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Thesis Abstract

Automated radiotherapy planning is characterised by reduction in manual planning due

to an increase in computerised planning. Current methods can produce plans suitable for

clinical use. However, every case is unique and manual intervention is often needed. The

goal of this work was to determine whether it is feasible to develop a fully automated

planning system producing clinically optimal plans, and if so, to begin developing it.

This work explored relationships between automated planning parameters and anatom-

ical features with respect to dosimetric outcomes. A rules-based automated planning

technique was used, an algorithm requiring calibration of input parameters prior to use.

This calibration determines the target objectives the algorithm will optimise to. Existing

calibration methods use a single set of calibrated parameters per treatment site and are

applied to all patients. This approach is considered sufficient to meet clinical goals but

may not be sufficient for development of optimal personalised planning due to anatomical

variance between patients. Using a validated rules-based planning methodology and ob-

taining patient bespoke expert-driven calibrated parameters as the optimal gold standard

and validation benchmark, two machine learning techniques were explored for apriori

configuration of parameters for the delivery of personalised treatment planning. The

main objective was to train models to predict gold standard parameters hence generating

expert planning automatically. A secondary objective was to determine dosimetric differ-

ences between plans generated via machine learned parameters and a traditional single

set of parameters applied to all cases. Preliminary studies were carried out to define what

will be considered gold standard and to identify anatomical features for inclusion in the

main study as well as their relationships to calibrated parameters. The research presented

here was applied to three sites: prostate, rectum and lung. Findings are also expected to

provide heuristics for research to be carried out on other treatment sites.
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Nomenclature and acronyms

Nomenclature

Automated planning Automated radiotherapy planning. A class of planning

methods that minimise human manual planning

Bremsstrahlung Radiation emitted by electron liberated from an atom

Clustering Automatic clustering. A class of unsupervised machine

learning methods characterised by grouping data points

such that points within a cluster have greater similarities

to points outside of the cluster

Conformality index A value between zero and one indicating the level to which

the planning dose conforms to the prescribed dose

Cross validation A resampling method to train and validate models using a

single dataset

Degree Degree of a polynomial model e.g., a quadratic model has

two degrees

Delineation Contour of the outline of a regions-of-interest

Feature Anatomical variable that defines a geometric characteristic

relating to regions-of-interest. May be used in raw form or

as Principal Components

Feature set Set of Features. May be a subset of FeatureDS2 or a subset

of Principal Components of FeatureDS1

FeatureDS1 Database of all raw Features used for generating Principal

Components. Contains no variables with missing data or

low variance

xxii
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FeatureDS2 A subset of FeatureDS1. No pair of Features has a correla-

tion coefficient greater than 0.85

Homogeneity index A value between zero and one indicating a level of unifor-

mity of dose over the target region

Knowledge-based plan-

ning

A class of automated planning approaches that utilise a

knowledge-base for plan generation

Machine learning Forms of artificial intelligence trained on data to produce

outputs

Multi-criteria optimisa-

tion

Mathematical optimisation techniques involving optimisa-

tion of more than one objective function

Organ-at-risk Radiosensitive regions-of-interest at increased risk of radi-

ation induced side effects due to treatment

Pareto optimisation Optimisation approaches focused on solutions along the

Pareto front, a subset of feasible solutions such that no ob-

jectives can be improved further without leading to a detri-

ment for at least one other

Planning An external beam radiotherapy treatment stage in which

treatment delivery is planner

Planning goal Derived from clinical goals defined by an oncologist or lo-

cal practice for use in planning. Used to help define op-

timisation objectives used by a treatment planning system

for plan optimisation

Planning parameter A weighting factor or other input of an automated plan-

ning system. It is often used to reference a numeric value

between zero and infinity that determines the level priority

a planning goal should receive during optimisation.

Protocol based automatic

iterative optimisation

An automated planning solution using an iterative update

approach

Pareto-guided automated

planning

Automated planning method that incorporates Pareto-

navigation techniques

Radiotherapy Also known as radiation therapy. A class of medical treat-

ment modalities involving ionising radiation
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Region-of-interest A region to be considered during planning. These will of-

ten be whole organs or sub-sections of organs.

Regression A class of supervised machine learning methods in which

inputs are related to outputs using mathematical functions

Rules-based planning A class of automated planning approaches utilising algo-

rithms to generate plans

Slope Rate of change i.e. change in y ÷ change in x
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Chapter 1

Introduction

1.1 Thesis aims

The field of automated planning (AP) was developed to reduce reliance on human inter-

action during the planning process. The possibility of developing a fully automated plan-

ning application with zero hands-on time is still to be realised especially those achieving

clinically desirable planning equivalent to or even surpassing manual human planning.

The goal of this work was to determine whether it is feasible to develop a fully auto-

mated planning system. The hypothesis is: if expert-driven AP calibration can be mod-

elled using anatomical features as predictive variables, not only will this aid in uncover-

ing the underlying relationships between anatomy, planning parameters and dosimetry,

but may also facilitate a full AP method that produces clinically desirable plans. The

main objective of the original research presented in this thesis involves the generation

and testing of machine learning (ML) techniques to predict expert-driven AP calibration

for an in-house built AP method. Additionally it was to determine dosimetric differences

between machine learned parameters and traditional site-specific parameters applied to

all cases.

1.2 Thesis outline

Radiotherapy background (chapter 2) This chapter presented the context of the project

with respect to the field of oncology and cancer research. The various types of treatments

that are available are discussed including the prevalence of radiotherapy as a treatment

modality. General principles of radiotherapy are introduced such as radiobiological inter-

1
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actions and dose deposition. Methods of dose calculation are discussed in light of varying

densities within anatomy and the importance of treatment planning systems is explained.

Finally, aspects of planning are defined including factors affecting inverse planning with

the concept of automated planning presented for further discussion in later chapters.

Automated planning (chapter 3)

This literature review presents the range of AP solutions that have been proposed and ap-

plied in clinical practice. Characteristics of each are described and some examples of use

and success rates discussed. The approaches are compared and critiqued with advantages

and pitfalls outlined including possible areas of development. The AP approach focused

on in this work will be introduced including details of the algorithm.

With respect to the literature review, developments to the current AP method are

proposed particularly for protocol-based automatic iterative optimisation (PBAIO) ap-

proaches. In the latter section of the chapter, the clinical sites considered in this thesis are

outlined and discussed including why they were chosen and patient inclusion-exclusion

criteria.

Hypothesis generation (chapter 4)

This chapter presents some of the preliminary work undertaken to gain knowledge about

the relationships between anatomy, planning parameters and dose distribution to aid in

the main ML study. It is split into three sections:

1. intra-planner study - a study that assesses discrepancies in planning choices by the

same expert planning professional when planning the same patients on different

days. Results of this study help in defining the gold standard

2. inter-planner study - a study to compare planning choices and prioritisation of

planning goals. The results of this study help in the definition and justification of

gold standard planning

3. anatomy simulation study - a study to methodically manipulate anatomy and pro-

duce new planning parameters. For each anatomy, new planning parameters were

obtained such that they result in a comparable dose distribution to the original

plan. Controlled augmentations of ROIs were created in order to simulate anatom-

ical variance and better understand the underlying relationships between anatomy
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and planning parameters.

From these studies, a definition for gold standard planning was obtained and heuristics

were generated for used as a guide in the ML solutions for the main study.

Modelling and cross validation (chapter 5)

In this chapter, ML approaches are discussed with detailed descriptions of regression

including multiple polynomial regression equations and descriptions of the range of au-

tomatic clustering algorithms with a detailed outlining of K-means. The ML approaches

chosen are outlined and their parameters explained. Their appropriateness is justified

and includes a discussion of why they were chosen over alternative ML methods. The

concept of goodness-of-fit metrics is introduced and explained with descriptions of each.

Also, outlined in this chapter is the concept of variable standardisation including the

importance of doing so and choosing the correct method.

Cross validation is also outlined in detail with a focus on the leave-one-out cross

validation approach. Cross validation is discussed with respect to planning parameter

prediction including a detailed example of the methods used in this thesis and why they

were chosen over alternative methods.

Regression modelling and cluster modelling (chapter 6)

The results of all cross validation models and final models are presented and discussed.

The various modelling methodologies used for the prediction of gold standard calibration

parameters towards a full AP system are presented including:

1. multi-polynomial regression using standardised raw features values

2. multi-polynomial regression using Principal Components in a reduced dimension

space

3. K-means clustering over standardised raw features

4. K-means clustering over Principal Components

Conclusion (chapter 7)

This chapter discusses the outcomes of the work and final thoughts on the application of

ML to AP calibration in general. Future work is suggested including developments of

this work and other related approaches.



Chapter 2

Radiotherapy Background

2.1 About radiotherapy

Cancer statistics for the UK indicate survival rates have doubled in the past 40 years. Of

those diagnosed, 50% live for 10 years or more and these rates are expected to improve.

Nevertheless, 375,000 new cancer cases are reported each year14. Radiotherapy is one

of the three main treatment modalities for cancer along with chemotherapy and surgery.

Of the patients receiving at least one of these three main treatment types, at least 27%

are treated with radiotherapy15,16. Given it is common for patients to receive more than

one form of treatment, up to 50% will benefit from radiotherapy as part of their course of

treatment17.

Matter that absorbs high energy electromagnetic radiation (such as the radiation as-

sociated with radiotherapy) are referred to as absorbers and interactions of radiation in

such matter occurs at the atomic level during radiotherapy. Human tissue contains ab-

sorbing matter and atomic level interactions with radiation affect tissue function at the

cellular level. This is usually due to alterations in the function of the deoxyribonucleic

acid (DNA). DNA molecules are polynucleotides present in the nucleus of every cell and

encode information including cell renewal and programmed cell death.

The radiation delivered during radiotherapy is “ionsing” as interactions with matter

can cause atoms to detach electrons resulting in charged particles known as ions. Ions

with unpaired electrons form free radicals that are chemically unstable. The production

of free radicals leads to more than one kind of chemical reaction but alterations in DNA

structure are dependent on the interactions that occur with water molecules18 as illustrate

in Figure 2.1. Alterations in DNA structure can occur due to base protein damage or can

4
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Figure 2.1: An illustration of DNA damage due to radiation. Adapted from RF Safe1

be due to single-stand or double-strand breaks in polynucleotide bonds.

Well designed radiotherapy treatment will usually cause the cell to follow a degrada-

tion pathway, an outcome that is highly correlated with an accumulation in the number

of double strand breaks19. Alternatively, treatment can lead to DNA adjustments that

encourage damaged cells to begin repairing themselves or simply to the loss of reproduc-

tive integrity. When there remain no clonogenic cells that maintain reproductive integrity

in a volume of tissue, mitosis is therefore inhibited. The tissue mass will then shrink as

cells begin to die given no further proliferation. Well designed radiotherapy treatment is

governed by the 5R’s of radiotherapy and these are outline below.

2.2 The five R’s of radiotherapy

The rationale behind many principles used in clinical radiotherapy treatments are based

on the five R’s of radiotherapy: repair, repopulation, redistribution, reoxygenation, and

radiosensitivity20,21 and these will be discussed in the following sections 2.2.1-2.2.5.

2.2.1 Radiosensitivity

Radiosensitivity refers to the level of resistance cells have to radiation-induced damage.

It can vary based on cells ability to repair damage, hypoxia, cell cycle position, and

growth fraction22. These will be discussed in more detail later. Radiosensitivity may

also be based on genetics of the individual.
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2.2.2 Repair

When DNA is damaged, the cell will usual repair itself in a process known as DNA

repair of which there are many known pathways23,24. Cell repair is less likely to occurs

when a cell is in what is known as the mitotic phase and treatments are designed to take

advantage of the differential in cell cycles between cancerous cells and health cells. This

will be discussed in more detail in section 2.3.2.

2.2.3 Repopulation

Repopulation refers to the proliferation of clonogenic cells. Repopulation of cells fol-

lowing treatment occurs at an increased rate than normal25 and research shows that treat-

ments designed to last an extended period of time can lead to detrimental outcomes due

to the increased rate of population in cancerous cells due to treatment26. Therefore, treat-

ments are designed to occur in short window to account for the increase in repopulation

rates due to treatment.

2.2.4 Redistribution

Cells enter different cycles at different times and are more radiosensitve during certain

cycles than others. Therefore, designing treatments such that cancerous cells are targeted

during the time they are expected to entering into their most radiosensitive phase has

therapeutic benefits. Research also shows that even sublethal damage can accumulate

hence continued treatment is advisable27.

2.2.5 Reoxygenation

After a dose of treatment, cells become hypoxic. That is an insufficient amount of oxygen

is available at the cell level to maintain homeostasis, the cells ability to self-regulate28.

Hypoxic cells are comparatively radioresistant29 and this leads to a therapeutic disadvan-

tage. Reoxygenation is the process in which cells that are hypoxic become oxygenated

again hence less radioresistant. Treatment is therefore designed to account for the need

of time between dose deliveries for cells to become reoxygenated and to take advantage

of this therapeutic benefit.
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2.3 Radiotherapy as a treatment for cancer

Cancer treatment is bespoke to each patient with treatment considerations made on a

patient-by-patient basis by a multidisciplinary team of professions. Radiotherapy treat-

ments are highly versatile and suitable in an array of cases including cancers of the soft

and connective tissue (sarcoma)30, the lymphatic system (lymphoma)31 and the bone

marrow (myeloma)32. However, radiotherapy is particularly well suited to treating car-

cinoma: cancers originating in the surface or skin of organs that typically form tumours.

Treatment of carcinoma is well documented and this thesis will focus on these therapies.

2.3.1 Cell survival

The term cell survival refers to the number of clonogenic cells remaining following treat-

ment and is known to depend on a number of factors33. Nevertheless, there is a partic-

ularly strong documented relationship between the radiation energy absorbed by matter

and cell survival and this relationship can be modelled. A common model used for this

is the Linear-Quadratic model34, an exponential decay function of the form:

S(D) = e−(αD+βD2), (2.1)

where cell survival S is a function of radiation dose, D, which is the amount of absorbed

radiation energy. The constants α and β refers to the relative radiosensitivity of the cell

due to the number of double strand breaks that are expected. A large α
β ratio indicates

the relatively greater importance of the linear coefficient and suggests a comparatively

constant rate of cell death as radiation energy increases. Smaller α
β ratios suggest cell

death will occur at a faster rate as radiation energy increases.

2.3.2 Cell Cycles

Cell cycle repetition in tumorous cells occur more frequently than in normal tissue mean-

ing there are a larger number of tumour cells entering the mitotic phase of the cell cycle

(Figure 2.2) than the surrounding tissue. This links closely to redistribution mentioned

in section 2.2.4. Double strand breaks are achieved at an increased rate when cells are in

this phase, hence an increased rate of cell death is likely to occur in cancer cells when

treated35. However, not only the disease is subject to treatment. When healthy tissue

is irradiated, cell damage can occur and lead to radiation induced toxicity. Toxicity has
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Figure 2.2: Illustration showing the various stages of the cell cycle broken down by respective

duration for the average healthy cell2

been associated with radiation induced secondary malignancies in cells that were previ-

ously healthy36–38 and can also lead to acute radiation syndrome causing the patient to

go through four stages of symptoms before ultimately recovering or dying. Targeting

treatment appropriately is therefore vital, not only for ensuring effective treatment of the

disease but also to minimising the likelihood of radiation induced side-effects. Radio-

therapy is administered using different methods, each with benefits and pitfalls. These

will be discussed in more detail.

