
Robotic Object Manipulation via
Hierarchical and Affordance Learning

September 2023

Xintong Yang

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (Engineering)

School of Engineering

Cardiff University, United Kingdom

Abstract

With the rise of computation power and machine learning techniques,

a shift of research interest is happening to roboticists. Against this back-

ground, this thesis seeks to develop or enhance learning-based grasping and

manipulation systems.

This thesis first proposes a method, named A2, to improve the sam-

ple efficiency of end-to-end deep reinforcement learning algorithms for long-

horizon, multi-step and sparse reward manipulation. The named A2 comes

from the fact that it uses Abstract demonstrations to guide the learning pro-

cess and Adaptively adjusts exploration according to online performances.

Experiments in a series of multi-step gridworld tasks and manipulation tasks

demonstrate significant performance gains over baselines.

Then, this thesis develops a hierarchical reinforcement learning approach

towards solving the long-horizon manipulation tasks. Specifically, the pro-

posed universal option framework integrates the knowledge-sharing advan-

tage of goal-conditioned reinforcement learning into hierarchical reinforce-

ment learning. An analysis of the parallel training non-stationarity problem

is also conducted, and the A2 method is employed to address the issue. Ex-

periments in a series of continuous multi-step, multi-outcome block stack-

ing tasks demonstrate significant performance gains as well as reductions of

memory and repeated computation over baselines.

Finally, this thesis studies the interplay between grasp generation and

manipulation motion generation, arguing that selecting a good grasp before

manipulation is essential for contact-rich manipulation tasks. A theory of

general affordances based on the reinforcement learning paradigm is devel-

oped and used to represent the relationship between grasp generation and

manipulation performances. This leads to the general affordance-aware ma-

i

nipulation framework, which selects task-agnostic grasps for downstream ma-

nipulation based on the predicted manipulation performances. Experiments

on a series of contact-rich hook separation tasks prove the effectiveness of the

proposed framework and showcase significant performance gains by filtering

away unsatisfactory grasps.

ii

Acknowledgement

I would like to express my acknowledgement to those who have loved, sup-

ported and helped me in the four years of my PhD career.

I deeply thank my supervisor Dr. Ze Ji for accepting me as one of his

first PhD students and giving me enormous support in the development of

engineering, academics, teaching and research resources. My thanks also go

to my co-supervisors Dr. Wu Jing and Dr. Yukun Lai who have given me

valuable advice on research, programming and academic writing. I express

my thanks to Dr Ting Zhang who introduced me to my PhD supervisor.

I came to the UK by myself in September 2019, leaving the place where I

had lived for 25 years. I could not have possibly reached even the beginning

of my PhD without the love and support of my parents. My deepest thanks

go to my loving father and mother, who have sacrificed themselves, put their

trust in me and let me pursue my own future.

During the most stressful and lonely days of my life, at times when I

could not even notice the pressure and pain in my heart, it was my dear wife

who stayed with me, guided me, protected me, helped me and encouraged

me. My heart belongs to my dear wife, who has walked by me and witnessed

my successes and failures with her own eyes.

I am grateful for the companionship and help provided by my colleagues

in the Cardiff RoPal group. It has been good for me to work alongside them.

I also deeply appreciate the love, help and encouragement that I received

from my dear friends in Cardiff. I am grateful for the practical and spiritual

gifts they have generously given to me.

Finally, I express my thanks to the China Scholarship Council which

financially supports my tuition fee and living costs during my study at Cardiff

University.

iii

Contents

Abstract i

Acknowledgement iii

List of Figures viii

List of Tables xiv

List of Acronyms xvi

List of Notations xviii

Publication List xxiv

1 Introduction 1

1.1 Background . 2

1.2 Aim and Ojbectives . 3

1.3 Contributions . 5

1.4 Outline of the thesis . 7

2 Literature review 9

2.1 Introduction . 10

2.2 Grasp planning . 14

iv

2.2.1 Background . 14

2.2.2 Classic methods and constraints 18

2.2.3 Deep learning task-agnostic grasp 21

2.2.4 Deep learning task-oriented grasp 26

2.2.5 Summary . 28

2.3 Manipulator control . 29

2.3.1 Background . 29

2.3.2 Classic motion planning 34

2.3.3 Motion policy learning 37

2.3.4 Summary . 44

2.4 Hierarchical manipulation systems 45

2.4.1 Task and motion planning 46

2.4.2 Learning-based hierarchical control 49

2.4.3 Manipulation affordance learning 53

2.4.4 Summary . 55

2.5 Robotic simulations . 56

2.5.1 Simulators . 57

2.5.2 Sim-to-real policy transfer 61

2.5.3 Summary . 64

3 Preliminary 65

3.1 Standard Reinforcement Learning 66

3.1.1 Markov decision process 67

3.1.2 RL algorithm foundations 69

3.1.3 Value-based method 73

3.1.4 Policy gradient . 79

3.1.5 Actor-critic . 81

3.1.6 Summary . 84

v

3.2 Deep Reinforcement Learning 84

3.2.1 Deep learning basics 85

3.2.2 Deep q-learning . 88

3.2.3 Deep deterministic policy gradient 90

3.2.4 Soft actor critic . 93

3.2.5 Optimisation tricks . 96

3.2.6 Summary . 99

4 A2: Accelerate Reinforcement Learning

for Multi-step Robotic Manipulation 100

4.1 Introduction . 101

4.1.1 Summary and chapter organisation 105

4.2 Method . 105

4.2.1 Goal-conditioned reinforcement learning 106

4.2.2 Problem description and assumptions 112

4.2.3 Abstract Demonstration 114

4.2.4 Adaptive Exploration 119

4.2.5 Summary . 123

4.3 Empirical Results . 125

4.3.1 Task and implementation details 125

4.3.2 Ablation study . 133

4.3.3 General performance 137

4.4 Summary . 139

5 Universal Option Framework

for Multi-outcome Multi-step Robotic Manipulation 141

5.1 Introduction . 142

5.1.1 Summary and chapter organisation 145

vi

5.2 Hierarchical Reinforcement Learning 146

5.2.1 The option framework 147

5.2.2 How options have been constructed 150

5.2.3 Inter-option policy learning 153

5.2.4 Summary . 155

5.3 The Universal Option Framework 156

5.3.1 Universal option and high-level policy 156

5.3.2 Implementation . 160

5.4 Training Methods . 167

5.4.1 Learning algorithms 167

5.4.2 Tackling non-stationarity 170

5.4.3 Summary . 173

5.5 Empirical Results . 175

5.5.1 Task design . 175

5.5.2 Parallel training improvement 177

5.5.3 Learning multiple outcomes 184

5.5.4 Additional tasks . 187

5.6 Summary . 188

6 Contact-Rich Grasping and Manipulation

with General Affordance 190

6.1 Introduction . 191

6.1.1 Related works on object disentangling 193

6.1.2 Summary and chapter organisation 195

6.2 Affordance Theory in RL . 196

6.2.1 Definition . 197

6.2.2 Remarks . 198

6.2.3 General affordance . 200

vii

6.2.4 Summary . 203

6.3 General Affordance-aware Manipulation 204

6.3.1 Task-agnostic grasp generation 205

6.3.2 Manipulation affordance-based grasp filtering 207

6.3.3 Reinforcement learning-based manipulation 212

6.4 Empirical Results . 216

6.4.1 Experiment Design . 216

6.4.2 Performances with task-agnostic grasps 218

6.4.3 Performances with grasp filtering 220

6.5 Summary . 222

7 Conclusion and future work 224

7.1 Conclusion . 225

7.2 Limitations and future work 229

viii

List of Figures

1.1 Human manipulation examples. (a): Playing a joystick. (b):

Knitting. (c) Rearranging tableware. (d) Cable disentangling. 2

2.1 Three types of robot manipulation tasks. (a): A planar pick-

and-place system (Mahler et al., 2017). (b): In-hand manipu-

lation system for the Rubik’s cube (Akkaya et al., 2019). (c):

Pushing, a non-prehensile manipulation skill (Li et al., 2018) . 10

2.2 The typical relationships among manipulation software sub-

systems. Arrows point out the typical orders in which infor-

mation is processed by these subsystems. 12

2.3 Representations of a grasp. (a): object-centric contact anal-

ysis (Nguyen, 1988). (b): planner gripper-centric representa-

tion (Kumra and Kanan, 2017). (c): 3D space gripper-centric

representation (Fang et al., 2020a). (d): A three-fingered hand

and its joint configuration (Takahashi et al., 2008) 16

2.4 Grasp planning method taxonomy. 22

2.5 Examples of robot arms. (a) A robot arm with 3 links and

2 joints. (b): The LBR iiwa robotic arm (7 joints) (Kuka,

2022). (c): The ModuLink space manipulators (Motiv-Space-

Systems, 2022) . 30

2.6 Affordance prediction examples 54

ix

3.1 The reinforcement learning paradigm. In RL, an agent (in

the middle) acts on the environment which feeds back with

the next state and a reward. The agent collects and uses

interaction experiences to serve its purpose of optimising some

tasks. Modern algorithms commonly use a buffer to store and

sample collected data for training deep neural networks. 66

3.2 An interaction sequence of an episode of a finite-horizon MDP 67

3.3 The taxonomy of RL algorithms 71

3.4 A graphic comparison of MC, Sarsa and Q-learning. 76

3.5 Examples of neural networks. 86

4.1 The multistep manipulation task of pushing a block into a

closed chest. 101

4.2 The GridKeyDoor problem. 113

4.3 Experiment tasks. (a) The agent (red) should pick up the key,

open the door and reach the goal cell (green). (b-c) The robot

should open the grey door of the chest, and push or pick-and-

drop the blue lock into the chest. (d) The robot should pick

and stack the blocks at a random position in a random order,

indicated by the transparent spheres. 125

4.4 The chest state representation for task ChestPush and Chest-

PickAndPlace. 128

4.5 Test success rates with different proportions of demonstrated

episodes η. AD : abstract demonstrations. 134

4.6 Test success rates with different proportions of demonstrated

episodes η in {0.75, 0.80, 0.85, 0.90, 0.95, 1.00}. AD : abstract

demonstrations. 135

x

4.7 Test success rates of DQN on gridworld tasks (a-c) and SAC

(d-f) on robotic tasks with and without Polyak averaging. All

cases are run with 75% demonstrated episodes. ADAE : ab-

stract demonstration and adaptive exploration. 136

4.8 Test success rates with different success rate update ratio τS

for adaptive exploration. All cases are run with 75% demon-

strated episodes. ADAE : abstract demonstrations and adap-

tive exploration. 137

4.9 Test success rates of DQN on gridworld tasks (a-c), DDPG

(d-f) and SAC (g-i) on robotic tasks. AD : abstract demon-

strations; ADAE : abstract demonstrations and adaptive ex-

ploration. 138

5.1 A block stack task where the robot needs to stack three blocks

in different orders. 142

5.2 Figure 1 from (Sutton et al., 1999b): The state trajectory of an

MDP is made up of small, discrete-time transitions, whereas

that of an SMDP comprises larger, continuous-time transi-

tions. Options enable an MDP trajectory to be analyzed in

either way. 148

5.3 Example task visualisation. (a) The ‘B→G→R’ outcome of

the fourth basic task; (b) the ‘R→BG’ outcome of the pyramid

task. 176

5.4 Average success rates of the universal high-level policy with

different proportions of demonstrated episodes in the basic

block stacking task 2. 0.0-D, 0.25-D, 0.5-D, 0.75-D, and 1.0-D

denote the respective proportions of demonstrations added in

the episodes. 178

xi

5.5 Average success rate of high-level policy performance for task

2. AAES: the agent with adaptive exploration strategy applied

to the low-level. 180

5.6 Visualisation and the averaged number of required actions for

the three consecutive subtasks of task 2. (a): Visualisation;

(b) The average number of low-level actions needed to achieve

the subtasks as training proceeds. 180

5.7 Average success rates of the universal high-level policy. Sepa.:

Trained with a pre-trained universal option; Para.: Trained

in parallel with the universal option. 182

5.8 Average success rates of HAC and UOF. 183

5.9 Average success rates of achieving the final outcomes with

universal and separated policies for the basic task 2, 3 and 4.

Univ: universal high-level policy; Sepa: separated high-level

policies. 185

6.1 Examples of picking an entangled hook. In the first row, the

robot manages to rotate and lift up only the white hook. While

in the second row, the robot fails to separate the grasped green

hook. 194

6.2 The overall workflow of the proposed general affordance-aware

manipulation (GAM) framework. There are three compo-

nents: 1) a task-agnostic grasp generator (subsection 6.3.1)

that proposes stable TAG poses; 2) the manipulation affordance-

based grasp filter (MAGF) that uses predicted manipulation

performances to filter the TAG poses (subsection 6.3.2); 3) an

RL manipulation policy that controls the robot arm to sepa-

rate the grasped hook (subsection 6.3.3). 204

xii

6.3 The (simplified) GraspNet architecture (Fang et al., 2020a).

It takes into the partial point cloud observation of the scene

and processes the points with the PointNet++ backbone auto-

encoder (Qi et al., 2017). The latent features are used in

the GraspNet to predict grasp poses and their stability and

robustness scores. In this chapter, the latent features and

the grasp poses are used together to predict the manipulation

performances. 206

6.4 Left: hook size and its three keypoints (red). Right: action

space visualisation (rotations about the gripper tip axes and

translations along the world frame axes). 214

6.5 Left: manipulation workplace setting. Right: five task varia-

tions). 217

6.6 Means and standard deviations of the testing results of both

RL agents (Blue and orange), and the performance of the

straight-up lifting motion (green). The performances re-

veal that a large proportion of the TAGs is not suit-

able for the downstream manipulation. The situation

exacerbates as the task becomes more difficult. The first row

shows the success rates, the second row shows the rate of the

object being dropped during manipulation, and the third row

shows the average non-grasped object movements (in meters).

From left to right, the columns correspond to the tasks with

2, 3, and 4 C hooks, 3 C+ hooks and 3 S hooks. 219

xiii

6.7 Comparison of different filtering strategies. SLM: straight-up

lifting motion; HM: hemisphere movements; CM: Cartesian

axes movements; NGOM: non-grasped objects movements. From

left to right: success rates, objects dropping rates, non-grasped

object movements, percentage of discarded grasps and figure

legend. For each histogram, from top to bottom: the task

with 3 S, 3 C+, and 2, 3, and 4 C hooks. 221

xiv

List of Tables

5.1 Basic Block-stacking Tasks. 176

5.2 Additional Block-stacking Task. RBS: random block size. . . . 177

5.3 Approximate memory requirements for training the high-level

policies for task 2, 3 and 4. 186

xv

List of Acronyms

DL Deep learning

RL Reinforcement learning

DRL Deep reinforcement learning

DNN Deep neural network

MLP Multi-layer perceptron

DQN Deep Q network

DDPG Deep deterministic policy optimisation

SAC Soft actor critic

HRL Hierarchical reinforcement learning

UOF Universal option framework

GRL Goal-conditioned reinforcement learning

GAM General affordance-aware manipulation

GPU Graphics processing unit

TAG Task-agnostic grasp

TOG Task-oriented grasp

CEM Cross entropy method

Dof Degree of freedom

PID Proportional–integral–derivative

IL Imitation learning

RRT Rapid-exploring random tree

PRM Probabilistic roadmap

AI Artificial intelligence

TAMP Task and motion planning

GUI Graphic user interface

xvi

URDF Universal Robot Description Format

ROS robot operating system

MDP Markov decision process

MC Monte Carlo

TD Temporal difference

AC Actor critic

MaxEnt Maximum entropy

TD3 Twin delayed deep deterministic policy gradient

HER Hindsight experience replay

PMG Pybullet Multigoal

AD Abstract demonstrations

ADAE Abstract demonstrations & adaptive exploration

SMDP Semi Markov decision process

IOL Intra-option learning

DRAL Deep robotic affordance learning

MAGF Manipulation affordance-based grasp filter

GAP General action-consequence prediction

CM Cartesian movement

HM Hemisphere movement

SLM Straight-up lifting motion

xvii

List of Notations

Index (global meanings unless redefined in the relevant texts):

t index of discrete timestep

n index of samples drawn from a dataset of reply buffer

i, j index of optimisation iteration

Operation:
T∑
t=0

[f(xt)] summation of f(xt) from t = 0 to t = T∑
x

[f(x)] summation of f(x) over the set of x

Ep[X] expectation of X over the distribution p

Ex∼p(x)[f(x)] expectation of f(x) estimated by samples of x drawn

from p(x)

max
x

f(x) maximise f over the set of x

argmax
x

f(x) retrive the x that maximises f

∇f(xxx) compute the gradient of xxx w.r.t. f when xxx is the only

optimisable parameter

∇xxxf(xxx,yyy,zzz) compute the gradient of xxx w.r.t. f when multiple

optimisable parameter occur∫
X
[f(x)] integral of f over x ∈ X

x ∼ p(x) stachastically sample x from distribution p(x)

exp(x) exponentiation of x

⊙ element-wise (Hadamard) product

|| vector concatenation

xviii

Appear first in section 3.1:

S set of all states

A set of all actions

p dynamic transition distribution

p0 initial state distribution

r, rt, rn, r(st, at) rewards (function)

γ discount factor

R space of real number

s, st, sn states

s′, st+1, s
′
n next states

a, at, an actions

G,Gt return (cumulated rewards)

T the length of an episodic trajectory

π(s), π(a|s) policy as deterministic mapping, stochastic distribution

vπ, vπ(s) state value function w.r.t π

qπ, qπ(s, a) q value function w.r.t π

π∗, v∗, q∗ optimal policy and values

St, At, Rt sampled state, action and reward

Eπ expectation over the policy distribution

J(π) cost function for the policy

Q̂, q̂ the target q value

α learning rate or update ratio

δt temporal-different (TD) error

G
(n)
t n-step return from time t

d(s) the function that weights the importance of value error

www,θθθ set of optimisable parameters

xix

q̃www, ṽwww the approximate values w.r.t. parameter www

πθθθ the policy distribution w.r.t. parameter θθθ

dπ(s) the state distribution induced by the policy

advπ(s, a) the advantage function

Pr(s0 → s, k, π) the probability of transitioning to s from s0 in k steps

following the policy π

βθθθ(a|s) a behavioural policy for exploration under the off-policy

setting

ρt the importance sampling ratio

Appear first in section 3.2:

D replay buffer

ξ, ξn a transition, or the n-th transition from a mini-batch of

size N

J(www), J(θθθ) cost function for the parameter

Eξn∼D expectation over the distribution of transitions sampled

from the replay buffer

αw, αθ learning rate or update ratio

www−, θθθ− (delayed) copy of the parameters

Hπ entropy of π

H̄ target entropy

αH the temperature parameter for soft-actor critic update

DKL Kullback-Leibler distance

Ea∼πθθθ expectation over the online policy distribution

Zwww partition function

N (a, b) Gaussian distribution of mean a and variance b

xx

Appear first in chapter 4:

g goal

G set of goals

m(s) a representation mapping from state space to goal space

x Cartesian poses

g+, g− desired goal and undesired goals

G+,G− set of desired goals and undesired goals

δd distance threshold

ḡ+ substitutional desired goal

U{a, b} uniform distribution over the integers between a and b

included

U{x|x ∈ X} unifrom distribution over the set of x

{τj} sequence of trajectories

s+end the target state of a task

p{s+end|s0, τ0, τ1, ...} the probability of ending at the target state following {τj}

from s0

{x∗
n} a sequence of integers indicated the order of subtasks

η demonstration proportion

SSS vector of task performance metrics for a number subtasks

S,SSS Polyak average of the task performances

τS Polyak average update ratio

ϵdqn, ϵϵϵdqn parameter of the ϵ-greedy exploration strategy

ϵddpg, σddpg parameter of the ϵ−Gaussion exploration strategy

σσσsac deviations of the SAC policy distribution

xxi

Appear first in chapter 5:

o an option

O set of options

πo the policy that option o executes

Io set of states where o can be activated

βo, bo stochastic and deterministic termination condition

ũ(s, o) state-option value upon arrival

πL, πH low-level and high-level polcy

og universal option

πL
g , π

H
g universal low-level and high-level policy

ILg set of states where og can be activated

βg, bg stochastic and deterministic goal-augmented termination

condition

AL,AH set of low-level and high-level actions

GL,GH set of low-level and high-level goals

aL, aH low-level and high-level action

gL, gH low-level and high-level goal

mL(s),mH(s) representation mappings from state space to low-level and

high-level goal spaces

x,v,w pose, linear velocity, angular velocity vectors

1 [c(·)] an indicator function that gives 1 when the condition c(·)

is satisfied and 0 otherwise

ξHn the n-th high-level transition of a mini-batch of size N

bn,gL+

aH
the termination condition for the desired low-level goal

selected by action aH in the n-th high-level transition

xxii

Appear first in chapter 6:

Ia, Ia(s), I
p
a the (dynamical) intents of an action a, in state s

S+
a set of states that are desired to be the consequential states

of the action a

I, Ipa set of (dynamical) intents

AFI ,AFp
I the affordances (set of state-action pairs) related to the

(dynamical) intents

pAFI(s, a) the probability of a state-action pair being within the af-

fordance set

y, y(s, a) the measurement of the consequence of taking an action

at a state

Y set of measurement values

Iya,π, I
y
a,π(s) general intent

yπ+(s, a) the measurement of the consequence of taking an action

at a state and following the policy π thereafter

Y+
a,π set of measurement values of taking an action and follow-

ing the policy π thereafter

π̂ a baseline policy

AFy
I,π the general affordances (set of state-action pairs) related

to the general intents for a policy π based on the action

consequences measured by y

Φ,Φ(aH) a mapping from high-level actions to low-level states

ỹπ
L

i,ϑϑϑ the GAP model, the estimated action consequences for πL

based on the i-th measurement approximated by a set of

weights ϑϑϑ

xxiii

Publications

[1] Yang, X., et al., 2021. Hierarchical reinforcement learning with universal

policies for multistep robotic manipulation. IEEE Transactions on Neural

Networks and Learning Systems.

[2] Yang, X., et al., 2021, September. An open-source multi-goal rein-

forcement learning environment for robotic manipulation with pybullet. In

Annual Conference Towards Autonomous Robotic Systems (pp. 14-24).

Springer, Cham.

[3] Yang, X., et al., 2022, September. Abstract demonstrations and adaptive

exploration for efficient and stable multi-step sparse reward reinforcement

learning. In 2022 27th International Conference on Automation and Com-

puting (ICAC). IEEE.

[4] Yang, X., et al., 2023. Recent Advances of Deep Robotic Affordance

Learning (DRAL): A short review. IEEE Transactions on Cognitive and

Developmental Systems (TCDS).

[5] (Under review) Yang, X., et al., 2023. GAM: General Affordance-based

Manipulation for Contact-rich Object Disentangling Tasks.

xxiv

Chapter 1

Introduction

1

1.1 Background

Humans are capable of manipulating objects to serve their day-to-day needs,

such as the tasks shown in Figure 1.1. On one hand, humans possess the

adaptivity, flexibility and dexterity of finger and hand motion control mech-

anisms shown by playing a joystick or knitting a sweater. On the other hand,

in higher-level cognitive processes, humans also have the perception, under-

standing and reasoning abilities for the planning processes for tasks such

as object rearranging and disentangling. Reproducing these manipulation

abilities on robots is one of the long-term aims of the robotic community

(Mason, 2018; Billard and Kragic, 2019). As suggested by many researchers,

classic and modern learning-based approaches have achieved stable grasping

and precise manipulation in short-horizon tasks with rich feedback signals

(Mason, 2018; Billard and Kragic, 2019; Du et al., 2021).

(a) (b) (c) (d)

Figure 1.1: Human manipulation examples. (a): Playing a joystick. (b):

Knitting. (c) Rearranging tableware. (d) Cable disentangling.

However, one of the bottlenecks for robot manipulation is the low sam-

ple efficiency problem in the face of long-horizon manipulation, sparse task

feedback and complex interplays between subtasks (Mason, 2018; Billard

and Kragic, 2019; Kroemer et al., 2021; Liu et al., 2021; Newbury et al.,

2022). Such tasks have important applications in the real world. For ex-

2

ample, building a house requires a long trajectory of arm, hand and finger

motions in continuous spaces, yet what is normally given as task guidance

only includes descriptive subgoals/subtasks. In addition, the dependencies

among subtasks/steps tend to exacerbate the exploration or searching diffi-

culty. One cannot build the walls without first building up a base. Moreover,

planning a pose to grasp the object needs to consider what the object will be

used for. Assembling and disassembling a piece of furniture requires differ-

ent grasping poses and different organisation of different motion skills. Such

problems occur in many scenarios, such as automated construction, assem-

bly/disassembly tasks in the industry, cooking, object rearrangement, and

furniture or toy assembly tasks in home environments, etc.

Evidently, existing grasping and manipulation algorithms fail in such

long-horizon and multi-step tasks due to low sampling or searching efficiency

(Mason, 2018; Billard and Kragic, 2019; Kroemer et al., 2021; Liu et al.,

2021; Newbury et al., 2022). On one hand, non-learning solutions that re-

quire a dynamic model, which is difficult to design, are much less suitable for

solving the type of long-horizon manipulation tasks of our concerns (Caldera

et al., 2018; Fang et al., 2019a; Ravichandar et al., 2020). On the other hand,

learning-based approaches suffer from low sample efficiency and thus strug-

gle to learn and reason about the long-term relationships among dependent

subtasks (Nair et al., 2018; Zhu et al., 2022; Shah et al., 2022).

1.2 Aim and Ojbectives

Motivated by this research gap, the overall aim of this thesis is to improve

the learning efficiency and performances of such long-horizon and multi-step

manipulation tasks. More specifically, the following challenges regarding such

3

tasks will need to be addressed:

• Long task horizon: This implies that the task is so complex that it

could be decomposed into a number of subtasks that require different

skills. For example, stacking a number of blocks into different orders

or assembling/disassembling a piece of furniture.

• Subtask dependency: This implies that the success of some subtasks

depends on the success of other subtasks. For example, placing a block

requires first grasping it, or separating an entangled object has different

performances when the object is grasped at different locations.

• Delayed and sparse task feedback: This implies that the feedback

signals required to induce the desired motion skills or plans are sparse

and tend to appear at the very late stage of a task. For example,

only when the last piece of an assembly task is placed correctly can

positive task completion feedback be given, because there are countless

combinations of possible trajectories that can achieve the task and it is

difficult to design a dense feedback function that induces the optimal

behaviour.

Therefore, the following objectives are to be pursued in this thesis:

1. Investigate the performances of end-to-end reinforcement learning (RL)

in long-horizon and multi-step manipulation tasks with sparse and de-

layed task feedback.

2. Develop simulation software for safer and faster manipulation learning.

3. Develop algorithms to accelerate end-to-end RL methods for such ma-

nipulation tasks.

4

4. Investigate the performances of learning multiple outcomes in long-

horizon manipulation tasks via parallelly trained hierarchical reinforce-

ment learning (HRL).

5. Develop an HRL framework with only one policy to learn multiple

goals at each decision level to reduce memory consumption and data

collection costs.

6. Identify the root cause of the non-stationarity problem that occurred

in the parallel training process.

7. Propose a solution to stabilise the non-stationary parallel training pro-

cess.

8. Review the progress of affordance-based solutions for such long-horizon

manipulation tasks.

9. Investigate the performance of modern task-agnostic grasp (TAG) gen-

eration methods in terms of the downstreammanipulation performances.

10. Develop an affordance-based manipulation framework where grasp ac-

tions can be selected based on the desired downstream manipulation

performances.

1.3 Contributions

In accordance with the three research objectives, this section summarises the

contributions claimed in this thesis.

By pursuing objectives 1 - 3, this thesis makes the following contributions:

• Develop an open-source simulation software for long-horizon and multi-

step manipulation tasks.

• Develop A2, which uses abstract demonstrations and adaptive explo-

ration to accelerate RL algorithms in long-horizon, multi-step and sparse

5

reward manipulation motion generation tasks. Abstract demonstra-

tions leverage human priors to decompose a manipulation task and

provide the correct sequences of subtasks/steps to guide the explo-

ration directions of the RL algorithm. Adaptive exploration reduces

exploratory behaviours when the learning algorithm is certain about

the solution to the target subtask so that it proceeds faster to the later

stage of the task and reduces the variance of the final performance.

• Implement and mathematically demonstrate that A2 can be integrated

with three popular DRL algorithms (DQN, DDPG, and SAC).

• Demonstrate the effectiveness of the A2 method on a series of multi-step

simulation tasks including discrete grid world and continuous object

manipulation.

By pursuing objectives 4 - 7, this thesis makes the following contributions:

• Develop the universal option framework (UOF) that integrates the

knowledge integration ability of goal-conditioned reinforcement learn-

ing (GRL) into a classic HRL framework. The UOF possesses only one

policy at each decision level to learn multiple subtasks or tasks.

• Adapt a classic HRL learning algorithm (Sutton et al., 1998) for goal-

conditioned high-level policies.

• Mathematically analyse the root cause of the non-stationarity issue

that happens to the parallel training processes of HRL algorithms and

propose that A2 can stabilise the parallel training process.

• Demonstrate the parallel learning improvements over previous methods

in a range of long-horizon, multi-step and sparse reward block stacking

manipulation tasks.

6

• Demonstrate the memory and computation reduction achieved by the

proposed UOF and parallel training acceleration techniques.

By pursuing objectives 8 - 10, this thesis makes the following contributions:

• Review and summarise the state-of-the-art of robotic affordance learn-

ing according to an RL-based affordance learning framework.

• Extend an RL-based affordance theory to include the prediction of

arbitrary action consequences, called general affordances.

• Based on the general affordance concept, develop a practical manipula-

tion framework that selects task-agnostic grasps according to predicted

manipulation performances.

• Design and implement the training processes of the general affordance-

aware manipulation (GAM) framework in a series of hook-disentangling

tasks in simulation.

• Demonstrate the substantial improvements on a series of hook disentan-

gling tasks over existing methods with the use of an affordance-based

grasp filter.

1.4 Outline of the thesis

The rest of this thesis is comprised of 6 chapters, whose contents are briefly

introduced as follows.

Chapter 2 presents a thorough review of the problem definitions of grasp-

ing and manipulation with their classic and modern learning-based methods,

covering the topics of grasp generation, motion planning, hierarchical ma-

nipulation systems, robotic manipulation simulators, and sim-to-real policy

transfer.

7

Chapter 3 introduces the mathematical foundation of reinforcement

learning (RL) algorithms, including temporal difference learning, the policy

gradient theorem and three important deep reinforcement learning (DRL)

algorithms.

Chapter 4 is devoted to addressing objectives 1 to 3, focusing on accel-

erating the end-to-end DRL approach to long-horizon and multi-step manip-

ulation tasks.

Chapter 5 is devoted to objectives 4 to 7, seeking to develop a more effi-

cient hierarchical reinforcement learning (HRL) framework for long-horizon,

multi-step and multi-outcome manipulation.

Chapter 6 is devoted to objectives 8 to 10, seeking to improve the grasp

selection process for better downstream manipulation using the concept of

affordance.

Chapter 7 concludes this thesis, summarising the contributions and lim-

itations, and proposing future research directions.

8

Chapter 2

Literature review

9

2.1 Introduction

The rise of robotic manipulation research started under the background of

the ongoing industrial revolution at the beginning of the 20th century when

the automation of the production process was demanded to liberate human

labour and increase cost-effectiveness (Nitzan and Rosen, 1976; Siciliano and

Valavanis, 1998). Manipulation is a very broad term and includes many

different problems, each of which has a very distinct objective and specific

computational concerns. One of the general definitions of manipulation is:

An agent’s control of its environment through selective contacts.

This definition is very broad. However, roboticists is mostly interested

in reproducing manipulation skills performed by human hands. They may

be classified into pick-and-place manipulation, in-hand manipulation, and

non-prehensile manipulation (see Figure 2.1) (Mason, 2018).

(a) (b) (c)

Figure 2.1: Three types of robot manipulation tasks. (a): A planar pick-

and-place system (Mahler et al., 2017). (b): In-hand manipulation system

for the Rubik’s cube (Akkaya et al., 2019). (c): Pushing, a non-prehensile

manipulation skill (Li et al., 2018)

10

The main distinction among the three kinds of manipulation tasks lies

in the forms and dynamics of contacts established between the gripper and

the target object. Non-prehensile manipulation refers to tasks in which

the robot manipulates the object without satisfying a force or form-closure

constraint (pushing, tilting, for example). This means that the object is

not constrained strictly to the movement of the hand (fingers). In-hand

manipulation refers to the study of manipulating an object whose contact

locations relative to the fingers are allowed to change, but the object has to

remain within the hand or between the fingers. This can be illustrated by

the Rubik’s cube manipulation task. The object is always held within the

hand but the contact locations will be changed by the finger forces accord-

ing to task requirements. When the object is allowed to rest on the palm,

the manipulation becomes non-prehensile. Pick-and-place manipulation

refers to the manipulation of a firmly grasped object, such as bin-picking,

throwing, insertion, etc. In this case, the object is not expected to move

relative to the contact locations established with the fingers. In other words,

the contact points are not supposed to be changed after a grasp is estab-

lished. Even though they may still be changed due to external disturbances

or re-grasping.

The focus of this thesis is on pick-and-place manipulation tasks, which

is itself a broad research field. In particular, this thesis focuses on multi-step

and long-horizon manipulation tasks (chapters 4 and 5) and object disentan-

gling manipulation tasks (chapter 6). To understand the specific problems

studied in this thesis, the foundation and common practice of pick-and-place

manipulation systems will be reviewed in this chapter.

11

What are the key questions?

Pick-and-place manipulation, as arguably the most fundamental and mas-

tered ability of humans, has been proved extremely difficult and complicated

to understand, model and reproduce on robots. A robotic manipulation sys-

tem typically involves a few subsystems, whose relationships are shown in

Figure 2.2. The perception module transforms raw observations into useful

information and keeps track of the state of the robot arm and the objects

(Corke and Khatib, 2011; Premebida et al., 2018). The task planner concerns

the representation and planning of different grasping and manipulation tasks

(Garrett et al., 2021). The grasp planner computes the grasping poses (Bic-

chi and Kumar, 2000; Caldera et al., 2018). The motion planner produces

arm motion trajectories (Latombe, 2012; Siciliano et al., 2008). Lastly, the

motion controller moves the robot arm from one configuration to another

(Luh, 1983; Siciliano and Valavanis, 1998; Corke and Khatib, 2011).

Perception Task
Planner

Grasp
Planner

Motion
Planner

Motion
Controller

Figure 2.2: The typical relationships among manipulation software subsys-

tems. Arrows point out the typical orders in which information is processed

by these subsystems.

Pick-and-place problems, in particular, concern the generation of the mo-

tion of a robotic arm and the fingers of its gripper that move to grasp an

object and move the object according to the requirements of a task. Most

pick-and-place systems can be divided into subsystems that deal respectively

with the grasp planning problem and the motion control problem (Billard

and Kragic, 2019). The grasp planning problem seeks to find a pose for the

12

gripper such that when it closes its fingers, the contacts established between

the fingers and the target object satisfy certain criteria, such as stability,

equilibrium, and so on (Bicchi and Kumar, 2000); while the motion con-

trol problem seeks to move a robotic manipulator such that it interacts with

the object and the environment to achieve a task-specific goal, possibly sub-

ject to constraints such as obstacle avoidance or grasp stability (Corke and

Khatib, 2011). Advanced manipulation systems take it further, attempting

to incorporate a diversity of manipulation skills beyond object grasping and

placing. These advanced systems are typically hierarchical control systems,

integrating a high-level task planner and a low-level motion generator (Kroe-

mer et al., 2021).

The common workflow of a pick-and-place system operates in a cycle

of grasp planning and motion control, with embedded perception processes

such as object pose tracking or image feature extraction. Accordingly, this

chapter will first introduce the grasp planning problem with its classic and

modern solutions (section 2.2), then, the motion control problem with its

classic and modern solutions (section 2.3). Thirdly, the classic and modern

frameworks for hierarchical robotic control, the integration of task-level and

motion-level control, will be introduced (section 2.4). Last but not least, as

the focus of this thesis is learning-based methods which generally require a

large amount of simulation data, a review of the existing robot simulators

will also be provided (section 2.5).

13

2.2 Grasp planning

2.2.1 Background

The grasp planning problem seeks to find a gripper configuration under which

the target object can be grasped in a way that supports the downstream ma-

nipulation task. There are several assumptions needed to be further clarified

for this problem before the analysis and development of any specific algo-

rithm can be conducted. Any practical solution to this problem will have to

include the following specifications:

• The type, representation and detection of objects.

• The type of gripper.

• The representation of a grasp.

These specifications have been evolving since researchers started to de-

velop grasp planning solutions. The following content of this subsection will

briefly review the three assumptions made by researchers since the start of

the field decades ago, and specify what assumptions are taken by this thesis.

The introduction will be brief as they are not the main focus of the research

problem of this thesis, however, behind each of them there is a profound

research area.

Objects. The objects investigated in the 80s and 90s are mainly rigid

objects in basic geometric shapes such as triangles and rectangles in 2D,

tetrahedrons and hexahedrons in 3D (Shimoga, 1996). This slowly changes

to rigid objects with irregular shapes (Du et al., 2021), and to deformable

objects (Arriola-Rios et al., 2020) in recent years. Accordingly, the repre-

sentation of objects has gone through significant changes, from exact models

like geometrical primitive shape assembles to more complex models such as

meshes, graphs, images and point clouds. Most research works nowadays use

14

the coordinate frame of the object’s centre of mass to represent the state

of an object. For some cases, an associated bounding box of the object in

the image of point cloud space is also provided. This simple representation

is widely used for representing rigid objects with known geometric models

in the manipulation research community as well as the industry (Du et al.,

2021). Finally, any grasp planning system requires the detection and recogni-

tion of target objects, which went from exact model-based approaches (Chin

and Dyer, 1986), to vision-input detectors based on hand-crafted features

and nowadays GPU-accelerated DL techniques (Zou et al., 2019b; Du et al.,

2021).

The type of gripper. The absence of significant progress in the de-

velopment of gripper types by both researchers and manufacturers since the

1990s may be regarded as surprising. They can be roughly categorised as

parallel-jaw grippers, multi-finger hands, special-purpose grippers such as a

suction cup or nano gripper, and soft grippers. At the beginning of the in-

dustrial automation wave, the industry was more interested in the easiest

solution regarding simple-shape and rigid object pick and place tasks, which

in turn brought most research attention to the design of rigid grippers with

two padded-tip fingers (Lundström, 1974) and suction (Kolluru et al., 1998).

These grippers satisfactorily perform simple pick-and-place and assembly

tasks for rigid and regularly shaped industrial components with known object

models. However, they are not capable of conducting complex manipulation

tasks achievable by human-like end-effectors, which can be underactuated,

soft, multi-fingered, and equipped with various sensors. As a result, re-

searchers have started focusing on the design of multi-fingered (or dexterous,

anthropomorphic) hands (Oomichi et al., 1990; Rahman et al., 2016) as well

as soft grippers and tactile sensing (Chitta et al., 2011; Yuan et al., 2017;

15

Rayamane et al., 2022). Despite the importance and value of multi-fingered

and soft grippers in real-life and daily manipulation tasks, most grasping and

manipulation algorithms developed today still target rigid and two-fingered

grippers (Du et al., 2021). This is surprising since the focus of state-of-the-art

research has been on moving robots from structured and perfect-sensorised

industrial environments to unstructured and noisy-sensorised daily environ-

ments, such as homes, offices, and industrial settings that are unstructured

(Billard and Kragic, 2019). In addition, algorithms for multi-fingered grasp

generation and finger control involve a substantially more complex kinematic

chain and grasp representation compared to two-fingered grippers, making it

a valuable and active but under-explored research area (Rahman et al., 2016;

Turpin et al., 2022).

(a) (b) (c) (d)

Figure 2.3: Representations of a grasp. (a): object-centric contact analysis

(Nguyen, 1988). (b): planner gripper-centric representation (Kumra and

Kanan, 2017). (c): 3D space gripper-centric representation (Fang et al.,

2020a). (d): A three-fingered hand and its joint configuration (Takahashi

et al., 2008)

The representation of a grasp. To clarify, a grasp refers to a system

in which a target object is gripped by the fingers of a robot hand (Shimoga,

1996). For convenience from the algorithm development perspective, a grasp

is normally represented in the task space, which, in many cases, is the space

16

with its origin as the robot arm’s base frame. There are two common repre-

sentations. The first one is to represent a grasp in an object-centric way by

the exact contact locations where the fingers are supposed to touch (Nguyen,

1988; Li and Sastry, 1988). The contact locations are then used to compute

the joint configuration of the gripper fingers and the robot arm through in-

verse kinematics (Nguyen, 1988; Shimoga, 1996; Li et al., 2022). In recent

years researchers have become more interested in gripper-centric grasp rep-

resentations, which specify the location where the gripper should move to

and close its fingers. The reason is possibly due to the ease of data collection

favoured by DL methods and the liberation from analysing every object ge-

ometry (Du et al., 2021). These include 2D pixel locations for planner grasp-

ing, 3D coordinate locations in the task space, rectangular representations in

the image and point cloud spaces (Du et al., 2021). Location-based represen-

tation is easy to use for grasping tasks with parallel-jaw grippers, but it lacks

enough information to allow more complex manipulation tasks that require

multi-fingered grippers. Gripper-centric representations for multi-fingered

hands normally include all the joint parameters of the gripper (Mayer et al.,

2022; Turpin et al., 2022).

The grasp planning problem is to find a grasp configuration under pre-

viously given knowledge about the target objects, the gripper type and the

representation of a grasp. The grasp is either constructed from object-centric

methods or gripper-centric methods, and the output of the algorithm is nor-

mally a configuration of the gripper. In the case of a grasp planning system,

the following specifications are usually made:

• The targets are assumed rigid and regular shape objects with known

geometric information provided by a simulator or an off-the-shell object de-

tector;

17

• The type of gripper used is a two-fingered parallel-jaw gripper; and

• The grasp representation is gripper-centric, consisting of the gripper tip

coordinate and the gripper orientation in the task space.

To pave further the path towards manipulation, the next two subsec-

tions will introduce representative classic and DL-based solutions towards

the grasp planning problem and some task constraints that have appeared

in the last few decades.

2.2.2 Classic methods and constraints

Grasp planning algorithms are always developed to serve downstream ma-

nipulation tasks. To ensure the success of manipulation tasks, researchers in

the 80s started to develop algorithms based on contact analysis and form-

closure or force-closure conditions. Various manipulation-related constraints

have been developed to improve grasp stability, equilibrium, and grasping

success rates (Shimoga, 1996).

In simple terms, classic solutions attempt to find contact locations on the

object such that the gripper will stably sustain the object in hand by exerting

forces through the contact locations. Therefore, the grasp planning problem

is transformed into a contact location optimisation problem. To compute the

grasps, certain metrics or constraints are required to assess the quality of a set

of contacts on an object. Among them, the two basic criteria are form-closure

and force-closure (Bicchi, 1995). The form-closure criterion, once satisfied,

guarantees that an object will not move unless it penetrates through at least

one of the contact points in a purely geometric sense (Reuleaux, 2013). It was

shown that for planar cases at least four contact points are required to achieve

the form-closure criterion, and for spatial cases, at least seven are needed.

The force-closure criterion, on the other hand, ensures that an object can

18

be held static relative to the contact points despite any external disturbance

(Bicchi, 1995). In general, the force-closure condition is preferred in grasp

planning algorithms because it takes into account the forces from the gripper

fingers, while form-closure is pure geometric constraints. This is especially

true when considering a change of contact locations and forces from the

fingers may change in the following manipulation processes. Also, analysing

contacts without considering the kinematic facts of an actual gripper is less

meaningful, because grippers differ in their capabilities of producing contacts

and forces. A typical workflow of these optimisation methods is to search

over the contact space and evaluate each of them with the closure property

metric (Nguyen, 1988).

However, it turned out that satisfying the force-closure criterion alone is

not robust enough for object manipulation. For example, not every force-

closure grasp can be realised by a certain gripper. Therefore, researchers

developed further grasp quality constraints on the contact locations or the

forces to compute more realisable grasps (Shimoga, 1996; Roa and Suárez,

2015). These constraints include but are not limited to finding force-closure

grasps that:

• are away from singular contact or finger joint configuration;

• allow forces to be applied uniformly through the contact points;

• span the contact points uniformly over the object’s surface;

• minimise the influence of inertial and gravitational forces;

• are away from the boundaries of the force-closure grasp space;

• allow as many positioning errors of the actual execution;

• consider the force or joint limits of the actual gripper; and

• allow the hand to move in any direction with the same gain.

Considering these constraints, classic solutions perform well with rigid

19

objects, near-perfect sensing conditions, and regular and known object ge-

ometries, which together feature most of the structured environments and

grasping requirements in many mass-production industries. However, these

algorithms fail in cases with diverse objects and objects with unknown or

hard-to-define geometry. In addition, the calculation of these quality mea-

surements often requires ideal sensing conditions and much computation time

with complex object geometry, which is not realistic (Sahbani et al., 2012;

Roa and Suárez, 2015).

However, the main limitation is that they do not take into account the

purpose of the target object to be grasped for the task. In other words, they

only concern the general stability and manipulability of a contact or hand

configuration. This kind of grasp is known as task-agnostic grasp (TAG)

because they are computed without considering a specific downstream ma-

nipulation task (Ortenzi et al., 2019). When considering a specific manipu-

lation task, the grasping location could be further constrained semantically

and more practically. For example, a hammer needs to be gripped differently

when it is to be used to hammer a nail rather than to be handed out to

someone. As humans, we choose to grasp an object in a certain way accord-

ing to what is to be done with the target object. Such grasps are named

task-oriented grasps (TOG).

The problem of TOG generation is not entirely new. It could still be con-

sidered from the same computation framework as the classic grasp planning

problem, by simply adding constraints on the contacts or the forces con-

cerning a specific manipulation task. For example, to constrain the contacts

within a task ellipsoid in the wrench space (Li and Sastry, 1988; Li et al.,

1989; Prats et al., 2007). These task-wrench spaces are defined according to

human experiences. There have been attempts to learn these spaces from

20

demonstrations (Aleotti and Caselli, 2010). On the contrary, there are also

TOG solutions from the gripper-centric point of view. Dang and Allen (2012)

built a semantic affordance map to relate object local geometry to a set of

predefined grasp poses, such that grasp poses could be found according to

different task requirements.

To conclude, one can see that for either TAG or TOG generation, ana-

lytic methods rely substantially on the known geometry of the object and a

perfect sensing condition to search or solve for a grasp configuration. These

two assumptions resulted in the failure of analytic approaches when the world

demands a solution for unstructured, partially observable and highly stochas-

tic environments with objects of diverse geometries and unknown physical

properties. What raised to face the challenge is deep neural networks, big

data and GPU-accelerated computers (Du et al., 2021).

2.2.3 Deep learning task-agnostic grasp

Deep learning (DL) has made a great impact on various fields, including the

robotic manipulation community. It may be necessary for the readers to

get familiar with the basics of DL before reading the following contents. A

brief introduction of DL is given in subsection 3.2.1 or for a thorough one in

(Goodfellow et al., 2016).

Before discussing specific grasp planning methods, there is a distinction

needed to be made. The grasp planning solutions discussed in the last sub-

section require a known object model. However, note that many vision-based

grasp planning solutions employ object detection methods, feature-based or

learning-based, to estimate the location and orientation of the target object

(Zou et al., 2019b; Du et al., 2021), but the grasps are still computed based

on the same analytic principles. The main effort is to correspond a perceived

21

object with a known object model in the database and thus the computed

grasps. These approaches may be called model-based vision-based grasp plan-

ning, so that the readers would not be confused as the following content will

discuss DL solutions for what may be named model-free vision-based grasp

planning. The main difference with the last subsection is the absence of a

known object model. A graphical relationship is shown in Figure 2.4.

Grasp planning

Given
object model Given object

configuration Contact analysis

Unknown object
model Deep Learning

Employ
object detector Object matching

Figure 2.4: Grasp planning method taxonomy.

To liberate grasp planning from the requirement of requiring knowledge

about the geometric model of the object, DL solutions can be employed.

In this approach, a DNN is trained to extract latent features from the data,

which will then be mapped to the desired outputs. In the case of vision-based

grasp planning, the input is sensory data, such as an image or a point cloud,

and the output can be the grasps or the evaluation metrics of the grasps. The

assumption behind this is that, with enough amount of data, the neural net-

work can learn features that are representative enough that it can generalise

to unseen inputs. Or in other words, the neural network, as a function, will

be able to approximate close enough the desired mapping between two dis-

tributions given a sufficient amount of data (Goodfellow et al., 2016). These

methods can be classified into supervised learning and RL methods. The

following content introduces briefly some representative works regarding the

two topics. For a thorough review, please refer to (Newbury et al., 2022).

Supervised learning refers to methods that train a neural network

22

with a predefined and unchangeable dataset. For 2D planar grasp planning,

researchers seek to evaluate the grasp quality of either contact points or

rectangular grasps on the image plane using popular convolutional neural

network architectures (Lenz et al., 2015; Kumra and Kanan, 2017; Mahler

et al., 2017). For example, Levine et al. (2018) employed 14 real-world robotic

manipulators to collect 800k grasps to train a DNN that outputs a success

rate given an image and a motion command (a 3D vector relative to the

robot’s base frame). This work successfully demonstrates the power of data-

driven supervised learning methods, albeit costly and impractical. Mahler

et al. (2017) trained a DNN which takes as inputs a depth image aligned to

the labelled grasping centre and orientation, and a 2.5D point cloud image

labelled with gripper distance. It then outputs a probabilistic quality score

of the given grasp. After training, the DNN was treated as a fixed objective

function with the Cross-Entropy Method (CEM) to generate grasps that

optimise the DNN output. Following a similar idea, Lu et al. (2020) provided

a DNN with an 8-channel representation of an object (RGBD, surface normal,

curvature) and the configuration of a multi-fingered hand to evaluate the

grasp quality. They proposed another DNN for comparison, taking three

image patches of an object corresponding to the palm pose and fingertip

locations of a multi-fingered hand. It has been demonstrated that the patch-

DNN performs much poorer than the config-DNN, which indicates that access

to the configuration space allows DNNs to catch more valuable information

for multi-fingered grasp quality evaluation.

