0   55 Gy   120 
    upper   10   generated   generated 
                  
RINGc   upper   0   50 Gy   120 
    upper   10   generated   generated 
                  
Generic Tissue upper   0   generated   generated 
    upper   10   generated   generated 
    mean       generated   generated 
generated = determined by model and estimated DVH  

  
  

 

Table 4.1: The KBP-based template for automatic planning optimization in the
RapidPlan models. Lower, upper and mean objectives and priorities were se-
lected for each structure according to the table.
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along the Pareto surface and select the plan that best fulfils the treatment goals.

With the use of graphical ‘slider bars’, dynamic DVHs and dynamic 3D dose dis-

tributions, the TPS allows users to visually review and evaluate plans along the

Pareto surface in ‘real time’ [18, 19]. An example of the use of the Trade-Off MCO

module is illustrated in Figure 4.5). To commence, it is required to have a starting

plan (that will be at the centre of the approximation of the Pareto surface). Fig-

ure 4.5 a displays the slider bars for several organs and corresponding DVHs of

the approximated Pareto plan corresponding to the manual starting input solution

plan. The user can move the slider corresponding to one or several endpoints nav-

igating along the Pareto surface. This action will affect the corresponding DVHs

of all structures involved, in this case right and left parotids, spinal cord and all

PTVs ( see Figure 4.5 b).

Figure 4.5: Eclipse real time plan navigation screen view during Trade-Off optimi-
sation for one of the head and neck plans. a): Trade-Offs exploration with slider
bars for each selected objective for the initial plan and corresponded DVHs for
the structures considered. b): Graphical feedback of the modifications instantly
monitored in the DVHs view displayed for spinal cord, parotids and PTVs.

4.8 K B P - R P M O D E L C O N F I G U R AT I O N U S I N G AU TO M AT E D P L A N S F O R

H N

All 80 patients used in the training set were automatically re-optimised using the

KBP model. The solution found after optimisation without manual intervention was

used as a starting plan in the MCO Trade-Off module. A wish list of objectives to
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fulfil was used to consistently select a solution on the Pareto surface in the MCO

module. This wish list was created together with radiation oncologists at AUSL-

IRCCS, based on previous clinical experience and planning protocols [74, 75]. In

the MCO module, once the goal of an objective in the wish list was obtained, the

optimiser fixed the achieved value (slider restrictor) as a constraint and continued

with the next objective. Once the MCO module had completed the optimisation for

every objective on the wish list, the DVHs and the spatial distribution of the dose

that resulted from the wish list trade-off process were selected from the Pareto

surface, and the final dose was calculated. This wish-list is reported in Table 4.2.

Priority Structures Objective

1 PTVhigh Dmin V66.46Gy>99.6%
2 PTVhigh Prescription V69,96Gy=95%
3 PTVhigh Dmax V107%<1%
4 Brainstem Dmax V54Gy<0,03cc
5 spinal cord Dmax V45Gy<0,03cc
6 PTVmedium Prescription V59,4Gy>99%
7 PTVlow Prescription V54,12>99%
8 PTVmedium Dmax V69,96Gy<3%
9 PTVlow Dmax V59,4Gy<3%
10 parotid gland controlateral Dmean 20Gy
10 parotid glands both Dmean 26Gy
11 spinal cord Dmax ALARA
12 spinal cord exp Dmax 42
13 Mandible/TM joint Dmax V70Gy≤1cc
14 Esophagus Dmean 50Gy
15 Oral cavity ext. (excluding PTVs) Dmean 40Gy
16 Larynx Dmean 40Gy
17 RINGS Dmax A,B,C
18 VOL ANT/VOLPOST Dmax 45Gy
19 Pharingeal Constictors Dmean 50Gy
19 Submandibular Glands Dmean Dmean <35 Gy

Table 4.2: Applied wish-list to MCO Trade-Off module. A, B, C referred to
the prescription dose for PTV high, PTV medium and PTV low in the 2-
fractionation regimen used in this study: 69.96Gy/59.4Gy/54.12 Gy in 33 frac-
tionsand 66Gy/60Gy/54Gy in 30 fractions.

Due to the use of the same optimisation scheme for all patients, plan generation

was highly consistent across the entire cohort, with no plans adjusted by the

planning team. An example of DVH difference between manual and MCO Trade-

Off plans for PTVs and several OARs is reported in Figure 4.6. All plans resulting

from both methods were deemed clinically acceptable according to the criteria of

PTV coverage and OAR doses. While maintaining comparable target coverage,
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Mandibula
Oesophagus

Left parotid

Manual plan
MCO Trade-off plan

Figure 4.6: DVH comparison between manual and MCO plan, the latter produced
using Trade-Off module starting from manual plan solution, for one representative
case belong to the training set used for KBP model configuration.
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the sparing of the OAR resulted in differences between manual and MCO plans

for several structures. However, the major improvement of MCO plans resulted

in a higher consistency of plan quality among all training sets considered, as

reported above.

4.9 K B P A N D K B P - M C O M O D E L R E S U LT S

The verification of the DVH estimation for each model was performed using both

the RapidPlan Model Configuration and Model Analytics tool [80], as described in

section 4.5.

Figure 4.7 and Figure 4.8 show the resulting regression models for each OAR

for the two models, KBP and KBP-MCO: each graph shows the correlation be-

tween the dosimetric and the geometric components, as parameterized during

the training phase. The trend line (dash line) with the correlation R2 value and the

two standard deviation of the regression (straight lines) are also shown.

The model quality was evaluated by checking the model goodness of fit statis-

tics for each structure, with the coefficient of determination R2 (between 0 and 1:

the larger, the better) and the average Pearson’s chi square χ2 (the closer to 1,

the better). Those parameters, together with the number of potential outliers or

influential points are reported in Table 4.3 for all models.

The potential outliers identified in the MA tool were evaluated case by case.

They were judged as not real being outliers, in the majority of the cases related

to some anatomical differences with respect to the rest of the population in the

model, all plausible and not anomalous anatomies. These parameters, together

with the number of potential outliers (also known as influential points), are re-

ported in Table 4.3. No particular trends were observed for χ2 and R2. A mean χ2

of 1.08±0.04 and 1.11±0.05 and a mean R2 of 0.54±0.14 and 0.83±0.10 were

found for KBP and KBP-MCO modules respectively, showing an improvement

of the KBP-MCO module, especially for R2. This improvement in the regression

modesl of KBP-MCO is also evident by comparing Figure 4.7 and Figure 4.8 . By

comparing Figure 4.7 and Figure 4.8, it is possible to observe that for two models

(spinal cord and oesophagus) RP tool chosen a different combination of gemet-

rical features (x-axis) for the regression model. The process of choosing the bet-
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Figure 4.7: Regression model for each OAR trained in the manual model: each
graph shows the correlation between the dosimetric and the geometric compo-
nents, as parameterized during the training phase; the trend line (solid line) with
the correlation R2 value and the two standard deviation of the regression (dash
lines) are also shown.
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Figure 4.8: Regression model for each OAR trained in the MCO model: each
graph shows the correlation between the dosimetric and the geometric compo-
nents, as parameterized during the training phase; the trend line (solid line) with
the correlation R2 value and the two standard deviation of the regression (dash
lines) are also shown.
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Structure KBP  
R² 

KBP  
χ² 

KBP 
# Outliers (MA) 

KBP-MCO 
R² 

KBP-MCO 
χ² 

KBP-MCO 
# Outliers (MA) 

Brainstem 0.44 1.06 2 0.84 1.05 3 

Oesophagus* 0.56 1.13 0 0.83 1.06 0 

Larynx 0.50 1.10 0 0.82 1.18 3 

Mandible 0.78 1.08 0 0.83 1.08 5 

Oral Cavity 0.56 1.02 0 0.87 1.07 2 

Parotids 0.61 1.06 1 0.82 1.05 0 

Spinal Cord* 0.34 1.07 0 0.54 1.10 0 

 

Table 4.3: Goodness of the prediction models in terms of coefficient of determi-
nation, R2,, average Pearson’s chi square, χ2, and number of potential outliers
(model analytics, MA, suggested plans to be removed and plans to be checked).
KBP refers to model trained using manual plans and KBP-MCO refers to model
trained using consistently generated Pareto solutions using MCO Trade-Off tool.
The asterisk [*] indicates that the combination of geometrical features in the re-
gression model is different in the two models.

ter geometrical features is completely automated and it is independent from the

setting that the user can do. RP tool automatically selects the best combination

of geometrical features to maximize the goodness of the model. Thus, a simple

comparison of R2 between KBP and KBP-MCO for oesophagus and spinal cord

models is not possible. However, it is possible to assume that since the R2 and

χ2 improved in MCO-KBP for these two organs, as indicated in Table 4.3, these

are improved models but using a different combination of geometrical features. A

(*) symbol was used to indicate that the combination of geometrical features was

different for the regression models in Table 4.3,





5
TO O L S F O R P L A N E VA L UAT I O N P R O C E D U R E A N A LY S I S

ideal:

— perfect, or the best possible;

— a principle or a way of behaving that is of a

very high standard;

— a perfect thing or situation.

Cambridge English Dictionary

5.1 P R E V I E W

Chapter 5 is preparatory to Part III of the thesis. Planning evaluation methods

are presented in this chapter. In particular a tool called gUIDE (generalized Uni-

form Ideal Dose using Exponential function) developed in this thesis to produce

an ‘ideal’ dose distribution that could be useful as a baseline for a clinical plan.

By comparing the obtained dose distribution with gUIDE dose a measure of plan

quality can be derived. The gUIDE dose is compared for validation with a com-

mercial tool, planIQ (see following sections for details), for plan evaluation based

on a feasibility DVH. This feasibility DVH is considered the benchmark.

5.2 P L A N I Q M O D U L E

The commercial software package called planIQ (Sun Nuclear Corp., Melbourne,

FL), helps users to evaluate a clinical plan [44, 94]. Before treatment planning

begins, PlanIQ analyzes the patient-specific feasibility of institute specific clini-

cal goals, with insights on areas for improvement. Target, OAR and overall plan

quality are summarized from “acceptable” to “ideal” for easy identification of weak-

nesses in the plan. Based on the clinical goals, every target and OAR receives a

quality score. The treatment plan receives a Plan Quality Metric score and an Ad-

justed PQM score customized to the patient-specific feasibility analysis. In PlanIQ

55
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a tool called a feasibility DVH (FDVH), has the aim of helping the operator during

plan generation in the achievement of challenging patient-specific dose objectives.

In more detail, the FDVH tool, introduced by Ahmed textitet al. [13], uses the CT

images and DICOM RT structure set of the patient to generate a synthetic dose

distribution based on first principle assumptions and a series of energy-specific

dose-spread calculations [13, 44, 94]. This 3D dose distribution is ’ideal’ and is

intentionally unachievable, such that each PTV is evenly populated has the pre-

scription dose (the DVH of each PTV will therefore be a simple rectangle). A high

dose gradient and moderate dose periphery is then added to the PTV dose cloud.

Once the dose cloud is generated, for each individually considered OAR the lower

possible boundary of its DVH is predicted [13, 44, 94]. A detailed explanation of

the algorithm can be found in [44]. The PlanIQ software v2.1 implements the

FDVH estimation algorithm. However, the user can only visualise and export the

ideal FDVH and not spatial dose distribution. The FDVH calculation process is

broken down into three steps:

i. specify target volumes, prescription doses, and calculation parameters,

ii. build the benchmark dose grid,

iii. generate the FDVH curves.

The following equation (eq. 5.1) describes the baseline dose concept imple-

mented in PlanIQ module:

BDfinal(x, y, z) = max(DGHDS[x, y, z], DLDS,mid[y], [x, z], DLDS,far[y], [x, z]) (5.1)

In eq. 5.1 DGHDS[x, y, z], describes general penumbral effects at a beam edge,

tangential to the target surface. DLDS,mid[y][x, z] and DLDS,far[y][x, z] contains both

the percentage depth dose curve (PDD) effect and the low dose outside the steep

portion of the penumbra due to scatter out-of-field. They involve 2D convolutions

in axial planes of a signal function with energy-dependent 2D kernels. This bench-

mark dose is used to produce the best possible sparing FDVH for an OAR, and

based on that, progressively more easily achievable FDVH curves can be esti-

mated.
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5.3 G E N E R A L I Z E D U N I F O R M I D E A L D O S E U S I N G E X P O N E N T I A L F U N C -

T I O N (gU I D E ) C O M P U TAT I O N

5.3.1 Rationale behind gUIDE implementation

As explained in the previous chapter, there are significant variations in plan quality

evaluation, even among radiation oncologists and medical physicists belonging to

the same department. One of the limitations of using only the DVHs of available

plans is that information about the spatial position of the dose is lost to a large

extent. As the process of evaluation also necessarily involves the visual assess-

ment of a 3D dose distribution, it was thought that the computation of a ‘baseline

dose’, which is not attainable but represents the closest option to the most ideal

(but physically impossible) situation, could help improve the modelling of the eval-

uation process. Said situation is the scenario where the entire prescription dose is

delivered to the target and there is null dose to voxels outside the target. This dose

was not known beforehand by the automatic planning system or the evaluators,

but takes into account the unique patient anatomy and how that plays a significant

role in the best achievable doses to specific anatomic regions. The comparison of

these theoretical and synthetic (but patient-specific limits) could give more insight

into the evaluation process and could help in highlighting the different personal

preferences that observers could employ when evaluating a plan.

5.3.2 gUIDE implementation

To fulfil the aims set out above, an initial version of a gUIDE tool was developed

during this project. The primary goal of this tool was to estimate the best case

of dose distribution, given the specific anatomy of any patient. The algorithm is a

generalized version of the one proposed in Ahmed et al.’s work [13] implemented

into a commercial tool called PlanIQ, described in previous section, section 5.2.

From PlanIQ, the user can only visualise and export the ideal FDVH and not a

3D spatial dose distribution. This is the reason why the gUIDE function was de-

veloped in the current work in order to have an ideal spatial dose distribution as

reference. As described in the previous section, the aim and the initial application
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of the gUIDE tool is somewhat different to the methodology of PlanIQ FDVH. As a

first step a simpler description of the best achievable dose was implemented but,

at the same time, it was also intended to maintain the spatial information which

is lost in the DVH output of Ahmed et al.’s work. In this section, the algorithm

employed to develop the tool is described, together with the optimization of the

algorithmic parameters. Then, an application based on the previously described

set of HN patients is presented. This tool was implemented using Matlab ver-

sion R2020b (Mathworks, Natick,USA). The process of the gUIDE computation is

composed of three steps and it is described in Figure 5.1:

i. Specification of target volume(s) and their prescription(s) together with cal-

culation parameters;

ii. implementation of the initial ideal dose;

iii. generation of the gUIDE from the initial ideal dose.

The algorithm does not require any specification of the treatment machine or

beam energy. The inputs needed for the gUIDE tool to generate the dose distribu-

tion are the CT simulation scan volume, with the ‘masks’ of the PTV(s) that need

to be covered and their respective dose prescription(s). A mask of the external

body of the patient also needs to be provided. The other calculation parameter

that needs to be given to the tool is the dose grid spatial resolution. In this work

the best dose grid resolution among the available plans was employed (0.97 mm

in the in the anterior posterior (A-P) and left-right (L-R) direction and 3 mm in the

superior-inferior (S-I) direction).

• Initial gUIDE

The initial version of the ideal dose is a basic 3D dose grid (with the user-

specified resolution parameters) which provides 100% coverage of each of

the target volumes with its associated prescribed dose. As the PTV mask

is initially specified in the coordinates and the resolution space of the CT

simulation scan, an interpolation of the mask is carried out to map the mask

in the 3D dose grid space. Then the dose grid points [x,y,z] corresponding

to the voxels of the dose matrix, are assigned a dose value. In this first step,



5.3 G U I D E TO O L C O M P U TAT I O N 59

Figure 5.1: gUIDE computation process based on 3 steps. 1. specification of
target volume(s) and their prescription(s) together with calculation parameters; 2.
implementation of the initial ideal dose as uniform dose on each target equal to
prescription dose and zero outside targets (equation 7.1); 3. generation of the
gUIDE from the initial ideal dose outside targets using eq. 5.3.

the dose values are assigned following a simple binary target coverage grid

(see Figure 5.1-panel 2).

Dinitial =


Dprescription, for voxels inside the targets

0, for voxels outside the targets
(5.2)

If there are several dose prescription levels, there are also several different

3D sub-doses that are generated (described in the next section steps). The

final dose is composed of the maximum dose values from the generated

sub-doses so that only the PTV that provides the highest contribution counts

towards the gUIDE’s generation.

• gUIDE generation outside targets

After assignment of dose to the PTVs, the algorithm assigns the dose to

the non-target voxels. This is achieved by creating successive expansions

of the target in an iterative process: the dimension of the expansion margins
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used in every iteration is equal to the highest dose grid resolution. Then, the

voxels inside the expansion are given the prescribed target dose, multiplied

by a negative exponential ‘fall-off’ factor depending on the distance of the

specific expansion with respect to the target, with the following relationship

(see Figure 5.1-panel 3).

D(out–target) = max(Dprescription,i · (a+ (1 – a) exp(–b(x – Xres)) (5.3)

Where:

– D(out–target) is the dose assigned to every voxel inside the nth expansion;

– Dprescription is the target prescription for that sub-dose;

– a is the plateau parameter describing the minimum percentage of dose

showing in the 3D dose map; as our ideal dose needed to be as low as

possible, this parameter was set to 0.01;

– b is the fall-off parameter, determining the steepness of the dose de-

scent;

– Xres is the dose grid resolution, set equal to the maximum resolution of

the map (in this work, 3 mm);

– x is the distance from the target for that specific expansion which is

computed by x=i · Xres, where i is the number of the iteration. Thus

(x – Xres) is always a positive quantity.

As previously mentioned, if there are multiple dose prescriptions after all

the associated sub-gUIDE doses are generated, the final gUIDE is com-

posed of the maximum values among all gUIDE sub-doses. The resulting

dose derived from the above formula is thus composed of dose steps as it

is a collection of isodoses decreasing exponentially with distance from the

target. After every iteration, the computed dose is multiplied by the binary

mask function defined by the external body contour in order to speed up

computational time, as voxels outside the body are set to receive null dose.

Generally, as shown also in Ahmed’s work [13], there are two factors in the

dose distribution:
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i. the high gradient component of the dose spread effect that is the pre-

dominant effect in the vicinity of the target;

ii. low-dose effect component is due to a combination of physical factors.

It is a function beam energy, that influences dose attenuation along

beam axes.

Low-dose effect was not accounted for in our 3D dose computation. For

these reasons, gUIDE doses are sufficiently accurate only for regions of

patient close to the target. In the current HN plan evaluation study, lower

doses (under 20% of the prescription dose) were not included . For this

reason, it was decided to exclude the modelling of low dose effects. The

main scope of this gUIDE computation is intended only a benchmark for

comparison with the actual dose distribution obtained in plans described in

chapter 7.

5.3.3 gUIDE tuning setup

As the gUIDE dose distribution is parametrized with the fall-off variable detailed

in eq. 5.3 this needs to be ‘tuned’. A tuning and validation setup was devised,

using a simplified geometry: a cylindrical phantom virtual scan with homogeneous

density equal to water, with a diameter of 32 cm and a length of of 34 cm (see

Figure 5.2 for transversal view). Following Ahmed et al.’s example [13], two model

geometries were employed. In both configurations, the centres of the targets were

placed at the centre of the phantom, with the OAR placed next to the target. The

two studied configurations are shown in Figure 5.2. In the first , (configuration A)

the PTV (i.e. the target) consisted of a cylinder with a diameter of 8 cm, with a

cylindrical OAR next to it with a diameter of 4 cm. The OAR was placed tangential

to the target’s surface to explore how steep the dose descent would be if the

system’s priority forced it to a single direction. The second setting (configuration

B) had a similar geometry, with a cylindrical PTV with a diameter of 5 cm, with a

cylindrical OAR next to it with a diameter of 3 cm. These two configurations were

used to model the dimensions of PTVs and OARs typical of a HN site, where the

OARs are very close to the targets. For other sites, different configuration setups
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to tune the dose fall-off parameter might need to be considered (i.e. a different

target site with different OARs for sites like breast).

Figure 5.2: Configuration A (a) and configuration B (b) of simplified geometry in
a homogeneous cylindrical phantom, used in the model tuning and validation.

The VMAT plans were generated using 6MV beams from a TrueBeam linear

accelerator, using Eclipse TPS v17.1. Two full arcs were used for both configura-

tions with collimator rotations of 330◦ and 30◦. A 2 mm voxel grid was used for

the plan dose calculation, employing the Acuros External Beam v17.1 dose cal-

culation algorithm. The dose prescription in these model geometries was 2 Gy to

be delivered to both configuration A and configuration B PTVs. The optimization

objectives were the same for both configurations. The aim was to ensure near-

perfect conformity of the prescription dose with its border facing the OAR, while

maintaining acceptable prescription dose elsewhere. This point was achieved by

requiring dose homogeneity in the PTV voxels to be maintained within ±10%.

This value is higher than that normally sought in clinical practice, but it was the

best compromise between the conflicting objectives to minimize the OAR dose

and PTV dose homogeneity with a large range of trade-offs. For the OAR, the

goal was to drive the mean dose as low as possible. The parameters reported

in Table 5.1 were used in the optimization module of the TPS. As shown in the

table, priority was given to the PTV. The use of the Eclipse TPS Normal Tissue

Objective (NTO) function was also employed.

After the manual optimization phase, the MCO trade-off module (see chapter

3 for details) was used to extract a Pareto solution between the two trade off

parameters (target homogeneity and OAR sparing). After attaining homogeneity,
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Structure Volume
(%)

Dose 
(Gy)

Priority

PTV 0 2.03 150

PTV 100 2.97 145

OAR (mean dose) 0.4 100

BODY 0 2.03 90

NTO -- -- 130

Table 5.1: Optimization parameters used in both configurations. A and B during
the gUIDE tuning.

the OAR sparing objective function element was given the most importance in

the Pareto surface navigation (see chapter 3). The plan generation for each con-

figuration of Figure 5.3 was repeated 3 times (thus in total, six plans) to assess

the consistency of the solutions. After the final dose calculation was completed,

the dose profiles taken in the perpendicular directions passing through the mid-

dle of the OAR (starting from the target) were extracted. All the obtained plan

doses were normalized so that 95% of the total PTV volume would received the

total prescribed dose (in this case, 2 Gy). Then, the gUIDE profiles were fitted

using an exponential function having the same form and parameters as the one

described in eq. 5.3. The steepest dose profiles were then recorded and fitted

using the gUIDE equation, parametrized with the a and b parameters of eq. 5.3.

Parameter a was set to a constant value of 0.01 as it takes into consideration the

low-gradient effects which were not of interest in modelling as a first step, so was

not used in the fit. Only the fall-off parameter of eq. 5.3, used in the dose descent

in gUIDE, was employed in our tuning strategy. Said parameter was set as the

mean among the values found from the 2 configurations repeated 3 times (N=6).

5.3.4 gUIDE computation for clinical case

The gUIDE for all of the 15 patients enrolled in the study described in chapter 3

was computed. To benchmark the gUIDE results for clinical cases, gUIDE DVHs

were compared with the FDVH tool discussed previously in section 5.2. For all 15

patients, CT images, structure set and gUIDE doses were imported into PlanIQ
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in DICOM format and DVH comparisons were performed with feasibility dose,

to check the gUIDE for clinical cases with a commercial benchmark. The DVH

comparison was performed for spinal cord, brainstem, left and right parotids, oral

cavity, madible, oesophagus and larynx.

5.4 R E S U LT S

5.4.1 gUIDE tuning and validation for a simple case

In Figure 5.3, the obtained dose distributions based on the two configurations

described in subsection 5.3.3 are presented. The arrow shows the direction where

the dose profile was recorded for the fitting.

Figure 5.3: Dose distributions from two examples of the dose calculation in con-
figuration A (a, PTV diameter= 8 cm) and B (b, PTV diameter= 4 cm). The red
arrow shows the direction the dose profile was taken for the tuning of the gUIDE
fall-off parameter.

In Figure 5.4 the obtained dose profiles associated with the 2 configurations

(repeated 3 times, thus in total 6 lines) are reported. The graph can be divided

in two parts. The first one (above the black line, shaded in orange) concerns the

doses over 0.4 Gy, i.e. 20% of the maximum value (2 Gy in this case). This is the

part of the graph which was used in the fit and in the validation, as it describes the

fall-off parameter. The second region shows the low-gradient part which was not

used in the gUIDE tuning because of the missing low gradient effect as described
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Figure 5.4: Results from the fall-off parameter tuning. The curves agree up until
0.6 – 0.4 Gy, which, in relative dose, means 30% - 20% of the maximum dose to
the target (2 Gy in our setup). The shaded orange zone is the data used in the
actual fit, as it described the fall-off parameter in modeling for the gUIDE tuning.
The other part of the graph simply shows that, for lower doses, the gUIDE differs
from the experimental data, but it is expected as in the gUIDE modeling, the low-
gradient effects were not taken into consideration.

Figure 5.5: gUIDE DVHs for PTV and OAR structures (blue and red line), and con-
figuration A DVHs for PTV and OAR (yellow and purple line). The gUIDE OAR’s
DVH is comprised of steps as a result of the implementation of the gradient de-
scent using isodoses.
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above. All six fits exhibited a mean R2 >0.98±0.01 and the final fall-off parameter

was thus set as the mean of all the 6 fall-off parameters of the curves, i.e. b=1.9.

Figure 5.5 shown for configuration A (PTV=8 cm), the obtained DVHs related

to the two involved structures. As expected, the PTV DVH for the gUIDE is a

step function where all of the prescription dose is delivered to the PTV, while

the OAR DVH is composed of steps as a result of the isodoses with descending

values implementation. The PTV DVH of configuration A cannot reach the step

function given to the gUIDE, by definition (Figure 5.1). Regarding the OAR DVHs,

it is expected that the gUIDE would be lower as the tuning was performed using

the steepest one dimensional dose descent in the OAR while in the real dose

distribution the OARs receive the sum of various profile contributions.