2.3.3 Types of radiotherapy treatments

Delivery methods include molecular radiotherapy39, brachytherapy40 and external beam

radiotherapy (EBRT). Molecular radiotherapy refers to the use of radiopharmaceuticals

administered intravenously or orally to be taken up by the disease. This method therefore

has the advantage of accurate targeting and it is also useful for treating any disseminated

disease. However, it is not as widely used as other treatments41 as it is most effective in

specific cases. The radiopharmaceutical is chosen based on properties of the cancer and

the propensity of the associated region to take it up and will therefore not be applicable

in all cases.

Brachytherapy refers to the use of radioactive seeds or metal pellets that are inserted

into or near to the target area. This treatment is widely used today and is especially useful

for achieving local control but less useful for treating the disseminated disease. EBRT is

among the most common forms of radiotherapy in use today and refers to any radiother-
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apy treatment involving radiation beams directed towards the treatment site from outside

the body. Although it is not as effective at obtaining local control as other methods, a

key advantage is the non-invasive nature of the procedure. Advanced forms of EBRT

will be the focus in this work, specifically intensity-modulated radiotherapy (IMRT) and

volumetric modulated radiotherapy (VMAT) and these will be discussed further in the

following sections.

EBRT refers to a range of treatments42 most of which utilise photons and almost all

deliver dose using a linear accelerator (linac). The linac comprises a couch upon which

the patient is immobilised and a moving gantry head that delivers the therapeutic dose.

A schematic of linac gantry head composition can be found in Figure 2.3 and it contains

a few key elements including:

• The gantry head target - a metal plate (usually tungsten) that interacts with accel-

erated electrons and is used to produce photons

• Primary collimator - used to define the primary field size by absorbing scatter pho-

tons outside of a specified field

• Flattening filter - used to flatten the beam and create a uniform field

• Ion chamber - measures the delivered dose and used to terminate the beam when

the specified dose has been achieved

• Mulit-leaf collimator - used to achieve conformal shaping of the beam to match

the treatment target contours at the angle being treated

Within a modern photon linac, free electrons are created in the cathode through a process

known as thermionic emission and accelerated towards the gantry head target through

an electron waveguide using two sets of steering coils. When accelerated electrons hit

the gantry head target, bremsstrahlung interactions with atoms in the target lead to the

production of photons that are scattered in all directions. Forward travelling photons pass

through the primary collimator and due to scatter form a cone beam. Photon fluence is

defined as the number of photons incident on a surface per unit area of the surface per

second. As the distribution of photons exiting the primary collimator are more concen-

trated at the center of the beam, a flattening filter is placed in the beam path and absorbs

energy close to the center producing a more uniform fluence across the beam. The sec-

ondary collimator or jaws, define the maximum beam field with the multi-leaf collimator
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Figure 2.3: Illustration of the key components with the linac gantry head. Adapted from Chetty

et al. (2007)3

(MLC) used to form specific aperture shapes to conform to treatment target contours and

modulate dose.

During three-dimensional conformal radiotherapy (3D-CRT) for example, a 3D digi-

tal simulation of patient anatomy is created based on prior imaging (usually computerised

tomography or CT image slices) that have been manually delineated to contour regions-

of-interest (ROIs). These 3D images are used to plan aperture shapes that match the

treatment volume at defined angles in a single plane in 3D space and these can then be

used to define the position of the linac jaws and MLCs at various angles. This form of

EBRT is delivered from set coplanar beam angles around the patient with each beam

delivering uniform fluence.

However, IMRT is considered the standard today. Multiple modulated beam aper-

tures enable non-uniform beam fluence ensuring not only for an appropriate dose delivery

to target structures, but greater sparing of healthy tissue43. IMRT can be implemented

using step-and-shoot in which MLCs form aperture shapes whilst the beam is off, or

a sliding window delivery method in which aperture shapes are formed with the beam

on. Research suggests therapeutic results of each implementation are greatly compa-

rable44,45. However, a weakness of IMRT is the increase in treatment delivery times

compared to other EBRT delivery methods.

Volumetric modulated arc therapy (VMAT) is a novel implementation of IMRT where

aperture shapes are altered dynamically whilst the beam is on and dose is delivered as the
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gantry moves continuously in a 360° motion. A finite number of coplanar beam fields are

defined and the machine parameters between defined fields are interpolated. It has been

found that although VMAT is likely to result in a low dose bath to the patient outside

of the treatment volume due to all angles of the patient being exposed to dose, it allows

for greater sparing to organs-at-risk (OARs) and is still expected to correlate well with a

reduction in dose to OARs and radiation induced side-effects46–48.

For small tumours, tumours in areas sensitive to radiation and non-localised can-

cers such as myeloma and leukemia, alternative forms of EBRT are available and in-

clude stereotactic radiation therapy, proton therapy and total body irradiation respec-

tively. Also, in some institutions, non-coplanar VMAT is also possible49,50. Although

these other forms of EBRT are used in current practice, for the remainder of this thesis

the focus will be on coplanar IMRT and VMAT only.

2.4 Considerations prior to implementing IMRT or VMAT

Prior to clinical use, quality assurance practices must be carried out including a com-

missioning stage of the linac and corresponding tools to ensure they are aligned and

configured appropriately. This involves measuring intended dose delivery against actual

delivered dose and adjusting machine parameters accordingly. This often involves the

use of phantoms and these will be discussed in more detail in the next paragraph. How-

ever, IMRT and VMAT still present some risk of leading to radiation induced side effects

and this can be thought of an an unavoidable consequence of these EBRT techniques.

Nevertheless, there are additional procedures for mitigating random and systematic er-

ror for clinical effectiveness and better protection for patients. These include the use of

immobilisation, fractionation and planning.

The term phantom refers to any object or device used in place of a human and there

are many types of phantom. For example, the Delta4 phantom (Scandidos, Uppsala, Swe-

den) comprises two intersecting perpendicular planes of polymethylmethacrylate con-

taining dose sensors. It is used to measure dose delivered by the linac and can be used

to determine whether a plan is deliverable or not. Dose to the phantom is compared

against intended dose to the phantom with machine parameter adjustments made when

significant discrepancies are found. The computerised XCAT phantom aids with realis-

tic patient modelling in 4-dimensions51 and can be useful for estimating dose delivery

to treatment regions under motion such as the lungs. A water phantom can be used to
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measure dose at depth in homogeneous matter and produce estimates for dose in inho-

mogeneous matter such as human tissue. Phantoms are therefore safe measurement tools

and verification mechanisms for machine configuration and help to facilitate in silico

machine configuration prior to patient treatment.

Immobilisation refers to the fixed position patients are asked to assume during treat-

ment sessions. The purpose is minimisation of systematic error following machine con-

figuration and patient treatment targets. A common standard immobilisation is the head-

first supine position in which a patient lays on their back with their head at the top of

the couch and feet at the bottom. There are many others, some of which include the use

of immobilisation devices including personalised molds and supports. Immobilisation

is useful for: (i) initial treatment planning which will be discussed in a later paragraph,

(ii) adaptive radiotherapy which relates to changes made to the initial treatment plan to

account for anatomical variance that has occurred since the original plan was made, and

(iii) a reduction in systematic errors during treatment due to consistent positioning.

Fractionation refers to the practice of delivering the prescribed dose over a series

of treatment sessions. The full prescribed dose is usually not delivered to a patient in

one session. Instead it is split into a series of fractional doses delivered in succession

(e.g., daily). This has a therapeutic benefits for the healthy tissue, given cell repair and

recovery is achieved at a higher rate in non-cancerous tissue and will commonly result

in manageable acute side effects such as nausea. For this reason, it is expected that with

effective targeting, most of the treated healthy tissue will be repaired between fractions.

Fractionation also links closely to the α
β ratio of the coefficients of equation 2.3.1 and

is sometimes known as the therapeutic ratio which will be discussed later in section

2.10.1. But fractionation is not only beneficial in terms of cell repair. Short fractions

help to manage the repopulation of clonogenic tumour cells, it ensures an accumulation

of sublethal dose to cells as they redistribute through the cell cycle, and it allows time for

reoxygenation of hypoxic cells. However, all other pre-treatment considerations depend

upon the achievement of a clinically applicable treatment plan.

Treatment cases may be comparable but each is unique and must be considered on

a case-by-case basis. Achievement of effective treatment is strongly dependent on the

production of an appropriate plan and planning comprises a number of stages that will

be outlined in section 2.10. Firstly, in order to better understand planning, the treatment

pipeline will be outlined. Following this, the background of radiotherapy will be dis-
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cussed including understanding imagining, dose deposition and how dose maps are cal-

culated and modelled. Also, as previously mentioned, radiotherapy planning is closely

related to adaptive radiotherapy. Although applications of adaptive radiotherapy are out-

side of the scope of this work, it should be noted that treatment planning approaches

applicable to the original plan are often applicable in adaptive planning also.

2.5 Radiotherapy treatment pipeline

There are four main stages of the radiotherapy treatment pipeline:

1. Diagnosis and patient consent to treatment

2. Pre-treatment preparation

3. Treatment

4. Post-treatment follow-up

Following consultation with an oncologist, the disease will be diagnosed and as men-

tioned, a multidisciplinary team of professions will identify radiotherapy as a viable

form of treatment (or otherwise). If the patient consents, the pre-treatment stage will

commence. The pre-treatment stage itself contains a number of phases including imag-

ining for the visualisation of anatomy, delineation of key ROIs and treatment planning.

Following this, the treatment stage of the pipeline commences in which the prescribed

dose is delivered to the patient in a series of fractional doses over a defined period (e.g.,

everyday for a week). The patient will then follow-up with the oncologist to reassess the

prognosis. This thesis will focus on the pre-treatment stage of the pipeline, in particular

the treatment planning phase of pre-treatment. All stages of pre-treatment are important

to planning and all will be outlined in the following sections. This includes outlining the

fundamentals of radiation as pertain to radiotherapy and the background of radiotherapy

planning techniques.

2.6 Imaging

More than one imaging modality is considered appropriate for clinical use due the ability

of various modalities to produce a 3D snapshot of patient anatomy. CT is the predom-

inant imaging modality within radiotherapy. A series of cross-sectional images through
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the body are captured via non-ionising radiation, usually up to 0.015Gy. Regions of high

density (such as bone) will appear white, regions containing air will appear black and

other regions will appear grey relative to their density. A core advantage of CT is the

images can be used to determine the Hounsfield Units (HU) of different structures. From

HU values, it is possible to directly calculate electron density and this detail is an essen-

tial requirement for subsequent dose prediction and optimisation systems, the details on

which will be address in section 2.10.2. However soft tissue contrast is poor with this

imaging modality and it provides no “functional image” information.

An alternative modality is magnetic resonance imaging (MRI) and this uses high

energy magnetic fields to manipulate water molecules. It exploits the fact that water

molecules in material of different densities move at different rates. Therefore, MRI is

valuable for imaging areas of low density such as the brain and requires no radiation

hence has the advantage of no dose deposition.

A further alternative is positron emission tomography (PET), a modality that makes

use of gamma cameras to capture gamma ray production due to positron collisions of

electrons. Given tumours often have a higher metabolic rate than surrounding tissue, ad-

ministering a radioactive tracer results in a high rate of uptake by the tumour and gamma

ray production is often well localised in this area. PET scans are therefore useful for func-

tional imaging such as visualising metabolic activity and has the advantage of providing

superior visualisation of the tumour when multi-modality imaging is applicable.

2.7 Delineation

Following imaging, organs and treatment volumes are delineated by qualified profession-

als and important ROIs identified. These include the sequentially determined volumes

defined for treatment outlined by the the International Commission on Radiation Units

and Measurements (ICRU)52 and an illustrative example of these volumes can be found

in Figure 2.4. These volumes include:

• Gross Tumor Volume (GTV) - delineates the gross visible malignant growth and

contains the macroscopic disease. Multiple imaging modalities may be used to

improve the delineation of this region.

• Clinical Target Volume (CTV) - accounts for the microscopic and/or subclincal

invasion of the tumour to the surrounding area.
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• Planning Target Volume (PTV) - a volume used to minimise the likelihood of under

or over treating the CTV due to intra- and inter-fraction geometric changes. Plan-

ning utilises static imaging, although idiosyncratic geometric anatomical changes

can occur at any time. Changes can be due to tumour shrinkage, unexpected organ

motion, weight loss or other unexpected changes. Estimations of possible varia-

tions in ROI positioning are considered including variations in CTV positioning.

The defined PTV is therefore applied as a treatment margin used to plan dose de-

livery and increase the likelihood the CTV will receive the prescribed dose upon

treatment even when its position deviates from that of the original imaging.

• Internal volume target (ITV) - a volume accounting for known or expected changes

in CTV position and used in specific planning cases such as lung radiotherapy. A

CTV is considered prior to the PTV contour being delineated.

• Organs at Risk (OAR) - comparatively radiosensitive normal tissue proximal to

treatment target volumes. These include regions at increased risk of long term

and/or severe functional damage given certain treatment conditions. Avoidance of

these structures are considerations made during planning.

• Planning Organ at Risk Volume (PRV) - similar to the PTV concept, PRVs con-

sidered OAR position variance given unexpected changes in anatomy following

original imaging. A PRV can be used during planning to increase the likelihood of

appropriate avoidance of dose to OAR during treatment.

• Treated volume - refers to the total region receiving the prescribed dose intended

for the PTV. This volume is used to define conformality metrics that are useful for

reviewing a plans clinical applicability.

• Irradiated volume - refers to all other dose received during treatment that is con-

sidered significant with respect to the normal tissue.

Achieving conformal fields about the PTVs is desirable in the avoidance of OAR treat-

ment. However, given PTVs can overlap OARs, conflicts can occur during planning and

management of these conflicts determines overall clinical desirability of the final plan.