3D spatial grasp generation methods also adopt a similar idea of grasp

quality evaluation for 3D points (Mousavian et al., 2019; Fang et al., 2020a;

Zhao et al., 2021). For example, the 6Dof GraspNet system uses a varia-

tional auto-encoder to randomly sample grasp configurations in the 3D space

23

and assesses and refines the proposed grasps with a quality evaluation net-

work (Mousavian et al., 2019). The auto-encoder maps example grasps to

a latent space, which is minimised towards a normal distribution during

training. The evaluation network is trained to reject grasps that result in

collision, penetration and grasps that are far away from the object. The re-

finement process finally looks for a transformation matrix that increases the

success probability by differentiating the evaluation network with respect

to the grasp pose. Their dataset is generated through simulation by sam-

pling grasps, executing them and evaluating them with a predefined shaking

motion. GraspNet1Billion takes another network architecture for 3D grasp

evaluation, including an approach net, an operation net and a tolerance net

(Fang et al., 2020a). The approach net takes point cloud features as inputs

and predicts approaching vectors and the graspability scores. The operation

net then takes point cloud features and predicts evaluation scores for grasps

generated around and along the approaching vectors. The tolerance net

learns to further predict the tolerance towards perturbation for each grasp

sampled by the operation net. The training dataset was again generated

by computer simulation with the use of the force-closure criterion. Another

representative work, REGNet proposed another kind of pipeline, consisting

of a score network, a grasp region network and a refine-network (Zhao et al.,

2021). The score network takes into point cloud features and assigns each

point a grasp confidence score. The grasp region network then takes the

point cloud features for the k1 points with the highest scores ranked by the

score-network and proposes coarse grasp candidates for each point as grasp

anchor. Finally, the refine-network seeks to predict the distance between

ground-true grasp poses and the proposed grasp anchors. Similar to other

works, the dataset is generated in simulation with force-closure and collision

24

avoidance measurements.

RL methods seek to produce a policy that predicts grasps by learning

from trials and errors. The main difference with supervised learning is that

RL methods do not rely on a fixed dataset, but generate training data with

the current policy. For an introduction to RL, please refer to chapter 3.

Following the success of Deep Q Network (DQN) (Mnih et al., 2013) in

other fields, James and Johns (2016) proposed a relatively simple neural

network to estimate the q function for simulation grasping tasks. Arguably

the first attempt on a large-scale RL project for vision-based grasp generation

would be the Qt-Opt system, where a neural network is learnt to evaluate

randomly sampled grasps from over 580k data points collected by 7 Kuka

robots (Kalashnikov et al., 2018). Another representative work proposed to

use the Trust Region Policy Optimization algorithm (Schulman et al., 2015)

to train a neural network-based policy for robotic grasping (Breyer et al.,

2019). The action of the policy includes the relative pose and openness

of the gripper. The policy is represented as a Gaussian distribution with

means and variances given by a neural network. The reward function is

hand-engineered to give a monotonically increasing signal towards the task

goal. The policy is trained in a simulation environment with varying task

constraints and states and then transferred to the real world. Lastly, Wu et al.

(2019) proposed a novel 4-branch policy network that employs an attention

mechanism to learn a grasping policy for vision-based 4-DoF multi-fingered

grasping. This work takes only depth images as input and recursively cropped

the image to generate attended regions where the relevant information for

making decisions exists. The action space consists of 4 parts: 1) the end-

effector position for grasping or centre location for zooming; 2) the zooming

decision and scale; 3) the roll, pitch and yaw of the end-effector; 4) the

25

pre-grasp joint angles. It uses sparse task completion reward signal and the

Proximal Policy Optimisation algorithm (Schulman et al., 2017b).

In sum, DL techniques have enabled the first attempts at model-free

vision-based grasp planning algorithms, especially for the generation of task-

agnostic grasps. However, the question of how to generate grasping poses

that are not just stable but also compatible with the following manipulation

task (Mason, 2018) remains underdeveloped. This leads researchers to the

study of DL-based task-oriented grasping (TOG).

2.2.4 Deep learning task-oriented grasp

Computing grasping poses that suit different downstream manipulation tasks

is not a very new idea (Li and Sastry, 1988; Sahbani et al., 2012), but re-

searchers only started in recent years to employ deep (reinforcement) learn-

ing methods to tackle the TOG generation task (Mason, 2018; Ortenzi et al.,

2019; Billard and Kragic, 2019). Similar to the TAG generation problem,

TOG generation methods before the rise of DL exhibited low generalisation

performances (Li and Sastry, 1988; Sahbani et al., 2012). It is difficult to

have hand-designed features or geometric models that adapt to unknown

objects for TAG generation, let alone the more complicated cases of TOG

generation.

The most straightforward way to generate TOGs is to classify TAGs ac-

cording to some manipulation task objectives. There are two paths taken by

researchers, with the first one following the idea of DL-based image segmen-

tation (Minaee et al., 2021), labelling parts or regions of an image or an ob-

ject for different tasks. For example, Detry et al. (2017) proposed to predict

which region of an object to grasp will suit a specific task. Kokic et al. (2020)

employed the same idea but proposed to learn such task-related grasping re-

26

gions from human activity videos. This idea of using image segmentation has

also been pursued by researchers in the field of affordance learning (Kokic

et al., 2017; Mandikal and Grauman, 2021a). The predicted regions can then

be used to select task-oriented grasp poses from task-agnostic ones. The

second path is to perform classification on the grasp configurations directly.

For example, Murali et al. (2021) proposed a graph convolutional network

to evaluate whether a TAG grasp suits a specific task by supervised learn-

ing. Noticeably, they constructed arguably the largest 6-DoF task-oriented

grasp dataset at the time this thesis is written (191 objects, 250K TAG poses

and 56 task labels per object). Similarly, Sun and Gao (2021) proposed to

achieve TOG by evaluating TAG poses for specific tasks, but they relied on

translational distance models to learn the relationships among tools, actions

and target objects, and to evaluate the task-oriented grasp quality.

Other methods exist without assuming access to a TAG generator. Yang

et al. (2019) proposed to predict stable grasps with suitable task labels for

stacked objects. They hand-labelled a dataset with 8000 depth images of

stacked objects (10 object categories and 11 tasks). Fang et al. (2020b) took a

self-supervised approach that jointly trained a task-oriented grasp evaluation

neural network and a manipulation policy for a diverse set of hammer-like

objects. The cross entropy method was used to optimise grasps over the grasp

quality network. Wen et al. (2022) also proposed a self-supervised approach

to learn category-level task-oriented hand-object heatmap. They modelled

the heatmap over the canonical model of an object category and achieved

zero-shot sim-to-real transfer through various transferring techniques. Kwak

et al. (2022) used a graph convolutional network to model the relationships

among the semantic meanings of a scene, including the type of gripper, task,

object, object component, and grasping force (each component comes with

27

a predefined grasp and each task comes with a given manipulation motion).

2.2.5 Summary

This section provides an introduction to the grasp planning problem, along

with the problem assumptions considered in this thesis and its classic and

modern, DL-based solutions. Despite that state-of-the-art grasp planning

methods demonstrate promising results in generating task-agnostic and task-

oriented grasp configurations for a variety of daily objects, such as shown by

(Fang et al., 2020a; Murali et al., 2021). there remain many challenges for

future work. For example, DL-based TAG generation is far more complicated

with multi-fingered and soft grippers due to the complexity of contact dy-

namics. Existing TOG generators fail to reason about possible manipulation

outcomes in a detailed manner. For more details, please refer to relevant

literature (Billard and Kragic, 2019).

This thesis is less related to TAG generation and more to TOG genera-

tion and applications. In particular, this thesis focuses on how to develop

manipulation systems that reason about the long-term relationship between

a grasp and a manipulation task in a more detailed manner. To this end,

a necessary review of the manipulation trajectory generation problem and

advanced hierarchical manipulation systems will be given in the next two

sections.

28

2.3 Manipulator control

2.3.1 Background

The problem of manipulator control seeks to generate a trajectory for the

manipulator that changes the state of the object according to the task spec-

ification. There are several levels and different perspectives regarding this

problem to be considered. The following sections will introduce the fun-

damental concepts of manipulator control algorithms, which serve as the

foundation for comprehending the classic and modern solutions in this field.

Further detailed descriptions of the fundamentals can be found in (Siciliano

et al., 2008; Lynch and Park, 2017).

The manipulator and its kinematics

The type of manipulator varies in its design and function. In this thesis,

we consider robotic arms that are composed of rigid links, a common choice

for pick-and-place tasks. A robotic arm mostly refers to a human-arm-like

device equipped with a gripper at the end of its chain of links. The relative

movement between each pair of links is always constrained, and the constraint

is normally referred to as a joint. For example, a manipulator with 7 links

is composed of 6 joints, each of which normally allows only one degree of

freedom for the relative movement of each pair of links. Most industrial

manipulators are composed of prismatic and revolute joints, which allow

either only translation or rotation. With each joint providing one degree of

freedom, a 7-link manipulator will have 6 degrees of freedom at the frame

of its last link. Additionally, there is normally a changeable link that is

attached to the last link of the manipulator, called an end-effector, such

as a gripper. For a 7-link manipulator, the end-effector frame will have 7

29

degrees of freedom. In pick-and-place tasks, when an object is grasped, it is

considered to be an extended part of the end-effector as it is assumed to be

static relative to the gripper (the connection is thus a fixed joint of no degree

of freedom). Some example robotic arms are shown in Figure 2.5.

(a) (b) (c)

Figure 2.5: Examples of robot arms. (a) A robot arm with 3 links and 2

joints. (b): The LBR iiwa robotic arm (7 joints) (Kuka, 2022). (c): The

ModuLink space manipulators (Motiv-Space-Systems, 2022)

A chain of links connected by joints is referred to as a kinematic chain.

Given every constraint that the joints impose on each pair of links (i.e.,

the parameter of each joint), the pose of the end-effector can be calculated

using kinematic equations, which are composed of spatial transformation

matrices. This computation process is called forward kinematics. Inversely,

the process of finding the parameter of each joint according to an end-effector

pose is called inverse kinematics. The vector space of all the parameters of

the joints is called interchangeably the joint space or the configuration space,

while the position and orientation of the end-effector are in the 3D Euclidean

space, which is referred to interchangeably as the task space or the Cartesian

space. It is normally assumed that the origin of the task space is aligned with

the frame of the base link of the robot arm for computational convenience.

30

With these fundamentals, it is ready to consider how to control the robot

arm to manipulate an object. There are at least three levels of algorithms in

the object manipulation task.

Control

The lowest level focuses on how to move a robot from one configuration to

another configuration. This level is regarded as the control level, in which

a feedback controller outputs the velocities or the torques/forces that are

required at each joint according to the motion or force requirement. There are

various kinds of controllers to deal with different control requirements, such as

motion controllers, force controllers, and impedance/admittance controllers.

The controller that is assumed available for the tasks of this thesis is the joint

position/velocity PID controller and task space position PID controller. The

field of robot control is well-developed (Luh, 1983) and will not be reviewed

here.

Motion generation

The second level focuses on finding a trajectory (a set of waypoints) for

the end-effector or the object from the current system state to a target state.

These algorithms assume access to a lowest-level feedback controller to realise

the robot motion that follows the output trajectories.

The joint space trajectory generation problem is often referred to as the

motion planning problem. It concerns finding a trajectory from one point to

another in the configuration space considering various constraints. Motion

planning can be performed online (if fast enough) or offline (if accuracy calls),

with exact or approximate inputs, with full or partial observations, with or

without time constraints, with or without obstacles, etc. The field of motion

31

planning is very mature and the community provides readily applicable open-

source toolkits such as the MoveIt! package (Chitta et al., 2012).

Most motion planning algorithms need to convert object representations

into the joint space and plan for a trajectory in the joint space. However,

object manipulation tasks involve complex dynamics (high dimensional joint

space and complex irregular shape objects) that are difficult to model and

perceive in the first place, let alone to be converted into the joint space.

Therefore, instead of building an explicit joint space obstacle representa-

tion, collision-checking algorithms are used to trade accuracy for computation

complexity (Janson et al., 2015). Overall, there remain many challenges with

motion planning for complex real-world problems (Kroemer et al., 2021). In

recent years, researchers have turned to (deep) learning algorithms for new

perspectives.

The first idea is to equip the existing motion planning algorithms with a

DL-powered system, which estimates the pose information or state required

by the planning algorithms (Sadat et al., 2020). This idea relies substantially

on 2D and 3D object detection to enhance the visual perception capability

(Zou et al., 2019b). The second one is to replace the motion planning module

with a function approximator that takes the observation of the environment

and produces motion commands for the robot to follow. Such a function

approximator is typically called a policy, which is optimised with different

objectives: imitation learning (IL) or RL. Thirdly, motion generation meth-

ods commonly assume access to a known dynamic model of the robot and

sometimes the environment. Some modern approaches seek to replace the

human-expert-based dynamic model with a model learnt from data, with

which planning can still be performed under the estimated (partial) model

(Moerland et al., 2020).

32

Task planning

From the highest level, a manipulation task may be complex and may need

to be decomposed into several subtasks, achieved by different skills. The

task level representation is often in the task (Cartesian) space or camera

space, as it is much easier to specify and interpret. For example, moving

towards a grasping configuration, grasping the object, moving towards a

dropping location and finally releasing the fingers. This is referred to as task

planning, which concerns chaining a set of abstract states, manipulation skills

or primitives to achieve a final task goal (Karpas and Magazzeni, 2020). In

many cases, decomposing a task into a set of subtasks and chaining a series

of skills can be equivalent. A skill may be obtained in various manners, such

as hand-engineering, motion planners or learning algorithms.

Existing task planning methods mostly concern the problem of how to

chain a set of manipulation skills by planning over the discrete, symbolic skill

space, where each skill is hand-engineered or comes from a motion planning

algorithm (Garrett et al., 2021). Modern learning-based methods attempt to

replace planners with reactive policies learnt from data. This can happen at

the task level as well as at the motion generation level (Kroemer et al., 2021).

Important research topics are many. For example, the design and learning of

motion skills, the planning and composition of motion skills, the exploration

and searching difficulty due to long task horizons, the transferability of the

motion skills, the simultaneous training of the whole hierarchical system, and

so forth (Kroemer et al., 2021; Pateria et al., 2021b).

Section organisation

According to the analysis of the three levels of manipulator control, the

literature review will be divided into two sections. Methods regarding the

33

lowest level are out of the scope of this thesis. The rest of this section will

focus on model-based planning and data-driven/learning solutions for the

second level – motion generation. The next section will review hierarchical

control systems that deal with long-horizon tasks and planning with skills.

2.3.2 Classic motion planning

The motion generation problem seeks to find a trajectory over discrete time

steps for the robot to follow, reaching a task goal state and subject to some

task constraints. A trajectory comprises a series of coordinates in the joint

space, task space or camera space. It is generally assumed that a trustworthy

low-level controller exists to control the robot to move from one point of the

trajectory to the next one (Latombe, 2012).

Motion planning methods are one of the most popular methods for robot

motion generation. It seeks to find trajectories in the configuration space.

Therefore, it converts the objective, all the obstacles and constraints into the

robot’s configuration space. In general, denote the configuration space as C,

the subset of configuration space that is occupied by obstacles as Cobs, and

the free space as Cfree = C \ Cobs, the motion planning problem is to find

a path in Cfree that connects a start joint configuration qqq0 and a goal joint

configuration qqqG
1.

There are four categories of motion planning algorithms (Lynch and Park,

2017) which are described in the following paragraphs. The first three are

1However, in practice, for tasks with high-dimensional configuration space and complex

obstacles that cannot be explicitly represented in the configuration space, a collision-

checking algorithm is required to ensure the planned solution is collision-free approximately

(Janson et al., 2015; Noreen et al., 2016). The details of collision-checking methods are

beyond the scope of this thesis and are not discussed.

34

based on graph theory (West et al., 2001), while the last one uses energy

functions.

Path planners deal with the pure geometric variant of the motion plan-

ning problems, finding a geometrically collision-free path to connect the start

and end point without considering the dynamics of the robot arm or any

constraints on the motions. It assumes access to the exact geometry of the

environment and that the path is realisable as long as it does not penetrate

any obstacle geometrically.

Grid search algorithms search over a discretised configuration space for

the desired path. It is called “searching” because it constructs a path in a

graph by selecting child nodes according to some heuristic cost functions.

These include the Breadth-first search method, Dijkstra’s algorithm, the A∗

algorithm, etc. They become impractical when the search space is too large

for high-dimensional configuration space with a high-resolution discretisa-

tion. In contrast, low-resolution discretisation of the search space gives poor-

quality paths.

Sampling algorithms can construct paths on higher-dimensional spaces

including the combined space of configuration and velocity, without discreti-

sation of the map. For example, the rapid-exploring random tree (RRT)

method chooses expansion nodes from the start by sampling points with a

random distribution over the search space, selecting the nearest point in Eu-

clidean distance and planning a motion to move a small distance away in

the direction of the nearest node. There are a variety of works proposing

different choices on the sampling distribution, the nearest point evaluation

function and the small distance motion planner (Noreen et al., 2016). An-

other example is the probabilistic roadmap (PRM) algorithm which samples

points from the space to construct a non-directional graph representation of

35

the search space. Typically a search algorithm such as A∗ is applied to find

a path after the roadmap is constructed.

Virtual potential field methods are inspired by the concept of natural

potential field in physics. Simply put, they construct energy functions of a

goal configuration and the obstacle configuration such that these functions

impose a gradient field pulling towards the goal and pushing away from the

obstacles. The principle is similar to a gravitational field. A manipulator

may use a potential field of the task space to avoid obstacles and move to

the goal location by following the direction of the gradient of the field.

Summary

Motion planning is a well-developed class of motion generation methods. Its

development towards more real-world and high-dimensional problems and its

integration with learning-based methods are still ongoing and active nowa-

days. For example, using a learnt neural network to construct the sampling

distribution (Wang et al., 2020) or evaluate which direction is more valuable

to explore for the RRT* algorithm (Chiang et al., 2019). For tasks that are

easy to be represented in the configuration space or whose accuracy and com-

putational requirements can be satisfied with a collision-checking algorithm,

motion planning is efficient and reliable.

However, when it comes to object manipulation, motion planning faces

the difficulty of high dimensionality, high-precision requirements and complex

contact dynamics. For example, an object may be moved when a manipula-

tor follows a planned trajectory to a grasp pose. To cope with such dynamic

behaviours, motion planning requires to re-plan a trajectory considering con-

straints based on the complex contact dynamics, which is difficult to model.

Consider another example where a manipulator needs to separate a grasped

36

object from a pile of objects, a complex object dynamic model is required

to plan a trajectory. Even if such a model is available, it is still inefficient

to perform searching or sampling algorithms in the combined configuration

space of the manipulator and the objects or conduct collision-checking with

a high-precision dynamic model. The curse of dimensionality is not easy to

break.

Therefore, researchers in recent years have been developing methods that

learn a manipulation policy that outputs motion commands from observa-

tions in a reactive way. The main benefit is that, either through human

demonstrations or a reward signal, the policy can learn from data to control

the robot without prior knowledge of a dynamic model. This is particularly

preferred when an analytic model of the world is not accessible, such as in

many object manipulation problems.

2.3.3 Motion policy learning

This subsection introduces methods that seek to find a policy that produces

motion trajectories in an online and reactive manner based only on obser-

vational feedback of the environment. From this perspective, the problem

is most commonly formalised as a Markov decision process (MDP), where

a robot takes an action based on its observation of the environment in a

discrete-time horizon (Sutton and Barto, 2018). In such settings, a policy is

defined as a mapping from the observation space to the action space, and the

problem is to find a (sub-)optimal policy for a certain optimisation objective.

It is considered learning because these algorithms seek to optimise the policy

using data from interaction with the environment.

Depending on how the objective is formalised, there are loosely two broad

sets of algorithms. Imitation learning refers to algorithms that find a pol-

37

icy to match another policy using data. Reinforcement learning refers to

algorithms that find a policy that maximises some cumulative reward signal.

Imitation learning

The objective of Imitation Learning (IL) is to optimise a policy by minimising

its distance from a target policy. For example, to mimic the locomotion

behaviour of an animal or the manipulation skill of a human expert. In

general, it is assumed that the exact analytic form of the target policy is

unavailable, and the learner policy is optimised using data collected by the

target policy. This is the idea of learning from demonstrations. As IL is not

the focus of this thesis, the following will only present a few representative

design choices specific to IL methods: the data collection process, the action

representations, and the final policy refinement. For a thorough review,

please refer to (Hussein et al., 2017; Fang et al., 2019a).

Data collection in IL is mostly performed by humans. A common choice is

to use simulation software with interactive devices such as a mouse, keyboard,

joystick controller or virtual reality device (Fang et al., 2019a). Many robot

manipulators support kinesthetic teaching, which allows a human to move

the robot arm by pushing and pulling (Kormushev et al., 2011). With human

efforts, these methods are not likely to result in a large amount of data due

to their inefficiency. When a large amount of data is necessary, some works

use hand-crafted programmes, state-based policies or a motion planner to

collect data for a learner policy that is learning over a different observation

space or seeking to improve over the teacher policy (Sasaki et al., 2018).

The action representation generally can be categorised into discrete and

continuous. For discrete actions, the IL problem is essentially a classifica-

tion problem. A learner policy is predicting the probability of the current

38

observation belonging to the actions, i.e., classifying an observation into ac-

tions. For continuous actions, it is a deterministic regression problem or a

stochastic distribution matching task. The learner policy is predicting the

same actions given by the collected data. Both examples can be found in

(Guo et al., 2014).

Policy refinement is generally preferred because the policy learnt from a

fixed set of data does not guarantee an optimal match to the target policy.

In fact, it only guarantees to match the actions on observations existing in

the data. Because the dataset is finite and mostly insufficient, IL methods

require some refinement process. There are a few pathways to choose from.

The first one is to continue training the policy with RL. In other words, using

IL to initialise a policy for RL (Guenter et al., 2007). Secondly, it can be used

to form an initial guess of the solution for optimisation approaches (Ortega

et al., 2013). Another way to refine the imitated policy is to aggregate the

dataset with new data (Ross et al., 2011).

IL approaches are promising in that they can leverage offline datasets.

For example, there is a vast amount of videos on the internet. Also, it can be

used to provide a good initial policy for further training and refinement. For

robotic manipulation tasks, there are several challenges for IL (Fang et al.,

2019a). One of them that is related to one contribution of this thesis is

the difficulty of collecting kinesthetic demonstrations. This is well-known as

real-world robots require certain expertise to operate, let alone the repetitive

labour required to collect demonstration data. The problem is further ex-

acerbated when considering manipulation tasks with long time horizons and

multiple subtasks (Nair et al., 2018). It is also why researchers are interested

in learning from a small number of demonstrations (Abdo et al., 2013; Johns,

2021). However, the fewer demonstrations, the higher the proportion of the

39

mismatched policy distribution.

The method proposed in chapter 4 takes advantage of an abstract type of

demonstration data, although the data is not used for IL, but for accelerating

RL. It demonstrates the value of using abstract demonstrations, instead of

low-level kinesthetic demonstrations, in the learning of long-horizon multi-

step tasks.

Reinforcement learning

Reinforcement learning (RL), especially deep reinforcement learning, has

been studied since the last decade because it provides a natural framework

and mathematical expression of behavioural learning (Sutton and Barto,

2018). However, it only became one of the main research interests in robotics

in recent years due to its successes in the computer game domain thanks to

DL and advanced computing hardware (Lazaridis et al., 2020). In short, RL

refers to a set of machine learning algorithms that learn a behaviour policy

that maximises the cumulative reward value. DRL refers to RL methods

that use deep neural networks as function approximators. Since RL is the

focus of this thesis, a more in-depth introduction of the mathematical foun-

dations and related advances are provided in chapter 3. This subsection will

briefly review the norms and the challenges faced by applying RL in robotic

manipulation motion learning.

Typically, an RL algorithm iterates among the processes of data collec-

tion, policy evaluation and policy improvement (Sutton and Barto, 2018).

For specific algorithms, representative works of robotic behaviour learning

include deep deterministic policy gradient (DDPG), soft actor-critic (SAC)

and proximal policy optimisation (PPO). Briefly, DDPG seeks to learn a

deterministic policy with data coming from another exploratory policy (off-

40

policy data), PPO seeks to learn a stochastic policy with data collected by

the same policy (on-policy data), while SAC seeks to learn a stochastic policy

from off-policy data to maximise return as well as the policy entropy. Their

details are given in chapter 3. Manipulation motion learning research with

RL tends to apply variants of these algorithms (Singh et al., 2021). Despite

the algorithmic advantages and disadvantages of the three (see chapter 3),

they encounter more or less the same challenges when dealing with robotic

manipulation motion learning.

Reward design is the first challenge for learning manipulation skills. A

known issue with RL is that its policy exploits the reward function. Three

pathways have been studied. The most used one is to manually design a

dense reward function. For example, Gu et al. (2017) tailored different re-

ward functions for a reaching task, door-opening task and pick-and-place task

based on desired object positions and arm and finger movements. Note that

more human priors in the design of the reward function results in the easier

success of learning a specific behaviour, but a less representative, general and

transferable policy. On the contrary, less prior means longer exploration and

slower convergence, but less biased and more general behaviours (Eschmann,

2021). Shaping a reward that is unbiased and able to guide faster learning

requires an expert understanding of the target application domain. When

this is too difficult, the other two paths can be considered.

The first choice is to use a sparse reward function that only provides

meaningful signals at task completion and system terminal states. This is

employed by many manipulation learning works (Liu et al., 2021), as well

as this thesis. The primary focus of sparse reward RL is how to guide the

exploration process so that the policy is more likely to reach the rewarding

states (Ladosz et al., 2022). This will be discussed later. Another path is

41

inverse reinforcement learning (IRL) or apprenticeship learning, trying to

learn the reward function from demonstrations collected by other policies

before learning a policy (Abbeel and Ng, 2004). Human experts are the

source of most demonstrations. For example, Abbeel et al. (2010) used IRL

to learn a reward function for controlling a helicopter and Orbik et al. (2021)

for controlling a multi-fingered hand. IRL could be regarded as IL via re-

ward function learning. In practice, it faces the same challenges as other IL

methods, such as the difficulty of collecting robot device demonstrations and

the distribution mismatch problem in the reward function space (Arora and

Doshi, 2021).

Exploration is an essential part of RL algorithms and the main concern

of solving sparse reward tasks. The sparsity is generally caused by the fact

that the unrewarding section of the combined space of states and actions is

too large. Exploration is hard for robotic manipulation RL tasks. Imagine

a task of searching for a single point in a high-dimensional space, a similar

issue happened to the classic search-based motion planning problem: the

curse of dimensionality with too less feasible solutions. It can be improved

in a task-agnostic or task-specific fashion.

Task-agnostic exploration seeks to encourage the algorithm to explore the

environment as much as possible, which is mainly realised by giving an extra

reward irrelevant to the specific task. This is also referred to as curiosity or

intrinsic motivation that is from the inside of an agent (Aubret et al., 2019).

The mathematical form of the intrinsic rewards may be based on the famil-

iarity with a state (Tang et al., 2017), prediction error (knowledge about a

state) (Burda et al., 2019) or information gain (Houthooft et al., 2016). For

small-scale experiments, the exploration can be conducted to minimise regret

(how valuable the untaken actions are) (Ortner et al., 2020). Discouraging

42

exploration can be valuable as well. For example, when the policy is con-

sidered well-learnt then too much exploration may decrease performance or

even cause divergence. After all, it is necessary to reduce exploration for a

policy to converge (Sutton and Barto, 2018). It defaults to linearly or expo-

nentially decrease exploration probability towards a lower bound (Guo et al.,

2014; Andrychowicz et al., 2017; Paavai Anand et al., 2021), however, it is

more interesting to adjust exploration based on the online learning progress

(Haarnoja et al., 2018; Liu et al., 2019).

Task-specific exploration generally requires certain human priors for task

design. This can be realised by curriculum learning (Narvekar et al., 2022).

For example, decomposing a manipulation task into subtasks. One frame-

work for curriculum learning is GRL (Andrychowicz et al., 2017; Fang et al.,

2019b). Another way to embed human priors in exploration is to design a

task-specific exploratory policy for data collection, such as an expert policy

(Subramanian et al., 2016). Initialising a policy with human demonstrations

and IL can be considered a form of task-specific exploration. How demon-

strations are collected and used to guide exploration is another important

study topic (Vecerik et al., 2017; Ravichandar et al., 2020). As mentioned in

the IL part, kinesthetic trajectories demonstrated by other agents such as a

human expert (Ravichandar et al., 2020) can teach the robot accurate manip-

ulation skills, but they are time-consuming and difficult to collect in either

simulation or the real world, especially for long-horizon manipulation tasks

(Vecerik et al., 2017; Nair et al., 2018). In addition, a kinematic demonstra-

tion may solve a task once, but how to discover reusable skills from kinematic

demonstrations remains largely unsolved (Zhu et al., 2022).

43

Summary

This subsection discusses relevant literature on learning manipulation mo-

tion skills through imitation or reinforcement. Their advantages over classic

motion planning methods are the flexibility and fast computation provided

by a task-specific policy and the ease of deployment by learning from data.

However, learning a reactive policy is no easy task itself, especially for robotic

manipulations. Working with complex tasks that cannot provide a dense re-

ward function, it faces the difficulty of collecting data efficiently, either for

demonstrations or explorations.

2.3.4 Summary

This section covers motion planning and learning methods for generating

manipulation motions. A problem with these motion generation methods is

the lack of ability to handle long horizon and multi-step tasks. Typically such

tasks cause considerably long planning or exploration time if learnt end-to-

end, making it too difficult to find a feasible plan or encounter a meaningful

learning signal.

Consider an example of stacking a few blocks into a specific order. The

first block needs to be grasped before being placed. The second needs the first

block to be placed in advance. Planning a motion trajectory from nothing

to the goal configuration is prohibitive due to the large space of solutions

and the combinatorial effects. Learning one requires a massive amount of

data and poses serious exploration issues under delayed and sparse rewards.

The first contribution of this thesis is to deal with such exploration difficulty

(chapter 4).

However, learning a long-horizon manipulation policy end-to-end is less

44

meaningful in terms of the reusability of the skills. It is preferred in real sys-

tems to use manipulation skills repetitively in many different tasks. There-

fore, researchers advocated for the use of hierarchical control systems, in

which a task-level planner or policy produces subtasks or subgoals (or select

skill primitives) and another planner or policy at the lower level produces

motions for the subtask. This is the research interest of the second and third

contributions of this thesis (chapter 5 and 6), while the next section will first

review what has been studied in the literature.

2.4 Hierarchical manipulation systems

A real-world manipulation system is not likely to only be a single and all-

rounder module that is capable of everything. After all, the human brain

certainly has a hierarchy of subsystems, each of which makes decisions at

a different level of abstraction, as confirmed by the daily activities humans

experience and by research evidence (Grafton and Hamilton, 2007). Thus it

is not surprising that hierarchical computing frameworks have been devel-

oped to reproduce such decision-making processes on robots. To deal with

long-horizon and complex assembly tasks in industries or messy and rich

daily manipulation tasks in people’s homes, robots need to make decisions

at different levels (Kroemer et al., 2021).

As introduced in subsection 2.3.1, there is at least a task planning level

on top of the motion generation level. In robotics, the representative set of

methods is called task and motion planning (subsection 2.4.1). While in mod-

ern days, learning-based hierarchical control systems can be an integration of

classic planners and learnt reactive policies, or can be comprised of reactive

policies learnt from data with different objectives at different levels (sub-

45

section 2.4.2). The last subsection will discuss another perspective towards

hierarchical control: affordance learning. The focus of the last part will be

the integration of the concept of affordance and robotic manipulation. This

is also a core concept applied and extended by the last contribution of this

thesis (see section 6.2 for a theoretical introduction from the RL perspective

and chapter 6 for a manipulation experiment).

2.4.1 Task and motion planning

As mentioned, the motion planning problem formulation needs to be ex-

tended to include task-level planning for solving long-horizon object manip-

ulation tasks. One approach is to extend the solution space for planning to

include 1) a combined configuration space of the manipulator and the mov-

able objects, and 2) a discrete space associated with discrete changes, such

as forming and breaking contacts. The objects are treated as non-actuated

free joints that can only be moved by contact forces imposed by interactions.

This is the problem of multimodal motion planning, where an algorithm

is required to generate plans for a hybrid space of discrete and continuous

variables (Garrett et al., 2021). An important notion in multimodal mo-

tion planning is the modes of the system, referring to different continuous

configuration spaces induced by the discrete events that happened to the

system. For example, the configuration space of a mode in which an object

is not grasped and one of a mode in which an object is grasped will pose

different kinematic constraints, thus, different search spaces. Mode switch

corresponds to a change in the structure of the system’s kinematic tree, such

as a free joint to a fixed joint. The classic PRM and RRT algorithms could

be extended to be a multimodal variant (Hauser and Latombe, 2010; Barry

et al., 2013).

46

Many works tried to extend motion planning methods to plan simulta-

neously over discrete and continuous spaces, while others suggest separating

the two planning processes. In the AI community, planning over a symbolic

and discrete space has been a long-standing area of research interest. A thor-

ough task planning review was conducted by Karpas and Magazzeni (2020).

The basic process behind all these methods is to first use human knowledge

about the specific task to define a discrete state space and plan over it given

an objective. For example, a block pick and place task can be described by

the combinations of actions: {pick[], place[],moveRob[]}, a location extrac-

tor: loc[], and objects {Block,Robot, Table}. A solution can be described

as

moveRob[loc[Block]]→ pick[Block]→ moveRob[loc[Table]]

→ place[Block, Table]

A realistic application would be more complicated than this example,

requiring the specification of pre-conditions and state-transition constraints,

etc. Robotic applications of symbolic planning normally assume access to

a motion generator to perform the actual execution of robot movements

commanded by each discrete decision (Garrett et al., 2021). Naturally, the

focus of such algorithms becomes the design of a language for describing

the planning domain, and the most-used one to date is the planning domain

definition language (PDDL) (McDermott, 1991).

For manipulation tasks, the integration of both planning methods is an

inevitable route. This gives rise to the task and motion planning (TAMP)

problem and a series of algorithms. Symbolic task planning methods treat the

process of motion generation as a predetermined sequence, focusing primarily

on planning the order of motion primitives or a plan skeleton. In contrast,

TAMP approaches aim to plan both the sequence of motion primitives and

47

their corresponding parameters, taking into account motion constraints. This

planning process is driven by specific objectives, such as minimising trajec-

tory length, to achieve efficient and optimal solutions (Garrett et al., 2021).

The problem is commonly formulated as a mixed-integer, constrained optimi-

sation problem, for which there are existing solvers (Ploskas and Sahinidis,

2021). Exact solvers can find the optimum for small and demonstrative

tasks, but it is generally impossible for realistic tasks, which tend to have a

prohibitive number of solution dimensions and constraints.

For many applications, samplers are required to search for a plan skeleton

and its action parameters subject to the constraints. Therefore, they can be

classified according to how the search is organised. There are methods that

1) find a plan skeleton first and then determine the action parameters, 2)

find action parameters to satisfy constraints first and then assemble valid ac-

tions into a skeleton, or 3) interleave between action planning and constraint

satisfaction. In practice, information obtained during action parameter opti-

misation can be saved to accelerate computation by using a dataset to store

valid action parameters for some constraints, invalid search regions, impossi-

ble constraints, and so on. A thorough review of these methods can be found

in (Garrett et al., 2021).

Summary

In sum, TAMP formulates the object manipulation problem into a con-

strained and mixed integer optimisation problem. Existing methods attempt

to search over the hybrid space of discrete and continuous parameters for a

plan skeleton of actions and their respective parameters subject to motion

constraints (Garrett et al., 2021).

For object manipulation tasks, these methods suffer greatly due to the

48

prohibitive number of dimensions, constraints as well as combinatorial ef-

fects among discrete contact events. Another major difficulty comes from

the assumption of an available dynamic model of the environment involving

manipulator-object and object-object interactions, which are highly sophis-

ticated to manually specify and compute. Therefore, researchers started to

develop hierarchical frameworks that do not require a dynamic model. They

either combine classic planners and machine learning or completely learn

from data.

2.4.2 Learning-based hierarchical control

As introduced in subsection 2.3.3, modern motion generation methods em-

ploy a learnt reactive policy based on system observations to produce tra-

jectories instead of planning with a dynamic model. Similar principles also

apply to task-level planning. Researchers have been trying to replace human

designs with data-driven policies. Integrating learnt policies can happen at

the task and motion levels. Researchers have modified TAMP systems by

using learnt policies to realise the motion for each action primitive, instead

of classic motion generators. The reverse has also been practised: learning a

high-level planner for action primitives generated by classic motion planners.

To the extreme, researchers have also developed fully-learnt hierarchical con-

trol systems.

The following will discuss three aspects of these works and their relation

to the contributions: 1) skill policy design and learning, 2) learning to plan,

and 3) skill adaptation and simultaneous training.

49

Skill design and learning

A large number of works were devoted to the design and learning of skill

policies, which are essential to hierarchical control systems. It is suggested

by many works that in such systems the manipulation skills ought to be

flexible, transferable and composable. In terms of learning such skills, the

techniques employed tend to be RL and IL with human demonstrations (Yang

et al., 2020; Strudel et al., 2020; Schwenkel et al., 2020; Rao et al., 2022;

Mu et al., 2021). A central question in this research area is how to define

skill policies. The most obvious choice is to specify a discrete set of skills,

each of which is trained towards its own subtask (Jiang et al., 2019; Strudel

et al., 2020; Schwenkel et al., 2020; Rao et al., 2022). The skills are normally

associated with some task goals, such as the target pose of a reaching skill or

the target height of a lifting skill. Therefore, they are normally conditioned

on selectable parameters, such as goals or motion constraints, making them

more adaptable and flexible for task planning. Image pixel is also a popular

choice to parameterise manipulation skills, such as grasping or pushing (Li

et al., 2018; Chitnis et al., 2020; Zeng et al., 2018, 2020).

Another way to learn skills attempts to rely even less on human priors,

allowing skills to emerge during training. These works are known as skill

discovery or option discovery, often conducted in the HRL framework called

option framework. They seek to optimise skill policies as well as a planning

policy with respect to a single long-horizon task, relying on probabilistic or

information theory to encourage the emergence of distinct skills (Krishnan

et al., 2017; Zhang and Whiteson, 2019; Khetarpal et al., 2020b). If the

options are goal-conditioned policies, the focus is then put on the discovery

of subgoals (Jiang et al., 2019; Pateria et al., 2021a; Zhu et al., 2022; Cho

et al., 2022). An obvious benefit of employing goal-conditioned RL is the

50

sharing of knowledge between subtasks within a single low-level policy. Also,

goal-conditioned policies can learn efficiently with the help of goal relabelling

techniques (Andrychowicz et al., 2017; Fang et al., 2019b). However, it is

generally agreed to be too difficult to learn, from a single task reward signal,

a set of distinct and interpretable low-level policies as well as a high-level

planner.

Learning to plan

Many works focus on learning to plan with or compose a given set of ma-

nipulation skills, regardless of hand-engineered, motion-planner-generated or

data-driven skills. The planning problem needs to be represented and solved

differently according to how the skills are formulated.

With a set of fixed skills, the learning-to-plan problem can be formulated

as an RL problem with a discrete action space corresponding to the set of

skills, such as the option framework (Sutton et al., 1999b; Barreto et al.,

2019; Shah et al., 2022). This idea has been explored by many researchers

inside and outside the robotic community (Tessler et al., 2017; Strudel et al.,

2020; Pateria et al., 2021b).

Recently, researchers started investing more in learning to select a skill

as well as specify its parameters. For example, Zeng et al. (2022) developed

a framework for evaluating grasping success rates of different grasping skills

under the same image observation. A new learning framework, named pa-

rameterised action reinforcement learning, has been proposed to study such

hybrid skill planning for long-horizon robotic control (Wei et al., 2018; Dalal

et al., 2021). Another interesting solution is to use goal-conditioned policies

as skills and learn a high-level planner to select or generate subgoals (Jiang

et al., 2019; Pateria et al., 2021a; Zhu et al., 2022).

51

Another research direction attempts to compose the skill policies. Instead

of letting the skill policy produce actions, researchers proposed to learn a

high-level policy that weights the actions or the network parameters of the

skill policies (Peng et al., 2019; Yang et al., 2020). These may not be cat-

egorised as task-level planning methods, but they contribute to how skill

policies may be utilised.

Finally, an ambitious direction seeks to learn a temporally extended dy-

namic model of the world corresponding to temporally extended actions, i.e.,

skills (Xu et al., 2021; Khetarpal et al., 2021). This is tightly related to the

study of model-based RL (Moerland et al., 2020). With such a model, clas-

sic planning algorithms will be able to work on complex manipulation tasks.

However, the idea is fairly new and demands more theoretic development as

well as practical experiments on robotics.

Skill adaptation and simultaneous training

There are important and unique issues for learning-based hierarchical control

systems. The two most intriguing ones are 1) the adaptation or transfer of

pre-trained skills to various tasks and 2) the simultaneous training of the

skills and the planner.

A large body of work separates the training of both levels. They assume

the pre-trained skills suffice for the target task without the need for fine-

tuning. Such works are good enough to demonstrate the effectiveness of using

temporal abstracted skills, but not so to handle real-world tasks. Therefore,

researchers have sought to fine-tune the skill policies for different tasks (Li

et al., 2019) or even incorporate new ones (Holas and Farkaš, 2020). Another

solution is to learn both levels simultaneously. This idea has the benefit of

keeping both levels in line with the same task objective but induces a training

52

non-stationarity issue on the high-level policy (Nachum et al., 2018; Levy

et al., 2019). This is because the high-level policy is learning with a set of

skill policies that are non-optimal and randomly exploratory. In other words,

the system transition for the high-level policy is changing over time.

Summary

Learning-based hierarchical control systems are arguably the most promising

direction for future manipulation systems. Various design choices have been

explored but there is more to be done (Pateria et al., 2021b). The benefit is

the potential of 1) realising sophisticated manipulation skills that are difficult

to hand-craft or plan, and 2) generalising onto tasks with complex physical

dynamics that are difficult to manually specify. On the other hand, the

difficulties include but are not limited to: 1) the design or learning of a

transferable skill representation/parameterisation, 2) the adaptation of skills,

and 3) the non-stationarity of planning over a set of changing skills.

In response, the second contribution (chapter 5, publication 1) of this

thesis proposes a new HRL framework that learns multiple final task out-

comes by reusing a single goal-conditioned skill policy and proposes to use

the first contributive method (chapter 4, publication 3) to accelerate learning

and alleviate the non-stationarity problem.

2.4.3 Manipulation affordance learning

In recent years, there is an increasing number of works on the integration of

the concept of affordance and robotic manipulation research (Ardón et al.,

2021). The conception of affordance regarding object manipulation refers to

what can be done with an object and what will happen to the object for

an agent (Gibson and Collins, 1982). For example, the handle of a knife

53

affords to grasp by a robotic gripper while the edge of the knife affords to

cut. Robotic researchers are most interested in the learning and applica-

tion of manipulation skill affordances, closely related to skill learning and

hierarchical control.

(a) Segmented image from (Chu et al., 2019). Red parts afford to grasp, yellow

parts afford to scoop, orange parts afford to support, deep blue parts afford to

contain, and blue parts afford wrap-grasping.

(b) Grasping success score prediction Wu et al. (2020).

Figure 2.6: Affordance prediction examples

A large body of works proposes to predict what skills are afforded on

which part of an object, represented as binary masks, e.g., Figure 2.6a (Do

et al., 2018; Chu et al., 2019; Mandikal and Grauman, 2021b; Hämäläinen

et al., 2019). A typical limitation of these works is that they provide only

binary prediction, while in the real world, different locations of the graspable

region of an object will probably provide different success rates. Therefore,

another set of works proposes to predict how probable an action is afforded

at each pixel location, e.g., Figure 2.6b (Cai et al., 2019; Wu et al., 2020;

Yang et al., 2021).

54

There are different limitations to be further improved. First of all, the

affordance studied in these works is mostly task-agnostic graspability. This

relates closely to subsection 2.2.3 where task-agnostic grasp generation was

discussed. There is a lack of research on object affordance beyond grasping.

Secondly, although image segmentation methods provide binary masks for

affordance beyond grasping, they do not provide the specific changes or re-

sults that the action could cause to the world. For example, pouring water

onto the centre of the cup rim has a smaller chance of spilling out water

compared to pouring onto a place near the rim edge.

The prediction of the results of skills is closely related to dynamic model

learning. An affordance theory has been formulated using the RL frame-

work and extended to temporally extended actions (Moerland et al., 2020;

Khetarpal et al., 2021). However, the affordance of skills may not be lim-

ited to the form of changes in the observation or state. For example, it can

be some important metrics of a particular manipulation task, such as the

amount of water that can be poured into the cup in the previous example.

In section 6.2, a formal description of the RL-based affordance theory will

be reviewed and then extended to general affordance beyond the prediction

of the resultant system state. In chapter 6, a concrete manipulation study

based on the proposed general affordance will be conducted, demonstrating

its benefits on a difficult contact-rich object disentangling manipulation task.

2.4.4 Summary

This section reviews related methods that develop hierarchical control sys-

tems to perform long-horizon manipulation tasks. Typically these frame-

works are composed of two levels of hierarchies, corresponding to the task

planning and motion generation levels of the robotic manipulator control

55

framework introduced in subsection 2.3.1. The literature discussed ranges

from the classic task and motion planning framework to the fully data-driven

hierarchical reinforcement learning framework. In summary, the main bene-

fits of using a learnt hierarchical control system include:

• Similar to the hierarchical structure of the brain, which is also learnable.

• The potential of solving complex long-horizon manipulation tasks with

the help of flexible and adaptive policies, without the need for a computable

dynamic model.

• Avoid or alleviate the exploration difficulty of long-horizon tasks faced

by non-hierarchical control algorithms.

• Improved reusability of the skill policies.

However, there are challenges ahead in the field. In response, this thesis

makes two contributions to the field of hierarchical robotic control systems,

especially for object manipulation applications. The first contribution (chap-

ter 5, publication 1) proposes a new HRL framework and uses the first con-

tributive method to accelerate its training. The last contribution (chapter 6,

publication 5) focuses on the extension of the RL-based affordance theory

and its application on an object disentangling manipulation task.

2.5 Robotic simulations

In this final section of the literature review, we will discuss another significant

aspect of robot learning methods: simulations. It is common knowledge

that computer simulation greatly reduces the cost of the validation process

of robot behaviours by avoiding tests on real platforms (Staranowicz and

Mariottini, 2011). In addition, with the need of generating learning data,

the use of robot simulators is becoming increasingly inevitable in recent years

56

(Collins et al., 2021). This also brings a new requirement to be considered in

selecting or developing a robot learning simulator: the fine integration with

Python packages for DL and RL such as PyTorch, OpenAIGym, Tensorflow,

Stablebaseline, etc. (Zhao et al., 2020; Collins et al., 2021). Moreover, due to

the inaccuracy of the physics model in the simulation, deploying methods that

are validated in simulations onto the real world mostly requires some form of

adaptation or fine-tuning. Improving the performance of simulation-to-real

policy transfer is also an important topic of robot learning (Salvato et al.,

2021). Since this PhD project also relies heavily on computer simulation,

this section will discuss a few popular robot simulators for manipulation and

some key articles regarding sim-to-real policy transfer.

2.5.1 Simulators

The development of computer simulation software started during World War

II initially for assessing nuclear detonation. It rapidly demonstrated its

value in various areas, including gaming, construction, manufacture, design,

robotics, etc., as supported by the ever-growing computation power. For

robot simulations, it is commonly required to integrate most of the follow-

ing: a graphic user interface (GUI), a physic engine, various sensors, the

import function for Universal Robot Description Format (URDF) or other

similar format files, inverse kinematics computation, motion planning algo-

rithms, collision detection algorithms, realistic rendering (Staranowicz and

Mariottini, 2011; Collins et al., 2021). In recent years, the need for fast

computation has become greater due to the increasing demand for data for

learning-based methods. This leads researchers to seek and develop simu-

lators that support parallel computing and GPU accelerated computation

(Collins et al., 2021). Based on the needs of this thesis, four robot simulators

57

are researched and tested during the project. The following will provide a

brief introduction to these simulators and the readers are referred to (Zhao

et al., 2020; Staranowicz and Mariottini, 2011; Collins et al., 2021) for more

detailed surveys on robot simulators.

Gazebo

The classic and widely used Gazebo simulator has been integrated into many

robot applications (Koenig and Howard, 2004; Staranowicz and Mariottini,

2011; Collins et al., 2021). Although Gazebo is more used in ground robot

applications including legged or mobile, it does support manipulation simu-

lations. One advantage of Gazebo is that it well supports the import function

of URDF files and the integration with the robot operating system (ROS),

which is a very widely used communication system for real and simulated

robots (Quigley et al., 2009). The support of ROS provides users with

easy access to various stable inverse kinematics computation and motion

planning packages such as MoveIt! (Chitta et al., 2012). In recent years,

some researchers have attempted to perform learning-based applications us-

ing Gazebo (Zamora et al., 2016; Borrego et al., 2018; Lopez et al., 2019),

especially to enable the integration with the OpenAIGym package which is

the top programming toolkit for reinforcement learning practitioners (Brock-

man et al., 2016). However, Gazebo is less preferred for generating training

data because mainly of its slow computation of complex dynamics and its

unintuitive integration with the modern programming style of deep learning-

based methods that rely heavily on Python (Collins et al., 2021).