5.4.2 gUIDE validation for clinical cases

An example of gUIDE distribution for one of the 15 patients (see details in chapter

3) is showed in Figure 5.6. Profile A and B indicated the gUIDE fall-off over targets

(profile-A) and from target to normal tissue (profile-B). Profile-A showed a step

function, one level for each target dose (66 Gy, 60 Gy and 54 Gy) due to the

definition of gUIDE inside targets (eq.5.2). Profile-B, reflects the fall-off behaviour

described in eq. 5.3 using the fall-off parameter tuned in previous subsection.

The gUIDE and planIQ doses were compared with each other in term of DVHs

for the 15 patients described in subsection 3.3.1). The median DVHs for both

cases, together with their 10-90 percentiles are showed for the principal OARs

in Figure 5.7a. Overall, the results are quite similar, even if for some OARs the

differences between the two methods are more evident, such as larynx. However,

the paired two-sided Wilcoxon signed rank test on the mean doses of all 8 OARs

considered in the comparison (area under the DVH curve) showed different me-

dian values for the two DVH sets, with a p-value << 0.05. Figure 5.7b shows this

comparison in terms of boxplots commercial PlanIQ and gUIDE mean dose val-

ues. Although the statistical test showed significant difference between the two

groups, overall values are quite similar for all OARs in the two approaches.
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Figure 5.6: An example of gUIDE distribution for a HN patient. Profile A and B
showed the fall off of the gUIDE: profile-A over the targets (3 different dose levels,
66Gy, 60Gy and 54 Gy with step profile) and profile-B from target 66Gy to normal
tissue.
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b)

a)

Figure 5.7: a) PlanIQ and gUIDE DVHs difference for principal OARs structure
(black and red line) in term median DVHs for the 15 patients with 10-90% per-
centiles. b) Boxplots of planIQ Feasibility DVH area (white boxes) and gUIDE DVH
area (gray boxes) distribution sorted by OAR. For each box, the central mark rep-
resents the median value, while the bottom and top edges of the box are the 25th

and 75th percentiles over 15 patients, respectively. The whiskers represent the
range of values. Observations beyond the whisker length are marked as outliers
(+). By definition, an outlier is a value that is more than 1.5 times the interquartile
range away from the bottom or top of the box. An outlier appears as a red + sign.
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VA R I AT I O N S I N H E A D A N D N E C K T R E AT M E N T P L A N

Q UA L I T Y A S S E S S M E N T

Knowledge is a deadly friend

When no one sets the rules.

King Crimson - In the court of Crimson King

6.1 P R E V I E W

Work from this chapter was published in Cagni et al. (Front. Oncol. 2021) [95].

The figures and tables that are shown in this chapter are drawn from that pub-

lished work. In this chapter a study evaluating the variability between users from

a single department in plan quality assessment, is presented. There are several

steps in the radiotherapy process, where human actions can bring variability in

quality. One key area is contouring variations (OARs and PTV) between radiation

oncologists (ROs). Concerning medical physicists (MPs), the major variation step

is in the manual planning quality. Plan quality differences are usually attributed

to differences between planners in planning skills, dedication, and ambition, and

in time spent on planning. Another factor of variation is how perceptions of plan

quality and the choice of the best plan to go to treatment could have impact in

the radiotherapy process. To the best of current knowledge, this is the first study

that quantitatively evaluates variations in subjective assessments of the same

treatment plans by various observers (ROs and MPs) in the same department.

This is also a first study showing reduced inter-observer variation in subjective

plan scores for automatically generated plans compared to corresponding man-

ual plans.

71
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6.2 I N T R O D U C T I O N

Advanced radiotherapy delivery approaches such as Intensity Modulated Radia-

tion Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT) have sub-

stantially increased opportunities for sparing organs at risk (OARs) with proven

clinical impact [54, 96–99]. Ideally, for each individual patient, the applied treat-

ment plan maximally exploits the full potential of the applied delivery technique.

Currently, most treatment plans are generated with interactive trial-and-error plan-

ning (‘manual planning’). It is well-known that plan quality in manual planning may

be sub-optimal, e,g. depending on experience and ambition of the planner, and on

allotted planning time [44, 100]. In recent years, several systems for automated

plan generation have been developed, often resulting in enhanced plan quality

compared to manual planning [7, 82, 101–104]. Both in manual- and automated

planning, human evaluation and judgement of treatment plans is crucial. Normally,

plans are produced by MPs or dosimetrists and presented to treating ROs for

approval. During manual plan generation, planners usually develop a range of

(intermediate) plans, but generally only a single plan or sometimes two compet-

ing plans are discussed with the RO. Prior to approval, the RO may request for

adaptation of presented plans. A necessary assumption for this workflow to work

well, is that (unknown) disparity between planners and ROs on characteristics of

good/optimal plans is absent or minor. In case of large disparity, a plan with high

quality from the planner’s point of view may be presented to the RO, while a dif-

ferent plan with lower quality according to the planner, but clearly more attractive

to the RO if she/he would have been aware of it, is intentionally not generated

or presented. In such cases, there is no guarantee that plan modifications are

requested, and if requested, to what extent the adapted plans would satisfy the

needs of the RO. This study has systematically investigated differences between

five ROs and four planning MPs, all working in a single radiotherapy department,

in perceived quality of head and neck (HN) cancer plans. Using automated plan-

ning, multiple plans were generated per patient. Plan quality was scored using

visual analogue scales.
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6.3 M AT E R I A L S A N D M E T H O D S

6.3.1 Patients and clinical (CLIN) treatment plans

Planning CT data, contoured structures and the CLIN plan of 15 arbitrarily se-

lected oropharyngeal HN cancer patients, recently treated with radiotherapy at

Azienda USL-IRCCS Hospital (AUSL) in Reggio Emilia (Italy), were included in

this study. Following AJCC TNM staging (7th edition)[105], 6 patients were classi-

fied as T2N2, 3 as T1N2, 3 as T2N1 and 3 as T4N2. Bilateral neck was irradiated

in all patients. A Simultaneous Integrated Boost (SIB) technique was used for

all patients, delivering the prescribed doses in 33 daily fractions. Total doses for

PTVhigh, PTVmedium and PTVlow were 69.96 Gy, 59.4 Gy and 54 Gy, respec-

tively [73–75]. For each PTV, the goal was to deliver 100% of the prescribed dose

to 95% of the volume. All plans were normalized so that exactly 95% of PTVhigh

received the prescription dose. Sizes of the involved planning target volumes

(PTVs) were (mean±SD [min, max]): 178.5±97.3cm3 [63.3,409.6], 208.4±105.7

cm3 [39.8,431.7] and 184.8±51.0 cm3 [95.2, 248.7] for PTVhigh, PTVmedium and

PTVlow, respectively. OARs considered in planning were spinal cord, brainstem,

left and right parotid, oesophagus, oral cavity, larynx, mandible, pharyngeal con-

strictor muscles, and submandibular glands [73]. Plans were generated using the

following priorities for achieving planning objectives: 1) sparing of brainstem, optic

chiasm, and spinal cord (so higher priority than PTV coverage), 2) achievement

of PTV dose objectives in the order PTVhigh, PTVmedium, PTVlow, 3) parotid

glands sparing, 4) sparing of other OARs and healthy tissues. The clinical plan-

ning protocol was largely in line with international protocols, such as RTOG [73,

74, 76] and JAVELIN protocols [75]. Patients were treated with 3-arc 6MV VMAT

delivered with a Truebeam STx linac (Varian Medical Systems, Palo Alto, USA)

(10 patients), or using Tomotherapy (Accuray Inc, Sunnyvale, USA) (5 patients).

Clinical planning was performed with the Eclipse treatment planning system (TPS)

vs.13 (Varian Medical Systems, Palo Alto, USA) or Tomoplan v. 3-4 (Accuray Inc,

Sunnyvale, USA).
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6.3.2 Global study design

Apart from the CLIN plan, 2 (for 5 patients) or 4 (for 10 patients) additional VMAT

plans were evaluated in this study, resulting in a total of 65 evaluable plans. The

extra plans had variable plan quality and were generated with automated planning

(details in subsection 6.3.5). Each of the 65 available plans was evaluated by 5

departmental ROs (3 with more than 5 years of experience in HN radiotherapy

and 2 with less than one year of experience) and 4 MPs (all with more than 5 years

of experience), resulting in a total of 585 subjective plan evaluations. For each

patient, every observer independently gave a score to each of the 3 or 5 available

plans in a single session (details in subsection 6.3.3). Scoring was blinded, i.e.

observers did not know how the plans were generated. Apart from giving a quality

score to each plan, observers were also asked what change they considered most

desirable for improvement of the plan (without knowing whether this would be

feasible or not), see also subsection 6.3.5. To assess intra-observer variability in

quality scoring, 1RO and 1MP performed the entire scoring process for 65 plans

a second time, with a delay of at least a month. Previous results were blinded.

6.3.3 Plan Scoring Procedure

For each patient, all available dose distributions were simultaneously imported

into the Eclipse TPS and linked to a virtual plan without any mentioning of the

original delivery approach (VMAT or Tomotherapy), plan geometry, machine pa-

rameters, etc. With all plans simultaneously open, the observer gave a separate

1-7 score to each plan, following the routine procedure for plan evaluation (in-

spection of 3D dose distribution, DVH data, etc.), with higher scores pointing at

perceived higher quality: 1-2: unacceptable (plan category 1), 3-5: acceptable if

further planning would not have resulted in a better plan (this planning was not

performed in this study) (plan category 2), 6-7: acceptable, no further planning

needed (plan category 3). A 7-point scale was chosen because of good perfor-

mance in psychometric literature [106–108]. In the remainder of this paper, the

1-7 scores are denoted ‘raw’ scores, while plan categories 1-3 define the more

intuitive ‘category’ scores. The applied division of the raw scores in categories
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Figure 6.1: Sheet used for plan scoring and for indicating the most important
suggestion for plan improvement. a) Left part: filled-in scoring sheet of one of the
observers for one of the study patients with 5 available plans. The same (empty)
sheet was used by all observers for all patients. For each patient plan (first, yellow
column), an observer had to choose a score between 1 and 7, with 1 and 7 lowest
and highest quality, respectively. The scores were divided in three categories with
explanations in the first row of the sheet. A score in category 2 meant that the plan
would be acceptable if further planning would not result in desired improvements.
Right part: the observer also had to express the most desired plan improvement
(without knowing whether it would be feasible or not). b) Possible choices for
plan improvements. PTVs (coverage, conformity, or homogeneity), OAR group1
(spinal cord, brainstem, optical system), OAR group 2 (parotids, mandible, oral
cavity, larynx, oesophagus), unspecified external tissue or NONE.

was made before the start of subjective plan scoring. As visible in Figure 6.1, this

division was also explicitly shown to the observers while giving scores to plans.

For the analyses, another scoring system was introduced as well, the so-called

‘binary’ scoring system: raw scores 1 and 2 were grouped as binary score 0 (plan

is unacceptable) and raw scores 3-7 were given binary score 1 (plan is in prin-

ciple acceptable). To express the most urgent need for plan improvement, the

observers could choose from: (A) PTVs (coverage, conformity, homogeneity), (B)

OAR group1 (spinal cord, brainstem, optical system), (C) OAR group 2 (parotids,

mandible, oral cavity, larynx, oesophagus), (D) unspecified normal tissue, or (E)

none. See Figure 6.1.
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6.3.4 Evaluation of inter-observer differences in plan scoring

With 9 observers, there were in total 36 unique combinations of two observers,

here designated ‘pairs’. To analyze inter-observer differences in perceived plan

quality, for all these observer pairs, percentages of agreement and disagreement

in the scores given to the 65 evaluated plans were established. Analyses were

partially based on raw scores, category scores and on binary scores. Observed

percentages of agreement in RO-RO pairs and MP-MP pairs were compared to

percentages of agreement in RO-MP pairs. Suggested most desired plan improve-

ments were used to generate for each observer separately a frequency analysis

of provided suggestions for the 65 evaluated plans.

6.3.5 Automatically generated MCOa and MCOx plans

Autoplans were generated with the Erasmus-iCycle system for fully-automated

multi-criterial optimization (MCO) [65, 103]. Plan optimization in Erasmus-iCycle

is based on so-called wish-lists (WL), containing hard planning constraints, and

planning objectives with goal values and assigned priorities. A dedicated wish-list

is needed for every treatment site. In essence, the wish-list defines an optimiza-

tion protocol for automated multi-criterial generation of a single Pareto-optimal

treatment plan for each patient. The aim in wish-list creation is to maximally en-

sure highest clinical quality of the generated Pareto-optimal plans, in line with the

clinical planning protocol and tradition [Appendix of [103]]. Also, in this study such

a wish-list was created with input of all ROs and MPs involved in the study (WLa).

In the remainder of the chapter, plans generated with WLa are denoted ‘MCOa’.

These MCOa plans consisted of 23 equi-angular IMRT beams, with high similar-

ity to VMAT and avoiding time for segmentation [77–79]. With WLa as a starting

point, twenty alternative wish-lists, ‘WLx’ (x=b,c,d, . . . ), were created for genera-

tion of ‘MCOx’ plans. The WLx were derived from WLa by randomly varying the

priorities of PTVmedium and PTVlow objectives and of the OARs. For generation

of an MCOx plan for a patient, one of the 20 WLx was randomly selected, and in

addition the number of beams was randomly varied between 10 and 23. As for

WLa, the 20 WLx enforced adherence to the hard planning constraints for brain-
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stem, optic chiasm, and spinal cord, as in clinical planning (above). At the same

time, the WLx allowed generation of MCOx plans with a spread in dosimetric

differences compared to the corresponding MCOa plans. For patients 1-10, the

CLIN plan was supplemented with the MCOa plan and 3 MCOx plans (in total 5

evaluable plans). For patients 11-15, apart from the CLIN and MCOa plan, there

was 1 additional MCOx plan used in this study (3 evaluable plans in total). The

switch from 5 to 3 plans is considered in the Discussion section. For putting the

subjective scoring of plan quality by observers in context, dosimetrical character-

istics of CLIN, MCOa and MCOx plans were analysed by mutual comparisons of

dosimetric plan parameters and DVHs.

6.3.6 Statistical Analysis

The Shapiro test and the Student’s T-test were used to assess the normality of dis-

tributions and statistical significance of dosimetric differences between plans gen-

erated with different planning approaches, i.e. CLIN, MCOa and MCOx. Wilcoxon

two-sided signed-rank tests were used to assess statistical significance of mean

score differences between CLIN, MCOa and MCOx. Differences were consid-

ered significant if p<0.05. To assess statistical significance (0.05 level) of ob-

served percentages of agreement for the 65 plan scores of the two observers

in an observer pair, binomial distributions were used to calculate probabilities of

percentage agreements in case of complete uncorrelated (random) choices of

the two observers in a pair. To this end, success probabilities p of 1/7, 1/3 and

1/2 were used for raw, category and binary scores, respectively. The percent-

ages of agreement in plan scores between the two observers in observer pairs

were also analysed with the Cohen coefficient (K) [109]. The relative strength of

agreement between the two observers in a pair is dependent on the calculated

K value. Landis and Koch [110] have proposed the following classification: K <

0, agreement ‘poor’, 0 6 K 6 0.2 agreement ‘slight’, 0.2 <K 6 0.4 agreement

‘fair’, 0.4 <K 6 0.6 agreement ‘moderate’, 0.6 < K 6 0.8 agreement ‘substan-

tial and 0.8 < K 6 1 agreement ‘almost perfect’. For binary scoring the number

of samples for unapproved status was not enough to achieve significant confi-

dence limits in Cohen coefficients for many evaluators [111]. Therefore, Cohen
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analyses were only performed for raw and category scores. One-way Anova tests

were performed to assess statistical significance of differences in percentages

of agreement between subgroups of observers: 1) only RO-RO, 2) only MP-MP

and 3) only RO-MP pairs, after having assessed the normality of the distribution

with the Kolmogorov-Smirnov test. The Bartlet test was used to test the homo-

geneity of variance. When ANOVA assumptions were not met, the Kruskal-Wallis

rank sum test was used as non-parametric alternative to one-way ANOVA. The

Wilcoxon signed-rank test was used to test significance of differences in agree-

ment between CLIN and MCOa plans.

6.4 R E S U LT S

6.4.1 Dosimetric differences between CLIN, MCOa and MCOx plans

In panels a) and c) of Figure 6.2, median DVHs for the CLIN, MCOa and MCOx

plans are presented, showing for each dose, the corresponding median volume

in the considered plans.

For individual patients, the DVH differences between the CLIN, MCOa and

MCOx plans were pairwise quantified by generating differential DVHs: volume

differences as a function of dose. Median volume differences and 10% and 90%

percentiles are presented in panels b) and d) of Figure 6.2. The 10% and 90% per-

centile curves point at large inter-patient variations in DVH differences between

CLIN, MCOa and MCOx plans. Table 6.1a shows how the DVH differences trans-

late into differences in dosimetric plan parameters. Only a few of the differences

between CLIN, MCOa and MCOx plan parameters were statistically different,

while ranges were very broad. This is in line with the observations in Figure 6.2.

Figure 6.7 P1-P15 in the (section 6.7) of this chapter l presents for each of the

15 study patients an overview of the dosimetric differences between the included

3-5 treatment plans.
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Figure 6.2: a) and c): median DVHs for the 15 CLIN with 10-90% percentiles,
15 MCOa and 35 MCOx plans. b) and d): for each dose level (x-axis), median
differences in DVH volumes with 10 and 90% percentiles.

6.4.2 Scoring for an example patient

To introduce the type of scoring data obtained for each patient, Figure 6.3 shows

the raw scores of the 9 observers for the CLIN, MCOa and MCOx plans of study

patient 13, a patient showing large scoring variations. The majority of observers

(6/9) selected MCOa as the best plan, while MCOx was selected most as the

worst plan (5/9). This ranking of MCOa and MCOx is in line with the applied

wish-lists for generation of these plans (subsection 6.3.5). However, for all three

plans, there were large inter-observer differences in raw scores, (2-5 for MCOx

and 2-6 for CLIN and MCOa). RO4 scored the clinically delivered CLIN plan as

unacceptable, while for MP1 this plan was acceptable without further planning

attempts. For RO3, MCOa was unacceptable, while for MP2 it could be deliv-

ered straightaway. Figure 6.3 also shows large inter-observer differences in score

ranges. As demonstrated in the group analyses below, large scoring variations

were observed for all patients and the vast majority of plans.
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Table 6.1: a) Median differences between the 65 included CLIN, MCOa and
MCOx plans in dosimetric plan parameters with ranges and p-values (b) corre-
sponding differences in raw, category and binary scores assigned by the 5 ROs,
4 MPs and all 9 observers combined (All). Significant p-values are reported in
bold.

6.4.3 RO experience in HN radiotherapy and scoring

As mentioned in subsection 6.3.2, three participating ROs had more than five-year

experience in HN radiotherapy, while the other two had less than 1 year experi-

ence for this tumor site. The choice of include also ROs with limited experience (1
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Figure 6.3: Differences in subjective plan scores among the 9 observers in the
study, illustrated with an example patient (#15). Upper panels: dose distributions
of the evaluated CLIN, MCOa and MCOx plans in axial, sagittal and frontal planes.
Lower panel: subjective plan quality scores for the CLIN, MCOa and MCOx plans
for each of the 9 observers, 5 radiation oncologists (RO1-RO5) and 4 medical
physicists (MP1-MP4). Plans below the horizontal red line are considered unac-
ceptable (Category 1). Above the green line are plans that can straightaway be
delivered without any attempt to further improve the plan (Category 3). In the
middle are the plans that are acceptable if further planning would not result in
significant improvements (Category 2).

year) in the plan quality assessment was based on the need to consider a large

number of evaluators in the study to improve the robustness of the results. The

5 ROs represent the doctors who worked at that time in HN field clinical practice

at AUSL-IRCCS of Reggio Emilia at the study time. When considering the raw,

category and binary scores of all 65 plans, median values for all 5 ROs/only 3

expert ROs were 28.5%/36.9% (p=0.5), 56.2% /61.6% (p=1.0) and 75.4%/75.4%

(p=0.7), respectively. Based on these observations, it was decided that in further

group analyses, the five ROs in this study were considered as a single group.

6.4.4 Differences between CLIN, MCOa and MCOx plans in observer scores

Table 6.1b reports differences between CLIN, MCOa, and MCOx in subjective

scores, complementary to the dosimetrical differences in Table 6.1b. The automat-
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RO1 RO2 RO3 RO4 RO5 MP1 MP2 MP3 MP4

P1
CLIN-P1

MCOa-P1
MCOp-P1
MCOf-P1

MCOq-P1
P2

CLIN-P2
MCOa-P2
MCOp-P2
MCOc-P2
MCOi-P2

P3
CLIN-P3

MCOa-P3
MCOu-P3
MCOd-P3
MCOf-P3

P4
CLIN-P4

MCOa-P4
MCOo-P4
MCOe-P4
MCOl-P4

P5
CLIN-P5

MCOa-P5
MCOo-P5
MCOf-P5
MCOl-P5

P6
CLIN-P6

MCOa-P6
MCOn-P6
MCOe-P6
MCOi-P6

P7
CLIN-P7

MCOa-P7
MCOb-P7
MCOd-P7
MCOg-P7

P8
CLIN-P8

MCOa-P8
MCOb-P8
MCOm-P8
MCOh-P8

P9
CLIN-P9

MCOa-P9
MCOo-P9
MCOq-P9
MCOr-P9

P10
CLIN-P10

MCOa-P10
MCOm-P10
MCOc-P10
MCOg-P10

P11
CLIN-P11

MCOa-P11
MCOs-P11

P12
CLIN-P12

MCOa-P12
MCOt-P12

P13
CLIN-P13

MCOa-P13
MCOu-P13

P14
CLIN-P14

MCOa-P14
MCOv-P14

P15
CLIN-P15

MCOa-P15
MCOz-P15

4

3

4

3

5

3

3

4

5

4

4

3

3

5

4

3

3

4

5

4

3

3

3

3

2

2

3

3

5

3

2

3

4

5

3

2

3

5

5

2

3

3

5

3

2

2

5

2

3

3
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5
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Figure 6.4: a) Raw plan quality scores (1-7, 7 indicating highest quality) of the
9 observers (x-axis) for all 65 included plans (y-axis). b) Raw plan quality scores
derived from the raw scores. In b) the colour red indicates that the plan is consid-
ered unacceptable (binary score 0), while light and dark green (categories 2 and
3, respectively) indicate that the plan is in principle acceptable (binary score 1).

ically generated MCOa plans outperformed the clinically delivered CLIN plans, but

for the binary scores this was not statistically significant. Score differences were

overall largest between MCOa and MCOx and with smallest p-values, with the

former showing highest scores, as to be expected from the respective wish-lists

used for automated plan generation (subsection 6.3.5).

6.4.5 Inter-observer variability in plan quality scores

In line with the observations for patient #15 (above), for the majority of plans,

inter-observer variations in assigned scores were large (Figure 6.4).

For the 65 evaluated plans, the average standard deviation (SD) for the nine raw

observer scores was 1.06 [0.33,1.56]. For 29 of the 65 plans, all category scores

(1,2, and 3) were present in the 9 scores (Figure 6.4b). For 15/65 plans, there was

at least one observer that scored category 3 (acceptable without further planning

attempts) while at the same time there were also observers that considered the

plan unacceptable (category 1). Considering all 65 plans, the median percentage

of plans declared unacceptable by an observer was 18.8±8.6% [6.2,35.4%]. For
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CLIN, MCOa and MCOx plans separately, these percentages were 14.8±9.9%

[0.0,33.3], 4.4±4.7% [0.0,13.3] and 26.7±12.3% [8.6,48.6], respectively. Kruskal-

Wallis rank tests resulted in a statistically significant difference, with p=0.005. The

Wilcoxon signed rank test showed a statistically significant difference between

MCOa and MCOx (p=0.005), while for CLIN vs. MCOa p=0.1, and for CLIN vs.

MCOx, p=0.2. Figure 6.5a-c show for unique pairs of two observers, the percent-

ages of plans for which they agreed in plan score. Considering all 36 unique ob-

server pairs in this study, the median percentage of agreement in raw plan scores

was 27.7% [6.2,40.0] (‘all’ boxplot in Figure 6.5a).

In case of complete randomness in the scoring of two observers in a pair, an

agreement percentage of 14.3% would be expected (horizontal solid line in grey

zone). For category (Figure 6.5b) and binary scores (Figure 6.5c), these median

percentages were 58.5% [35.4,73.8] (33.3% expected in case of randomness)

and 78.5% [63.1,86.2] (50% in case of randomness), respectively. The vast ma-

jority of percentages of agreement in Figure 6.5a-c are outside the grey zones,

meaning that they are statistically significantly different from the corresponding ex-

pected values for random scoring, indicated by the horizontal solid lines. With one-

way Anova p-values of 0.3, 0.6 and 0.4, there were no differences between the ob-

server pair subgroups RO-RO, MP-MP and RO-MP in the agreement distributions

in Figure 6.5a-c, respectively. Cohen‘s coefficient analyses for raw scores resulted

in median K-values [range] of 0.46 [0.12,0.68] when considering all observer

pairs, 0.47 [0.17,0.56] for ROs, 0.51 [0.33,0.64] for MPs and 0.46 [0.12,0.68]

for RO-MP. Following the labelling by Landis and Koch, the overall agreement

is ‘moderate’. In more details, considering all 36 observer pairs, 11% (N=4) re-

sulted in slight agreement, 25% (N=9) in fair agreement, 47% (N=17) in mod-

erate agreement and 17% (N=6) in substantial agreement. For category score

analyses, Cohen’s median K-values [range] were 0.40 [0.03,0.66] for All, 0.35

[0.04,0.53] for ROs, 0.44 [0.37,0.54] for MPs and 0.39 [0.03-0.66] for RO-MP pairs.