This will be discussed in more detail in section 2.16. First, the fundamentals of radio-

therapy and planning will be discussed.
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Figure 2.4: An example schematic of volume definition as defined by the ICRU. Adapted from

ICRU report 62

2.8 Fundamentals of radiotherapy

2.8.1 Photon interaction with matter

Electromagnetic radiation moves as a wave and through a vacuum travels at the speed of

light, c. Given wavelength λ, unit oscillation of an electromagnetic wave is defined as

v = c/λ. Gamma rays contain uncharged photon particles and have the quality of short

wavelengths, high energy and high penetration. Given unit oscillation of the gamma ray,

v, by the unit-mass equivalency each photon carries energy hv where h = 6.626 J s−1

is Planck’s universal constant and 1 J is defined as

1 J = 1 kg m2 s−2. (2.2)

Absorbed dose is defined as the amount of energy deposited within matter and is mea-

sured in Gray (Gy) where 1 Gy of absorbed dose is defined as 1 Joule (J) of energy

absorbed per kilogram. The kinetic energy of accelerated particles is measures in mega-

electron volts (MeV) where 1 MeV is defined

1 MeV = 1.6× 10−13J (2.3)

The term scatter used here will refer to a change in direction of a particle once following

a different trajectory. Photon attenuation is due to one of four main kinds of interac-

tion18,53:
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• Photo-electric effect - ejection of an electron (known as a photoelectron) by a pho-

ton incident to the atom. Given incoming photon energy of hv, the ejected pho-

toelectron has kinetic energy T = hv − EB where EB is the binding energy of

the electron. Electrons liberated from lower shells have a higher EB than outer

shell electrons and this form of photo-electric scatter can result in liberation of an

electron as well as a production of a photon. An outer shell electron dropping to

replace the ejected electron produces a photon with energy equal to the difference

between the energy level of the two shells

• Rayleigh scatter - refers to “coherent” scatter in which no energy is lost or absorbed

but scatter occurs due to deflection

• Compton scatter - refers to “incoherent” scatter in which some energy is lost due

to absorption and the rest converted to one of two types of scatter. The incident

photon leads to liberation of an electron at an angle θ and deflection of the photon

at angle ϕ and reduced energy. The kinetic energy of the ejected electron is T =

hv − hv′ where hv′ is the energy of the scattered photon and defined

hv′ =
hv

1 + α(1− cos θ)
(2.4)

where α = hv/m0c
2, c is the speed of light and m0 is the rest mass of the electron.

The relation between θ and ϕ is given by

cotϕ = (1 + α) tan
θ

2
, (2.5)

and T is maximised when the photon is scattered directly backwards.

• Pair production - refers to creation of an electron-positron pair following collision

with the nucleus with a combined kinetic energy of T− + T+ = hv − 2m0c
2.

Given 2m0c
2 ≈ 1.022 MeV, this is the threshold for pair production.

Figure 2.5 illustrates how dominant forms of interaction vary with energy and atomic

number. At lower energies, photo-electric scatter is dominant especially as atomic num-

bers increase and at higher energies, pair production. Compton scatter is the dominant

interaction mechanism in EBRT discussed in this work.

2.8.2 Factors influencing dose deposition

Photon scatter is stochastic and therefore calculations for dose to patients are probabilis-

tic. For any one beam energy, there are nominally three criteria affecting dose delivery
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Figure 2.5: An illustration of dominant interaction mechanisms with respect to the atomic num-

ber of the absorber and beam energy. Adapted from Parajuli et al. (2022)4.

in matter18:

• distance between the radiation source and the surface of the matter - the unatten-

uated dose rate is inversely proportional to the square of the distance between the

source and point of measurement18,54. That is, expected dose at the point of mea-

surement is proportional to r2 where r is the distance between the radiation source

and matter.

• beam energy - assuming uniform density of matter and a set skin-to-source dis-

tance, the energy of the beam determines the percentage of absorbed dose given

the depth. This is known as the “percentage depth dose” or PDD. Maximum PDD

(Dmax) occurs at some depth below the surface of the matter. This is due to the ac-

cumulation (or build-up) of energy due to the release of secondary electrons. With

higher energy beams, the path length of secondary electrons increases meaning the

build-up occurs at a greater length and Dmax occurs at a lower depth.

• size and shape of the beam field - as the depth increases so too does the overall rate

of scatter. Total scatter is minimised at depth for smaller field sizes. Field size also

affects the build-up region with the maximum dose occurring closer to the surface

over larger fields of the same beam intensity and source-to-skin distance.

As source-to-skin distance and/or beam size increases, the percentage of scatter in-
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creases. As beam energy increase, the percentage of scatter decrease. With these factors

controlled, generation of computational dose models are possible. In particular, man-

aging dose deposition by manipulating the beam shape and size is exploited in modern

EBRT using MLCs to deliver non-uniform fluence to the target area. Initial dose cal-

culation is generated assuming patient composition is equivalent to that of water given

the large proportion of human tissue that is water. Corrections and models are therefore

based on this fact.

2.9 Dose Calculation

Recognised dose calculation algorithms can be broadly categorised into three groups55:

• correction-based algorithms - measurement-based algorithms that rely on predic-

tions made based point dose kernel and equivalent path length in water phan-

toms with corrections made for known inhomogeneities and variations in density.

Correction-based algorithms are no longer widely used given comparably expense

computations and inaccuracies

• model-based algorithms - dose calculations based directly on patient representation

• Monte Carlo simulations - models built based on calculated probabilities using

historical data to model dose deposition given the stochastic scatter. Monte Carlo

methods are currently considered the gold standard given comparably accurate

dose calculation.

Dose deposition is dependent on where it hits the body and on attenuation of the beam

through matter of varying densities. Therefore modelling accurate patient dose deposi-

tion is important. This is achieved with the help of imaging modalities such as CT.

2.10 Fundamentals of radiotherapy planning

Treatment planning refers to the process of establishing a dose delivery protocol. It is

unique to each patient case with bespoke parameters tailored to suit the anatomy of the

patient and match therapeutic requirements as defined by an oncologist. The planning of

dose delivery protocols will be discussed in more detail in section 2.11 and beyond but the

principle is for the treatment area to receive sufficient dose coverage with healthy tissue

(especially radiosensitive tissue) spared as best as possible. Oncologists will therefore
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Figure 2.6: An illustration of the TCP-NTCP relationship with a strong therapeutic ratio.

Adapted from Reda et al. (2020)5

outline their preferences taking into consideration dose coverage of treatment volumes

and maximum dose tolerance of OARs.

To achieve a plan congruent with oncologist preferences, modulation of the dose field

shape and energy is defined by a planner using computer simulation software to model

patient anatomy, machine parameters and dose distribution. This software is known as a

treatment planning system or TPS. Functionality and use of a TPS will be discussed in

more detail in section 2.10.2, but with the use of imaging and dose calculation algorithms,

a TPS can be used to model dose distribution given differences in clinical preferences

such as increasing the relative importance of sparing one region over another.

However, despite state-of-art software, this process remains highly non-trivial requir-

ing specialist expertise among planners and identifying the best plan can still be difficult

given more than one plan may meet the oncologist’s key treatment goals. Nevertheless,

with respect to clinical outcomes, a “best possible” plan is achievable in each case and

convergence on this plan is dependent on management of two over arching probabilities

of control: maximising the tumour control probability and minimising the normal tissue

complication probability.
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2.10.1 Tumour control and normal tissue complication

The therapeutic outcome of treatment can be understood using an elegantly illustrated

relationship between tumour control probability (TCP) and normal tissue complication

probability (NTCP)56. TCP and NTCP are known as biological effect models. The rela-

tionship between biological effects and dose due to radiotherapy has been widely stud-

ied57 with classic models taking a sigmoidal shape similar to those illustrated in Figure

2.6. TCP models represent the percentage of clonogenic tumour cells that are elimi-

nated given the tumour receives a certain dose. The model for NTCP is the probability

complications will occur given normal tissue is treated with a certain dose. The aim of

effective planning is to maximise a theoretical therapeutic ratio (or index) between TCP

and NTCP where this ratio is defined as the difference between TCP and NTCP at a given

probability.

Biological effects link closely with fractionation. As mentioned, cell cycles tend to

repeat more frequently in cancer cells making them more susceptible to cell damage due

to the increased incidence of DNA double strand breaks. This scenario makes fractiona-

tion a desirable treatment mechanism especially when the α
β ratio of the Linear-Quadratic

model (equation 2.3.1) is high for the tumour and low for nearby OARs. However, when

treatment volumes are proximal to normal tissue that also have short cell cycles or are

otherwise notable radiosensitive, the therapeutic ratio may be small regardless of the

fractionation schedule. This is similarly true for aggressive tumours containing a high

population of clonogenic cells where regrowth of the tumour may occur at a rate com-

parable to that of the healthy tissue. Therefore, increasing the fractions will in some

circumstances enable effective dose delivery to targets while allowing healthy tissue re-

covery between fractions hence improving the therapeutic output. Given a similar α
β ratio

for all regions this may not be the case. The fractionation schedule is determined by an

oncologist on a case-by-case basis to suit the nature of the treatment region.

However, the TCP-NTCP relationship is particularly dependent on the optimisation

of the dose distribution when a plan is defined. Managing planning priorities can be com-

plex because approaches for maximising TCP may simultaneously have a negative im-

pact on NTCP and vice versa. A clinically desirable approach is not always apparent and

planning often uncovers trade-offs between these two biological effects. Management of

NTCP itself can become complex given planning priorities for OARs may uncover trade-

off relationships such as variances in proximity to treatment target volumes and varying
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radiosensitivity of different regions. Direct reporting of TCP and NTCP can be compli-

cated58–60 and in practice are not directly modelled for review during planning. Instead,

dose delivery is managed entirely by planning parameters defined during the planning

process.

Oncologist’s clinical goals are defined using their own expertise along with ICRU

standards and dose-volume constraints that have been locally defined by the institution.

Planning goals (PGs) are then defined by the planning professional for use in the TPS

during plan optimisation with the aim of meeting clinical goals. Optimisation will be

discussed more in section 2.11 but examples of PGs include limiting the average dose

delivered to an OAR or setting a minimum dose for a target. Chosen PGs are assigned

to what is know as a planning protocol that lists and prioritises the PGs with respect to

one another. The choice and configuration of PGs will have an impact on the final dose

distribution. However, the relationship between dose distribution and PG configuration is

unknown apriori and dose distribution is only established following full optimisation of

PGs within the TPS when a 3D dose distribution is achieved. This is a barrier in planning

and relates closely to the aims of this work outlined in section 1.1. First, principles

relating to optimisations are outline and discussed to provide context.

2.10.2 Treatment planning systems

In modern EBRT planning, a dedicated TPS is often adopted within a clinic with common

and commercially available systems including Pinnacle3 by Philips Healthcare, Eclipse

by Varian Medical Systems and Monaco by Elekta. A benefit of a modern TPS (as well

as that of other planning machinery) is support of the Digital Imaging and Communi-

cations in Medicine (DICOM) Standard introduced by the National Electrical Manufac-

turers Association61. This Standard enables coherent file transfer of imaging and data

between imaging machines, the TPS and linac without having to change the format.

Nevertheless, each TPS differs. For example, each will have its own dose calculation

method, delineation tools, image processing tools and further optimisation management

including objective functions which will be discussed later in section 2.13. An overview

of plan optimisation management will now be addressed.
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Figure 2.7: An illustration showing differences in forward and inverse planning methods.

Adapted from Carlsson (2008)6.

2.11 Plan optimisation

There are two main approaches to plan optimisation: forward planning and inverse plan-

ning.

2.11.1 Forward planning

Forward planning refers to a process of manually manipulating beam orientation (assum-

ing a finite number of beams) and beam profiles to achieve the best dose distribution.

Beam orientation is chosen by the planner based on beams-eye-view analyses. Beam

modification is then determined using wedges, high density material that can attenuate

the beam across the treatment region (Figure 2.7). All choices are based predominantly

on the planner’s knowledge of modifications that will yield changes congruent with clin-

ical goals. This method is intuitive given modifications to the plan result in expected

changes and the overall dose distribution is directly managed including hot spots. This

method is also less computationally expensive when compared to inverse planning.

However, with this planning method, choices are dependent on the planner’s experi-

ence and the process can be time consuming. It is also difficult to ascertain the influence

of smaller changes in the plan on dose distribution. With the adoption of advanced de-

livery techniques such as IMRT and VMAT, the increased degrees of freedom enable

improved modulation of the beam field and more effective delivery. However, due to the

increased number of considerations such as the large number of aperture shapes to be
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Figure 2.8: An example fluence map for a single beam indicating the relative intensity across the

field. (a) indicates the ideal theoretical fluence of the beam field and (b) indicates a deliverable

fluence map when machine parameters are considered. Source: Rocha et al. (2011)7.

chosen and the weight of individual beamlets given non-uniform fluence, the process is

significantly more computationally expensive when using a forward planning approach.

2.11.2 Inverse planning

Inverse planning refers to the choice of feasible machine parameters given some desir-

able dose distribution. Typically choices are not made directly by the planner but using

a TPS that explores various configurations. This method has the advantage of not requir-

ing as much hands-on planning time and can be considered less subjective than forward

planning. Nevertheless, the process is dependent on PGs and hot spots and non-standard

areas of avoidance are not inherently managed. This thesis will focus on optimisation us-

ing inverse planning techniques and inverse planning will now be discussed in the more

detail.

2.12 Inverse plan generation process

A TPS will commonly use one of two inverse planning approaches to produce deliverable

plans: 1. fluence map optimisation (FMO) with subsequent leaf sequencing or 2. direct

machine parameter optimisation (DMPO) also known as direct aperture optimisation.

Technical details of plan generation will be discussed later in this section but a fluence

map is a beam intensity profile that defines the variance in fluence across the beam field

when the beam is modulated. Figure 2.8 shows an illustration of a fluence map with in-

tensity varying across the field. Leaf sequencing defines MLC configurations necessary



CHAPTER 2. RADIOTHERAPY BACKGROUND 25

Figure 2.9: An illustration of three beam fluence maps for prostate treatment. Fluence maps are

optimised to spare OARs and treat the target volume. Source: Webb et al. (2003)8

to achieve this fluence map and is achieved using either a “close in” method where leaves

move towards each other or a “sweep across” method where all leaves move in one direc-

tion. The DMPO method considers MLC positioning during optimisation. Nevertheless

regardless of the optimisation method used, all plans are generated and tailored with re-

spect to beam angles. Beam angles refer to the predefined coplanar positions around the

patient that are selected for dose delivery. In VMAT, all angles of the patient are subject

to dose delivery and beam angles are usually not explicitly defined. With IMRT, a finite

number of beam angles are defined and the selection of these will be discussed in more

detail later.

For context, a simple IMRT plan can contain, for example, two parallel opposed beam

fields each with uniform fluence. This is the simplest possible plan that contains two

beams and such a plan has a number of advantages. It is firstly not very computationally

expensive and can be be produced very quickly. It is also easy to ensure the treatment

volumes obtain the necessary dose coverage. Nevertheless, opposing fields are not always

advantageous for sparing regions outside of the treatment volume.

Prostate planning will be discussed in section 3.6 and chapter 4 but Figure 2.9 shows

a schematic of a prostate patient treated with three intensity modulated beams. In contrast

to Figure 2.8 which shows a full fluence map for a given beam, Figure 2.9 illustrates a flu-
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Figure 2.10: An example depiction of a planning dose distributions for the prostate treatment

site using different treatment methods. In the example a transverse slice of the prostate is shown

with 3D-CRT (left) ensuring dose coverage to the treatment region using opposed fields. IMRT

(middle) applies dose modulation and an odd number of beam fields to spare radiosensitive re-

gions such as the rectum and femoral heads. With modulated dose delivered at all angles, VMAT

(right) achieves the greatest sparing and conformality of dose to the treatment region whilst en-

suring appropriate treatment volumes dose coverage. Source: Mahatma Gandhi Cancer Hospital

& Research Institute9

ence map profile in a sagittal plane. In this image, beam modulation is designed to spare

the rectum and bladder whilst maximising dose to the treatment target (the prostate).