58

CoppeliaSim

CoppeliaSim (previously named V-Rep) is another classic and stable choice

of robot simulator (Rohmer et al., 2013). It has good support for the key

features required by manipulation simulations including the URDF import

function, inverse kinematics, motion planning, and various sensors. One ad-

vantage of CoppeliaSim is that it provides the user with a GUI to create and

modify the simulation scene in much detail. It also provides more realistic

rendering and sensor models compared to Gazebo. Although it was not orig-

inally developed with the consideration of supporting learning-based applica-

tions, a package named PyRep was introduced later to enable easy integra-

tion with learning-based applications and OpenAIGym-style programming

(James et al., 2019). This leads to a number of manipulation benchmarks

and applications with learning-oriented APIs such as (James et al., 2020;

Stepputtis et al., 2020; Zheng et al., 2022; Shridhar et al., 2023). However,

despite its realistic dynamics and rendering for rigid object manipulations,

CoppeliaSim is still less preferred for training data generation because again

of its relatively slow computation speed and unintuitive integration with

learning-based applications (Collins et al., 2021).

PyBullet

PyBullet is another important simulator that is widely used in the robotic

manipulation community due to its open-source nature, Python-based APIs

and the support of deformable object modelling (Coumans and Bai, 2016;

Collins et al., 2021). It has been used in many learning-based applications

because it was designed in consideration of reinforcement learning applica-

tions. Compared to Gazebo and CoppeliaSim, it is more difficult to build

complex scenes in PyBullet but easier to develop learning-based methods and

59

faster in computation and training speeds with OpenAIGym-style program-

ming APIs (Zhao et al., 2020). However, because PyBullet is open-sourced,

many academic researchers choose it for robot learning experiments. The

first project presented in chapter 4 also relies on the PyBullet simulator.

Mujoco

Lastly, the Mujoco simulator is arguably the most popular simulator for

robot learning applications due to its fast computation speed, stable contact

computation and fine integration with the OpenAIGym package (Todorov

et al., 2012; Zhao et al., 2020; Collins et al., 2021). Mujoco well supports the

required features as a robot simulator except for inverse kinematics and path

planning functionalities. However, because of its accurate contact computa-

tion, it has been used in many contact-rich tasks including the Rubiks cube

recovering task, grasping, humanoid modelling (Agostinelli et al., 2019; Ivaldi

et al., 2014; Zheng et al., 2022). Another important advantage of Mujoco

is the easy integration with learning-based applications, which makes it a

default simulator for benchmarking and evaluating learning algorithms (Zhu

et al., 2020; Chen et al., 2020; Collins et al., 2021). One of the shortcomings

could be the unintuitive and cumbersome process of building a scene and

adjusting its parameters as Mujoco does not provide a GUI, much similar to

the PyBullet simulator. However, because of its well-maintained learning-

oriented programming APIs and fast computation of contact-rich dynamics,

the first and third projects (chapter 5 and 6) in this PhD also rely on Mujoco

to validate the proposed manipulation methods.

60

2.5.2 Sim-to-real policy transfer

Deploying the robot behaviours validated in simulation onto real-world plat-

forms is one of the last steps of almost all robotic research projects. As

simulators are becoming so much more powerful in recent years that almost

all robotic applications are developed in simulation first, closing the gap

between simulation and the real world has never been so interesting to re-

searchers in many disciplines. Although the methods proposed in this thesis

are not yet validated in the real world, they are developed in consideration of

real-world deployment that can be achieved in the future. The following will

briefly introduce the key problem and the main techniques that are adopted

by the robot learning community.

Key problems and the main solutions

Essentially, there are three main sources of mismatches between the simu-

lation and the real world. Firstly, the dynamic behaviours and interactions

among objects are simplified in simulations. Although this may not be of big

concern for applications that only involve rigid objects in structured envi-

ronments, it could present serious mismatches in the physical behaviours in

scenarios with deformable objects, contact-rich manipulation, unstructured

scenes and unknown object properties (Billard and Kragic, 2019; Horak and

Trinkle, 2019; Pfrommer et al., 2021; Lee et al., 2022).

Secondly, the mismatch of accessibility and quality of sensory observations

between simulation and the real world (Salvato et al., 2021; Muratore et al.,

2022). For example, most RL applications assume access to the Cartesian

coordinates of objects which is of no concern in simulation but normally

not true in real-world scenarios (Petŕık et al., 2021). Even for tasks where

the needed sensory observations are obtainable in the real world, there is

61

a difference between the simulated and real readings. For example, object

states are estimated in the real world by a stochastic process that tends

to induce noise while they are exactly accurate in simulations (Jin et al.,

2021). Also, the images or point clouds rendered in the simulations are vastly

different from those captured in the real world (Chebotar et al., 2019).

In order to deal with the mismatch of dynamics and sensory observa-

tions, there are two mainstream methodologies adopted by the community.

The first kind of approach seeks to increase the diversity of training data

in the simulation such that the training data distribution may cover the

target data distribution in the final real-world deployment. A simple solu-

tion is to inject noise into the observations or dynamics of the simulation

(Andrychowicz et al., 2017; Peng et al., 2018; Yu et al., 2019). Many meth-

ods apply randomisation to various aspects and parameters of the simulation,

such as various visual effects (Alghonaim and Johns, 2021), physics param-

eters (Peng et al., 2018; Exarchos et al., 2021), robot kinematics (Exarchos

et al., 2021), and many others (Zhao et al., 2020; Salvato et al., 2021). An-

other resort is to train an adversarial agent that optimises for the diversity of

the training environment such that the learning agent strives to avoid local

minima, overfitting and adapt to the real tasks (Zhang et al., 2019; Hamaya

et al., 2021; Lechner et al., 2021, 2023). Instead of enriching the training

data distribution, another set of methods seeks to fine-tune the policy in the

real world after simulation training is finished (Salvato et al., 2021; Ibarz

et al., 2021; Smith et al., 2022).

Lastly, there is a lack of consideration in the simulation regarding safety

constraints that are vital in real-world robotic applications, especially those

that potentially will involve human activities. As a convention for robot

learning applications, especially those using RL, practitioners program the

62

robot to explore the environment with random actions to collect a large

amount of training data. This was preferred as it helps to remove human

priors and encourage emerging behaviours, however, it tends to slow down

the learning process for large solution spaces and fails to enforce safe robot

behaviours when deployed in the real world. In recent years, the research

community has started again to use more human priors to accelerate learn-

ing, encourage desired behaviours and ensure safe exploration (Liu et al.,

2020; Pertsch et al., 2021; Jauhri et al., 2022; Wang et al., 2022; Agrawal,

2022; Brunke et al., 2022). This direction demands the careful design of the

constraints in motion trajectory generation, the explorable region of the envi-

ronment, the mathematical and computable representations of safety metrics

and the integration of multiple safety-related objectives with the task com-

pletion objective (Billard and Kragic, 2019; Kroemer et al., 2021; Lechner

et al., 2021; Brunke et al., 2022).

Summary

This subsection very quickly covers the key topics and solutions in the field

of sim-to-real policy transfer. This topic is not the focus of the research

presented in this thesis but more of a related future direction. The main

purpose is to provide a background of the possible actions that could and

need to be taken in the future development of this PhD. The readers are

referred to the mentioned review articles for detailed information about sim-

to-real policy transfer (Zhao et al., 2020; Salvato et al., 2021; Muratore et al.,

2022).

63

2.5.3 Summary

To sum up, the last section of this chapter first briefly introduces a number

of popular robot simulators at the time of carrying out these PhD projects.

With PyBullet and Mujoco being the two fastest simulators, this PhD relies

on them to perform training and evaluation for the proposed learning algo-

rithms. Physics simulation for this PhD is merely a tool for training and

evaluation rather than a research topic. However, it is nevertheless of vital

importance to discuss the possibility and methods required for deploying the

simulation-based policy in the real world. The possible actions that need to

be taken in future research will then be covered in the conclusion chapter.

64

Chapter 3

Preliminary

65

3.1 Standard Reinforcement Learning

The reinforcement learning (RL) paradigm (Figure 3.1) was inspired by the

observation that humans or some animals can learn certain behaviours as-

sociated with some form of reward signals. Such as a dog learns to shake

hands to earn more food. The entity that learns behaviours in RL is named

an (RL) agent. In practice, this could for example be a robotic arm.

Environment

Action

State

Reward
Replay
Buffer

Optimisation

Save experience

Figure 3.1: The reinforcement learning paradigm. In RL, an agent (in the

middle) acts on the environment which feeds back with the next state and

a reward. The agent collects and uses interaction experiences to serve its

purpose of optimising some tasks. Modern algorithms commonly use a buffer

to store and sample collected data for training deep neural networks.

In the process of learning, the agent needs to explore its local environment

by taking actions, so that it can discover the consequences of its actions.

Modern RL methods will store the experiences about the agent’s actions and

the consequences in a buffer, and use them to perform learning. The RL

agent is expected to exploit what it has learnt about its actions to earn more

rewards, and in turn, to increase its confidence in taking rewarding actions.

Thus, we have the term “reinforcement” learning (Sutton and Barto, 2018).

The mathematical models, which represent and store what the RL agent has

learned, were once finite dimensional matrices (Watkins and Dayan, 1992)

and parameterised distributions (Engel et al., 2005). With the rise of DL

techniques, they are now replaced by deep neural networks. Thus, the term

66

“deep reinforcement learning” (DRL) (Mnih et al., 2015).

In order to deduce algorithms, a mathematical framework has to be de-

fined for RL problems. The first subsection will introduce such a framework,

the Markov Decision Process (MDP). Based on the definition of MDP, the

second subsection will introduce the foundation of RL algorithms (before DL)

as well as important terminologies. Thereafter, the next three subsections

will be devoted to the fundamentals of three kinds of model-free RL algo-

rithms. This section is to build up the foundation for understanding modern

DRL algorithms introduced in the following sections.

3.1.1 Markov decision process

The formal mathematical framework of an RL agent interacting with the

environment through actions is the MDP. An MDP features a sequential

decision-making process, where an agent takes actions according to the feed-

back of the environment, i.e., states and rewards, in a sequential fashion.

Being sequential means that the interaction between the agent and the envi-

ronment can be represented by a list of action and state pairs in a sequential

order such as timesteps (Figure 3.2).

s0 s1

a0 a1

r1

s2

a2

r2

s3

a3

r3

sT-1

aT-1

rT-1

sT

rT

Figure 3.2: An interaction sequence of an episode of a finite-horizon MDP

There are variations of MDPs in terms of observability, time horizon, dis-

counting, etc. In particular, the set of RL problems that this thesis studies

67

will be modelled as discrete time, finite-horizon, fully observable and dis-

counted MDPs. Here, finite-horizon means the agent can only take a limited

number of actions within each interaction cycle or a so-called episode. In

each episode, the sequential list of states and actions is called an episodic

trajectory. Being fully-observable means that the agent can obtain feedback

from the environment at the physical level, such as the 6D pose of an ob-

ject. Lastly, a discounted MDP calculates the sum of the rewards at each

interaction step with an exponentially multiplied weight.

Formally, a MDP is represented by a tuple, (S,A, p, p0, r, γ), where S is

the set of states, A is the set of actions, p : S×A×S → [0, 1] is the dynamic

transition distribution, p0 : S → [0, 1] is the initial state distribution, r :

S ×A → R is the reward function and γ ∈ [0, 1] is the discount factor.

The interaction process starts with an initial state s0 ∈ S sampled from

p0(s). At each timestep t, the RL agent selects an action at ∈ A. The state

of the world, st, then changes to st+1 according to the transition probabil-

ity distribution p(st+1|st, at). A reward can be computed from the reward

function rt+1 = r(st, at). The agent is tasked to take actions that maximise

the discounted return (cumulative rewards) Gt =
∑T

t=0 γ
trt+1 where T is the

length of an episodic trajectory. The closer the discount factor γ is to the

value of 1, the more important future rewards are to the agent.

Markov property: An important assumption for the kind of problems

that most RL algorithms are addressing, including the works of this thesis,

is the so-called Markov property (Puterman, 2014). Put simply, if the future

states of a system are independent of what happened before the current state,

then such a system is Markovian. For example, the future trajectory of a

flying football can be fully computed by the current position and velocity,

regardless of how it ended up in the current situation (past history). In other

68

words, the information captured within a state of the system is enough to

determine or predict the future of the system. This property is important

because the three basic components (policy, state and action value functions)

of RL algorithms are based on only the current state. We will see, in the next

subsection as we define the three components, that RL algorithms assume

that the current state is informative enough for taking actions and estimating

future return (Sutton and Barto, 2018).

3.1.2 RL algorithm foundations

An RL algorithm drives the RL agent towards its task of maximising fu-

ture return. While DRL has seen great advancement in recent years tackling

difficult problems that are unthinkable to solve in the last century, the fun-

damental principles of RL remain the same as what was developed in the last

century (Sutton and Barto, 2018). At the core of RL algorithms, there are

three functions that may be used to store the knowledge of the world, the

task and what actions to take: the policy π, the state value function vπ(s),

and the action value (q) function qπ(s, a).

The policy, π, is a mapping from the perceived state to actions. It can

be represented as a stochastic distribution of actions given a state π(a|s) :

S × A → [0, 1], or a deterministic function that maps a state to an action

a = π(s) : S → A. The agent can query its policy to obtain an action.

Formally, the agent’s task is to learn (or find) an optimal policy, π∗, such

that its future return, G, is maximised. The state value function, vπ(s),

is defined as the expectation of the future return that the agent can collect

when it starts at state St = s and selects actions thereafter according to

some policy π. Similarly, the action value function, qπ(s, a), is also the

expected future return, but this time, when the agent starts with an action

69

At = a at state St = s. For any t ∈ {0, 1, ..., T − 1}, they can be written

down as:

vπ(s) = Eπ [Gt | St = s] (3.1)

qπ(s, a) = Eπ [Gt | St = s, At = a] (3.2)

where, St and At represents the real sampled state and action at timestep

t. Notice that the value functions are bounded to a policy (subscription

symbols), meaning that different policies will result in different values. Nat-

urally, the optimal value functions are bounded to the optimal policy, and

vice versa. Now, the key question that any RL algorithm seeks to answer is:

how to find the optimal policy π∗ that maximises the future return? The cost

function to be maximised can be formally written as:

J(π) = Eπ

[
T∑
t=0

γtrt(st, at)

]
(3.3)

There are a few pathways that different RL algorithms take to approach

this question, and they are normally classified as shown in Figure. 3.3. The

major branching lies in whether a dynamic model of the environment is

required by the algorithm, thus the terms “model-based” and “model-free”.

The following texts will touch briefly on model-based methods, but more on

model-free methods. Because the algorithms used or developed in this thesis

are all within the model-free class.

Model-based algorithms have access to an “approximate” model of the

dynamics of the world. Fundamentally, they can compute the resultant state

of an action being applied to the current state through the dynamic model

(transition function) of the MDP, p(st+1|st, at). This can be leveraged to

simulate interaction trajectories. These trajectories may be directly used as

references to select actions to act on the real environment, in which case it

70

RL Algorithms
Model-based Learnt model

Model-free Value-based

Given model

Policy
optimisation

Planning

Value/policy
learning

Policy

Value function(s)
Argmax

Policy

Actor-critic Value function(s)
Gradient

Policy

Simulated data

Figure 3.3: The taxonomy of RL algorithms

is generally referred to as planning with a dynamic model (Sutton, 1991).

The policy is directly generated by the planning processes with the dynamic

model. On the other hand, simulated trajectories may be used to estimate

the value functions. These values are then used to deduce or optimise a pol-

icy (Gu et al., 2016). The procedures that deduce or optimise a policy from

the value functions are typically the same as what happens in model-free

methods, which we will introduce shortly. The only difference here is the

source of the trajectories is synthesis or “imagination”. Based on whether

the dynamic model is given or learnt from data, these algorithms are further

categorised. However, their core is the same, that is to utilise a mathemat-

ically computable dynamic model to generate action plans or to optimise

the value functions or the policy. A thorough review of model-based RL

was conducted by Moerland et al. (2020) and recommended for interested

readers.

Model-free methods, on the contrary, answer the question without ac-

cess to a model. In other words, they can only learn from the experiences

collected during the interaction with the environment. These methods are

categorised into value-based and policy gradient methods. To the extremes,

value-based methods seek to find the optimal q-function and extract the

optimal policy from them, while the purest policy gradient methods use ex-

71

periences to optimise the policy only. The most classic value-based method

shall be the Q-learning method (Watkins and Dayan, 1992), while for pol-

icy gradient, the REINFORCE method (Williams, 1992). Note that at the

extreme, they never compute either the value functions or the policy. How-

ever, in between the choice of using the value functions or the policy, there

are methods that optimise both of them. More specifically, these methods

use the learnt value functions to compute the optimisation objective for the

policy, and thus are named Actor-critic methods (Konda and Tsitsiklis, 1999).

In the following subsections, the foundations of the three kinds of model-

free algorithms will be introduced as stepping-stones to help understand the

modern, DL-aided methods.

Exploration: Before we get into how the three kinds of methods work,

it is necessary to introduce the exploration vs. exploitation problem. Let’s

say the agent is greedy and it always takes the action that has the largest

one-step reward. While at the start, it knows nothing about the system,

so it randomly chooses an action which gives a reward of 1. Now because

the agent is one-step-greedy so it will always take that very first action to

maximise its one-step reward. The problem with the one-step-greedy agent

is that it does not explore and always exploit. Here comes one of the most

important trade-offs in RL methods: exploration vs. exploitation. By explo-

ration, the agent will take actions to discover unseen system states, rewards

and action consequences. By exploitation, the agent will maximise its fu-

ture return. Therefore, for any RL algorithm to find the optimal solution,

an exploration strategy is required during learning. We will discuss more

exploration strategies for each specific algorithm in later sections.

72

3.1.3 Value-based method

We will start with value-based methods which seek to compute the optimal

values as they are the foundation of other methods. From here, we use Qm

to denote the q values in a matrix, called Q table, at the m-th optimisation

iteration. There are two distinct ways to estimate the values: Monte Carlo

(MC) sampling1 and Temporal-Difference (TD) learning2.

Monte-Carlo method

In simple terms, MC methods repeat the process of collecting a full trajec-

tory of state-action pairs, evaluating the expected returns of every state-action

pair. When the task is simple enough, MC methods would provide an effi-

cient estimation of the values. MC methods iterate in a cycle of collecting

a trajectory and using the trajectory to update the q table. After a suffi-

cient number of episodes, the q value should converge to the optimal case.

However, theoretically speaking, the q value only converges when each of the

state-action pairs is visited an infinite number of times. In practice, different

tasks will take different numbers of episodes to move the q table close enough

to the optimum. For detailed discussions and advanced MC methods, readers

are recommended to read chapter 5 of (Sutton and Barto, 2018).

There is an obvious limitation of MC methods. When the system has

a large state space and long task horizon, the estimate provided by MC

methods can have high variance and the agent may wait too long in between

each learning update of the value functions. By “high variance”, it generally

refers to the possible q values that a state-action pair may have. If there is

a large number of future state-action combinations plus a long task horizon,

1Chapter 5 in (Sutton and Barto, 2018)
2Chapter 6 in (Sutton and Barto, 2018)

73

there will be many possible q values. So there comes the rise of temporal-

difference (TD) methods, which can update the agent’s value functions on

every single transition it collects, with a smaller variance and without the

need to wait for a full trajectory (Tesauro et al., 1995).

Temporal-difference method: Sarsa

Before we explain TD methods, it is necessary to introduce the recursive form

of the q function. For a sampled transition tuple, {St, At, Rt+1, St+1, At+1},

and any policy π, the following recursive property of the q function holds:

qπ(s, a) = Eπ [Gt | St = s, At = a] (3.4)

= Eπ

[
∞∑
k=0

γk Rt+k+1

∣∣∣∣ St = s, At = a

]

= Eπ

[
Rt+1 + γ

∞∑
k=0

γk Rt+k+2

∣∣∣∣ St = s, At = a

]
= Eπ [Rt+1 + γ qπ(St+1, At+1) | St = s, At = a] (3.5)

Notice that, the MC agent collects full trajectory and calculates the full

return to update its q table, which in effect is calculating the target q value

using Eq. 3.4. While TD methods update at every new transition with a

target q value computed from Eq. 3.5:

Q1(s, a) = Q0(s, a) + α [Q̂(s, a)−Q0(s, a)]

= Q0(s, a) + α [r + γQ0(s
′, a′)−Q0(s, a)] (3.6)

where, r+γQ0(s
′, a′)−Q0(s, a) is the temporal-difference (TD) error, denoted

by δt when the equation is time-subscripted. More specifically, Eq. 3.6 is

called the Sarsa method, which updates the q value at every single collected

transition after each timestep. In problems with larger state and action

74

spaces as well as longer horizons, TD methods have the benefit of converging

faster over MC methods. However, these two particular methods introduced

here share one common property: they both learn from some collected data

and then discard them. From the examples above, they discard either a

whole trajectory or each of the transitions after an update is made to the q

table. This characteristic is called on-policy learning.

On-policy vs. off-policy. The terms here generally refer to whether

the policy that generates the data is the same one that is to be updated

using the data. As we can see, the MC and TD methods above are both on-

policy. On-policy methods are considered simpler to understand and faster to

converge. However, they do not converge to the optimal but a near-optimal

and still exploring policy. Being on-policy means that the collected data is not

reusable, even if they do contain useful information. Therefore, there are two

reasons why off-policy learning is preferred. First, the learning of the optimal

policy can be separated from the one that explores the environment. The

policy that is updated is referred to as the target policy, while the exploratory

one is called the behavioural policy. Normally, the target policy is the one

that maximises the action value. Secondly, in order to scale up to real-

world problems, being off-policy means the agent can learn from various

sources of data, such as a hand-crafted controller or a human demonstrator.

This indeed is one of the essential reasons for the success of many DL-based

algorithms. Recently, the extreme case of off-policy becomes increasingly

popular, featuring the problem of learning fully on an off-line dataset without

online exploration (Levine et al., 2020).

75

Temporal-difference methods: Q-learning

The Q-learningmethod (Watkins and Dayan, 1992) essentially is the off-policy

version of Sarsa. However, without discarding used experiences, Q-learning

has proved powerful with the use of deep neural networks in high-dimensional

domains such as Atari in recent years (Mnih et al., 2015). Simple enough,

the update rule of Q-learning can be obtained by changing one operation in

Sarsa:

Q1(s, a) = Q0(s, a) + α [Q̂(s, a)−Q0(s, a)]

= Q0(s, a) + α [Rt+1 + γmax
a′

Q0(s
′, a′)−Q0(s, a)] (3.7)

The only change in the update is that it now takes the maximum q

value when computing the estimate of the q target q̂, instead of using the

action taken in the past. This operation is what liberates the algorithm

from on-policy data. The proof of convergence confirms that, as long as each

state-action pair continues to be visited and the state value is bounded, the

q function will converge to its optimal with a probability 1 (Watkins and

Dayan, 1992).

The main difference among the three value-based methods can be sum-

marised by Figure. 3.4.

Interaction

1 update per s-a

Every Episode

Interaction

1 update

Every Timestep

Interaction

Any update

Any Timestep

On-policy MC On-policy Sarsa Off-policy QL

Figure 3.4: A graphic comparison of MC, Sarsa and Q-learning.

76

Function approximation

So far, we have assumed the q functions to be tabular matrices, which are

not likely to suffice for more complex tasks with larger state and action

spaces. Therefore, function approximation and gradient-based optimisation

are required. In particular, the learning of the value functions is essentially

a regression problem, where the mean-square value error is used as the min-

imisation objective function for calculating the gradients:

∇J(www) = 1

2
∇

∑
s

d(s)[q̂(s, a)− q̃www(s, a)]
2

=
∑
s

d(s)[q̂(s, a)− q̃www(s, a)]∇q̃www(s, a)

≈ Eπ [[q̂(St, At)− q̃www(St, At)]∇q̃www(St, At)] (3.8)

where, www represents the parameters of the value function approximator to

be optimised, q̂ and q̃ are the true (target) and approximated q values, and

d(s) is the weight function or distribution that balances the importance of

the error regarding a state. d(s) is typically chosen to be the fraction of time

spent in state s or the state distribution induced by the policy distribution.

Similar to tabular cases, the true (target) q value q̂ needs to be estimated

from samples and the parameterised q function. However, the q function in

the true q value estimation is to be treated as a scalar value. It is used only

for computing the regression target for the objective, with the fixed weight

wwwi−1 from the last update. For example, the gradient update at the i-th

iteration for Q-learning in the function approximation case can be written as:

wwwi+1 = wwwi + α
[
r + γmax

a′
q̃wwwi−1

(s′, a′)− q̃wwwi
(s, a)

]
∇q̃wwwi

(s, a) (3.9)

77

Policy extraction

As mentioned, the main reason we focus on learning the q function is that it is

straightforward to extract a policy from it. By definition, the action that has

the highest q value according to the optimal q function is the optimal action.

Therefore, one may extract the optimal policy by π∗(s) = argmaxa q
π∗(s, a),

where, the argmax operation works straightforwardly when there is a fixed

number of discrete actions that the agent can perform. This is called the

greedy policy.

Policy evaluation vs. policy improvement. In model-free methods,

as we saw with the value-based methods introduced above, the algorithmic

architecture may be unified: they iterate between policy evaluation and im-

provement. What varies is how they conduct these two steps in particular.

In the MC, Sarsa and Q-learning algorithms, interaction samples are used to

learn the q value function. This, in essence, is a policy evaluation process:

they evaluate the policy that collects those samples in different ways. On

the other hand, policy improvement is done by taking the argmax of the

updated q values.

However, when the action space is continuous and the q-function needs to

be represented by function approximators, it typically can only evaluate one

state-action pair per input-output. Thus, other techniques are needed to find

an optimal action with the highest values (policy improvement), such as the

cross-entropy method (Kalashnikov et al., 2018), which may be inefficient

to optimise with respect to large state and action space. Therefore, one

may resolve to the other extreme of the model-free algorithm, which directly

optimises a policy without consulting an explicit action-value function. This

kind of method is called policy gradient.

78

3.1.4 Policy gradient

Different from value-based methods, policy gradient methods seek to directly

compute the optimal policy. The term “gradient” indicates that the policy

is parameterised and differentiable so that its weights can be updated with

the gradients from an optimisation objective function. Here, the policy is

denoted explicitly as a parameterised distribution: πθθθ(a|s), where θθθ is the

weights of its parameterisation in any chosen form, such as a neural network.

For episodic tasks, where the MDP has a finite number of interaction steps,

the objective function is normally the state-value function (Sutton and Barto,

2018). In order words, the policy gradients point to the direction where

the expected return of the starting states is improved (policy improvement).

Denote the maximisation objective function as J(θθθ), according to the policy

gradient theorem (Sutton et al., 1999a; Silver et al., 2014; Lillicrap et al.,

2015), the gradient with respect to the policy parameters in the episodic

case can be written as:

∇J(θθθ) = ∇vπθθθ(s0)

=
∑
s

dπθθθ(s)
∑
a

qπθθθ(s, a)∇πθθθ(a|s) (3.10)

=
∑
s

∞∑
k=0

γkPr(s0 → s, k, π)
∑
a

qπθθθ(s, a)∇πθθθ(a|s)

= Eπ

[
γt

∑
a

qπθθθ(St, a)∇πθθθ(a|St)

]

= Eπ

[
γt

∑
a

qπθθθ(St, a)πθθθ(a|St)
∇πθθθ(a|St)

πθθθ(a|St)

]
(3.11)

where
∑

a q
πθθθ(s, a)∇πθθθ(a|s) indicates that the state value represented by the

summed action-values weighted by the gradients of the probabilities over all

actions,
∑

s d
πθθθ(s) indicates that the quantity is the sum of state-values of

visited states weighted by the expected number of timesteps required to reach

79

the state s according to the policy πθθθ. In simple terms, Eq. 3.10 increases

the probability of selecting an action if that action results in a high expected

discounted future return (the fewer steps required the better), and vice versa.

REINFORCE

The most straightforward way of calculating qπ to estimate eq. 3.11 is to

approximate it with the actual return collected from an interaction trajectory

(policy evaluation). This gives rise to the classic REINFORCE algorithm,

which, at its core, is a Monte-Carlo policy gradient method. Explicitly,

continuing from eq. 3.11, we have the gradient for the maximisation objective:

∇J(θθθ) = Eπ

[
γt

∑
a

qπθθθ(St, a)πθθθ(a|St)
∇πθθθ(a|St)

πθθθ(a|St)

]

= Eπ

[
γtqπθθθ(St, At)

∇πθθθ(At|St)

πθθθ(At|St)

]
(using sampleAt) (3.12)

= Eπ

[
γtGt

∇πθθθ(At|St)

πθθθ(At|St)

]
(using Monte-Carlo estimate of qπθθθ)

= Eπ

[
γtGt∇ log πθθθ(At|St)

]
(using ∇ log x =

∇x
x

)

Now provide with a learning rate α, the REINFORCE update rule can be

written down for moving the weights of a policy towards the higher return

direction with respect to its parameters at iteration i:

θθθi+1 = θθθi + αγtGt∇ log πθθθi(At|St) (3.13)

The REINFORCE algorithm when converged provides directly a distribu-

tion of the optimal policy, from which the sampled actions shall maximise

the expected discounted return. However, similar to the Monte-Carlo value-

based method discussed in the last subsection, REINFORCE is an op-policy

algorithm that only updates after an episode is finished.

80

This produces high variance and requires a full trajectory to compute

the gradients. The high-variance issue can be alleviated by subtracting the

approximated q value with some baseline b(s). This subtraction does not

change the expectation of the gradient, but it reduces the variance signifi-

cantly with the appropriate baseline. The most natural choice of a baseline

is the state-value function (Sutton et al., 1999a).

Instead of moving the policy parameters towards the direction of the q

value, one moves the policy towards the direction where the q value is advan-

tageous over the expected state value. This is yet another way to evaluate

a policy. In order words, the probabilities of actions that are expected to

collect higher returns over the average state value will be increased, and vice

versa (Sutton et al., 1999a). Applying it to the REINFORCE algorithm, we

have:

θθθi+1 = θθθi + αγt[Gt − ṽ
πθθθi
wwwj (St)]∇ log πθθθi(At|St) (3.14)

where wwwj is the parameters for the parameterised state-value function at

iteration j. This algorithm then updates the state value and the policy

together, resulting in reduced variances.

Additionally, there are techniques that allow for faster and more frequent

updates in policy gradient methods, similar to how TD learning achieves

advantages over Monte Carlo in value-based methods. This leads to the

most popular set of RL methods for continuous control problems: the “actor-

critic“ methods.

3.1.5 Actor-critic

The name actor-critic (AC) comes from the architecture of the algorithm,

where a policy “acts” upon the environment to collect data and a value

81

function “criticises” the actions taken by the policy to provide the gradients

for optimising the policy using the policy gradient theorem, Eq. 3.10. The

policy is called the actor and the value function is called the critic. We only

introduce off-policy actor-critic here as it is the foundation of the DDPG and

SAC algorithms that are used in this thesis.

Off-policy actor-critic

Remember that in practice, off-policy learning means that the data are not

always collected by the target policy πθθθ(a|s) that we would like to evaluate

and optimise. The data come from some other policy βθθθ(a|s).

For policy gradient for the on-policy episodic setting in subsection 3.1.4,

the policy is optimised towards the direction of higher future return con-

ditioned on the starting state s0 (Eq. 3.10). For off-policy AC, the policy

is improved at all possible states towards the direction of a parameterised

q value function, q̃πθθθwww (s, a), under the continuous state distribution of the

behavioural policy. Thus, the gradient of the maximisation objective is:

∇θθθJ(θθθ) ≈
∫
S
dβθθθ(s)

∫
A
q̃πθθθwww (s, a)∇θθθπθθθ(a|s)dsda proof in (Degris et al., 2012)

≈
∫
S
dβθθθ(s)

∫
A
q̃πθθθwww (s, a)πθθθ(a|s)

∇θθθπθθθ(a|s)
πθθθ(a|s)

dsda (3.15)

The approximated off-policy gradients can be estimated by samples from

the behavioural policy, St ∼ dβθθθ(s), At ∼ βθθθ(a|St). Thus we have the gradient

estimation and maximisation update rule at iteration i:

∇θθθJ(θθθ) ≈ ESt∼dβθθθ ,At∼βθθθ

[
ρtq̃

πθθθ
www (St, At)∇θθθ log πθθθ(At|St)

]
(3.16)

θθθi+1 = θθθi + αθρtq̃
πθθθi
wwwj (St, At)∇θθθ log πθθθi(At|St) (3.17)

where ρt = πθθθ(At|St)
βθθθ(At|St)

is the importance-sampling ratio, which is needed be-

cause the samples come from a different policy that the gradient is affecting.

82

Notice the expectation is taken over the distribution of the βθθθ, instead of πθθθ.

Despite the source of the data, the improvement direction is clear: increase

the probabilities of actions that are evaluated as leading to higher q values.

Now we see more clearly from Eq. 3.16 that a good policy improvement de-

pends on an accurate policy evaluation result, i.e., an accurately learnt critic

function.

The learning of the critic also needs to go off-policy. Naturally, Q-learning

can be directly applied for discrete action spaces, where the maximisation

operation is straightforward. However, when the action space is continuous,

this becomes problematic as the maximisation operation within each update

(Eq. 3.9) becomes too costly. An alternative is to use actions that the actor

would take to compute the expected action value for the next state. This

is valid because the policy is being optimised to the direction of higher q

values (Silver et al., 2014). This results in the following gradient update to

the critic:

wwwj+1 = wwwj + αwρtδt∇q̃
πθθθi
wwwj (St, At) (3.18)

where, ρt is the importance-sampling ratio, and

δt =

[
Rt+1 + γ

∑
a

[
πθθθi(St+1)q̃

πθθθ
wwwj−1

(St+1, a)
]
− q̃πθθθwwwj

(St, At)

]
is the TD error, where the q function from the last update is again treated

as a scaler to compute the expected true q value with the weight wwwj−1 being

fixed. The off-policy AC algorithm also iterates among collecting samples,

evaluating the policy (Eq. 3.18) and improving the policy (Eq. 3.17). One

thing to keep in mind is that a proper importance sampling ratio is required

as the data come from a policy different from the one being optimised. This

broadens the source of learning data, enabling off-policy algorithms to be

easily incorporated with various exploratory policies (i.e., data generation

83

strategies).

3.1.6 Summary

In summary, this section has looked into the formulation of RL problems

and the mathematical foundations of model-free RL algorithms. Specifically,

the key idea behind all these methods is to use data sampled from the in-

teraction with the environment to learn a policy that produces high-return

actions. Among them, value-based solutions learn a q function that esti-

mates the q values (expected returns) of state-action pairs. A policy is then

extracted from the q values. Policy gradient methods optimise directly a

parameterised policy function to produce high-return actions. In between

them, actor-critic methods learn a q-value estimator and use it to optimise

a policy through gradients. With the brief background, the fundamentals of

how RL algorithms approach the return maximisation task have been cov-

ered in this section. For more details on RL fundamentals, please refer to

(Sutton and Barto, 2018). In the next section, the focus will be on modern

solutions that extend these foundations to high-dimensional observation and

action spaces, using deep neural networks as function approximators.

3.2 Deep Reinforcement Learning

There would be very little doubt nowadays that one of the most important

breakthroughs in the early 21st century is the rise of DL and the breathtaking

achievements that it has enabled in various fields, including the previously

unthinkable applications of RL algorithms on high-dimensional, large state

and action spaces, image-based tasks (Lazaridis et al., 2020). The most well-

known examples would be the Deep Q Network agent that exceeds human

84

levels on Atari games (Mnih et al., 2015), the AlphaGo agent that defeats

the human champion in the game of Go (Silver et al., 2016), the AlphaFold

agent that predicts protein structures (Jumper et al., 2021).

Robotic applications of DRL methods are developing much slower than

other application areas (Ibarz et al., 2021; Singh et al., 2021), especially

when it comes to robotic manipulation (Liu et al., 2021). As discussed in

Chapter 2, robotic-specific difficulties, such as unstructured environment,

stochasticity, sensor noise, observation redundancy, complex physical contact

and interaction, etc., pose new challenges to state-of-the-art DRL methods.

Therefore, in order to built-up the foundation to understand what this thesis

contributes in this regard, this section will be devoted to the basics of DL

and the three most fundamental off-policy DRL algorithms proposed in recent

years.

3.2.1 Deep learning basics

The term “deep learning” refers to a set of statistical optimisation algorithms

that search for a set of parameter values of a DNN so that the DNN matches

a mapping from a distribution to another distribution (Goodfellow et al.,

2016). A DNN is essentially a non-linear function whose structure is in-

spired by how neurons communicate and whose weights can be adjusted. For

example, a simple three-layer neural network shown by Figure. 3.5a or a so-

phisticated one such as the famous AlexNet shown by Figure. 3.5b. Since this

thesis focuses on developing and applying DRL methods on robotic-specific

problems, detailed and advanced mathematics of DL solutions are excluded.

The following will introduce only a few basic notations and terminologies for

the sake of the development of DRL methods.

A DNN can be represented as a parameterised function yyy = f(x̄xx;θθθ) where

85

Input
Layer

Hidden
Layer

Output
Layer

ActivationActivation

(a) A simple multi-layer per-

ceptron (MLP) network.

(b) The AlexNet (Krizhevsky et al., 2017).

Figure 3.5: Examples of neural networks.

x̄xx and yyy are the input and output vectors, and θθθ is the vector of changeable

parameters or weights. yyy is also called the prediction. Given J(yyy) as a cost

(objective) function of the prediction of the DNN, the optimisation problem

of training a DNN could be formalised as follow:

Min/Max J(yyy)

s.t. yyy = f(x̄xx;θθθ)

g(θθθ) = aaa (3.19)

h(θθθ) ≥ bbb (3.20)

where Eq. 3.19 and 3.20 are equality and inequality constraints. Different

forms of the objective function and constraints will induce different types of

learning problems. For example, supervised learning seeks to minimise some

distance between the known and predicted results, ȳyy and yyy, from the same

input x̄xx, while unsupervised learning seeks to optimise some information-

theoretic constraints or objectives so that the weights become easier-adapted

onto new problems (Goodfellow et al., 2016). For DRL, the problem would

86

be to minimise some variants of the mean-squared value error (Eq. 3.8) or to

maximise some form of the future return (e.g., Eq. 3.10).

However, because analytically solving for the optimal weights is impos-

sible for large datasets and DNN models, DL methods use gradient descent

to approach the (local-)optima. Recall that this is the same as how the

gradient-based methods in RL work. The gradient update can be simply

written down as θθθi+1 = θθθi + α∇J(yyy), where α is the learning rate.

The specific method that computes the gradient, ∇J(yyy), and updates the

weights is referred to as the optimiser. Vanilla gradient descent calculates

the gradient at every update with all available data points, which is highly

expensive for large datasets. Stochastic gradient descent calculates the gra-

dient for one datapoint at every update, which is computationally expensive

and produces high variance gradients. Whilemini-batch stochastic gradient

descent is preferred as it computes the gradients with a selectable number

of randomly sampled data points at every step (Li et al., 2014). With the

raised demands of processing large datasets, optimisers have been upgraded

in a steady course. Arguably the most used one in the DRL community

would be RMS-Prop or Adam (Zou et al., 2019a).

In supervised learning tasks, such as image classification, the data points

used to train a DNN are sampled from a fixed dataset (Goodfellow et al.,

2016). In DRL, most of the time these data points are sampled from an ever-

changing dataset that is constantly renewed by adding new and deleting old

experiences. This process is called experience replay (Lin, 1992; Mnih

et al., 2015). The idea is simple: reusing past interaction data, which brings

us back to the topic of off-policy learning. The integration of mini-batch op-

timisation, experience replay and off-policy Q-learning is indeed so powerful

that most modern successful DRL algorithms are built upon it. However,

87

as shown in subsection 3.2.5, there are still improvements to be made to the

fundamentals of deep q learning.

3.2.2 Deep q-learning

As the name implies, deep q-learning is the DNN-enhanced version of the q-

learning algorithm (Mnih et al., 2015). Instead of representing the q function

by a matrix or linear function, a neural network is now used. It is referred

to as the deep q-network (DQN). Similar to the linear function case, for

discrete action spaces, the DQN can directly output all the action values

given a state; but for continuous action spaces, it would only be able to

evaluate one state-action pair for each input.

Recall that the minimisation objective for iteratively learning a parame-

terised q function through gradient is the mean square value error between

the true q value and the predicted q value. In DRL research, the true q value

is commonly referred to as the target q-value, as it is the regression target.

Because the algorithm has access to only data, it needs to estimate the target

using what it has learnt before and the new samples (Eq. 3.8). This leads

to the objective of the Q-learning algorithm in the form of an expectation

over mini-batch samples. Denote the target value estimate at iteration i as

q̂i, and the n-th transition from a reply buffer D with a batch size N as

ξn = {sn, an, rn, s′n}, the objective function to be minimised can be written

as:

J(wwwi) ≈ Eξn∼D

[
1

2
(q̂n − q̃wwwi

(sn, an))
2

]
≈ Eξn∼D

[
1

2
(rn + γmax

a′n
q̃www−

i
(s′n, a

′
n)− q̃wwwi

(sn, an))
2

]
(3.21)

where the expectation is taken over the distribution for sampling mini-batches

88

from the replay buffer D. The gradient update for DQN is then:

wwwi+1 = wwwi + αw
1

N

N∑
n=0

(
rn + γmax

a′n
q̃www−

i
(s′n, a

′
n)− q̃wwwi

(sn, an)

)
∇q̃wwwi

(·)

(3.22)

where, αw is the learning rate, q̃www−
i
(s′n, a

′
n) is a copy of the q network being

optimised and it is treated as a scalar value for computing the target value

q̂. This copied network is called the target q-network, while the one being

optimised is called the main network. In the DQN algorithm, the target

network is a delayed copy of the main network. Specifically, it copies the

weight values from the main network at every C optimisation step. Replacing

www−
i with the main weights from last update www−

i−1 results in the original Q-

learning update (Eq. 3.9). This delayed copy is suggested because it improves

training stability compared to computing q̂ with the network from the last

update, which very easily leads to divergence with function approximation

(Mnih et al., 2015).

As with the original Q-learning, the DQN algorithm is off-policy. It learns

the q function for a greedy policy: π = argmax
a

q̃wwwi
(sn, an), while exploring

the environment by taking actions from another policy. The exploratory

policy is called ϵ-greedy, which takes a random action with a probability ϵ

and otherwise takes the greedy action according to the current q value. In

addition, the probability ϵ is linearly reduced from 1 to a lower bound over

the course of training.

The main modifications that DQN has made compared to Q-learning

basically include 1) the use of DNN-based function approximators, 2) the

use of experience replay with mini-batch stochastic optimisation, and 3) the

use of a target q network. Additionally, for the algorithm to work in the Atari

game tasks, the authors also applied image preprocessing to construct a more

89

compact input (Mnih et al., 2015). In later years, DQN has been improved in

various ways and researchers have proposed a number of optimisation tricks

to stabilise training and improve convergence quality. A few important ones

will be discussed in subsection 3.2.5.

Despite its success in Atari games and other discrete action domains,

DQN struggles in continuous action tasks. As discussed in section 3.1, de-

ploying q learning on continuous action spaces is expensive due to the max-

imisation operation for computing the target value during update or action

selection. Therefore, the next two subsections will introduce two DL-based

off-policy actor-critic algorithms, first with a deterministic actor, and then

with a stochastic, entropy-maximisation actor.

3.2.3 Deep deterministic policy gradient

The deep deterministic policy gradient (DDPG) is the second important DRL

algorithm that impressed the community. It is an off-policy actor-critic al-

gorithm that optimises a DNN-parameterised deterministic policy a = πθθθ(s)

(Lillicrap et al., 2015). The core of DDPG is the deterministic policy gradient

theorem proposed specifically for continuous state and action space problems

(Silver et al., 2014). So, what is the advantage of a deterministic actor over

a stochastic one?

Recall that in subsection 3.1.4, the policy gradient theorem for a stochas-

tic policy π(a|s) was introduced (Eq. 3.10), with its on-policy and off-policy

estimations based on samples. Here we start the derivation of DDPG from the

off-policy stochastic policy gradient estimation using samples and a parametrised

90

q function (Eq. 3.16):

∇θθθJ(θθθ) ≈
∫
S
dβθθθ(s)

∫
A
q̃πθθθwww (s, a)πθθθ(a|s)

∇θθθπθθθ(a|s)
πθθθ(a|s)

dsda

≈ ESt∼dβθθθ ,At∼βθθθ

[
ρtq̃

πθθθ
www (St, At)∇θθθ log πθθθ(At|St)

]
where ρt =

πθθθ(At|St)
βθθθ(At|St)

is the importance-sampling ratio. Notice the fact that the

expected state value requires integration over the action space because every

action has some probability to be selected given a stochastic policy. However,

the case is different when it comes to a deterministic policy, a = πθθθ(s), whose

gradient to maximise the objective using replay buffer samples can be written

as:

∇θθθJ(θθθ) ≈ ∇θθθ

[∫
S
dβθθθ(s)q̃πθθθwww (s, πθθθ(s))ds

]
≈

∫
S
dβθθθ(s)∇aq̃

πθθθ
www (s, a)

∣∣
a=πθθθ(s)

∇θθθπθθθ(s)ds

≈ Eξn∼D

[
∇aq̃

πθθθ
www (sn, a)

∣∣
a=πθθθ(sn)

∇θθθπθθθ(sn)
]

(3.23)

where sn ∈ ξn is the state of the n-th sampled transition of a N -size mini-

batch. As the policy is deterministic, the state value actually equals to

the state-action value in expectation. In addition, there is no need to inte-

grate over the action space, thus, no need to correct the gradient with the

importance-sampling ratio. This in fact has a great impact in practice, as

the stochastic version would require more samples because more actions need

to be considered for a good estimate of the gradients. The gradient update

rule of the deterministic actor with mini-batches is:

θθθi+1 = θθθi + αθ
1

N

N∑
n=0

(
∇aq̃

πθiθiθi
wwwj (sn, a)

∣∣
a=πθθθi (sn)

∇θθθπθθθi(sn)
)

(3.24)

Similar to the stochastic off-policy AC algorithm, the critic update uses

Q-learning. However, this time its actions come directly from a deterministic

91

policy because it is inefficient to compute the maximisation operation on

continuous action space. Thus, the gradient update rule for the critic with

mini-batches is:

wwwj+1 = wwwj + αw
1

N

N∑
n=0

(
δt∇wwwq̃

πθθθi
wwwj (sn, an)

)
(3.25)

where, the TD error δt = rn + γq̃
π
θθθ−
i

www−
j

(s
′

n, a
′)|a=πθθθi (sn)

− q̃
πθθθi
wwwj (sn, an)

Similar to DQN, www− and θθθ− are parameters of the separate copies of the

main networks. They are only used to calculate the target q values with fixed

weight values. However, different from DQN, DDPG uses another scheme to

update the weights of the target networks. In particular, they are updated

softly using Eq. 3.26, instead of a hard copy of the main network.

www−
j+1 = λwwwj+1 + (1− λ)www−

j , θθθ−i+1 = λθθθi+1 + (1− λ)θθθ−i (3.26)

where 0 < λ≪ 1 is the soft update ratio.

As discussed, a deterministic policy requires another policy to explore

the environment and collect data. This is called the behavioural policy.

In DDPG, the authors proposed to use the Ornstein-Uhlenbeck process to

generate temporally correlated noises that perturb the actions produced by

the actor network at every state. They hypothesised that this will result in

better exploration in physical environments that have momentum (Lillicrap

et al., 2015). However, this was empirically shown to be unnecessary and

researchers opted to use variations of Gaussian noises (Andrychowicz et al.,

2017; Fujimoto et al., 2018).

In sum, the DDPG algorithm uses a behavioural policy to collect data,

uniformly samples mini-batches from a replay buffer to update the critic

with Q learning (Eq. 3.25), the actor with the deterministic policy gradient

theorem (Eq. 3.25), and their target networks softly (Eq. 3.26). It improved

92

the sample efficiency over on-policy DRL methods for tasks with continuous

state and action spaces and became one of the most used algorithms by the

robotic community (Singh et al., 2021). However, DDPG is difficult to use

because it is highly sensitive to training parameters such as learning rate

and the size of the mini-batch. In addition, though a deterministic policy

may converge faster in certain task settings, it will have difficulty facing

stochastic environments where uncertainty should be accounted for and it is

only a special case for the stochastic policy gradient theorem (Silver et al.,

2014). Therefore, one may still prefer to develop stable and sample-efficient

off-policy algorithms for learning stochastic policies. Soft actor-critic is an

important state-of-the-art solution to this problem.