The overall agreement, in Landis and Koch scale, resulted in ‘fair’; 19% (N=7)

resulted in slight agreement, 31% (N=11) in fair agreement, 47% (N=17) in mod-

erate agreement and 3% (N=1) in substantial agreement. Figure 6.5f-h present

scoring agreements for CLIN and MCOa plans separately, showing substantially

better agreements for the automatically generated MCOa: when considering all
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Figure 6.5: panels a), b), c): Each marker shows for 1 of the unique 36 observer
pairs in this study the percentage of 65 evaluated plans for which they agree in a)
raw score, b) category score and c) binary score. In each panel, the first boxplot
includes the data for all 36 observer pairs (All). For the other three boxplots the
data is split ac-cording to subgroups of observer pairs; RO-RO: pairs consist of 2
radiation oncologists, MP-MP: pairs consist of 2 medical physicists, RO-MP: pairs
consist of 1 radiation oncologist and 1 medical physicist. Dash black line inside
the dotted lines represented the Binomial distribution (expected value and 95%
confidence limits), thus the random probabilities. P-values of Anova test between
groups (RO-RO. . . ) were reported for each score agreement type. Panels d) and
e): Corresponding Cohen coefficients for raw and category scores. Panel f), g), h)
agreement comparison for All pairs between CLIN and MCOa plans (automated
plans with consistent wish-list) for agreement in plan raw score (f)), plane cate-
gory score (g)) and plan binary score (h)). The p-values were established with
2 tailed Wilcoxon’s signed rank tests. In each panel, horizontal red lines in the
boxplots show median values, while the edges of the boxes are the 25th and 75th
percen-tiles, respectively. The whiskers extend to the most extreme data points
not considered outliers, and the outliers are plotted indi-vidually using the ‘+’ sym-
bol.

36 observer pairs, agreement percentages for CLIN/MCOa were 20.0%/33.3%

(p<0.001), 46.7%/60.0% (p=0.005) and 80.0%/93.3% (p<0.001) for raw, cate-

gory and binary scores, respectively.
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6.4.6 Intra-observer variability in plan quality scores

For the RO and MP involved in the intra-observer analyses, agreement percent-

ages for the 65 initial raw plan scores and the 65 repeat raw scores were 40.0%/52.3%

for RO/MP (N=65). This is substantially higher than the expected percentage

for random scoring (14.3%) and the median percentage of inter-observer score

agreement of 27.7%, see Figure 6.5a. The repeat category agreements for the

RO/MP were 70.8%/89.2% (N=65) with corresponding expected random agree-

ments and median inter-observer agreements of 33% and 58.5% Figure 6.5b, re-

spectively. For binary scoring, the RO/MP agreements were 86.2% /96.2%, with

expected random and median inter-observer agreements of 50% and 78.5% Fig-

ure 6.5c, respectively.

6.4.7 Suggested plan improvements

Large variability between observers was also observed in the suggestions for

plan improvement. Figure 6.6 shows the variability between observers for each

of the possible options for improvement. Overall, the most chosen options were

PTV conformity and dose reduction in parotids with median percentages of 24.6%

[0.0,38.5] and 21.5% [13.8,47.7], respectively. In the intra-observer evaluations,

the participating RO and MP showed agreement percentages in the request for

plan improvement of 28% and 46%, respectively.

6.5 D I S C U S S I O N

In most centres, treatment plans are prepared by dosimetrists or MPs, and eval-

uated for final approval by the treating RO. The process, often denoted as man-

ual planning or trial-and-error planning, may have several iterations in which the

planner adjusts intermediate plans, based on feedback by the RO. Limited com-

mon understanding or agreement between planners and ROs on how good plans

should look can result in suboptimal dose distributions, even with iteration loops.

This study has systematically investigated differences between five ROs and

4 planning MPs from a single radiotherapy department in perceived quality of
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Figure 6.6: Percentages of plans (y-axis) for which plan approvement options
along the x-axis were requested. Each marker indicates for a selected observer
the percentage of plans for which the corresponding option for plan improvement
was selected.

oropharyngeal cancer plans. To the best of current knowledge, this is the first

study that systematically investigates variations in subjective plan quality assess-

ment among ROs and MPs working in a single department. Even in this rela-

tively small centre with ROs and MPs working closely together based on the

centre’s planning protocol (which is in line with international protocols, see sec-

tion 6.3), large variations in subjective plan scores were observed. Considering

all 36 unique observer pairs, the median percentage of plans for which they dis-

agreed on clinical acceptability was 21.5% (Figure 6.5c), with minimum/maximum

disagreements between pairs of 13.8%/36.9%. Based on Landis and Koch’s la-

belling of Cohen’s Kappa-values, the overall agreements in raw and category

scores were ‘moderate’ and ‘fair’, respectively, but large variations between ob-

server pairs were observed, going from ‘slight agreement’ to ‘substantial agree-

ment’.

As shown in Figure 6.5b-d and Table 6.1a, dosimetric differences between the

CLIN, MCOa and MCOx plans could be substantial. As demonstrated in Fig-
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ure 6.4a, for many observer-patient combinations these dosimetric variations re-

sulted in large variations in the 3 or 5 plan scores. On the other hand, different

observers did often substantially disagree on the score of a patient plan (see rows

in Figure 6.4a). As can be observed in Figure 6.2, Figure 6.3 (section 6.7 of this

chapter), and Table 6.1, dosimetric differences between patient plans, both posi-

tive and negative, were generally not restricted to one parameter or one structure.

Probably, different observers often appreciated dosimetric pluses and minuses

rather differently, contributing to the large disagreements between observers in

assigned scores. This would be in line with the large inter-observer variations

in suggested plan improvements (subsection 6.4.7). Figure 6.5a-c shows that

agreement percentages for RO-RO, MP-MP and RO-MP pairs were similar (no

statistically significant differences). This implies that despite large differences in

training and clinical roles of ROs and MPs, there were no enhanced rates of

score mismatches in RO-MP pairs compared to RO-RO pairs. Possibly, renewed,

broad departmental discussions on plan requirements, aiming at a widely shared,

and precisely defined view on plan quality, could improve the current large inter-

observer variation in plan quality assessments. Probably also automated planning

could result in improvements: as visible in Figure 6.5f-h, scoring agreements were

better for the MCOa plans than for the CLIN plans, possibly related to more consis-

tent automated generation of the MCOa plans. Apart from the better agreement

between observers, MCOa scores were overall also higher than CLIN scores (Ta-

ble 6.1b), and MCOa plans were less frequently considered unacceptable than

CLIN plans (4.4% vs. 14.8%, p=0.1 (subsection 6.3.5). Enhanced plan quality with

automated planning compared to manual planning has been observed previously

(see e.g.[7, 101–104]), but to our knowledge this is the first study showing also

reduced inter-observer variations in subjective plan scores for the autoplans com-

pared to corresponding manual plans. Other studies have pointed at the use of

numerical plan quality assessment tools to enhance treatment plan quality [112].

The 70.8% and 89.2% agreements in repeated category scoring and 86.2% and

96.2% in repeated binary scoring (subsection 6.3.6), point at an option for high-

accuracy score prediction for single observers with machine learning. This is a

topic of on-going research. Although the observers were asked to give an abso-

lute score (1-7) to each plan, the scoring of all 3 or 5 plans of a patient in a single
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session could have influenced the scores for the individual plans. For example,

a plan could be perceived as unacceptable in the presence of a very good alter-

native plan, while when scored separately, the former plan could possibly have

been acceptable for the observer. Such a mechanism could in part explain the ob-

servation that 14.8% (median percentage for the 9 observers, subsection 6.3.5)

of the clinically delivered plans (CLIN) were scored as unacceptable, while all

CLIN plans fulfilled the clinical hard constraints on PTV coverage, spinal cord

Dmax, etc. It could also explain the large difference between MCOa and MCOx

in unacceptability rate (4.4% vs. 27.7% p=0.005, subsection 6.3.5), while also the

intentionally suboptimal MCOx plans were generated while obeying all hard con-

straints (PTV, spinal cord, etc). These observations point at a weakness of current

manual planning: evaluating a plan is extremely difficult if there are no alternative

plans.

In this study, oropharynx cases were considered with 3 dose levels and many

OARs. The complexity of these cases could have contributed to the observed

large and frequent disparities in observer scores. Possibly, for less complex tu-

mor sites, agreement in plan scores could be better, which is a topic for further

research.

This is the first study that has quantitatively evaluated variations in subjective

assessments of the same treatment plans by various observers (ROs and MPs)

in the same department. This study is very different from, but complementary to,

other studies that demonstrate that different planners can generate very different

plans for the same patient, even with very detailed, quantitative instructions on

how the plan should look [44]. In the latter studies, plan quality differences are

usually attributed to differences between planners in planning skills, dedication,

and ambition, and in time spent on planning. On the contrary, in this study all

observers evaluated the same plans, and the study tested how well these plans

fit the observer-specific ideas on how good plans should look. The results of the

current study could stimulate similar studies in other departments as they seem

to point at an important weak link in radiotherapy planning. It is commonly recog-

nized that variations between ROs in delineating targets is a major concern in clin-

ical radiotherapy. This study suggests that large inter-observer variations in plan
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quality assessments (even in a single department), could be another ‘Achilles

heel’ for compromising optimal treatment.

6.6 C O N C L U S I O N S

Inter-observer differences in treatment plan quality assessments in radiotherapy

can be substantial and could hamper consistent preparation of high-quality plans,

even in a single radiotherapy department. Agreements between ROs and MPs in

plan assessments were similar to agreements among ROs only, despite large dif-

ferences between ROs and MPs in training and clinical role. Automatically gener-

ated plans (MCOa) showed highest median scores and best inter-observer score

agreements, indicating the potential for automated planning to improve clinical

practice.
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6.7 C H A P T E R 6 S U P P L E M E N TA RY M AT E R I A L

Figure 6.7.P1: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P2: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P3: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P4: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P5: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P6: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P7: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P8: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.



98 VA R I AT I O N S I N H E A D A N D N E C K T R E AT M E N T P L A N Q UA L I T Y A S S E S S M E N T

Figure 6.7.P9: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P10: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P11: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P12: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P13: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P14: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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Figure 6.7.P15: For each of the 15 study patients, dosimetric parameters (a)) and
subjective scores (b) and c)) of the 5 or 3 available treatment plans. In a), arrows
indicate where plans should be relative to the black horizontal constraint lines. b)
shows for each observer the scores for all available plans, while c) shows for each
available plan the scores by all observers. Patients number (from P1 to P15) is
indicate both in figure label and in figure legend.
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A N A LY S I S O F VA R I AT I O N S I N T H E R A D I OT H E R A P Y P L A N

E VA L UAT I O N P R O C E S S

Often in judging a thing we get carried away

more by the opinion than by the true sub-

stance of the thing itself.

Lucio Anneo Seneca

7.1 P R E V I E W

The chapter contains follow-up to the study described in chapter 6, which was

focused on investigating the differences between a group of evaluators’ scores

assigned to different treatment plans. The available plans included in that study

consisted of the clinical plan delivered to the patient and a set of automatically

generated plans where different priorities were assigned to the relevant structures

(see chapter 4). The aim of the work described in this chapter is to understand

whether there are some dosimetric features associated with specific structures

that bear more importance to some evaluators than others, during the scoring

process described in the study of chapter 6. This analysis should help to under-

stand better the large inter-user variability found. The analysis was performed by

means of development and implementation of a tool estimating a ‘generalized

uniform Ideal Dose based on Exponential function’ (gUIDE), described in chapter

5. By using this ideal dose, based on the anatomy of a single patient, together

with the dosimetric features belonging to the different plans (which are strongly

influenced by each patient’s unique anatomy), the behavioral patterns of the eval-

uators during the scoring process can be investigated.

105



106 A N A LY S I S O F VA R I AT I O N S I N T H E R A D I OT H E R A P Y P L A N E VA L UAT I O N P R O C E S S

7.2 I N T R O D U C T I O N

It could be argued that any automation strategy might benefit if the system had a

priori expectations of the ideal achievable results based on each patient’s unique

anatomy. Such knowledge could be used in two main ways:

1. during optimization, to provide superior inputs (as compared to standard

tolerances used across all patients) that might allow the automated planning

to exceed standard goals while avoiding pursuing impossible ones;

2. after optimization, to help gauge plan quality by comparing achieved results

to theoretical but patient specific limits.

This information could be used to help gauge plan quality by comparing achieved

results to theoretical but patient-specific limits [13] . These theoretical patient-

specific plan limits are strictly related to patient geometry, i.e. target size and

distance of the OARs from targets volumes. Thus, to mathematically understand

plan quality, it is not enough to know the absolute values of obtained endpoints

for several organs and targets, as information is also required on how close the

considered dose distribution is compared to the theoretically achievable one. The

focus of this work is not, however, to provide a tool that evaluates plans instead

of the qualified people, but, with a sufficient accuracy, it is to objectively assess

which features are relevant in the decision-making process of the evaluators and

whether they differ between personnel working in the same department. This anal-

ysis was performed with and without the use of gUIDE, to quantify the improve-

ment of this ideal dose in plan evaluation analysis. By analyzing the behaviour

of the two groups of evaluators, i.e. the medical physicists (MPs) and radiation

oncologists (ROs) (see chapter 6 for details), differences and similarities were

identified in order to devise strategies to align priorities and improve the clinical

quality of the approved and delivered plans. To best of current knowledge, this is

the first study investigating the factors that could influence plan quality judgement

in a group of several evaluators. For this study machine learning combined with

the gUIDE tool are used as methods for the analysis. This information could be

used in the future for specific training courses with the aim of reducing the user

variability in plan quality assessment.
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7.3 M AT E R I A L A N D M E T H O D S

The materials and methods used in this chapter, such as gUIDE and PlanIQ tools

are described in chapter 5.

7.3.1 Introduction to machine learning tools

As stated in the Preview and Introduction sections, one aim of this chapter was to

identify observer-related patterns behind plan evaluations. In order to investigate

how the various endpoints related to the included OARs influenced the evaluator’s

decision, a machine learning (ML) method was employed based on tree classifi-

cation. A ML algorithm is a computational process that uses input data to achieve

a desired task without being literally programmed (i.e., “hard coded”) to produce

a particular outcome [113, 114]). These algorithms are in a sense “soft coded”

in that they automatically alter or adapt their architecture through repetition (i.e.,

experince) so that they become better and better at achieving the desired task.

The process of adaptation is called training, in which samples of input data are

provided along with desired outcomes. The algorithm then optimally configures

itself so that it can not only produce the desired outcome when presented with

the training inputs, but also can generalize to produce the desired outcome from

new, previously unseen data. This training is the “learning” part of machine learn-

ing. The training does not have to be limited to an initial adaptation during a finite

interval. As with humans, a good algorithm can practice “lifelong” learning as it

processes new data and learns from its mistakes [113]. There are many ways that

a computational algorithm can adapt itself in response to training. The input data

can be selected and weighted to provide the most decisive outcomes. The algo-

rithm can have variable numerical parameters that are adjusted through iterative

optimization. It can have a network of possible computational pathways that it ar-

ranges for optimal results. It can determine probability distributions from the input

data and use them to predict outcomes. The ideal of machine learning is to em-

ulate the way that human beings (and other sentient creatures) learn to process

sensory (input) signals in order to accomplish a goal. This goal could be a task in

pattern recognition, in which the learner wants to distinguish apples from oranges.
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Figure 7.1: Categories of machine learning algorithms according to training data
nature.

Every apple and orange is unique, but we are still able (usually) to tell one from

the other. Rather than hard code a machine with many, many exact representa-

tions of apples and oranges, it can be programmed to learn to distinguish them

through repeated experience with actual apples and oranges. This is a good ex-

ample of supervised learning, in which each training example of input data (color,

shape, odour, etc.) is paired with its known classification label (apple or orange).

It allows the learner to deal with similarities and differences when the objects to

be classified have many variable properties within their own classes but still have

fundamental qualities that identify them. Most importantly, the successful learner

should be able to recognize an apple or an orange that it has never seen before.

A second type of machine learning is the so-called unsupervised algorithm. This

might have the objective of trying to throw a dart at a bull’s-eye. The device (or hu-

man) has a variety of degrees of freedom in the mechanism that controls the path

of the dart. Rather than try to exactly program the kinematics a priori, the learner

practices throwing the dart. For each trial, the kinematic degrees of freedom are

adjusted so that the dart gets closer and closer to the bull’s-eye. This is unsu-

pervised in the sense that the training doesn’t associate a particular kinematic

input configuration with a particular outcome. The algorithm finds its own way

from the training input data. Ideally, the trained dart thrower will be able to adjust

the learned kinematics to accommodate, for instance, a change in the position of

the target. A third type of machine learning is semi-supervised learning, where
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part of the data is labelled and other parts are unlabelled. In such a scenario, the

part can be used to aid the learning of the unlabeled part. This kind of scenario

lends itself to most processes in nature and more closely emulates how humans

develop their skills. Figure 7.1 reports a scheme of main types of ML algorithms.

There are two particularly important advantages to a successful algorithm. First, it

can substitute for laborious and repetitive human effort. Second, and more signif-

icantly, it can potentially learn more complicated and subtle patterns in the input

data than the average human observer is able to do. Both of these advantages

are important to radiation therapy. For example, the daily contouring of tumours

and organs at risk during treatment planning is a time-consuming process of pat-

tern recognition that is based on the observer’s familiarity and experience with

the appearance of anatomy in diagnostic images. That familiarity, though, has its

limits, and consequently, there is uncertainty and inter-observer variability in the

resulting contours. It is possible that an algorithm for contouring can pick up sub-

tleties of texture or shape in one image or simultaneously incorporate data from

multiple sources or blend the experience of numerous observers and thus reduce

the uncertainty in the contour. More than half of the patients with cancer receive

ionizing radiation (radiotherapy) as part of their treatment, and it is the main treat-

ment modality at advanced stages of disease. Radiotherapy involves a large set

of processes that not only span the period from consultation to treatment but also

extend beyond, to ensure that the patients have received the prescribed radiation

dose and are responding well. The complexity of these processes can vary and

may involve several stages of sophisticated human-machine interactions and de-

cision making, which would naturally invite the use of machine learning algorithms

to optimize and automate these processes, including but not limited to radiation

physics quality assurance, contouring and treatment planning, image-guided ra-

diotherapy, respiratory motion management, treatment response modelling, and

outcome prediction.

7.3.2 Bagged trees classification ensembles to estimate feature importance

Classification is a process that is broadly divided into two steps. The first one is

the learning step, the second is the step where prediction is done. In the stage
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Figure 7.2: Bagged on process of a classification tree ensemble for a multi class
problem.

of learning the model gets developed on the training data that is given. In the

prediction stage, the model is used in order to predict the response to the data

given. A very popular and easy example of the classification trees algorithm is the

decision tree [115]. A classification tree is a model with a tree-like structure [116,

117]. It contains nodes and edges. There are two types of nodes:

• Intermediate nodes - An intermediate node is labelled by a single attribute,

and the edges extending from the intermediate node are predicates on that

attribute

• Leaf nodes - A leaf node is labelled by the class label which contains the

values for the prediction.

The attributes that appear near the top of the tree typically indicate they are more

important in making the classifications. See Figure 7.2 for an example of baggage

tree classification.

In this study, model trees are coupled with bagged process for solving clas-

sification problems. Model trees are binary decision trees with linear regression

functions at the leaf nodes: thus they can represent any piecewise linear approxi-

mation to an unknown function. The process starts from the root nodes and gets
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repeated until it reaches the leaf node. When this occurs then depending on the

classification problem the predicted category will be the mode of the categories

on the leaf node. A test sample that will reach this node has the maximum proba-

bility of belonging to the class with the training samples.

For the regression tree, the prediction is made at the end and this is the mean

of the values for the variable that thus targets the leaf node.

In the first step, the training set gets created where the classification label is

known for every record. The algorithm will systematically assign each record to

one of the two subsets that are available on the basis of some factor. This helps to

get a set of homogeneous labels in every partition. The splitting is applied to every

new partition and the process will continue till there are no more splits found.

Due to their structure, ML trees are very suitable for an analysis that is more

oriented to seek out what are the influential factors, rather than wanting to at-

tain very high accuracies. As is well known, trees suffer greatly from the influ-

ence of the training set, due to being ’greedy’ ML algorithms. To overcome this

issue, bagged ensembles, have been used in this work. Through bootstrapping

(i.e. creating several training subsets with m<65 observations) and aggregation

(i.e. using the whole ensemble comprised of the single models trained on the boot-

strapped sets), the final classification (computed through the voting of the single

models) should be more stable than a single tree classification. The bagged pro-

cess is briefly explained in Figure 7.2. The maximum number of splits allowed in

the models was optimized and the model ensemble with the lowest validation loss

was selected as the model with the optimal maximum number of splits parame-

ter. This selected model was used in the actual training and prediction processes.

This ML method aims to investigate if a specific ensemble model variable was

influential in predicting the outcome; the higher the measure of associated impor-

tance is, the more influential the variable. The basis behind this algorithm resides

on the assumption that if a predictor is influential in prediction, then permuting

its values should affect the model error; otherwise, the effect of the permutation

should not significantly affect the model error. For every tree in the ensemble, the

Out-Of-Bag (OOB) observations are used as a test set to compare the error of

the model with the variables in the correct order and the model with permuted

variables. The importance is a mean value among all the learners and it is propor-
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tional to the difference between the errors associated with the two aforementioned

models.

7.3.3 Modelling the dosimetric endpoints used as input

• Input parameters: gUIDE-based endpoints

Different dosimetric endpoints were computed from the gUIDE and the avail-

able plan’s dose (manual (CLIN), automated with clinical wish-list (MCOa)

and with suboptimal wish-list (MCOx), see chapter 6) for each patient. The

endpoints considered in this analysis, used as inputs to the selected ML

mode, represent the most used during the plan approval process. They were

reported in Table 7.1.

The choice of the maximum number of endpoints/features (N=18) was de-

pendent on the size of the training set (N=65 plans, see chapter 6). The

isodoses 33 Gy and 45 Gy were chosen as they were commonly analyzed

visually during the evaluation by the observers. The gUIDE is not involved

in some of the endpoints, i.e. the PTV-related ones and two associated end-

points regarding the parotids (endpoints #7,8,9).

• Input parameters: DVH-based endpoints

In order to effectively assess whether the gUIDE actually provides added

value to the observer score modelling, the performance of another set of 9

machine learning models provided with endpoints extracted directly from the

available plan DVHs (thus, not employing the gUIDE) was considered. Thus,

the input parameters of this second training process were the 18 endpoints

reported in Table 7.1 but directly computed from the DVH without the sub-

traction of the gUIDE contributions. Reference to, gUIDE based, indicates

the gUIDE tool is considered as baseline and, raw models, relates to when

gUIDE is not considered in the simulations.
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Table 7.1: Dosimetric endpoints computed from plans as input for ML simulation.
The choice of the endpoints is based on the most generally used parameters
during plan approval procedure.
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7.3.4 Modelling the evaluators’ scores used as output

As shown in chapter 6, there is great variability between the observers’ scores.

Due to limited number of plans (N=65), to simplify the problem the 7 point scale

used in the study was converted into binary output according to the following:

new – score(i,j) =


0, if raw score < median score for obsj

1, if raw score > median score for obsj

(7.1)

7.3.5 ML models evaluation

In order to investigate how the various endpoints related to the included OARs

influenced the evaluator’s decision, a ML method was employed based on tree

classification. As there were 9 observers, 9 different bagged tree ensemble mod-

els were trained using every evaluator’s binary scores as label. A representative

observer (referred to as ‘oss evaluator’), composed of the modal results across all

of the evaluators was also trained and evaluated, for a total of 10 ensemble mod-

els. The area under the receiver operating characteristic (ROC) curve (AUC)[118],

was used to test their performance; the AUC values for the 10 models were ob-

tained after a repeated 5-fold cross validation (20 times), in order to reduce the

estimated errors in the models’ performance. After the optimization and the re-

peated 5-fold cross validation (20 times), the mean AUC value and its associated

standard deviation on the repeated cross validations were computed for both sets

of models (raw and gUIDE-based), in order to evaluate their performance. Fea-

ture importance was then evaluated for the set of models with the overall highest

AUC, with the aim of investigating what feature(s) were the most influential in the

models and thus what endpoints were the most important for each evaluator when

making their choices. The feature importance was computed through OOB pre-

dictor importance estimates by permutation, implemented in Matlab (MathWorks,

USA). The extracted feature importance is then used as a basis to understand

how the decision process of the nine observers is correlated with the chosen end-
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points. The feature importance related to the different observers was used to rank

them; however, the importance values are greatly affected by noise (as a result

of many uncorrelated features in the training set). In order to understand how the

found endpoint importance values varied among the observers, it was decided as

first analysis to choose the three endpoints (from the 9 observers’ models) that

had the highest mean importance values and it was noted (in percentage terms)

how many times a certain endpoint was featured among the three best for every

observer. This analysis had the aim of understanding the difference between the

evaluators and whether the ROs and MPs (as groups) followed specific patterns

during the evaluation process.

7.3.6 Statistical analysis

The statistical dosimetric differences between the groups of binary scores for all

the observers were also analysed. The continuous variables were analysed in

their distributions between the two groups (0 and 1, see section above) by com-

paring their median values using the Kruskal-Wallis test. P-values less than 0.05

meant that the median values between the two groups were deemed significantly

different. For the ParotidCat variable, which is categorical, an exact Fisher test

was employed to test the differences between the two groups, as the sample size

is small. All the statistical analysis was univariate, as the relationship between

the single endpoint was investigated with respect to the two groups of scorers’ la-

bels. Then, the significantly different variables found with the statistical methods

were compared to the three most important features from the feature importance

analysis to investigate the consistency between the ML model and the statistical

model.