Figure 2.10 shows example prostate plan dose distributions for three EBRT methods.

The left-hand pane shows a 3D-CRT plan with two sets of perpendicular parallel opposed

beams, the middle pane shows an IMRT plan with three beams and the right-hand panes

shows a VMAT plan. This illustration shows modified beam angles with IMRT can lead

to comparable coverage of the treatment structure as seen with 3D-CRT whilst leading

to greater sparing of radiosensitive regions including femoral heads to the left and right

of the target and the rectum posterior to the target. Avoidance of these regions correlates

inversely with incidence of radiation induced side effects such as reduced blood flow to

the femoral heads (avascular necrosis) and rectal inflammation leading to discomfort and

impaired function (radiation proctitis).

Therefore, to produce a plan congruent with oncologist preferences and maximise

the therapeutic ratio, the plan generation process in IMRT and VMAT inverse planning

involves the following general stages62:

1. Beam optimisation

• Beam Orientation Optimisation for IMRT - beam orientation is usually pre-

defined to be an odd number of equi-spaced coplanar beams determined by



CHAPTER 2. RADIOTHERAPY BACKGROUND 27

local practice but can be changed at the planners discretion using beams-eye-

view analysis

• Control point optimisation for VMAT - a standard finite number of control

points are defined along the gantry trajectory. One of the two inverse planning

approaches is applied at each control point with MLC positions interpolated

between control points63. The number of control points is often predefined

and modified when needed by the TPS or amended manually by a planner.

Typically a TPS will modify the number of control points by adding inter-

mediate points when notable jumps in MLC sequences are observed between

existing points.

2. Planning method

• Fluence map optimisation and leaf sequencing - fluence maps are defined by

discretising beam fields into a series of beamlets each with its own fluence

dependent on expected dose deposition to the patient. The MLC configura-

tion necessary to achieve these fluence maps are usually determined via an

optimisation algorithm known as gradient descent

• Direct Machine Parameter Optimisation - MLC configuration is usually de-

termined via an optimisation algorithm known as simulated annealing

FMO mathematically accounts for the expected dose deposition of each beamlet in

each patient voxel where a voxel is defined as a discretised unit volume within the patient.

It can be defined:

zij =
∑
i∈B

Dijxi, ∀s ∈ S,Vs ∈ s, j ∈ Vs (2.6)

where s ∈ S denote ROIs, Vs denotes the voxels in ROI s and zij is the dose deposited by

beamlet i ∈ B of fluence xi to voxel j ∈ V∫ . The matrix Dij contains the dose deposition

coefficients: the fraction of dose produced by beamlet i that reaches voxel j. Figure 2.11

illustrates the FMO process given nine MLCs and two voxels.

2.13 Inverse planning objective functions

Applying an inverse optimisation first requires definition of a target dose distribution.

This can be defined mathematically with respect to voxels and beamlet intensity. To
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Figure 2.11: An illustration of a beam arrangement depicting the contribution of two beamlets to

the resulting fluence map. Image sourced from Breedveld et al. (2019)10

optimise dose, PGs can be used as parameters to modify some target objective function

(or cost function) to meet predefined target objective values.

Examples of standard optimisation objectives include:

• Maximum/minimum dose to the whole ROI

• Maximum/minimum mean dose to ROI

• Dose volume histogram (DVH) maximum/minimum dose to ROI

A dose volume histogram or DVH illustrates the minimum radiation dose received by

a certain percentage of a volume. They are traditionally presented as line graphs where

any one point on the line indicates that at least y% of the ROI volume receives x Gy

or more. See Figure 2.12 for an example. They do not contain spatial information but

elegantly summarise 3D dose distribution for individual ROIs and points on a DVH can

be used as optimisation objectives.

Inverse planning algorithms formulate objective functions (also known as a cost func-

tions) that can be used to solve for voxel level dose to ROIs and produce a model of dose

distribution across the patient. A standard optimisation problem defines a scenario in

which more than one solution is feasible but not all are necessarily desirable. In order to

converge on desirable solutions, it is necessary to define the constraints and other objec-

tives.

Constraints define characteristics of the solution space that must not be violated. Ob-

jectives define a hierarchy of desirable characteristics that may be violated but only in
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Figure 2.12: An example plot showing DVHs for five ROIs (colours) for three different plans

(lines).

favour of meeting constraints and higher priority objectives. The purpose of an objective

function is to provide the planner with a mechanism to minimise a target objective value

for each ROI. A target objective value is a decision variable defined by the planner (or

standard local practice) for each ROI that determines the dosimetric “cost” of any one so-

lution where cost is defined as the difference between the actual outcome and the desired

outcome. Target objectives represent the supposed most clinically desirable prioritisa-

tion of objectives and constraints such that any trade-off relationships between PGs are

managed. In practice, objectives and constraints are defined using PGs in the planning

protocol. Treatment volume target objective functions are optimised to maximise the

prescribed dose to the volume. That is, actual dose close to the prescribed dose results

in a low target objective value. The converse is the case for OARs. To obtain an overall

performance metric of any one optimised plan, a composite objective value is obtained

by adding together all target objective values for individual ROIs.

The objective function is defined by the TPS and will usually be a convex function.

That is, a function that has one and only one solution that will minimise the objective

function for any set of PGs. For each configuration of parameters, the algorithm returns

a single composite objective value and the aim is to find the configuration of parameters

that minimises this value. A widely used composite objective function is a quadratic
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function of the form:

f(x) =
N∑
i=1

wi

(
D(xi)−DP (xi)

)2
(2.7)

where N is the number of PGs and D and DP are the delivered dose and prescribed

dose respectively64,65. Values for DP are determined by the target objective function

and D are determined by the actual achieved dose distribution. The composite objective

function, f(x), applies a stricter penalty the further D deviate from DP .

For example, consider a planning scenario containing the following three optimisa-

tion objectives only: PG1 - minimum dose of 58Gy to the PTV1, PG2 - maximum dose of

62Gy to PTV1 and PG3 - maximum dose of 5Gy to OAR1. The set of DP values for this

example are (58,62,5). Given PTV1 receives 59Gy and OAR1 receives 7Gy and assum-

ing wi = 1 for all i, the composite objective function value will be 12+(−3)2+22 = 14.

However, the influence of any one PG on the composite objective function can be man-

aged by wi, the importance factor or optimisation weight. Both optimisation objectives

and optimisation weights can be modified to influence dose distribution and these modi-

fications will be explored in more detail in the following sections.

Minimisation of the objective function is achieved through implementation of one of

the following three types of optimisation algorithm:

• Emuneration methods: exhaustive search technique. When the solution space

contains a countable number of solutions, it is possible to consider each individu-

ally to identify the optimal solution

• Gradient descent methods: sample points are taken on either side of the current

chosen point and the gradient size and directions is used to determine the choice

of the next point

• Random search methods: a stochastic strategy is used to search the solution space

and converges based on some probabilistic model e.g., particle swarm, simulated

annealing and genetic algorithms.

2.14 Multi-criteria optimisation

As mentioned, planning goals lead to conflicts and trade-off relationships to be managed

and prioritised. This can be parsed as a multi-criteria optimisation problem. The most

clinical desirable plan is a feasible plan that has congruence with oncologist preference
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and maximises the therapeutic ratio. This is achieved by manipulating PGs and PG opti-

misation weights. However, manipulation of objective and/or their weights can influence

the resulting plan in different ways.

2.15 Pareto optimality

A plan is said to be Pareto optimal when no further dosimetric improvements can be made

by manipulating any one PG except to simultaneously lead to a detriment for another and

the most clinically desirable plan is considered to be Pareto optimal. Planners therefore

aim to converge on these plans when adapting PGs prior to inverse planning.

Traditionally, PGs are updated by the planner between iterations of the TPS inverse

optimisation algorithm. Beginning with a standard set of PGs, planners will present

stricter and stricter PGs to the optimiser until eventually no further changes can be made

that will improve the dose distribution. This trial-and-error process can be considered

the clinical standard. However, Pareto optimality is not guaranteed with this method and

even achieving a Pareto optimal solution does not imply clinical desirability.

The general form of the MCO problem is given by66:

min
x

f(x) = [f1(x), f2(x), ..., fn(x)], (2.8)

s.t. g(x) = [g1(x), g2(x), ..., gm(x)] ≤ 0, (2.9)

x > 0,

n,m ∈ N.

where x is a feasible solution in the optimisation space, the f(x) are objective functions

for each optimisation objective and the g(x) are constraints on those objectives.

2.16 Plan calibration

Given a Pareto optimal solution in which all values of wi in equation 2.7 are equal, no

one PG takes precedence over another. Given the dosimetric characteristics of a plan is

not known apriori, the best configuration of wi to deliver an acceptable distribution is

notably difficult to define. When incorrectly balanced, these values can lead to clinically

subpar planning likely to lead to complications if delivered. Therefore management of

this during planning is vital.
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Figure 2.13: An example of a typical Pareto front relationship defined by dose in Gy of two

competing trade-offs e.g., two organs-at-risk. Adapted from Rebello et al. (2021)11

Consider Figure 2.13. Illustrated is a bi-variate case (two PGs) showing the feasible

planning space bounded by what is known as the “Pareto Front”. This is the set of plans

for which no further improvements can be made. Dependent on the choice of optimi-

sation weights, Trade-off 1 may be spared to a lesser or greater amount with respect to

Trade-off 2. The most desirable solution will lie somewhere on this front with the chosen

plan dependent on the calibration of optimisation weights and the clinical goals. It is

common for optimisation weights to be assigned via a locally defined planning protocol

based on previously planned cases. The implication is that patient geometry is simi-

lar on average and this approach has been adopted with some success for a number of

sites. Moreover, it has been suggested that dose distribution is geometry based67,68 and

therefore the ideal calibration of optimisation weights may differ greatly from patient-to-

patient. Therefore, the application of a universal or site-specific approach is not appro-

priate and weights must be modified on a per-patient basis to ensure clinically acceptable

and optimal plans.

2.17 Automated planning

Given the reliance of planning on manual techniques, truly objective planning cannot

be guaranteed with standard methods. Therefore, there may be a margin of planning

error due to standard methods and this is difficult to measure especially in the absence
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of a clinically relevant alternative approach. In addition, planning comes with a number

of inherent challenges including the need for expert practitioners with knowledge of the

treatment site in question and the TPS, as well as appreciation of oncologists preferences.

Automated planning (AP) is a new innovation of radiotherapy planning in which

plans are not configured manually via human planning but automatically. All AP ap-

proaches can be considered algorithms and have the same basic requirement: to generate

plans non-inferior to manual planning. In this regard, the success rate of existing tech-

niques has lead the field of AP to gain traction with a boost in literature and research in

recent years. However, existing AP technology is still being developed and researched

with many applications still requiring expert-driven calibration or subsequent improve-

ment by a human planner prior to clinical use. The ultimate goal is to establish a full

AP system that consistently and reliably delivers clinically applicable planning. This

will provide a benchmark for the comparison of standard methods and a foundation for

improvements in these methods.



Chapter 3

Automated planning

3.1 Issues related to manual planning

The state-of-the-art in radiotherapy treatment enables clinically effective planning in

ways previously not possible. Nevertheless, even with modern technology and inverse

optimisation algorithms, planning relies heavily on manual manipulation of optimisation

parameters. Issues include:

• Expert human time that could be utilised differently: Manual inverse planning

always results in patient-tailored plans and expert-driven planning with appropriate

quality assurance measures ensure sure plans are fit for treatment. However, man-

ual methods follow a trial-and-error process that can be time consuming especially

when planners are presented with uncommon cases. If plans could be produced

without the need for expert knowledge, planning duties could be delegated to a

wider team hence a more efficient use of resources

• Planning time and efficiency: Irrespective of the time taken to produce a plan, it

can only be performed for one patient at a time. If the knowledge used to produce

a single plan could be leveraged to produce plans for other cases, overall planning

time for the subsequent patients could be reduced and human planner time used

more efficiently

• No guarantee of Pareto optimality: Convergence on a Pareto optimal solution

can be difficult to ascertain with a trail-and-error method. Given a means of limit-

ing the solution space to plans adjacent to the Pareto front only, convergence on a

Pareto optimal solution becomes more likely

34
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• Subjectivity, inconsistency and/or variability in planning methods: Manual

methods are planner dependent and subject to discrepancies due to the variability of

human choices. Also, the trial-and-error process requires patience and familiarity

with the treatment site for the production of a plan congruent with oncologists

preferences. Furthermore, the standard method of comparison for one plan over

another is the judgement of the oncologist and this can be a difficult choice when

both plans meet the clinical goals. It can also be unclear whether the final plan

is among the most optimal set of plans or can be improved further. Even when a

plan is produced with no time limitations, an optimal result is not guaranteed. An

objective planning method would lead to consistency with all patients receiving

treatments planned with the same integrity

Some of these issues can be resolved with increased automation. This chapter will

discuss current AP methods with respect to these issues as well as developments in ex-

isting methods. The literature contains a variety of AP techniques that have been gaining

traction with most falling into at least one of two main categories: knowledge-based

planning (KBP) and rules-based planning (RBP). These methods will now be outlined in

more detail.

3.2 Knowledge-based planning

KBP techniques are developed using information obtained from previous clinical plan-

ning and itself falls into two categories69: model-based and atlas-based KBP. Atlas-based

KBP involves matching the current case to a case in the knowledge-base. Matching is

often dependent on the similarity of key attributes of the patient case such as OAR sizes

and positioning. The case in the knowledge-base is then used to inform planning of the

new case. Model-based techniques, however, are generated using multiple cases. This

can be done in a number of ways including the use of statistical and ML techniques.

Documented approaches to these methods will now be discussed.

3.2.1 Atlas-based KBP

Atlas-based KBP has a few stages. First, key attributes of plans are defined. These

are chosen based on assessment of planning characteristics that are influential to dose

distribution. Then, a method for comparing cases to each other is defined including some
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measure of similarity. Lastly, the existing solution is applied to the new matched case.

Key attributes are often anatomical variables that have been locally defined by an

institution. As planning is a strongly geometry-based task, the selection of attributes

found in the literature are primarily spatial. Studies have included features such as the

distance between ROIs, angle of incidence between ROIs and the beams-eye/in-field view

of the overlap between ROIs70–73.

Once key attributes have been defined, new cases outside of the knowledge-base are

assigned to an already-planned case within the knowledge-base. Petrovic et al. (2016)

used a weighted nearest neighbours approach where each attribute was an empirically

weighted continuous variable and new cases were assigned based on the smallest sum

of the weighted differences70. Chanyavanich et al. (2011) defined similarity based on

2D beams-eye view images used to calculate a similarity metric in a manner akin to a

conformality index73. Sheng et al. (2015) based similarities on PTV shape and size

alone72.

Once a reference case has been identified within the knowledge-base, there are a few

ways this can be used to inform planning for new cases. Typical examples include the use

of a DVH, use of a 3D dose distribution74,75 or application of an existing planning proto-

col. For example, a DVH or 3D dose can be used to define PGs for the new patients and

objective weights defined in the original planning protocol can be adopted. Regarding 3D

dose distribution, one study considered the comparison of three deformable image regis-

tration methods to the development of KBP 3D dose distribution prediction for left-sided

breast cancer76 and concluded all methods to be appropriate for clinical use. Atlas-based

KBP has many advantages and these will be discussed in section 3.4.