3.2.4 Soft actor critic

The foundation of soft actor-critic (SAC) is the framework of maximum en-

tropy reinforcement learning (MaxEnt RL) (Haarnoja et al., 2018). The root

difference is that MaxEnt RL augments the maximisation objective of the

original RL problem (Eq. 3.3) with an extra entropy term as follows:

J(π) = Eπ

[
T∑
t=0

γt(r(st, at) + αHHπ(·|st))

]

=
T∑
t=0

Eπ

[
γt(r(st, at)− αH log π(·|st))

]
(3.27)

where αH is the temperature parameter that determines the balance between

maximising the two terms. To clarify, the entropy of a stochastic distribu-

tion measures the randomness of that distribution. Therefore, by maximising

Eq. 3.27, the RL policy will, in expectation, maximise return and remain ro-

bust in the presence of uncertainty. In other words, the entropy maximisation

term guarantees the policy to have non-zero probabilities for all the actions,

93

preventing it from collapsing into a deterministic policy. This is important

for stochastic environments, where the optimal policy is stochastic.

Before the SAC algorithm, empirical results of on-policy and discrete

action MaxEnt RL policies have shown improvements in terms of convergence

speed, sample efficiency, and higher performance compared to their classic

RL counterparts (Haarnoja et al., 2017; Schulman et al., 2017a). Based on

them, the success of SAC was not much of a surprise.

As with all actor-critic algorithms, SAC also iterates among data collec-

tion, soft policy evaluation and soft policy improvement. The soft version of

the q function and value function are defined as follows:

qπ(st, at) = r(st, at) + γEπ[v
π(st+1)] (3.28)

vπ(st) = Eπ[q(st, at)− log π(at|st)] (3.29)

Similar to DDPG, SAC employs Q-learning but with a stochastic policy

and instead uses the soft version of the objective to learn the parameters of a

q network. Given a transition ξn = {sn, an, rn, s′n, a′n}, the objective function

to be minimised for the soft critic associated with a parametrised q function

and policy is:

J(www) = Eξn∼D

[
1

2
(q̂n − q̃πθθθwww (sn, an))

2

]
(3.30)

where q̂n = rn + γq̃πθθθwww−(s′n, a
′
n) − αH log πθθθ(a

′
n|s′n) is the soft target value, www−

represents the weights of the target network.

For policy improvement, it is different from the common practice for

standard RL. Instead of pushing the parameters of the policy towards the

direction of the q function, soft policy improvement minimises the Kullback-

Leibler divergence between the current policy and the exponential of the

updated Q function, q̃New
www . The objective function to be minimised using

94

replay samples is:

J(θθθ) ≈ Eξn∼D

[
DKL

(
πθθθ(·|sn)

∣∣∣∣∣∣∣∣exp(q̃New
www (sn, ·))
Zwww(sn)

)]
≈ Eξn∼D

[∫
A
πθθθ(·|sn) log

(
πθθθ(·|sn)Zwww(sn)

exp(q̃New
www (sn, ·))

)
da

]
≈ Eξn∼D

[
Ea∼πθθθ

[
αH log πθθθ(a|sn)− q̃New

www (sn, a)
]]

(3.31)

Eq. 3.31 here is obtained by dropping the partition function Zwww(sn) and

multiplied by the temperature parameter αH. In order to compute the gradi-

ents, the policy is specifically chosen from a set of parameterised distributions

such as Gaussian, whose mean and deviation are produced by a differentiable

neural network. By applying the reparameterisation trick, the policy gradient

can be estimated from samples readily (Haarnoja et al., 2018).

Empirical results of alternating the updates between Eq. 3.30 and 3.31

have shown impressive improvements over DDPG, TD3 (enhanced DDPG)

and other popular algorithms at the time (Haarnoja et al., 2018). Later

on, the authors proposed a technique to automatically adjust the tempera-

ture parameter, liberating users from manually fine-tuning it for every new

task. The solution begins with formulating the MaxEnt RL problem as a

constrained optimisation problem that constrains the average entropy of the

policy:

max
π

Eπ

[
T∑
t=0

γtr(st, at)

]
s.t. Eπ[− log π(at|st)] ≥ H̄

Solving the dual problem of this constrained optimisation problem leads

to the soft actor-critic update as well as an update to the dual variable,

which is exactly the temperature parameter in the standard formulation.

The deriving of the solution is omitted here and can be found in the original

paper (Haarnoja et al., 2018). The objective function to be minimised with

95

respect to the temperature along with its sample-based approximation are:

J(αH) = Eπ[−αH log π(a|s)− αHH̄] (3.32)

≈ Eξn∼D

[
Ea∼πθθθ

[
−αH log πθθθ(a|sn)− αHH̄

]]
(3.33)

where H̄ is the target entropy, which in practice normally equals the negative

number of action dimensions.

In sum, the SAC algorithm seeks to find the optimal stochastic policy

with respect to an augmented objective which in addition proportionally

maximises the entropy of the policy. This prevents the policy from fully

collapsing to a deterministic one very fast, which is suboptimal when the

environment is stochastic. Also, the automatic temperature update ensures

the policy is deterministic enough when good and bad actions can be distin-

guished clearly. SAC indeed has achieved impressive results on model-free

continuous control problems (Haarnoja et al., 2018).

3.2.5 Optimisation tricks

Up till now, the three pioneer DRL algorithms for model-free off-policy learn-

ing have been introduced. A decade after the publication of the first DQN

algorithm (Mnih et al., 2013), different improvements and variations of these

algorithms are still being proposed to adapt these algorithms into more prac-

tical and realistic tasks (Lazaridis et al., 2020). From a theoretical point of

view, the derivation process and the original algorithms look very promising.

However, making DRL algorithms actually work turns out to be very diffi-

cult and case-specific, especially with the use of deep neural networks. In the

past few years, researchers have discovered various optimisation tricks that

enable, stabilise or accelerate the training of DRL agents. This section will

introduce some very common ones that are also used in this thesis.

96

Double Q learning. The off-policy learning benefit of q learning needs

no more words to explain. However, it is well known in the community that

the maximisation operation during the update will cause an overestimation of

the q values because the next-state q value in the computation of the approx-

imation of the true q value also comes from an imperfectly learnt function.

This approximation to the Bellman update is called bootstrapping. In other

words, learning what is new partly from the old knowledge. The problem

becomes more complicated with neural network approximators, whose every

weight changes when one state-action pair is updated. This is the reason why

a target q network was introduced in the original DQN paper (Mnih et al.,

2015). However, there is always room to reduce the overestimation error, and

double q learning is one of the popular approaches (Hasselt, 2010). Different

forms of double q learning with DNNs have emerged. The very first one uses

a target network to evaluate actions selected greedily by the main network

(Van Hasselt et al., 2016). While the latest and most successful one uses

two q functions with respective target functions for actor-critic algorithms

(Fujimoto et al., 2018). The idea is to find the minimum q value estimate

possible by taking the minimum among the predicted values from the two

target networks:

q̃ = r + γ min
k=1,2

q̃
πθθθ−

www−
k

(s′, πθθθ−(s
′)) (3.34)

where www−
k is the weights of the k-th target q network, and θθθ− is the weights of

the target policy network. Empirically, using Eq. 3.34 exhibits far less over-

estimation error and speeds up learning for both deterministic and stochastic

actors (Haarnoja et al., 2018). However, the use of a target policy network

was suggested to be less important and sometimes discarded. Another mod-

ification that helps in learning the q function with a deterministic actor is to

add a small amount of Gaussian noises into the action computing in Eq. 3.34,

97

averaged over mini-batches, resulting in:

q̃ = r + γ min
k=1,2

q̃
πθθθ−

www−
k

(s′, πθθθ−(s
′) + ϵ) (3.35)

where, ϵ ∼ clip (N (0, σ),−c, c) is the clipped zero-mean Gaussian noise, σ is

the user-specified variance of the Gaussian and c is the absolute bound value

(Fujimoto et al., 2018).

Value clip. The use of a q-learning-style update is bound to lead to

overestimation errors. A trick that can be employed is to clip the value

estimate within a rational range. This can be easily done in most tasks with

a given reward function, by analytically estimating the highest and lowest

possible returns given a fixed episode length and a discount factor. At each

update to the q function or the policy, the target q value can be clipped

within this rational range. In the case of updating the policy, this can result

in a clipped gradient (Andrychowicz et al., 2017; Fujimoto et al., 2018).

Input normalisation. Another thing that may help to speed up training

is to normalise the inputs of the neural networks (Sola and Sevilla, 1997). For

pixel-input tasks, the input is normalised into [0, 1] by dividing 255. For non-

image inputs, this is less straightforward for RL problems. As mentioned,

the dataset or the data distribution, from which the mini-batch samples are

drawn to update the networks, is ever-changing in RL problems. This is

because the data depend partly on an ever-changing policy. Therefore, the

input normalisation method used in most RL algorithms, especially for con-

tinuous state tasks, is the mean-deviation normalisation with the statistical

mean and deviation calculated from the data collected by the algorithm so

far (Lillicrap et al., 2015; Andrychowicz et al., 2017). However, state nor-

malisation does not guarantee to work and is not always necessary (Fujimoto

et al., 2018; Haarnoja et al., 2018).

98

3.2.6 Summary

Up until now, the readers should be familiar with the foundation of modern

DRL algorithms. They tightly centred around the use of off-policy q learning

and its extension to continuous problems with a parameterised actor (deter-

ministic or stochastic). On-policy DRL algorithms such as the proximal

policy optimisation (PPO) method have their contributions and advantages

on certain tasks (Andrychowicz et al., 2020), but they are too unrelated to

the focus of this thesis. The interest of this thesis is set upon robotic manip-

ulation tasks where off-policy demonstrations and exploration data are much

easier to obtain and more valuable than on-policy data.

However, although DRL algorithms have made impressive progress, it is

not surprising that the formulation of the standard RL problem given the

complexity of the real world. Therefore, various new RL formulations have

been proposed to cope with problems that are not obvious to be modelled

by the standard MDP. In the following three sections, the three important

extensions of the standard RL problem will be introduced. They are the

foundations of the contributions made by this thesis.

99

Chapter 4

A2: Accelerate Reinforcement

Learning

for Multi-step Robotic

Manipulation

100

4.1 Introduction

Reproducing the object manipulation skills manifested by humans on robots

has been one of the central research topics in the robotic community. For

decades scientists identified various subproblems in this area and developed

methods to tackle them, yet today’s robotic manipulation systems still have

a long way to go (Billard and Kragic, 2019).

One of the difficult problems is how to enable a robot to learn multistep

manipulation tasks. These tasks typically can be decomposed into a number

of subtasks and accomplished by a number of motion skills. For instance,

assembling a number of car parts, building a Lego house, or pushing a block

into a closed chest as shown by Figure 4.1.

Figure 4.1: The multistep manipulation task of pushing a block into a closed

chest.

There are several solution frameworks for such tasks. The most classic ap-

proach is task and motion planning (TAMP), which uses symbolic languages

to find a skeleton of motion skills and identifies the particular parameters for

these motion skills (Karpas and Magazzeni, 2020; Garrett et al., 2021). The

primary limitation of TAMP methods is that it requires substantial human

knowledge to design a computable model of the dynamics of the environment,

either for subtask reasoning or motion skill generation. This is problematic

when object interaction is involved in the task because it is generally difficult

101

to model rich contact dynamics. Therefore, data-driven methods that do not

rely on a dynamic model are increasingly desirable (Kroemer et al., 2021).

In recent years researchers have developed and tested a diversity of data-

driven methods for manipulation skill learning (Kroemer et al., 2021). These

methods seek to learn a data-driven reactive policy that produces robot ac-

tion commands when given an observation of the world. They attempt to

free the control algorithms from the assumption of a given dynamic model.

The data may come from a number of different sources. If it comes from a

human expert or a hand-engineered programme, it is called demonstration

data. If it comes from a policy that randomly takes actions to see how the

environment reacts, it is called exploration data. Learning methods can be

classified according to how they optimise the policy using these data. Imi-

tation learning (IL) seeks to optimise a policy so that it matches the policy

that produced the demonstration data (Hussein et al., 2017). RL seeks to

optimise a policy that maximises the expected cumulative rewards (Sutton

and Barto, 2018).

In practice, IL and demonstrations alone are often not enough, because

demonstrations can only provide a limited set of experiences, resulting in seri-

ous distribution mismatch (Ross et al., 2011). This is exacerbated in robotics

as collecting robot demonstrations is a time-consuming, labour-intensive and

specialised work (Fang et al., 2019a). Therefore, it is common for further

training to take place on top of the use of demonstrations. In many such

cases, the policy is fine-tuned with RL, either it is initialised from demon-

strations or it is trained with a mixture of demonstration and exploration

data (Ramı́rez et al., 2022).

On the other hand, using demonstrations along with exploration is also

preferred by RL algorithms, because exploration alone tends to be insufficient

102

(Ramı́rez et al., 2022). The first reason is that for many complex robotic

manipulation tasks, the learning signal only comes from the task completion

condition, so random exploration will take too long to encounter useful data.

(Liu et al., 2021). This is known as the sparse reward problem, which hap-

pens to tasks where a dense reward function is difficult to specify. Secondly,

this situation is further exacerbated in multistep tasks, where the length of

the successful trajectory and the diversity of required manipulation skills in-

creases. Take the pushing task shown in Figure 4.1 as an example. The robot

does not receive a positive learning signal until it accidentally opens up the

chest door, reaches the block and pushes it into the chest. A dense reward

function is difficult to design for such behaviours, and the likelihood of this

series of events happening is very low. There have been examples of utilising

demonstrations to accelerate the learning of such multistep and long-horizon

manipulation tasks (Nair et al., 2018; Gupta et al., 2019).

However, demonstrations are not easy to collect, especially for robotic

tasks. The common type of robot demonstration is kinesthetic trajectories,

which consist of time-ordered series of observation-action pairs. They may

be collected through kinesthetic teaching, teleoperation, motion capture or

external sensor recording (Ramı́rez et al., 2022). As mentioned, any one of

them is costly to perform.

Therefore, the first idea proposed in this chapter takes advantage of

abstract demonstrations to accelerate learning. In simple terms, abstract

demonstrations refer to the sequences of subtasks or skills required to achieve

the overall task. For example, a Lego house set normally comes with a man-

ual that specifies the number of steps to assemble the house. The same

happens to various furniture or products that require users to assemble by

themselves. This kind of demonstration may be preferred because it is easier

103

to collect by humans. However, there are two assumptions that should be

satisfied for the power of such demonstrations to be fully exposed.

Firstly, the method assumes access to a task decomposition scheme. Such

a scheme can be easily provided by a human expert for many tasks, as con-

ducted in this chapter. However, it can also be automated, for example, by a

neural network. This thought actually leads to the problem of subgoal, skill

or option discovery, which is another broad research field (Khetarpal et al.,

2020b; Pateria et al., 2021a; Cho et al., 2022), out of the scope of this thesis.

Secondly, the policy is assumed to be able to learn the kinesthetic tra-

jectories required to move from one subtask to another, through any other

techniques. There are many choices to satisfy this assumption. For exam-

ple, one may use kinesthetic demonstrations provided by a classic motion

planner, which is known to be stable enough for short trajectory generation

(Latombe, 2012). In this chapter, the GRL framework and the hindsight

experience replay (HER) technique (Schaul et al., 2015; Andrychowicz et al.,

2017) are used to guarantee the successful learning of the short trajectory in

between each subtask in the face of reward sparsity.

This chapter also proposes to improve another condition that occurs in

the application of RL in multistep manipulation tasks. As one can see,

one characteristic of multistep tasks is the dependencies among steps. For

example, the robot cannot push the block into the chest unless it opens the

chest door in advance. This means that the robot cannot learn about the

reward of successfully pushing the block into the chest unless it knows that

it should always open the door first. This would require the policy to reduce

exploration for subtasks or skills that it has already mastered, but existing

exploration strategies focus more on visiting unseen states, prediction error

or the number of collected training samples (Ladosz et al., 2022).

104

Therefore, the second idea of this chapter suggests adapting exploratory

behaviours according to the performance of each subtask in the multistep task

setting. It is desired to explore more when the subtask performance is low,

and vice versa. In particular, this idea is implemented and experimentally

demonstrated on three popular RL algorithms: deep q-learning (Mnih et al.,

2013), deep deterministic policy gradient (Lillicrap et al., 2015) and soft

actor-critic (Haarnoja et al., 2018).

4.1.1 Summary and chapter organisation

In sum, this chapter seeks to improve end-to-end RL for multi-step manip-

ulation with delayed and sparse reward signals. According to the analysis

given above, state-of-the-art methods rely on kinesthetic demonstrations to

improve sample efficiency (Nair et al., 2018; Gupta et al., 2019). This chap-

ter proposes two techniques to improve: using abstract demonstrations and

adapting exploration according to subtask performances. Overall, the two

techniques are named A2.

The rest of the chapter is organised as follows. Section 4.2 will introduce

the GRL framework formally, the problem descriptions of the multi-step

tasks of interest, and the A2 method in detail. Section 4.3 will illustrate the

experiment design and discuss empirical results. Lastly, section 4.4 concludes

this chapter.

4.2 Method

This section will first describe the mathematical formulations and assump-

tions employed in the study, then formally illustrate the ideas of abstract

demonstrations and adaptive exploration. The reader is suggested to be-

105

come familiar with section 3.1 and 3.2 for the standard DRL framework and

algorithms, before reading the following contents. However, cross-references

are applied in places of this chapter in cases when necessary.

4.2.1 Goal-conditioned reinforcement learning

As mentioned, this chapter is interested in improving long-horizon manipu-

lation tasks. In particular, the task will be studied in the framework of GRL

(Schaul et al., 2015; Andrychowicz et al., 2017), because it is convenient to

describe the multiple steps of a task as a number of subspaces of the goal

space (see subsection 4.2.3). To demonstrate so, a formal description of the

GRL framework is first given in this subsection, along with a goal-relabelling

technique named hindsight experience replay that is used to accelerate learn-

ing.

In simple terms, the GRL problem differs from traditional RL by opti-

mising the return not only based on a single-objective reward function that

depends on states and/or actions but also incorporates a goal vector. This

multi-objective reward function aims to optimise the return with respect to

achieving specific goals in addition to traditional reward considerations. The

input to the value functions and the policy is therefore augmented by an extra

term: the goal. The learnt policy is expected to exhibit different behaviours

at the same state according to different assigned goals, achieving some de-

gree of information or knowledge sharing (Schaul et al., 2015; Andrychowicz

et al., 2017).

Goal-augmented MDP

As introduced in subsection 3.1.1, a standard MDP is a tuple of state, ac-

tion, transition probability, reward and a discount factor. In this chapter,

106

we will stay within the same discrete time, finite-horizon, fully observable

and discounted setting. Please refer to subsection 3.1.1 for recalling the def-

initions of these terms. The goal-augmented MDP is the same tuple with

an extra goal space: (S,A, p,G, p0, r, γ). The reward function is now defined

as a mapping from the state, action, as well as the goal spaces to some real

number: r : S ×A× G → R.

In practice, the representation of the goal vector is usually some trans-

formation of the state: g = m(s). A simple case would be identity mapping,

such that g = s, or part of the state, such as the position of an object

(Andrychowicz et al., 2017). More complicated cases could be languages

(Jiang et al., 2019) or an image (Xu et al., 2021). An assumption for the

GRL problem is that there is always a goal to be achieved given a state:

∀s ∈ S,∃g ∈ G s.t. g = m(s).

An example would help understand the concepts of goal and its repre-

sentation mapping m(s). Let a state of the pushing task shown in Fig-

ure 4.1 be represented as a concatenated vector of the poses of the gripper

tip, the block and the chest, and the opened width of the door, denoted as

s = {xgrip||xb||xchest||wdoor}. We may define the representation of the goal to

be the position of the block, denoted as g = m(s) = xb. However, according

to the task requirement, we could define the representation of the goal to also

include the position of the gripper tip, denoted as g = m(s) = {xgrip||xb}.

Here, the two goal representation mappings are different but both are part

of the state vector. For these two cases, it is also obvious that, given a state,

there is always a goal that can be achieved at that state. Another example

is to use language to represent the goal. For example, use the phrase “the

block is at ”. Such a representation mapping would be much more diffi-

cult to manually define and may require other natural language processing

107

techniques.

However, what is really the user’s concern is a subset of the goal space

that the algorithm is supposed to find. For instance, the target position

of the block. Hence, we introduce the distinction among achieved, desired

and undesired goals. The achieved goal, gt, is whatever that is achieved

at the current state according to m(st), such as the current block position;

the desired goal, g+ ∈ G+, is what the task requires to achieve; while the

undesired goal is whatever outside of the subset of desired goals g− ∈ G− =

G − G+.

Reward function. Typically, the reward function is designed based

on some distance measure between an achieved goal and a desired goal,

r(st, at, g
+) = d(m(st+1), g

+) where st+1 ∼ p(st+1|st, at). For example, the

negative Euclidean distance. Nonetheless, there are many cases in the real

world where a dense reward function based only on some distance measure-

ment is insufficient. For example, when a robot is separated from its naviga-

tion destination by a wall, the Euclidean distance measure would not provide

useful information that motivates the robot to find another way to bypass the

wall and reach the goal. It would only cause the robot to keep going towards

the wall, behind which is the destination. On the other hand, shaping the

reward function to induce specific behaviour patterns may help in certain

scenarios, but it tends to be more difficult and thus less preferred in the real

world for the sake of multi-goal learning and generalisation. Therefore, a

binary reward function that informs whether a desired goal is achieved by

thresholding the distance measurement is more commonly used. For instance:

r(st, at, g
+) = 1 [d(m(st+1), g

+) ≤ δd], where 1 is the indicator function. This

reward function simply gives a value 1 when a desired goal is achieved, and

0 otherwise (Andrychowicz et al., 2017).

108

Goal-augmented algorithms. Extending the standard algorithms to

the GRL setting is in fact straightforward. First of all, notice that the given

desired goal is independent of the dynamic of the system. In other words,

it does not affect the resultant next state of an action taken at the current

state. What it does affect in the MDP is only the reward function, and thus

the values and the policy. With a trajectory of length T , the goal-conditioned

q value and the greedy policy are defined as follows:

qπ(st, at, g
+) = Eπ

[
T∑
t=0

γtr(st, at, g
+)

]
(4.1)

π(at|st, g+) = argmax
at

qπ(st, at, g
+) (4.2)

The goal-augmented q function and policy are called universal q function

and policy, respectively, because they are the general cases of the single objec-

tive RL problem (Andrychowicz et al., 2017). Consider a special MDP where

the state is the combination of the state and the goal in a goal-augmented

MDP. Because the goal does not affect the transition, the special MDP re-

tains the dynamical property of the goal-augmented one, and it becomes the

standard MDP discussed in section 3.1. Note that preserving the goal in-

formation within the state representation is common in practice. However,

factoring out the goal from the state enables the agent to learn a set of value

functions and policies with respect to different goals (Sutton et al., 2011;

Schaul et al., 2015). This is a valuable benefit of GRL in terms of knowledge

sharing and multi-task learning.

Therefore, due to the independence between the goal and the system

dynamic, the goal-augmented extensions of the DQN, DDPG and SAC algo-

rithms are fairly straightforward. What needs to be done is to simply extend

the input with an extra desired goal vector, because changing the goal has no

impact on the expectation estimated during the derivation processes. Thus,

109

following the notation conventions developed in chapter 3, given the n-th

goal-conditioned MDP transition ξn = {sn, an, rn, g+n , s′n, a′n} from a mini-

batch of size N , we can modify the optimisation objectives of DQN, DDPG

and SAC algorithms to be goal-conditioned as follows:

DQN and DDPG critic minimisation objective (Eq. 3.21):

J(www) ≈ Eξn∼D

[
1

2
((rn + γmax

a′
q̃www−(s′n, a

′, g+n))− q̃www(sn, an, g
+
n))

2

]
(4.3)

DDPG policy maximisation objective (Eq. 3.23):

J(θθθ) ≈ Eξn∼D

[
q̃πθθθ(sn, a, g

+
n)

∣∣
a=πθθθ(sn,g

+
n)

]
(4.4)

SAC critic minimisation objective (Eq. 3.30):

J(www) ≈ Eξn∼D

[
1

2
(q̂n − q̃πθθθwww (sn, an, g

+
n))

2

]
(4.5)

where q̂n = rn + γq̃πθθθwww−(s
′
n, a

′
n, g

+
n)− αH log πθθθ(a

′
n|s′n, g+n)

SAC policy minimisation objective (Eq. 3.31):

J(θθθ) ≈ Eξn∼D,a∼πθθθ

[
αH log πθθθ(a|sn, g+n)− q̃New

www (sn, a, g
+
n)

]
(4.6)

where, D is the replay buffer, www and θθθ stand for the parameters of neural

networks.

Goal relabelling

Aside from the potential value of learning multiple goals, such as knowledge

sharing and possibly accelerated adaptation onto unseen goals, learning more

than one goal is naturally more difficult than learning a single goal. For

example, it is always easier but less meaningful to learn to navigate to a

single destination, and vice versa. However, it turns out that, by factoring

out the goal from the state representation, the GRL framework provides an

110

appealing way to boost learning sample efficiency: the relabelling of goals

(Andrychowicz et al., 2017; Eysenbach et al., 2020).

The idea of goal relabelling is quite straightforward to understand. It

takes a transition tuple ξn = {sn, an, rn, g+n , s′n}, and finds a task for which

the action in that old transition is optimal. In other words, it learns from the

hindsight perspective. What was done by the agent may not be optimal for

the given desired goal when the experience was collected, but it might have

been optimal for another task. In fact, that experience would be valuable

for learning many other tasks or goals instead of the originally given one.

While it can be generalised to arbitrary reward functions with inverse RL

(Eysenbach et al., 2020), this thesis will only focus on the first goal relabelling

technique, HER, which replaces the original goal of a transition according to

some goal-sampling strategy (Andrychowicz et al., 2017).

Formally, goal-relabelling replaces the desired goal and reward in an old

transition with another goal and its associated reward. The desired goal, g+,

and the substitution goal, ḡ+, are sampled from two different distributions.

In practice, the desired goal is normally sampled uniformly from the set of

desired goals G+, while the distribution of the substitution goals varies from

method to method, with different purposes. In HER, the authors propose to

copy transitions of an episode and replace their desired goals with substitu-

tion goals sampled from four distributions or strategies (Andrychowicz et al.,

2017), including:

• final: the desired goal is replaced by the achieved goal in the last state

of the episode, i.e., ḡ+ = m(sT).

• future: the desired goal is replaced by K achieved goals uniformly from

the future transitions of the same episode,i.e., ḡ+k = m(stk) where,

tk ∼ U{t, T}, k ∈ {0, 1, ..., K}. When (T−tk) < K, tk is set to (K−T).

111

U{t, T} denotes a uniform distribution over the set of integers in [t, T].

• episode: the desired goal is replaced by K achieved goals uniformly

from the same episode, i.e., ḡ+k = m(stk) where, tk ∼ U{0, T}, k ∈

{0, 1, ..., K}.

• random: the desired goal is replaced by K achieved goals uniformly

sampled from the replay buffer, i.e., ḡ+k = m(sk), where, sk ∼ U(s | s ∈

D), k ∈ {0, 1, ..., K}.

The improvement brought by the goal-relabelling techniques using these

four strategies is substantial, enabling the DDPG agent to efficiently tackle

sparse reward robotic manipulation tasks that it previously had no hope of

tackling. Readers are encouraged to read the detailed experimental results

of the original paper (Andrychowicz et al., 2017). For the contributions of

this thesis, the future sampling strategy is applied for experiments in this

chapter, and the episode strategy for chapter 5, both with K = 4.

4.2.2 Problem description and assumptions

Following the formulation of the goal-augmented Markov decision processes

described above, the following assumptions are made for the multi-step ma-

nipulation tasks setting in this chapter:

• The task is episodic, meaning that the task is reset to its initial state

after T actions are taken.

• For each task, there exists a non-empty subset of the goal space covering

all the desired goals for the task: G+ ̸= ∅ and G+ ∈ G.

• Each episode starts with a desired goal uniformly sampled from the

corresponding subset of the goal space g+ ∼ U(G+) where U denotes a

uniform distribution.

112

• At each state, there is always a goal that can be achieved at that state:

∀ s ∈ S,∃ g ∈ G s.t. g = m(s).

• The reward function gives a reward of 0 when the Euclidean distance

of the achieved and desired goals is smaller than a threshold δd, and a

reward of −1 otherwise.

Figure 4.2: The Grid-

KeyDoor problem.

These assumptions feature a typical episodic and

sparse reward goal-condition reinforcement learning

(GRL) problem. At the start of each episode, a de-

sired goal is provided, and the GRL agent is tasked

to find a state which corresponds to an achieved

goal close enough to the desired goal. These as-

sumptions can be implemented in a grid world task

in Figure 4.2 as follows. The task of the agent (red

triangle) in this example is to collect the key, go

through the door and reach the green cell in the right room. The grey cells

are walls. In this case, the episodic assumption means that the task resets

and restarts after the agent takes T actions, the agent and the key are reset

to a random position in the left room, and the green cell is randomised in

the right room. If a goal is represented by the x − y coordinate of a cell,

the set of all the coordinates of the cells in the right room constitutes the

set of possible desired goals for this task. When a new episode starts, a

desired goal, i.e., a green cell is uniformly sampled from this set of desired

goals, i.e., all cells in the right room. Because the goal representation is the

coordinate of the cell, there is always a coordinate value at a cell. Thus, the

agent always achieves a goal – not necessarily the desired one – at a state.

Finally, the agent will always have a reward of −1 except if it lands on the

green cell. This can be measured by simply taking the arithmetic difference

113

between the achieved and the desired goals (coordinates).

As illustrated in subsection 4.2.1, standard RL algorithms such as DQN,

DDPG and SAC can be modified straightforwardly to learn these tasks by

including an extra input for the goal into the value function or policy (Eq. 4.3,

4.4, 4.5 and 4.6). Also, we show in subsection 4.2.1 that the HER method can

be applied to relabel the desired goals of past experiences to help the agent

to learn from its failures. As demonstrated by Andrychowicz et al. (2017),

the use of HER substantially improves the sample efficiency of GRL training

in the face of reward sparsity. However, according to later research (Gupta

et al., 2019; Fang et al., 2019b) and the experiments in this chapter, HER

alone is not sufficient if the desired goal is too far away from the RL agent’s

initial states. As such, for long-horizon sparse reward GRL problems, the

next two subsections provide two techniques to improve the sample efficiency

over HER.

4.2.3 Abstract Demonstration

As mentioned, the idea of abstract demonstrations is to leverage task de-

composition and provide the correct sequence of subtasks or skills as train-

ing guidance. The main benefit is to avoid the labour-intensive process of

kinesthetic demonstration collection – a costly process for robots (Ramı́rez

et al., 2022). It also reduces the human bias that may be embedded into the

learnt behaviours when using kinesthetic demonstrations.

However, for standard RL algorithms, it is difficult to train a policy that

optimises towards a set of reward functions corresponding to the subtasks.

It is even more unnatural to gradually reduce the influence of some subtasks

and let the policy optimise to achieve the final task. Optimising one policy

towards different reward functions makes the RL learning objective inconsis-

114

tent. An alternative would be training and chaining a set of policies for all

subtasks, however, this is less desired due to the cost of parameter storage

and waste of resources. Therefore, it is still more desirable to have a single

policy that learns several subtasks, potentially sharing knowledge about the

task context, environment and behaviour patterns.

Fortunately, GRL provides a natural framework for goal-based skill learn-

ing and knowledge sharing (Sutton et al., 2011; Schaul et al., 2015). In GRL,

the policy is optimised towards the same reward function, while what may

change is the sampling distribution of the desired goal. This rules out the

inconsistency problem that occurs in the standard RL framework when dif-

ferent subtasks are to be optimised in some orders. To achieve this, the

following additional assumptions need to be made:

• A task decomposition scheme is available to divide the task into a total

of I subtasks.

• For each subtask, indexed by i ∈ N, i ≤ I, there exists a non-empty

subset of the goal space covering all the desired goals for that subtask:

G+i ̸= ∅ and G+i ∈ G.

• One of the subtasks (normally the last one) induces a desired goal

space that is identical to that induced by the original (or the final)

task G+i = G+ where i ∈ N, i ≤ I.

• There exists a sequence of trajectories {τj}, j ∈ N that connects the

initial state s0 ∼ p(s0) and the state region associated with the final

subtask goal, passing through a sequence of subsets of states and goals

associated with subtasks. In other words, ∀ {τj}, j ∈ N, such that

p(s+end|s0, τ0, τ1, ...) > 0 and
∑

j=0 |τj| ≤ T , where send = m−1(g+I), g
+
I ∼

U(G+I) and |τ | denotes the length of the trajectory.

115

Using the grid world example in Figure 4.2, these assumptions can be

implemented as follows. For this simple task, we can easily decompose it

into three subtasks including reaching the key, the door and then the green

cell. Practically, the subgoal spaces for these three subtasks are the cells in

the left room, the wall in the middle and the right room. Naturally, the last

subtask is identical to the original final goal space, i.e., all cells in the right

room. Finally, the last assumption is guaranteed with a large enough episode

length, as the left room is always connected to the wall in the middle, which

is always connected to the right room. Thus, there are many trajectories

starting from a cell in the left room and ending at the key, then leading to

the door and finally to the green cell. This last assumption about trajectory

ensures that the goal space is reachable from the starting position within the

maximum length of an episode.

Therefore, the aim of abstract demonstrations is to guide the policy to

approach the final goal region gradually, through a series of subgoal regions.

An abstract demonstration for a task is assumed to be the optimal sequence

of some subgoal spaces that ends at the final goal space and maximises the

cumulative rewards. Its optimality should be based on return maximisation,

which, because of the given reward function defined above, points to the

shortest path in the space of subtasks. It can be simply represented by a

sequence of integers, each associated with a subtask: {x∗
n} where n ∈ N is the

index of the integer series, x∗
n ∈ N is the demonstrated index of the subtasks

and x∗
n ≤ I. To actually guide the policy in training, desired subgoals are

sampled from the subgoal spaces in the order indicated by {x∗
n}. When a

desired subgoal is achieved according to the threshold δd, the next subgoal is

sampled from the next subgoal space according to {x∗
n}.

Following the grid world example, the abstract demonstration will simply

116

be represented as {1, 2, 3} where each integer denotes the index of a subtask.

Here, it tells the agent to first reach the key, then the door, and then the

green cell. When an episode starts, the agent is given the coordinate of the

key as the desired goal. When the agent reaches the key, its desired goal is

replaced by the coordinate of the door. Then, it changes to the coordinate

of the green cell when the agent reaches the door.

Trajectory extrapolation

Only by following the abstract demonstrations, a goal-condition policy can

learn to produce the optimal trajectory that connects each consecutive pair

of subgoal spaces. However, it cannot learn to produce a full trajectory

from the start to the final goal without such guidance. In other words, it

cannot find the path when given only the final goal. The trajectories learnt

for different desired subgoals need to be connected for the final goal. To

address this, when the policy achieves a desired subgoal, the trajectory that

leads to it is duplicated, denoted as τ ′j = τj. For each of its transitions, the

desired subgoal is replaced by the next desired subgoal g+x∗
n
= g+x∗

n+1
, where

g+x∗
n
∈ ξ, ∀ξ ∈ τ ′j. It then is used as the next trajectory τj+1 = τ ′j. New

transitions collected while achieving the next subgoal are appended to the

new trajectory. All trajectories are processed by HER and appended to the

replay buffer. As such, when the policy is able to reach the final goal region,

it will be able to recognise that the previous trajectories are all valid for

achieving the desired final goal.

We can continue with the grid example for a practical illustration. As-

sume that the agent now has successfully reached the key and thus achieved

the first subtask according to the abstract demonstration, resulting in a tra-

jectory of 5 steps: τ0 = {(s0, a0, g+1 , s1, a1), ..., (s4, a4, g+1 , s5, a5)}. This tra-

117

jectory is then processed by HER and stored in the replay buffer. The agent

will be given the next subgoal g+2 according to the demonstration. With-

out trajectory extrapolation, the agent will start collecting new transitions

from s5 to fill up a new empty trajectory. With trajectory extrapolation,

τ0 is copied and the desired goals of its transitions are replaced by g+2 . The

agent will then continue taking actions to achieve the new subgoal and new

transitions will be appended into the new trajectory τ1. For instance, at

the sixth step, τ1 = {(s0, a0, g+2 , s1, a1), ..., (s5, a5, g+2 , s6, a6)}. This operation

happens again when the second subgoal is achieved. The agent will thus be

able to relate the necessary states and actions required to achieve the final

goal starting from s0, instead of from the state where the previous subgoal

is achieved.

Demonstration proportion

Another implementation detail of abstract demonstrations is when to use

them. Instead of applying demonstrations throughout training, it is better

to allow the policy to collect random exploration data from time to time.

This is suggested by many previous works (Sutton and Barto, 2018; Ladosz

et al., 2022), and confirmed by experiments in the next section. Therefore, a

parameter, η ∈ [0, 1], is used to control how many demonstrations are applied

during training. One may see η as a probability and sample from a Bernoulli

distribution to determine whether or not to use demonstrations. Another

way is to see it as a proportion parameter and calculate how many episodes

are to be demonstrated based on the total number of training episodes. The

following experiments adopt the second way. The best value of η needs to

be decided by examining the results of experiments with a range of values

(subsection 4.3.2).

118

4.2.4 Adaptive Exploration

This subsection illustrates the idea of adapting exploration according to sub-

task performances. Recall that, in section 3.2, the DQN, DDPG and SAC

algorithms come with different exploration strategies. What is in common is

their randomness depends only on the number of passed environment steps.

In the following contents, these strategies will be modified to be dependent

on a I-dimensional vector of subtask performance metric, denoted as SSS ∈ RI .

Each element, S, of it relates to the individual performance of each subtask.

Performance metric

It is essential to choose a good metric for evaluating the performance of an

agent. In RL, the average return and success rate are the most common.

In order to adapt exploration, a variable in [0, 1] is preferred because it is

natural to be used as a scale factor. Thus, the average success rate is a

natural choice. If one chooses to use the average return, it would require

normalisation, because its scale varies for different tasks. This could be done

by calculating the maximal return Gmax and using it as a normalisation factor

to divide any return value achieved by an agent, that is Gnormalised =
Goriginal

Gmax
.

To obtain a good estimate of the performance, multiple evaluation runs

are required for each subtask to calculate the average value. The number of

runs is commonly user-specified. For instance, the following experiment will

evaluate the policy on each subtask for 30 episodes. It is recommended to use

a larger number of evaluation episodes as it gives a more accurate estimate.

However, more runs mean more computations and it takes a large number

of runs to get an accurate estimate of the agent’s performance. To cope

with this issue, the Polyak average (Scieur and Pedregosa, 2020) is used to

estimate the performance instead of the arithmetic average. This is inspired

119

by how the target networks in DDPG and SAC are updated (Lillicrap et al.,

2015; Haarnoja et al., 2018). A typical equation would be:

Si = (1− τS)Si−1 + τSSi (4.7)

where Si is the Polyak-averaged estimate after the i-th evaluation, Si is the

arithmetic average, and τS ∈ [0, 1] is the update rate. S0 and S0 are normally

initialised to 0. Replacing the arithmetic average with the Polyak average

brings a smoothing effect on the changes in the performance metric and a

more accurate estimate over time.

Specific implementations

Given a good estimate of the performance of the subtasks, there are different

ways to use them to influence the exploration behaviours of an RL algorithm.

The following will illustrate how this can be done with the DQN, DDPG and

SAC agents. The three are representative RL algorithms for deterministic

discrete action tasks, deterministic continuous action tasks and stochastic

continuous action tasks.

DQN, as introduced in subsection 3.2.2, normally explores the environ-

ment using the ϵ-greedy strategy with a linear or exponential decay scheme.

In simple words, a DQN agent takes a uniformly random action with prob-

ability, ϵdqn, otherwise takes the action with respect to the maximal q value

according to the current q function. The probability ϵdqn is decayed to a

lower bound over the course of training. For example, an exponential decay

scheme can be written as: ϵdqn = ϵend+(ϵstart−ϵend)e
−k
β , where ϵstart and ϵend

are the upper and lower bounds, k is the total elapsed environment timesteps

and β is the decay coefficient parameter. Intuitively, ϵ decays as the number

of elapsed timesteps grows and its speed is controlled by β.

120

To make it adaptive, the exponential term is to be replaced by the per-

formance metric. For I subtasks, after every new performance estimate is

calculated with Eq. 4.7, the following update rule is used to change their

exploration parameters:

ϵϵϵdqn = ϵend + (ϵstart − ϵend)(1−SSS) (4.8)

where ϵϵϵdqn ∈ [0, 1]I is a I-dimensional vector, whose elements are the explo-

ration parameters for the ϵ-greedy strategy associated with different subtasks.

DDPG, as introduced in subsection 3.2.3, uses a behavioural policy that

explores the environment with a mixture of random and noisy actions. In

this experiment, the baseline exploration strategy is the continuous version of

the ϵ-greedy method, named ϵ-Gaussian. It has been widely used to replace

the Ornstein-Uhlenbeck exploration strategy proposed in the DDPG paper

(Lillicrap et al., 2015; Andrychowicz et al., 2017; Fujimoto et al., 2018).

In short, the ϵ-Gaussian strategy takes a uniformly random action with a

probability ϵddpg, otherwise takes the action produced by the current policy

with added noise sampled from a zero-mean Gaussian distribution. Different

from the DQN case, ϵddpg is commonly non-decaying and set to a small value.

This behavioural policy for the goal-conditioned DDPG can be written as:

πb(a|s, g) =

a ∼ U(A), z ≤ ϵddpg

a ∼ N (π(s, g+), σddpg), z > ϵddpg

(4.9)

where U denotes a uniform distribution, N denotes a Gaussian distribution,

z ∼ U(0, 1) and π(s, g+) is a learnt, deterministic, goal-conditioned policy.

Similar to what is done with the DQN above, the probability ϵddpg and the

variance of the Gaussian noise σddpg can be made adaptive using the perfor-

mance estimate. After every update to the parameters, a new behavioural

policy can be deduced to collect experiences until the next evaluation of the

121

performances. Given the upper bounds of the both parameter ϵupper and

σupper, after every new performance estimate is calculated with Eq. 4.7, they

are to be updated by:

ϵϵϵddpg = ϵupper(1−SSS), σσσddpg = σupper(1−SSS) (4.10)

SAC, as introduced in subsection 3.2.4, explores the environment with

actions sampled from its own stochastic policy (Haarnoja et al., 2018). There

is no other behavioural policy with a parameter to be modified. The mean

and deviation of the policy distribution are normally generated by a neural

network. Therefore, for the SAC algorithm and many others with a stochastic

policy, the exploration can be made adaptive according to its performance

by altering its deviation. Denote the deviations produced by the SAC policy

for the I subtasks as σ̃̃σ̃σsac, it is adjusted by:

σσσsac = σ̃̃σ̃σsac ⊙ (1−SSS) (4.11)

where ⊙ denotes element-wise vector product. So far, this subsection has

illustrated how to make the ϵ-greedy, ϵ-Gaussian and stochastic policy explo-

rations become adaptive with respect to the performance of the policy. There

are many other exploration strategies that this thesis cannot cover (Ladosz

et al., 2022), but similar implementations should be straightforward. Here

are two more examples:

• Noisy network inserts Gaussian noises into the parameters of a neural

network Plappert et al. (2020). In this work, the authors propose to

perturb the network parameters at the beginning of each episode with

noises sampled from a Gaussian distribution. A straightforward way

to integrate with the proposed adaptive exploration module is to scale

the standard deviation of this distribution with (1−SSS), such that the

network is noisier when the performance is not good and vice versa.

122

• Intrinsic exploration. A large body of works focuses on intrinsically

motivated exploration Aubret et al. (2019). They mostly require a

weight factor to control the importance of curiosity reward relative

to the original extrinsic reward. Intuitively, it determines whether an

agent explores or exploits more. Our adaptive exploration module can

also be integrated into such exploration methods to scale the weight

factor during training, releasing users from manual fine-tuning.

4.2.5 Summary

In sum, this section describes the problem assumptions and formally pro-

poses the A2 method: abstract demonstrations and adaptive exploration,

along with how to implement them in detail. In simple words, abstraction

demonstrations provide a learner policy with the correct sequence of sub-

tasks, with a goal-relabelling trick to enable the learning of long-horizon

trajectories. Adaptive exploration estimates the success rates of a policy

and scales its exploration parameters for different subtasks. The Above has

shown the implementations for DQN, DDPG and SAC in detail, with a brief

discussion of other exploration methods. The pseudo-code of the training

process for the goal-augmented DQN agent is summarised in Algorithm 1.

The pseudo-codes goal-augmented DDPG and SAC with A2 can be easily

deduced from it. The following section will discuss more on implementations

and the results of empirical studies on the effectiveness of A2.

123

Algorithm 1 Goal-augmented DQN with A2

Input: maximum epochs, cycles, episodes M0,M1,M2

Input: demonstration proportion η, adaptive exploration update ratio τS

for epoch = 1 to M0 do

| for cycle = 1 to M1 do

| | for episode = 1 to M2 do

| | | Reset task, sample a final goal

| | | use demonstrations ← False

| | | if episode ≤ ηM2

| | | | use demonstrations ← True

| | | | Obtain the first correct subgoal as the desired goal

| | | end if

| | | for t = 0 to T − 1 do

| | | | Compute ϵϵϵdqn with adaptive exploration (Eq. 4.8)

| | | | Sample a with ϵ-greedy for the given subgoal

| | | | Execute a and observe the next state and reward

| | | | Store the transition

| | | | if desired goal achieved

| | | | | Store trajectory

| | | | | if use demonstrations (subsection 4.2.3)

| | | | | | perform trajectory extrapolation

| | | | | | Obtain the correct next subgoal as the new desired goal

| | | | | end if

| | | | end if

| | | end for

| | end for

| | Perform HER on the trajectories, perform DQN update (Eq. 4.3)

| end for

| Evaluate π for each subtasks,

| Update the adaptive exploration parameters (Eq. 4.10)

end for

124

4.3 Empirical Results

To investigate the effect of the proposed A2 method, a series of simulation

experiments have been conducted with the Mini-Grid (Chevalier-Boisvert

et al., 2018) and the Pybullet Multigoal (PMG) environment developed by

the author (see publication [2]). All performances were measured by the

success rate of achieving the final goal without demonstrations, averaging

over five random seeds. This section will first introduce the tasks and some

implementation details of the policies, and then discuss the empirical results.

(a) GridDoorKey (b) ChestPush (c) ChestPickAnd-

Place

(d) BlockStack

Figure 4.3: Experiment tasks. (a) The agent (red) should pick up the key,

open the door and reach the goal cell (green). (b-c) The robot should open

the grey door of the chest, and push or pick-and-drop the blue lock into the

chest. (d) The robot should pick and stack the blocks at a random position

in a random order, indicated by the transparent spheres.

4.3.1 Task and implementation details

To test the proposed A2 methods, six multi-step, sparse reward tasks were

chosen, including GridDoorKey (3 sizes), ChestPush, ChestPickAndPlace

and BlockStack (see Figure 4.3 for a visualisation). The grid world tasks are

125

for testing the DQN agent with discrete actions, while the robotic tasks are

for the DDPG and SAC agents with continuous actions. Source codes are

available on https://github.com/IanYangChina/A-2-paper-code. The

following will briefly introduce the MDP definitions for these tasks, then

the optimisation details and baselines.

GridDoorKey task

Formally, the MDP for the GridDoorKey task can be written as:

s ∈
{
(xagent||yagent||xkey||ykey||xdoor||ydoor||bhead||bkey||bdoor)

∣∣∣
xagent, yagent, ykey, ydoor ∈ {1 .. grid size− 2},

xkey ∈ {1 ..
grid size− 1

2
− 1}, xdoor =

grid size

2
,

bkey ∈ {0, 1}, bdoor ∈ {0, 1}, bhead ∈ {0, 1, 2, 3}
}

g ∈
{
m(s) = (xagent||yagent)

∣∣∣xagent, yagent ∈ {1 .. grid size− 2}
}

a ∈ {move forward, turn left, turn right}

r(g,g+) =

 0, if g = g+

−1, otherwise

where || denotes vector concatenation, {a .. b} denotes a set of integers be-

tween a and b included, bhead indicates the four heading directions, grid size

will be 15, 25 or 35 depending on the size of the grid map. The state is a

vector composed of the x and y coordinates of the agent, the key and the

door, the heading direction of the agent, and two binary variables indicating

whether the agent is carrying the key and whether the door is opened. The

goal is represented by the x and y coordinates of the agent. This means

that an achieved goal is the coordinate of whichever cell the agent is in, and

a desired goal is the coordinate of the cell that the agent needs to reach.

126

https://github.com/IanYangChina/A-2-paper-code

The reward function gives a value of 0 when the achieved goal and the de-

sired goal is identical at a state, and −1 otherwise. The policy has three

actions to select at each timestep: turn left, turn right and move one cell

forward. When it stamps on the cell with a key, it automatically picks up

the key. When it moves forward to the door, the door opens if it has the key,

otherwise, nothing happens.

For cases without demonstrations, the agent is given the location of the

green cell as the desired goal g+
final. For cases with abstract demonstrations,

the task is divided into three subtasks: reach the key g+
1 , reach the door g+

2

and reach the green cell g+
3 = g+

final. The agent is given subsequently the

three subgoals. Formally, the set of final goals and the three sets of subgoals

are:

g+
1 ∈

{
(xkey||ykey)

∣∣xkey ∈ {1 ..
grid size− 1

2
− 1}, ykey ∈ {1 .. grid size− 2}

}
g+
2 ∈

{
(xdoor||ydoor)

∣∣xdoor =
grid size− 1

2
, ydoor ∈ {1 .. grid size− 2}

}
g+
3 ,g

+
final ∈

{
(xfinal||yfinal)

∣∣xfinal ∈ {
grid size− 1

2
− 1 .. grid size− 1},

yfinal ∈ {1 .. grid size− 2}
}

where (xfinal||yfinal) denotes the coordinate of the final target cell.