7.4 R E S U LT S

7.4.1 gUIDE ideal dose prediction for plans of Chapter 6

Despite the statistical difference between the planIQ and gUIDE FDVHs found

in chapter 5, the gUIDE prediction was found to be useful as a baseline dose to
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Figure 7.3: DVH comparisons for one patient of the set for CLIN, MCOa, MCOx
and gUIDE.

estimate the difference with CLIN, MCOa and MCOx plans (chapter 5) as reported

in Figure 7.3. In this figure it is possible to observe the plan comparison DVHs for

a sample of patients: gUIDE DVHs for all main OARs were always lower than real

plans (CLIN, MCOa and MCOx) as a baseline.

7.4.2 Bagged trees ensemble results: comparison of raw and gUIDE based

model simulations

Table 7.2 reports the AUC values and standard deviation (SD) for the model re-

sults, both raw and gUIDE based. Using only the endpoints coming from the DVH

(raw), overall AUC values are lower than 0.66 and SDs among the repeated cross

validations reach values of 0.05. One of the observers, RO3, is not modelled at

all, as their associated AUC is 0.44. The two best performing observers are MP2

and RO2 with AUCs of 0.67. The other observers showed poor AUCs, lower than

0.65.

For the model gUIDE-based endpoints, overall AUC values were larger than

0.55 with a large variability over all the evaluators but with a small standard devia-
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Evaluators AUC_gUIDE std max - min AUC_raw std max - min

MP1 0.67 0.02 0.71 - 0.62 0.62 0.03 0.66 - 0.56

MP2 0.71 0.03 0.77 - 0.67 0.66 0.05 0.77 - 0.58

MP3 0.66 0.03 0.71 - 0.58 0.64 0.05 0.70 - 0.55

MP4 0.66 0.03 0.74 - 0.63 0.62 0.03 0.69 - 0.56

RO1 0.79 0.03 0.82 - 0.71 0.64 0.04 0.71 - 0.58

RO2 0.66 0.03 0.72 - 0.61 0.66 0.03 0.72 - 0.61

RO3 0.55 0.03 0.59 - 0.51 0.44 0.05 0.54 - 0.32

RO4 0.70 0.03 0.77 - 0.66 0.63 0.03 0.70 - 0.58

RO5 0.57 0.04 0.64 - 0.50 0.58 0.04 0.64 - 0.52

O_mode 0.73 0.02 0.76 - 0.68 0.64 0.03 0.69 - 0.58

Table 7.2: AUC values for the ML models for the available observers. AUCraw
refers to the AUC values for the DVH-based endpoints used as inputs, while
AUCgUIDE regards the models where gUIDE-based endpoints were used as in-
put.

tion for the single observer model. For three evaluators, MP2, RO1 and RO4 the

model showed an AUC greater than or equal to 0.70. On the other side, RO3 and

RO5 showed a poor AUC, less than 0.60. RO5 also showed the highest standard

deviation among the repeated AUCs. The performances of the gUIDE-based mod-

els were higher than the raw models, for MP1, MP2, MP4, RO1, RO3 and RO4.

The gUIDE models also exhibited a reduced standard deviation among the re-

peated cross validations for MP2, MP3, RO1, RO3 and RO5. The RO3 scores

showed low AUC values both with raw and gUIDE-based endpoints. Regarding

MP3, RO2 and RO5, their scores did not increased with the use of gUIDE-based

endpoints. Paired two-sided Wilcoxon signed rank test on the mean doses of AUC

over all 9 evaluators showed statistically different median values for the two sets

(raw and with gUIDE baseline) with a p-value = 0.0078. As the models employing

the gUIDE-based endpoints had better (or at least equal) AUCs compared to the

raw endpoints set, this approach was considered for features importance.
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7.4.3 Feature importance

From the obtained models, the feature importance computation procedure was

repeated 20 times and the mean value over the 20 iterations was plotted in the

following bar graphs. These parameters (20 times and 20 iterations) come from

empirical considerations derived from various simulations. Ten different feature

importance graphs (9 observers, plus the oss-mode (composed of the modal

results across all of the evaluators’ scores, see subsection 7.3.5)) were plotted

and the results are reported in Figure 7.4. The error bar refers to 1.96 times the

standard deviation from the mean importance value, which is represented by the

height of the bars. It is evident that the pattern of feature importance varied among

evaluators without any correspondence between MPs and ROs.

Regarding the negative values displayed in the graphs, they should be con-

sidered as noise. They come from the mathematical definition of the importance

(see subsection 7.3.6 from this chapter) and it is clearly referable to as a situation

where the involved feature was not relevant in the model’s computation of the out-

come. From the feature importance of Figure 7.4, it is possible to observe that the

different evaluators had different features influencing their score. The number of

times a feature was chosen among the best (first, second and third) was reported

in Figure 7.5, expressed in percentage divided by MP, RO and all groups.

From Figure 7.5, the MPs focus their attention mostly on the coverage of PTV2,

while the most important features (as a group) for the ROs is ParotidCat, which

describes if the dose to a parotid has exceeded the clinical endpoint figure in the

dedicated protocols.

7.4.4 Comparison with the statistical analysis results

In Table 7.3, the statistical analysis results are summarized for the available eval-

uators. Values in bold correspond to p-values< 0.05.

There were several significantly different endpoints for the binary score (0 and

1) between the two methods of analysis (ML and statistic). The only evaluator

showing just one significantly different endpoint is RO3, whio was also one of the

observers with the lowest AUC in the ML analysis. Table 7.4 shows the compar-
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Figure 7.4: Feature importance computation for all the 9 observers. MP and RO
indicate medical physicist and radiation oncology, respectively (see chapter 6).
The displayed value is the mean among all the iterations (20) and the error bar
refers to 1.96 times the standard deviation among the iterations. The negative
importance bars displayed in the graphs should be regarded as noise.
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Figure 7.5: Number of times (%) a certain feature was chosen as one of the most
important three for an observer. The results are expressed for the whole observer
set, and divided by the MP and RO groups.

RO1 RO2 RO3 RO4 RO5 MP1 MP2 MP3 MP4 O_mode
Oesophagus Dmean 0.173 0.358 0.181 0.803 0.761 0.565 0.097 0.017 0.131 0.088

SCDmax 0.566 0.150 0.118 0.470 0.812 0.087 0.978 0.335 0.174 0.637

BrainstemDmax 0.244 0.501 0.713 0.018 0.791 0.315 0.248 0.036 0.438 0.228
ParotidCat <0.001 <0.001 0.16 <0.001 0.001 <0.001 0.38 <0.001 0.04 <0.001

ParotidDist 0.016 0.094 0.081 0.222 0.035 0.130 0.471 0.048 0.505 0.028

MandibleDmax 0.743 0.092 0.115 0.027 0.662 0.957 0.002 0.789 0.892 0.667
LarynxDmean 0.731 0.711 0.213 0.783 0.072 0.486 0.744 0.023 0.541 0.065

OralCavDmean 0.302 0.192 0.338 0.591 0.662 0.659 0.683 0.768 0.050 0.901

GenTissueDmean 0.033 0.006 0.793 0.043 0.781 0.218 0.714 0.015 0.328 0.003
GenTissuenoOARDmean 0.036 0.006 0.803 0.020 0.491 0.199 0.755 0.005 0.232 0.001

PTV1Drel98 0.629 0.696 0.655 0.230 0.952 0.723 0.714 0.606 0.362 0.961

PTV1cc107 0.023 0.222 0.665 0.049 0.064 0.134 0.197 0.189 0.011 0.149
PTV2Drel98 0.600 0.018 0.072 0.177 0.024 <0.001 0.003 0.054 0.069 0.005

PTV3Drel98 0.577 0.291 0.679 0.145 0.596 0.429 0.013 0.718 0.903 0.989

CIV33Gy 1.000 0.197 0.345 0.010 0.076 0.077 0.903 0.002 0.277 0.020
CIV45Gy 0.441 0.945 0.470 0.072 0.397 0.111 0.166 0.052 0.095 0.256

CI95PTV3 0.544 0.752 0.990 0.306 0.771 0.602 0.055 0.883 0.644 0.598

GenTissueDmax 0.491 0.064 0.023 0.007 0.042 0.057 0.978 0.008 0.860 0.011

Table 7.3: P-values associated to the endpoints based on statistical analysis.
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ison between the statistically different endpoints and the three endpoints having

the highest importance for all the observers using the ML approach. There are

four different values shown in this table:

• n/n (highlighted in cyan) means that the considered endpoint was not among

the three best features with the highest importance in the ML model (key

features) for its respective observer and it was also not found as significantly

different between the two group’s scores (0 and 1) in the statistical analysis.

• n/y or y/n (highlighted in red) means a disagreement: the endpoint was not

among the three key features for that observer in their ML model but the

statistical analysis found it significantly different.

• y/y (highlighted in green) means that the endpoint was both among the three

key features for that observer’s ML model and a statistical difference was

also found between the binary score.

At the end of the Table 7.3, the total number of y/y, y/n and n/y instances is

counted.

The highest accordance between the two methods (3/3 endpoints) was found

for 5 out of 9 observers, while for MP4 and RO3 only one of the three best fea-

tures found in the ML model was found to have a statistical difference between the

binary scores groups. However, for a more complete analysis of agreement be-

tween the two methods, the disagreement in endpoints between the two methods

should be considered (y/n or n/y). Since for the statistical analysis every endpoint

showing a p-value<0.05 was included there are also several instances of an end-

point found to be statistically different but not bearing one of the three highest

importance values in the ML model. There are also (fewer) instances of a fea-

ture having a high importance value in the ML model but not having a significant

statistical difference between the scores. In the last row of Table 7.4 the ratio be-

tween agreement and disagreement occurrences (agreement/disagreement) was

reported. For only two evaluators a good results were observed, RO5 (3/1) and

MP2 (3/0).
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RO1 RO2 RO3 RO4 RO5 MP1 MP2 MP3 MP4
Oesophagus Dmean n/n n/n y/n n/n n/n n/n n/n n/y n/n

SCDmax n/n n/n n/n n/n n/n n/n n/n n/n y/n
BrainstemDmax n/n n/n n/n n/y n/n n/n n/n n/y n/n

ParotidCat y/y y/y n/n n/y y/y y/y n/n n/y n/y
ParotidDist n/y y/n n/n n/n y/y n/n n/n n/y n/n

MandibleDmax n/n n/n y/n y/y n/n n/n y/y n/n n/n
LarynxDmean n/n n/n n/n n/n n/n n/n n/n n/y n/n
OralCavDmean n/n n/n n/n n/n n/n n/n n/n n/n y/n

GenTissueDmean y/y y/y n/n y/y n/n n/n n/n n/y n/n
GenTissuenoOARDmean n/y n/y n/n n/y n/n n/n n/n y/y n/n

PTV1Drel98 n/n n/n n/n n/n n/n n/n n/n n/n n/n
PTV1cc107 y/y n/n n/n n/y n/n n/n n/n n/n y/y
PTV2Drel98 n/n n/y n/n n/n n/y y/y y/y n/n n/n
PTV3Drel98 n/n n/n n/n n/n n/n n/n y/y n/n n/n

CIV33Gy n/n n/n n/n n/y n/n n/n n/n y/y n/n
CIV45Gy n/n n/n n/n n/n n/n y/n n/n n/n n/n
CI95PTV3 n/n n/n n/n n/n n/n n/n n/n n/n n/n

GenTissueDmax n/n n/n y/y y/y y/y n/n n/n y/y n/n

# y/y 3 2 1 3 3 2 3 3 1

# y/n or # n/y 2 3 2 5 1 1 0 6 3

RESULTS 3/2 2/3 1/2 3/5 3/1 2/1 3/0 3/6 1/3

Table 7.4: Agreement between ML and statistical analysis results. Consistency
table comparing the results from the models feature importance and the results
from the statistical analysis. The table reports the times for which an agreement
(y/y) or a disagreement (y/n or n/y) is observed between the two methods.

7.5 D I S C U S S I O N

The aim of this work was to gain more knowledge about the treatment plan eval-

uation process in radiotherapy using ML models and an ideal dose as baseline

of an independent analysis. The inputs given to the ML model were a set of se-

lected dosimetric endpoints (regarding both the tumour target and the important

surrounding organs) in combination with a purpose-built developed tool (called

gUIDE) in their calculation. The gUIDE could provide partial but fundamental

information about the quality of obtained dose distributions in different patient

anatomies and geometries. Moreover, in the definition and formulation proposed

in this work, the gUIDE was shown to be accurate for doses over 20% of the

prescription value, which was within the scope of its use in this study. Due to the

limited number of plans to model (65 plans), the raw scores were transformed into

binary scores (0 and 1) in order to to simplify the problem in employing a ML clas-

sification. To test the importance of gUIDE as baseline dose to compare different

dose distributions, two different ML tools were used for modeling the evaluators’

scores: one having as input a set of endpoints extracted directly from the avail-

able plans, DVHs (raw) and the other having the same set of endpoints but com-

puted also using the contribution from the gUIDE as baseline (gUIDE-based). The
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gUIDE-based ML model showed better AUCs and lower variability (SD) for the

majority of the observers and it was thus used as the basis for the final ML anal-

ysis. Statistical tests confirmed the difference between AUC gUIDE-based and

AUC raw-based. Two observations can be derived from this result. Firstly, the in-

formation provided by the DVHs is not enough to understand the decision-making

process of the plan evaluators, since there are obviously other factors involved in

that operation, such as the dose distribution and the patient geometry complexity.

Secondly, gUIDE-based ML AUC values were different for the available observers;

this means that the chosen input parameters are not significant for all evaluators,

especially for low AUC model evaluators, or it might be that some other factor

not accounted for should be taken into consideration. ML model results were also

compared to a statistical analysis of the gUIDE-based endpoints and it was found

that, while for some observers the two methods aligned, there were some differ-

ences. It can be concluded that the use of ML methods to investigate the plan

evaluation could give a more complete insight on the evaluators’ different scor-

ing procedure. Generally, the major difference between ML and statistics is their

purpose. ML models are designed to make the most accurate predictions possi-

ble. Statistical models are designed for inference about the relationships between

variables. In this study, ML is used not for a predictions but for a deeper analy-

sis of the results found in chapter 6. ML methods are particularly helpful when

one is dealing with ‘wide data’, where the number of input variables exceeds the

number of subjects, as it was in this case. ML makes minimal assumptions about

the data-generating systems; they can be effective even when the data are gath-

ered without a carefully controlled experimental design and in the presence of

complicated nonlinear interactions. While statistical analysis gave only a p-value

of significance, ML is able to report a level of accuracy (AUC and SD). Moreover

the statistical analysis methods used in the study has the limitation that it was uni-

variate, while the problem is clearly multivariate. However, the significant p-values

in bold for each evaluator reported in Table 7.3 were few especially for evaluator

RO2 (N=3), RO3 (N=1), MP1 (N=2), MP2 (N=3), MP4 (N=2).

This work has some limitations. As mentioned previously, in chapter 5, the gUIDE

tool implementation does not take into account the low-gradient effect, which af-

fects the lower doses; while this situation is not relevant for the HN site, it might
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be important and useful to include such an effect for other anatomical sites, such

as the breast, as lower doses become clinically important for those patients. This

was also evident in Figure 5.6 where planIQ and gUIDE DVHs and mean dose

were compared for several organs The implementation of a low-gradient effect in

the gUIDE for another anatomical site requires also the design of a new valida-

tion strategy and geometry capable of giving information on the new PTV/OAR

dimensions, which are significantly different from the HN case. Nevertheless, for

the purpose of using gUIDE as baseline dose to improve the ML model accuracy

quantified by the AUCs, is accurate enough. But for further application such as

feasibility dose its implementation should be improved. The association to the ML

models showed, the use of bagged tree classification is also unable to properly

model the decision-making process of some evaluators. The ML model perfor-

mance was enhanced by employing the gUIDE-based dosimetric endpoints but

there is still room for improvement. The use of neural networks could help im-

prove the model’s accuracy, but the amount of data (i.e. the number of plans

to be used as a training set) needs to be much higher. Moreover, the endpoint

features choice should be improved, considering endpoints more related to the

spatial dose distribution instead of DVH parameters, such as Dmean and Dmax.

7.6 C O N C L U S I O N S

In this study a baseline dose gUIDE was implemented and evaluated. This tool

has been shown to improve accuracy when using ML to model plan quality evalu-

ation for several users. The dataset analysed was described in chapter 6. It was

demonstrated that the ML approach with gUIDE gives more complete information

compared to the use of the ML tool without any anatomical and dose distribution

information. Large variability was found for the features of importance considered

by each evaluator, however further analysis will be performed to improve the ac-

curacy of the models.
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The Three Laws of Robotics:

— First : A robot may not injure a human be-

ing or, through inaction, allow a human being

to come to harm;

— Second : A robot must obey the orders

given it by human beings except where such

orders would conflict with the First Law;

— Third : A robot must protect its own exis-

tence as long as such protection does not

conflict with the First or Second Law;

— Zeroth: A robot may not harm humanity, or,

by inaction, allow humanity to come to harm.

Isaac Asimov — I, Robot

8.1 P R E V I E W

In this chapter the methods of automated planning using Erasmus-iCycle intro-

duced in chapter 3 and applied in chapter 6 to head and neck treatment were

applied to left breast cancer radiotherapy. This chapter is part of an ongoing inter-

national multicentre study on breast radiotherapy, described in chapter 11.

8.2 I N T R O D U C T I O N

As discussed previously in this thesis, in the Introduction section of chapter 6, in

both planning and evaluation phases, human action in treatment plan quality is

crucial. Breast cancer is by far the most common cancer in the female population

[119] and whole breast irradiation following surgery has proved its benefit in terms

of outcome for a significant fraction of patients [55] and is nowadays a well estab-

125
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lished therapy. Indeed, breast radiotherapy makes up around 30% of most depart-

ments’ workloads. Despite different techniques being available for the irradiation

of the whole breast, many institutes still use the conventional tangential field (TF)

arrangement to obtain an adequate dose delivery, either using 3-dimensional con-

formal radiation therapy (3DCRT) or intensity modulated radiotherapy (IMRT) [51,

55, 120–122]. Compared to rotational techniques [123, 124], the TF approach

conserves the advantage of being “simple” and, above all, efficient in limiting the

dose received by areas out of the breast region, avoiding the typical “low-dose”

spread of rotational techniques [124]. Due to the still unresolved issues related

to the potential clinical impact of the low-dose spread to heart, lungs and con-

tralateral breast, especially in long-surviving patients [125, 126], TF are expected

to remain among the most used techniques to treat breast cancer in the next

decade. On the other hand, forward planned (and also inverse planned) optimiza-

tion is time consuming and dependant on the planner’s skill [127]. A few automatic

solutions have been reported [127–130]: a relatively weak point of auto-planning

for whole breast is the intrinsic difficulty of taking into account the inter-patient

variations in assessing the best position of the fields to limit the dose to the adja-

cent organs, concomitantly assuring PTV coverage and highly homogenous dose

distribution within the PTV. Left breast is particulary critical due to the close po-

sition of the heart to the PTV. This distance is strongly dependent on individual

patient anatomy. Thus, this site is particulary difficult to standardize the plan with

a totally automatic procedure. The main OARs considered for the left breast are

heart, lung, contralateral breast and left anterior descending artery (LAD).

The goal of the study presented in this chapter was to configure, test, and im-

plement Erasmus-iCycle for automated, multicriterial IMRT treatment planning for

left breast patients.

8.3 M AT E R I A L A N D M E T H O D S

8.3.1 Patients and clinical (CLIN) treatment plans

Planning CT data, contoured structures and the clinical 3DCRT plan (CLIN) with

TF of 18 arbitrarily selected oropharyngeal HN breast cancer patients, recently
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treated with radiotherapy at Azienda USL-IRCCS Hospital (AUSL) of Reggio Emilia

(Italy), were included in this study. Nine patients were less than 50 years old and

the other 9 older. The patients were divided in two prescription schemes based

on age (see international protocols [131–133]): for patients with age > 50 years,

39 Gy were delivered in 13 fractions, while for patients with age 6 50 years, 40.5

Gy were delivered in 15 fractions. The goal was to deliver 100% of the prescribed

dose to 85% of the PTV . Left breast was irradiated in all patients. Sizes of the

involved PTVs (mean±sd) were: 825.6±230.9 cm3 [363.3,1224.31]. OARs con-

sidered in planning were spinal cord, heart, left and right lung, and contralateral

breast [132, 133]. Plans were generated using the following priorities for achiev-

ing planning objectives: 1) sparing of brainstem, optic chiasm, and spinal cord

(so higher priority than PTV coverage); 2) achievement of PTV dose objectives

in the order PTVhigh, PTVmedium, PTVlow; 3) parotid gland sparing; 4) sparing

of other OARs and healthy tissues. The clinical planning protocol was largely in

line with international protocols, such as RTOG 1005 [131], StartB protocol [133]

and Lee et al.’s published study [132]. Patients were treated with 2 to 4 TFs in

a 3DCRT technique using 6MV and 10MV delivered with a Truebeam linac (Var-

ian Medical Systems, Palo Alto, USA). Enhanced dynamic wedge with angles of

20 to 45 degrees were used. Clinical planning was performed with the Eclipse

treatment planning system (TPS) v.13 (Varian Medical Systems, Palo Alto, USA).

8.3.2 Breast institute wish-list definition

As was described in chapter 3, in the Erasmus-iCycle module the optimization op-

eration is based on a user defined wish-list which contains hard constraints and

objectives with given priorities. To guarantee consistency of automated planning

the optimal wish-list is unique for all patients. In the case of left breast cancer

radiotherapy, the anatomy among patients varies considerably and some patients

exhibits unfavourable anatomy, such as implants, large breasts, a heart very close

to target, and limited upper-extremity range of motion. For these reasons priority

order should be tuned carefully, considering different anatomies during the wish-

list tuning. More details concerning the Erasmus-iCycle module are reported in

chapter 3. An initial wish-list was composed based on previous clinical experi-
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ence, the planning protocol, and intent of treating physicians on how to improve

clinically applied plans. It was used to automatically generate a plan for the first

8 patients included in this study. These plans were then evaluated together with

physicians, and the wish-list was modified according to their input. Several opti-

misation functions, described in chapter 3 were used in a trial-and-error process,

until the expected solution was obtained. This iterative procedure continued un-

til no further improvements in plan quality were achieved for the first 8 training

patients.

8.3.3 Generation of Pareto optimal plan with Erasmus-iCycle

For this study, the defined wish-list based on institutional clinical goals was modi-

fied to minimise low dose (i.e. 5-10 Gy) outside PTV while not compromising PTV

and OAR dose. To reduce the ’dose bath’, the IMRT technique was chosen using

tangential fields and mimicing TF 3DCRT dose distribution but improving dose

conformity and creating convex isodose shapes. After several simulations on the

first 8 patients, a configuration of 8 IMRT tangential fields was considered. The

setting of the fields was based on the 2 clinical TF angles. From this, 2 fields were

added with increased angles (medial and lateral) by 5 degrees (external fields)

and 4 fields were added internally with steps of 3 degrees (see Figure 8.1). The 8

TF IMRT fields (4 for each side) covered an angle of 11 degrees for both medial

and lateral directions. 6MV was chosen as unique energy for all fields.

This configuration was then applied to all 16 patients. By including more cases,

it was found that 4 patients didn’t fit well into this configuration. They all belonged

to the cases in which the patient was overweight, the target volume was higher

than the mean values and a considerable part of normal tissue, such as axilla,

was inside the lateral TF. For this patient specific anatomical group a second

configuration was considered, adding to the standard configuration a 90 degree

field (9th field) and using 10MV energy for all 4 lateral TF. The isocentre was set in

all plans as the clinical plan. Several ‘dummy structures’ were created to reduce

the dose outside the target. Figure 8.1 illustrates the shape of these structures.

These include a shell-PTV-contract, a ring structure internal to the body (3 cm

within the body structure) of 3 cm thickness used to reduce the low dose inside
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Figure 8.1: Transverse slice of a sample patient considered in this study. The
angular direction of the 8 tangential IMRT fields used is displayed. The isocenter
is indicated as a white cross inside PTV. PTV left breast (yellow) is reported as
well as several dummy structures used to contain the dose.

lung and heart, shell-PTV, a ring structure of 3 cm thickness used to contain

the hot spot in the axilla, or in the entrance of tangential fields. Other dummy

structures considered were Shell-PTV-contract3 a second ring more distant than

the others to contain the very low dose, BreastR EXT and ExtHeart, an external

right breast structure 4cm from the PTV and an external heart structure 3 cm from

PTV respectively, used to reduce the low dose in the distal part of right breast and

heart.

8.3.4 Comparison of auto and manual plans

Pareto optimal plans, generated with the Erasmus-iCycle module, were compared

with clinical plans manually generated using the AUSL-IRCCS clinical treatment

planning system (TPS), Eclipse (Varian Medical Systems). Comparison between

Pareto optimal Erasmus-iCycle plans and manual plans were made in terms of

dosimetric endpoints and DVH metrics. Two-sided Wilcoxon signed-rank tests

were used to analyse plan differences, using p<0.05 for statistical significance.

The plan was scored with a plan quality metric (PQM) to evaluate the comprehen-
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sive quality of auto plans with respect to manual ones. The PQM is a user defined

metric intended to quantify and compare the plan quality by mimicking the judge-

ment of a physician, which consisted of a set of clear and specific plan objectives

of the treatment. To each objective, the user associated a numerical scoring func-

tion to model as accurately as possible the judgement criteria of the clinicians.

The PQM was the sum of the scores obtained by each objective and measured

how much the plan adhered to the list of identified goals. The percentage PQM

(PQM%) thus represented a relative measure of plan quality. In this work, the

PQM% was calculated using PlanIQ software, described in chapter 5. A specific

list of objectives was configured in the planIQ tool and a score was associated

to each object. The list is based on clinical objectives reported in Table 8.1 (see

subsection 8.4.1). The FDVH tool, implemented in PlanIQ, that was able to create

a feasibility DVH based on an ideal dose fall-off from the prescription dose at the

target boundary (see chapter 5), was used to evaluate the overall quality of man-

ual plans with respect to auto plans. The inter-plan quality variations were also

calculated and compared between the auto and manual plans using Student’s

t-test.