3.2.2 Model-based KBP

Some of the most well established KBP approaches apply model-based methods. Po-

tentially the most well-known KBP method in the literature is DVH prediction such as

that found in the commercially available Varian RapidPlan™ software (Varian Medical

Systems, Palo Alto, USA). This KBP method is available within the Varian Eclipse TPS

and has been widely used and researched showing its planning efficacy in a clinical set-

ting77–81.

Such applications require a training phase for the ML model to be generated with

respect to all data points in the knowledge-base. With RapidPlan for example, in each
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Figure 3.1: An example of a Varian RapidPlan predictive DVH plots a head and neck case with

12 ROIs. Sourced from Varian12

case the ROIs are segmented into four different regions based on their relation to the PTV.

The software then generates a series of geometry-based expected dose (GED) histograms

defined as the dose received by a portion of an OAR based on its distance from the

target. Using a combination of principal component analysis and regression, the software

uses GED values and the combined DVHs of the OAR sub-segments to generate DVH

predictions when presented with new cases82 (Figure 3.1). Using the DVH prediction, the

PGs of the current case are overlayed and assessed. If the planner finds further adjustment

is required for the case at hand, further manual planning can follow.

Other DVH-based KBP models have been proposed such as using a probability den-

sity function to estimate points along the DVH curve given the value of the point preced-

ing it83. Others generated DVH predictions using a dose-distance relation that implies

dose to an OAR will diminish the further away it is from the target84.

The DVH approach is prominent in the literature, however, DVHs do not provide

spatial information and 3D dose prediction models may be advantageous. For example,

studies have shown the use of artificial neural networks trained to predict dose matrices.

A proof of concept study trained voxel geometry to voxel dose for prostate and stereo-

tactic radiosurgery cases. For comparison, DVHs were derived from the 3D models and

they found 3D dose prediction improved on existing DVH-based predictions with respect

to overall deviation from prescribed doses85. There are also newer approaches that use

deep learning for improved 3D dose prediction. For example, a study has considered
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IMRT beam configuration in addition to anatomical features and has indicated a sub-

stantial benefit of bespoke beam configurations regarding reduced dose outside of the

target region86. Studies have also demonstrated the use of reinforcement learning such

as adapting existing reinforcement learning models used in other fields (e.g., gaming)

to help define machine parameters based on patient contours. Results show comparable

dosimetric outcomes to clinical planning87.

3.2.3 Implementation issues for KBP

A major barrier to KBP planning is the acquisition of a repository or database of planning

examples to draw from. In addition, ensuring the diversity of cases (such as a range of

anatomical variations) can be difficult and may lead the underlying model to be skewed

by outliers. Alternatively an approach could be to choose only what is considered high

quality planning. That could be, for example, cases that have been specially considered

by the planning team and oncologist. Nevertheless, the composition of the knowledge-

base is a key consideration for the efficacy of a KBP approach and this will also be

discussed in section 3.4.

3.3 Rules-based planning

RBP methods use logic to converge on a solution and different approaches can be found in

the literature. All RBP methods rely on some predefined processes and the two most well

documented are epsilon constrained methods (also known as constrained hierarchical

optimisation) and protocol-based automatic iterative optimisation methods.

3.3.1 Epsilon-constrained RBP

Epsilon constrained (ϵc) optimisation refers to methods of converting unconstrained op-

timisation problems into constrained scenarios that are more easily managed. In radio-

therapy planning this refers to the constraint of certain PGs.

A key ϵc approach is known as a lexicographic ordering. With this approach, PGs

are optimised sequentially in an order given by some predefined lexicon of PGs. The

lexicon of PGs is locally agreed and designed to correspond with the preferences of

the oncologist. The process begins with the single most high priority PG and the TPS

optimisation run to generate a plan for this PG irrespective of any others (i.e., a univariate

optimisation). Once complete, it is set as a constraint and the next PG considered. All
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PGs are optimised in this way until all have been optimised. The logic is, the process

should result in a single Pareto optimal plan that takes into account the preferences of the

oncologist and versions of this AP method have been implemented88,89. A well-known

lexicographic ordering is found within the Erasmus-iCycle system90, a fully automated

planning solution.

3.3.2 Protocol-based automatic iterative optimisation

Protocol-based automatic iterative optimisation (PBAIO) methods are algorithms that

adapt and update planning parameters during optimisation. These iterative optimisers

will often operate predominantly by mimicking a human planning adjustment style of

PGs between runs of the inverse optimiser. PBAIO is therefore characterised by dynamic

objective adjustment.

Some research has aimed to emulate this directly using recorded scripts of the logic

applied during manual planning91. Manual planners would follow a standard iterative

planning method and the process recorded using C# scripts. Using a standard coordinate

system applied overlaid on a CT, the same logic can be applied to new patients by scaling

the coordinate space to fit the new anatomy.

Most PBAIO approaches manipulate PGs using a standard approach. Early research

explored the concept of a fast monotonic-descent algorithm coupled with a “fuzzy weight

function”92. PG weighting factors were assigned a value between zero and one that was

explicitly defined based on the value of the prescribed dose of the PG. The closer the

prescribed dose of the dynamic PG is to the upper limit of the prescribed dose for the

ROI, the higher the value of the weighting factor. Prescribed doses were then iteratively

updated using a script that adjusted them by some arbitrarily defined delta value (small

number) between runs of the inverse optimiser with a cost function assessed for each

iteration to determine the optimal solution. This approach aimed not only to achieve

Pareto optimality but also to manage the balance of trade-offs between PGs to converge

on clinically desirable plans. This approach had theoretical benefits that directly deal

with some of the issues identified for manual planning such as convergence on Pareto

optimality.

However, all aspects relating to dose distribution cannot always be directly handled

by manipulating standard PGs. For example, even Pareto optimal plans may contain ex-

treme hot spots that are undesirable for clinical solutions. Researchers have developed
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similar iterative optimisers to those mentioned that automatically segment regions con-

taining hot and cold spots between runs of the inverse optimiser93. The new volumes

are then automatically assigned a PG and an objective weight to help manage the overall

dose distribution and maintain dose uniformity across regions.

Some PBAIO approaches have been developed using scripts. For example, the AIO

was developed using the Lazarus Pascal compilers. It functions by manipulating dose-

volume objectives, moving them a specified increment at the start of every new pass94.

This is a similar approach to manual human planning but adjustment of PGs is performed

consistently and automatically. Other similar approaches to this include the commer-

cially available Auto-Planning within the Philips Pinnacle TPS3 95 and the Experience

Driven Plan Generation Engine (EdgeVcc) by Velindre Cancer Centre developed using

RaySearch’s Raystation TPS96. Auto-planning is a software built with reference to the

penalty scheme developed by Cotrutz and Xing97. PGs related to OAR are managed by

the user who categorises them into one of three groups: high priority, medium priority

and low priority. Although this system contains a proprietary algorithm, it is known to

automatically generate new contours during optimisation to help meet clinical goals95.

For example, given a large overlap of a high priority OAR with a target treatment vol-

ume, the algorithm will adjust the relative prioritisation of the overlap region to ensure

dose to that region is limited for great sparing of the OAR. That is, given the original list

of PGs, additional structures are iteratively added to the planning protocol and automati-

cally assigned an objective function weight. This is done to help meet the highest priority

PGs. However, this thesis will be focused on the EdgeVcc96 and this approach will be

discussed in section 3.3.2.1.

3.3.2.1 EdgeVcc

For a full and comprehensive description of the Experience-Driven plan Generation En-

gine by Velindre Cancer Centre (or EdgeVcc), refer to Wheeler et al. (2019)96. Plan

generation is dependent upon a base site-specific “AutoPlan protocol” containing a set

of PGs and this will be used by the PBAIO system to interact with the TPS native op-

timiser. Within the AutoPlan protocol, PGs are assigned to one of three priority levels:

primary normal tissue goals (P1), target goals (P2) and trade-off goals (P3). Target PGs

(P2) ensure target volume dose objectives are met including PTV coverage and hot spots.

All other planning objectives are known as trade-off PGs (P3). Each PG is assigned a
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numeric weighting factor that the PBAIO AP solution will use to determine prioritisa-

tion of each objective during plan generation. The algorithm explicitly defines weighting

factors for P1 and P2 goals and a dynamic objective algorithm applied to help balance

P3 goals. Essentially, EdgeVcc is a PBAIO process that applies a dynamic adjustment of

TPS optimisation weights used to defined the target objective function of the optimisa-

tion and therefore sets the level of priority for each PG whilst maintaining an appropriate

hierarchy of PGs in the underlying algorithm. Weighting factors can be thought of as

relative values and PGs assigned high values receive a high relative priority over those

with lower values. This method also incorporates a novel Pareto navigation based cali-

bration process for defining the weighting factors for P3 PGs that will be discussed more

in section 3.5.3.

The user-defined AutoPlan protocol denotes P1, P2 and P3 PGs with respect to ROI

names as found in the patient case in the TPS. For geometric specificity, auxiliary opti-

misation ROIs (AuxROIs) are generated for use in the algorithm and each applied a TPS

objective function optimisation weight for use in the native inverse planning algorithm.

These weights for each AuxROI are derived of the weighting factors in the following

way:

wTPS = wnom FV FT FC FN, (3.1)

where wnom is the weighting factors and FV, FT, FC and FN are scaling factors. Planning

experience indicated optimal objective function weights were dependant on ROI volumes

therefore FV is derived of the volume of the ROI. FT is a correction scaler to offset strict

penalties related with the Raystation TPS objective function algorithm. FC is a hard coded

constant relating to PTV AuROIs to ensure the necessary balance in priorities between

P1 and P2 PGs. FN is a normalisation factor relating to P3 goal volumes and is usually

set to 1.

PTVs are each subdivided into three AuxROIs:

• PTVSV-1 - retracted from the skin and proximal P1 OARs

• PTVSV-2 - PTV within the skin or extending into air

• PTVSV-3 - volume not covered by PTVSV-1 or PTVSV-2 i.e. PTV proximal to

primary OARs

For P1 and P2, weighting factors values (wnom) are defined using hard-coded algorithms

because clinical preference between P1 and P2 is considered well defined across all tu-
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mour sites. Therefore, the balance of conflicting P1 and P2 PGs is a fixed relationship

with P2 goals compromised in favour of P1 goals.

P3 weighting factors values can be derived in one of two ways. Either via an already

defined set of weighting factors such as values defined for a previous patient or, a bespoke

weighting factor set derived via Pareto navigation. The details of this will be discussed

in more detail in section 3.5.3.

Once weighting factors have been assigned to all PGs, in the PBAIO framework

P3 PGs prioritisation is updated dynamical. That is, their target objective value within

the inverse optimiser is altered after FMO. For each P3 PG, target objective values are

defined:

T = Dc − 0.35Dpres, (3.2)

where Dc and Dpres are the current and prescribed dose parameters corresponding to the

PG respectively. After each pass, the target objective value is reassessed using the follow

equation:

∆ =
Dc − T

DPres
. (3.3)

The criteria for PBAIO termination is ∆ ∈ [0.15, 0.5] or ∆ ∈ [0, 0.5] if T = 0. Other-

wise, values of T are updated and a new pass run. For termination, the aim is to ensure

Dc is within an acceptable tolerance of DPres for all P3 PGs. Values for ∆ have been

defined empirically and were derived based on experience from manual planning. The

lower bound where T ̸= 0 (i.e., 0.15) is considered to be a strict tolerance criteria in

which the PGs target objective value indicates a high priority to meet the prescribed

dose, 0.5 is the lowest tolerance and 0.35 is midway between the two.

The resultant DVH where ∆ = 0.35 presents a starting point to begin updating objec-

tive positioning. Upon definition of these tolerances, it was observed that between these

values, a similar organ-at-risk DVH is obtained and this method was used for manual

class solutions also98.

3.3.3 Implementation issues for RBP

Calibration of PGs is an existing issue for many RBP approaches given the trade-off

relationships must be defined prior to running the algorithm. The classic approach to

managing this is to use trial-and-error99–102. With this approach an arbitrary weighting

factor solution set is defined and manually manipulated until an appropriate solution is

agreed upon. Trial-and-error will often involve the use of a small group of test patients
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on whom the configuration is based. This is an effective approach to RBP calibration but

can be time consuming. Also, given the arbitrary starting position and the fact further

improvements are made only with respect to previously tried examples, final solutions

may be subjective. Newer approaches to RBP calibration have been proposed and these

will be discussed in section 3.5.3.

3.4 Review and comparisons of automated planning techniques

AP has great potential for relieving some of the stress in the treatment pipeline and even

improve on conventional methods. It has a number of general benefits including time and

resource efficiency, and planning consistency.

Given all or part of the planning process is automated, the amount or time an ex-

pert would have been needed to complete the whole task is reduced. This frees expert

planning time to be used elsewhere. Given multiple AP planning units with appropriate

processing power, there is also the potential for more than one case to be considered at

a time and faster than manual planning. Studies have shown planning times to reduce

by 50%103, 64%104 and even up to 94%105 when compared with conventional manual

planning. Clinical planning is dependent on expert planning knowledge but conventional

methods can be tedious for the planner. Automated solutions have the potential to sur-

pass human planning by producing clinically desirable plans in lieu of hands on expert

knowledge106,107. The consistency it brings is desirable for an institution as it can be

difficult to obtain with conventional methods due to intra-and inter-planner variability.

Standardised approaches help mitigate variability and ensure a structure for consistent

logic to be applied.

KBP will always require a knowledge-base in which resulting solutions will be as

reliable as the logic that was applied during original planning. It will also be limited by

the homogeneity of the cases in the knowledge-base. In this way, there may be some

bias in the KBP modelling process related to the composition of the knowledge-base as

well as the objective quality of the plans within. Also, given advanced and convoluted

modelling, KBP can fast lead to a black box scenario with the final choices and outcomes

unknown to the user leading to ambiguity in plan analysis.

Despite the advantages, planning is not an exact science and all AP methods have

pros and cons108. RBP methods drive the optimiser towards a Pareto optimal solution

and KBP methods determine the best trade-off relationships. Therefore, when it comes
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to clinical desirability, convergence on a Pareto optimal plan is implied with most RBP

methods but is not necessarily the case with KBP methods. Also, KBP methods may

result in an acceptable balance of trade-offs but may not always converge towards the

Pareto optimal solution109 even when the knowledge-base is chosen to contain only what

are considered highly desirable examples of Pareto plans110.

The appropriate balancing and prioritisation of trade-off PGs is implied with KBP

methods with no need to be explicitly defined by the user because this is determined by

the previous planning in the knowledge-base. The application of the knowledge used in

previous planning to novel cases implies a comparable balancing of trade-offs reflecting

expert knowledge and oncologist preferences. RBP however, requires calibration that

explicitly manages the relative importance of PGs. Calibrations are often developed em-

pirically and are refined using a small set of up to 10 patients before application to the

wider patient base100–102. This task is especially difficult given calibration parameters do

not necessarily have direct dosimetric relationships and the result of any one calibration

set is only realised once a plan has been generated. As a result, this task can take some

time to perform and may even result in calibrations biased to the patient group it was

refined for.