At the beginning of each episode, the agent is placed randomly in the left

room, the final goal location (the green cell) is generated uniformly in the

right room, the key is placed randomly in the left room, the door is generated

uniformly randomly on the wall in the middle. Three sizes of the task were

run, including a 15× 15, a 25× 25, and a 35× 35 grid. The agent has a total

of 40, 50 and 70 timesteps per episode for the task of each size. Instead of

the final goal g+, the agent with demonstrations will be given g+
1 as the first

desired goal. When it reaches the cell where the key is, g+
1 is achieved and

it is given g+
2 as the desired goal. When it reaches the door, the desired goal

127

is then replaced by g+
3 , i.e., the final goal.

Manipulation tasks

The ChestPush and ChestPickAndPlace tasks with one block and the Block-

Stack task with two blocks from the PMG environments are used for empirical

studies (see publication [2] for more details). Formally,

The state representation is comprised of the block state, the gripper state

and the chest state (if a chest is involved), i.e., s ∈ {(sblock||sgrip||schest)}.

The block state consists of the linear positions and Euler orientations of all

blocks in the world frame, the relative positions of all blocks with respect

to the gripper tip frame, and the relative linear and angular velocities of all

blocks with respect to the gripper tip frame. The gripper state consists of the

linear position, Euler orientation and linear velocity of the gripper tip frame,

the velocities of the two fingers, and the width between the two fingers. The

chest state consists of the opened width and velocity of the door, and the

position of the three keypoints of the door in the world frame (shown in

Figure 4.4).

Figure 4.4: The chest state representation for task ChestPush and Chest-

PickAndPlace.

At the beginning of each episode, the robot gripper is positioned top-down

at the centre of the table. The gripper tip frame is 0.75 m above the table

128

surface. The policy controls the gripper by displacement in the Cartesian

space at most 0.002 m per timestep. The actual action output by the policy

is a continuous three-dimensional vector in [−1.0, 1.0]3, which is multiplied

by 0.002 when applied to the robot controller. For the ChestPickAndPlace

and the BlockStack tasks, the action has a fourth dimension, associated with

the target width between the gripper fingers, normalised into [−1.0, 1.0] as

well.

The goal representation for all tasks consists of the positions of the blocks

and the gripper tip in the world frame, the width between the fingers (if grasp-

ing is required), and the opened width of the chest (if a chest is involved), i.e.,

g+ ∈ {(xblock||yblock||zblock||xgrip||ygrip||zgrip||widthfinger||widthchest)}. For the

ChestPush and ChestPickAndPlace tasks, the final goal is the desired opened

width of the door and the desired position of the block, which is at the centre

of the chest. For the BlockStack task, the final goal includes the positions

of the two stacked blocks placed at a random location in a random order,

visualised by the transparent spheres in Figure 4.3 (d). Each episode of the

ChestPush task has a total of 30 timesteps, and that of the other two tasks

has a total of 50 timesteps. The reward function is sparse, giving a value of 0

when a goal is achieved and −1 otherwise. A desired goal is deemed achieved

when its Euclidean distance with the achieved goal is less than 0.03 m.

If abstract demonstrations are used in an episode, the agent will be given

subgoals according to the demonstrations. The decomposition schemes for

the tasks are as follows:

• ChestPush: three subgoals including 1) opening the chest door, 2)

reaching the block and 3) pushing the block into the chest;

• ChestPickAndPlace: four subgoals including 1) opening the chest door,

2) grasping the block, 3) moving to the top of the chest and 4) dropping

129

the block into the chest;

• BlockStack: four subgoals including 1) grasping the base block, 2)

moving the base block to the target location, 3) grasping the second

block and 4) stacking the second block on top of the base block.

Training details

The tasks are run in the same experiment schedule as (Andrychowicz et al.,

2017), organised into epoch, cycle and episode. Each epoch has 50 cycles,

each of which has 16 episodes. Different tasks grant the agent with a different

number of total timesteps per episode (see the above task specifications). For

the three GridDoorKey tasks, the policy is trained for 30, 50 and 70 epochs.

For the ChestPush, ChestPickAndPlace and BlockStack tasks, the policy is

trained for 30, 50 and 100 epochs. The maximum number of training epochs

are selected to be sufficiently large for the algorithm to converge, which

in practice means that the evaluation success rates stabilise for at least 5

epochs. HER with the future strategy (see subsection 4.2.1) is applied to the

trajectory collected at the end of every episode. If abstract demonstrations

are used, HER is applied to all trajectories generated for every subgoal that

occurred in the episode (see “trajectory extrapolation” in subsection 4.2.3).

To evaluate the policy, 30 episodes are tested without any exploration

after every epoch (the SAC policy uses the output mean as the action). For

agents with adaptive exploration, each subgoal is evaluated for 30 episodes

to obtain the arithmetic average success rates, after which the exploration

parameters are updated according to subsection 4.2.4.

The following training parameters and neural network architectures used

in the experiments are again standard for state-based DRL, especially based

on the papers of the original algorithms (Lillicrap et al., 2015; Andrychowicz

130

et al., 2017; Plappert et al., 2020; Fujimoto et al., 2018; Haarnoja et al.,

2018). Each algorithm uses a replay buffer of size 1e6. After each episode,

the algorithm updates their neural networks 40 gradient steps, each of which

with a different mini-batch of size 128 sampled from the replay buffer. Neural

network optimisation is done with the Adam optimiser (Kingma and Ba,

2014) with a learning rate of 0.001. For the DDPG and SAC algorithms, the

actor networks are updated after the critic networks. For the critic and actor,

each takes one gradient step with the same mini-batch. The target networks

for DQN and DDPG are updated once with Polyak averaging (Eq. 3.26)

with an update rate of 0.05 after the main networks are updated. The target

networks for SAC are updated once every two main network updates with the

same update rate. All target q value is calculated with a discount factor of

0.98, and clipped within [−50, 0]. All observations are normalised using the

mean and deviation calculated from all historical observations. The DQN

network has three fully-connected layers with sizes 64, 128 and 64. The

actor and critic networks of the DDPG and SAC algorithms have three fully-

connected layers of sizes 256. The DDPG actor outputs directly a continuous

action, while the SAC actor outputs the mean and deviation vectors of the

policy distribution. The critic networks output a scalar value. All of them use

ReLU activation on each layer, except for the outputs. All actor networks

use hyperbolic tangents to activate the final layers and all critic networks

(including DQN) do not have output activation functions.

Here, we use the GridDoorKey example to give an illustration of how

Algorithm 1 can be implemented. For the task of size 15, we have M0 = 30

epochs, M1 = 50 cycles and M2 = 16 episodes. When the task resets at

the beginning of an episode, the initial states are randomly sampled ac-

cording to the description of the GridDoorKey task earlier in this subsec-

131

tion. Demonstrations are used when the number of episodes is smaller than

ηM2 in a training cycle. If the abstract demonstration is used, the agent is

given g+1 as the desired goal. At each step, according to ϵϵϵdqn computed from

Eq. 4.8, the agent either takes a random action or the action corresponding

to the highest Q value based on argmaxa q̃www−(s, a, g+). The transition is then

stored in the trajectory. When a desired goal is achieved, if the episode is

using abstract demonstrations, the trajectory extrapolation technique (sub-

section 4.2.3) is performed and a new subgoal is given to the agent. When a

training cycle reaches its end, HER is performed on the trajectories collected

(the future method at the end of subsection 4.2.1). All modified trajecto-

ries are pushed into the replay buffer. Then, mini-batch updates are carried

out with Eq. 4.3. When an epoch finishes, the agent is evaluated on each

subtask for 30 episodes. In order words, it is taking only greedy actions

from the Q function and tasked to achieve g+1 , g
+
2 and g+3 respectively for 30

times. The average success rates are used to update the Polyak success rates

using Eq. 4.7 and then, the Polyak success rates are used to compute the

new exploration parameters for each subtask until the next evaluation run.

The training processes of the goal-augmented DDPG and SAC agents in the

manipulation tasks are basically the same, except that different subgoals,

exploration strategies, and update equations are used.

Baseline and experiment design

To assess the performance gain of the proposedA2 method, the DQN, DDPG

and SAC algorithms are run without abstract demonstrations and adaptive

exploration as baselines:

• The baseline DQN uses the exponential decayed ϵ-greedy exploration

with ϵstart = 1.0, ϵend = 0.05 and β = 5e5. The A2-aided DQN uses

132

the same start and end probabilities with Eq. 4.8.

• The baseline DDPG uses the non-decaying ϵ-Gaussian strategy (Eq. 4.9)

with ϵddpg = 0.2 and σddpg = 0.05. The A2-aided DDPG uses the same

values as the upper bounds and adjusts them by Eq. 4.10.

• The baseline SAC explores with actions sampled from the policy dis-

tribution computed by the network, while the A2-aided SAC adjusts

the deviations with Eq. 4.11.

All other training details of the baselines remain the same as that for the

A2-aided agents.

Ablations of the abstract demonstrations and adaptive explorations are

conducted first to observe the influence of the parameters η and τS. Discrete

search for the best values are conducted for η ∈ [0.25, 0.5, 0.75, 1.0] and τS ∈

[0.1, 0.3, 0.5, 0.7, 0.9]. Parameter ablations are run on the GridDoorKey25x25

task (DQN), the ChestPush task (DDPG) and the BlockStack task (SAC)

(subsection 4.3.2). The success rate update ratios are evaluated with a fixed

demonstration proportion η = 0.75. To assert the importance of using the

Polyak average for estimating the success rates, the comparison is also made

betweenA2-aided agents with and without the Polyak average in the adaptive

exploration update.

The best parameter values are used to compare the baselines without A2

(tagged by “Vanilla” in the figures below), the ones with abstract demonstra-

tions (tagged by “AD”) and the fully A2-aided agents (tagged by “ADAE”),

on all tasks for all agents (4.3.3).

4.3.2 Ablation study

This subsection focuses on examining the parameter values of theA2 method,

including the percentage of episodes η being demonstrated and the adaptive

133

exploration update rate τS. Ablations are performed on the GridDoorKey25

tasks with the DQN agent, ChestPush task with the DDPG agent and Block-

Stack task with the SAC agent.

Figure 4.5 shows that, in general, abstract demonstrations improve con-

vergence speeds and performances. Demonstrating 50% or 75% of the train-

ing episodes gives the highest performance gains for all cases (green and

red lines). Interestingly, giving demonstrations to all episodes does not

achieve the best performances or even makes it worse (purple lines). The

phenomenon could be caused by a lack of data diversity when all episodes

are given demonstrations. The reason behind it is that data with low di-

versity would cause the neural network to overfit into a narrow distribution

other than the real target distribution. In this case, the policy is given too

less experiences of exploring from the start given the final goal. This results

in low performance in the evaluation of the final task.

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 te
st

 s
uc

ce
ss

 r
at

es

Vanilla
AD-0.25eta
AD-0.50eta
AD-0.75eta
AD-1.00eta

(a) GridDoorKey25-DQN

0 6 12 18 24 30
Epoch

Vanilla
AD-0.25eta
AD-0.50eta
AD-0.75eta
AD-1.00eta

(b) ChestPush-DDPG

0 20 40 60 80 100
Epoch

Vanilla
AD-0.25eta
AD-0.50eta
AD-0.75eta
AD-1.00eta

(c) BlockStack-SAC

Figure 4.5: Test success rates with different proportions of demonstrated

episodes η. AD : abstract demonstrations.

In order to further determine the significance of the value of η, we con-

ducted experiments on a few more values for η ∈ {0.80, 0.85, 0.90, 0.95}.

The results in Figure 4.6 show that for the three agents, η = 0.75 is the

134

best choice. In addition, the wrong value of η only reduces the average per-

formance of the DQN and SAC agents, but it significantly destabilises the

DDPG agent (large variances). This may be due to the brittleness of the

DDPG update itself as also reported by other researchers (Zheng12 et al.,

2018; Tiong et al., 2020). These results again confirm that too many demon-

strations do hurt performances, especially in continuous control tasks, and

support that a good value of η tends to locate around 0.75. However, it is

recommended to conduct a grid search for the value of η starting from 0.75

for different tasks, as one can see the different effects of this parameter on

the three different agents and tasks from Figure 4.5 and 4.6.

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 te
st

 s
uc

ce
ss

 r
at

es

AD-0.75eta
AD-0.80eta
AD-0.85eta
AD-0.90eta
AD-0.95eta
AD-1.00eta

(a) GridDoorKey25-DQN

0 6 12 18 24 30
Epoch

AD-0.75eta
AD-0.80eta
AD-0.85eta
AD-0.90eta
AD-0.95eta
AD-1.00eta

(b) ChestPush-DDPG

0 20 40 60 80 100
Epoch

AD-0.75eta
AD-0.80eta
AD-0.85eta
AD-0.90eta
AD-0.95eta
AD-1.00eta

(c) BlockStack-SAC

Figure 4.6: Test success rates with different proportions of demonstrated

episodes η in {0.75, 0.80, 0.85, 0.90, 0.95, 1.00}. AD : abstract demonstrations.

As mentioned in subsection 4.2.4, the Polyak average is used in estimating

the policy’s success rates over time for the adaptive exploration parameter

update. The hypothesis is that the Polyak average will give less jumpy up-

dates of the success rates and the exploration parameters. The comparative

results in Figure 4.7 confirm the hypothesis by showing that cases without

Polyak averaging gives a performance with higher variances. The reduction

135

of variance is more obvious in longer-horizon continuous control tasks.

0 6 12 18 24 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 te
st

 s
uc

ce
ss

 r
at

es

ADAE
ADAE-NonPolyak

(a) GridDoorKey15

0 10 20 30 40 50
Epoch

ADAE
ADAE-NonPolyak

(b) GridDoorKey25

0 14 28 42 56 70
Epoch

ADAE
ADAE-NonPolyak

(c) GridDoorKey35

0 6 12 18 24 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 te
st

 s
uc

ce
ss

 r
at

es

ADAE
ADAE-NonPolyak

(d) ChestPush

0 10 20 30 40 50
Epoch

ADAE
ADAE-NonPolyak

(e) ChestPickAndPlace

0 20 40 60 80 100
Epoch

ADAE
ADAE-NonPolyak

(f) BlockStack

Figure 4.7: Test success rates of DQN on gridworld tasks (a-c) and SAC (d-f)

on robotic tasks with and without Polyak averaging. All cases are run with

75% demonstrated episodes. ADAE : abstract demonstration and adaptive

exploration.

Figure 4.8 shows that changing the value of τS has trivial effects on the

convergence speed as well as the final performance. However, a smaller value

may slow down learning as shown by Figure 4.8a. In general, 0.3 will suffice

for stabilising learning, but a higher value may be more useful for longer

horizon tasks to make the agent progress faster.

136

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 te
st

 s
uc

ce
ss

 r
at

es

Vanilla
ADAE-0.1tau
ADAE-0.3tau
ADAE-0.5tau
ADAE-0.7tau
ADAE-0.9tau

(a) GridDoorKey25-DQN

0 6 12 18 24 30
Epoch

Vanilla
ADAE-0.1tau
ADAE-0.3tau
ADAE-0.5tau
ADAE-0.7tau
ADAE-0.9tau

(b) ChestPush-DDPG

0 20 40 60 80 100
Epoch

Vanilla
ADAE-0.1tau
ADAE-0.3tau
ADAE-0.5tau
ADAE-0.7tau
ADAE-0.9tau

(c) BlockStack-SAC

Figure 4.8: Test success rates with different success rate update ratio τS for

adaptive exploration. All cases are run with 75% demonstrated episodes.

ADAE : abstract demonstrations and adaptive exploration.

4.3.3 General performance

This subsection focuses on the general improvements improved by the pro-

posed A2 method on all tasks. According to the ablation results (subsec-

tion 4.3.2), it is identified that using abstract demonstrations in 75% of the

training episodes and updating the success rates with an update ratio of 0.3

for the adaptive exploration parameter, can achieve better performances over

other parameter values. Thus, for all cases compared in this subsection, these

two parameter values are used whenever A2 is applied.

Figure 4.9 shows that, in all experiments, abstract demonstrations help

the agent learn faster and achieve higher success rates. This is more obvious

in robotic tasks. Notice that as the robotic task becomes more difficult (from

subfigures 4.9d to 4.9f), the gap of success rates becomes larger between

the algorithms with and without abstract demonstrations (orange and blue

lines). This demonstrates that abstract demonstrations can provide vast

improvement on multi-step tasks.

137

0 6 12 18 24 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 te
st

 s
uc

ce
ss

 r
at

es

Vanilla
AD
ADAE

(a) GridDoorKey15

0 10 20 30 40 50
Epoch

Vanilla
AD
ADAE

(b) GridDoorKey25

0 14 28 42 56 70
Epoch

Vanilla
AD
ADAE

(c) GridDoorKey35

0 6 12 18 24 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 te
st

 s
uc

ce
ss

 r
at

es

Vanilla
AD
ADAE

(d) ChestPush

0 30 60 90 120 150
Epoch

Vanilla
AD
ADAE

(e) ChestPickAndPlace

0 30 60 90 120 150
Epoch

Vanilla
AD
ADAE

(f) BlockStack

0 6 12 18 24 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 te
st

 s
uc

ce
ss

 r
at

es

Vanilla
AD
ADAE

(g) ChestPush

0 10 20 30 40 50
Epoch

Vanilla
AD
ADAE

(h) ChestPickAndPlace

0 20 40 60 80 100
Epoch

Vanilla
AD
ADAE

(i) BlockStack

Figure 4.9: Test success rates of DQN on gridworld tasks (a-c), DDPG (d-

f) and SAC (g-i) on robotic tasks. AD : abstract demonstrations; ADAE :

abstract demonstrations and adaptive exploration.

On the other hand, adaptive exploration only has a slight improvement in

the overall success rate or learning speed on top of abstract demonstrations.

Nonetheless, it clearly reduces the variance of the learning performances,

especially for the robotic tasks (green lines). This result abides with the

138

hypothesis that reducing unnecessary exploration helps the policy act more

decisively on well-mastered subtasks and progress/learn faster on later sub-

tasks.

4.4 Summary

To conclude, this chapter proposes two techniques, abstract demonstrations

and adaptive exploration, to accelerate RL algorithms in long-horizon, multi-

step and sparse reward robotic manipulation tasks. In short, abstract demon-

strations guide an RL policy to achieve subtasks leading to the final goal,

while adaptive exploration alters the policy’s exploratory behaviour accord-

ing to its online performances. Named A2, the proposed method is devel-

oped under the framework of GRL, because of its advantages of multigoal

learning, knowledge sharing and overcoming the sparse reward issue (Schaul

et al., 2015; Andrychowicz et al., 2017). The implementations of A2 on three

popular RL algorithms (DQN, DDPG and SAC) are illustrated in detail in

section 4.2. Experiments confirm that abstract demonstrations can improve

the convergence speed and overall performance substantially, while adaptive

exploration helps in the reduction of performance variance.

The limitations and future developments of A2 come from its assump-

tions. First of all, it depends on a well-defined task decomposition scheme

to specify the subtasks. This will become a bottleneck when such a task de-

composition scheme is difficult to obtain. How the method can be used with

learnt subgoals is a valuable future direction. Secondly, the representation

of goals in this chapter is based on system states. It remains unclear how it

may work when the goals are to be defined on raw sensory observations such

as images and point clouds.

139

Lastly, A2 does indeed improve the learning of such long-horizon and

multi-step tasks, but it is arguable that such end-to-end manipulation policies

are less desirable in the real world. As discussed in section 2.4, systems

with hierarchies are preferred because the burden of learning a whole task

is separated into different modules, and the reusabilities of the submodules

are improved. Therefore, the next chapter will take a hierarchical approach

towards solving such multi-step manipulation tasks, with the aim of reusing

a policy to achieve multiple final outcomes.

140

Chapter 5

Universal Option Framework

for Multi-outcome Multi-step

Robotic Manipulation

141

5.1 Introduction

Hierarchical control systems are highly preferred in solving long-horizon and

multi-step manipulation tasks since they can solve such tasks by decom-

posing them into subtasks whose solutions are easier to compute (Garrett

et al., 2021). The advantages of using system hierarchy are supported by the

evidence of hierarchical decision-making mechanisms existing in the human

brain (Grafton and Hamilton, 2007). Also, the long-lasting research field

of hierarchical reinforcement learning (HRL) echoes the same opinion, with

various applications on robotics (Pateria et al., 2021b).

The specific tasks investigated in this chapter are the long-horizon, multi-

step and multi-outcome manipulation tasks. In particular, a series of block

stacking tasks, including an example shown by Figure 5.1, will be used for

algorithm evaluation. These tasks require the robot to use a number of

subtasks or skills to achieve different outcomes, such as different orders of

stacked blocks.

Figure 5.1: A block stack task where the robot needs to stack three blocks

in different orders.

In robotics, a real-world manipulation system is normally modularised

into two levels, addressing the subtask planning and motion generation prob-

142

lems separately. Among these methods, classic ones rely on a known system

dynamic model to plan for a sequence of subtasks and the manipulator mo-

tions that solve them (Garrett et al., 2021). However, as elaborated in sub-

section 2.4.1, it becomes too difficult to obtain an accurate dynamic model

when a task involves interaction with many objects. The contact processes

are hard to specify and simulate. Therefore, modern learning-based methods

instead seek to use data to learn reactive policies at the both task planning

and motion generation levels. Nevertheless, the general architecture design

of the system to a large extent remains unchanged: a task planning and a

motion generation module. It is the contents that are changed from model-

based planning to model-free reactive policy learning (Pateria et al., 2021b).

State-of-the-art learning-based HRL systems mostly employ the one-to-

many architecture, where a high-level policy uses a number of low-level poli-

cies to achieve a final task (Tessler et al., 2017; Barreto et al., 2019; Yang

et al., 2020; Hakhamaneshi et al., 2022; Pateria et al., 2021b). As discussed

in detail in subsection 2.4.2, it is undeniable that such systems are able to

tackle long-horizon and multi-step manipulation tasks. However, there are

two limitations that this chapter seeks to improve.

First of all, the low-level policies in these systems normally correspond

to a set of subtasks or manipulation skills. For example, picking, moving

an object, dropping, pushing, etc. Assigning one skill per policy means that

these policies will take up a large amount of storage space in the computer

when there are many subtasks or skills, especially when the policies are repre-

sented by large neural networks. In addition, many subtasks or skills exhibit

similar motion patterns, implying the potential of sharing knowledge and

understanding among the tasks or skills. The same logic applies to the high-

level planning policy as well. When there are many outcomes that can be

143

achieved by using the same set of skills, state-of-the-art systems would need

to retrain the high-level policy. This again will cause a waste of computer

resources that may be avoided.

In response, this chapter proposes the universal option framework (UOF),

which explores the idea of embedding goal-conditioned policies into hierar-

chical control systems. In other words, this chapter proposes to make the

high-level planning and low-level motion generation policies become goal-

conditioned (Schaul et al., 2015; Andrychowicz et al., 2017), such that there

is only one policy at each level to achieve multiple goals, improving memory

usage and skill reusability. This idea, which may be called hierarchical goal-

condition reinforcement learning, is not a completely new idea by the time

this research was conducted. Several papers have discussed the possibility

(Nachum et al., 2018; Levy et al., 2019; Jiang et al., 2019; Dilokthanakul

et al., 2019). There are several limitations or differences that these works

exhibit:

• The high-level policy is not goal-conditioned and needed to be re-

trained for new tasks, incurring unnecessary memory and computation

(as shown in subsection 5.5.3).

• Insufficient exploration and sample efficiency in learning long-horizon

manipulation tasks (as shown in subsection 5.5.2).

• Do not consider parallel training of both levels (see below).

The second point that this chapter studies is the parallel training process

of the both planning and motion control levels. A very common practice in

HRL is the use of pre-trained low-level policies. The limitations of using pre-

trained low-level policies are twofold. First, separately training both levels

induces unnecessary repeat of data collection, as they normally appear within

144

the same task environment. Secondly, separate training is likely to induce

incompatibility between the two levels, which demands the low-level policy

to be fine-tuned while training the high-level. On the other hand, parallel

training trains both levels within the same data collection loop with much

less computation and naturally pushes the low-level policy to adapt to the

need for the high-level policy. These two phenomena are demonstrated in

subsection 5.5.2.

Nonetheless, a good reason to use separate training is that parallel train-

ing may result in low sample efficiency and divergence because it puts the

high-level policy into non-stationary MDP dynamics. The non-stationarity

is caused by a suboptimal and constantly exploring low-level policy. In other

words, the training of the high-level planning policy is most stable with an

optimal low-level policy that does not explore randomly. Since this is im-

possible in parallel training, remedies have been proposed (Nachum et al.,

2018; Levy et al., 2019). However, this chapter will show that these remedies

are insufficient to cope with long-horizon and multi-step manipulation tasks

through a theoretic analysis in subsection 5.4.2 and a comparative study in

subsection 5.5.2. According to the analysis, the method A2 developed in

chapter 4 is used to eliminate the non-stationarity issue, achieving substan-

tial improvement over previous methods.

5.1.1 Summary and chapter organisation

To sum up, this chapter focuses on solving long-horizon, multi-step and multi-

outcome manipulation tasks with HRL. The two specific research questions

studied in this chapter regarding HRL are:

• How to improve memory usage and reusability?

145

• How to eliminate parallel training non-stationarity for long-horizon

tasks?

The rest of the chapter is organised as follows. Section 5.2 introduces the

basics of HRL frameworks, especially focused on the classic option framework

(OF)(Sutton et al., 1999b). For the first question, section 5.3 explains how to

replace the standard policies in the classic OF with goal-conditioned policies,

giving birth to the UOF. Implementation for a series of multi-step, multi-

outcome block stacking tasks are also illustrated. For the second question,

section 5.4 introduces the specific training algorithms, then takes a closer

look into the root of the non-stationarity and explains how to use the A2

method developed in chapter 4 to eliminate the problem for long-horizon

multi-step tasks. In section 5.5, the experiment design and the results on a

series of block stacking tasks are introduced. Finally, section 5.6 concludes

this chapter.

5.2 Hierarchical Reinforcement Learning

As the name implies, HRL extends standard RL formulation with a hierarchy

of policies. In some HRL papers, standard RL policies are referred to as “flat”

policies, because they do not have a hierarchy. The central idea of HRL is

on the learning and design of temporal abstraction in behaviour learning

(Sutton et al., 1999b). In plain words, an agent with temporal abstraction

can reason across multiple timesteps in an MDP, whereas a flat policy is only

concerned about what actions to take at every timestep. Therefore, HRL is

advantageous over standard RL when it comes to long-horizon tasks that

require planning with diverse skills (Pateria et al., 2021b).

There are usually two levels in the hierarchy, referred to sometimes as

146

the high and low levels, sometimes as the manager and worker, sometimes

the planning and control levels, and so on.1 In the OF, they are referred

to as the inter-option policy and the option. The following content will use

these terms interchangeably in consideration of clarity. The general idea is

that the high-level policy is to select motion primitives, subtasks, subgoals,

sub-policies or options, while the low-level policy is to actually interact with

the environment according to what is selected by the high-level policy.

There is a large body of papers in the field of HRL studying a diverse set

of sub-problems, hence the diverse terms used in the literature (Pateria et al.,

2021b). Among them, the OF is of particular interest to this chapter because

it provides a sound mathematical foundation extended from the standard RL

framework (Sutton et al., 1999b) described in section 3.1. This is attractive

because the extension of mathematical formulation naturally brings about

the extension of their solutions. In addition, there are many HRL algorithms

and applications that are not mathematically based on the OF, but can

be interpreted as a variant of the OF. Nonetheless, this section will start

by introducing the OF and basic principles of learning algorithms. Then, a

short survey and discussion on the construction of the hierarchy are provided

to help draw a connection with various research works.

5.2.1 The option framework

As mentioned, the core concept of HRL is a temporal abstraction, which en-

ables reasoning across multiple timesteps. The OF realises temporal abstrac-

tion by introducing options into the MDP. Options are called macro-actions

and the single-step actions are called micro-actions in some literature. For-

1Exceptions that deal with more than two levels exist (Levy et al., 2019), but they can

be generalised from two-level methods and are less relevant to the focus on this thesis.

147

mally, an option, o ∈ O, is a temporally extended action that takes a number

of single-step actions in an MDP. It is defined as a tuple (πo, Io, βo), where

πo : S × A → [0, 1] is a standard RL policy distribution, Io ∈ S is a set

of state where the option policy πo can be initiated, and βo : S → [0, 1]

is the termination distribution that determines whether the option should

terminate given a state. In the deterministic cases, it becomes a binary

termination function denoted as bo : S → {0, 1}.

Time

StateMDP

Semi-MDP

Options
over MDP

Figure 5.2: Figure 1 from (Sutton et al., 1999b): The state trajectory of an

MDP is made up of small, discrete-time transitions, whereas that of an SMDP

comprises larger, continuous-time transitions. Options enable an MDP tra-

jectory to be analyzed in either way.

In standard MDPs, an action is taken at each discrete timestep, while

an option takes several actions until it is terminated according to βo. An

agent is expected to select a new option and follow its option policy when the

current option terminates. One may view the framework as a team where the

options are a number of team members that specialised in different subtasks,

the actions are what actually these members are doing to finish the subtasks,

and the team leader is the option-selection (high-level) policy that chooses

who in the team to start working. Unlike reality where multiple teammates

148

can work simultaneously, in the OF typically there is only one option (low-

level policy) that is activated at the same time.

The concept of semi-MDP (SMDP) may help understand options as well.

An MDP is known to become a semi-MDP with a fixed set of options (see

Figure. 5.2) (Sutton et al., 1999b). This is because the Markov property is

only retained at the level of option transition. In other words, the state-

action-state transition is non-Markovian because it is dependent also on the

current option and the state-action history that happened since the current

option was initiated. The option-state-option transition, on the other hand,

is Markovian if the option policies are themselves Markovian. This insight

is important because it means the solutions for MDPs can be applied to the

OF when given a set of Markovian options. In practice, Markov property is

a common assumption for options (Barreto et al., 2019; Jiang et al., 2019),

and is also adopted in this chapter.

A classic example of a block stacking task may help to understand op-

tions, actions and their relationship. Assume that there are three options

named Pick,MoveTo and Release. At the beginning of an interaction episode,

the inter-option (high-level) policy may select the MoveTo option policy,

πo
MoveTo(a|s), which produces 5 actions to reach a position where a block can

be grasped. Then, the Pick option, πo
P ick(a|s) may be chosen, which spends

3 actions to close the fingers and firmly grasp the block. Then the MoveTo

option can be used again to move the block to a target location in another

4 timesteps. Finally, the Release option can be activated and produces 3

actions to let go of the block. Notice that in this example, the three options

can be activated in any state, i.e., Io = S; the termination function stops an

option when a state matches the target state of the corresponding subtask;

only one option can be activated at one time; the numbers of actions pro-

149

duced by each option are different; and a new option is only activated when

the last option is terminated.

Similar to standard RL, the objective for an OF agent is to find a set

of options that select actions as well as an inter-option policy that selects

options to maximise return. Therefore, there are two problems to be tackled:

constructing the options and learning to plan over them. The following

will first discuss common practices for constructing the options, and then

introduce methods that learn to select options.

5.2.2 How options have been constructed

By definition, an option has three components: the initiation set, the policy

and the termination condition. The easiest choice to construct them would

be through manual programming, in which case all the components of an

option are user-defined. What is left to be done is to learn the inter-option

policy. However, manual programmes are mostly inflexible. A slightly more

autonomous choice is to assign each option to a specific subtask and use

off-the-shell motion planners to solve them. For example, the recent idea of

HRL with parameterised primitives (Dalal et al., 2021). In this case, the

HRL problem becomes very similar to many hierarchical control problems in

the robotic community, such as the popular TAMP methods as discussed in

subsection 2.4.1.

On the other extreme, options can be learnt end-to-end along with the

inter-option policy. Learning these components end-to-end is non-trivial and

remains largely underdeveloped. The central question is how to define the

learning objective such that meaningful, distinct and interpretable options

(or skills, subgoals, subtasks) emerge naturally out of the optimisation pro-

cess. There are various terms referring to this particular problem: option

150

discovery, subpolicy discovery, subgoal discovery, skill discovery, etc., depend-

ing on the perspective of the works. Recent advances in end-to-end methods

include the option-critic (Bacon et al., 2017), deep continuous option dis-

covery (Krishnan et al., 2017), inferred option policy gradient (Smith et al.,

2018), and double actor-critic (Zhang and Whiteson, 2019). Studies made

specifically for the termination condition (Harutyunyan et al., 2019) and the

initiation set (Khetarpal et al., 2020b) are also conducted. Nonetheless, all

these works showed that learning the options and the planner altogether from

a single reward function is a very difficult problem, the algorithms are brittle

and the resultant options are difficult to interpret (Pateria et al., 2021b).

Many researchers then sought to learn only the option policies, leaving

the initiation set and termination condition user-defined. The most com-

mon assumption for the initiation set would be that an option is available

everywhere: Io = S. The agent can select any option in any state. Defined

assumptions of the termination condition differ. A few common ones include:

1) when the option has been executed after a fixed number of timesteps; 2)

when a subgoal or subtask designated for the option is achieved; 3) task-

specific terminations such as a robot reaches an invalid position or pose.

These conditions are commonly used together.

Given the defined initiation set and termination conditions, there are a

diverse set of methods for constructing the option policies. Commonly, each

option is constructed with a specific subtask, skill or subgoal in mind. In

other words, these methods require human priors to define the purpose or

function of each option before it is actually learnt. This assumption releases

the algorithms from the difficulty of automatic task decomposition of the full

end-to-end HRL problem. There are several directions regarding how the

learning is conducted.

151

First and the most common choice is to train each option policy with

respect to a specific reward function, a task or a skill, such as in (Yang

et al., 2020). However, most methods use pre-trained option policies with-

out further fine-tuning because they attempt to avoid the non-stationarity

that appears when training both levels simultaneously (Sutton et al., 1999b).

The problem occurs because, with suboptimal, exploratory and updating

option policies, the MDP of the inter-option policy is ever-changing. The

second contribution of this thesis utilises the method proposed in the first

contribution to deal with such non-stationarity. There are also methods

that attempt to fine-tune the pre-trained option policies while training the

inter-option policy, which is crucial when the sub-policies are to be reused

in different high-level tasks (Li et al., 2019). Secondly, instead of training

each option towards its own reward function, many researchers started to use

goal-conditioned options. The reason behind this is that it is easier to repre-

sent the action space of the inter-option policy as a subgoal space instead of

a space of reward functions. Therefore, the inter-option policy effectively be-

comes a subgoal generator rather than an option selector (Peng et al., 2017;

Jiang et al., 2019; Levy et al., 2019; Staroverov et al., 2020). The difficulty

of option discovery is thus transformed to the difficulty of subgoal discovery

(Dilokthanakul et al., 2019; Pateria et al., 2021a). The second contribu-

tion of this thesis uses such goal-conditioned policies for not only options,

but also the inter-option policy to solve multi-outcome, multi-step and long-

horizon manipulation tasks. Lastly, researchers also seek to extract skills

from demonstrations (Hakhamaneshi et al., 2022) or imitate human motion

priors (Peng et al., 2019) before reusing them on high-level tasks that require

a composition of these skills.

In summary, there is a diversity of learning methods that one can use to

152

construct options given a known set of target subtasks. They provide different

benefits and suit different needs. Perhaps more interesting and difficult is

still the study of how subtasks or skills could emerge automatically without

human priors, such as the fully end-to-end HRL methods. However, deeper

details are beyond the scope of this thesis.

5.2.3 Inter-option policy learning

The simplest way to consider learning to plan over a set of known options is to

treat the options as actions in the standard MDP framework. Essentially, this

neglects the influence of the number of micro-actions differed from option to

option and reduces options into single-step actions. Therefore, the standard

RL algorithms for discrete action space, such as Q learning, can be applied

straightforwardly by simply replacing the actions with options (Eq. 3.7). This

is the most common way to perform HRL (Pateria et al., 2021b). Typically,

the reward function is computed based only on the system states, irrelevant

to the option that is taken (Pateria et al., 2021b). This assumption is adopted

by this thesis as well, although it could be problematic in certain cases. For

instance, in parallel training, an option may accidentally achieve a rewarding

state due to random exploration, causing the algorithm to assign that option

greater expected values when it should not do so. However, such cases are

statistically rare and tend to be resolved by reducing exploration over time

and increasing training time. More details can be found in credit assignment

research (Sutton, 1984; Zhou et al., 2020).

The problem with this way of learning is that every execution of an op-

tion will only result in a single transition ξn = {sn, on, rn, s′n, o′n}, while the

transitions between the two options are discarded. The learning algorithm

can only learn about the value of one option each time when a selected option

153

is terminated. Let’s call these methods wait-and-see. However, if the option

is Markovian, which means that the option policy selects actions depending

only on the current state, then each transition produced during the execu-

tion of the option policy is valid to learn about the option and other options.

There is an off-policy manner to learn about the value of different options

more efficiently. The following will introduce such an algorithm, Intra-option

learning (IOL), that learns an inter-option policy with data in between two

consecutive options. IOL can also learn about other options when they are

not even selected (Sutton et al., 1998).

With the wait-and-see type of update, the value of an option is evaluated

only at the point of termination. The reward for selecting that option can

either be the cumulated option return or a high-level reward function that

only depends on the resultant state. For example, it can be learnt with the

following Q learning minimisation objective:

J(www) ≈ Eξn∼D

[
1

2
(q̂ − q̃www(sn, on))

2

]
≈ Eξn∼D

[
1

2
((rn + γmax

o′
q̃www−(s′n, o

′))− q̃www(sn, on))
2

]
(5.1)

where sn is the terminal state for option on. In order to learn about options

using data generated during the execution of an option, the estimation of

the true (target) state-option value q̂ should consider the possibility that

other options could be selected in the next timestep. In other words, given

a collected transition generated by an option, it is no longer certain to the

learning agent whether it will terminate or not. There are thus two cases for

the q value of the next state: it equals the maximum option value for the

next state if the current one terminates, or the option value of the current

option as it continues. Therefore, the state-option value for the next state

154

can be redefined and estimated as follows:

ũwww−(s′n, o
′) = (1− βon(s′n))q̃www−(s′n, on) + βo(s)max

o′
q̃www−(s′n, o

′) (5.2)

Eq. 5.2 is called the option value upon arrival, which is not restricted to

the terminal transition of an option. Thus, we can write the cost func-

tion to be maximised for the policy parameters given a transition ξn =

{sn, on, βon(s′n), s
′
n} as:

J(www) ≈ Eξn∼D

[
1

2
(q̂ − q̃www(sn, on))

2

]
≈ Eξn∼D

[
1

2
((rn + γũwww−(s′n, o

′))− q̃www(sn, on))
2

]
(5.3)

where, ũwww−(s′n, o
′) = [(1− βon(s′n))q̃www−(s′n, on) + βon(s′n)maxo′ q̃www−(s′n, o

′)]. In

comparison with Eq. 5.1, Eq. 5.3 is now able to use every transition that is

produced when executing a particular option, without waiting for an option

to be terminated. Also, it has the benefits of learning from more diverse

samples as well as learning about different options with each sample. The

algorithm is therefore named Intra-option learning (Sutton et al., 1998). More-

over, this algorithm is to be extended in the subsection 5.4.1 to incorporate

goal-conditioned options and inter-option policies. More advanced topics and

possible variations regarding learning inter-option policies can be found in

(Sutton et al., 1998, 1999b).

5.2.4 Summary

In sum, HRL seeks to solve long-horizon tasks in a typically two-level struc-

ture. The two levels deal with planning at a coarse time scale and low-level

control at a finer time scale. The classic option framework (OF) is intro-

duced in this section to form the basis for understanding the state-of-the-art

HRL methods as well as the proposed UOF in the next section. The IOL

155

algorithm will be extended to be compatible with a goal-conditioned option

and a goal-conditioned inter-option policy.

5.3 The Universal Option Framework

With the foundations introduced in the last section, this section will for-

mally describe the proposed UOF, which integrates goal-conditioned policies

(Schaul et al., 2015; Andrychowicz et al., 2017) into the classic option frame-

work (Sutton et al., 1999b). The reader is referred to section 4.2.1 for the

preliminary of GRL.

The first subsection below will describe formally the universal option and

high-level policy. The second subsection will explain the specific implemen-

tation of the block stacking tasks for a better understanding of the concepts

and experiments.

5.3.1 Universal option and high-level policy

The original option framework, as introduced in subsection 4.2.1, consists of

an inter-option policy at the higher level and a set of options at the lower

level. An option is comprised of an initiation set, a termination function and

an intra-option policy (Sutton et al., 1999b). For clarity, the term “high-level

policy” will be used to refer to the inter-option policy that selects options at

the planning level, while “low-level policy” will be used to refer to the policies

that interact directly with the environment at the lower level. The following

will formally describe the goal-conditioned option and high-level policy, and

the link between them. The term “universal” is inherited from (Schaul et al.,

2015; Andrychowicz et al., 2017) to emphasise that the proposed framework

is able to represent and learn knowledge of the tasks not just for states but

156

also for different goals.

Universal option

To briefly recall, an option, o ∈ O, consists of three components: a low-level

policy πo : S × AL → [0, 1], the initiation set Io ∈ S and the termination

distribution βo : S → [0, 1]. The option in the original framework is typically

defined over states. This means that the low-level policy is single-objective,

the initiation set indicates whether an option can be selected given a state,

and the termination function indicates whether the option should terminate

given a state.

Similarly, a universal option, og, also consists of three components: a

universal policy πL
g : S × GL ×AL → [0, 1], a universal initiation set Iog ∈ S

and a universal termination distribution βg : S × GL → [0, 1]. However, the

universal option is now defined over states and goals. This means that the

universal policy is now capable of achieving multiple objectives in terms of

goals. In addition, it is natural to define that the initiation set should indicate

a subset of states from which a desired goal is achievable, and the termination

function should indicate whether a desired goal is achieved given a state. In

this thesis, the termination condition is assumed to be deterministic such

that the universal option terminates when the given desired goal is achieved,

denoted as bg : S × GL → {0, 1}.

Universal high-level policy

In the standard option framework, a high-level policy is defined as a mapping

from states to options, denoted as πH : S × AH → [0, 1]2 Implementation-

wise, the high-level action space is discrete, commonly represented as a set

2For the ease of illustration, the following will use AH to replace O.

157

of integers. The high-level policy may be learnt by semi-MDP q-learning or

intra-option learning (see subsection 5.2.3) to select options to maximise the

reward function.

When there is only one universal option, it is not difficult to notice that

the high-level policy can no longer be a distribution over options (or high-level

actions). A common practice is to define it as a distribution over low-level

goals: πH
g (g|s) : S × GL → [0, 1], (Nachum et al., 2018; Levy et al., 2019;

Jiang et al., 2019; Dilokthanakul et al., 2019). In deterministic cases, it

is then a mapping πH
g (s) : S → GL. In such cases, the high-level policy is

responsible for selecting a sequence of subgoals to be achieved by the universal

option such that the future return is maximised. In other words, AH = GL.

Although this definition is very natural and involves the least human effort

to design the high-level action space, it is very brittle and inefficient to learn

when the goal space is continuous and high-dimensional. In such difficult

cases, learning the high-level policy effectively equals the subgoal generation

problem, which itself has drawn interest from researchers in recent years

(Dilokthanakul et al., 2019; Pateria et al., 2021a).

However, this chapter proposes to retain a discrete high-level action space,

in which an action is an integer that corresponds to a subtask or skill. In the

goal-conditioned cases, ac action corresponds to a set of desired subgoals.

This alternative asks for a task decomposition scheme, which is precisely

what has been described in the A2 methods. The assumptions made in

subsection 4.2.3 are employed again with a slight change to emphasise that

the goal space is at the low level:

• A task decomposition scheme is available to divide the task into a total

of I subtasks.

• For each subtask, indexed by i ∈ N, i ≤ I, there exists a non-empty

158

subset of the low-level goal space covering all the desired low-level goals

for that subtask: GL+i ̸= ∅ and GL+i ∈ GL.

• The high-level action space is comprised of the indexes of the subtasks:

aH ∈ AH = {i | i ∈ N, i ≤ I}.

Finally, the high-level policy itself can be made goal-conditioned, such

that it may learn to achieve different task outcomes using the same set of

subtasks or skills. Formally, the universal high-level policy is a mapping

πH
g : S × GH × AH → [0, 1]. Per practice for GRL, the reward function for

learning the high-level policy is also based on goals, typically associated with

a sparse indicator function of whether a goal is achieved.

Summary and discussion

In sum, the UOF operates as the following describes. At the beginning of an

episode, a desired final task goal is sampled and given to the high-level policy.

With the current observation and the final goal, the high-level policy selects

a high-level action, aH ∼ πH
g (aH |s, gH+), which corresponds to a subtask

and a desired subgoal, gL+i ∼ GL+i , where i = aH . The universal option then

takes low-level actions, aL ∼ πg(a
L|s, gL+i), to interact with the environment

to reach a state where the desired subgoal is achieved. When the subgoal

is achieved, the high-level policy is queried again for the next subgoal based

on the new observation. The episode resets when a maximum number of

environment interaction steps is reached (notice it is NOT the number of

high-level actions).

Decomposing the continuous low-level goal space into a number of sub-

spaces associated with subtasks or skills is in fact a very important architec-

tural choice for the proposed hierarchical learning framework. It first reduces

the dimensionality of the high-level action space, then more importantly en-

159

ables the application of abstract demonstrations and adaptive exploration

(developed in chapter 4). The latter is vital in eliminating the non-stationary

training issues (subsection 5.4.2) and improving sample efficiency of parallel

training for long-horizon multi-step multi-outcome tasks (subsection 5.5.2).

Implementation-wise, the experiments in this chapter will rely on a man-

ually designed scheme for task decomposition. However, similar to what

has been discussed in section 4.4, the learning of task decomposition is an

interesting direction, closely related to the active field of subgoal discovery

(Dilokthanakul et al., 2019; Pateria et al., 2021a). In addition, this chapter

advocates for the integration with GRL, representing subtasks in the goal

space. As demonstrated by the empirical results in section 5.5, this has the

potential of improving memory usage and policy reusability.

Finally, before the discussion of how to improve the training process of

UOF, the next subsection will describe the detailed implementation of the

proposed framework for the manipulation tasks of interests, so that the reader

can build up a more grounded understanding.

5.3.2 Implementation

This subsection illustrates the implementation details of the MDP and the

UOF for a set of block-stacking tasks simulated by the Mujoco engine. An

example of the simulation environment is shown by Figure 5.1, where a

robot is tasked to stack the three blocks as a tower in two different orders

(green→blue→red, or blue→green→red). In this example, the UOF agent

needs to learn both stacking outcomes. Both levels of the UOF will share the

same state representation and initial state distribution, but they will have

different action spaces, goal representations and reward functions. A total of

eight tasks are to be used to evaluate the framework and training methods

160

introduced in the next section (see subsection 5.5.1 for task variations).

States & initial state distribution

For a block-stacking task with M blocks, its state s = (sgr||sb1||sb2||...||sbM)

is comprised of the states of the gripper sgr and the blocks (sb1||sb2||...||sbM),

where || denotes vector concatenation. The gripper state consists of the

absolute Cartesian coordinates and the linear velocity of the gripper, the

linear velocity of the gripper fingers (symmetric), and the finger width:

sgr = (xabs
grip||vabs

grip||vabsfinger||wfinger). The state of the m-th block consists of

its relative Cartesian coordinates, linear and angular velocities with respect

to the gripper tip frame: sbm = (xr
m||vr

m||wr
m), ∀m ∈ {1, ...,M}.

The initial distribution of the state p0(s) is described as follows. At the

beginning of an episode, the robot gripper is positioned above the centre of

the table. The blocks are randomly placed on the table with their initial

orientations aligned with the world frame. For the m-th block, its initial x-y

position, (xm
0 , y

m
0), is uniformly sampled on the planar workspace within a

square, centred at the gripper’s x-y position (xgr
0 , ygr0), i.e., xm

0 ∼ U(x
gr
0 −

δ, xgr
0 + δ) and ym0 ∼ U(y

gr
0 − δ, ygr0 + δ), where δ is half of the square edge

length. In this work, δ = 15 cm.

Actions

In this chapter, we are dealing with deterministic policies. For all tasks, the

low-level policy, πL
g : S×GL → AL, is responsible for controlling the gripper in

the 3D Cartesian space and controls its finger width. A low-level action, aL ∈

AL, therefore, has four elements, including the displacement of the gripper

tip frame (range in [−0.05 m, 0.05 m]) and the target finger width (range

in [0, 0.1 m]), denoted as aL = (∆xgr||∆ygr||∆zgr||wfinger). An exception

161

is the Rotation Task (see subsection. 5.5.1), where the agent is additionally

allowed to rotate the gripper around its Z-axis (∆yaw ∈ [−π
2
, π
2
]). All action

dimensions are normalised into [−1, 1], as per RL common practice aligned

with the continuous RL control literature (Lillicrap et al., 2015).

For the high-level action space, there are I discrete actions related to the

I subtasks,i.e., aH ∈ AH = {i | i ∈ N, i ≤ I}. The value of I differs for

different tasks (see subsection. 5.5.1). For instance, there will be 6 high-level

actions for the second task in Table 5.1: aH ∈ AH = {0, 1, 2, 3, 4, 5}.

Low-level goals & reward function

Following the mathematical convention in section 4.2, denote a low-level

goal from a representation mapping of the state as, gL = mL(s). In the

following experiments, a low-level goal is represented as a vector consisting

of the absolute Cartesian coordinates of all blocks and the gripper tip frame,

and the gripper finger width. Formally, given M blocks, a low-level goal is

represented as a vector:

gL = (xabs
grip||wfinger||xabs

1 ||xabs
2 ||...||xabs

M)

It is not difficult to verify that the core assumption of GRL is satisfied in all

tasks: given a state s, there is always a goal that can be found (is achieved)

at that state. Formally: ∀s ∈ S,∃gL ∈ GL, s.t. gL = mL(s).