8.4 R E S U LT S

8.4.1 Wish-list definition for AUSL-IRCCS Reggio Emilia hospital

The clinical wish-list, is shown in Table 8.1. This referred in its major clinical con-

straints to RTOG and StartB protocols [131–133].

The converted wish-list in the Erasmus-iCycle module is reported in Table 8.2.

The conversion from clinical to Erasmus-iCycle wish-list is not obvious, and the

majority of objectives and constraints need to be refined to obtain the desired solu-

tion. The functions reported below, such as LTCP, EUD and QUOP are described

in chapter 3.



8.4 R E S U LT S 131

CTV Constraint Dmin V95%>95%
PTV Constraint Dmin V95%>90%
PTV Constraint Dmax 112%

body-target Constraint Dmax 110%
Heart Constraint Dmean 5Gy

Lung Ipsilateral Constraint Dmax V16Gy<25% V16Gy<20%
Breast Contralateral Constraint Dmax V4Gy<50%

1 CTV Objective Dmin V95%>98,0% V95%>99,0%
2 PTV Objective Prescription V100%=85% V100%=95%
3 Heart Objective Dmean 5Gy 3Gy
4 PTV Objective Dmin V95%>95%
5 Lung Ipsilateral Objective Dmax V16Gy<20% V16Gy<15%
6 Breast Contralateral Objective Dmean 3Gy 2Gy
7 body-target Objective Dmax 107% 105%
8 PTV Objective Dmax V107%<10% V107%<5%
9 Heart Objective Dmax V40Gy<3%
10 Heart Objective Dmax V18Gy<5%
11 Heart Objective Dmax V8Gy<30% V8Gy<15%
12 Lung Contralateral Objective Dmax V4Gy<15% V4Gy<10%
13 Lung Ipsilateral Objective Dmax V4Gy<50% V4Gy<40%
14 Spinal cord Objective Dmax 17Gy
15 LAD Objective Dmax V32Gy<1%
16 LAD Objective Dmean 10Gy 6Gy
17 Lungs Objective Dmean 10Gy 6Gy

Goal Sufficient
Constraint or 

Objective
(if objective, which 

Priority Structure Cost Function 
Type

Table 8.1: Clinical wish-list defined with the radiotherapy department staff of
AUSL-IRCCS of Reggio Emilia (Italy) for left breast treatment, based on major
clinical international protocols.
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8.4.2 Generation of Pareto optimal plan with Erasmus-iCycle

The automatic plan (Auto) was generated in Erasmus-iCycle for all 16 patients

considered using the wish-list reported in Table 8.2 and the 2 schemes of field

setup described in the Materials and Methods section. The Auto plan dose was

then exported in DICOM format from the Erasmus-iCycle tool and imported into

the Eclipse TPS as a virtual plan, to be compared with the clinical manual plan

(Manual) dose.

Table 8.2: Erasmus-iCycle wish-list for left breast treatment.

8.4.3 Dosimetric comparison of manual and auto plans

The Manual and Auto plans resulted in very similar DVHs. Figure 8.2 reports the

DVH comparison for each patient separately. Average DVH comparison was re-

ported in Figure 8.3. Right lung and spinal cord are the OARs for which the mean

DVHs were visibly different (with Auto better than Manual). For the remaining

OARs the average DVH results were quite similar.



8.4 R E S U LT S 133

Figure 8.2: DVH comparison between manual clinical plan (Manual) and auto-
mated plan performed with Erasmus-iCycle module (Auto) for all 16 patients con-
sidered in the study (labelled from 1 and 16).
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Figure 8.3: Average DVHs, over the 16 patients, comparison between manual
clinical plans (continuous lines) and automated plans performed with Erasmus-
iCycle (dashed lines).

All Manual and Auto plans were clinically acceptable with tumour coverage

(99% of volume of CTV) covered by 95% of prescription dose while fulfilling all

OAR constraints (See Table 8.3). Statistical tests showed significant differences

in terms of PTV maximum dose and prescription volume, even if the values are

comparable and within clinical goals.

Conformity Indexes (CIs) for Manual plans were slightly better than for Auto

plans (0.96 vs 0.94), but the difference was insignificant (p=0.25). All OAR end-

points were within the clinical goals for both plan types. Manual and Auto plans

were comparable in terms of OAR sparing: statistically significant differences oc-

curred only for left Lung V(16 Gy) (p=0.01) for which the Manual plan is slightly

but significantly better than the Auto plan. The dose in the axilla, quantified by

shell-PTV is comparable and insignificant differences were observed.

Main endpoints are also reported in Figure 8.3 and Figure 8.4 for each single

patient in terms of a spider plot. This is a two-dimensional chart type contain-

ing a series of values over multiple quantitative variables (main endpoints). Each

endpoint has its own axis, all axes are joined in the centre of the figure. For end-

points such as right breast and heart, mean dose (Dmean), left lung V(16Gy) and

V(5Gy) (i.e. volume receiving 16 Gy or 5 Gy, respectively) and PTV maximum

dose (Dmax) the better plan is one with lower values, thus more close to the

center of the graph. For PTV D(85%) (prescription endpoint) and CTV D(99%)
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Figure 8.4: Main endpoints differences between Manual and Auto plans divided
by patient (from patient#1 (B1) to patient#8 (B8))in term of spider plot.



136 AU TO M AT I O N I N B R E A S T T R E AT M E N T P L A N N I N G

Figure 8.5: Main endpoints differences between Manual and Auto plans divided
by patient (from patient#7(B7) to patient#16( B16)) in term of spider plot.
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Clinical Goal p-value
Mean ± SD Mean ± SD

CTV D(99%) [Gy] - Scheme1 38.5 39.12 ± 0.46 38.30 ± 0.73 p<0.01

D(99%) [Gy] - Scheme2 37.1 37.94 ± 1.06 37.53 ± 0.61 p<0.01

PTV D(85%) [Gy] - Scheme1 40.5 40.10 ± 0.67 40.13 ± 0.71 p<0.01

D(85%) [Gy] - Scheme2 39 39.03 ± 0.01 39.64 ± 0.54 p<0.01

Dmax [Gy] - Scheme1 44.5 43.23 ± 0.69 43.69 ± 1.12 p<0.01

Dmax [Gy] - Scheme2 42.9 42.26 ± 0.33 42.91 ± 0.70 p<0.01

CI - 0.96 ± 0.04 0.94 ± 0.04 p=0.25

Body Dmax [Gy] - Scheme1 44.5 43.23 ± 0.69 43.25 ± 1.21 p=0.22

Dmax [Gy] - Scheme2 42.9 42.26 ± 0.34 42.44 ± 0.64 p=0.22

Heart Dmean [Gy] 5 (mandatory)- 3(optimal) 2.54 ± 1.36 2.29 ± 1.27 p=0.80

V(5Gy) % 15%(mandatory) -5%(optimal) 7% ± 6% 9% ± 6% p=0.08

V(20Gy) % 10%(mandatory) 2% ± 2% 3% ± 3% p=0.14

Left Lung Dmean [Gy] 10 (mandatory)- 6(optimal) 4.75 ± 1.32 4.73 ± 1.26 p=0.68

V(5Gy) % 50% 19% ± 6% 20% ± 4% p=0.38

V(16Gy) % 20% 9% ± 3% 11% ± 4% p=0.01

Right Breast Dmean [Gy] 3 (mandatory)- 1(optimal) 0.54 ± 0.59 0.32 ± 0.28 p=0.92

LAD Dmean [Gy] 10 (if it is possible) 12.94 ± 9.04 12.61 ± 9.67 -

Shell-PTV V(100%) ALARA 3.7% ± 7.9% 1.9% ± 1.6% p=0.80

(auxilla) V(105%) ALARA 0.1% ± 0.2% 0.0% ± 0.1% p=0.50

Dmax [%] <107% 104.8% ± 1.7% 105.6% ± 1.5% p=0.15

Manual Plans Automated Plans

Table 8.3: For all 16 patients, mean values for automatically generated plans
(Auto plans) and manually generated (Manual plans). Bold values represent the
statistically significant differences as p<0.05 with the Wilcoxon’s signed-rank test.
CI = Conformity Index. Shell-PTV is a dummy structure create to reduce the dose
to auxilia (see Figure 8.2 ) and material and method section.

(coverage endpoint), (i.e. the dose received by the structure to 85% and 99% of

total volume, respectively), the higher value means the better results, thus more

distant from the centre of the graph.

The differences in evaluations between Manual and Auto plans performed with

PlanIQ software in terms of PQM% are shown in Figure 8.5. The median values

of PQM% were 91.7 and 91.9, for Manual and Auto plans respectively, with a SD

of 9.5 and 9.1. This means that auto plans obtained slightly better scores with

smaller variation among plans. However, the difference was statistically insignifi-

cant with a p-value of 0.92 (Student’s t-test).
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Figure 8.6: Boxplot of PQM% analysis with PlanIQ for Auto and Manual plans. For
each box, the central mark represents the median value, while the bottom and top
edges of the box are the 25th and 75th percentiles, respectively. The ‘whiskers’
represent the range of values. The circles represent individual plan PQM%.

8.5 D I S C U S S I O N

The goal of the study presented in this chapter was to configure, test, and imple-

ment Erasmus-iCycle for automated, multicriterial IMRT treatment planning for left

breast patients. For 18 consecutively treated patients, auto plans were compared

to manually generated, clinically delivered plans using various dosimetric indices.

The Manual plans and Auto plans were comparable in term of PTV and CTV

coverage, homogeneity and OAR sparing. Moreover, IMRT auto plans showed

similar results in terms of low dose bath compared to manual TF plans. Although

the automated plans were of similar quality to the manual plans, the advantage of

automation is in the consistency of plan generation and in a significant reduction

of the time spent to generate the plans [7, 82, 101–104]. The automated treat-

ment planning procedure produced plans that fulfilled all the clinical constraints

in 100% of the cases. Similar results were achieved by Manual plans as shown in

Table 8.3. Compared to the HN site, the breast site has more patient anatomy vari-

ation. The main OARs are located very close to the target in both cases, but in the

latter (breast) low doses are also important as clinical endpoints. This changes

the paradigm of the problem with respect to HN automatic planning, since it is
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more related to individual geometry (i.e. OAR distance from PTV, OAR volume

and shape). For this reason, the dataset of patients to include in this compari-

son (Manual vs. Auto) should be enlarged to include several geometries. One

hypothesis to be verified is that the observed differences between Auto and Man-

ual plans were very small due to the limited cohort of breast patients. Also the

plan quality variation measured by PlanIQ in terms of PQM% showed similar vari-

ability and quality between the two groups. This could be related to the choice

of Manual plans, made by the same planner for 90% of cases. This condition

does not represent the real clinical practice of in a medium size department, in

which the plans are generally performed by 4-5 planners. The study presented

in this chapter is part of a larger programme of work (see chapter 11) for further

details). It is a prelude to a bigger study to use the methods developed in chap-

ter 6 for HN, to perform a similar study on inter-user variability in plan quality

assessment for the breast site, involving a larger number of patients and more

than one institute. The project’s long term main aim is to quantify the differences

between ROs and MPs intra and inter-institute in perceived quality of breast treat-

ment plans. As discussed in chapter 6, broad and inter-departmental discussions

on plan requirements, aiming at a broadly shared, and well defined view on plan

quality, could improve the inter-observer variation in plan quality assessments.

The hypothesis is that, as found for the HN case, the introduction of automation

techniques into breast radiotherapy planning practice can reduce inter-planner

and inter-evaluator variability. A second aim is to use the automated plans as

reference data to implement an independent template for breast radiotherapy

planning using more complex techniques. Pareto optimal plans, generated with

the Erasmus-iCycle module, presented in this chapter, will be used as reference

plans to develop and define a more complex in-house technique (IMRT or VMAT)

using the AUSL-IRCCS clinical treatment planning system (TPS), Eclipse (Varian

Medical Systems).

8.6 C O N C L U S I O N S

Compared to conventional planning, Auto plan generation for left breast for the co-

hort considered in this study led to similar PTV and CTV coverage while maintain-
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ing similar OAR dose, and while keeping the low dose outside targets comparable.

Both Auto and Manual treatment planning produced plans that fulfilled all the clin-

ical constraints in 100% of the cases. Auto plans were quicker to generate than

Manual, with a factor depending on the plan complexity, a factor that makes the

Manual solution harder and thus more time consuming. Moreover, Auto showed

slightly higher consistency in plan quality measured with PlanIQ tool. Further work

will be done to confirm these preliminary results performed with a limited cohort

of patients by including more cases with different kinds of anatomy.
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“If you knew Time as well as I do,”said the

Hatter, “you wouldn’t talk about wasting IT. It’s

HIM.”

Lewis Carroll-Alice in Wonderland

9.1 P R E V I E W

Work from this chapter was published in Cagni et al. (Appl.Science 2022) [134].

The figures and tables that are shown in this chapter are drawn from that pub-

lished work. Work from this chapter is in preparation for submission as an original

article in a peer-reviewed journal. It presents a registration-based method for DIR

quality assurance for ART using digitally post-processed head and neck anthro-

pomorphic phantom image datasets. The investigation of certain methods that

allow evolution towards real-time ART were performed. The development of auto-

mated tools that enable high-quality ART is likely to lead to significant efficiency

gains and foster wider clinical uptake. The goal of this study was to assess a

verification method to contribute to the automation and standardisation of and

standardize the DIR verification phase.

9.2 I N T R O D U C T I O N

External beam radiotherapy is gradually evolving towards real-time adaptive ra-

diotherapy (ART) [135], which is being developed as a new paradigm in radiation

oncology [136, 137]. However, ART is, at present, not standardised or widely em-

ployed [138]. This is due not only to the time-consuming processes of the delin-

143
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eation of targets and organs at risk on daily computed tomography (CT) images

and treatment re-planning, but also to the limited quality of the daily on-board

cone beam computed tomography (CBCT) images. Such limitations add practical

constraints to the ability to delineate structures manually and estimate the daily

delivered dose accurately and also contribute to the limited accuracy of registra-

tion between daily CBCT and planning CT images [139]. The development of au-

tomated tools that enable high-quality ART is likely to lead to significant efficiency

gains and foster wider clinical uptake [139]. In the process of delivering automated

ART solutions, a challenging task is the validation of image registration algorithms

for clinical use, as their performance depends on the complexity and quality of

the images used in the registration task [25]. In the ART workflow, the deformable

vector field (DVF), which is generated during deformable image registration (DIR),

could also be applied for dose mapping and dose accumulation purposes. In this

process, any uncertainty in DVF generation would be propagated directly to the

calculated dose map. Considerable research has been done in the investigation

of DIR accuracy, primarily through the creation of quality assurance (QA) metrics.

Several QA methods for validating image registration have been proposed [140].

The report of the American Association of Physicists in Medicine (AAPM) Task

Group 132 (TG132) provided an essential set of guidelines for quality assurance

(QA) and quality control of image registration operations for the overall clinical pro-

cess. The TG132 report recommends a series of tests and corresponding metrics

that should be evaluated and reported during image registration software verifica-

tion. AAPM TG 132 suggests the use of a known DVF to test deformable image

registration [140]; this method is generally used with digital phantoms that consist

of two image sets linked via a known DVF (ground-truth). Several phantom data

sets have been generated by AAPM TG 132 [140] for use in QA programmes for

this purpose. However, a few groups found incompatibility of certain digital phan-

toms provided by the TG132 report with commercial software [141, 142] and/or

they found some of the provided phantom images still limited in their utility. For

example, only a pelvic anatomical phantom was made publicly available for DIR

verification and only a single known transformation (refDVF) was provided for test

purposes [140]. Pukala et al. [143] reported differences observed between 10

virtual head and neck phantoms for DIR verification over 5 different commercial
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software systems; these results emphasized the need to assess DIR accuracy

on each considered clinical DIR. In this chapter the work is focused on DIR ver-

ification for head and neck adaptive radiotherapy. Practical guidelines and dedi-

cated phantoms for clinical implementation are still needed to test the accuracy

of deformable image registration (DIR) in various clinical situations. Registration

between CT and CBCT image sets can be considered a multimodal registration

problem. The consistency of pixel intensity values between the two modalities is

restricted because the image quality of CBCT is poorer than that of CT [144, 145]

and CBCT images are commonly affected by artefacts due to scatter contamina-

tion and truncated CBCT patient volumes [146–150]. The use of digital phantoms

for CT-CBCT DIR QA is limited by the fact that the applied transformations are not

patient-specific but are based on pre-defined DVFs. Furthermore, the deformed

images of digital phantoms do not have any representative noise variation inher-

ent in the CBCT images of an actual patient [25]. It is possible to overcome such

limitations using images of a physical phantom acquired with systems and ac-

quisition protocols used in clinical practice. Physical phantoms do not reflect the

complexity of real human anatomy which is affected by many factors, such as

setup variation, organ motion and organ deformation. These factors contribute

to the inherent differences between CT and CBCT images, even if both image

sets are obtained on the same day. However, the use of a rigid anthropomorphic

phantom allows the acquisition of image datasets with identical anatomy for both

CT and CBCT scans. This ensures robust and reliable comparisons by providing

a reference, as any discrepancies between the primary CT and CBCT images

would be purely related to the performance of the DIR algorithm.

In this chapter, we have processed the images of a commercial anthropomor-

phic phantom to include common OARs as recommended by international guide-

lines [151]. The aim of this study was to build and test a novel workflow for the

verification of patient-based DIR in HN ART using the developed phantom im-

ages.
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9.3 M AT E R I A L S A N D M E T H O D S

9.3.1 Digitally enhanced phantom

The study used the ATOM Max Dental and Diagnostic Head Phantom Model-711

(CIRS, Norfolk, VA) (HN phantom). This HN phantom approximates to the aver-

age male human head in both size and structure. The original phantom includes

detailed 3D anthropomorphic anatomy, such as the brain, bone, larynx, trachea,

sinus, nasal cavities and teeth. The bones contain both cortical and trabecular

components. The teeth include distinct dentine, enamel, and root structures, in-

cluding nerves. The sinus cavities are fully open. The HN phantom was scanned

with both CT and CBCT at AUSL-IRCCS hospital of Reggio Emilia. The CT image

datasets were acquired using a GE Hi-Speed (General Electric Company, Boston,

USA) scanner with acquisition parameters set in agreement with local clinical HN

protocol (120 KV, 100 mA, 2 mm slice thickness). As a second step, CBCT image

sets were acquired on a TrueBeam STx linear accelerator (Varian Medical Sys-

tems, Palo Alto, CA) using local HN image acquisition protocols (HN modality). To

acquire the entire head of the phantom, a multi-scan CBCT was performed, and

the data were combined using the TrueBeam STx advanced reconstruction mod-

ule. Both CT and CBCT image sets were post-processed to digitally insert several

OARs not present in the original phantom, including the brainstem, oral cavity,

left and right parotid glands, larynx and eyes. Firstly, a radiation oncologist drew

outlines of these anatomical structures on the phantom CT and CBCT images,

following international guidelines [151] for their standard shape, anatomical posi-

tion, and volume. Subsequently, the phantom image Hounsfield Unit (HU) values

were replaced with surrogate HU values for all the above-mentioned structures

using an in-house developed script based on MATLAB code (The Mathworks, Nat-

ick, MA) and Computational Environment for Radiological Research tool (CERR,

http://www.github.com/cerr/CERR) [152]. The surrogate HU value in each voxel i

of a given organ OAR, HUphantom
processedOARi

, was derived using the following equation:

HUphantom
processedOARi

= (HUpt
OAR – HUpt

t ) +HUphantom
originalOARi

(9.1)
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Where HUpt
OAR and HUpt

t are the mean HU values over the voxels included in a

ROI belonging to a specific organ (HUpt
OAR) and tissue around that organ (HUpt

t )

CT or CBCT images respectively; HUphantom
originalOARi

is the HU value in the original

HN phantom CT or CBCT image for each voxel. The HUpt
OAR and HUpt

t were mea-

sured by taking the mean value of several (typically 4) square ROIs of 10x10

pixels placed in different positions inside the OAR and its surrounding tissue, to

reflect typical HU variation in real patient images. These mean values were then

averaged over a set of 10 pairs of actual patient CT and CBCT images. This pro-

cess was done separately for CT and CBCT image sets (i.e. for each patient 1

CT and 1 CBCT image was considered). Using this method, the intrinsic noise of

each image type, CT and CBCT, was maintained in the digitally modified phan-

tom image sets. In the rest of the chapter, the phantom image set relates to the

post-processed enhanced phantom CT.

9.3.2 General workflow

The method used to validate the DIR applied to the CT-CBCT image pairs was

based on a known transformation for each voxel [25]. This method requires an

independent ‘third party’ image registration software system to generate the ref-

erence DVF. The third-party software is referred to ‘reference DIR software’, as it

will be used to generate a reference DVF. The only requirement for the reference

and the clinical DIR software systems should be the independence of the two

systems in the DIR procedure to avoid biasing the results. As a guarantee of the

correctness of the procedure it is not essential that the reference software should

be any more accurate in the DIR process than the clinical one.

The set of clinical patient images (planning CT and CBCT set acquired at

particular fraction) used to produce the clinical DIR to be tested, have to be

registered using the reference software (see Figure 9.1a, spatial analysis work-

flow). This registration is considered as the reference for the patient CT-CBCT

data sets (refDVFpt). As a second step, the HN phantom CT images were artifi-

cially deformed into ‘warped’ phantom CT (wCT) images by applying the refDVFpt

transformation. Using the clinical DIR software, the phantom CBCT image was

registered with the wCT phantom image, generating a test DVF to be evalu-
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Figure 9.1: Schematic workflow of CT-CBCT DIR validation method for spa-
tial and dosimetric analysis. a) Spatial Analysis. The HN patient CBCT-CT DIR
was considered as reference DVF (refDVFpt). The refDVFptwas generating us-
ing third-party reference software. Post-processed phantom CT images were
digitally warped using refDVFptresulting in warped phantom CT. The phantom
CBCT and warped CT images were then registered in the clinically DIR software,
generating an evaluated DVF (testDVFph). The testDVFphwas compared with the
refDVFptby using a TRE metric and an operative tolerance level (OTL) analysis
performed to quantify the accuracy of the DIR. b) Dosimetric Analysis. Treatment
plans were calculated in the TPS on each patient’s adapted-CT image (patient
CT image warped into CBCT image) resulting in a delivered dose. The deliv-
ered dose was transferred back to the patient’s planning CT image via both the
refDVFpt(reference dose) and testDVFph(test dose). The dose difference between
the two was calculated with a clinical assessment required for a final DIR valida-
tion.
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ated (testDVFph). Note that the term refDVFptrelates to patient image registration

throughout, whereas the term testDVFphalways refers to the warped phantom CT

and phantom CBCT DIR.

The quality of the registration was assessed as the ability of the clinical software

to replicate the refDVFpt, artificially introduced into phantom wCT images. Target

registration error (TRE) was computed as a metric to evaluate the difference be-

tween refDVFpt and testDVFph(subsection 9.3.4). As recommended by TG132,

the percentage of voxels with TRE within 2 mm was compared with a designated

OperativeTolerance Level (OTL) value ( subsection 9.3.5). If the testDVFphdoes

not overcome the OTL analysis, the evaluated registration process should be re-

started adjusting certain registration parameters, such as the volume of interest.

The propagation of dosimetric errors due to differences in DIR maps is schema-

tized in Figure 9.1b, labelled as dosimetric analysis workflow. VMAT clinical treat-

ment plans were recomputed in the clinical TPS for each patient’s CBCT adapted-

CT images to avoid bias in dose calculation (see subsection 9.3.4) and back-

projected to the corresponding patient CT images via both the refDVFpt and

testDVFph, generating reference dose (refDose) and evalutated dose (testDose)

arrays, respectively. Dosimetric differences between refDose and testDose should

be evaluated in conjunction with clinical radiation oncologists.

9.3.3 Clinical data

Ten clinical patients with advanced oropharyngeal cancer who underwent radio-

therapy at AUSL-IRCCS were randomly selected from the departmental database.

All the plans used volumetric modulated arc therapy (VMAT, RapidArc) to treat

three targets at dose levels of 69.96, 59.40 and 54.45 Gy in 33 fractions with simul-

taneous integrated boost, generated with an Eclipse Treatment Planning System

(TPS) v.13.6 (Varian Medical Systems, Palo Alto, CA). Bilateral neck irradiation

was delivered to all patients, with involved high dose PTV on the right side for

6 patients, left side for 2 patients and centrally for the remaining 2 patients. For

each treatment fraction, a CBCT scan was acquired using the clinical HN proto-

col before delivering treatment to assess patient setup and anatomical variation.

All CBCT images were automatically saved in an ARIA database (Varian Medical
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Systems, Palo Alto, CA). Published studies have shown that anatomic changes

in HN cancer patients are more pronounced in the first half of treatment [30],

and based on the clinical institute experience that re-planning requests are often

performed in the second half of treatment. Hence, for each patient, the CBCT

scans performed around the middle (fraction #16) and latter parts of the treat-

ment course (fraction #26) were extracted from the imaging database for further

analysis.

9.3.4 Demonstration of clinical application

The extracted pairs of CBCT and planning CT images for the 10 clinical patients

selected were imported into MICE Toolkit v.1.1.0 (NONPI Medical AB, Sweden)

which was used in this study as reference software. MICE Toolkit was used to pro-

duce the refDVFpt, being the only independent DIR software available in the insti-

tute for comparison with the clinical system (VelocityAI, described below). Within

MICE, the open-source Elastix software module [153] was employed. The regis-

tration method used in this case is of the same type as the one in the clinical

platform but implemented independently. It consists of a B-spline method with an

adaptive stochastic gradient descent optimiser, with the number of resolutions

equal to 3, the maximum number of iterations of 1000 and an interpolator order

of 3, similar to those parameters reported in the literature [154, 155]. The DVF

from each DIR (in total, 20 DVFs) was subsequently exported in MATLAB format,

converted to binary format, and used as refDVFpt.