Given the outcomes of KBP are limited by the cases in the knowledge-base and re-

sulting solutions dependent on the logic that was applied during original planning, a

shortcoming of KBP includes the fact it will always require a substantial knowledge-base

of clinical planning to be useful. This can be resource intensive and is still no guarantee

of unbiasedness. Also, given advanced and convoluted modelling, KBP can fast lead to a

black box scenario with the final choices and outcomes unknown to the user and causing

some ambiguity in plan analysis.

However, knowledge of how a plan was generated is arguably irrelevant given the

plan is ultimately approved and black box KBP may not be a wholly negative devel-

opment. It is also a good way of leveraging the time and expertise that have already

been employed in the clinic. Even given AP that is deemed “improvable” due to not

being Pareto optimal, these solutions are still useful for relieving pressure in the clinic

by removing much of the tedious trial-and-error of planning and providing a more useful

starting point.

Both KBP and RBP methods are being used in clinics with no approach currently

being categorically deemed superior over another. This is due partly to the inherent dif-
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ficulty in generating what is known to be a reliable AP solution. There have been many

studies comparing AP to manual planning and showing the notable benefits. However,

comparison between AP solutions tend to show comparable outcomes with only incre-

mental gains96,110,111. Nevertheless, in light of some of the existing pitfalls, it is known

that existing methods of AP can be improved upon. In the next section, some of the

recent developments on classic approaches are discussed.

3.5 Advances in AP

The increase in the number of AP studies in recent years shows the level of interest in the

research community to fill gaps in the literature108. In fact this increased interest called

for review and standardisation of practice to ensure quality and validity of findings and

ensure further development in this area is reliable102,112–114.

Given the dichotomous benefits of using either a KBP or RBP planning method, it can

be hypothesised that an approach combining the two may mitigate some of the pitfalls of

employing one on its own. As a result, hybrid approaches have emerged. Additionally,

other ways of converging on clinically desirable planning is being explored. These are

methods that have consonance with oncologists preferences and relate to intuitive ways

MCO approaches. Some of these advances in AP will be discussed and compared here.

3.5.1 Advances in KBP

Given KBP methods often employ statistics and machine learning, the field of KBP

for AP is becoming extensive. Research highlights potential developments on existing

methods including the use of less conventional predictive variable and use of advanced

modelling techniques. In addition to anatomical and clinical data, predictive features

for use in KBP have emerged and include the addition of radiomic features115, dosi-

metric features116,117, objective function features118–121 and neural network generated

features122–125. Especially with the increase in readily available patient-specific data

and outcomes, patient specific planning is considered a vital area of exploration of re-

search125.

3.5.2 KBP-RBP composite approaches

Currently, there are no novel end-to-end hybrid approaches that incorporate both KBP

and RBP methods. However, examples of hybrid approaches are found in the literature
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that incorporate separate AP systems. For example, a composite approach was developed

using two commercial packages in conjunction. The result is a solution that takes advan-

tage of the benefits of both approaches to achieve a fully automated solution126. First,

Varian’s RapidPlan™ is used to generate a DVH prediction based KBP model. Using the

resulting DVH prediction, PGs are derived and applied to a planning protocol for use in

the Pinnacle Auto-Planning RBP system. This approach leverages and benefits from pre-

vious planning and the implied trade-off will reflect clinical preferences in local practice

and converge towards Pareto optimal solutions. Such an approach not only benefits from

the advantages of both, they each also mitigate some of the disadvantages of each and

lead to a fully automated and clinically desirable solution.

As mentioned in Section 3.3.2, one PBAIO approach was founded on the recorded

behaviour of expert planners that translated their actions into a scripts91. More recently,

a similar PBAIO approach has been developed again founded on the recorded actions

of expert planners but with a KBP overlay. It uses artificial neural networks for a deep-

reinforcement learning approach to predict the iterative PG updates127. This approach

combines the benefits of PBAIO with the power of deep learning and can be thought to

not only deliver plans that converge to Pareto optimality but reflect clinical preference

using an innovative approach.

However, the most popular KBP-RBP composite approaches involve using exist-

ing RBP methods calibrated using KBP. One example of this uses a probabilistic KBP

method known as kernel density estimation to calibrate a PBAIO solution128. The KBP

method assigns priorities to PGs by considering the conditional dependencies of voxels

in related organs-at-risk to their distance from the surface of PTVs. The researchers used

this method in conjunction with Pinnacle Auto-Planning and the method was successfully

used to improve the quality and consistency of breast and rectal plans. Another approach

clustered PG weighing factors of the training database into five weighting factor sets and

used these for RBP planning of novel cases121. They found that some patients are more

sensitive to weighting factor perturbations than others and that small number of weight

sets.

3.5.3 MCO approaches

Pareto navigation has been widely identified as a beneficial approach to planning. Such

a posteriori (retrospective) approaches allow for explicit exploration of the trade-off
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relationships between PGs and has been shown to enable the identification of highly

clinically applicable planning67,129,130. Studies have emerged showing various methods

incorporating Pareto navigation techniques into the planning process with successful re-

sults. These AP systems will be referred to as Pareto-guided automated planning (PGAP)

systems.

Commercial MCO software has become available within TPS packages. For exam-

ple, RaySearch Laboratories’s Raystation® TPS research version 2.4.11 and Varian’s

Eclipse™ treatment planning system version 15.5 each started providing MCO planning

functionality131–134. Varian’s RapidPlan™ can now be used in conjunction with Varian’s

Eclipse™ MCO for a KBP-MCO hybrid approach also135,136.

Outside of commercially available applications, research has been developed to show

newer approaches for utilising MCO navigation techniques. For example, researchers

have developed a technique called the Pareto optimal projection search (POPS) algorithm

that defines the parameters of an ideal Pareto plan using a knowledge-base of previous

plans and automatically generates and then navigates along the Pareto front to obtain a

plan that best fits some predefined planning parameters137. This research applies a KBP-

MCO approach for automated navigation of the Pareto front. This is desirable as the

final plan will converge to a Pareto optimal plan as well as taking advantage of previous

clinical planning for trade-off management of PGs.

A similar study used Pareto front exploration and previous planning to configure

plans. The work built upon successful implementation of an ϵcapproach to prostate,

known as the two-phase ϵ-constraint method (2pϵc), by applying a KBP configuration

of the trade-offs138. The researchers generated linear approximations of the Pareto front

and used the trade-off relationships found in the training database to automatically gen-

erate a configuration for prostate and identify a Pareto optimal plan. The results showed

favourable median performance and smaller outliers over the previous version of the AP

solution.

Other researchers have attempted to produce solutions that account for patient-specific

trade-offs in the planning process. A new approach builds on an ϵcapproach90 by show-

ing the benefit of patient-specific wish-lists102 as well as proposing an advanced tech-

nique called NovelAPT that uses weighted-sum cost functions to deliver plans of com-

parable quality to the aforementioned patient-specific planning139. This research shows

MCO navigation can be used to help identify clinically desirable plans but that it is pos-
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sible for a priori calibrated RBP methods to produce plans of comparable quality given

advanced enough rules.

3.5.3.1 MCO approaches: EdgeVcc

The PBAIO planning system within EdgeVcc includes fully incorporated PGAP func-

tionality allowing for an exploration of the wider planning space. The clinically applica-

ble region of the Pareto front is sampled using a finite set of unique weighting factors and

plans generated using PBAIO. A sliding interface is then used to navigate through the

samples and select the weighing factor set resulting the in the most clinically desirable

balance of trade-offs. Expert-driven PGAP decisions are made using 3D dose distribu-

tions, DVHs and numerical dose statistics all of which are updated on screen in the TPS

in real-time as the navigation takes place. Figure 3.2 shows an example of the EdgeVcc

sliding interface.

Weighting factors are user defined but are often chosen to follow a geometric progres-

sion to approximately follow the trend of the Pareto front. For navigation, regions of the

Pareto front that have not been explicitly generated can be approximated using convex

combinations of adjacent Pareto plans. These approximate solutions can aid the navi-

gator in making a selection, and weighting factors can be navigated for any set of PGs

at once. For example, weighting factors for a single PG can be navigated (a univariate

case) or a combination of PGs can be considered together. Given PGs trade-off against

each other, it is considered advisable to navigate PGs together to better understand their

trade-off relationships and make a more informed decision. Once the navigator has made

a choice, their weighting factors are saved within a JSON file readable by the Raystation

TPS and in an easily accessibly CSV file.

However, a key issue with this methodology is the number of necessary Pareto plans

necessary for navigation. The number of Pareto plans grows exponentially with the num-

ber of PGs that are considered at once. Given n PGs with weighting factors to calibrate

and m weighing factor levels for each, nm Pareto plans will be generated for navigation.

As the number of weighing factor levels increase, so too does the navigation accuracy

due to improved convex combination approximations but this contains a computational

and resource cost given the space needed to store the plans. A larger issue in the increase

in Pareto plans due to consideration of more PGs at once usually leading to a compro-

mise navigation accuracy when fewer weighing factor level are considered in order to
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Figure 3.2: An example of an EdgeVcc sliding interface containing three PGs. In the background

can be see two identical transverse CT slices for a PSV patient on the left plane. The top slice

shows a representation of isodose lines given the navigation. The bottom box contains a static

image of the top box when the Store Navigation Data button is pressed. On the top right hand

pane can be seen DVH plots of all delineated regions and the bottom right pane contains dose

percentage differences between the two navigation panes on the left side.

minimised resource costs.

3.5.4 AP for advanced EBRT

In addition to improvements in standard modern EBRT, more advanced delivery methods

have shown to result in dosimetric improvements140,141 nevertheless the search space

increases substantially making the identification of the most desirable plan even more

elusive. Researchers have begun to develop methods of Pareto navigation for 4π (non-

coplanar) delivery more readily facilitate the use of advanced methods of treatment. This

leads to large potential for dosimetric benefits whilst maintaining reasonable planning

efficiency142.

3.6 Treatment sites considered in this work

The results of this work will be best realised for treatment sites most prevalent for tu-

morous cancers including breast, prostate, lung and colorectal tumours143. Therefore, it

was pertinent to the development of the work that solutions be defined within this subset

of treatment sites. Findings would potentially have far reaching implications in the short

terms and generalised methods could then be adapted for other sites within this treatment

institution. Breast was excluded from this work because EdgeVcc AutoPlan protocols
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Site
PTV

Type
Prescribed

Prescribed Dose Dose (%)

PSV

60

Min Dose 96.5

Max Dose 105

Min Median Dose 96.5

Max Median Dose 105

48
Min Dose 100

Max Dose 100

Rectum 45

Min Dose 97

Max Dose 102.5

Max Median Dose 99.5

Lung 55

Min Dose 97.5

Max Dose 102.5

Min Median Dose 100

Max Median Dose 100

Table 3.1: Summary of EdgeVcc PGs for PTVs of each site. Information outlined here was

sourced from Velindre’s internal documentation.

for breast were still being developed at the time of this work. Hence, chosen sites were

prostate, lung and rectum.

All work relates to current local practice with the exclusion of as few patient groups

as possible. All patient were previously treated at Velindre Cancer Centre and chosen

at random from their respective time windows. Patients were originally planned using

computed tomography (CT) scans of 3mm slice thickness and treated in the head-first

supine position. Patients with non-standard areas of avoidance such as hip prostheses

or hernias were excluded from patient databases as well as patients with non-standard

margins. Plans for each site were generated within the RayStation (Raysearch Labora-

tories, Stockholm, version 8B) TPS with identical methodologies applied across patients

including treatment units and arc configurations. PTVs were created using ICRU stan-

dard definitions and PTV suffixes indicate the prescribed dose in Gy. See Table 3.1 for a

breakdown of PTV PGs included for each site.

For prostate, the chosen dataset included prostate seminal vesicles (PSV) patients

treated between January and June 2018 (inclusive). Delineated ROIs included the exter-
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nal body contour (referred to from here on simply as the external), prostate, seminal vesi-

cles, rectum, bladder and bowel (volume up to 2cm superior of the prostate). Forty-five

PSV patients were considered in total of which 5 were excluded for not meeting the cri-

teria: three for having a non-standard area of avoidance and two for having non-standard

margins. Two PTVs were derived: (1) PTV60 defined as prostate expanded 5mm isotrop-

ically (6mm craniocaudally), (2) PTV48 defined as prostate and base seminal vesicles

expanded by 10mm isotropically. Patients were treated on a Varian TrueBeam STx (Var-

ian Medical Systems, Palo Alto, CA, USA) linac in 20 fractions using a simultaneous

integrated boost technique and PGs derived from local clinical goals defined following

the UK PIVOTAL trial144.

For rectum, the chosen dataset included patients treated between June 2016 and June

2020 (inclusive). Delineated ROIs included external, bowel bag, stoma and genitals.

Bowel bag delineates the abdominal cavity one transverse slices above the PTV down

to the pelvic symphysis. Sixty-four rectum patients were considered in total of which 4

were excluded for not meeting the criteria due to non-standard areas of avoidance. All

patients had an external and bowel bag delineated. Regarding stoma and genitals, 13

patients had both stoma and genitals delineated, 43 had genitals but no stoma and 4 had

neither. One PTV, PTV45, was derived for each patient. Patients had been treated on

an Elekta Agility VMAT (Elekta Solutions AB, Stockholm, Sweden) linac or a Varian

TrueBeam STx linac in 25 fractions and PGs derived from local clinical goals.

For lung, the chosen dataset include patients treated between June 2018 and June

2020 (inclusive). Delineated ROIs included contralateral lung, ipsilateral lung and com-

bined lungs minus GTV, heart, cord, oesophagus, brachial plexus and liver. In total 68

patients were considered of which 8 were excluded for not meeting the criteria: four for

metal works, three for having the kidneys delineated and for having the bronchus delin-

eated. Of the brachial plexus or liver volumes, 11 had a brachial plexus delineated, 8 had

liver and non have 42 had neither and none had both. One PTV, PTV55, was derived for

each patient. One PTV, PTV55, was derived for each patient. Patients were treated on an

Elekta Agility VMAT linac in 25 fractions and PGs derived from local clinical goals.

Prior to this work were three pilot studies for knowledge gain and corroboration of

other researchers findings. All preliminary work pertains mainly to prostate given it

is directly comparable to related research in this area109,118–121 and previous research

related to the AP approach discussed on this work96,105.
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Hypothesis generation

The overall aim of the work presented in this thesis is to defined ML solutions for auto-

mated and patient-tailored RBP calibration reflecting the choices of qualified profession-

als. This is done with the intent of leading to a full AP approach in which zero human

planning is required. To do this, an RBP technique is used as a base AP system. Classical

RBP methods are reliant on apriori (upfront) calibration of PG priorities and this is an

obstacle of its implementation because resulting plan quality cannot be assessed by this

calibration alone. Plan quality is only assessed once a plan has been fully generated and

the dose distribution is known. Therefore, the direct relationship between RBP calibra-

tion parameters and dose distribution is yet unknown145 and calibration is difficult for

this reason. Also, RBP planning is not always patient-tailored as the calibration task is

often carried out once per treatment site with the same prioritisation of PGs then applied

to all cases. Understanding the relationship between calibration parameters and anatomy

with respect to dose distribution will better facilitate straight forward planning and be

valuable when implementing automation. For example, this will make choosing appro-

priate features for use in ML modelling simpler and will be useful for development of

heuristics used to analyse those models.