As mentioned, this chapter assumes access to a task decomposition scheme

that generates a number of subtasks for a given final task. Therefore, the

definition of the desired low-level goals, gL+, differs from subtask to subtask.

They are calculated according to the following principles:

• For a grasping subgoal of the m-the block, gH+
grasp m, the block positions

remain the same as the current system state, while the gripper position

162

is set to the position of the target block and the finger width is equal

to the size of the block. For instance, in a task with M blocks, denote

l1 as the size of the first block, then the subgoal of grasping the first

block is given as gH+
grasp 1 = (xabs

1 ||l1||xabs
1 ||xabs

2 ||...||xabs
M).

• For a placing subtask of the m-th block, gH+
place m, the block positions

remain the same as the current system state, except for the block to be

placed, whose position equals the target location. The gripper position

is also set to the target location and the finger width is equal to the

size of the block. For a task with M blocks, with the target position for

the first block denoted as xabs+
1 , the subgoal for placing the first block

is written as gH+
place 1 = (xabs+

1 ||l1||xabs+

1 ||xabs
2 ||...||xabs

M).

• For both grasping and placing subtasks, other blocks can be set to a

certain location as well, such that the desired low-level goal can repre-

sent situations where some other blocks are already correctly stacked.

For example, following the same context, the subgoal of placing the

second block while the first block is at position xabs+

1 can be written as

gH+
place 2 = (xabs+

2 ||l2||xabs+

1 ||xabs+
2 ||...||xabs

M).

• For all subtasks, the desired low-level goals are updated at every timestep,

because some components are equal to the value of the current state.

For example, the positions of blocks that are irrelevant to the concerned

subtask.

• In all tasks, the final goal requires all the blocks to be put in a cer-

tain configuration and the gripper to stay back to its initial position

xabs
start with fingers closed wfinger = 0. For example, the last subgoal of

stacking two blocks can be written as gH+
end = (xabs

start||l2||xabs+

1 ||xabs+
2).

Following these principles, one can write down the subgoals for the block

163

stacking tasks that will be experimented with in this chapter (Table 5.1 and

5.2). The following will give a small example for the task of stacking two out

of three blocks in two different orders (two final outcomes) as an example

(task 2 in Table 5.1). Denote the positions of the three blocks by their colours

red, green and blue, the subgoals can be written down in the correct order

as follows.

gH+
grasp B = (xabs

B ||lB||xabs
R ||xabs

B ||xabs
G)

gH+
place BR = (xabs+

B ||lB||xabs
R ||xabs+

B ||xabs
G)

gH+
end BR = (xabs

start||0||xabs
R ||xabs+

B ||xabs
G)

gH+
grasp G = (xabs

G ||lG||xabs
R ||xabs

B ||xabs
G)

gH+
place GR = (xabs+

G ||lG||xabs
R ||xabs

B ||xabs+

G)

gH+
end GR = (xabs

start||0||xabs
R ||xabs

B ||xabs+

G)

The reward function for the low-level policy is a standard goal-conditioned

reward function described in subsection 4.2.1, which gives a reward of 0 when

a desired goal is achieved and −1 otherwise (Andrychowicz et al., 2017).

Whether a desired goal is achieved is here measured by the L2 distance.

Given the current state s, a desired low-level goal gL+ is said to be achieved

if the actual achieved low-level goal gL = mL(s) is closed enough to the

desired one in terms of the L2 distance with a threshold. Denote 1 [c(·)] as

the indicator function that gives 1 when the condition c(·) is satisfied and 0

otherwise, the reward function for the low-level policy is

rL(st, a
L
t ,g

L+) = 1
[
||mL(st+1)− gL+||2 ≤ δd

]
− 1

where, st+1 is the next state according to the system dynamic and the thresh-

old δd = 0.02 m in all experiments.

164

High-level goals & reward function

The high-level goal space employs a N -dimensional binary representation,

where N is the number of subtasks/steps for a task. The value of each dimen-

sion is determined according to whether the associated subtask is achieved

or not. That is: given a state s,

gH = (fgL+
1
, fgL+

2
, ..., fgL+

N
),

where fgL+
n

= 1
[
||mL(s)− gL+

n ||2 ≤ δd
]
is the binary indicator function that

indicates whether the n-th subtask is achieved at the given state.

Similar to the low-level case, the desired high-level goal, gH+, differs

from subtask to subtask. Again, taking the second task in Table 5.1 as an

example, the high-level goal will be a 6-D vector as there are 6 subgoals. In

total, there will be 6 different outcomes that the high-level policy may be

asked to achieve. They can be written as follows.

gH+
grasp B = (100000)

gH+
palce BR = (110000) placing requires the grasping subgoal remain achieved

gH+
end BR = (001000)

gH+
grasp G = (000100)

gH+
place GR = (000110)

gH+
end GR = (000001)

Similar to the low-level case, the high-level reward function is calculated

by checking whether the desired high-level goal is achieved. Whereas, this

time it uses element-wise equality as the measurement:

rH(st, a
L
t ,g

H+) = 1
[
mH(st+1) = gH+

]
− 1

165

where st+1 is the state after a low-level action aL is executed at the last

state s. This reward function gives a reward of 0 when the desired high-level

goal is achieved and −1 otherwise. Here, notice that the reward function is

irrelevant to which high-level action is selected by the high-level policy. This

assumption can be problematic in some cases as discussed in subsection 5.2.3,

but in this chapter, it does not affect the result. For more research in this

regard, please refer to (Sutton, 1984; Zhou et al., 2020).

Summary

In sum, this subsection illustrates how the block stacking tasks are imple-

mented in detail, including the goal-augmented Markov decision process def-

initions for both levels in the UOF. An example of an episode of the second

task may help to see the overall idea. At the beginning of an episode, the

high-level policy is given a high-level goal to stack the green block on the

red one gH+
place GR. According to πH

g (s0, g
H+
place GR), the high-level policy may

select aH0 = 3 which corresponds to the fourth low-level goal gL+grasp G. Then,

the low-level policy may achieve the goal at t = 4, receiving 3 rewards of −1

and one of 0. The high-level policy is then given a reward of −1 as it has

not yet achieved the high-level goal. The high-level policy may now select

the second action aH4 = 4 which gives the fifth low-level goal gL+place GR to the

low-level policy. Assume that, at t = 7, the low-level policy achieves the

goal according to πL
g (s7, g

L+
place GR), both policies will be given a reward of

0. The objective for both levels is the same as any standard RL algorithm:

maximising the expected future discounted return. In the next section, the

detailed training method for the UOF will be introduced.

166

5.4 Training Methods

This section will introduce how both levels of the UOF are updated. The

training process is organised into epoch, cycle and episode, exactly the same

as the experiments in chapter 4 following (Andrychowicz et al., 2017). Again,

each epoch has 50 cycles, each of which has 16 episodes. The different task

allows a different number of interaction steps. Note that, in the HRL setting,

the number of interaction steps that occurred corresponds to the number of

low-level actions taken, which varies for different tasks (see subsection 5.5.1).

5.4.1 Learning algorithms

Low-level policy learning

The low-level policy is learnt using the DDPG algorithm with HER goal-

relabelling using the episode sampling strategy with k = 4 (details in subsec-

tion 4.2.1). The learning process of the low-level policy benefits from the A2

method proposed in chapter 4. The implementation is exactly the same as

that conducted in chapter 4, except that the trajectory extrapolation trick is

discarded. Instead, HER is applied to segments of a trajectory from a new

subgoal till it is achieved or the episode ends. For example, if two subgoals

are involved in an episode, the trajectory is divided into two for the low-level

policy and HER is applied twice. This is because the low-level policy is no

longer required to master the whole manipulation task from the beginning

state. It is now specialised in completing each subtask individually by achiev-

ing a sequence of desired low-level goals, while how the low-level goals are

ordered is concerned by the high-level policy.

167

High-level policy learning

As explained in subsection 5.2.3, there are normally two ways to train a

high-level policy: SMDP-Q learning or IOL (Sutton et al., 1999b). Simply

put, SMDP-Q only uses the transition collected when an option is terminated,

which in this chapter, refers to when a low-level goal is achieved. On the other

hand, IOL collects every transition even if the option is not terminating, and

uses them altogether to update the high-level policy. This makes IOL more

sample efficient than SMDP-Q learning (Sutton et al., 1999b). Therefore,

the following will introduce how to adapt the IOL algorithm to train the

universal high-level policy with batch optimisation. The new algorithm is

called goal-conditioned intra-option learning (GIOL).

The core of IOL is to calculate the option value upon arrival (Eq. 5.2),

which is extended to the UOF high-level policy as follows. Given a high-level

transition, ξHn = {sn, gH+
n , aHn , r

H
n , bn,gL+

aH
, s′n}, the estimated goal-conditioned

option value upon arrival, ũ, for the next state s′n under the desired high-

level goal gH+
n can be obtained by modifying the terms in Eq. 5.2 to be

goal-augmented components:

ũwww−(s′n, g
H+
n , aHn)

= (1− bn,gL+

aH
) q̃www−(s′n, g

H+
n , aHn) + bn,gL+

aH
max
aH ′

q̃www−(s′n, g
H+
n , aH ′) (5.4)

where, bn,gL+

aH
is the deterministic termination condition (a binary value) in-

dicates whether the low-level goal, gL+
aH

, associated with the high-level action

is achieved, and www− indicates the q value is calculated by a target q net-

work. Accordingly, the minimisation objective for updating the universal

high-level q network is estimated by modifying the components in Eq. 5.3 to

168

be goal-augmented:

J(www) ≈ EξHn ∼D

[
1

2
q̂(sn, g

H+
n , aHn)− q̃www(sn, g

H+
n , aHn))

2

]
≈ EξHn ∼D

[
1

2
(rH + γũwww−(s′n, g

H+
n , aHn)− q̃www(sn, g

H+
n , aHn))

2

]
(5.5)

where,www indicates the parameters of the main q network. Similar to other RL

algorithms, the GIOL algorithm also iterates between data collection, policy

evaluation and improvement. The universal q functions for the state, high-

level goal and high-level action are updated using Eq. 5.5. The universal high-

level policy is obtained by taking the argmax operation over the estimated q

values given a state and a desired goal:

aH = πH
g (s, gH+) = argmax

aH
q̃www(s, g

H+, aH)

Exploration

The low-level policy will use the A2 implementation for the DDPG agent,

described in subsection 4.2.4 with the same parameter setting. In the next

subsection, analyses will be given to justify why applying adaptive explo-

ration to the low-level policy not only accelerates the learning of the univer-

sal option, but also is essential for parallel training and important for the

universal high-level policy.

The high-level policy will use the episode-wise exponential decaying ϵ-

greedy exploration: ϵ = ϵend + (ϵstart − ϵend)× e
−k
βϵ , where k is the number of

passed episodes. It decays ϵ from 1.0 to 0.02, with different values of βϵ for

different tasks, and keeps the same ϵ within an episode.

169

Networks and training details

With the above algorithms, both levels are to be updated after every episode.

For the low-level policy, its trajectories are processed by HER before sampling

after every episode. The high-level policy does not use HER. Both levels use

a second critic to reduce overestimation. Both levels apply mean-deviation

input normalisation with historical statistics. Both levels apply value clip.

The target action values of the low-level policy are clipped in [−25, 0], while

that of the high-level policy are clipped in [−T, 0], where T is the maximal

number of interaction steps of an episode (see subsection 5.5.1). Both levels

are updated 40 times after each cycle with a batch size of 128, a learning

rate of 1e − 3, by the Adam optimiser (Kingma and Ba, 2014). A discount

factor of 0.98 is used for all tasks. All target networks are updated after each

optimisation step using Eq. 3.26 with τ = 0.1. All networks are composed of

three fully-connected layers of size 256 activated by ReLU. The final layers

of all q networks are not activated, while the final layers of all actor networks

are activated by Hyperbolic tangent (Tanh).

5.4.2 Tackling non-stationarity

As mentioned in the introduction, one of the aims of this chapter is to in-

vestigate the non-stationarity that occurred to the high-level policy during

the parallel training processes of HRL agents, including the proposed UOF

agent. The issue can be revealed by taking a close look at the transition

function of the high-level policy.

In the UOF agent, or any HRL system, the next system state is deter-

mined by both the high-level and the low-level policy. Specifically, the action

that interacts with the environment is selected by the low-level policy, which

170

is selected by the high-level policy. This phenomenon is irrelevant to how

the hierarchical architecture is designed and how both levels are represented

and connected.

Denote the policies as πH(aH |s) and πL(aL|s, aH), the system dynamic

transition distribution according to the high-level and low-level actions as

p(s′|s, aH) and p(s′|s, aL), then the probability of the next state of the system

is written as:

p(s′) = p(s) πH(aH |s) p(s′|s, aH)

= p(s) πH(aH |s) πL(aL|s, aH) p(s′|s, aL) (5.6)

According to the recurrent relationship, the value function distribution

accounted for the state distribution for the high-level policy can be written

as:

vπ
H

(s) =
∑
aH

πH(aH |s)
∑
s′,r

p(s′|s, aH) [r + γv(s′)]

=
∑
aH

πH(aH |s)
∑
aL

πL(aL|s, aH)
∑
s′,r

p(s′|s, aL) [r + γv(s′)] (5.7)

Now consider Eq 5.6 and 5.7 in cases with pre-trained low-level policies

and in parallel training scenarios. First of all, when the low-level policy is

pre-trained, no exploration is performed at the low level when training the

high-level policy. Looking at Eq. 5.6, the low-level policy can in fact be

regarded as a part of the system dynamics, and the high-level policy can be

trained just as any non-hierarchical RL systems. The value vπ
H
(s) can be

estimated from the data collected, either on- or off-policy, as all distributions

involved are unchanging, except the high-level policy that is to be improved.

However, when training in parallel, the value distribution becomes non-

stationary as the transition distribution becomes non-stationary, because of

a changing low-level policy. This impedes the learning of the high-level value

171

function in two ways. First, as the low-level policy is being updated, the

value distribution is no longer stable. The estimation target is moving in

the space of distributions, making the optimisation problem ill-defined. This

does not happen in cases with a pre-trained low-level policy. In fact, before

the low-level policy has been well-trained, the high-level policy will struggle

to learn at all. This is precisely why previous works propose to modify the

collected trajectories so that they are corrected to the situation with an

optimal low-level policy (Nachum et al., 2018; Levy et al., 2019). Secondly,

the low-level policy requires a certain amount of exploration to learn about

the task and the environment, as any other RL algorithm. This means that,

in parallel training, there is always a chance the low-level policy will deviate

from the correct trajectory even if it has been well-trained. Considering the

multi-step tasks concerned in this chapter, the compounded probability of

deviation from the correct trajectory of several subtasks keeps the high-level

policy away from any meaningful learning experiences.

With these analyses, this chapter proposes to apply the A2 method de-

veloped in chapter 4 to the low-level policy. The main reason is that the

adaptive exploration strategy will reduce exploration as much and as soon

according to the performance that it achieves at different subtasks. In other

words, in parallel training, the low-level policy will nearly stop exploration

and stay as a stable distribution when it performs well. Thus, the high-level

transition dynamic is stabilised as soon as possible to enable the learning of

the high-level policy. In the meantime, the use of abstract demonstrations

also benefits the high-level policy because the correct sequences of subtasks

are in effect the correct high-level actions to be taken. Along with adapted

low-level exploration, it will enable the high-level policy to proceed to later

subtasks as fast as possible.

172

5.4.3 Summary

To sum up, this section first explains what algorithms are used to update the

parameters of the policies and value functions for both levels in the UOF.

Specifically, DDPG is used to learn the universal option policy, and the

intra-option learning algorithm is extended to goal-conditioned cases in this

section, named GIOL, for learning the universal high-level policy. Secondly,

the dynamic process of training the high-level policy in parallel with the low-

level policy is mathematically analysed. By looking at the root of the non-

stationarity issue, this chapter proposes to use the A2 methods to stabilise

and accelerate learning for the high-level policy. In principle, this idea can

be applied to HRL architectures other than the proposed UOF, as the non-

stationarity issue is not unique to UOF. To help understand, the pseudo-code

of the training process is summarised in Algorithm 2.

173

Algorithm 2 Parallel training pseudo-code for UOF

Input: maximum epochs, cycles and episodes M0,M1,M2

Initialise GIOL , DDPG and A2

for epoch = 1 to M0 do

| for cycle = 1 to M1 do

| | for episode = 1 to M2 do

| | | Sample a high-level goal

| | | for t = 0 to T − 1 do

| | | | if use demonstrations (subsection 4.2.3)

| | | | | Obtain the correct next low-level goal

| | | | else

| | | | | Sample aH related to a low-level goal from πH
g

| | | | end if

| | | | while not low level goal achieved

| | | | | Sample aL from πL
g with adaptive exploration

| | | | | Execute aL and observe the next state and rewards

| | | | | Store the transition

| | | | end while

| | | end for

| | end for

| | Perform HER on the low-level trajectory

| | Update the universal option policy with DDPG

| | Update the universal high-level policy with GIOL

| end for

| Evaluate πL
g for each task

| Update the adaptive exploration parameters

end for

174

5.5 Empirical Results

This section will provide details of experiment tasks, and ablative and com-

parative studies. Recall that the tasks of interest are multi-step and multi-

outcome manipulation and how to improve HRL for these tasks. All perfor-

mances shown in this section are averaged over three random seeds. The main

focus of the following experiments is then to answer the following questions:

(1) Can parallel training be accelerated by applying the A2 method?

(2) Is parallel training comparable to separate training?

(3) How does A2 stabilise parallel learning compared to hierarchical actor-

critic (HAC) (Levy et al., 2019)?

(4) Does UOF perform comparably with specialised high-level policies?

5.5.1 Task design

This subsection will introduce the tasks used to evaluate the framework and

algorithms, eight block stacking tasks with a 7-DOF Fetch robot based on

the Mujoco engine are used. In particular, there are four basic tasks for

ablation studies and four additional tasks to test the limit and generalisation

ability of the method.

Table 5.1 includes the configurations of four basic block-stacking tasks.

Task 2 is used in particular to evaluate questions (1) and (2). Tasks 1 and

2 are used to evaluate question (3). Tasks 2, 3 and 4 are used to evaluate

question (4).

In these tasks, the robot is asked to pick and place some blocks to build

towers. Three blocks of different colours (Red, Blue, and Green) are involved.

For each task, there is a different number of final outcomes. To achieve each

outcome, different subtasks are required to be executed in different orders.

175

Task Blocks No. of

steps

Desired outcomes Training

epoch

Training

timestep

Testing

timestep

1 R, B 3 B→R 150 25 50

2 R, B, G 6 B→R; G→R 800 25 50

3 R, B, G 15 B→R; B→G; R→B;

R→G; G→R; G→B

1000 25 50

4 R, B, G 10 B→G→R;

G→B→R

1500 40 60

Table 5.1: Basic Block-stacking Tasks.

(a) (b)

Figure 5.3: Example task visualisation. (a) The ‘B→G→R’ outcome of the

fourth basic task; (b) the ‘R→BG’ outcome of the pyramid task.

For example, ‘B→G→R’ is an outcome that denotes the desired top-down

order of three blocks of task 4 (Figure 5.3a). This ‘B→G→R’ outcome will

require five subtasks: 1) grasp the block G, 2) place G on the top of R, 3)

grasp the block B, 4) place B on top of G and R, and 5) move the gripper

back. Because the agent has to learn another outcome ‘G→B→R’, there are

in total 10 subtasks in task 4. ‘Training timestep’ and ‘Testing timestep’

176

represent the number of total interaction steps that the agent is allowed to

perform in a training or testing episode.

Table 5.2 lists the four additional tasks that are more complex than the

basic tasks described above. The first additional task, Pyramid, is to show-

case that the proposed method can achieve a different stacking type (pyra-

mid). The second one, Rotation, is a variant of the basic task 1 that allows

the algorithm to rotate the gripper about the z-axis. This makes the prob-

lem more difficult with an extra degree of control freedom. The last two

additional tasks, Random block size (RBS) 1 and 2, are for testing the gener-

alisation ability of the trained agents by randomising the sizes of the blocks.

In particular, the agent is trained on the basic task 1 and 2, then evaluated

on the additional task RBS 1 and 2 without further training.

Task Blocks No. of

steps

Desired outcomes Training

epoch

Training

timestep

Testing

timestep

Pyramid R, B, G 14 BG→R; R→BG 2000 60 80

Rotation R, B 3 B→R 300 25 50

RBS 1 R, B 3 B→R - - 50

RBS 2 R, B, G 6 B→R; G→R - - 50

Table 5.2: Additional Block-stacking Task. RBS: random block size.

5.5.2 Parallel training improvement

The effects of A2 in parallel training

As discussed in sectioon 5.1, the benefit of parallel training is twofold: it

reduces repetitive computation as both levels of policies are trained in the

data collection loop, and it avoids unnecessary fine-tuning of the low-level

177

policy that is required by separate training scheme. Although it tends to

be non-stationary due to a constantly exploring low-level policy, in subsec-

tion 5.4.2, the root of this issue is examined and the A2 method is proposed

as a solution. This subsection then seeks to empirically answer the question

(1): can parallel training be accelerated by the A2 method?

First of all, similar to the experiments discussed in chapter 4, the perfor-

mances of the high-level policy are evaluated with different proportions of the

episodes being demonstrated. In this study, the low-level policy is trained in

parallel with the high-level policy using full A2 support, as described in sub-

section 5.4.1. The aim is to investigate how abstract demonstrations benefit

the high-level policy. Note that the policy has to learn both outcomes of the

basic task 2.

Figure 5.4: Average success rates of the universal high-level policy with dif-

ferent proportions of demonstrated episodes in the basic block stacking task

2. 0.0-D, 0.25-D, 0.5-D, 0.75-D, and 1.0-D denote the respective proportions

of demonstrations added in the episodes.

From Figure 5.4, it is shown that the high-level policy has a hard time

learning without abstract demonstrations (blue line), while with 75% of the

178

episodes being demonstrated, the high-level policy can achieve near-optimal

performance within 300 epochs. However, it also shows that with all episodes

being demonstrated, the high-level policy actually performs worse (purple

line). This is likely caused by the lack of exploration needed to maintain the

diversity of the collected data. Similar to what happened in the experiments

in subsection 4.3.2, the neural network may overfit to a narrow distribution

rather than the one that it is supposed to learn. However, abstract demon-

strations are indeed essential to the learning of the high-level policy.

Secondly, by giving the high-level policy demonstrations in 75% of the

episodes, a comparison is made to see how fast the high-level is learning

with and without the low-level policy using adaptive exploration. In this

experiment, the baseline only differs from the full agent in that it uses the

original ϵ-Gaussian exploration (Eq. 4.9), without adapting the exploration

parameters.

Figure 5.5 shows the overall success rates of the two agents. Clearly,

the agent with adaptive exploration at the low-level policy outperforms the

baseline in terms of convergence speed, performance and variance. This

improvement in fact comes from the improvement of the low-level policy,

which can be proved by looking at the performance of the universal option

policy. Figure 5.6 (a) and (b) show the three subtasks and the performance

of the low-level policy in terms of how many low-level actions are spent to

achieve them. A clear reduction of the number of required low-level actions

is achieved by the agent using adaptive exploration. It also achieves faster

convergence. These results altogether demonstrate that adaptive exploration

indeed accelerates the learning of low-level policy in such multistep tasks, and

it then helps to stabilise and accelerate the learning of the high-level policy.

179

Figure 5.5: Average success rate of high-level policy performance for task 2.

AAES: the agent with adaptive exploration strategy applied to the low-level.

(a)

(b)

Figure 5.6: Visualisation and the averaged number of required actions for

the three consecutive subtasks of task 2. (a): Visualisation; (b) The average

number of low-level actions needed to achieve the subtasks as training pro-

ceeds.

180

In sum, these two ablation studies provide an answer to the first ques-

tion. Indeed, the results altogether have proved that parallel training at

both levels can be stabilised and accelerated by the A2 method introduced

in chapter 4. In particular, it proves the importance of adjusting low-level

policy exploration when training the framework in parallel. As the motiva-

tion for applying the methods is not the subject architectural design of the

HRL agent, this idea has the potential to be extended to the parallel training

of other HRL frameworks in the future.

Compared to separate training

For question (2), the experiments are conducted to compare the high-level

learning performances in parallel training and the learning with a pre-trained

universal option. For the separate training baseline, the universal option

is pre-trained with abstract demonstrations for 300 epochs, after which it

reaches near-optimal success rates for all subtasks. The separate training

baseline then starts training the high-level policy with the universal option

being fixed. All other training details are the same.

Figure 5.7 displays the performances of this experiment. It shows that

separate training (grey line) learns faster at the beginning yet fails to further

improve its performances. Separate training also exhibits a larger variance

in performance as the grey-shaded area is bigger. On the contrary, parallel

training (red line) starts slower as it learns from zero, but is able to achieve

near-optimal performance with a much smaller variance. These demonstrate

the benefits of parallel training over separate training in terms of perfor-

mance. In addition, the separate training agent requires the universal option

to be pre-trained in advance for another 300 episodes, causing unnecessary

data collection and computation in this case.

181

Figure 5.7: Average success rates of the universal high-level policy. Sepa.:

Trained with a pre-trained universal option; Para.: Trained in parallel with

the universal option.

In sum, the answer to question (2) is that parallel training does outper-

form training with pre-trained low-level policies in terms of higher perfor-

mances and lower computation costs. This is however under the condition

that the non-stationary MDP dynamics of the high-level policy can be sta-

bilised. Once stabilised, parallel training allows the low-level policy to adapt

to the need of the high-level policy and enables the high-level policy to start

learning as soon as possible. Thus, when the non-stationary problem can not

be resolved or the pre-trained low-level policies are to be reused for many

tasks, separate training may still be preferred. Nevertheless, the experiment

and the literature (Li et al., 2019) suggest that fine-tuning is important, in

which cases adapting the low-level policy’s exploration may again need to be

adjusted to eliminate the non-stationarity issue.

Compared to hierarchical actor critic

To answer the question (3), the A2-aided UOF is compared to the HAC

agent (Levy et al., 2019). HAC is also a goal-conditioned HRL framework,

182

for which the authors propose three modifications to the collected experiences

to deal with the non-stationary transition problem. To make the comparison

as fair as possible, abstract demonstrations are also provided to the HAC

agent.

(a) Task 1 - Low-level (b) Task 2 - Low-level

(c) Task 1 - High-level (d) Task 2 - High-level

Figure 5.8: Average success rates of HAC and UOF.

Figure 5.8 displays the averaged success rates of both levels of the agents

in tasks 1 and 2. Overall, UOF has achieved substantially better perfor-

mances than HAC in all aspects. This implies a least three points. First, as

183

HAC uses a continuous action space for the high-level policy, it is too diffi-

cult to learn to generate subgoals in the continuous space. This demonstrates

the significance of task decomposition. Secondly, the low-level policy of the

HAC agent also learns much slower than UOF. This suggests that the adap-

tive exploration method is essential in long-horizon multi-step task learning.

Thirdly, the slow learning progress of the high-level policy also implies the

insufficiency of the solutions proposed in (Levy et al., 2019) to deal with

transition non-stationarity. On the other hand, the A2 method cuts straight

to the root of the non-stationarity issue and improves high-level learning

significantly.

Summary

To sum up, this subsection focuses on the parallel training results of the

UOF aided by the proposed A2 method. Experiments show that the non-

stationarity problem discussed in subsection 5.4.2 can be substantially re-

moved. Additionally, with the help of A2, the high-level policy actually

outperforms separate training and the HAC baseline. Overall, these results

demonstrate that parallel training is possible and can even be more efficient

when performed with the right training techniques.

5.5.3 Learning multiple outcomes

As parallel training is resolved, this subsection looks into the performance

of universal policies and separated policies. As the aim of the chapter, the

UOF agent is tasked to learn multiple outcomes with only one universal high-

level policy. In the following, it is compared to a set of separated non-goal-

conditioned policies, each of which uses the same universal option to achieve

only one outcome of a task. In terms of training, each separated policy is

184

an individual neural network with its own replay buffer. Note that this is

large memory consumption. The performances of achieving all outcomes are

averaged and compared.

(a) Task 2 (b) Task 3 (c) Task 4

Figure 5.9: Average success rates of achieving the final outcomes with uni-

versal and separated policies for the basic task 2, 3 and 4. Univ: universal

high-level policy; Sepa: separated high-level policies.

Figure 5.9 shows that the universal policy can perform similarly or better

than the combination of a set of separated policies. In particular, they achieve

similar performances on task 4, while UOF learns faster in tasks 2 and 3. It

is interesting to see that the universal policy performs better in tasks with

more outcomes to learn. This may be due to the fact that a universal policy

has the potential to share knowledge among different outcomes, making it

learn faster to achieve similar tasks. However, when the task horizon becomes

longer, separated policies can be advantageous because it has fewer final tasks

to learn about, therefore requiring a smaller amount of data, as shown by

Figure 5.9c.

These results answer the last question: the universal high-level policy ac-

tually performs comparably or even better than separated policies, especially

in tasks with many outcomes.

185

Task No. Outcomes Policy type Network size Buffer size

2 2
Universal ∼1.12 Mb ∼2.42 Gb

Separate ∼2.24 Mb ∼4.84 Gb

3 6
Universal ∼1.12 Mb ∼2.42 Gb

Separate ∼6.72 Mb ∼14.52 Gb

4 3
Universal ∼1.31 Mb ∼2.60 Gb

Separate ∼2.26 Mb ∼5.20 Gb

Table 5.3: Approximate memory requirements for training the high-level

policies for task 2, 3 and 4.

Lastly, to demonstrate how much memory and computation can be saved

by using universal policies, Table 5.3 displays the neural network parameter

sizes and the replay buffer sizes for training a universal policy and a set of

separated policies for the same number of outcomes. From the table one can

see the memory requirement for separated policies grows as the number of

outcomes grows. This may be acceptable in the state-based observation ex-

periments conducted in this chapter. However, the requirement will become

prohibitive very soon when the observations are high-dimensional, such as

point clouds or images.

In sum, this subsection demonstrates that universal policies can achieve

similar or better performances over individually trained policies, with the

advantages of potential knowledge sharing and memory usage reduction.

186

5.5.4 Additional tasks

This subsection gives a brief report on the performances of the proposed

UOF and its training methods on the four additional tasks. The aim is to

briefly show that the proposed framework and methods have the ability to

cover more complex tasks and also to discover its limitations.

First of all, the UOF agent achieves an average success rate of 0.6 at the

low level and 0.4 at the high level for the Pyramid task. The performances

are not optimal because of the longer task horizon with more consecutive

subtasks. Each outcome of the task requires 7 subtasks to be achieved in

the correct order, which poses a huge search space. This result exhibits the

limitation of the framework in the face of longer task horizons and more

consecutive task steps. Future works may focus on a better representation of

the high-level action space that does not grow combinatorially as the number

of blocks and outcomes grows.

Secondly, the agent is able to achieve near-optimal performances on the

rotation task similar to the basic task 1. Note the rotation task is a variant

of task 1 with an extra degree of gripper control freedom. However, it can

only achieve it with a doubled training time. This suggests the importance

of action space design for continuous RL algorithms, as an extra degree of

control freedom may introduce much difficulty in the learning processes.

Lastly, the agent trained on the basic tasks 1 and 2 is evaluated without

further training on the same tasks with randomised block sizes. The agent is

able to achieve a success rate of 0.66 for both tasks with 30 testing episodes.

However, failures occur mostly at the extremes of the range of the block sizes.

In other words, when the block is too large or too small compared to the ones

used in training, the agent is more likely to fail. Nonetheless, this experiment

shows that the trained agent has a certain degree of generalisability. For

187

better performances on unseen tasks, a fine-tuning process is recommended.

5.6 Summary

To conclude, this chapter develops a new HRL framework, named universal

option framework (UOF), to address long-horizon, multi-step, multi-outcome

and sparse reward manipulation tasks. In short, UOF is created by combining

the GRL paradigm and the classic option framework for HRL. In order to

accelerate and stabilise the parallel learning of the UOF for such difficult

tasks, this chapter looks into the theoretical root of the parallel training

non-stationarity problem and proposes to leverage the A2 method as a fix.

Experimental results of a series of simulated block stacking tasks demon-

strate that 1) it is possible to use universal policies to learn multiple steps and

multiple outcomes, saving much memory and computation resources, and 2)

it is possible to eliminate the non-stationary transition issue in parallel train-

ing and obtain substantial learning speed and performance improvements.

There are a few insights that could be drawn from the work in this chap-

ter. First of all, it is possible to learn multiple subtasks and tasks with only

universal policies in the HRL scenario, however, this may sacrifice the learn-

ing efficiency. Therefore, it is up to the engineer to determine whether it is

worth the risk to trade learning efficiency for a smaller memory consump-

tion. Secondly, the task decomposition assumption plays a vital role in the

design of the HRL architecture and the acceleration methods for its training.

Similar to what is discussed in chapter 4, it is very demanding to develop

learning-based task decomposition methods for cases where manual decom-

position is difficult. Lastly, the framework is only evaluated on state-based

tasks in this chapter. Future works are required to validate and improve

188

the proposed methods on tasks with image or point cloud observations. The

insight here is that a good abstraction of the action and observation space

can lift burdens from the learning algorithm.

189

Chapter 6

Contact-Rich Grasping and

Manipulation

with General Affordance

190

6.1 Introduction

The previous chapters have put much effort into developing and accelerat-

ing RL-based algorithms for long-horizon manipulation tasks. In those two

chapters and many other works, an important assumption is that the algo-

rithm is given a known grasp pose for the target object, and the algorithm

is only concerned with how to generate the robot motions. This assumption

may suffice for simple manipulation tasks without rich contacts, such as sim-

ple pick-and-place. However, tasks such as tool use, disentangling objects,

hanging objects or some assembly tasks would impose stricter constraints on

grasp pose selection. They require the robot to select grasps that are not

only stable but also enable better manipulation performances. Such tasks re-

quire the manipulation system to understand and leverage the relationships

between the environment, grasp generation and the manipulation tasks. In

other words, this chapter is particularly interested in the following challenge:

How to select grasp poses that enable better manipulation performances?

The problem is closely related to the problem of task-oriented grasps

(TOGs) generation, which seeks to generate grasps that are suitable for the

following manipulation tasks. As discussed in detail in subsection 2.2.4,

existing methods either seek to classify task-agnostic grasps (TAGs), or try

to predict TOGs directly. This chapter also proposes to rely on off-the-shell

TAG generators for TAG planning. However, the aim of the research is taken

one step further: to filter and select TAGs that can improve downstream

manipulation, beyond enabling.

There is a major difference compared to existing works on TOG planning

– the information used to filter and select TAGs. Specifically, previous meth-

ods only provide binary labels for the planned grasps, indicating whether

191

they are suitable for certain manipulation tasks or not (Detry et al., 2017;

Kokic et al., 2020; Murali et al., 2021; Sun and Gao, 2021). These methods

focus on generating grasps that enable manipulation. Unlike them, the aim

of this research is taken beyond binary manipulation possibility prediction,

seeking to generate grasps that improve manipulation performances.

To address the problem, this chapter draws a connection to the concept of

affordances, something that is hypothesised to be one of the essential abilities

behind human perception and action (McClelland, 2019). As introduced in

the psychology research community, affordance is the knowledge about the

interaction relationship between the actions of an agent and the environment

(Gibson and Collins, 1982). Notice that, affordance is subject to the envi-

ronment and an agent. In the robotic community, researchers tend to regard

affordances as environment-dependent action possibilities and consequences

(McClelland, 2019; Khetarpal et al., 2020a; Ardón et al., 2021). It naturally

follows that a robot can use such knowledge to reduce the search space of

actions into only affordable actions for planning or exploration (Khetarpal

et al., 2020a, 2021).

Recently, a promising affordance theory based on the RL paradigm has

been proposed, leading to improved planning and value learning perfor-

mances for RL algorithms (Khetarpal et al., 2020a). However, the definition

of action consequences is originally based on the state changes in the MDP. In

this chapter, we first contribute to the field by proposing the concept of gen-

eral affordances that describes the action-environment relationship beyond

system state prediction. For example, the consequences of a grasp action

may be defined as the probability of dropping the grasped object during the

following manipulation, and the affordance then could be the subset of state

and grasp actions that achieve a satisfactory chance of dropping an object.

192

In short, a robot would be able to use general affordances to select actions

according to arbitrary user-defined consequences, leading to potentially more

flexible and reliable action selections.

Following the theoretic development, this chapter develop a manipulation

system that uses general affordances to select grasps with better-predicted

manipulation performances. The system is named general affordance-aware

manipulation (GAM). In GAM, the robot is trained by RL to manipulate

the objects given task-agnostic grasps (TAGs). After the manipulation policy

has been trained, a manipulation affordance prediction (MAP) module will

be trained to predict the performances of the manipulation policy. Finally,

the learnt MAP module will be used to filter away TAGs with undesired

predicted manipulation performances. To demonstrate the concepts and po-

tentials of the GAM framework, it will be implemented with three hook

disentangling manipulation tasks in simulation. The tasks are typical exam-

ples of contact-rich manipulation, and GAM can be applied to many other

manipulation tasks. The following will briefly review the literature regarding

object disentangling tasks, and then illustrate the section organisation of this

chapter.

6.1.1 Related works on object disentangling

The specific manipulation scenario that this chapter uses to test the proposed

GAM framework is the task of disentangling entangled objects. For example,

picking up an entangled hook-shaped object, as shown in Figure 6.1. Such

tasks occur in many aspects of day-to-day life and industries, yet remain an

underdeveloped area. The complexity is twofold: 1) different grasp point and

position will result in different manipulation difficulty and result; 2) the rich

contact dynamics makes it difficult to conduct planning, and therefore de-

193

mands model-free learning algorithms to generate manipulation trajectories.

t0 t1 t2 t3 t4

Figure 6.1: Examples of picking an entangled hook. In the first row, the robot

manages to rotate and lift up only the white hook. While in the second row,

the robot fails to separate the grasped green hook.

Previously, Matsumura et al. (2019) developed the first solution to pick up

one object from a pile of potentially tangled objects. They proposed a DNN

to predict whether or not a top-down grasp pose will result in picking up

several tangled objects and use it as a filter to avoid picking from such grasp

poses (Matsumura et al., 2019). Similarly, Moosmann et al. (2020) trained

a DNN to predict whether an object is free from entanglement during a

straight lifting-up motion and avoid grasping entangled objects (Moosmann

et al., 2020). The same team further developed a supervised (Moosmann

et al., 2021b) and RL (Moosmann et al., 2021a) approach to manipulate and

separate entangled objects given task-agnostic grasp poses. Another recent

work proposed a topological solution to compute entanglement score from a

depth image and thus find top-down grasp poses that are free from entan-

glement (Zhang et al., 2021). Another work proposes a sophisticated set of

designed rules to recognise and model entangled tubes, detect entanglement

and find a disentangling solution (Leão et al., 2020).

194

In short, these methods exhibit two major limitations. First, they mostly

use lifting-up motion trajectories that are not always sufficient to separate

the entangled objects in all situations. Secondly, they mostly rely on a TAG

generator for grasp planning, which is agnostic to the downstream separa-

tion manipulation task. To achieve higher disentangling success rates and

performances, a manipulation system is required to incorporate 6 DoF TOG

generation and model-free motion generation. Therefore, given its difficul-

ties and practical values, such a contact-rich grasping and manipulation task

serves as a good testbed for the proposed GAM framework.

6.1.2 Summary and chapter organisation

To sum up, this chapter studies the problem of filtering and selecting grasp

poses to achieve better contact-rich manipulation performances. The pro-

posed idea is to learn manipulation affordances with respect to task-agnostic

grasps, after which the learned affordances can be used to select grasps with

better-predicted manipulation performances and improve the actual manip-

ulation results. In order to evaluate the proposed framework, experiments

are conducted on a series of difficult hook disentangling manipulation tasks

in simulation. The contributions/novelties of this chapter include:

• Extend the RL-based affordance theory to include the prediction of

arbitrary action consequences, called general affordances.

• Based on the general affordance concept, develop a new manipulation

framework that selects task-agnostic grasps according to predicted ma-

nipulation performances.

• Design and implement the training processes of the general affordance-

aware manipulation (GAM) framework in a series of hook-disentangling

195

tasks in simulation.

• Demonstrate the effectiveness and substantial improvements over ex-

isting methods with the use of an affordance-based grasp filter.

The rest of the chapter is organised as follows. Section 6.2 will introduce

the affordance theory in RL and its extension to include the predictions of ar-

bitrary action consequences. Section 6.3 will illustrate the GAM framework

and its implementation on the object disentangling task in detail, covering

TAG generation, RL-based manipulation, manipulation affordance predic-

tion and grasp filtering. Section 6.4 will describe the experiment design and

discuss experimental results. Finally, section 6.5 concludes this chapter.

6.2 Affordance Theory in RL

As already mentioned in section 2.4.3, the concept of affordance refers to the

knowledge of what actions are possible and what the consequences of the

actions are with respect to (a part of) an object or environment as well as an

agent (Gibson and Collins, 1982). For decades the study of the affordance of

objects has been focused on modelling and understanding human perception

and cognition (Pezzulo and Cisek, 2016; Masoudi et al., 2019), designing

affordable products (Masoudi et al., 2019), the effects of social behaviours

(Orban et al., 2021), etc. The concept has also drawn the attention of the

robotic and machine learning community (Ardón et al., 2021). However, as

the usages and references of the concept of affordance increase over time,

there is a demand of unifying them in the robot learning community with

a mathematical framework. Unsurprisingly, RL, given its great success and

generality, was chosen by some researchers as a foundation to formalise a

196

theory of affordance. There are several reasons why it may be preferred to

base the framework on RL:

• RL has a general and developed mathematical formulation for decision-

making and behaviour learning.

• The RL community has bore a set of algorithms that proved to be

promising when aided by DL and ready to be extended.

• Empirical evidence has shown that the use of affordance could acceler-

ate learning and planning, and help in high-level task reasoning, which

is the bottleneck of most algorithms.

Part of the third contribution of this thesis is a short survey on the topic of

deep robotic affordance learning (DRAL) through the lens of RL (publication

[4]). This section will first introduce the theory of affordance in RL (ARL),

provide a few remarks on the applications of the ARL theory, and finally

proposes an extension to the concept called general affordances.

6.2.1 Definition

The theory is based on the general decision-making framework, MDP, which

has been introduced at the beginning of this chapter. Before formulating

affordances, an example would be helpful. Originally, Gibson and Collins

(1982) saw it as a relationship between an agent and the environment, the

action possibility and its consequences. For example, the handle of a hammer

affords the grasping action of a teenager, and the consequence of conduct-

ing the grasping action is the hammer being grasped within the palm of the

teenager. Notice that the grasping action is regarded as affordable only be-

cause its desired consequence can be achieved after applying it. This suggests

that the affordance (possibility) of an action is better defined by whether the

197

desired consequence of that action could be realised given a circumstance.

To formalise this, the concept of intent is introduced to represent the desired

consequences of an action given a state (Khetarpal et al., 2020a).

According to Khetarpal et al. (2020a), an intent of an action a is a map-

ping from states to a distribution of states that is desired to be achieved by

applying the action: Ia : S → S+
a . Consider a moving left action in a grid

world, its intent always maps to the grid cell at the left. However, the moving

left intent can only be achieved when there is an actual cell at the left, not

when there is a wall on the left. In other words, the desired consequence

of an action, i.e. its intent, is not always satisfied. It can only be satisfied

when the system dynamic permits so. To generalise this notion a little: an

intent of an action is satisfied according to distribution distance metric d and

a threshold ϵI , if and only if

d(Ia(s), p(·|s, a)) ≤ ϵI (6.1)

where p represents the system transition distribution. Eq. 6.1 captures the

affordance of an action in the sense of dynamic transition. It defines that

an action is affordable at a state if the desired consequence of the action is

aligned with the system dynamic (to a certain degree ϵI). The definition

of affordances for an agent is straightforward. Given a set of intents for all

actions and states in an MDP I = ∪a∈AIa, a distance metric and a threshold,

the affordances for an agent is a subset of state-action pairs, AFI ⊆ S ×A,

such that ∀(s, a) ∈ AFI , its intent is satisfied, i.e., Eq. 6.1 is satisfied.

6.2.2 Remarks

In practice, there are three interesting directions concerning the application

and learning of this definition. The following remarks summarise them, which

198

were partly included in the survey paper (publication [4]).

Remark 1: It is very useful if an algorithm can predict or is given prior

knowledge of whether an action is affordable at a state. In other words, given

a state-action pair, (s, a) ∀s ∈ S, a ∈ A and a set of intents, the distribution

of whether a state-action pair is within the affordance set: pAFI(s, a) =

p((s, a) ∈ AFI) is known. This is particularly preferred because knowing

what actions are affordable accelerates the planning process and reduces

unnecessary exploration on effectless actions (Khetarpal et al., 2020a; Xu

et al., 2021; Mandikal and Grauman, 2021a) (see subsection 2.4.3 as well).

Remark 2: The definition gives a natural way to use affordance: estimate

the action possibility pAFI and use it to infer afforded actions. This then

serves as the foundation to classify recent papers on the topic of DRAL:

• works that learn pAFI from data and use it as a criterion to select

actions.

• works that learn a mapping to afforded actions represented as object

keypoints, i.e., find a set of keypoints for an object such that actions

performed on these keypoints are affordable.

• works that learn pAFI from data and use it to learn a partial dynamic

model for only affordable actions.

Remark 3: There is a large space for further study of learning and using

affordances. The potential benefits revealed by the definition above remain

at the level of intermediate or one-step action possibility (in the sense of

MDP). However, using the affordances of skills at a coarser time scale has a

higher practical value as it contributes to the abstract level of planning for

complex and long-horizon tasks. Application opportunities are many, such

as combining affordances with HRL, planning with options, partial dynamic

199

model with temporal abstraction (Xu et al., 2021; Khetarpal et al., 2021;

Nica et al., 2022).

Remark 4: There is a prerequisite for learning pAFI and using it to

infer affordable actions: a well-defined set of actions and their desired con-

sequences. State-of-the-art research mentioned above assumes a given set of

actions and their effects, based on which the action possibilities are learnt

and used. However, it would be more intriguing if actions and their effects

can be represented in a way that new actions and effects are allowed to be

discovered. In practice, this is more valuable to think of the “actions” here in

terms of skills. In other words, this brings us back to the interesting problem

discussed in subsection 5.2.2: skill discovery in HRL. From the perspective

of affordances, another interesting research direction is the evolving skill pos-

sibility. For example, a robot may slowly become incapable of performing

certain motions as its hardware decays, or the other way around, new skills

may be discovered when the environment changes.

6.2.3 General affordance

In this subsection, we develop the definition of general intent and general

affordance in the context of MDP and RL, as part of the third contribution

of this thesis (paper 5).

The definition above builds upon intent that captures the desired conse-

quences of actions in terms of the desired next state distribution in an MDP

(Khetarpal et al., 2020a). The set of affordances is therefore induced by the

comparison between the desired and true dynamic distributions of the next

state. We now call this kind of affordance dynamical affordances and denote

it as AFp
I , where p refers to the system dynamic transition. Also, denote

the intent of an action in terms of the desired next state distribution as the

200

dynamical intents Ipa : S → S+
a . Now this can be readily extended to mul-

tistep prediction. In other words, action consequences as the distribution

of the desired state after multiple timesteps, which corresponds to temporal

abstraction and HRL. It is the multistep generalisation of the one-step dy-

namical intents and affordances, or so-called temporally extended intent and

option affordances (Khetarpal et al., 2021).

Now we consider examples of non-dynamical action consequences, which

tend to be long-term and delayed consequences. The first choice would be the

distribution of the desired return, which corresponds to the q value predic-

tion. More generally, it could be the desired values according to some certain

measurement. Examples include the possibility of dropping an object, the

amount of water poured into a cup, the fuel consumption of an autonomous

driving car, etc. Notice that a policy π is now needed to be included as

the long-term action consequence is always induced by some policy. Follow-

ing this thought, the general intent can be defined with respect to a given

measurement y.

Definition 1 (General intent Iya,π): Given a measurement y : S × A →

Y ∈ Rn, where Y is the space of all possible measurement values and Rn is

the n-dimensional real number space, the general intent w.r.t. measurement

y for a policy π is defined as a mapping to a subset of measurement values

that are desired (or intended) to be achieved by taking action a and following

the policy π thereafter, denoted as Iya,π(s) = yπ+(s, a) : S → Y+
a,π ∈ Y.

Notice that, let y be the system transition function and Y be the state

space, general intent degrades to the concept of dynamical intent. For the dy-

namical intent, there is a true system transition distribution to be compared.

However, an arbitrary measurement may not have a true value distribution.

Therefore, it is required to define a target distribution of the measurement

201

value for comparison. In other words, the general affordances can come out

from the comparison between the desired action consequences for a policy π

and the baseline action consequences according to some other policy π̂. Note

that, it could be the optimal policy, or not.