The VelocityAI Oncology Imaging Informatics System v.4.0 (Varian Medical Sys-

tem, Palo Alto, CA) was the DIR module used in the institute in clinical practice.

The post-processed phantom scans were imported into VelocityAI and linked to

each of the 10 patients selected for the study. Since the clinical refDVFpt has the

same frame of reference as the patient CT image, both phantom CT and CBCT

images were rigidly registered to the CT image of the patient. This was done to

align the phantom CT image with the clinical refDVFpt to produce a more clinically

realistic warped phantom CT image. It is important that the warped phantom is

created, applying as much as possible the deformation magnitude consistent with

the spatial deformation of the patient images (same OARs). Moreover, the lack of
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an initial deformation or shift between phantom CT and CBCT (owing to the rigid-

ity of the phantom) was the basis for the reference condition. Following the work-

flow described in Figure 9.1 using VelocityAI, the HN phantom CT images were

artificially deformed into wCT images using each of the imported refDVFpt. Then,

the phantom CBCT image was registered with the phantom wCT image, gener-

ating a testDVFph obtained using the VelocityAI algorithm. The ‘CBCT corrected

multi-pass deformable’ modality in VelocityAI was used to generate the testDVFph.

This applies a ‘fade correction’ prior to the registration which enhances low sig-

nal regions in the CBCT image [39]. VelocityAI’s primary registration algorithm

uses a multi-resolution approach based on mutual information. The transform is

a cubic B-spline, the interpolator is a bi-linear interpolation function, and the op-

timiser is based on the steepest gradient descent method [39]. The testDVFph

was then exported from VelocityAI in binary format. This workflow was repeated

for all 20 registrations for the 10 patients. To ensure that the simulated deforma-

tion could be used as a reference to validate the image registration algorithm, for

each case the warped phantom CT images were carefully inspected to verify that

the changes induced in the phantom scans produced by refDVFpt were realistic.

Each testDVFph was compared to the refDVFpt using MATLAB in-house scripts.

The quality of the registration was assessed as the ability of the testDVFph to repli-

cate the artificially generated refDVFpt. For each patient and treatment fraction

considered, an adapted-CT image of each refDVFpt was generated in VelocityAI.

Adapted-CT images used the HU values of the patient CT image mapped onto

the CBCT image to avoid bias in dose calculation [39]. The adapted-CT images

were then imported into the Eclipse TPS and the VMAT clinical treatment plans

were recomputed on each patient’s adapted-CT images and sent back to Veloc-

ityAI. To assess dose propagation errors due to differences in DIR maps, the dose

on the adapted-CT was back-projected to the corresponding patient CT images

via both the refDVFpt and testDVFph.

9.3.5 Data Analysis

Spatial and dosimetric errors were calculated for all the voxels contained within

the following OARs: brainstem, spinal cord, mandible, left parotid, right parotid,
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larynx, and oral cavity, as well as external body contours. In two of the 10 pa-

tients, the larynx was missing as an OAR because those patients were affected

by laryngeal tumours which were included in the clinical target volumes. Spatial

errors were calculated using the TRE [25], which describes the difference be-

tween co-located voxels once they have been transferred through the refDVFpt

and testDVFph. TRE values were evaluated as a function of treatment fraction

number and refDVFpt magnitude on a voxel basis. The percentage of voxels with

TRE less than or equal to 2 mm was considered in the analysis as a significant

parameter for spatial errors, as was suggested by AAPM-TG132 [140]. Dose er-

rors were calculated on patient CT images as being the difference between the

back-projected doses using the two propagation methods (reference vs. evalu-

ated). Dose errors were evaluated on a voxel basis. As a significant metric for

dose errors, the percentage of voxels within a specific dose error threshold (DET)

was calculated. In this study a significant value for DET was considered as 5% of

the prescribed dose of 70 Gy, thus corresponding to 3.5 Gy.

9.3.6 Tolerance level based on AAPM-TG132

AAPM TG132 Report [140] provided digital phantoms for use in commissioning

and quality assurance programs for image registration accuracy tests. For rigid

registration, TG-132 proposed 2 data sets created using ImSimQA (Oncology

Systems Limited, UK) (basic phantom data set and anatomic data set (a pelvic

phantom)) for various modalities (CT, CBCT, PET, MRI-T1, and MRI-T2) for rigid

registration. For DIR accuracy assessment, TG-132 provides a dataset of anatom-

ical pelvic phantom images comprising:

1. a basic anatomical dataset (CT);

2. a basic deformation dataset, same as basic anatomical dataset with added

gaussian noise variation to simulate CBCT image;

3. a ground truth DVF transformation (TG132-refDVF) file in dicom format. The

basic anatomical phantom CT provided by the AAPM was deformed by us-

ing the provided TG132-refDVF. The registration between warped anatom-

ical phantom CT and basic deformed phantom (CBCT) was performed in
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Velocity AI, generating the TG132-testDVF. Differences between TG132-

refDVF and TG132-testDVF were quantified in terms of target registration

error (TRE). The results of this test were used to establish an OTL for DIR

accuracy in the clinical dataset used in this study.

9.3.7 Statistical analysis

The Wilcoxon two-sided signed-rank tests and the Pearson’s correlation coeffi-

cient metric were used to assess the statistical significance of the observed TRE

differences between fractions and TRE as a function of refDVFpt magnitude, re-

spectively. The correlation between dose error, TRE, dose gradients and the com-

bination (scalar product) of these two (TRE and dose error) was assessed using

Pearson’s correlation. P-values<0.05 were considered significant.

9.4 R E S U LT S

9.4.1 Digitally enhanced phantom

Original and post-processed CT and CBCT phantom images in three different

transverse sections are shown in Figure 9.2. Table 9.1 reports the HU values of

OARs in the original and processed CT and CBCT phantom images.

9.4.2 Reference DVFs for patient CT-CBCT registrations

Visual inspection of deformed images and DVF magnitude was performed after

each registration using the designated reference (MICE Toolkit) software to check

the algorithm performance and the integrity of resulting DVF. The magnitudes

of refDVFpt (mean ± SD) over all fractions and patients were: 7.56±2.33 mm,

4.44±3.26 mm, 5.17±4.94 mm, 3.67±1.5 mm, 3.70±1.33 mm, 3.77±2.44 mm,

12.57±8.94 mm and 5.52±2.54 mm for the body, left parotid gland, right parotid

gland, larynx, oral cavity, mandible, brainstem, and spinal cord, respectively.
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Figure 9.2: Original and post-processed CT and CBCT transverse sections of the
CIRS ATOM Max Dental and Diagnostic Head Phantom Model-711 used in the
method presented for DIR accuracy evaluation. Sections were chosen to visualize
organs of interest. The HU values of parotid glands, larynx, oral cavity, brainstem,
and eyes were digitally modified using Matlab and CERR tools as described in
subsection 9.3.1
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Organ 
 

Original Phantom CT  Images (HU) 
 

Processed phantom CT images (HU) 

   mean std min max  mean std min max 
Parotid Glands  50.0 6.0 35.0 73.0  26.4 7.4 -1.0 53.0 
Larynx  42.2 5.8 25.0 57.0  72.5 28.5 21.0 108.0 
OralCavity  48.1 4.2 37.0 60.0  40.0 5.3 25.0 53.0 
BrainStem  48.4 7.7 32.0 74.0  38.6 13.5 10.0 66.0 
Eyes  75.1 8.4 53.0 100.0  101.9 9.5 62.0 135.0 
                 
                 

Organ 
 

Original Phantom CBCT  Images (HU) 
 Processed phantom CBCT images 

(HU) 

  
 

mean std min max 
 

mean std min max 
Parotid Glands  61.6 14.8 17.0 100.0  18.1 14.1 -16.0 56.0 
Larynx  112.9 14.8 58.0 154.0  185.9 66.6 85.0 278.0 
OralCavity  88.3 19.1 25.0 147.0  96.7 18.8 39.0 150.0 
BrainStem  91.7 27.7 23.0 182.0  44.8 65.2 -85.0 182.0 
Eyes  27.7 20.5 -28.0 92.0  40.9 20.5 -16.0 104.0 
                 
                 

 

Table 9.1: Original and post-processed CT and CBCT transverse sections of the
CIRS ATOM Max Dental and Diagnostic Head Phantom Model-711 used in the
method presented for QA of DIR. The HU values of parotid glands, larynx, oral
cavity, brainstem, and eyes were digitally modified using Matlab and CERR tools
as described in subsection 9.4.1. HU values for original and post-processed CT
and CBCT phantom images reported in the table referred to a ROI of 20x20 pixels.

9.4.3 Spatial analysis

TRE values for each OAR and each registration are plotted in Figure 9.3a. The

TRE was found to vary across the OARs of interest. The mean and standard devi-

ation values (mean±SD) of the TRE over all fractions and patients were 4.6±4.6

mm, 2.6±1.4 mm, 2.7±1.5 mm, 2.1±1.0 mm, 2.0±1.2 mm, 1.8±1.2 mm, 5.6±3.3

mm and 2.5±2.0 mm for the body, left parotid gland, right parotid gland, larynx,

oral cavity, mandible, brainstem and spinal cord, respectively. The large range of

values of TRE for brainstem were due to the border of the ROI exceeding the

CBCT boundary in the cranial direction in the MICE toolkit, when any mask was

used. This could have induced unusually large shearing of the refDVFpt for brain-

stem in the cranial section of the CBCT boundary, as reported in the refDVFpt data

in subsection 9.4.2. The testDVFph generated with VelocityAI showed a smoother

DVF in that area, resulting in consequently larger TRE values. Differences in the

TREs between the two fractions, compared on a voxel basis, were found to be

insignificant using the Wilcoxon signed-rank test with a p-value≈1.
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Figure 9.3: Boxplots of a) TRE difference and b) dose difference distribution
sorted by OAR. For each box, the central mark represents the median value,
while the bottom and top edges of the box are the 25th and 75th percentiles, re-
spectively. The ‘whiskers’ represent the range of values. Observations beyond the
whisker length are marked as outliers (+). By definition, an outlier is a value that
is more than 1.5 times the interquartile range away from the bottom or top of the
box. An outlier appears as a red + sign.
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9.4.4 Dosimetric analysis

Dose error values for each OAR are plotted in Figure 9.3b. Similarly, to the TRE

analysis, the median dose error value varied according to the OAR of interest.

The mean ± SD dose difference values over all fractions and patients were 2.0 ±
4.3 Gy, 2.2 ± 2.4 Gy, 2.5 ± 2.7 Gy, 1.8 ± 1.8 Gy, 1.3 ± 1.6 Gy, 1.2 ± 1.8 Gy, 3.2

± 2.6 Gy, 0.7 ± 0.7 Gy for the body, left parotid gland, right parotid gland, larynx,

mandibula, brainstem and spinal cord, respectively.

9.4.5 Baseline AAPM-132 image registration validation

The mean TRE errors (mean ± SD) between the TG132-refDVF and TG132-

testDVF, generated by VelocityAI, were 2.31 ± 1.13 mm for the phantom external

contour (body). The overall % of voxels with TRE less than or equal to 2 mm

was 45% (rounded to nearest 1%). This percentage value was considered as

the OTL for the registrations evaluated in this study. Since the AAPM Report did

not provide any dose error tolerance level information, the OTL could only be

considered in terms of spatial accuracy.

9.4.6 Tolerance levels analysis

Figure 9.4 reports in the correlation graph below the percentage of voxels with

TRE error 62mm versus the percentage of dose errors 6 the DET (5% of pre-

scribed dose in this analysis). The Figure 9.4 x-axes show the percentage of

voxels with TRE within 2 mm (as suggested by AAPM-TG132) across the 20

registrations for each OAR. Significant variability was observed for all organs and

registrations. The markers ‘+’ indicate the case for which the percentage of voxels

with TRE 6 the 2mm OTL described in subsection 9.4.5, represented as a vertical

red line in the graph. Percentages higher than OTL (indicated as a ‘circle’ marker)

were found in 30% (body), 55% (left parotid), 40% (right parotid), 31% (larynx),

85% (oral cavity), 100% (mandibula), 25% (brainstem), 80% (spinal cord) of all

cases (N=20) for all registrations.
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Figure 9.4: Correlation graph of the percentage of the TRE within 2 mm and
percentage of voxels within 5% of dose error (3.5Gy), across the 20 registrations
and for each OAR. The ‘+’ markers indicate the cases for which the percentage of
voxels was less than the 45% OTL, indicated as vertical red line. The OTL value
was derived using TG132 datasets, as described in subsection 9.4.6

The Figure 9.4 y-axes report the corresponding dose error percentage within

3.5Gy (5% of prescribed dose), across every registration for each OAR. Per-

centages of 66.3±5.8%, 63.9± 16.1%, 62.0±17.5%, 69.3±16.4%, 82.2±11.1%,

85.1±8.0%, 66.7±28.2%, 93.6±6.2%, were found for body, parotids left and right,

larynx, oral cavity, mandible, brainstem, and spinal cord, respectively. Overall, for

the criteria used, the correlation graphs showed a generally higher proportion of

voxels involving dose error less than 5% rather than TRE less than 2 mm (vi-

sualised as markers above diagonal bisector line of each panel). The relation

between TRE and dose error percentage is quite complex and depends on a

single registration (see also subsection 9.4.6). For almost all OARs, some regis-

trations passed the spatial OTL analysis but showed quite low dose error < 5%

percentage and vice versa.
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9.4.7 Correlations

The correlation between the TRE and the magnitude of the deformation in the

reference DVF (refDVFpt ), was investigated on a voxel basis within the body con-

tour, and a significant correlation was found (p-values<0.01 across all patients)

with a Pearson correlation coefficient of 0.79± 0.14 (range 0.48-0.97), meaning

that the DIR spatial errors are a function of the deformation magnitude of each

registration. As reported in previously published studies [143, 156–159] the effect

of the DVF on the dose map is complex. Theoretically, it is expected to depend on

the local dose gradient and on the spatial registration error [159]. The correlation

between the dose map error and TRE was also tested on an OAR-by-OAR basis

and results shown in Figure 9.5. The upper panel shows in a correlation graph

the median value of TRE versus median value of dose error for each OAR. Corre-

lation values (indicated by the diameter of each marker size) varied significantly

across the OARs. The Figure 9.5 lower panels show in correlation graphs TRE

values versus dose errors for each of the 20 registrations for each OAR. Pearson

coefficients, ranging from 0.21 (larynx) to 0.84 (right parotid), were reported for

each panel. Significant correlations for body, right parotid, mandibula and brain-

stem were found.

The correlation between the dose error and TRE was also tested with a voxel-

based approach inside the body. A statistically significant correlation was found

(p-values<0.01) albeit with a low mean Pearson coefficient of 0.31±0.10 (range

0.15-0.53) across all registrations [30,31]. This confirmed the complex correlation

between dose difference and TRE found on an OAR basis and reported above.

The dose error showed a moderate but statistically significant correlation with the

dose gradient, with a mean Pearson coefficient of 0.51±0.06 (range 0.37-0.61)

and p-values < 0.01 across all patients on a voxel basis, confirming the hypothe-

sis that the local dose gradient influences dose errors related to DIR uncertainties

[158, 159]. As suggested in the previous studies [143, 156–159] , the dose errors

were also investigated as a function of the combination of dose gradient and TRE

(here the scalar product between the two was considered). A moderate mean

Pearson coefficient of 0.52±0.07 (range 0.41-0.66) was found, with a p-value

<0.001, with respect to the single factor analysis (TRE and dose gradient).
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Figure 9.5: Upper panel: Correlation graph of the median TRE and dose errors
values for each OAR. The diameter of each marker is proportional of the Pear-
son’s correlation coefficient value (see lower panels for individual numeric values)
A linear correlation fit line is also reported. Lower panels: Correlation graph of
the TRE and dose errors, across 20 registrations divided for each OAR. A linear
correlation fit line is also reported. In the lower right corner of all panels, the Pear-
son’s coefficient was reported between TRE and dose error. A ‘*’ indicates that
Pearson test confirmed statistically significant correlation.
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9.5 D I S C U S S I O N

In this study, a novel method to evaluate the quality of patient-based multimodal

CT-CBCT DIR using a post-processed, digitally enhanced anthropomorphic HN

phantom has been presented. All post-processed ATOM Max Dental and Diag-

nostic Head Phantom image datasets (CT and CBCT) are in the DICOM format,

derived using the procedure described in 9.3.1, and have been made publicly

available as additional downloadable material for this paper as Supplementary

Material. This allows the use of the proposed method for CT-CBCT HN DIR ac-

curacy evaluation in other centres, by processing the image sets with two differ-

ent image registration software systems (reference and clinical), as described in

9.3.1. The refDVF represents the known transformation map derived with third-

party reference software based on the clinically observed anatomical changes,

which is then applied to create the warped phantom image. Thus, the transforma-

tion of each voxel in the warped image was known because it was deliberately

applied to each voxel. As a verification method, the refDVF data did not necessar-

ily represent the real, individual deformations of the patients, but they served as

a reference to check how much the clinical algorithm under investigation (in this

study, the Velocity AI) was able to reproduce the known deformation for that pa-

tient case. However, care must be taken to avoid applying a deformation derived

using the same third-party algorithm that the user employs for the clinical deforma-

tion, as this would create a testDVF that was biased to the results expected from

the same third-party and clinical DIR algorithms [25]. The registration algorithms

used in this work to generate the refDVFs and testDVFs were both of the same

class (B-spline) but implemented independently (i.e., different optimiser, similarity

measure and general parameters). Because of these differences, the registra-

tions can be considered independent between the two software programmes, in

line with the previous studies [151, 152]. The dose error variations were found to

be related to both the registrations and the OAR of interest. This is in line with the

findings of Qin et al. [156], who revealed that the impact of the DIR method on

treatment dose warping is a function of the registration and is organ-specific. The

OTL was derived from the material provided by the AAPM TG132 for quality as-

surance purposes. However, the TG132 utilised only pelvic anatomical data sets,
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processed using the ImSimQA, for the DIR accuracy assessment with a ground-

truth transformation. Our findings confirmed that the registration accuracy is also

a function of the selected organ at risk, underlying the importance of using an

anatomical phantom for the DIR accuracy assessment, consistent with the clini-

cal data considered. Thus, the OTL derived for this study, using the generic pelvic

phantom proposed by the TG132, could have some limitations on the practical

level. However, it was used here primarily as an exemplar to describe a suggested

workflow for the DIR accuracy, as described in Figure 9.1a. In the published re-

port on DIR validation by the AAPM’s Task Group 132, the proposed ideal goal

for the TRE is 95% of voxels within 2 mm, using the Report’s provided image sets.

Our results showed a considerably lower value, OTL = 45%, using the Velocity

AI. The Velocity AI was previously benchmarked with different commercial DIR

algorithms by Pukala et al. [143] and found to be very similar in accuracy with

respect to the other commercial software systems included in the study. Based

on this, it can be assumed that the OTL value found in this study could be consid-

ered a typical practical accuracy value using the commercial software, based on

the B-spline method, for the CT-CBCT DIR registration using the TG-132 basic

anatomical phantom. The difference between the OTL found in this study, and the

goal suggested by the AAPM-TG132, underlines the pressing need for a univer-

sally available, comprehensive library of site-specific phantom datasets with the

ground-truth deformation data to determine a more robust operative tolerance

level to test the DIR software. The registrations that pass the OTL for spatial ac-

curacy can still result in a low percentage passing the dose difference criterion

(as reported in Figure 9.4 and Figure 9.5), indicating quite a complex relationship

between the dose error and TRE accuracy. One limitation, shared by the spatial

DIR metrics, is the indirect relationship between the quantification of the DIR error

and the effect that error has on a given dose distribution. This is a complicated

issue akin to invoking the gamma criterion for an IMRT QA analysis [160]. The

TG-132 report did not suggest any tolerance goal for dose differences. For this

reason, in the dosimetric analysis workflow reported in Figure 9.1, it has been

suggested a clinical evaluation criterion for the dose difference results. A mod-

erate, as classified in [161], but significant correlation on a voxel basis for both

the dose gradient and the TRE with a dose difference was found. Veiga et al.



9.5 D I S C U S S I O N 163

[159] observed a moderate correlation between the dose gradient and the result-

ing dose difference, in agreement with our findings. Murphy et al. have reported

the effect of the DVF on dose-mapping and concluded that there is a complex

correlation that depends on the TRE and the voxel location, relative to the dose

gradient [158]. The Pearson correlation test results were always significant (p ¡

0.05) for the voxel basis approach (9.4.7). As reported by Schober et al. [162],

the p-value derived from the test provides no information on how strongly the two

variables are related. With large datasets, as they are in the voxel-based analy-

sis, very small correlation coefficients can be “statistically significant.” Therefore,

a statistically significant correlation must not be confused with a clinically relevant

correlation. It is important to underline that this study represents a Proof of Princi-

ple, and further work will be undertaken to explore the behaviour of the algorithm

in other situations. In my experience, the clinical workflow is composed of several

tasks and can be time-consuming.

9.5.1 Range of Application of the Method

The use of a phantom in the method has some intrinsic limitations. The lack of an

initial deformation or shift between the CT and CBCT (owing to the rigidity of the

phantom and not applicable with the real patient CT and CBCT images) was the

basis for the reference condition of the validity of the method. Since the clinical

reference DVF has the same frame of reference as the patient CT image, care

must be taken to align the DICOM coordinate systems between the patient and

HN phantom CT images before generating the warped phantom CT image based

on the reference DVF. This was done to align the phantom CT image with the

clinical refDVF to produce a more clinically realistic warped phantom CT image.

Indeed, it is important that the warped phantom is created, applying as far as

possible the deformation magnitude consistent with the spatial deformation of the

patient images. From a mathematical point of view, the validity of the method is

consistent for every size of patient anatomy, because the quality of the registration

was assessed as the ability of the clinical software to replicate the reference DVF,

artificially introduced into the deformed phantom CT images. However, the rigid

coupling between the phantom anatomy and the reference DVF should be con-
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sidered carefully to ensure the clinical relevance of the reference DVF. The more

the anatomy is similar between the phantom and patient, the more the clinical

value of the reference DVF will be maintained when it is applied to the phantom

anatomy. The quality of this coupling should be tested visually, by checking the

overlap between the patient and phantom structures. A potential method to over-

come the mismatch between the patient and phantom anatomy is to introduce

a baseline DIR between the patient and the phantom in the coupling phase, in-

stead of a rigid one. However, introducing this step can increase the complexity

of the evaluation method, therefore it was decided to avoid this point to avoid

over-complicating the workflow. Indeed, it is important to underline that, as a veri-

fication method, the refDVF data did not necessarily represent the real, individual

deformations of the patients. Moabbed et al. [163] used a physical anthropomor-

phic pelvic phantom for the CT and CBCT deformable image registration with the

aim of validating a DIR evaluation method for prostate cancer cases. Even if their

study focused on evaluating the accuracy of the dose calculation as performed di-

rectly on the CBCT images, they presented a similar workflow to the current study

for their evaluation, in that the pelvic phantom images were digitally deformed us-

ing two realistic patient-based deformation fields, after a rigid alignment between

the patient and the phantom’s system of reference. Since the OAR insertion in

the HN processed phantom was done in terms of HU, and not in physical density,

the processed phantom images were not suited to studies of the dose calculation

accuracy, but only for the DIR registration accuracy. Indeed, the dose calculation

using this method is only performed on the patient adapted-CT.

9.5.2 Similar DIR Accuracy Workflows to the Current Study

Our proposed method quantified the effect of the DIR on the dose distribution, fo-

cusing on the DVF accuracy. As was reported in the introduction, for adaptive radi-

ation therapy, the accurate dose deformation and summation/accumulation within

each contour is determined by the DVF accuracy [164]. Other methods evaluated

the dose deformation accuracy, focusing on the DVF. Recently, Lowther et al. [165]

assessed the uncertainty in the dose accumulation procedure for the HN adaptive

by comparing the DIR-facilitated dose accumulation using a commercial software
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system with the results of an in-silico model, based on the clinically observed de-

formations as the ground truth. HN patients CT and CBCTs images were used to

generate in silico reference CBCTs and DVFs, as the ground truth, with a second

reference B-spline DIR software. The in silico images, generated with an indepen-

dent DIR software as the reference, were necessary to have a known reference

DVF. Also, this method has the advantage of evaluating each patient-specific de-

formation and dose warping. However, Lowther’s method works directly on the

patients’ images, making the clinical workflow simpler and reasonably quicker

than the proposed one, avoiding the use of the HN phantom presented in this

study, with its related inherent imitations (see 9.5.1). The complexity of the de-

formations in the human body, as well as its heterogeneity in terms of the HU

values, are challenging to model accurately through a phantom. On the other

hand, the method implemented in our work has the advantage of replicating the

HU distribution found in the OARs on clinical images. In comparison, Lowther’s

method tested the DIR between the planning CT and the in silico model of the

CBCT, which is different from the original CBCT in the HU and quality (the plan-

ning CT deformed to the anatomy of the CBCT of the considered fraction) and

could not consider some issues of the CTBT-to-CT DIR, including the reduction

in the accuracy due to the low image contrast of the real CBCT. Pukala et al.

[[143] evaluated the performance of several DIR software systems using several

HN digital phantoms, in terms of both the spatial and dosimetric accuracy at the

voxel level. The study created publicly available phantoms based on the CT data

from head and neck cancer patients. These phantoms provide a clinically based

ground-truth model that encompasses the anatomical changes that occur over

the course of a typical treatment. Also, this study assessed the deformation accu-

racy for each voxel by comparing the entire registration DVF to the ground-truth

DVF, based on the clinical scenario. One key aspect of our study was the possi-

bility to use real patient data (the DVF and dose distributions) to evaluate each

patient-specific DIR, instead of commissioning specific DIR algorithms. Moreover,

the study of Pukala was focused on CT-to-CT registrations, while our study re-

ferred to multimodal CBCT-to-CT registration. The latter presents more issues in

the DIR accuracy, due to the limited quality of the CBCT images. Veiga et al. [159]

investigated the transformations that mapped the anatomy between the planning
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CT and CBCT using four different DIR approaches. DVFs were used to remap

the dose of the day onto the planning CT. The data from five HN patients were

used to evaluate the performance of each implementation, based on geometri-

cal matching, the physical properties of the DVFs, and the similarity between the

warped dose distributions. As reported in the Introduction, this approach can be

useful to choose the optimal registration method, without conveying any informa-

tion on the DIR uncertainties and related dose errors. Singhrao et al. [157] used

a deformable HN phantom to test DIR algorithms, but, in practice, it is difficult to

produce physical phantoms for every deformation scenario that occurs clinically.