4.1 Aims and objectives

The aim of this section is to better understand what constitutes “clinical preference” and

how to obtain it consistently via apriori calibration of RBP. Using a PGAP system that

permits navigation along the Pareto front, the levels of consistency between different cal-

ibrations can be assessed. Parameters in need of calibration for this automated planning

52
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system are the weight factors. The difference between two weighting factors is a cal-

culable metric and variances in choices can be understood in terms of these differences.

Defining the clinically applicable domain of the Pareto front is necessary for modelling a

ML solution that maps to this front. Moreover, given a reliable and consistent definition

of clinical preference can be obtained, the underlying relationships between clinically

relevant weighting factors and anatomy can be better understood also. In light of this,

three studies were carried out:

(i) Intra-planner calibration study

(ii) Inter-planner calibration study

(iii) Anatomy simulation study

All studies in this chapter were carried out for PSV only and the patient database con-

sisted of randomly selected PSV patients as outlined in section 3.6. Participants of these

three studies were all qualified for plan creation or plan verification for the site in question

and were trained in the use of the PGAP system. These studies help to lay the founda-

tions for closing a gap in knowledge. The first two studies were closely related and have

a number of similarities that will be outlined now.

4.2 Defining “gold standard” planning

Planning can be thought of as translation of oncologist dosimetric preferences into deliv-

erable plans. Therefore, planners are required to have an adequate understanding of this

preference to ensure theoretical consistency in planning choices. This is not always the

case given sources of variability lead to differences in assessment of appropriate trade-off

relationships146. Inter-planner variability may be due to differences in training, experi-

ence, interpretation of protocols or personal inclination. Intra-planner variability may be

due to workflow order effects (order of patient cases), developments in knowledge over

time or other daily experiences. Studies presented in this chapter aim to establish if there

exists a discernible gold standard domain of plans given these variances or whether the

translation of clinical preference is truly planner specific.

The aims of this thesis are conditional on a reliable and consistent ground truth

database being obtained from qualified professionals. Assuming consistent planning is

possible, this ground truth can be established in one of two ways, using a database of

plans generated by: (1) a single person or (2) a collection of individuals. To explore (1),
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the consistency in planning choice of a single participant were observed (intra-planner

variability). The intra-planner study provides information about the degree to which a

single human planner is expected to see discrepancies in their own weighting factors.

The value of an intra-planner study is isolation of behaviour of a single qualified profes-

sional with years of training and experience. The study highlights the level of deviation

in choices of the highly qualified when calibrating RBP solutions and therefore, helps

in identifying the domain of clinically applicable planning that can be observed when a

single person is considered. Not only does the intra-planner variability study aid in the

research of (1), but a single participant design has the benefit of being more convenient

than a multi-participant design and obtaining a gold standard database with this approach

may require less time and computation. Also, if a multi-participant design is found to be

more appropriate, conducting an intra-planner study first is still useful as an experiment

refinement method prior to the larger multi-participant design147.

To explore (2), multiple qualified professionals were selected (inter-planner variabil-

ity) and the consistency in planning choices between them was observed. The inter-

planner study illustrates the level of consistency in planning observed between different

qualified professions of the same institution. The true range of clinically applicable plan-

ning across planning professions is unknown but choices between planners is known to

vary. This study provides a more general view of the clinically applicable region of the

Pareto front.

In all cases, participants calibrated solutions for patients using the PGAP system and

choices compared. Similarity between choices was measured using a Sørensen–Dice co-

efficient and statistically significant differences in dosimetry and weighing factor values.

Weighting factors hold little intrinsic value on their own but are strongly relative to each

other. Relative weighing factor values are closely linked to the target objective value in

the TPS optimiser as the PGAP system uses them to set the targets. Therefore, for analy-

sis purposes, weighing factor values were compared in relative form as well as their raw

values. That is relative values are derived by dividing raw weighing factor values by the

sum of all weighing factor values. Participants were also interviewed following planning

sessions and qualitative aspects will be discussed as well as quantitative differences.
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4.3 The relationship between calibration and anatomy

The aim of the anatomy simulation study was to generate hypotheses about the rela-

tionships between anatomy and weighting factors. The study explores the changes in

weighting factors necessary to achieve a consistent dose distribution given anatomical

variations. Therefore, this study helps to uncover what is necessary to enable consis-

tent planning in the clinic. Weighting factors are calibrated for a single patient following

which the anatomy of the patient was augmented in a controlled way. The findings of this

study can also be used as a guide for judging the successful application of ML solutions

given anatomical variations in real cases. This is due to the anatomic augmentation help-

ing to explicitly define some of the underlying relationships between geometric anatomy,

weighting factors and the resulting dose distribution.

4.3.1 AutoPlan protocol

The base AutopPlan protocol presented in Tables 4.1a-4.1d is based on a clinically ap-

proved and implemented solution for PSV. It was created in-line with local practice and

similar PGs have been considered appropriate to manage dose distribution for this clini-

cal site in other work120,148. The AutoPlan protocol contains seven P1 and P2 PGs which

aim to control maximum bowel dose and PTV homogeneity by restricting them within

fixed tolerances. It also contains seven trade-off (P3) PGs: (1) average dose to the rectum,

(2) average dose to the bladder, (3) PTV dose conformality, (4) maximum dose to the rec-

tum, (5) intra-PTV dose fall-off, (6) maximum dose to the bladder and (7) medium-high

dose to the bowel (V36.0Gy and V45.6Gy). Average dose refers to mean dose across the

voxels in the ROI.

4.3.2 Planning procedure for inter- and intra-planner study

When using a PGAP system, the number of Pareto plans increases exponentially as the

number of PGs considered during navigation increases. This occurs because the number

of plans required for navigation is raised to the power of the number of PGs149. This

means the process can become increasingly computationally expensive as the number

of PGs increases. Five weighing factor values were selected for each PG to sample the

clinically relevant span of Pareto plans in this work. That is 5N Pareto plans generated for

navigation where N is the number of PGs considered simultaneously. Five was chosen
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Table 4.1: PGs for PSV AutoPlan protocol.

Abbreviations: %Presc, PTV = % of individual PTV prescription dose; %Presc = % of overall

treatment prescription; %Vol = % volume of ROI.

Notes: Priority 3 Weighting Factors are subject to change prior to optimisation if desired.

Priority 3 Target = 0.0 by default but can be specified if desired. Target is dynamically adjusted

for all during optimisation and therefore initial values have negligible impact on plan quality but

may decrease planning time if correctly defined.

(a) Priority 1: Primary OAR Goals

ROI Name Dose Parameter Target (Gy) Weighting Factor

Bowel Dmax 51.0 1000

(b) Priority 2: Target Goals

ROI Name Dose Parameter Target Weighting
(%Presc, PTV) Factor

PTV60 Dmin 96.5 250
PTV60 Dmax 102.5 250
PTV60 D50% max 99.5 250
PTV48 Dmin 96.5 250
PTV48 Dmax 105.0 250

(c) Priority 3: Trade-off Goals (Standard)

ROI Name Dose Parameter Target PG Weighting
(Gy or %VVol) Number Factor

Rectum Dmean (Gy) 5.0 1 21.3
Bladder Dmean (Gy) 5.0 2 6.86
Rectum Dmax (Gy) 60.0 4 195
Bladder Dmax (Gy) 54.0 5 0.880
Bowel V36.0Gy 0.0 7 0.762
Bowel V45.6Gy 0.0 7 0.762

(d) Priority 3: Trade-off Goals (Dose Fall Off)

ROI Name Fall Off Type High Dose Low Dose Dose Gradient PG Weighting
Level (Gy) Level (Gy) (%Presc cm-1 ) Number Factor

PTV48 Falloff 57.0 40.8 50% 3 23.6
PTV48 Intra PTV Falloff 54.0 52.8 50% 6 1.47
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empirically and considered highly appropriate given previous AP studies use as few as

N+1 Pareto plans for navigation67,150 and recent mathematical studies use as few as five

Pareto plans in total151.

Of the five weighing factor values selected to sample the clinically relevant span

of the Pareto set, maximum and minimum weights were chosen empirically based on

a clinically approved and implemented AP protocol. Values for the three intermediate

weighting factors were chosen such that they follow a geometric progression to ensure

an even spread across the Pareto set152. It was possible to modify weights on a patient-by-

patient basis if they were not found to be sufficient. However, no participants requested

this for any patients in these studies.

4.4 Statistical Testing

The statistical testing used in this thesis will be explained and justified. This is done

not only to illustrate the integrity of the results but also importantly to engage in the

discussion of the most appropriate statistical testing for true scientific validity within the

community.

Parametric testing uses sample parameters to explain the data opposed to individual

observations. They are computationally efficient and expected to approximate population

relationships well when the data are appropriately large. However, parametric testing

usually requires some assumptions be met prior. For example, parametric tests can be

used to determine if two or more samples follow a similar distribution. Of these tests,

some use mean and standard deviation related parameters such as the t-test and analysis

of variance (ANOVA). In these cases, the data must be expected to follow a standard

normal distribution (or not deviate significantly from a standard normal distribution) and

the variance of each sample is expected to be approximately equal. In order to determine

this with statistical tests, the sample size should be appropriately large.

However, when assumptions are not met by the data, non-parametric alternatives

must be employed instead. Non-parametric tests often make fewer assumptions (or no

assumptions) about the data structure and will yield more reliable results than their para-

metric equivalents in certain circumstances. However, non-parametric tests are often

more computationally intensive to carry out as the data size increases and may not con-

verge to population outcomes as well as parametric tests would.

In this work, studies were conducted such that different measures are taken for the
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same cohort for comparison against each other. These studies are known as repeated

measures because the measures are repeated for the same subjects for within subject

comparison and subject cohorts are not independent. When only two measures are taken,

pair-wise testing is appropriate and such testing may include parametric t-tests or non-

parametric Wilcoxon signed rank tests. However, when more than two measures have

been taken, omnibus tests should be carried out to manage the family-wise type I error.

A type I error is the probability of rejecting the null hypothesis in error and a type II error

is the probability of accepting the null hypothesis in error.

Given the number of patients in this work, ANOVA omnibus testing and Tukey post

hoc testing have been employed providing ANOVA assumptions are not violated. Oth-

erwise, Friedman omnibus testing with Nemenyi post hoc testing were used. The justi-

fication for this will follow later in this section. Statistically significant differences are

reported at the 5% level of significance (or 95% confidence level). To determine if sam-

ples followed a standard normal distribution, a statistical test of normality was carried

out. To do this, a Shapiro–Wilk test were employed153 using a significance level of 5%.

Given the test for normality is not violated, a test for sphericity of variances was carried

out. To do this, Mauchly’s test154 was used and judged at the 5% level of significance.

ANOVA was applied given neither test indicated the data do not meet the assumptions.

Given the Shapiro–Wilk test was not significant but Mauchly’s test was, ANOVA was

used with a Greenhouse-Geisser corrected p-value155 to adjust for lack of sphericity.

Given ANOVA omnibus testing with a significant difference indicated, a suitable post

hoc test was employed to interpret pairwise differences whilst managing the family-wise

error. One way of doing this would have been to use t-tests with a p-value correction to

adjust for the number of pairwise comparisons. For example, a popular way to adjust for

the family-wise error is to use a Dunn or Bonferroni p-value correction156. In this work

however, a Tukey test was used for the ANOVA post hoc test given this test inherently

manages the family-wise error rate and is recognised as a traditional ANOVA post hoc

test. All ANOVA and ANOVA post hoc testing was implemented in python using the

Pingouin 0.5.2 library.

When the normality assumption was violated, a non-parametric test was used. Tradi-

tionally in this field of work, a paired Wilcoxon signed rank test will be employed. This

is valid for paired comparison and similar approaches have been supported by recent sta-

tistical research as a valid method157. Also, for independent measures, one of the most
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appropriate and a well known non-parametric test is the Kruskal-Wallis test158–160. How-

ever, this work relates to repeated measures, and a more appropriate test would be to use

a Friedman test161,162 as has been used in a number of related studies recently76,163,164.

Similarly to the pairwise scenario of a Wilcoxon test, the rank of values is used to com-

pare groups opposed to the actual values. Wilcoxon testing does not inherently manage

the family-wise error therefore using it increases the potential of committing a type I

error. To get around this, one could employ a correction such as those mentioned earlier

to adjust the p-value due to the number of pairwise comparisons and control the family-

wise error. However a more standard post hoc test is the Nemenyi test given it inherently

controls for the family-wise error. In this work, Friedman testing was implemented us-

ing the Pingouin 0.5.2 library in python and Nemenyi testing implemented using the

scikit posthocs 0.7.0 library.

4.5 Intra-planner study

4.5.1 Methods

Of the PSV patients defined in section 3.6, PSV patients 01-20 were included in this

study. At this institution, there is a known heuristic in local PSV planning given tra-

ditional planning protocols used to develop the AutoPlan protocol seen in Tables 4.1a-

4.1d. That is, given the generally large relative priority associated with PG 1-3, these

PGs show the most significant and notable trade-off relationships when navigated to-

gether with negligible impact to other PGs and navigating all PGs simultaneously was

not considered strictly necessary. Therefore, given the exponential relationship between

the number of PGs and the number of Pareto plans, navigation was performed in two

stages for resource and time efficiency. Fewer Pareto plans were generated therefore plan

generation occurred in less time and less computing power and space was taken than

would have been if all six PGs were to navigated together. Also, given this study was

to purely assess navigation choices, generation of fully optimised plans was not required

and was not done. Navigated plans were therefore compared based on navigated data

only with fully optimised plans not generated via PBAIO.

It is also known that repeated measures studies can be highly skewed by order effects

if the planning professional is able to anticipate the next case. To mitigate this, navigation

sessions were not held close together but with a suitable interval between them. In this
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study the interval was at least 7 days from the end of the last session. Cases were also

presented in a different random order each time.

4.5.1.1 Navigation Session

In addition to the EdgeVcc sliding interface, the TPS interface was available for the par-

ticipant to interact with. It contained a CT scan of the patient in each case, a DVH,

numerical dose statistics and clinical goals. The participant had the ability to select and

deselect ROIs that would update the view in the CT, DVH and statistics. CT scans could

be switched between transverse, sagittal or coronal plane view whenever needed to allow

dose distributions to be viewed in all directions. A key characteristic of the EdgeVcc

sliding interface is the option to freeze a navigation at a certain position (set of weighting

factors) and copy it to a reference plan and use the reference as a guide to continue slid-

ing. With EdgeVcc, navigators are able to use other plans as a reference (e.g. clinically

approved plans), but the participants choices were based on their own knowledge and

judgement and such references were not permitted as they may confound the results. The

participant performed navigation under standard planning conditions.