Definition 2 (Intent satisfaction): Denote yπ̂ as the action consequences

w.r.t. the measurement y of taking an action a and following the baseline

policy π̂ thereafter, given a distribution distance metric d(·) and a threshold

ϵI , the general intent Iya,π is satisfied according to the standard of π̂ iif.:

d(Iya,π(s), y
π̂(s, a)) ≤ ϵI (6.2)

In plain words, Def. 2 states that for an action at a state, given a desired

action consequence for a policy π and the action consequence following a

baseline policy π̂ thereafter, that desired consequence can be satisfied to a

certain degree if Eq. 6.2 holds. It could help determine to what degree a

policy π can afford some action consequences: given the fuel cost (yπ̂(s, a))

from Cardiff to London by a taxi driver (the baseline policy π̂) leaving (the

action) at 9 am (the state), would taking the same action of leaving at the

same time by another driver (π) afford the same fuel cost? It could also

help find the state where an action can afford certain consequences following

the policy π according to the standard of π̂: when (state) to leave (action)

Cardiff and following π will afford the fuel cost induced by π̂. Here, the

action consequence is the measure of fuel consumption, but it could very well

be travelling time, CO2 emission, etc. Accordingly, the general affordance

definition for a policy π comes out naturally as follows.

Definition 3 (General affordances AFy
I,π): Given a set of general intents

for a policy π for all actions and states in an MDP, Iyπ = ∪a∈AIya,π, a distri-

bution distance metric and a threshold, the general affordances for an agent

is a subset of state-action pairs, AFy
I,π ⊆ S ×A, such that ∀(s, a) ∈ AFy

I,π,

202

its general intent (Eq. 6.2) is satisfied according to the standard of a baseline

policy π̂.

It is not difficult to see that the one-step and multi-step dynamical af-

fordances are special cases of the general affordances when the action con-

sequences and the measurement are defined as dynamic transitions, and the

baseline policy π̂ is just the physic laws. Similar to these special cases,

knowing the general affordances for an agent in terms of certain measure-

ment metrics will help in planning and learning. For example, by learning

to predict the travel time of a number of transports for a specific driver,

one can rule out a subset of them that are not affordable compared to the

baseline travel time with a threshold. In fact, multiple measurements may be

learnt simultaneously to support diverse action selection strategies. Chap-

ter 6 will demonstrate an example usage of general affordances in a robotic

manipulation task.

6.2.4 Summary

To sum up, this section introduces the foundation of the affordance theory

in the RL framework. In order to describe affordances in a computationally

useful way, Khetarpal et al. (2020a) proposes the notion of intent as the

desired action consequences in terms of desired next state distribution. The

affordance definition then follows as a subset of state-action pairs that satisfy

the intents with respect to the ground true system dynamic given a threshold.

Remarks are given regarding the learning and application of such affordances.

In addition, following this definition, this thesis then proposes to define

general intents, affodances based on action consequences in terms of an ar-

bitrary measure function of a state and action pair. The general affordance

definition includes the special cases proposed for dynamical action conse-

203

quences in (Khetarpal et al., 2020a, 2021). In the next section, the proposed

concept is applied to develop a manipulation framework.

6.3 General Affordance-aware Manipulation

This section will introduce the proposed GAM framework in detail. Recall

that, the objective of this chapter is to improve complex and contact-rich

manipulation performances through task-oriented grasp selection. Overall,

the GAM framework is comprised of three main components: 1) a task-

agnostic grasp generator (subsection 6.3.1), 2) the manipulation affordance-

based grasp filtering module (subsection 6.3.2 and 3) the manipulation policy

(subsection 6.3.3).

Point
cloud

1. Separation probability
2. Dropping probability
3. Non-grasped Object
 Movement

TAG poses &
Scene latent feature

Task-agnostic
grasp estimator
E.g., GraspNet

Manipulation
affordance

prediction (MAP)

No

Yes Filtering
Strategy

Satisfied?

RL policy
performs

manipulation

1: 0.860
2: 0.050
3: 0.222

1: 0.951
2: 0.011
3: 0.102

Subsection 6.3.1 Subsection 6.3.2

Subsection 6.3.3

Figure 6.2: The overall workflow of the proposed general affordance-aware

manipulation (GAM) framework. There are three components: 1) a task-

agnostic grasp generator (subsection 6.3.1) that proposes stable TAG poses;

2) the manipulation affordance-based grasp filter (MAGF) that uses pre-

dicted manipulation performances to filter the TAG poses (subsection 6.3.2);

3) an RL manipulation policy that controls the robot arm to separate the

grasped hook (subsection 6.3.3).

204

The workflow is depicted by Figure 6.2 and summarised as follows. The

GAM framework first predicts a set of stable but task-agnostic grasps, along

with the latent features of the points around the grasps. The grasps and

their latent features are then used to estimate the manipulation performances

that the manipulation policy may achieve. Finally, the manipulation policy

performs the task using the grasps selected according to filtering strategies

based on the predicted performances. The following will elaborate in more

detail.

6.3.1 Task-agnostic grasp generation

Every manipulation system requires a grasp planning module, which predicts

grasps given an observation of the task scene. In principle, any grasp planner

can be integrated into the GAM framework. As 6 DOF grasp poses are largely

preferred in complex manipulation tasks, this chapter employs a recently

popular TAG generator called GraspNet (Fang et al., 2020a).

In short, the GraspNet model takes into a partial point cloud of the

task scene and predicts a set of 6 DOF stable TAGs (see Figure 6.3). It

evaluates a downsampled set of 3D grasp points of the scene with a number

of approaching vectors, approaching distances, in-plane rotations along the

approaching vectors and finger widths. The prediction results consist of the

transformation matrices of the grasps with respect to the camera frame along

with their stability and robustness scores. In addition, to grasp planning,

the pre-trained GraspNet model is used to obtain the latent features of the

task scene associated with the grasps. The latent features are the outputs

of the point auto-encoder network of the GraspNet model, based on the

PointNet++ backbone network (Qi et al., 2017). Implementation-wise, the

experiments in this chapter use the pre-trained model open-sourced by the

205

authors.
Pa

rt
ia

l P
oi

nt
 C

lo
ud

Po
in

tN
et

++
B

ac
kb

on
e

Po
in

tN
et

++
B

ac
kb

on
e

L
at

en
t F

ea
tu

re
s

GraspNet
Modules

St
ab

le
 G

ra
sp

s &
 S

co
re

s

Figure 6.3: The (simplified) GraspNet architecture (Fang et al., 2020a). It

takes into the partial point cloud observation of the scene and processes the

points with the PointNet++ backbone auto-encoder (Qi et al., 2017). The

latent features are used in the GraspNet to predict grasp poses and their

stability and robustness scores. In this chapter, the latent features and the

grasp poses are used together to predict the manipulation performances.

Notice an assumption made here is that the TAG generator is able to

produce stable grasps, although in practice this is commonly not true. The

GraspNet model adopted in this chapter is used directly without fine-tuning,

therefore also achieves degraded performances compared to that reported in

the original paper. Without further fine-tuning, the robot can grasp the ob-

jects with only ∼ 10% of the generated grasps. This becomes a stepping

stone for training the following manipulation policy and the affordance pre-

diction model, because much time and memory are required to compute the

forward pass of the GraspNet model. In order to facilitate faster training of

the following modules, the experiments use the simulator and the GraspNet

model to collect a dataset of pre-recorded scenes, stable grasp poses and their

latent features for each task. Though fine-tuning is an alternative to improve

the TAG generator performance, it is not necessary for proving the concepts

206

of GAM in this chapter.

6.3.2 Manipulation affordance-based grasp filtering

This subsection illustrates the main contributive component of this section:

the manipulation affordance prediction module and the associated grasp fil-

tering strategies. This chapter proposes to understand and use the proposed

general affordances concept developed in the last section.

To recall, the idea of general affordances extends the definition given by

(Khetarpal et al., 2020a) to include the knowledge about the consequences

of actions in terms of any measurement of the user’s concerns according to

a baseline policy π̂. Denote a measurement of action consequences of taking

an action at a state and following a policy thereafter as yπ(s, a), the general

intent for the policy π is defined as the desired action consequence in terms

of the given measurement Iya,π(s) = yπ+(s, a). The general affordances with

respect to a specific measurement is a subset of state-action pairs, in which

the general intents of the actions can be satisfied at these states, compared

to a baseline action consequences yπ̂(s, a). A natural baseline would be the

true action consequences that can be achieved by a certain policy.

Implementation on grasping and manipulation

Before describing the learning and usage of the general affordances, the fol-

lowing contents first illustrate how to apply these concepts in the grasping

and manipulation context. In this application, the manipulation system is

regarded as a two-level system, where the high-level policy πH seeks to select

grasps and the low-level policy πL seeks to manipulate the objects based on

the given TAGs. This subsection looks at the high-level action selection and

regards the low-level policy as a black box, which may be learnt through

207

reward maximisation or a classic motion planner (see next subsection). The

affordances to be learnt are named manipulation affordances, associated with

a set of manipulation intents.

For the hook disentangling task, the measurement of the action conse-

quences can be defined as some manipulation performance metric of the

downstream manipulation task. We propose three measurements as follows:

(1) y1: The probability of the grasped hook being separated.

(2) y2: The probability of the grasped hook being dropped in manipulation.

(3) y3: The averaged movements of the non-grasped hooks.

Define the baseline action consequences as the true manipulation perfor-

mances that can be achieved by the low-level manipulation policy πL, denoted

as yπ
L

1 , yπ
L

2 , and yπ
L

3 . The manipulation intents are then defined by specifying

the desired values of the measurements, denoted as yπ
L+

1 , yπ
L+

2 , and yπ
L+

3 . For

the i-th measurement yi, the manipulation affordances of its intents AFyi
I,πL

cover those state-action pairs whose true action consequences yπ
L

i are close

enough in arithmetic difference to the manipulation intents given a threshold

ϵi. In order words, for the i-th measurement:

∀ (sL, aL) ∈ AFyi
I,πL , yπ

L+
i (sL, aL)− yπ

L

i (sL, aL) ≤ ϵi.

where the manipulation performance is defined over the low-level state

and action pairs, which are not readily applicable for the purpose of grasp

selection at the higher level in our problem. In order to link the high-level ac-

tions to the affordable manipulation performances, we assume that a function

exists to map the high-level actions to the initial low-level states, denoted as

Φ : AH → SL. Such a function does exist in this case where a grasp pose

selected by πH will determine the starting configuration of the downstream

208

manipulation task, i.e. sL0 . In addition, we can omit the low-level actions in

the equation as we focus only on grasp selection (low-level state selection).

Hence, we can define the grasp (high-level action) is said to afford a certain

manipulation performance iif. yπ
L+

i (sL0 , ·)−yπ
L

i (sL0 , ·) ≤ ϵi where s
L
0 = Φ(aH)

and aH ∼ πH(aH |sH). Subsequently, given a threshold, filtering strategies

can be readily applied to select high-level states and grasps such that the

desired manipulation performances are satisfied.

Estimate the true action consequences

For many real-world problems, the true action consequences are unknown.

Thus, it is often necessary to learn and estimate them, for instance, using a

neural network. Denote the i-th estimated manipulation performance of a

grasp as ỹπ
L

i,ϑϑϑ(Φ(a
H), ·), whose weights ϑϑϑ are optimised via supervised learn-

ing in this chapter. For convenience, the model is named general action-

consequence prediction (GAP) model. For the hook disentangling tasks in

this chapter, the true action consequences, i.e., downstream manipulation

performances, are associated with the low-level manipulation policy. There-

fore, the manipulation policy (see next subsection) is evaluated for every

pre-recorded scene and grasp pose to collect the labels for training. After

training, ỹπ
L

i,ϑϑϑ is used to infer manipulation-affordable grasp actions.

Network: For the experiments of this chapter, the GAP model ỹπ
L

i,ϑϑϑ is

represented by a three-layer (512-512-256) MLP, which outputs a three-

dimensional vector corresponding to the three manipulation performance

measurements. The input of the network is a concatenated vector of the

(3D) coordinates of a grasp, the flattened rotation matrix (3 × 3) of the

grasp and the point cloud latent feature (256-dim) provided by the Grasp-

Net module. All layers are activated by ReLU, while the probability outputs

209

are activated by the Sigmoid function and the averaged movement prediction

head has no activation. The probability prediction heads are trained with the

Binary Cross Entropy loss while the averaged movement prediction head is

trained with the smooth L1 loss. Adam (Kingma and Ba, 2014) is used with

a learning rate of 0.001 and a batch size of 1024. The network is updated for

10000 optimisation steps.

Affordable action inference

Action inference can be conducted if the true (or estimated) GAP model

ỹπ
L

i,ϑϑϑ i is given. According to Definition 2, a grasp action can afford the i-

th manipulation performance iif. yπ
L+

i ≤ ỹπ
L

i,ϑϑϑ(Φ(a
H), ·) + ϵi. One can then

sample from the set of all affordable grasps, simply execute the manipulation

policy with every affordable grasp, or filter away certain grasps that do not

afford certain manipulation performances.

In addition, one can also use it to restrict the search space of grasp actions

during planning within the set of affordable actions. However, this would

require the access to a dynamic model. For example, one could plan over the

affordable grasp space for a few grasp poses to clear up a number of entangled

hooks. Although this is an interesting and valuable method, it is difficult to

implement due to the difficulty of obtaining an accurate dynamic model,

especially for such contact-rich manipulation tasks. Therefore, this chapter

only uses the learnt affordances by filtering away unaffordable actions and

executing every affordable one.

Lastly, it is worth noting that, by varying the desired precision, ϵi, the

range of intents that can be satisfied can be changed (Khetarpal et al., 2020a).

For example, if ϵi = +∞ then any intent can be satisfied, which is however un-

realistic. In this chapter, we use ϵi = 0, meaning that any intent is considered

210

satisfiable strictly according to the true manipulation policy performance.

Action filtering strategy

In this chapter, we consider and implement action filtering strategies with

different manipulation intents. For example, ignoring all grasp actions that

will result in a probability of successful separation that is smaller than dif-

ferent values. In fact, one can filter away grasp actions based on multiple

action consequences. In other words, one specific action filtering strategy cor-

responds to a specific set of affordances (high-level state-action pairs). This

module is named manipulation affordance-based grasp filter (MAGF) In par-

ticular, this chapter applies three strategies to filter the TAGs generated by

the GraspNet model:

I: Filter away grasp actions according to the estimated separation success

probability: yπ
L+

1 ≤ ỹπ
L+

1,ϑϑϑ (Φ(aH), ·).

II: Filter away grasp actions according to the averaged movements of the

non-grasped hooks: yπ
L+

3 ≥ ỹπ
L+

3,ϑϑϑ (Φ(aH), ·).

III: Combine strategies I and II.

Summary

To sum up, this subsection describes an implementation example for the con-

cept of general affordances proposed in subsection 6.2.3 in the hook disentan-

gling scenario. In simple words, the GAM framework will use the estimated

manipulation performances and a set of pre-defined manipulation intents

to describe the manipulation affordances for the task-agnostic grasp actions

generated by the GraspNet model. Moreover, three filtering strategies are

proposed to identify different affordance sets that improve the downstream

211

manipulation performances in different ways. To give an overview, Algorithm

3 provides an example algorithm for applying the filtering strategy I to select

grasp poses and execute manipulation. Experiments on these strategies in

subsection 6.4.3 will confirm the effectiveness of the proposed concepts and

framework.

Algorithm 3 General-affordance manipulation with strategy I

Input: TAG generation policy πH , manipulation policy πL

Input: Number of episodes M

Input: Manipulation intent yπ
L+

1 , GAP model ỹπ
L

1,ϑϑϑ(Φ(a
H), ·)

for episode = 1 to M do

| Sample a set of TAG poses AH from πH

| for aH ∈ AH do

| | if yπ
L+

1 ≤ ỹπ
L+

1,ϑϑϑ (Φ(aH), ·) (strategy I)

| | | Set simulation to sL0 = Φ(aH)

| | | for t = 0 to T − 1 do

| | | | Sample and execute aL ∼ πL

| | end if

| end for

end for

6.3.3 Reinforcement learning-based manipulation

This subsection is concerned with the learning of the low-level manipulation

policy πL, which controls the robot arm to separate the grasped hook. In

particular, the episodic RL paradigm is used to formalise the task and the

deep Q learning algorithm (see subsection 3.2.2) is employed to learn the

policy. Note that, other motion generation methods are not excluded, and

RL is selected due to the model-free benefit.

212

Overall, the manipulation process always starts with a hook being grasped

by the gripper. For example, the two subfigures at step t0 in Figure 6.1. Each

episode corresponds to a pre-recorded grasp pose in a specific simulation

scene. At each timestep, the RL agent selects an action to move the gripper

in the Cartesian space, including translational and rotational movements at

all axes. An episode is considered terminated with three conditions:

• The grasped object is dropped.

• The grasped object is moved out of the workspace.

• The maximum number of steps, T , is reached.

After the RL agent performs T actions (T = 3 in this chapter), a manually

defined motion is executed to move the gripper straight up for 0.15 meters.

If the grasped object is lifted up alone, the episode is considered successful.

Otherwise, it is considered failed (e.g., when the object is dropped while

being lifted up, when there are other hooks still entangled with it, etc.). The

following will elaborate on the definition of the state, action, reward function

and the training process.

State

For the manipulation policy, the observation is comprised of the states of the

hooks and the gripper. For each hook, the state is comprised of the Cartesian

coordinates of a number of keypoints (see Figure 6.4 left) and the quaternion

of the centre of the hook, with respect to the world frame. For the gripper,

the state consists of the Cartesian coordinates and the quaternion of the

gripper tip frame, the finger width and the index of the hook being grasped.

213

Figure 6.4: Left: hook size and its three keypoints (red). Right: action space

visualisation (rotations about the gripper tip axes and translations along the

world frame axes).

Action

The action space consists of a total of 12 discrete actions, each of which

corresponds to a small translational or rotational movement on the axes of

the gripper tip frame. As shown by the right subfigure of Figure 6.4, the

first 6 actions translate the gripper tip frame along the axes’ positive and

negative directions for a small distance da, while the last 6 actions rotate the

gripper tip frame about the three axes in the clockwise and counter-clockwise

directions for a small angle δa. In all the following experiments, da = 0.05

m and δa = 30 degree. One recent previous work proposes an action space

that moves the gripper to a set of locations that form a hemisphere around

the gripper tip (Moosmann et al., 2021a). Experiments are conducted to

compare the different action space designs. To differentiate, our agent is

named Cartesian movement (CM) policy and the baseline of (Moosmann

et al., 2021a) is named hemisphere movement (HM) policy.

214

Reward

At each timestep of the episode, the policy is given the weighted negative

value of the averaged movement of all non-grasped hooks as a reward sig-

nal. The reason is that minimising the movements of non-grasped objects is

practically the most important requirement on top of the separation success.

Additionally, three terminal rewards are given for the three termination con-

ditions. When the grasped object is dropped or moved out of the workspace,

a negative reward is given as a punishment. When the maximum number of

timestep is reached, successful lifting up the object results in a positive re-

ward and a failed case results in a zero reward. Formally, the reward function

at timestep t can be written as:

rt = κ× dobjt + rstept (6.3)

where, κ is the coefficient for the averaged non-grasped object movement dobjt

and:

rstept =


0, non-terminal or fail to lift up object

a, successfully lift up object at the end

b, grasped object dropped or out of workspace

In all the following experiments, κ = −1.0, a = 10 and b = −10.

Training and network

For the proposed action space and the baseline one (Moosmann et al., 2021a),

the manipulation policy is updated exactly once after each timestep for a to-

tal of 2000000 timesteps. The q networks for the baseline and the proposed

method are both represented by three fully-connected layers of size 256. Each

layer is activated by ReLU and no activation is applied to the output. Each

agent uses a replay buffer of size 1000000, which is filled with 2e3 warm-up

215

transitions collected by taking random actions at the beginning of the train-

ing process. Adam (Kingma and Ba, 2014) is used to update the networks

with a learning rate of 0.0001, a batch size of 128 and a discount factor of

0.99. The target networks are updated by copying the main networks exactly

at every 1000 optimisation steps. For exploration, the linearly decaying ϵ-

greedy strategy is used. The random action probability is decayed from 1.0

to 0.05 in 50000 timesteps linearly. For evaluation, the policy performs 30

episodes without exploration to calculate the averaged manipulation perfor-

mances every 10000 timesteps.

6.4 Empirical Results

This section will introduce the details of the task and experiment design,

then provide experiment results as well as discussions on the RL-based ma-

nipulation policy and the general affordance-aware manipulation framework.

In particular, this section seeks to answer the following research questions:

(1) Given TAGs, how do the proposed CM policy, the HM policy and the

straight-up lifting motion (SLM) baseline perform?

(2) Does the MAGF module improve manipulation results?

6.4.1 Experiment Design

Five variations of tasks are included in the experiments: two, three, four C

shape hooks, three C+ shape hooks and three S shape hooks, shown by Fig-

ure 6.5 right. As mentioned, due to the generalisation ability of the GraspNet

model, a number of task scene simulation states, point cloud latent features

and TAGs are pre-recorded. The collection process starts with randomising

the orientations of the hooks one by one to form a tangled state, and then

216

dropping them together from 0.1 m above the centre of the workspace (the

orange square in Figure 6.5 left). After the hooks stabilise on the table, the

GraspNet model is run to obtain 10 TAGs with the highest scores. For each

TAG, the robot is moved to the pose and then the fingers are closed. Then,

a basic manipulation stability test is conducted by executing each of the 12

CM RL actions once. If the object remains grasped after the test, the simu-

lation state of the robot grasping the object, the latent feature and the grasp

itself are recorded as a data point. For each task variation, there are 250000

pre-recorded data points.

Figure 6.5: Left: manipulation workplace setting. Right: five task varia-

tions).

To answer the question (1), both RL policies are trained to separate the

grasped hooks given all recorded TAGs. The training loops over all TAGs,

each of which constitutes an RL episode. Training stops when the global

timestep limit (2000000) is reached. The performance of each RL agent

for each task is averaged over three random seeds. For evaluation, the SLM

baseline is run over 50000 pre-recorded TAGs, while each RL agent is run over

45000 TAGs distributed to each random seed (15000 each). This experiment

is primarily to discover the performances of the three manipulation policies

217

with TAGs.

To answer the question (2), the GAP module ỹπ
L+

i,ϑϑϑ is trained and used in

the MAGF module to select TAGs before any manipulation. As mentioned,

the action consequences are based on the policy that produces the actions.

Therefore, the best CM policy among the three random seeds for each task

is evaluated for all the pre-recorded TAGs to collect the ground-truth labels:

yπ
L

1 , yπ
L

2 , and yπ
L

3 . The GAP model is then trained to predict these action

consequences given the recorded TAGs and latent features. After training,

the GAP model is used to generate the estimated manipulation performances

for TAGs in evaluation. Specifically, for each task with each filtering strategy

(I, II or III), a total of 45000 TAGs are evaluated. The CM policy is executed

with TAGs that satisfy the filtering strategy, and the performance is averaged

over all satisfactory TAGs.

6.4.2 Performances with task-agnostic grasps

This subsection presents and discusses experiment results regarding question

(1). Figure 6.6 displays the testing performances of both RL policies during

policy training, as well as the performances of the SLM baseline.

First of all, Figure 6.6 shows that, even though the SLM baseline (green

lines) achieves lower success rates in general, the RL policies (blue and orange

lines) achieve much higher object dropping rates and non-grasped object

movements, especially the one with HM actions (Moosmann et al., 2021a).

In addition, the RL policies may be able to separate an entangled hook with

more grasping poses compared to the SLM baseline, but the gain of the

success rates becomes less obvious as the task becomes more difficult. This

result reveals the problem of conducting manipulation tasks with a TAG

generator: most of the grasp poses will be unsuitable for manipulation.

218

Ours Moosmann et al. Straight-up Lifting

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

2 C Hooks 3 C Hooks 4 C Hooks 3 C+ Hooks 3 S Hooks

0.0

0.2

0.4

O
bj

ec
t D

ro
p

R
at

e

0 100 200
Timesteps (x 1e4)

0.0

0.5

1.0

N
G

-O
bj

. M
ov

em
en

t

0 100 200
Timesteps (x 1e4)

0 100 200
Timesteps (x 1e4)

0 100 200
Timesteps (x 1e4)

0 100 200
Timesteps (x 1e4)

Figure 6.6: Means and standard deviations of the testing results of both

RL agents (Blue and orange), and the performance of the straight-up lifting

motion (green). The performances reveal that a large proportion of

the TAGs is not suitable for the downstream manipulation. The

situation exacerbates as the task becomes more difficult. The first row shows

the success rates, the second row shows the rate of the object being dropped

during manipulation, and the third row shows the average non-grasped object

movements (in meters). From left to right, the columns correspond to the

tasks with 2, 3, and 4 C hooks, 3 C+ hooks and 3 S hooks.

Secondly, comparing the two RL policies, the one with the proposed CM

action space (blue lines) achieves smaller object-dropping rates and non-

grasped object movements. This observation implies that the HM action

space (Moosmann et al., 2021a) is disadvantageous as it likely moves the

gripper too drastically. However, the low separation success rates of both

RL policies indicate that the design of the RL training processes could be

over-simplified. For example, increasing the number of permitted actions per

219

episode could bring an increase in the performances. On the other hand,

this may also result in a higher object-dropping rate and non-grasped object

movement, as a longer episode means more movements are to be made.

In general, the results in this subsection reveal the limitation of con-

ducting manipulation tasks using only TAG poses. With TAGs, the SLM

and both RL policies achieve unsatisfactory performances, with the CM pol-

icy slightly outperforming the other two in terms of success rates, and the

SLM baseline achieving the least object-dropping rates and non-grasped ob-

ject movements. In the next subsection, experiment results will demonstrate

that this problem is solvable.

6.4.3 Performances with grasp filtering

This subsection presents and discusses the experimental results regarding

question (2). Figure 6.7 displaces the performances achieved by the baselines

without grasp filtering (GF) and the CM policy with different GF strategies.

Notice that the performances of the SLM baseline and both RL policies

without GF (the three blue bars of each comparative case) are consistent

with the observations and discussions in the last subsection. They in general

perform substantially worse than the CM policy with any GF strategy.

First of all, comparing the green, orange and pink bars with the blue

bars, the performance gains of applying the MAGF module with the CM

policy with any of the three strategies are clearly displayed. This empirically

proves two points: 1) it is possible to learn to predict such manipulation per-

formances based on a grasp pose and the scene latent feature as the threshold

values match the actual manipulation results, and 2) the proposed MAGF

module is effective in filtering away unsatisfactory TAGs by using individual

(I and II) or combined (III) performance thresholds.

220

0 50 100
Success rate (%)

2 C
 hooks

3 C
 hooks

4 C
 hooks

3 C
+ hooks

3 S hooks

0 10 20
Object dropped (%)

0.0 0.4 0.7
NGOM (meters)

0 50 100
Discarded grasp (%)

0 5 10 15 20
Object dropped (%)

SLM
HM
CM
CM-I:0.8
CM-I:0.9
CM-I:0.95
CM-I:0.98
CM-II:0.3
CM-II:0.2
CM-II:0.1
CM-III:0.8-0.2
CM-III:0.8-0.1
CM-III:0.9-0.2
CM-III:0.9-0.1

Figure 6.7: Comparison of different filtering strategies. SLM: straight-up

lifting motion; HM: hemisphere movements; CM: Cartesian axes movements;

NGOM: non-grasped objects movements. From left to right: success rates,

objects dropping rates, non-grasped object movements, percentage of dis-

carded grasps and figure legend. For each histogram, from top to bottom:

the task with 3 S, 3 C+, and 2, 3, and 4 C hooks.

Secondly, the data reveals an interesting connection between the non-

grasped object movements and separation success rate. The results of the

first strategy (CM+I: green bars) show that those TAGs that are more likely

to succeed are statistically associated with smaller object dropping rates

and non-grasped object movements. Conversely, the results of the second

221

strategy (CM+II: the orange bars) show that those TAGs that are more likely

to cause smaller non-grasped object movements are statistically associated

with higher success rates and low object dropping rates.

A possible cause of this phenomenon could be related to the contacts

established during the manipulation processes. As the non-grasped object

movements are the consequences of contacts and forces established between

the grasped object and others, its increase indicates an increase in the number

of contacts among objects. Therefore, it is plausible to believe that making

less contact with other objects could lead to a smaller object-dropping rate

and a higher success rate.

In general, the following conclusions can be drawn from the results:

• State-of-the-art TAG generators such as GraspNet tend to generate a

large proportion of grasp poses that do not afford satisfactory manip-

ulation performances.

• The proposed manipulation affordance prediction module based on the

general affordance theory can be used to select TAGs according to

different manipulation constraints and strategies.

• The GAM framework indeed substantially improves the manipulation

performances of the difficult hook separation tasks.

• The results also reveal that reducing contact with other objects is im-

portant to achieve successful contact-rich manipulation tasks.

6.5 Summary

In sum, this chapter draws inspiration from the theory of affordances to in-

terpret the connection between selecting a grasp pose and the downstream

manipulation that happens to the grasped object. Specifically, section 6.2

222

recalls a recent theory of affordances based on the RL paradigm and extends

it to include arbitrary action consequences that the robot is supposed to be

concerned about. The proposed concept, general affordances, is then em-

ployed to develop a new manipulation system that can select task-agnostic

grasp poses according to predicted manipulation performances, such as suc-

cess rates, object dropping rates, etc. The proposed framework is named

general affordance-based manipulation (GAM) framework. Its concept and

effectiveness are then demonstrated by challenging experiments of hook dis-

entangling tasks in simulation, showing substantial improvements over base-

lines without affordance-based grasp filtering.

However, a number of limitations need to be considered in the future.

First of all, the quality of the simulation may be sufficient to serve the purpose

of proof-of-concept, it is not realistic enough for deploying the simulation-

validated methods directly onto real-world platforms. This is mainly due

to the inaccurate modelling of the physic dynamics involving rich contacts

and the difficulty of real-world object state estimation (the keypoints’ poses

of the simulated hooks). Much more effort is in demand to develop more

realistic simulation software and improve the safety and sample efficiency of

learning algorithms so they may learn in the real world. Secondly, the GAM

framework assumes access to a TAG generator that gives reliably stable grasp

poses, which is hardly true in practice. An interesting direction to consider

may be using the information of a bad grasp poses for manipulation to fine-

tune the TAG generator. Lastly, the concept of general affordance and its

applications remain largely unexplored. Some mathematical relationships

involving policy entropy, value function, Bellman equation, learning, etc. are

to be further established and refined.

223

Chapter 7

Conclusion and future work

224

7.1 Conclusion

In this era of information, the field of robotics is becoming more and more

involved with the field of artificial intelligence (AI). As recognised by many

researchers, the current stage of robotics is in the middle of the big shift

from classic model-based solutions to modern learning-based solutions. The

research conducted in this thesis has also been carried by this big trend.

What is primarily motivating to roboticists is the promising potential to

leverage data to solve previously unsolvable tasks due to the difficulty of

explicitly embedding human priors into the system design processes. This is

also the main driver of the research in this thesis.

There are many unsolved challenges in robotics. This thesis was specifi-

cally concerned with improving the learning-based robotic arm grasping and

manipulation processes. The problem of grasping and manipulation has been

deemed a key challenge in empowering robots to step out of the comfort zone

of the industry. Many of the real-world manipulation tasks exhibit vastly dif-

ferent characteristics compared to those that occur in structured and mostly

certain environments like the industry. After reviewing the classic and mod-

ern approaches to robotic grasping and manipulation (chapters 2 and 3), the

thesis identified three interesting and practically valuable tasks regarding

learning-based long-horizon grasping and manipulation. Based on the pro-

posed research objectives, the following summarises each research project.

Section 7.2 will discuss the limitations of this thesis and some future impor-

tant research directions.

225

Accelerate end-to-end RL for multi-step manipulation

In pursuit of objectives 1 to 3, chapter 4 focused on the difficulty of the end-

to-end learning of long-horizon manipulation tasks that involved multiple

subtasks under sparse reward signals, such as stacking several blocks, placing

objects back in a drawer, etc.

In conclusion, we confirmed that end-to-end RL methods perform poorly

in the face of long task horizons, delayed and sparse reward signals and sub-

task dependencies without acceleration techniques. To improve convergence

rates and performances, we proposed A2, a new acceleration method for

long-horizon end-to-end RL with sparse rewards that used abstract demon-

strations and adaptive exploration. Abstract demonstrations were simply

the correct sequences of a number of subtasks that led the learning agent

towards the completion of the manipulation. Adaptive exploration helped

to reduce random exploration for subtasks that were well-mastered and vice

versa. This accelerated the learning agent to approach later subtasks by

decreasing the probability of drifting away due to unnecessary exploration.

In order to facilitate experiments, a simulation software named ”Pybullet

Multigoal” (PMG) was developed. To examine the effectiveness of A2, it

was implemented on the three most used RL algorithms: DQN, DDPG,

and SAC, which were then experimented with a series of multi-step sparse

reward tasks. The results confirmed that abstract demonstrations improved

the convergence speeds and performances significantly in all tasks, while

adaptive exploration improved performances in terms of reduced variances.

Improved HRL for multi-outcome multi-step manipulation

Secondly, to accomplish objectives 4 to 7, chapter 5 sought to develop a better

hierarchical reinforcement learning-based manipulation system that can learn

226

multiple task outcomes using the same set of skills. It was found that current

HRL systems need to learn and maintain multiple policies for different skills

and final tasks, and parallel training in HRL methods is non-stationary and

inefficient due to a constantly exploring low-level policy.

In response, we developed a new HRL framework, named universal option

framework (UOF), in which there is only one goal-augmented policy at each

level. The low-level policy is able to act differently in the same system

states given different subtasks, enabling knowledge-sharing between subtasks.

Similarly, the high-level policy is able to reorganise the sequence of subtasks

to achieve different task outcomes. The UOF is designed to learn different

tasks at much lower data collection costs and with less memory consumption.

In addition, we applied parallel training for HRL to avoid repetitive or

unnecessary data collection. The root cause of the non-stationarity of the

parallel training process is then identified and the A2 method is proposed as

a better solution to stabilise parallel training.

The simulation results of implementing UOF on a series of block-stacking

tasks showed that it is possible to learn multiple outcomes and multiple

subtasks with universal policies. Moreover, the stabilising effect of A2 also

assented to the analysis of the root cause of the non-stationarity of parallel

training processes, leading to significant learning acceleration and perfor-

mance improvement.

General affordance-based grasping and manipulation

Last, in order to achieve objectives 8 to 10, chapter 6 focused on improving

the grasp selection process for better downstream manipulation. To this end,

we chose to use open-source TAG generators to obtain stable grasping poses.

However, we hypothesised and empirically confirmed that not all stable grasp

227

poses are suitable for downstream manipulation tasks. Even for the grasp

poses that can support a manipulation task, they would induce different

levels of manipulation difficulty and thus performances. The information

about how well a grasp pose will support the downstream manipulation is

required to improve manipulations that are sensitive to grasp selection.

Therefore, we drew inspiration from the concept of affordances and built

upon the computational formulation of RL-based affordance to develop the

theory of general intent and general affordance. In order to do so, a thorough

review was conducted and summarised into a paper (Yang et al., 2023). The

general affordance was designed to capture the set of state-action pairs in

which the actions are afforded to achieve some consequences in terms of any

user-defined measurements. Based on these concepts, a number of ways to

integrate them into action inference processes were also discussed.

Then, a manipulation framework, named general affordance-based ma-

nipulation (GAM), was developed based on the general affordance theory.

GAM was designed to filter TAG grasps based on the estimated manipula-

tion performances that these grasps may afford. It was then implemented

with a point-cloud-based grasp generator and an RL-based manipulation pol-

icy. It was evaluated on a series of contact-rich hook disentangling tasks in

simulation, in which the grasp poses were filtered based on the estimated

manipulation success rate and the estimated average movement of surround-

ing objects that occurred during manipulation. Experiments confirmed the

effectiveness of the GAM framework and thus demonstrated the validity of

the concepts of general intent and general affordance. Interestingly, the ex-

periments also revealed that the performances of contact-rich manipulation

tasks are largely affected by how much contact is made between the grasped

object and surrounding objects.

228

7.2 Limitations and future work

Finally, this section will discuss the limitations of the studies conducted in

this thesis, followed by the proposals for future research topics.

The first limitation is rooted in the perception part of the proposed sys-

tems. In all experiments, the observations provided to the algorithms are

the states of the system. Such as the coordinates and orientations of objects.

Although the concepts and effectiveness of the approaches are demonstrated

in simulations where such states are readily available, it remains unknown

how they can perform in the real world where sensory observations are noisy,

uncertain and redundant, and many system states are difficult or even im-

possible to be estimated, let alone accuracy requirements. In other words,

the proposed approaches in this thesis are limited in terms of their general-

isability across the types of sensory input. With this regard, a few future

research questions could be invested:

• How to accelerate long-horizon multi-step, multi-outcome and sparse

reward manipulation tasks when the provided inputs are not system

states, but noisy, uncertain and redundant sensory readings?

• Training GRL policies require access to a goal generator, which can

only be efficient in simulation given the amount of data needed for

training RL agents. Then, what representation of goals is compact and

effective for transferring the policy from simulation to the real world?

Languages, images, point clouds or others?

• If only high-dimensional and noisy observations are available, is it pos-

sible to construct or learn a latent system state representation that

enables faster learning and real-world deployment for robotic manipu-

lation tasks?

229

The second limitation concerns the GAM framework. As presented, the

core of the GAM framework is to consider what manipulation outcomes could

be achieved during the generation and selection of the grasping poses. The

experiments in chapter 6 indeed demonstrate the benefits of doing so. How-

ever, the grasp generator employed in the experiments is assumed to be fixed

and unchangeable. As reported, only ∼ 10% of the generated grasp poses

can reach and maintain a firm grasp of the object, and a large proportion

of these task-agnostic stable grasps is still not suitable for the downstream

manipulation task. This is very far away from the basic requirements of a

real-world manipulation system as the computation cost is too high.

However, the interplay between grasp planning and manipulation can be

leveraged in the reverse direction as well. In order words, for systems that

are specialised in a particular kind of manipulation task, the experienced

manipulation data can be used to fine-tune the grasp generator, such that it

tends to generate more grasps suitable for the manipulation task over time.

Therefore, a practically valuable research direction is to study how manipu-

lation experiences can be used as feedback to improve the grasp generator,

such that the computation efficiency can meet the standard of real-world

deployments.

Thirdly, the proposed systems in this thesis neglect a constraint that is

critical to real-world systems: safety. On one side, the exploration methods

employed in the training of the RL agents in this thesis have no consideration

of safety issues whatsoever. This is obviously not realistic if training is to

happen in the real world, even if it is only a fine-tuning process (Liu et al.,

2020). On another, the design of the action spaces for an RL agent should

also consider safety constraints (Brunke et al., 2022). A vivid example is

shown by chapter 6 where RL policy with the hemisphere movements tends to

230

cause much more influence to the surrounding objects. Therefore, a number

of research topics can be pursued in this regard:

• For manipulation motion learning, especially for contact-rich tasks, how

to define an action space that is not only efficient for learning but also

safer and more flexible? Alternatively, is it possible to employ a set of

safety-aware motion skills? Does imitation learning help?

• For exploration, safety constraints are always case-sensitive. A partic-

ular constraint that works well in a particular manipulation task may

require total redesign for another task. What are the common prin-

ciples of safety constraint design for contact-rich manipulation tasks?

Are they generalisable and easy to implement across various tasks?

• Humans possess the prediction ability to anticipate potential dangers

or hazards. Could such abilities be interpreted as a form of general

affordance prediction? What are good representations? Is it always

necessary to learn an explicit dynamics model for evaluating safety as

proposed by recent research?

Last but not least, another major limitation is that the experiments in

this thesis are all based on computer simulation software. Robotic simula-

tion, on the one hand, is an important substitution for real-world platforms

mainly because it is cheaper, safer and easier. On the other hand, how-

ever, the methods, especially data-driven methods, developed and validated

in the simulation environment often suffer from the difficulty of real-world

deployment. In particular, the reasons for the proposed projects failing in

real-world tests are most likely to be 1) the inaccurate or even impossible

estimation of the states of objects and 2) the mismatch of physic dynamics

between simulation and the real world due to inaccurate and oversimplified

231

physics models. In the future, new research is needed to deploy and test these

methods on real-world platforms. In particular, the following directions may

be considered:

• Examine the proposed methods with different observation modalities

such as images and point clouds that are easier to obtain in the real

world. Research in fast and realistic rendering (Schwarz and Behnke,

2020), representation learning and pre-training (De Bruin et al., 2018;

Lesort et al., 2018), and image-based DRL (Lazaridis et al., 2020) would

be helpful as references.

• Transferring simulation-based policies into the real world is also a

promising direction. Incorporating sim-to-real techniques such as do-

main randomisation (Alghonaim and Johns, 2021) into the proposed

methods could be fruitful. Fine-tuning the simulation-based policy in

the real world may also be carried out if the mismatch between simu-

lation and the real world is not too large.

• Developing better robotic simulation software is also necessary. One of

the big assumptions of robotic simulation is the rigid body assumption

which has a great impact on the modelling of object contacts. More

advanced physics simulators that try to discard this assumption have

been developed and demonstrated to support more accurate and precise

contact simulation (Collins et al., 2021), but they are not yet ready

for robot learning experiments at scale. Incorporating topics such as

continuum physics simulation, deformable objects, and differentiable

simulations could be valuable for developing new robotic simulators

(Hu et al., 2018, 2019a,b; Huang et al., 2021).

232

Bibliography

Abbeel, P., Coates, A. and Ng, A. Y. 2010. Autonomous helicopter aerobatics

through apprenticeship learning. The International Journal of Robotics

Research 29(13), pp. 1608–1639.

Abbeel, P. and Ng, A. Y. 2004. Apprenticeship learning via inverse reinforce-

ment learning. In: Proceedings of the twenty-first international conference

on Machine learning. p. 1.

Abdo, N., Kretzschmar, H., Spinello, L. and Stachniss, C. 2013. Learning

manipulation actions from a few demonstrations. In: 2013 IEEE Interna-

tional Conference on Robotics and Automation. IEEE, pp. 1268–1275.

Agostinelli, F., McAleer, S., Shmakov, A. and Baldi, P. 2019. Solving the

rubik’s cube with deep reinforcement learning and search. Nature Machine

Intelligence 1(8), pp. 356–363.

Agrawal, P. 2022. The task specification problem. In: Conference on Robot

Learning. PMLR, pp. 1745–1751.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron,

A., Paino, A., Plappert, M., Powell, G., Ribas, R. et al. 2019. Solving

rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113 .

233

Aleotti, J. and Caselli, S. 2010. Interactive teaching of task-oriented robot

grasps. Robotics and Autonomous Systems 58(5), pp. 539–550.

Alghonaim, R. and Johns, E. 2021. Benchmarking domain randomisation

for visual sim-to-real transfer. In: 2021 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, pp. 12802–12808.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S.,

Marinier, R., Hussenot, L., Geist, M., Pietquin, O., Michalski, M. et al.

2020. What matters in on-policy reinforcement learning? a large-scale

empirical study. arXiv preprint arXiv:2006.05990 .

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder,

P., McGrew, B., Tobin, J., Pieter Abbeel, O. and Zaremba, W. 2017.

Hindsight experience replay. Advances in neural information processing

systems 30.

Ardón, P., Pairet, È., Lohan, K. S., Ramamoorthy, S. and Petrick, R. 2021.

Building affordance relations for robotic agents-a review. In: 2021 Inter-

national Joint Conference on Artificial Intelligence (IJCAI). Springer.

Arora, S. and Doshi, P. 2021. A survey of inverse reinforcement learning:

Challenges, methods and progress. Artificial Intelligence 297, p. 103500.

Arriola-Rios, V. E., Guler, P., Ficuciello, F., Kragic, D., Siciliano, B. and

Wyatt, J. L. 2020. Modeling of deformable objects for robotic manipula-

tion: A tutorial and review. Frontiers in Robotics and AI p. 82.

Aubret, A., Matignon, L. and Hassas, S. 2019. A survey on intrinsic motiva-

tion in reinforcement learning. arXiv preprint arXiv:1908.06976 .

234

Bacon, P.-L., Harb, J. and Precup, D. 2017. The option-critic architecture.

In: Proceedings of the AAAI Conference on Artificial Intelligence.

Barreto, A., Borsa, D., Hou, S., Comanici, G., Aygün, E., Hamel, P.,

Toyama, D., Mourad, S., Silver, D., Precup, D. et al. 2019. The option

keyboard: Combining skills in reinforcement learning. Advances in Neural

Information Processing Systems 32.

Barry, J., Kaelbling, L. P. and Lozano-Pérez, T. 2013. A hierarchical ap-

proach to manipulation with diverse actions. In: 2013 IEEE International

Conference on Robotics and Automation. IEEE, pp. 1799–1806.

Bicchi, A. 1995. On the closure properties of robotic grasping. The Interna-

tional Journal of Robotics Research 14(4), pp. 319–334.

Bicchi, A. and Kumar, V. 2000. Robotic grasping and contact: A review.

In: Proceedings 2000 ICRA. Millennium conference. IEEE international

conference on robotics and automation. Symposia proceedings (Cat. No.

00CH37065). IEEE, vol. 1, pp. 348–353.

Billard, A. and Kragic, D. 2019. Trends and challenges in robot manipulation.

Science 364(6446), p. eaat8414.

Borrego, J., Figueiredo, R., Dehban, A., Moreno, P., Bernardino, A. and

Santos-Victor, J. 2018. A generic visual perception domain randomisa-

tion framework for gazebo. In: 2018 IEEE International Conference on

Autonomous Robot Systems and Competitions (ICARSC). IEEE, pp. 237–

242.

Breyer, M., Furrer, F., Novkovic, T., Siegwart, R. and Nieto, J. 2019. Com-

paring task simplifications to learn closed-loop object picking using deep

235

reinforcement learning. IEEE Robotics and Automation Letters 4(2), pp.

1549–1556.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,

J. and Zaremba, W. 2016. Openai gym. arXiv preprint arXiv:1606.01540

.

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J. and

Schoellig, A. P. 2022. Safe learning in robotics: From learning-based con-

trol to safe reinforcement learning. Annual Review of Control, Robotics,

and Autonomous Systems 5, pp. 411–444.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T. and Efros,

A. A. 2019. Large-scale study of curiosity-driven learning. In: Inter-

national Conference on Learning Representations. Available at: https:

//openreview.net/forum?id=rJNwDjAqYX.

Cai, J., Cheng, H., Zhang, Z. and Su, J. 2019. Metagrasp: Data efficient

grasping by affordance interpreter network. In: 2019 International Con-

ference on Robotics and Automation (ICRA). IEEE, pp. 4960–4966.

Caldera, S., Rassau, A. and Chai, D. 2018. Review of deep learning methods

in robotic grasp detection. Multimodal Technologies and Interaction 2(3),

p. 57.

Chebotar, Y., Handa, A., Makoviychuk, V., Macklin, M., Issac, J., Ratliff, N.

and Fox, D. 2019. Closing the sim-to-real loop: Adapting simulation ran-

domization with real world experience. In: 2019 International Conference

on Robotics and Automation (ICRA). IEEE, pp. 8973–8979.

Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y. and Ross, K. 2020. Bail:

236

https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=rJNwDjAqYX

Best-action imitation learning for batch deep reinforcement learning. Ad-

vances in Neural Information Processing Systems 33, pp. 18353–18363.

Chevalier-Boisvert, M., Willems, L. and Pal, S. 2018. Minimalistic gridworld

environment for openai gym, [Online]. https://github.com/maximecb/

gym-minigrid.

Chiang, H.-T. L., Hsu, J., Fiser, M., Tapia, L. and Faust, A. 2019. Rl-rrt:

Kinodynamic motion planning via learning reachability estimators from rl

policies. IEEE Robotics and Automation Letters 4(4), pp. 4298–4305.

Chin, R. T. and Dyer, C. R. 1986. Model-based recognition in robot vision.

ACM Computing Surveys (CSUR) 18(1), pp. 67–108.

Chitnis, R., Tulsiani, S., Gupta, S. and Gupta, A. 2020. Efficient bimanual

manipulation using learned task schemas. In: 2020 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, pp. 1149–1155.

Chitta, S., Sturm, J., Piccoli, M. and Burgard, W. 2011. Tactile sensing for

mobile manipulation. IEEE Transactions on Robotics 27(3), pp. 558–568.

Chitta, S., Sucan, I. and Cousins, S. 2012. Moveit! IEEE Robotics &

Automation Magazine 19(1), pp. 18–19.

Cho, D., Kim, J. and Kim, H. J. 2022. Unsupervised reinforcement learning

for transferable manipulation skill discovery. IEEE Robotics and Automa-

tion Letters .

Chu, F.-J., Xu, R., Seguin, L. and Vela, P. A. 2019. Toward affordance

detection and ranking on novel objects for real-world robotic manipulation.

IEEE Robotics and Automation Letters 4(4), pp. 4070–4077.

237

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

Collins, J., Chand, S., Vanderkop, A. and Howard, D. 2021. A review of

physics simulators for robotic applications. IEEE Access 9, pp. 51416–

51431.

Corke, P. I. and Khatib, O. 2011. Robotics, vision and control: fundamental

algorithms in MATLAB, vol. 73. Springer.

Coumans, E. and Bai, Y. 2016. Pybullet, a python module for physics sim-

ulation for games, robotics and machine learning .

Dalal, M., Pathak, D. and Salakhutdinov, R. R. 2021. Accelerating robotic

reinforcement learning via parameterized action primitives. Advances in

Neural Information Processing Systems 34, pp. 21847–21859.

Dang, H. and Allen, P. K. 2012. Semantic grasping: Planning robotic grasps

functionally suitable for an object manipulation task. In: 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE, pp.

1311–1317.

De Bruin, T., Kober, J., Tuyls, K. and Babuška, R. 2018. Integrating state

representation learning into deep reinforcement learning. IEEE Robotics

and Automation Letters 3(3), pp. 1394–1401.