Essentially, the novelty of our approach consists of the use of an HN anthropo-

morphic phantom for the CT-CBCT registration, which was digitally enhanced to

include the OARs which are typical of that anatomic region, (Figure 9.1), with

a robust accuracy verification procedure taking into account the recommended

OARs for the HN. Also, in this study, further recommendations in terms of a clini-

cally feasible workflow and achievable thresholds for the CBCT-to-CT deformable

image registration have been investigated. The findings of this study indicate that

there is a need for standardised approaches and specific guidelines for different

applications to supplement the overarching DIR guidelines such as the TG132.

9.6 C O N C L U S I O N S

A novel method to evaluate the quality of patient-specific multimodality CT-CBCT

DIR for adaptive radiotherapy of head and neck patients was developed. The

methodology described in this chapter allows direct testing of DIR algorithms for

clinical registration, which can produce valuable insights into their clinical impact

on the adapted dose distribution. The technical requirement for using this method

is the availability of an independent image registration software platform (in addi-

tion to the clinical system). This work contributes to the study of standardisation

and automation of quality assurance methods for deformable image registration

in radiotherapy.
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U S E O F K N OW L E D G E BA S E D DV H P R E D I C T I O N S TO

E N H A N C E AU TO M AT E D R E - P L A N N I N G S T R AT E G I E S I N

H E A D A N D N E C K A DA P T I V E R A D I OT H E R A P Y

For everything there is a season,

and a time for every purpose under heaven

Ecclesiastes

10.1 P R E V I E W

Work from this chapter was published in Cagni et. al. (PMB 2021) [39]. The figures

and tables that are shown in this chapter are drawn from that published work.

Patient anatomical deformations, that often happen during radiotherapy treatment

course, cannot always be corrected by simple couch shifts or patient repositioning,

so these deformations should be managed by re-planning. Generating a new plan

with the same planning goals as the original plan within a clinically acceptable

time and with minimal user intervention is another important technical challenge

and time consuming step in ART. As the patient anatomy varies, OARs are re-

shaped and re-positioned with respect to the targets and change from day to day.

The gain in OAR sparing with a new plan is a priori unknown, and re-planning

decisions are often based on the clinician’s practical experience. In this study the

feasibility of using KBP iinformation as part of the ART process to estimate the

potential gain given by OAR sparing during the treatment course for HN cases

was investigated. Such relationships, if significant, could be used to establish the

need for plan adaptation based on OAR sparing and to automate the process of

re-planning itself.

167
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10.2 I N T R O D U C T I O N

As discussed in section 9.2, external beam radiotherapy is gradually evolving

towards real-time ART [135, 166], which is becoming a new paradigm in radi-

ation oncology [136]. ART has the clinical rationale of reducing normal tissue

and organ at risk (OAR) toxicity and/or improving tumour control through plan

adaptation [137, 167]. The frequency of re-planning in patients with head and

neck (HN) cancer was reported to vary from 32% to 70% depending on several

criteria, such as weight loss, change in neck separation or poor immobilisation

shell fit [139, 168]. However, at present, there are still a number of technical lim-

itations in applying ART as an automated standardisation process. [138]. As a

consequence, ART is not widely utilised [138, 168]. Indeed, in clinical practice,

contouring and treatment planning processes are labour-intensive and use sub-

stantial resources. Some investigators are researching automated methods to

predict the eventual need for re-planning, but more work is needed [169, 170].

One of the on-going technical issues is the challenging decision of choosing the

appropriate time in the process to re-plan a patient [30, 171–177]. As anatomi-

cal deformation cannot be corrected by simple couch shifts these deformations

should be managed by re-planning [138]. Generating a new plan with the same

planning goals as the original plan within a clinically acceptable time and with

minimal user intervention is another important technical challenge in ART. As the

geometry of patient anatomy varies, OARs are shaped and positioned with re-

spect to the targets and change from day to day. The gain in OAR sparing with

a new plan is a priori unknown [171], and re-planning decisions are often based

on the clinician’s practical experience [30, 171]. The “trigger point” is the time at

which significant dosimetric variation for a specific parameter is present as an

indicator for ART re-planning [173]. However, the re-planning process is expen-

sive in resource terms as it requires a new computed tomography (CT) scan, new

contours, and a new optimisation. For this reason, the trigger should be carefully

chosen, balancing the time-consuming procedures with the gain from re-planning.

Knowledge-based planning (KBP) tools (previously described in chapter 4) can

generate estimated dose-volume histograms (DVHs) based on previous patient

anatomy and dose distributions [36, 178]. The KBP methods are generally equiv-



10.2 I N T R O D U C T I O N 169

alent to expert planners in terms of plan quality but preliminary results indicate

that they are significantly more efficient timewise [36]. Currently, KBP is frequently

used in clinical practice to drive new IMRT planning based on a database of prior

clinical plan data and other sources of knowledge, such as treatment trade-off

and clinician experience. Studies published in recent years have demonstrated

that KBP allowed a general improvement in (a) inter-patient consistency of the

treatment plans, (b) intrinsic quality and (c) efficiency (time and workflow) of the

planning process applied to different anatomical sites using manually generated

treatment plans [17–22], including the head and neck [23, 24]. Previously pub-

lished studies have demonstrated that the efficacy of KBP was influenced by the

quality of the data used for the training process, the regression applied to build

the predictive models and the consistency between new cases and the popula-

tion used for the training [178]. KBP training generally involves using a database

of manually generated treatment plans that can suffer from plan quality variation

and inconsistency [20]. To maximise the performance of KBPs, Pareto plan so-

lutions can be used to train the model [81, 82, 179]. In the studies published to

date [17–24], KBP was employed to assist the planner to achieve optimal dose

distributions when new plans were created. The clinical implementation and use

of KBP optimization models is a rapidly changing subject and previous studies

have applied KBP for help in replanning for adaptive radiation therapy [180]. How-

ever none of the published studies have investigated if the accuracy of a KBP

prediction is suitable for OAR sparing in an ART application. In this work, the

possibility of using the KBP method as part of the ART process to estimate the

potential gain given by OAR sparing during the treatment course for HN cases

was investigated. Such relationships, if significant, could be used to establish the

need for plan adaptation based on OAR sparing and to automate the process of

re-planning itself.
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10.3 M E T H O D S A N D M AT E R I A L S

10.3.1 Clinical Data

In line with samples used in previous work [24, 81, 82], a dataset of 100 Head

and Neck (HN) VMAT patients previously treated at AUSL-RCCS of Reggio Emilia

was selected for this study. Treatment plans following two different fractionation

schemes were included in this work, 69.96 Gy/59.4 Gy/54.12 Gy in 33 fractions

(46 patients) and 66 Gy/60 Gy/54 Gy in 30 fractions (54 patients), both schemes

using a simultaneous integrated boost (SIB) technique. For all plans, the goal was

to deliver 100% of the prescribed dose to 95% of every PTV. Each plan was gen-

erated using a previously configured KBP model for HN patients trained on man-

ually produced clinical plans. This model is discussed below (subsection 10.3.4).

All plans were generated with the Eclipse Treatment Planning System (TPS) (Var-

ian Medical Systems, Palo Alto, CA) using 3 fully coplanar arcs with collimator

rotated to 30◦, 315◦ and 90◦, with 6 MV energy. For each treatment fraction, an

on-board cone beam CT (CBCT) scan was acquired before treatment delivery to

assess patient setup and anatomical variation. All CBCT images were automati-

cally saved in an ARIA database (Varian Medical Systems, Palo Alto, CA).

10.3.2 KBP RapidPlan tool

RapidPlan is a knowledge-based automatic planning (KBP) solution integrated in

the Eclipse TPS. For each new patient, RapidPlan predicts the most likely dose-

volume histograms (DVHs) to occur based on the specific patient’s anatomy in

terms of structure set geometries. Predicted DVHs are then used to establish

dose-volume objectives and weights for automated plan optimisation. DVH pre-

diction in RapidPlan is based on a statistical model that is generated from the

principal component analysis of anatomic and dosimetric features obtained from

plans of previously treated patients. Therefore, the quality of RapidPlan DVH pre-

dictions depends on the quality of the plans used to train the model. Extensive

descriptions of model configuration are provided in the Varian reference manual
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[80], previous publications [81, 82, 179], in the studies published to date [17–24],

and in chapter 4 of this thesis.

10.3.3 Multicriteria Optimisation Trade-off module

The Multicriteria Optimisation (MCO) approach is based on trade-off exploration

modules and is implemented in the Eclipse TPS. In MCO, a range of different

Pareto solution plans is generated based on a selection of optimisation objectives.

The priority of each objective may vary from plan to plan but all plans belong

to a Pareto surface, which means that is not possible to improve an objective

without compromising another objective in the trade-off. The user can explore

the trade-offs along the Pareto surface and select the plan that best fulfils the

treatment goals. With the use of slider bars, dynamic DVHs and dynamic 3D dose

distributions, the TPS allows users to visually review and evaluate plans along the

Pareto surface in real-time [80, 81]. Extensive descriptions of model configuration

are provided in the Varian reference manual [80] and in chapter 4 of this thesis.

10.3.4 MCO-KBP model

A KBP-model was configure using the procedure described in details in chapter

4. Here a brief summary is reported. The 100 manual plans in the database were

first randomly divided into two groups: KBP training (80 plans) and KBP evalua-

tion (20 plans). Using the training set, KBP DVH prediction models were created

for the following OARs: brainstem, spinal cord, left parotid gland, right parotid

gland, mandible, oral cavity, oesophagus, and larynx. The KBP model was built

following the guidelines provided by the manufacturer [80]. Figure 10.1a outlines

the workflow of the KBP model generation stage.

All 80 patients used in the training set were automatically re-optimised using

the KBP model, the latter used as a starting plan in the MCO module. A wish

list of objectives to fulfil was used to consistently select a solution on the Pareto

surface in the MCO module. Due to the use of the same optimisation scheme for

all patients, plan generation was highly consistent across the entire cohort, with

no plans adjusted by the planning team. All plans generated with the KBP and
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Figure 10.1: The workflow of the study was divided into 3 parts: MCO-KBP mod-
els creation a) and application of the gain of the re-planning estimation using the
KBP tool b) and c). In detail: 100 HN patients were selected for the study. a) 80
patients were chosen to train the KBP model. To improve the quality of the model,
the training set was automatically re-planned to use the KBP model and refined
using the MCO tool based on a single wish list. The final MCO-KBP plans gen-
erated in this process were then used to train the model. b) 20 patients were
considered in the evaluation set for the experiment. For each patient’s planning
CT (pCT), the structure set and CBCT of fractions 16 and 26 were considered. Us-
ing a deformable image registration tool, adapt-CT, deformed structures for both
fractions were generated. c) An automated plan was created using the KBP-MCO
model on pCT. The plan was recalculated using the adapt-CT of each fraction gen-
erating the delivered dose. The KBP-MCO model was used to generate a KBP
prediction and final dose from the adapt-CT of each fraction if a new plan was
created.

MCO combination were used to train a new, highly consistent MCO-KBP model

(MCO-KBP) for the previously selected structures. The optimisation constraints

for this model were unchanged with respect to the KBP model.

10.3.5 Delivered DVHs for the evaluation set

In the evaluation dataset, the MCO-KBP model was used for each patient to cre-

ate an automatically generated plan following the same fractionation scheme as

the original treatment. This procedure is outlined in Figure 10.1b. Two CBCT

scans acquired before each treatment fraction were extracted for each patient,
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corresponding to the 16th fraction (around half-way through the treatment course)

and the 26th fraction (about three quarters of the way through the treatment

course). For each selected fraction, an adapted CT image [75] was generated

in Velocity AI v.4.0 (Varian Medical Systems, Palo Alto, CA) through deformable

registration of the planning CT (pCT) on the selected CBCT. The same HU val-

ues as the pCT were used, to avoid bias in dose calculations. The transformation

used was a cubic B-spline, the interpolator was computed with a bi-linear func-

tion, and the optimiser was based on the steepest gradient descent [75]. For the

selected set of patients, no artifacts were evident in the CT image. No image

pre-processing was done before the deformable image registration. The OAR

structures were automatically propagated from the planning CT to the adapted

CT. The accuracy of registration was verified by means of a visual inspection

of deformed CT and structure sets. This was combined with a visual check of

deformable vector field (DVF) that was performed in Velocity AI after each regis-

tration. The adapted CT images with modified structure sets were then imported

into the Eclipse TPS, and the plan created with the MCO-KBP model was recal-

culated for the adapted CT. The dose and DVH of the plan for this adapted CT will

be referred to as the ‘delivered DVH’ (DVHd).

10.3.6 MCO-KBP DVH model prediction validation

For each patient in the evaluation dataset, KBP predictions were performed on

both adapted CTs using the MCO-KBP model. This section of the workflow is

outlined in Figure 10.1c. For each organ, RapidPlan presents two predicted DVH

lines representing the ±1 SD DVH confidence limits. For the validation group, the

mean of these two predicted DVH curves, DVHpKBP, was compared with the cor-

responding DVH achieved after the optimisation, DVHfKBP [23]. Following interna-

tional guidelines [73, 74], specific DVH endpoints for validation were considered:

maximum dose (Dmax) for spinal cord, brainstem and mandible and mean dose

(Dmean) for parotids, oral cavity, larynx and oesophagus, as used in the AUSL-

IRCCS hospital’s clinical practice.
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10.3.7 Gain from re-planning and KBP prediction uncertainty

From the Varian Manual [80], the normal prediction bounds shown by the KBP

tool indicated 68% probability (±1 SD) that the final DVH should fall between the

bounds. Based on this assumption, we can consider the predicted KBP uncer-

tainty as 1 SD, the distance between the DVHpKBP (subsection 10.3.6) and one of

the prediction bounds. Thus, for each OAR j and case i:

pKBPuncertaintyij = ASR(upperboundDVHKBPij – DVHpKBPij) (10.1)

ASR was the absolute sum of residuals (ASR) and was used to quantify the

distance between DVHs:

ASR = (

∞∑
D=0

|DVH1(D) – DVH2(D)| ·∆D) (10.2)

where DVH1(D) and DVH2(D) refer to the DVHs for which the distance was

quantified. After the KBP prediction was obtained, the optimisation was performed

and the dose calculated without manual intervention, generating a final KBP DVH

(DVHfKBP).

In line with equation 10.1 and equation 10.2, the final KBP uncertainty was

defined as the difference between predicted and final DVH:

fKBPuncertaintyij = ASR(DVHfKBPij
– DVHpKBPij) (10.3)

where for each OAR j and case i, DVHfKBP refers to the final KBP DVH after op-

timisation, with ASR and DVHpKBP as defined above. The gain from re-planning

was calculated in term of sum of residuals (SR), between delivered DVH (sub-

section 10.3.5), DVHdij(D) , and predicted KBP, DVHpKBPij(D) or final DVH after

optimisation, DVHfKBPij(D), when the new plan is created:

SRij = (

∞∑
D=0

(DVHdij(D) – DVHKBPij(D)) ·∆D) (10.4)

for each OAR j and case i. It is referred respectively to predicted gain values

(pSRs) or to final gain values (fSRs), when DVHpKBP or DVHfKBP was considered
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in equation 10.4. The approach to use sum of residuals to estimate the difference

of DVHs is similar to the one proposed by Appenzoller et al. [181]. However, in

that original study, only positive differences between DVHs were considered for

detection of suboptimal plans (restricted sum of residuals). This work accounted

for both positive and negative differences, as both are important to detect improve-

ment/detriment in the re-planning phase. To automate the gain from re-planning,

predicted gain values (pSR) were plotted against the final optimisation gain (fSR).

To evaluate the feasibility of the current method, the KBP uncertainty (equation

10.1 and equation 10.3) for each OAR and case was compared against the gain

from re-planning. To use the same metric in the comparison, ASR, was used to

quantify the distance between DVHs in the gain of replanning, using equation

10.2. Thus, for each OAR j and each case i:

ASRij = (

∞∑
D=0

|DVHdij(D) – DVHKBPi,j(D)| ·∆D) (10.5)

It is referred respectively to ASR predicted gain values (pASRs) or to final gain

values (fASRs), when DVHpKBP or DVHfKBP was considered in equation 10.5.

10.3.8 Discriminant analysis

The receiver operating characteristic (ROC) analysis curve (referred to in this

chapter as discriminant analysis) was used to quantify predicted KBP perfor-

mance measures in this experiment. With these analyses, four domains were

highlighted:

• TP: positive pSR values predict significant OAR sparing, and re-planning

demonstrates improved OAR DVH with positive fSR re-planning values.

• True negatives (TN): negative or null pSR values predict no OAR sparing,

and re-planning demonstrates no improvements in OAR DVH with negative

or null fSR re-planning values.

• FP: positive pSR values predict significant OAR sparing, but re-planning

demonstrates no improvements in OAR DVH with negative or null fSR re-

planning values.
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• False negatives (FN): negative pSR values predict no OAR sparing, but re-

planning demonstrates improved OAR DVH with positive fSR re-planning

values.

The ROC curve was used to choose the best predicted operating point (OP) that

gives the best trade-off between the sensitivity, or TP rate, and specificity, or 1-

FP rate, of KBP predictions [118].

10.3.9 Statistical Analysis

Wilcoxon two-sided signed rank tests were used to assess the statistical signifi-

cance of the observed differences between KBP predictions and final endpoints

and SRs, to test the difference in gain between the two fractions and to test dif-

ferences between ASR values and KBP uncertainty values. The differences were

considered significant when p<0.05.

10.4 R E S U LT S

10.4.1 Quality of the MCO-KBP model

The quality of the generated MCO-KBP model was evaluated by checking the

model’s goodness-of-fit statistics for each structure such as the coefficient of de-

termination (R2 (between 0 and 1: the larger, the better)) and the average Pear-

son’s chi-square (χ2 (the closer to 1, the better)), as suggested by RapidPlan

guidelines [80]. These parameters, together with the number of potential outliers

(also known as influential points), are reported in Table 10.1 for all models. No

particular trends were observed for χ2 and R2. A mean χ2 of 1.11±0.05 and a

mean R2 of 0.83±0.10 were found.

The potential outliers identified by the Varian Model Analytic (MA) tool [80, 82]

were evaluated on a case-by-case basis. Since all plans inserted in the model

were Pareto plans, these cases were regarded as not actually outliers, and it was

verified that there were no anomalous anatomical differences compared to the

rest of the population in the model to cause such categorisation. The plans iden-
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Structure R² χ² # Outliers 
(MA)

Brainstem 0.84 1.05 3

Oesophagus 0.83 1.06 0

Larynx 0.82 1.18 3

Mandible 0.83 1.08 5

Oral Cavity 0.87 1.07 2

Parotids 0.82 1.05 0

Spinal Cord 0.54 1.10 0

Table 10.1: Goodness of the prediction models in terms of coefficient of deter-
mination, R2, average Pearson’s chi square, χ2, and number of potential outliers
(model analytics, MA, suggested plans to be removed and plans to be checked).

tified as potential outliers by MA, were representative of an uncommon patient

anatomy with respect to the training set population, but these plans remained

clinically suitable as they were created using the MCO module. The differences

between predicted and final KBP endpoints for the OARs considered are reported

in Table 10.2. The differences were calculated for every predicted and final end-

point of each organ and patient, then the mean and SD values over the patient

population were derived. Mean difference ±1SD between the pKBP and fKBP

endpoints were 1.8±4.5 Gy, 1.2±5.3 Gy. 0.8±1.1 Gy, 0.6 ±0.9 Gy, -1.3±1.8 Gy.

1.4±2.4 Gy, 0.9±2.1 Gy and -3.4±4.7 Gy for spinal cord, brainstem, right and left

parotid, oral cavity, oesophagus, larynx and mandibula, respectively. Wilcoxon

signed rank tests confirmed the differences across the range of endpoints (pKBP

and fKBP) were not statistically significant (p >0.05).

10.4.2 Gain from re-planning

Figure 10.2 shows a comparison of the DVHs across an individual case (patient

#7 fraction 16), considered as a patient example. The predicted DVHpKBP, the

bounds of the predicted DVHpKBP (1SD of the KBP), the final DVHfKBP and the

DVHd are represented for the following organs: spinal cord, brainstem, left parotid,

mandible, larynx, oesophagus, oral cavity and right parotid.
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Spinal 
cord

Brainstem Right 
parotid

Left 
parotid

Oral 
cavity

Oesophagus Larynx Mandibula

Dmax
[Gy]

Dmax
[Gy]

Dmean
[Gy]

Dmean
[Gy]

Dmean
[Gy]

Dmean 
[Gy]

Dmean
[Gy]

Dmax
[Gy]

DVHpKBP 28.5 ± 4.7 28.6 ± 9.0 21.5 ± 8.6 23.0 ± 6.4 34.3 ± 10.7 16.5 ± 7.1 32.0 ± 5.2 64.9±6.2

DVHfKBP 26.7 ± 4.6 27.3 ± 8.5 20.7 ± 9.0 22.4 ± 6.6 35.5 ± 11.7 15.0 ± 6.3 31.1 ± 6.2 68.2±8.1

difference 1.8 ± 4.5 1.2 ± 5.3 0.8 ± 1.1 0.6 ± 0.9 -1.3 ± 1.8 1.4 ± 2.4 0.9 ± 2.1 3.4±4.7

Table 10.2: Endpoint differences (Dmean and Dmax) between prediction (pKBP)
and final DVH (fKBP) for all 20 patients (2 CBCTs for patient) of the evaluation
set in term of mean value±SD.
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Figure 10.2: KBP-predicted DVH bounds (stdKBP), mid KBP-predicted DVH
(DVHpKBP ), final KBP DVH (DVHfKBP) and delivered DVH (DVHd) for each or-
gan for patient #7 fraction 16.

The overall fSR and pSR (mean±1SD) for all patient OARs and the fractions

were 0.07±2.73 and 0.08±2.98, respectively. A significant difference was found

between pSR and effective fSR (p=0.03). For each OAR, the mean and stan-

dard deviation of fSR and pSR values (the latter in brackets) were -1.34±2.15

(-0.97±2.30), 0.10±1.13 (0.07±1.20), 1.54±4.04 (0.70±3.81), 0.59± 2.96 (0.03
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±2.96), -0.20 ±2.72 (1.07±2.61), -0.55±1.47 (1.48 ±3.00), 0.59±2.17 (-0.85±
3.13) and -0.27±3.08 (-1.18±3.04) for spinal cord, brainstem, left parotid, right

parotid, mandible, oesophagus, oral cavity and larynx, respectively. The fSR and

pSR values were similar between the two fractions. The Wilcoxon two-sided signed

rank test confirmed significant differences for fSR values of the 16th and 26th frac-

tions at p<0.01. No significant difference was observed in the pSR distribution of

the two fractions. For 48% of the cases (N=310), KBP predicted a positive gain

from re-planning (pSR>0). Final DVHs confirmed the effective gain fSR>0 in a

similar percentage, 47%, of cases. Figure 3 shows a boxplot of the comparison

between pSRs and fSRs for each organ for all 40 cases. Overall, there was no

observed trend between median fSRs and median pSRs. For brainstem, parotids,

oesophagus, and larynx, median fSRs were higher than their respective pSRs, as

reported in Figure 10.3.

Figure 10.3: Boxplot of predicted and final gain in terms of pSRs (white) and fSRs
(shaded) for each organ for all 20 delivered adapted-CBCT and KBP plans. The
central mark represents the median value, whereas the edges of the boxes are
the 25th and 75th percentiles, respectively. The whiskers extend to the maximum
distance, and the crosses represent individual outliers.
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10.4.3 KBP model uncertainties

Ideally KBP prediction uncertainties should be significantly smaller than, or at

least comparable to the predicted gain. However, even if the model was trained

with Pareto optimal plans, a relevant KBP prediction uncertainty is still present.

For each OAR and each case, this study compared the pKBP uncertanty values

versus the pASR, the latter representing the predicted gain of replanning quanti-

fied using ASR ( subsection 10.3.7). These values are plotted in the correlation

graph reported in Figure 10.4a. Each marker represents a plan of the evaluation

set for which the pASR was higher (circle) or lower (cross) than the pKBP uncer-

tainty. Overall, the mean pASR values were similar to KBP uncertainties and the

pASR SD slightly higher than KBP uncertainties, with values of 2.78±2.13 and

2.38±0.79 respectively.

A Wilcoxon two-sided signed rank statistical test confirmed that there was not

a significant difference between the two groups (p=0.56). From Figure 10.4, it is

possible to observe that the correlation between KBP uncertainties and pASR

was strictly related to OAR and a single item. The ideal situation in Figure 10.4a

would be to see all points well above the diagonal line of unity, indicating a pASR

value significantly larger than the KBP uncertainty (for each case). However, many

items in Figure 10.4a fall below the diagonal. This finding means that in those

cases KBP uncertainties were higher than predicted gains in terms of ASR. It

was found that 15/40, 20/40, 19/40, 20/40, 20/40, 15/40, 23/40 and 15/30 points

for pASR were higher than the corresponding pKBP uncertainty, for spinal cord,

brainstem, left and right parotid, oral cavity, mandible, oesophagus, and larynx

respectively. This is represented in Figure 10.4 as a square in the lower right

corner. When the gain was lower/higher than uncertainties for more than half of

the items the square is filled with black/gray colour; in the case of equality the

square was white.