Degris, T., White, M. and Sutton, R. S. 2012. Off-policy actor-critic. In:

ICML. p. 179–186.

Detry, R., Papon, J. and Matthies, L. 2017. Task-oriented grasping with

semantic and geometric scene understanding. In: 2017 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS). IEEE, pp.

3266–3273.

238

Dilokthanakul, N., Kaplanis, C., Pawlowski, N. and Shanahan, M. 2019. Fea-

ture control as intrinsic motivation for hierarchical reinforcement learning.

IEEE transactions on neural networks and learning systems 30(11), pp.

3409–3418.

Do, T.-T., Nguyen, A. and Reid, I. 2018. Affordancenet: An end-to-end

deep learning approach for object affordance detection. In: 2018 IEEE

international conference on robotics and automation (ICRA). IEEE, pp.

5882–5889.

Du, G., Wang, K., Lian, S. and Zhao, K. 2021. Vision-based robotic grasping

from object localization, object pose estimation to grasp estimation for

parallel grippers: a review. Artificial Intelligence Review 54(3), pp. 1677–

1734.

Engel, Y., Mannor, S. and Meir, R. 2005. Reinforcement learning with gaus-

sian processes. In: ICML. pp. 201–208.

Eschmann, J. 2021. Reward function design in reinforcement learning. Re-

inforcement Learning Algorithms: Analysis and Applications pp. 25–33.

Exarchos, I., Jiang, Y., Yu, W. and Liu, C. K. 2021. Policy transfer via kine-

matic domain randomization and adaptation. In: 2021 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, pp. 45–51.

Eysenbach, B., Geng, X., Levine, S. and Salakhutdinov, R. R. 2020. Rewrit-

ing history with inverse rl: Hindsight inference for policy improvement.

Advances in neural information processing systems 33, pp. 14783–14795.

Fang, B., Jia, S., Guo, D., Xu, M., Wen, S. and Sun, F. 2019a. Survey

of imitation learning for robotic manipulation. International Journal of

Intelligent Robotics and Applications 3(4), pp. 362–369.

239

Fang, H.-S., Wang, C., Gou, M. and Lu, C. 2020a. Graspnet-1billion: A

large-scale benchmark for general object grasping. In: Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition. pp.

11444–11453.

Fang, K., Zhu, Y., Garg, A., Kurenkov, A., Mehta, V., Fei-Fei, L. and

Savarese, S. 2020b. Learning task-oriented grasping for tool manipulation

from simulated self-supervision. The International Journal of Robotics Re-

search 39(2-3), pp. 202–216.

Fang, M., Zhou, T., Du, Y., Han, L. and Zhang, Z. 2019b. Curriculum-guided

hindsight experience replay. Advances in neural information processing

systems 32.

Fujimoto, S., Hoof, H. and Meger, D. 2018. Addressing function approxima-

tion error in actor-critic methods. In: International conference on machine

learning. PMLR, pp. 1587–1596.

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver, T., Kaelbling, L. P.

and Lozano-Pérez, T. 2021. Integrated task and motion planning. Annual

review of control, robotics, and autonomous systems 4, pp. 265–293.

Gibson, E. J. and Collins, W. 1982. The concept of affordances in develop-

ment: The renascence of functionalism. In: The concept of development:

The Minnesota symposia on child psychology. Vol. vol. 15, pp. 55–81.

Goodfellow, I., Bengio, Y. and Courville, A. 2016. Deep learning. MIT press.

Grafton, S. T. and Hamilton, A. F. d. C. 2007. Evidence for a distributed

hierarchy of action representation in the brain. Human movement science

26(4), pp. 590–616.

240

Gu, S., Holly, E., Lillicrap, T. and Levine, S. 2017. Deep reinforcement

learning for robotic manipulation with asynchronous off-policy updates. In:

2017 IEEE international conference on robotics and automation (ICRA).

IEEE, pp. 3389–3396.

Gu, S., Lillicrap, T., Sutskever, I. and Levine, S. 2016. Continuous deep

q-learning with model-based acceleration. In: International conference on

machine learning. PMLR, pp. 2829–2838.

Guenter, F., Hersch, M., Calinon, S. and Billard, A. 2007. Reinforcement

learning for imitating constrained reaching movements. Advanced Robotics

21(13), pp. 1521–1544.

Guo, X., Singh, S., Lee, H., Lewis, R. L. and Wang, X. 2014. Deep learning

for real-time atari game play using offline monte-carlo tree search planning.

Advances in neural information processing systems 27.

Gupta, A., Kumar, V., Lynch, C., Levine, S. and Hausman, K. 2019. Relay

policy learning: Solving long-horizon tasks via imitation and reinforcement

learning. arXiv preprint arXiv:1910.11956 .

Haarnoja, T., Tang, H., Abbeel, P. and Levine, S. 2017. Reinforcement

learning with deep energy-based policies. In: International conference on

machine learning. PMLR, pp. 1352–1361.

Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. 2018. Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a stochastic

actor. In: ICML. pp. 1861–1870.

Hakhamaneshi, K., Zhao, R., Zhan, A., Abbeel, P. and Laskin, M. 2022. Hi-

erarchical few-shot imitation with skill transition models. In: International

Conference on Learning Representations.

241

Hämäläinen, A., Arndt, K., Ghadirzadeh, A. and Kyrki, V. 2019. Affordance

learning for end-to-end visuomotor robot control. In: 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE,

pp. 1781–1788.

Hamaya, M., Tanaka, K., Shibata, Y., Von Drigalski, F., Nakashima, C. and

Ijiri, Y. 2021. Robotic learning from advisory and adversarial interactions

using a soft wrist. IEEE Robotics and Automation Letters 6(2), pp. 3878–

3885.

Harutyunyan, A., Dabney, W., Borsa, D., Heess, N., Munos, R. and Precup,

D. 2019. The termination critic. arXiv preprint arXiv:1902.09996 .

Hasselt, H. 2010. Double q-learning. Advances in neural information pro-

cessing systems 23.

Hauser, K. and Latombe, J.-C. 2010. Multi-modal motion planning in non-

expansive spaces. The International Journal of Robotics Research 29(7),

pp. 897–915.

Holas, J. and Farkaš, I. 2020. Adaptive skill acquisition in hierarchical re-

inforcement learning. In: International Conference on Artificial Neural

Networks. Springer, pp. 383–394.

Horak, P. C. and Trinkle, J. C. 2019. On the similarities and differences

among contact models in robot simulation. IEEE Robotics and Automation

Letters 4(2), pp. 493–499.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck, F. and Abbeel,

P. 2016. Vime: Variational information maximizing exploration. Advances

in neural information processing systems 29.

242

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A. and Jiang, C.

2018. A moving least squares material point method with displacement

discontinuity and two-way rigid body coupling. ACM Transactions on

Graphics (TOG) 37(4), pp. 1–14.

Hu, Y., Li, T.-M., Anderson, L., Ragan-Kelley, J. and Durand, F. 2019a.

Taichi: a language for high-performance computation on spatially sparse

data structures. ACM Transactions on Graphics (TOG) 38(6), pp. 1–16.

Hu, Y., Liu, J., Spielberg, A., Tenenbaum, J. B., Freeman, W. T., Wu, J.,

Rus, D. and Matusik, W. 2019b. Chainqueen: A real-time differentiable

physical simulator for soft robotics. In: 2019 International conference on

robotics and automation (ICRA). IEEE, pp. 6265–6271.

Huang, Z., Hu, Y., Du, T., Zhou, S., Su, H., Tenenbaum, J. B. and Gan, C.

2021. Plasticinelab: A soft-body manipulation benchmark with differen-

tiable physics. In: International Conference on Learning Representations.

Available at: https://openreview.net/forum?id=xCcdBRQEDW.

Hussein, A., Gaber, M. M., Elyan, E. and Jayne, C. 2017. Imitation learning:

A survey of learning methods. ACM Computing Surveys (CSUR) 50(2),

pp. 1–35.

Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P. and Levine, S.

2021. How to train your robot with deep reinforcement learning: lessons

we have learned. The International Journal of Robotics Research 40(4-5),

pp. 698–721.

Ivaldi, S., Peters, J., Padois, V. and Nori, F. 2014. Tools for simulating

humanoid robot dynamics: a survey based on user feedback. In: 2014

243

https://openreview.net/forum?id=xCcdBRQEDW

IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 842–

849.

James, S., Freese, M. and Davison, A. J. 2019. Pyrep: Bringing v-rep to

deep robot learning. arXiv preprint arXiv:1906.11176 .

James, S. and Johns, E. 2016. 3d simulation for robot arm control with deep

q-learning. arXiv preprint arXiv:1609.03759 .

James, S., Ma, Z., Arrojo, D. R. and Davison, A. J. 2020. Rlbench: The

robot learning benchmark & learning environment. IEEE Robotics and

Automation Letters 5(2), pp. 3019–3026.

Janson, L., Schmerling, E., Clark, A. and Pavone, M. 2015. Fast marching

tree: A fast marching sampling-based method for optimal motion planning

in many dimensions. The International journal of robotics research 34(7),

pp. 883–921.

Jauhri, S., Peters, J. and Chalvatzaki, G. 2022. Robot learning of mobile

manipulation with reachability behavior priors. IEEE Robotics and Au-

tomation Letters 7(3), pp. 8399–8406.

Jiang, Y., Gu, S. S., Murphy, K. P. and Finn, C. 2019. Language as an ab-

straction for hierarchical deep reinforcement learning. Advances in Neural

Information Processing Systems 32.

Jin, X.-B., Robert Jeremiah, R. J., Su, T.-L., Bai, Y.-T. and Kong, J.-L.

2021. The new trend of state estimation: From model-driven to hybrid-

driven methods. Sensors 21(6), p. 2085.

Johns, E. 2021. Coarse-to-fine imitation learning: Robot manipulation from a

244

single demonstration. In: 2021 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, pp. 4613–4619.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,

O., Tunyasuvunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A. et al.

2021. Highly accurate protein structure prediction with alphafold. Na-

ture 596(7873), pp. 583–589.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E.,

Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V. et al. 2018. Scal-

able deep reinforcement learning for vision-based robotic manipulation. In:

Conference on Robot Learning. PMLR, pp. 651–673.

Karpas, E. and Magazzeni, D. 2020. Automated planning for robotics. An-

nual Review of Control, Robotics, and Autonomous Systems 3, pp. 417–

439.

Khetarpal, K., Ahmed, Z., Comanici, G., Abel, D. and Precup, D. 2020a.

What can i do here? a theory of affordances in reinforcement learning. In:

International Conference on Machine Learning. PMLR, pp. 5243–5253.

Khetarpal, K., Ahmed, Z., Comanici, G. and Precup, D. 2021. Temporally

abstract partial models. Advances in Neural Information Processing Sys-

tems 34, pp. 1979–1991.

Khetarpal, K., Klissarov, M., Chevalier-Boisvert, M., Bacon, P.-L. and Pre-

cup, D. 2020b. Options of interest: Temporal abstraction with interest

functions. In: Proceedings of the AAAI Conference on Artificial Intelli-

gence. pp. 4444–4451.

Kingma, D. P. and Ba, J. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 .

245

Koenig, N. and Howard, A. 2004. Design and use paradigms for gazebo,

an open-source multi-robot simulator. In: 2004 IEEE/RSJ interna-

tional conference on intelligent robots and systems (IROS)(IEEE Cat. No.

04CH37566). IEEE, vol. 3, pp. 2149–2154.

Kokic, M., Kragic, D. and Bohg, J. 2020. Learning task-oriented grasping

from human activity datasets. IEEE Robotics and Automation Letters

5(2), pp. 3352–3359.

Kokic, M., Stork, J. A., Haustein, J. A. and Kragic, D. 2017. Affordance

detection for task-specific grasping using deep learning. In: 2017 IEEE-

RAS 17th International Conference on Humanoid Robotics (Humanoids).

IEEE, pp. 91–98.

Kolluru, R., Valavanis, K. P. and Hebert, T. M. 1998. Modeling, analysis,

and performance evaluation of a robotic gripper system for limp material

handling. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 28(3), pp. 480–486.

Konda, V. and Tsitsiklis, J. 1999. Actor-critic algorithms. Advances in neural

information processing systems 12.

Kormushev, P., Calinon, S. and Caldwell, D. G. 2011. Imitation learning

of positional and force skills demonstrated via kinesthetic teaching and

haptic input. Advanced Robotics 25(5), pp. 581–603.

Krishnan, S., Fox, R., Stoica, I. and Goldberg, K. 2017. Ddco: Discovery

of deep continuous options for robot learning from demonstrations. In:

Conference on robot learning. PMLR, pp. 418–437.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. 2017. Imagenet classification

246

with deep convolutional neural networks. Communications of the ACM

60(6), pp. 84–90.

Kroemer, O., Niekum, S. and Konidaris, G. 2021. A review of robot learn-

ing for manipulation: Challenges, representations, and algorithms. The

Journal of Machine Learning Research 22(1), pp. 1395–1476.

Kuka. 2022. Lbr iiwa, [Online]. https://www.kuka.com/en-gb/products/

robotics-systems/industrial-robots/lbr-iiwa. Last accessed: 2022-

12-05.

Kumra, S. and Kanan, C. 2017. Robotic grasp detection using deep convolu-

tional neural networks. In: 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, pp. 769–776.

Kwak, J. H., Lee, J., Whang, J. J. and Jo, S. 2022. Semantic grasping via a

knowledge graph of robotic manipulation: A graph representation learning

approach. IEEE Robotics and Automation Letters 7(4), pp. 9397–9404.

Ladosz, P., Weng, L., Kim, M. and Oh, H. 2022. Exploration in deep rein-

forcement learning: A survey. Information Fusion .

Latombe, J.-C. 2012. Robot motion planning, vol. 124. Springer Science &

Business Media.

Lazaridis, A., Fachantidis, A. and Vlahavas, I. 2020. Deep reinforcement

learning: A state-of-the-art walkthrough. Journal of Artificial Intelligence

Research 69, pp. 1421–1471.

Leão, G., Costa, C. M., Sousa, A. and Veiga, G. 2020. Detecting and solving

tube entanglement in bin picking operations. Applied Sciences 10(7), p.

2264.

247

https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-gb/products/robotics-systems/industrial-robots/lbr-iiwa

Lechner, M., Amini, A., Rus, D. and Henzinger, T. A. 2023. Revisiting the

adversarial robustness-accuracy tradeoff in robot learning. IEEE Robotics

and Automation Letters 8(3), pp. 1595–1602.

Lechner, M., Hasani, R., Grosu, R., Rus, D. and Henzinger, T. A. 2021.

Adversarial training is not ready for robot learning. In: 2021 IEEE In-

ternational Conference on Robotics and Automation (ICRA). IEEE, pp.

4140–4147.

Lee, H.-R., Sreenivasan, R. A., Jeong, Y., Jang, J., Shim, D. and Lee, C.-G.

2022. Multi-policy grounding and ensemble policy learning for transfer

learning with dynamics mismatch. In: Proceedings of the Thirty-First

International Joint Conference on Artificial Intelligence, IJCAI-22. Inter-

national Joint Conferences on Artificial Intelligence Organization.

Lenz, I., Lee, H. and Saxena, A. 2015. Deep learning for detecting robotic

grasps. The International Journal of Robotics Research 34(4-5), pp. 705–

724.

Lesort, T., Dı́az-Rodŕıguez, N., Goudou, J.-F. and Filliat, D. 2018. State

representation learning for control: An overview. Neural Networks 108,

pp. 379–392.

Levine, S., Kumar, A., Tucker, G. and Fu, J. 2020. Offline reinforcement

learning: Tutorial, review, and perspectives on open problems. arXiv

preprint arXiv:2005.01643 .

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J. and Quillen, D. 2018. Learn-

ing hand-eye coordination for robotic grasping with deep learning and

large-scale data collection. The International journal of robotics research

37(4-5), pp. 421–436.

248

Levy, A., Konidaris, G., Platt, R. and Saenko, K. 2019. Learning multi-level

hierarchies with hindsight. ICLR .

Li, A. C., Florensa, C., Clavera, I. and Abbeel, P. 2019. Sub-

policy adaptation for hierarchical reinforcement learning. arXiv preprint

arXiv:1906.05862 .

Li, J. K., Lee, W. S. and Hsu, D. 2018. Push-net: Deep planar pushing

for objects with unknown physical properties. In: Robotics: Science and

Systems. vol. 14, pp. 1–9.

Li, K., Baron, N., Zhang, X. and Rojas, N. 2022. Efficientgrasp: A uni-

fied data-efficient learning to grasp method for multi-fingered robot hands.

IEEE Robotics and Automation Letters 7(4), pp. 8619–8626.

Li, M., Zhang, T., Chen, Y. and Smola, A. J. 2014. Efficient mini-batch

training for stochastic optimization. In: Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data min-

ing. pp. 661–670.

Li, Z., Hsu, P. and Sastry, S. 1989. Grasping and coordinated manipulation

by a multifingered robot hand. The International Journal of Robotics

Research 8(4), pp. 33–50.

Li, Z. and Sastry, S. S. 1988. Task-oriented optimal grasping by multifingered

robot hands. IEEE Journal on Robotics and Automation 4(1), pp. 32–44.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,

D. and Wierstra, D. 2015. Continuous control with deep reinforcement

learning. arXiv preprint arXiv:1509.02971 .

249

Lin, L.-J. 1992. Self-improving reactive agents based on reinforcement learn-

ing, planning and teaching. Machine learning 8(3), pp. 293–321.

Liu, A., Shi, G., Chung, S.-J., Anandkumar, A. and Yue, Y. 2020. Robust

regression for safe exploration in control. In: Learning for Dynamics and

Control. PMLR, pp. 608–619.

Liu, R., Nageotte, F., Zanne, P., de Mathelin, M. and Dresp-Langley, B.

2021. Deep reinforcement learning for the control of robotic manipulation:

a focussed mini-review. Robotics 10(1), p. 22.

Liu, X., Xu, Z., Cao, L., Chen, X. and Kang, K. 2019. Deep reinforcement

learning via past-success directed exploration. In: Proceedings of the AAAI

Conference on Artificial Intelligence. pp. 9979–9980.

Lopez, N. G., Nuin, Y. L. E., Moral, E. B., Juan, L. U. S., Rueda, A. S.,

Vilches, V. M. and Kojcev, R. 2019. gym-gazebo2, a toolkit for reinforce-

ment learning using ros 2 and gazebo. arXiv preprint arXiv:1903.06278

.

Lu, Q., Chenna, K., Sundaralingam, B. and Hermans, T. 2020. Planning

multi-fingered grasps as probabilistic inference in a learned deep network.

In: Robotics Research, Springer, pp. 455–472.

Luh, J. 1983. Conventional controller design for industrial robots—a tutorial.

IEEE Transactions on Systems, Man, and Cybernetics pp. 298–316.

Lundström, G. 1974. Industrial robot grippers. Industrial Robot: An Inter-

national Journal .

Lynch, K. M. and Park, F. C. 2017. Modern robotics. Cambridge University

Press.

250

Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J. A.

and Goldberg, K. 2017. Dex-net 2.0: Deep learning to plan robust grasps

with synthetic point clouds and analytic grasp metrics. arXiv preprint

arXiv:1703.09312 .

Mandikal, P. and Grauman, K. 2021a. Learning dexterous grasping with

object-centric visual affordances. In: 2021 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, pp. 6169–6176.

Mandikal, P. and Grauman, K. 2021b. Learning dexterous grasping with

object-centric visual affordances. In: IEEE International Conference on

Robotics and Automation (ICRA).

Mason, M. T. 2018. Toward robotic manipulation. Annual Review of Control,

Robotics, and Autonomous Systems 1(1).

Masoudi, N., Fadel, G. M., Pagano, C. C. and Elena, M. V. 2019. A review

of affordances and affordance-based design to address usability. In: Pro-

ceedings of the Design Society: International Conference on Engineering

Design. Cambridge University Press, pp. 1353–1362.

Matsumura, R., Domae, Y., Wan, W. and Harada, K. 2019. Learning based

robotic bin-picking for potentially tangled objects. In: 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE,

pp. 7990–7997.

Mayer, V., Feng, Q., Deng, J., Shi, Y., Chen, Z. and Knoll, A. 2022. Ffhnet:

Generating multi-fingered robotic grasps for unknown objects in real-time.

In: 2022 International Conference on Robotics and Automation (ICRA).

IEEE, pp. 762–769.

251

McClelland, T. 2019. Representing our options: The perception of affor-

dances for bodily and mental action. Journal of Consciousness Studies

26(3-4), pp. 155–180.

McDermott, D. 1991. Regression planning. International Journal of Intelli-

gent Systems 6(4), pp. 357–416.

Minaee, S., Boykov, Y. Y., Porikli, F., Plaza, A. J., Kehtarnavaz, N. and

Terzopoulos, D. 2021. Image segmentation using deep learning: A survey.

IEEE transactions on pattern analysis and machine intelligence .

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-

stra, D. and Riedmiller, M. 2013. Playing atari with deep reinforcement

learning. arXiv preprint arXiv:1312.5602 .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,

M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G. et al.

2015. Human-level control through deep reinforcement learning. nature

518(7540), pp. 529–533.

Moerland, T. M., Broekens, J. and Jonker, C. M. 2020. Model-based rein-

forcement learning: A survey. arXiv preprint arXiv:2006.16712 .

Moosmann, M., Kulig, M., Spenrath, F., Mönnig, M., Roggendorf, S., Petro-

vic, O., Bormann, R. and Huber, M. F. 2021a. Separating entangled work-

pieces in random bin picking using deep reinforcement learning. Procedia

CIRP 104, pp. 881–886.

Moosmann, M., Spenrath, F., Kleeberger, K., Khalid, M. U., Mönnig, M.,

Rosport, J. and Bormann, R. 2020. Increasing the robustness of random

bin picking by avoiding grasps of entangled workpieces. Procedia CIRP

93, pp. 1212–1217.

252

Moosmann, M., Spenrath, F., Mönnig, M., Khalid, M. U., Jaumann, M.,

Rosport, J. and Bormann, R. 2021b. Using deep neural networks to

separate entangled workpieces in random bin picking. In: Advances in

Automotive Production Technology–Theory and Application, Springer, pp.

238–246.

Motiv-Space-Systems. 2022. Motiv space systems and blue ori-

gin announce modulink, [Online]. https://motivss.com/

motiv-space-systems-and-blue-origin-announce-modulink/. Last

accessed: 2022-12-02.

Mousavian, A., Eppner, C. and Fox, D. 2019. 6-dof graspnet: Varia-

tional grasp generation for object manipulation. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision. pp. 2901–2910.

Mu, T., Ling, Z., Xiang, F., Yang, D. C., Li, X., Tao, S., Huang, Z., Jia, Z.

and Su, H. 2021. Maniskill: Generalizable manipulation skill benchmark

with large-scale demonstrations. In: Thirty-fifth Conference on Neural

Information Processing Systems Datasets and Benchmarks Track (Round

2). Available at: https://openreview.net/forum?id=zQIvkXHS_U5.

Murali, A., Liu, W., Marino, K., Chernova, S. and Gupta, A. 2021. Same

object, different grasps: Data and semantic knowledge for task-oriented

grasping. In: Kober, J., Ramos, F. and Tomlin, C., eds., Proceedings of

the 2020 Conference on Robot Learning. PMLR, vol. 155 of Proceedings of

Machine Learning Research, pp. 1540–1557.

Muratore, F., Ramos, F., Turk, G., Yu, W., Gienger, M. and Peters, J.

2022. Robot learning from randomized simulations: A review. Frontiers

in Robotics and AI p. 31.

253

https://motivss.com/motiv-space-systems-and-blue-origin-announce-modulink/
https://motivss.com/motiv-space-systems-and-blue-origin-announce-modulink/
https://openreview.net/forum?id=zQIvkXHS_U5

Nachum, O., Gu, S. S., Lee, H. and Levine, S. 2018. Data-efficient hierarchical

reinforcement learning. Advances in neural information processing systems

31.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W. and Abbeel, P. 2018.

Overcoming exploration in reinforcement learning with demonstrations. In:

2018 IEEE international conference on robotics and automation (ICRA).

IEEE, pp. 6292–6299.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M. E. and Stone, P.

2022. Curriculum learning for reinforcement learning domains: A frame-

work and survey. J. Mach. Learn. Res. 21.

Newbury, R., Gu, M., Chumbley, L., Mousavian, A., Eppner, C., Leitner, J.,

Bohg, J., Morales, A., Asfour, T., Kragic, D. et al. 2022. Deep learning

approaches to grasp synthesis: A review. arXiv preprint arXiv:2207.02556

.

Nguyen, V.-D. 1988. Constructing force-closure grasps. The International

Journal of Robotics Research 7(3), pp. 3–16.

Nica, A., Khetarpal, K. and Precup, D. 2022. The paradox of choice: Us-

ing attention in hierarchical reinforcement learning. Advances in Neural

Information Processing Systems Workshop: All Things Attention .

Nitzan, D. and Rosen, C. A. 1976. Programmable industrial automation.

IEEE Transactions on Computers 25(12), pp. 1259–1270.

Noreen, I., Khan, A. and Habib, Z. 2016. Optimal path planning using rrt*

based approaches: a survey and future directions. International Journal

of Advanced Computer Science and Applications 7(11).

254

Oomichi, T., Okino, A., Higuchi, M., Maekawa, A. and Ohnishi, K. 1990.

Development of working multifinger hand manipulator. In: EEE Inter-

national Workshop on Intelligent Robots and Systems, Towards a New

Frontier of Applications. IEEE, pp. 873–880.

Orban, G., Lanzilotto, M. and Bonini, L. 2021. From observed action identity

to social affordances. Trends in Cognitive Sciences 25(6), pp. 493–505.

Orbik, J., Agostini, A. and Lee, D. 2021. Inverse reinforcement learning for

dexterous hand manipulation. In: 2021 IEEE International Conference on

Development and Learning (ICDL). IEEE, pp. 1–7.

Ortega, J., Shaker, N., Togelius, J. and Yannakakis, G. N. 2013. Imitating

human playing styles in super mario bros. Entertainment Computing 4(2),

pp. 93–104.

Ortenzi, V., Controzzi, M., Cini, F., Leitner, J., Bianchi, M., Roa, M. A.

and Corke, P. 2019. Robotic manipulation and the role of the task in the

metric of success. Nature Machine Intelligence 1(8), pp. 340–346.

Ortner, R., Gajane, P. and Auer, P. 2020. Variational regret bounds for

reinforcement learning. In: Uncertainty in Artificial Intelligence. PMLR,

pp. 81–90.

Paavai Anand, P. et al. 2021. A brief study of deep reinforcement learning

with epsilon-greedy exploration. International Journal Of Computing and

Digital System .

Pateria, S., Subagdja, B., Tan, A.-H. and Quek, C. 2021a. End-to-end hi-

erarchical reinforcement learning with integrated subgoal discovery. IEEE

Transactions on Neural Networks and Learning Systems .

255

Pateria, S., Subagdja, B., Tan, A.-h. and Quek, C. 2021b. Hierarchical

reinforcement learning: A comprehensive survey. ACM Computing Surveys

(CSUR) 54(5), pp. 1–35.

Peng, X. B., Andrychowicz, M., Zaremba, W. and Abbeel, P. 2018. Sim-

to-real transfer of robotic control with dynamics randomization. In: 2018

IEEE international conference on robotics and automation (ICRA). IEEE,

pp. 3803–3810.

Peng, X. B., Berseth, G., Yin, K. and Van De Panne, M. 2017. Deeploco:

Dynamic locomotion skills using hierarchical deep reinforcement learning.

ACM Transactions on Graphics (TOG) 36(4), pp. 1–13.

Peng, X. B., Chang, M., Zhang, G., Abbeel, P. and Levine, S. 2019. Mcp:

Learning composable hierarchical control with multiplicative composi-

tional policies. Advances in Neural Information Processing Systems 32.

Pertsch, K., Lee, Y. and Lim, J. 2021. Accelerating reinforcement learning

with learned skill priors. In: Conference on robot learning. PMLR, pp.

188–204.

Petŕık, V., Tapaswi, M., Laptev, I. and Sivic, J. 2021. Learning object

manipulation skills via approximate state estimation from real videos. In:

Conference on Robot Learning. PMLR, pp. 296–312.

Pezzulo, G. and Cisek, P. 2016. Navigating the affordance landscape: feed-

back control as a process model of behavior and cognition. Trends in

cognitive sciences 20(6), pp. 414–424.

Pfrommer, S., Halm, M. and Posa, M. 2021. Contactnets: Learning dis-

continuous contact dynamics with smooth, implicit representations. In:

Conference on Robot Learning. PMLR, pp. 2279–2291.

256

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X.,

Asfour, T., Abbeel, P. and Andrychowicz, M. 2020. Parameter space noise

for exploration. ICLR .

Ploskas, N. and Sahinidis, N. V. 2021. Review and comparison of algorithms

and software for mixed-integer derivative-free optimization. Journal of

Global Optimization pp. 1–30.

Prats, M., Sanz, P. J. and Del Pobil, A. P. 2007. Task-oriented grasping using

hand preshapes and task frames. In: Proceedings 2007 IEEE International

Conference on Robotics and Automation. IEEE, pp. 1794–1799.

Premebida, C., Ambrus, R. and Marton, Z.-C. 2018. Intelligent robotic per-

ception systems. In: Applications of Mobile Robots, IntechOpen London,

UK, pp. 111–127.

Puterman, M. L. 2014. Markov decision processes: discrete stochastic dy-

namic programming. John Wiley & Sons.

Qi, C. R., Yi, L., Su, H. and Guibas, L. J. 2017. Pointnet++: Deep hierar-

chical feature learning on point sets in a metric space. Advances in neural

information processing systems 30.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler,

R., Ng, A. Y. et al. 2009. Ros: an open-source robot operating system. In:

ICRA workshop on open source software. Kobe, Japan, vol. 3, p. 5.

Rahman, N., Carbonari, L., D’Imperio, M., Canali, C., Caldwell, D. G.

and Cannella, F. 2016. A dexterous gripper for in-hand manipulation. In:

2016 IEEE International Conference on Advanced Intelligent Mechatronics

(AIM). IEEE, pp. 377–382.

257

Ramı́rez, J., Yu, W. and Perrusqúıa, A. 2022. Model-free reinforcement learn-

ing from expert demonstrations: a survey. Artificial Intelligence Review

55(4), pp. 3213–3241.

Rao, D., Sadeghi, F., Hasenclever, L., Wulfmeier, M., Zambelli, M., Vezzani,

G., Tirumala, D., Aytar, Y., Merel, J., Heess, N. and raia hadsell. 2022.

Learning transferable motor skills with hierarchical latent mixture policies.

In: International Conference on Learning Representations.

Ravichandar, H., Polydoros, A. S., Chernova, S. and Billard, A. 2020. Recent

advances in robot learning from demonstration. Annual review of control,

robotics, and autonomous systems 3, pp. 297–330.

Rayamane, P., Ji, Z. and Packianather, M. 2022. Design and development of

a robust vision-based tactile sensor. In: 2022 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (AIM). IEEE, pp. 1417–

1423.

Reuleaux, F. 2013. The kinematics of machinery: outlines of a theory of

machines. Courier Corporation.

Roa, M. A. and Suárez, R. 2015. Grasp quality measures: review and per-

formance. Autonomous robots 38(1), pp. 65–88.

Rohmer, E., Singh, S. P. and Freese, M. 2013. V-rep: A versatile and scalable

robot simulation framework. In: 2013 IEEE/RSJ international conference

on intelligent robots and systems. IEEE, pp. 1321–1326.

Ross, S., Gordon, G. and Bagnell, D. 2011. A reduction of imitation learning

and structured prediction to no-regret online learning. In: Proceedings of

the fourteenth international conference on artificial intelligence and statis-

tics. JMLR Workshop and Conference Proceedings, pp. 627–635.

258

Sadat, A., Casas, S., Ren, M., Wu, X., Dhawan, P. and Urtasun, R. 2020.

Perceive, predict, and plan: Safe motion planning through interpretable

semantic representations. In: European Conference on Computer Vision.

Springer, pp. 414–430.

Sahbani, A., El-Khoury, S. and Bidaud, P. 2012. An overview of 3d object

grasp synthesis algorithms. Robotics and Autonomous Systems 60(3), pp.

326–336.

Salvato, E., Fenu, G., Medvet, E. and Pellegrino, F. A. 2021. Crossing the

reality gap: A survey on sim-to-real transferability of robot controllers in

reinforcement learning. IEEE Access 9, pp. 153171–153187.

Sasaki, F., Yohira, T. and Kawaguchi, A. 2018. Sample efficient imitation

learning for continuous control. In: International conference on learning

representations.

Schaul, T., Horgan, D., Gregor, K. and Silver, D. 2015. Universal value

function approximators. In: International conference on machine learning.

PMLR, pp. 1312–1320.

Schulman, J., Chen, X. and Abbeel, P. 2017a. Equivalence between policy

gradients and soft q-learning. arXiv preprint arXiv:1704.06440 .

Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P. 2015. Trust

region policy optimization. In: International conference on machine learn-

ing. PMLR, pp. 1889–1897.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. 2017b.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347

.

259

Schwarz, M. and Behnke, S. 2020. Stillleben: Realistic scene synthesis for

deep learning in robotics. In: 2020 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, pp. 10502–10508.

Schwenkel, L., Guo, M. and Bürger, M. 2020. Optimizing sequences of prob-

abilistic manipulation skills learned from demonstration. In: Conference

on Robot Learning. PMLR, pp. 273–282.

Scieur, D. and Pedregosa, F. 2020. Universal average-case optimality of

polyak momentum. In: International conference on machine learning.

PMLR, pp. 8565–8572.

Shah, D., Toshev, A. T., Levine, S. and brian ichter. 2022. Value func-

tion spaces: Skill-centric state abstractions for long-horizon reasoning. In:

ICLR. Available at: https://openreview.net/forum?id=vgqS1vkkCbE.

Shimoga, K. B. 1996. Robot grasp synthesis algorithms: A survey. The

International Journal of Robotics Research 15(3), pp. 230–266.

Shridhar, M., Manuelli, L. and Fox, D. 2023. Perceiver-actor: A multi-task

transformer for robotic manipulation. In: Conference on Robot Learning.

PMLR, pp. 785–799.

Siciliano, B., Khatib, O. and Kröger, T. 2008. Springer handbook of robotics,

vol. 200. Springer.

Siciliano, B. and Valavanis, K. P. 1998. Control problems in robotics and

automation. Springer.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driess-

che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,

260

https://openreview.net/forum?id=vgqS1vkkCbE

M. et al. 2016. Mastering the game of go with deep neural networks and

tree search. nature 529(7587), pp. 484–489.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D. and Riedmiller, M.

2014. Deterministic policy gradient algorithms. In: International confer-

ence on machine learning. PMLR, pp. 387–395.

Singh, B., Kumar, R. and Singh, V. P. 2021. Reinforcement learning in

robotic applications: a comprehensive survey. Artificial Intelligence Review

pp. 1–46.

Smith, L., Kew, J. C., Peng, X. B., Ha, S., Tan, J. and Levine, S. 2022.

Legged robots that keep on learning: Fine-tuning locomotion policies in the

real world. In: 2022 International Conference on Robotics and Automation

(ICRA). IEEE, pp. 1593–1599.

Smith, M., Hoof, H. and Pineau, J. 2018. An inference-based policy gradient

method for learning options. In: International Conference on Machine

Learning. PMLR, pp. 4703–4712.

Sola, J. and Sevilla, J. 1997. Importance of input data normalization for

the application of neural networks to complex industrial problems. IEEE

Transactions on nuclear science 44(3), pp. 1464–1468.

Staranowicz, A. and Mariottini, G. L. 2011. A survey and comparison of

commercial and open-source robotic simulator software. In: Proceedings

of the 4th International Conference on PErvasive Technologies Related to

Assistive Environments. pp. 1–8.

Staroverov, A., Yudin, D. A., Belkin, I., Adeshkin, V., Solomentsev, Y. K.

and Panov, A. I. 2020. Real-time object navigation with deep neural net-

261

works and hierarchical reinforcement learning. IEEE Access 8, pp. 195608–

195621.

Stepputtis, S., Campbell, J., Phielipp, M., Lee, S., Baral, C. and Ben Amor,

H. 2020. Language-conditioned imitation learning for robot manipulation

tasks. Advances in Neural Information Processing Systems 33, pp. 13139–

13150.

Strudel, R., Pashevich, A., Kalevatykh, I., Laptev, I., Sivic, J. and Schmid, C.

2020. Learning to combine primitive skills: A step towards versatile robotic

manipulation. In: 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 4637–4643.

Subramanian, K., Isbell Jr, C. L. and Thomaz, A. L. 2016. Exploration

from demonstration for interactive reinforcement learning. In: Proceedings

of the 2016 international conference on autonomous agents & multiagent

systems. pp. 447–456.

Sun, M. and Gao, Y. 2021. Gater: Learning grasp-action-target embeddings

and relations for task-specific grasping. IEEE Robotics and Automation

Letters 7(1), pp. 618–625.

Sutton, R. S. 1984. Temporal credit assignment in reinforcement learning.

University of Massachusetts Amherst.

Sutton, R. S. 1991. Dyna, an integrated architecture for learning, planning,

and reacting. ACM Sigart Bulletin 2(4), pp. 160–163.

Sutton, R. S. and Barto, A. G. 2018. Reinforcement learning: An introduc-

tion. MIT press.

262

Sutton, R. S., McAllester, D., Singh, S. and Mansour, Y. 1999a. Policy

gradient methods for reinforcement learning with function approximation.

Advances in neural information processing systems 12.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A.

and Precup, D. 2011. Horde: A scalable real-time architecture for learn-

ing knowledge from unsupervised sensorimotor interaction. In: The 10th

International Conference on Autonomous Agents and Multiagent Systems-

Volume 2. pp. 761–768.

Sutton, R. S., Precup, D. and Singh, S. 1998. Intra-option learning about

temporally abstract actions. In: ICML. vol. 98, pp. 556–564.

Sutton, R. S., Precup, D. and Singh, S. 1999b. Between mdps and semi-

mdps: A framework for temporal abstraction in reinforcement learning.

Artificial intelligence 112(1-2), pp. 181–211.

Takahashi, T., Tsuboi, T., Kishida, T., Kawanami, Y., Shimizu, S., Iribe, M.,

Fukushima, T. and Fujita, M. 2008. Adaptive grasping by multi fingered

hand with tactile sensor based on robust force and position control. In:

2008 IEEE International Conference on Robotics and Automation. IEEE,

pp. 264–271.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Xi Chen, O., Duan, Y.,

Schulman, J., DeTurck, F. and Abbeel, P. 2017. # exploration: A study

of count-based exploration for deep reinforcement learning. Advances in

neural information processing systems 30.

Tesauro, G. et al. 1995. Temporal difference learning and td-gammon. Com-

munications of the ACM 38(3), pp. 58–68.

263

Tessler, C., Givony, S., Zahavy, T., Mankowitz, D. and Mannor, S. 2017. A

deep hierarchical approach to lifelong learning in minecraft. In: Proceedings

of the AAAI Conference on Artificial Intelligence. vol. 31.

Tiong, T., Saad, I., Teo, K. T. K. and bin Lago, H. 2020. Deep reinforce-

ment learning with robust deep deterministic policy gradient. In: 2020

2nd International Conference on Electrical, Control and Instrumentation

Engineering (ICECIE). IEEE, pp. 1–5.

Todorov, E., Erez, T. and Tassa, Y. 2012. Mujoco: A physics engine for

model-based control. In: 2012 IEEE/RSJ international conference on in-

telligent robots and systems. IEEE, pp. 5026–5033.

Turpin, D., Wang, L., Heiden, E., Chen, Y.-C., Macklin, M., Tsogkas, S.,

Dickinson, S. and Garg, A. 2022. Grasp’d: Differentiable contact-rich grasp

synthesis for multi-fingered hands. In: European Conference on Computer

Vision. Springer, pp. 201–221.

Van Hasselt, H., Guez, A. and Silver, D. 2016. Deep reinforcement learn-

ing with double q-learning. In: Proceedings of the AAAI conference on

artificial intelligence.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B., Heess,

N., Rothörl, T., Lampe, T. and Riedmiller, M. 2017. Leveraging demon-

strations for deep reinforcement learning on robotics problems with sparse

rewards. arXiv preprint arXiv:1707.08817 .

Wang, J., Chi, W., Li, C., Wang, C. and Meng, M. Q.-H. 2020. Neural rrt*:

Learning-based optimal path planning. IEEE Transactions on Automation

Science and Engineering 17(4), pp. 1748–1758.

264

Wang, X., Lee, K., Hakhamaneshi, K., Abbeel, P. and Laskin, M. 2022. Skill

preferences: Learning to extract and execute robotic skills from human

feedback. In: Conference on Robot Learning. PMLR, pp. 1259–1268.

Watkins, C. J. and Dayan, P. 1992. Q-learning. Machine learning 8(3), pp.

279–292.

Wei, E., Wicke, D. and Luke, S. 2018. Hierarchical approaches for reinforce-

ment learning in parameterized action space. In: Proceedings of the AAAI

Conference on Artificial Intelligence.

Wen, B., Lian, W., Bekris, K. and Schaal, S. 2022. Catgrasp: Learning

category-level task-relevant grasping in clutter from simulation. In: 2022

International Conference on Robotics and Automation (ICRA). IEEE, pp.

6401–6408.

West, D. B. et al. 2001. Introduction to graph theory, vol. 2. Prentice hall

Upper Saddle River.

Williams, R. J. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning 8(3), pp. 229–256.

Wu, B., Akinola, I. and Allen, P. K. 2019. Pixel-attentive policy gradient

for multi-fingered grasping in cluttered scenes. In: 2019 IEEE/RSJ inter-

national conference on intelligent robots and systems (IROS). IEEE, pp.

1789–1796.

Wu, H., Zhang, Z., Cheng, H., Yang, K., Liu, J. and Guo, Z. 2020. Learning

affordance space in physical world for vision-based robotic object manipu-

lation. In: 2020 IEEE International Conference on Robotics and Automa-

tion (ICRA). IEEE, pp. 4652–4658.

265

Xu, D., Mandlekar, A., Mart́ın-Mart́ın, R., Zhu, Y., Savarese, S. and Fei-Fei,

L. 2021. Deep affordance foresight: Planning through what can be done

in the future. In: 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 6206–6213.

Yang, C., Lan, X., Zhang, H. and Zheng, N. 2019. Task-oriented grasping in

object stacking scenes with crf-based semantic model. In: 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE,

pp. 6427–6434.

Yang, C., Yuan, K., Zhu, Q., Yu, W. and Li, Z. 2020. Multi-expert learning

of adaptive legged locomotion. Science Robotics 5(49), p. eabb2174.

Yang, S., Zhang, W., Song, R., Cheng, J. and Li, Y. 2021. Learning multi-

object dense descriptor for autonomous goal-conditioned grasping. IEEE

Robotics and Automation Letters 6(2), pp. 4109–4116.

Yang, X., Ji, Z., Wu, J. and Lai, Y.-K. 2023. Recent advances of deep

robotic affordance learning: a reinforcement learning perspective. IEEE

Transactions on Cognitive and Developmental Systems .

Yu, W., Kumar, V. C., Turk, G. and Liu, C. K. 2019. Sim-to-real transfer for

biped locomotion. In: 2019 ieee/rsj international conference on intelligent

robots and systems (iros). IEEE, pp. 3503–3510.

Yuan, W., Dong, S. and Adelson, E. H. 2017. Gelsight: High-resolution robot

tactile sensors for estimating geometry and force. Sensors 17(12), p. 2762.

Zamora, I., Lopez, N. G., Vilches, V. M. and Cordero, A. H. 2016. Extending

the openai gym for robotics: a toolkit for reinforcement learning using ros

and gazebo. arXiv preprint arXiv:1608.05742 .

266

Zeng, A., Song, S., Lee, J., Rodriguez, A. and Funkhouser, T. 2020. Toss-

ingbot: Learning to throw arbitrary objects with residual physics. IEEE

Transactions on Robotics 36(4), pp. 1307–1319.

Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A. and Funkhouser,

T. 2018. Learning synergies between pushing and grasping with self-

supervised deep reinforcement learning. In: 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4238–

4245.

Zeng, A., Song, S., Yu, K.-T., Donlon, E., Hogan, F. R., Bauza, M., Ma,

D., Taylor, O., Liu, M., Romo, E. et al. 2022. Robotic pick-and-place of

novel objects in clutter with multi-affordance grasping and cross-domain

image matching. The International Journal of Robotics Research 41(7),

pp. 690–705.

Zhang, F., Leitner, J., Ge, Z., Milford, M. and Corke, P. 2019. Adversarial

discriminative sim-to-real transfer of visuo-motor policies. The Interna-

tional Journal of Robotics Research 38(10-11), pp. 1229–1245.

Zhang, S. and Whiteson, S. 2019. Dac: The double actor-critic architecture

for learning options. Advances in Neural Information Processing Systems

32.

Zhang, X., Koyama, K., Domae, Y., Wan, W. and Harada, K. 2021. A

topological solution of entanglement for complex-shaped parts in robotic

bin-picking. In: 2021 IEEE 17th International Conference on Automation

Science and Engineering (CASE). IEEE, pp. 461–467.

Zhao, B., Zhang, H., Lan, X., Wang, H., Tian, Z. and Zheng, N. 2021.

Regnet: Region-based grasp network for end-to-end grasp detection in

267

point clouds. In: 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 13474–13480.

Zhao, W., Queralta, J. P. and Westerlund, T. 2020. Sim-to-real transfer

in deep reinforcement learning for robotics: a survey. In: 2020 IEEE

symposium series on computational intelligence (SSCI). IEEE, pp. 737–

744.

Zheng, K., Chen, X., Jenkins, O. C. and Wang, X. 2022. Vlmbench: A

compositional benchmark for vision-and-language manipulation. Advances

in Neural Information Processing Systems 35, pp. 665–678.

Zheng12, Z., Yuan, C., Lin12, Z. and Cheng12, Y. 2018. Self-adaptive dou-

ble bootstrapped ddpg. In: International Joint Conference on Artificial

Intelligence.

Zhou, M., Liu, Z., Sui, P., Li, Y. and Chung, Y. Y. 2020. Learning implicit

credit assignment for cooperative multi-agent reinforcement learning. Ad-

vances in neural information processing systems 33, pp. 11853–11864.

Zhu, Y., Stone, P. and Zhu, Y. 2022. Bottom-up skill discovery from un-

segmented demonstrations for long-horizon robot manipulation. IEEE

Robotics and Automation Letters 7(2), pp. 4126–4133.

Zhu, Y., Wong, J., Mandlekar, A., Mart́ın-Mart́ın, R., Joshi, A., Nasiriany,

S. and Zhu, Y. 2020. robosuite: A modular simulation framework and

benchmark for robot learning. arXiv preprint arXiv:2009.12293 .

Zou, F., Shen, L., Jie, Z., Zhang, W. and Liu, W. 2019a. A sufficient condition

for convergences of adam and rmsprop. In: Proceedings of the IEEE/CVF

Conference on computer vision and pattern recognition. pp. 11127–11135.

268

Zou, Z., Shi, Z., Guo, Y. and Ye, J. 2019b. Object detection in 20 years: A

survey. arXiv preprint arXiv:1905.05055 .

269

	Abstract
	Acknowledgement
	List of Figures
	List of Tables
	List of Acronyms
	List of Notations
	Publication List
	Introduction
	Background
	Aim and Ojbectives
	Contributions
	Outline of the thesis

	Literature review
	Introduction
	Grasp planning
	Background
	Classic methods and constraints
	Deep learning task-agnostic grasp
	Deep learning task-oriented grasp
	Summary

	Manipulator control
	Background
	Classic motion planning
	Motion policy learning
	Summary

	Hierarchical manipulation systems
	Task and motion planning
	Learning-based hierarchical control
	Manipulation affordance learning
	Summary

	Robotic simulations
	Simulators
	Sim-to-real policy transfer
	Summary

	Preliminary
	Standard Reinforcement Learning
	Markov decision process
	RL algorithm foundations
	Value-based method
	Policy gradient
	Actor-critic
	Summary

	Deep Reinforcement Learning
	Deep learning basics
	Deep q-learning
	Deep deterministic policy gradient
	Soft actor critic
	Optimisation tricks
	Summary

	A2: Accelerate Reinforcement Learning for Multi-step Robotic Manipulation
	Introduction
	Summary and chapter organisation

	Method
	Goal-conditioned reinforcement learning
	Problem description and assumptions
	Abstract Demonstration
	Adaptive Exploration
	Summary

	Empirical Results
	Task and implementation details
	Ablation study
	General performance

	Summary

	Universal Option Framework for Multi-outcome Multi-step Robotic Manipulation
	Introduction
	Summary and chapter organisation

	Hierarchical Reinforcement Learning
	The option framework
	How options have been constructed
	Inter-option policy learning
	Summary

	The Universal Option Framework
	Universal option and high-level policy
	Implementation

	Training Methods
	Learning algorithms
	Tackling non-stationarity
	Summary

	Empirical Results
	Task design
	Parallel training improvement
	Learning multiple outcomes
	Additional tasks

	Summary

	Contact-Rich Grasping and Manipulation with General Affordance
	Introduction
	Related works on object disentangling
	Summary and chapter organisation

	Affordance Theory in RL
	Definition
	Remarks
	General affordance
	Summary

	General Affordance-aware Manipulation
	Task-agnostic grasp generation
	Manipulation affordance-based grasp filtering
	Reinforcement learning-based manipulation

	Empirical Results
	Experiment Design
	Performances with task-agnostic grasps
	Performances with grasp filtering

	Summary

	Conclusion and future work
	Conclusion
	Limitations and future work