In Figure 10.4b the correlation between fKBP uncertainties and final gains,

quantified as fASR, is shown. In comparison with Figure 10.4a, where pKBP

uncertainties were considered, fewer points fall below the bisector. This means

that the fKBP uncertainties were smaller than final gain, in terms of ASR. Overall,

mean and SD values of 2.12±2.02 and 1.40±.61 were obtained for fASR and



10.4 R E S U LT S 181

Figure 10.4: a) Correlation graphs of 1 SD predictions of pKBP uncertainties
versus pASR from re-planning, for each OAR model. b) Correlation graphs of
fKBP uncertainties versus fASR from re-planning, for each OAR model. Each
marker represents a plan for the evaluation set for which the gain is higher (circle)
or lower (cross) than the KBP uncertainty. This is represented in each panel of the
figure as a square in the lower right corner. When the gain resulted lower/higher
that uncertainties for more than half of the items the square is filled black/gray
colour; in the case of equality the square was filled in white.
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fKBP uncertainties respectively, with p-values �0.01. This confirms that the dif-

ference between the two distributions is statistically significant. In this case it was

found that 26/40, 20/40, 28/40, 36/40, 31/40, 22/40, 25/40 and 18/30 cases for

predicted gain were higher than the corresponding KBP uncertainties, for spinal

cord, brainstem, left and right parotid, oral cavity, mandible, oesophagus, and lar-

ynx respectively.

10.4.4 Discriminant analysis

Figure 10.5 shows the correlation graph between pSR and fSR for the 20 patients

and 2 fractions considered (N=40 cases). Overall, the two groups were deemed

to be correlated with a coefficient of 0.72 (p<0.01). Single OAR correlation co-

efficients and p-values were 0.90 (p<0.01), 0.91 (p<0.01), 0.57 (p=0.18), 0.76

(p=0.04), 0.71 (p=0.04), 0.83 (p=0.01), 0.72 (p=0.04) and 0.42 (p=0.30) for the

spinal cord, brainstem, parotids (left and right), oral cavity, mandible, oesopha-

gus, and larynx, respectively. From discriminant analysis, the OP values for each

of the OARs were 0.20, 0.09, -0.61, 0.70, 0.78, 1.67, 0.03 and -2.15. These OPs

represent guidelines for clinical decision making using pSR of KBP values to ob-

tain a real gain after plan optimisation (fSR>0). Figure 10.5 reports, for each

OAR, the pSR and fSR. The OPs are represented by a vertical line in each graph

for each organ. It is possible to observe that, for various OARs, many fSRs are

positive for pSR values greater than OPs (marked as circles).

In Figure 10.6, ROC curves are shown separately for each OAR. The corre-

sponding areas under the curve (AUCs) give an effective measure of the accu-

racy of the pSR prediction and were 0.824, 0.704, 0.974, 0.863, 0.772, 0.821 and

0.886 for the spinal cord, brainstem, parotids, oral cavity, mandible, oesophagus,

and larynx, respectively. Overall, among the 310 cases (in 10 cases the larynx

was missing), TP were 140, TN were 104, FP were 36 and FN were 30. From the

ROC analysis, the sensitivity and specificity of the overall model were 0.69 and

0.78, respectively. The associated accuracy was 0.74, and the estimation error

was 0.26.
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Figure 10.5: Correlation graph of predicted KBP gain pSR and fSR values for the
20 patients, where both fractions are considered (40 adapted CTs). OPs found
from the ROC analysis are represented by a vertical line in each graph for each
organ. Each marker represents a plan for the evaluation set for which the pSR
were higher/right (circle) or lower/left (cross) of the OP value (vertical line).
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Figure 10.6: ROC curve for each OAR. The corresponding AUCs were 0.824,
0.704, 0.974, 0.863, 0.772, 0.821 and 0.886 for the spinal cord, brainstem,
parotids, oral cavity, mandible, oesophagus, and larynx, respectively.
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10.5 D I S C U S S I O N

In this study, the use of a KBP tool for ART and evaluated the predicted gain from

re-planning for OARs has been investigated. The KBP model was trained using

Pareto-optimal treatment plans that were all automatically generated using the

Eclipse MCO module with a uniquely prioritised, objective optimisation list, avoid-

ing the use of manually generated plans to train the model as these generally

suffer from variation in quality and inconsistencies among different planners. To

assess the inherent accuracy of RapidPlan predictions for ART re-planning, the

gain from re-planning was quantified by comparing DVHs of the original plan recal-

culated on patient anatomy, imaged at two different time points during treatment,

with predicted and final KBP DVH obtained with a new plan on the same image

set. Discriminant analysis performed in this study allowed an estimation of the

KBP predictive power for the effective gain from re-planning, with an AUC value

greater than 0.7 (Figure 10.6) for all OARs, confirming that mid-line DVH could be

used as a good surrogate for prediction values as previously suggested in other

works [23, 24]. ROC curve analysis established the best cut-off for predicted val-

ues for clinical purposes (OPs (subsection 10.3.8)). These OPs were found to be

positive (range: [0.03, 1.67]) for 5 OAR models, except for the parotids (-0.61) and

larynx (-2.15). Adapted-CTs were used, based on deformable image registration

between planning CT and CBCT respectively, for fraction 16 and fraction 26. The

validation of image registration algorithm for clinical use remains a challenging

task in ART, as their accuracy depends on the complexity and quality of the im-

ages used in the registration task [182, 183]. In the absence of standardized tools,

the accuracy of registration in this study was verified by means of a visual inspec-

tion. Deformed images (adapted-CTs), deformed structures on adapted-CTs and

magnitude of the deformable vector fields were all carefully assessed. Since the

investigations were performed directly on adapted-CTs by comparing predicted

and final KBP DVH with the original plan recalculated on adapted-CT, this analysis

was not directly influenced by the registration uncertainties. An optimal prediction

model needs a prediction range (predicted uncertainty) that is as small as possi-

ble. Said range is defined in RapidPlan as 1 SD from the predicted result. A larger

prediction range means that the model has larger uncertainties. In the MCO-KBP



186 K B P P R E D I C T I O N S TO E N H A N C E AU TO M AT E D R E - P L A N N I N G S T R AT E G I E S I N H N A R T

model training, consistently generated Pareto-optimal plans were used to build

models. However, a significant statistical deviation from predicted DVH bounds is

still present, as reported in Figure 10.2 for an example patient from the evaluation

set. Since manual plans were not used to build the model, the deviation is not

related to the quality of the suboptimal plans but only to the intrinsic limitations

of the model. The KBP prediction error bounds led to significantly higher pKBP

uncertainty, as reported in Figure 10.4a compared with the predicted gain in term

of ASR for several cases. Both quantities (pASR and KBP uncertainties) were de-

pendent on the OAR KBP model (Figure 10.4). Overall, pASR of pKBP uncertain-

ties and the ASR of predicted gains when a new plan was used were very close

in average values and Wilcoxon signed rank tests confirmed no significant differ-

ences between the two groups (p>0.05). When considering the final values after

optimisation this relationship improved, showing fASR values higher than corre-

sponding fKBP uncertainty values for the majority of cases (Figure 10.4b). Overall,

predicted, and final gains, pSR and fSR, were correlated (p<0.01) and showed

a similar proportion of cases with positive gain predicted (48%) with respect to

positive actual gain (47%). In the process of building the KBP prediction model,

outliers are defined as training plans that could result in undesirable bias in the

models. In the absence of general rules, some criteria to better identify and man-

age these possible outliers have been previously published [24, 80, 82]. In this

study, all plans used to build the model were Pareto-optimal with consistent trade-

offs between all treatment objectives. Therefore, any dosimetric outliers were not

expect in the training set. However, the Varian MA tool still identified some in-

stances of outliers in the current training dataset (Table 10.1). Those potential

outliers could have arisen due to the limited range of geometric information in the

input data and/or intrinsic limits of the models, as reported in a previous study

by Cagni et al. [82]. Varian’s RapidPlan guide indicates a minimum number of 20

plans to train a model. However, Boutilier et al [81] have shown that for prostate

cancer DVH prediction, RapidPlan needs at least 75 plans to achieve good predic-

tion accuracy. Fogliata et al. [24] considered 83 patients for building a KBP model

with RapidPlan and the models were validated on 20 HN patients. In line with this

approach, our model was built on 80 cases for training and 20 cases for valida-

tion. The model quality was evaluated by checking the goodness of fit statistics
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for each structure, with the coefficient of determination R2, with observed values

higher than 0.8 for all structures except spinal cord, and the average Pearson’s

chi square χ2, with all observed values less than 1.1 (Table 10.1). These results

are in line with the KBP models of goodness of fit reported in other studies [18,

23, 24]. Moreover, differences in terms of model predicted and final endpoints

(Dmax and Dmean) were not statistically significant (Table 10.2), confirming the

goodness of model prediction. Sum of residuals (SR) between entire DVHs were

used as the metric to quantify predicted and final OAR gain. From a radiobiolog-

ical perspective, SR gives interesting information about global DVH and mean

dose variation, generally considered for parallel organs, such as the parotids, lar-

ynx, oral cavity, or oesophagus [182, 183]. On the other hand, for serial organs

such as the spinal cord, only the high dose region of the DVH is correlated with

radiation-induced complications [182, 183]. In this work, the spinal cord had the

worst (negative) gain among all OARs with a mean final SR of -1.34, but it did

not provide information about the radiobiological integrity of the organ since there

was no indication of how its maximum delivered dose changed. For this reason,

specific DVH endpoints were considered in order to summarize the RapidPlan

prediction performance, as described in Table 10.2.

10.6 C O N C L U S I O N S

This work has demonstrated the feasibility of using knowledge-based tools to es-

tablish the need for plan adaptation based on OAR sparing to help automate the

process of re-planning. This study has shown that the prediction uncertainties of

knowledge-based planning tools trained with Pareto-optimal plans are sufficiently

low for such tools to be used in adaptive radiotherapy. The approach described

in this work, combined with the previous chapter, chapter 9, where a standard-

ized method to test DIR in ART process was presented, has the potential to be

implemented in an on-line adaptive radiotherapy process; and, in more generally,

the work of chapter 9 and chapter 10 can speed up and standardize clinical ART

process for HN patients.
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Human beings set out to encounter other

worlds, other civilizations, without having fully

gotten to know their own hidden recesses,

their blind alleys, well shafts, dark barricaded

doors.

Stanisław Lem - Solaris

11.1 S U M M A RY O F S I G N I F I C A N T C O N T R I B U T I O N S

In this thesis, automated treatment planning tools have been developed and inves-

tigated, focusing on head and neck primarily and also on breast cancer. Quality

improvement related to manual planning was one key aspects within the research

scope. The impact of automated planning (knowledge based tools) and standard-

ization methods for quality assurance in adaptive radiotherapy was also investi-

gated. The performed research has produced a published paper in an important

journal in the field. Another area of research developed in this thesis concerned

the choice of the best plan for clinical treatment. The results presented empha-

sise not only the necessity for standardisation using automation, but also the

importance of the plan quality assessment step of the clinical radiotherapy work-

flow. This is a novel aspect not previously investigated, to best of current knowl-

edge. In this area, the performed research also produced a published paper in

an important journal in the field. There is now a new project already approved by

ethical committee on breast planning evaluations over several institutes (see sub-

section 11.2.2 of this chapter for details). In this final chapter, the focus will be on

challenges that automated planning and tools bring within clinics and the benefits

of automated planning in treatment technique comparisons and plan quality eval-

uation. To conclude, possibilities for current and future research are discussed.

191
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11.1.1 Automatic Planning for plan quality and plan consistency

Ideally, auto-planning results in all patients having a final acceptable high-quality

plan, which should also be Pareto-optimal. For the vast majority of patients there

should at least be no need for manual fine-tuning of the auto-plan. To reach this

point, proper configuration of the auto-planning algorithm is crucial. In multicrite-

ria optimisation algorithms, configuration means generation of a wish-list [65] to

obtain plans of good quality and consistency. The process of wish-list tuning was

described in chapter 3 for head and neck and chapter 8 for breast cancer. A well

constructed wish-list can ensure that plans are generated in line with scientific

knowledge, as well as local treatment traditions, e.g. regarding the required level

of overall high-dose conformality relative to sparing of specific OARs. The con-

figurations performed for the studies in this thesis have resulted in the following

observations.

i. Each wish-list determines the plan quality for an entire patient group. If the

configuration is sub-optimal, the quality of all plans will be sub-optimal, effec-

tively introducing a systematic problem. There is never a guarantee that the

best possible wish-list will be found, because the best possible plan quality

is generally not well defined. Comparison with manually generated, clinically

delivered plans is a basic measure to ensure that at least the equivalent clin-

ical quality is obtained. However, as demonstrated in this thesis, in chapters

chapter 3, chapter 6, and chapter 8, extensive tuning generally results in a

wish-list that can exceed standard clinical plan quality. Tuning of wish-lists

is however a complex, interactive procedure. As for manual planning for in-

dividual patients, it is not always clear when to stop. Previous experience

in generation of wish-lists is likely to facilitate the task and may result in a

better outcome. It is also important that enough time is reserved to obtain

the best possible result. This observation is not new but is a confirmation of

previous studies on automatic planning.

ii. A well-established treatment planning protocol, agreed upon by the treating

clinicians, is crucial for proper wish-list tuning. However, these protocols

can generally only partly describe how optimal plans should appear, as it
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is virtually impossible to fully quantify requirements for conformality, dose

spikes, the dose bath, hot/cold spots, and balances between all treatment

objectives. Chapter 3 and chapter 8 reported on the large differences found

between clinical protocol and final wish-list used in Erasmus-iCycle. This

observation is not knew but it is a confirm of previously studies on automatic

planning.

iii. Automated planning showed comparable quality to manual planning but had

higher consistency between plans relative to manual plans. This has been

shown previously in the literature [7, 82, 101–104] and is also demonstrated

in this thesis, with data presented in chapter 6 (Figure 6.4 panels f, g and

h). There it was found that there was higher agreement between evaluators

when automated plans using wish-lists were considered compared to man-

ual plan based judgement.

Figure 11.1 reports for the different plan types described in chapter 6, i.e.

CLIN (manual plans), MCOa (automated plan generated with a consistent

single best wish-list) and MCOx (automated plan generated using subopti-

mal wish-list with different endpoint priorities ) the absolute scores between

9 evaluators studied in chapter 6. MCOa showed the best absolute scores

with the minimum spread over all evaluators compared to CLIN and MCOx.

Moreover for 8/9 evaluators MCOa was the plan type which showed highest

absolute scores. The finding that automatic planning can reduce the inter

observer variability in plan quality assessment is new respect to the back-

ground presented in the literature (more details in the next section).

11.1.2 Automatic tools to support plan quality assessment variability

In most centres, treatment plans are prepared by MPs, and evaluated for final

clinical approval by the treating ROs. The process, often denoted as manual plan-

ning or trial-and-error planning, may have several iterations in which the planner

adjusts intermediate plans, based on feedback from the RO. Limited common

understanding or agreement between planners and ROs on what constitutes a

’good plan’ can result in sub-optimal dose distributions, even with iteration loops.
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Figure 11.1: Raw a-b-c, boxplot of absolute scores over 65 plans for each evalu-
ator (5 radiation oncologists (ROs) and 4 medical physicists (MPs) considered in
the study reported in chapter 6 divided by plan type, CLIN (manual), MCOa (auto-
matically generated using optimal wish-list) and MCOx(automatically generated
using sub-optimal wish-list). Raw d, histogram of the highest score frequency di-
vided by plan type for each evaluator.
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In this thesis, the differences between groups of ROs and planning MPs in a sin-

gle radiotherapy department were investigated in terms of perceived quality of

oropharyngeal cancer plans. To the best of current knowledge, this is the first

study (presented in chapter 6) that systematically investigates variations in sub-

jective plan quality assessment among ROs and MPs working in a particular de-

partment.

i. The results of the current work could stimulate similar studies in other de-

partments as they seem to indicate an important weak link in the radiother-

apy planning chain. It is commonly recognized that variations between ROs

in delineating targets is a major concern in clinical radiotherapy. This study

suggests that large inter-observer variations in plan quality assessments

(even in a single department), could be another ‘Achilles heel’ inhibiting suc-

cessful treatment.

ii. It is possible that broad departmental discussions on plan requirements,

aiming at a generally shared but precisely defined view on plan quality, could

reduce the currently large inter-observer variations in plan quality assess-

ment. In chapter 7, a method to better understand the treatment plan evalua-

tion process in radiotherapy through the use of machine learning (ML) meth-

ods and an idealised dose model (called gUIDE) was presented. This tool

was shown to improve the accuracy of using ML tools to model plan qual-

ity evaluation process for several users. A high degree of variability among

users was found in terms of the features of importance considered by each

evaluator with the ML approach considered for the evaluation. Future ap-

plication of such tools could possibly contribute to enhanced plan quality

consistency. One approach could be to use these for a training purposes, in

order to reduce the variability in the pattern of feature importance revealed

by ML and gUIDE.

iii. Automated planning could also result in reduction of plan quality variability.

This has been shown earlier in this chapter (Figure 11.1). Enhanced plan

quality with automated planning compared to manual planning has been

observed previously [44, 54, 97–100], but the results presented in this thesis

are the first showing reduced inter-observer variations in subjective plan
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scores for the automated plans compared to corresponding manual plans.

Other studies have identified the use of numerical plan quality assessment

tools to enhance treatment plan quality [112].

11.1.3 Automatic tools for adaptive radiotherapy

Within this thesis several aspects of the automation process in adaptive radiother-

apy have been investigated (chapter 9 and chapter 10).

i. One current issue in ART is the lack of standardisation methods to test the

quality of deformable image registrations. In this thesis a registration-based

method for deformable image registration quality assurance for adaptive ra-

diotherapy, using digitally post-processed head and neck anthropomorphic

phantom image datasets was developed and analysed. One of the main find-

ings of this work was that spatial and dose errors are a function of the magni-

tude of the deformation and of the gradient of the dose distribution. This em-

phasizes the importance of performing patient specific DIR verification and

consequently, the need to develop and make available tools that are fit for

this purpose. A novel method to evaluate the quality of patient-specific multi-

modality CT-CBCT DIR for adaptive radiotherapy of head and neck patients

has been investigated in the thesis. The methodology described allows di-

rect testing of DIR algorithms for clinical registration, which can produce

valuable insights into their clinical impact on the adapted dose distribution.

The key technical requirement for using this method is the availability of an

independent image registration software platform (in addition to the clinical

system). This work, reported in chapter 9 contributes to the study of stan-

dardisation and automation of quality assurance methods for deformable

image registration in radiotherapy.

ii. The technique of knowledge-based planning used generally for automation

of plan generation, was applied in this thesis for the adaptive radiotherapy

process, using it for potential organ at risk sparing estimation in the replan-

ning strategy for head and neck ART. KBP tools can generate estimated

DVHs based on previous patient anatomy and dose distributions. Previ-
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ously published studies have demonstrated the efficacy of KBP to create

a new plan for several cancer sites. KBP training generally involves using a

database of manually generated treatment plans that can suffer from plan

quality variation and inconsistency. DVH predictions shown by the KBP tool

consisted of two DVH bounds indicating 68% probability that the final DVH

should fall between the bounds. To maximise the performance of KBPs (i.e.

reducing the prediction DVH bounds), Pareto plan solutions, created with

the Varian MCO Trade-Off module, were used to train the KBP model. How-

ever, even if the model was trained with Pareto optimal plans, a relevant

KBP prediction uncertainty was still present. To be used effectively in ART,

KBP prediction uncertainties should be significantly smaller than, or at least

comparable to, the predicted gain in OAR sparing if a new plan is performed.

Chapter 10 demonstrated the feasibility of using KBP tools to establish the

need for plan adaptation based on OAR sparing to help automate the pro-

cess of re-planning. This study has shown that the prediction uncertainties

of KBP tools trained with Pareto-optimal plans are sufficiently low for such

tools to be used in ART. A systematic workflow for identifying effective OAR

sparing in replanning strategies based on KBP prediction is presented. It

was concluded that this method could provide an important KBP application

for adaptive radiotherapy and give feasible estimation of OAR sparing. The

approach described in this work informs development of the automation of

the adaptive radiotherapy processes.

11.2 C U R R E N T A N D F U T U R E W O R K

11.2.1 gUIDE and ML as tool to reduce the inter-user variability in plan quality

assessment

The study presented in Chapter 8 is the subject of current study. The following

aspects are work in progress.

i. Improving the AUC of ML-gUIDE models considering other endpoints more

related to dose distribution rather than DVH data. This is done to better simu-

late the real judgement of the clinician during plan approval. A key aspect of
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the plan quality assessment involves looking at the isodose distribution on

planning CT slices and structure sets. To include this, a cumulative quality

volume histogram (QVH) is considered. QVH is simply the histogram of ratio

between plan dose and ideal dose, given in this study by gUIDE, defined for

each voxel. The ideal QVH is a step function at Q = 1 [184]. The hypoth-

esis is that by considering features more related to the real plan approval

process, the ML model will give better results.

ii. Using the results from ML-gUIDE found in point i. to build a training process

for plan quality assessment for a particular department. This includes recog-

nition of a specific feature pattern as the favoured one (i.e. the most chosen

one). By discussing and sharing the feature importance variations quantified

by ML-gUIDE to all the evaluators, aiming at a widely shared, and precisely

defined view on plan quality, could improve the current large inter-observer

variation in plan quality assessments. A second round of plan quality as-

sessment may then be done after this training to check if the agreement

has improved among users.

11.2.2 AIRPLAN B project

A study called ‘Automation In Radiotherapy treatment PLANs: optimisation and

evaluation processes in Breast cancer treatment’ (AIRPLAN B) was presented

and approved by ethical committee in August 2021 (689/2021/OSS/IRCCSRE -

AIRPLANE B) and with thesis author as principal investigator. This is based on the

study design and methods developed in the research study for head-neck cancer

treatment, described in chapter 6 and chapter 7 and recently published [95]. Initial

results have been presented in chapter 8 of this thesis. The central hypothesis

of this study is that it is possible to quantify the differences between ROs and

MPs intra and inter-institute in perceived quality of breast cancer plans. Broad

departmental and inter-departmental discussions on plan requirements, aiming

at a broadly shared, and precisely defined view on plan quality, could improve

the current large inter-observer variation in plan quality assessments. The data

could be used to guide automated RT planning evaluation using machine learning
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tools able to assist departments for plan quality assurance, quality evaluation

and reducing plan quality variation [95, 185]. A second hypothesis is that the

introduction of automation techniques into breast radiotherapy planning practice

can improve the plan quality and reduce the planners’ variability. The study is a

retrospective and observational study and it is divided into two main parts.

1. Generation of Pareto optimal plans to improve complex breast treatment

planning (this is initially reported in chapter 8 of this thesis). About 60/80

left breast cancer patients who underwent radiotherapy treatment at AUSL-

IRCCS are included. Two physicians will check all OARs and target contour-

ing to be consistent within the patient selected group. The OARs consid-

ered were the ipsilateral and contralateral lungs, the heart, the contralateral

breast, the spinal cord and the left arteria descending (LAD). An internal

clinical protocol (wish-list) is defined for breast inside AUSL-IRCCS Reg-

gio Emilia hospital, based on international guidelines (chapter 8). Pareto

optimal plans are generated using the Erasums-iCycle module. Plan gen-

eration is based on a wish-list, describing hard planning constraints and

planning objectives used at AUSL-IRCCS of Reggio Emilia. Each objective

in the wish-list will have an assigned priority. Inside the optimizer, the objec-

tive priorities will be used for multi-criterial plan generation choice, aiming

at clinically favourable balances between several, often competing objec-

tives. These balances will be found in a procedure that is identical for all

patients, guaranteeing consistent plan quality (see chapter 8). Pareto opti-

mal plans, generated with the Erasmus-iCycle module, will be used as ref-

erence information to develop and define an in-house complex technique

(IMRT or VMAT) using the AUSL-IRCCS clinical treatment planning system

Eclipse. Comparison between Pareto optimal Erasmus-iCycle module plans

and complex Eclipse plans will be performed in terms of dosimetric endpoint

and clinical evaluation process by ROs and MPs of AUSL-IRCCS institute.

2. Evaluation of variation in plan quality assessment between radiation oncol-

ogists and medical physicists in both single and multiple radiotherapy de-

partments. For the same group of patients considered in 1) apart from the

clinical 3D-CRT (CLIN) plans used for the treatment, from 2 to 4 additional

IMRT plans will be produced for this study for each patient. All these ad-
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ditional plans will be generated using the Erasmus-iCycle module. One of

these will be generated with the wish-list defined by AUSL-IRCCS of Reg-

gio Emilia (MCOa plan) in Part 1 of the study and will be the reference

plan. The extra plans will have variable plan quality and will be generated

with automated planning by varying some geometrical parameters or wish-

list priorities with respect to the reference (MCOx plans). All plans will be

evaluated in this study, resulting in a total of 150/250 evaluable plans. All

patients and plans will be anonymized and each of the available plans will

be evaluated by three departmental ROs and three MPs. For each patient,

every observer independently will give a score to each of the 3 or 5 available

plans in a single session. Scoring will be blinded, i.e. observers will not know

how the plans were generated. Evaluators will know only some information

concerning patients: age, tumour stage and if the patient has any heart dis-

ease. Apart from giving a quality score to each plan, observers will be also

asked what change they considered most desirable for improvement of the

plan (without knowing whether this would be feasible or not) and to choose

the plan for each patient that theoretically will go to the treatment. To as-

sess intra-observer variability in quality scoring, 1 RO and 1MP will perform

the entire scoring process a second time, with a delay of at least a month.

Previous results will be blinded. The same procedures (inter-observers and

intra-observer), considering the same group of patients/and plans of AUSL-

IRCCS of Reggio Emilia, will be performed in other 2 institutes, Firenze and

Piacenza, by a group of ROs and MPs for each institute. Inter and intra eval-

uator variability will be quantified for each individual department and over all

departments. In this second part, the investigators will use both statistical

and artificial ML methods to handle information contained in dose distribu-

tions and to determine training methods that can be used to support the

evaluation of breast radiotherapy treatment plans and improve consistency

both within and between departments.
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