PGs 1-3 were navigated simultaneously whilst the latter four were held constant at

the level defined in the clinically approved AutoPlan protocol. Weighting factors were

stored during each session. PGs 4-6 were then navigated in three more sessions in a

similar way with PGs 1-3 held at their newly defined values. Qualitative information

regarding planning choices was provided by the participant after the first session. PG 7

(high dose to the bowel) was not re-calibrated due to its low priority, negligible trade-

off impact and low proximity of the related organ-at-risk (OAR) to PTVs. This PG was

held constant at its clinically defined weighing factor in all cases. Five weight level were

used for each navigated PG with three navigated at a time in each navigation. That is

2× (53) = 250 Pareto plans per patient.

Also included for analysis was the Average Session. Values for the Average Session

were derived of the values from the three actual session. For each patient and each

PG, the mean weighing factor over the three session was calculated. A useful finding

of this work will be to determine a single set of weighting factors that represent the

participants overall choices and interpretation of the oncologist clinical preference. One

way would be to choose the weighing factor sets from a single session but instead the

Average Session was proposed as a non-biased choice that would best control for day to
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Absolute Average
Session 1 Session 2 Session 3 Test

Weight Metric Session

Rectum Dmean 114 ± 28.3 129 ± 33.3 101 ± 33.0 112 ± 34.5 ANOVA

Bladder Dmean 32.2 ± 11.3 36.4 ± 19.8 25.5 ± 10.5 34.6 ± 22.1 Friedman

PTV Conformality 292 ± 92.4 328 ± 103 269 ± 98.1 280 ± 107 Friedman

Rectum Dmax 2.78 ± 0.836 2.45 ± 1.06 2.71 ± 1.13 3.19 ± 1.47 Friedman

Intra-PTV dose falloff 18.9 ± 3.37 19.3 ± 7.24 17.9 ± 6.98 19.5 ± 4.33 ANOVA

Bladder Dmax 12.5 ± 3.40 13.2 ± 4.68 11.0 ± 3.10 13.5 ± 4.60 Friedman

Bowel Dmedium 1.52 1.52 1.52 1.52 None

PGH 2250 2250 2250 2250 None

Table 4.2: The mean raw navigated weights over all patients by the navigator in the three ses-

sions and the average weights across these sessions. Boldface indicates statistically significant

difference (at the 95% level) within the omnibus test (ANOVA or Friedman test).

day variance.

4.5.2 Results

4.5.2.1 Absolute weights

In each case, the participant took between 4-5 minutes per navigation. See Table 4.2

for a summary of absolute weighing factor values including indications of statistically

significant differences of omnibus tests.

Given absolute values were constant for bowel V36.0Gy and V45.6Gy (bowel Dmedium)

and higher priority PGs (PGH), testing was not done for these PGs. Values for PG 2-4 and

6 violated normality assumptions and a Friedman test was applied. In terms of absolute

values, the Average Session illustrated a high levels of consensus across the sessions.

No statistically significant differences were observed between the Average Session and

individual sessions. Notably, Sørensen–Dice (DiceC) coefficients between each of the

three sessions with the Average Session were greater than 0.9 indicating a high degree

of similarity for all PGs in all sessions with those of the Average Session. Figure 4.1

shows the distribution of individual session weighting factors about the Average Session.

Session 3 was the most similar to the Average Session given it resulted in the highest

DiceC and the lowest median difference with the Average Session with values of 0.977

and 0.888 respectively. Session 2 differed the most from the Average Session given it

resulted in the lowest average DiceC across the PGs with a value of 0.967 and the largest

median deviations from the Average Session for five of the six PG as seen in Figure 4.1.
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Figure 4.2: Intra-planner relative weight comparison between Session 1-3 and the Average Ses-

sion. Values represent mean relative weighing factor values across all 20 patients.

There is some evidence that the average navigation (i.e. the Average Session) may be

appropriate for representing the navigation behaviour of a planner overall given strong

consensus with all sessions even when differences are observed between session. This

may be considered a means of controlling for inconsistencies observed during individual

sessions.

Differences between individual sessions were comparatively greater. Statistically

significant differences were observed between Session 1 and 2 for rectum Dmean and PTV

conformality only with Session 2 and 3 having no absolute weight significant differences

for any PGs. However, the greatest similarity was observed between Session 1 and 3

with a DiceC of 0.933. This shows that Session 2 and 3 differed least on aggregate

(at population level) and at patient-level Session 1 and 3 differed least. Nevertheless,

there is evidence showing comparability of performance across the three session by this

participant.

4.5.2.2 Relative weights

See Table 4.3 for a summary of relative weighting factors including indications of sta-

tistical significant difference in boldface. Of the eight PGs tested, three did not meet

normality assumptions and were tested using Friedman. These PGs include conformal-
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Relative Average
Session 1 Session 2 Session 3 Test

Weight Metric Session

Rectum Dmean 4.16% ± 1.02% 4.62% ± 1.15% 3.76% ± 1.19% 4.10% ± 1.21% ANOVA

Bladder Dmean 1.18% ± 0.396% 1.30% ± 0.674% 0.954% ± 0.396% 1.27% ± 0.809% Friedman

PTV Conformality 10.6% ± 2.98% 11.7% ± 3.21% 9.94% ± 3.22% 10.2% ± 3.45% Friedman

Rectum Dmax 0.103% ± 0.0312% 0.0883% ± 0.0378% 0.102% ± 0.0434% 0.118% ± 0.0555% ANOVA

Intra-PTV dose falloff 0.696% ± 0.129% 0.696% ± 0.265% 0.671% ± 0.258% 0.722% ± 0.164% ANOVA

Bladder Dmax 0.462% ± 0.132% 0.475% ± 0.173% 0.411% ± 0.121% 0.499% ± 0.181% Friedman

Bowel Dmedium 0.0560% ± 0.0185% 0.0549% ± 0.00222% 0.0570% ± 0.0200% 0.0563% ± 0.00231% Friedman

PGH 82.7% ± 2.72% 81.1% ± 3.27% 84.1% ± 2.96% 83.1% ± 3.42% Friedman

Table 4.3: Relative navigated weights over all 20 patients by the expert planning professional

in the three navigation session and the average relative weights across these sessions. Statistical

significance is measured at the 95% level.

ity and bladder Dmean and Dmax. Similarly to the absolute weight scenario, a high level

of similarity is observed between the Average Session and the three individual sessions

given DiceC values of greater that 0.9 for all PGs. Additionally, no statistically signif-

icant differences were observed between the Average Session and any of the individual

sessions and this supplements the evidence from the absolute value case above, that the

Average Session is representative of this participants planning behaviour and sufficient

for use instead of choices made during individual session. Figure 4.3 indicates deviations

of navigating sessions from the Average Session. Consensus between individual sessions

and the Average Session were strong given deviations ranges of between ∓0.04 or ∓4%.

The PG that showed the largest deviations from the Average Session across the three

navigation’s sessions was rectum Dmean with DiceC values of 0.918, 0.918 and 0.916 for

Session 1, 2 and 3 respectively.

Individual navigation session choices were also comparable on average (as seen in

Figure 4.3) similarly to the absolute weighing factor case and statistically significant

differences were observed between Session 1 and 2 only. Differences included three PG

groups: PTV conformality, bowel Dmedium and PGH. A borderline significant difference

was also observed for rectum Dmean also. Rectum Dmean and PTV conformality were

prioritised lower on aggregate during planning Session 2 giving a higher relative priority

to the two PGs that were not navigated i.e. bowel Dmedium and PGH.

A notable finding was that higher levels of similarity are observed between the Av-

erage Session and individual session for PG 1-3 when weights are relative compared
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to when they are absolute. This is evidence that although planners may use a differ-

ent region of the sliding scale during planning, their relative choice may still balance

similarly in terms of relative prioritisation. This is a key finding given the relative PGs

values are more applicable to weighing factor calibration and the dosimetry of the result-

ing plan. There is also strong evidence that static and non-patient specific weights (e.g.

bowel Dmedium or PGH) can have a statistically significant impact on planning given other

weights vary notably when calibration is patient-specific. Therefore, considering the rel-

ative relationships between weights is arguably more important than observing them in

absolute terms.

4.5.2.3 Dosimetry

Table 4.4 summarises key dose-volume metrics for the three session and the Average

Session. Of the 24 dose-volume metrics considered, eight violated the normality as-

sumption for ANOVA and were tested using Friedman. These included PTV60 D98%

(Gy), PTV60 D2% (Gy), homogeneity of PTV60, PTV48 D50% (Gy), rectum V60Gy (%),

rectum V60.8Gy (%), bladder V52.7Gy (%) and bladder V56.8Gy (%). Statistically signif-

icant differences were observed for seven dose-volume metrics of which six related to

the Average Session. All three navigation sessions differed from the Average Session

for PTV60 D98% (Gy), PTV60 D50% (Gy), rectum V60Gy (%) and bladder V56.8Gy (%).

Smaller values were observed for all navigated sessions when compared with the Average

Session for all four dose metrics showing a statistically significant difference.

Session 3 was dosimetrically most comparable to the Average Session given mean

and median difference were minimised by this session for the majority of key metrics

presented in Table 4.4. Most notably, Session 3 minimised median differences from

the Average Session for dose to the rectum. A statistically significant difference was ob-

served for high dose to the rectum (rectum V60.8Gy and V60Gy mentioned earlier) between

Session 3 and the Average Session however. This significant difference was observed for

Session 2 against the Average Session also. This indicates good consensus between the

Average Session and Session 3 except at the most extreme dose levels.

Session 1 and 2 are comparably further from the Average Session than Session 3.

Statistically significant differences are observed for lower doses to the rectum with mean

and median differences notably greater than for Session 1. Session 1 however, shows

notable deviations from the Average Session in terms of higher doses to the rectum also,
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DVH Statistic
Average

Session 1 Session 2 Session 3 Test
Session

PT
V

60

D98% (Gy) 57.3 ± 1.23 57.2 ± 1.23 57.2 ± 1.32 57.2 ± 1.25 Friedman
D50% (Gy) 60.0 ± 0.0567 59.9 ± 0.0425 59.9 ± 0.0709 59.9 ± 0.0460 ANOVA
D2% (Gy) 61.7 ± 0.103 61.7 ± 0.109 61.7 ± 0.0859 61.7 ± 0.0962 Friedman

CI 0.848 ± 0.0177 0.851 ± 0.0201 0.845 ± 0.0196 0.848 ± 0.0192 ANOVA
HI 0.0732 ± 0.0212 0.0758 ± 0.0213 0.0745 ± 0.0223 0.0753 ± 0.0213 Friedman

PT
V

48

D98% (Gy) 46.2 ± 0.445 46.1 ± 0.451 46.3 ± 0.430 46.2 ± 0.399 ANOVA
D50% (Gy) 53.5 ± 1.51 53.4 ± 1.53 53.6 ± 1.52 53.6 ± 1.51 Friedman
D2% (Gy) 59.2 ± 0.261 59.2 ± 0.292 59.2 ± 0.250 59.2 ± 0.246 ANOVA

CI 0.822 ± 0.0211 0.821 ± 0.0269 0.815 ± 0.0257 0.814 ± 0.0284 ANOVA
HI 0.244 ± 0.0103 0.244 ± 0.0106 0.241 ± 0.0104 0.242 ± 0.0102 ANOVA

R
ec

tu
m

V24.3Gy (%) 27.1% ± 8.00% 26.7% ± 7.86% 27.3% ± 7.87% 27.1% ± 7.74% ANOVA
V32.4Gy (%) 21.9% ± 7.00% 21.6% ± 6.91% 22.1% ± 6.91% 22.0% ± 6.80% ANOVA
V40.5Gy (%) 17.0% ± 5.82% 16.8% ± 5.84% 17.2% ± 5.84% 17.1% ± 5.75% ANOVA
V48.6Gy (%) 11.7% ± 4.27% 11.6% ± 4.31% 11.8% ± 4.38% 11.7% ± 4.31% ANOVA
V52.7Gy (%) 8.59% ± 3.26% 8.43% ± 3.25% 8.61% ± 3.34% 8.53% ± 3.26% ANOVA
V56.8Gy (%) 5.01% ± 1.92% 4.85% ± 1.96% 4.96% ± 2.08% 4.87% ± 2.00% ANOVA
V60Gy (%) 0.571% ± 0.519% 0.221% ± 0.219% 0.267% ± 0.268% 0.186% ± 0.210% Friedman

V60.8Gy (%) 0.170% ± 0.228% 0.0407% ± 0.0479% 0.0303% ± 0.0398% 0.0280% ± 0.0448% Friedman
Dmean(Gy) 17.8 ± 3.82 17.5 ± 3.72 17.8 ± 3.76 17.8 ± 3.57 ANOVA

B
la

dd
er

V40.5Gy (%) 20.4% ± 10.1% 20.4% ± 10.1% 20.7% ± 10.2% 20.6% ± 10.4% ANOVA
V48.6Gy (%) 14.2% ± 7.34% 14.3% ± 7.48% 14.4% ± 7.39% 14.4% ± 7.67% ANOVA
V52.7Gy (%) 11.2% ± 6.15% 11.2% ± 6.22% 11.4% ± 6.18% 11.3% ± 6.28% Friedman
V56.8Gy (%) 8.13% ± 4.74% 7.74% ± 4.63% 7.94% ± 4.74% 7.30% ± 4.62% Friedman
Dmean(Gy) 21.9 ± 7.65 21.7 ± 7.60 22.0 ± 7.73 21.9 ± 8.00 ANOVA

Table 4.4: Summary of key dose metrics. Values shown are Mean ± 1 Standard Deviation.

Statistical difference at the 95% level of significance is indicated by boldface.

with Session 3 showing more notable deviations for dose to the bladder.

Significantly higher homogeneity indices were observed for Session 1 over the Av-

erage Session and differences were observed between Session 1 and 2 for two metrics

PTV48 D50% (Gy) and Bladder V56.8Gy (%). Regardless of statistical significance, all

dose-volume metric differences were considered clinically negligible given deviation

within ∓2 Gy, ∓1 percent volume and ∓0.04 units for dose, volume percentage and

index units respectively.

PTV60 D98% (Gy), bladder V52.7Gy (%), PTV60 D2% (Gy), rectum V60.8Gy (%), ho-

mogeneity of PTV60, PTV48 D50% (Gy), bladder V56.8Gy (%) and rectum V60Gy (%)

4.5.3 Discussion

This study presents evidence that expert-driven PGAP is expected to result in consis-

tent planning with minimal intra-planner variability (Figure 4.5). This is a marked im-

provement on the level of intra-planner variability that can be expected when there is a

heavy reliance on manual planning165. This work gives credence to the idea expert-driven
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PGAP is useful for reflecting the preferences of the user hence can aid in the generation

of plans that have consonance with their preferences67 opposed to manual planning that

can be tedious and cause the planner to stop as soon as clinical goals have been met166.

This study also highlights the importance of understanding the relative relationships

between weighting factors. Although there are no strictly imposed restrictions on weight-

ing factors during the navigation process, assigned weighting factors for each PG are

strongly relative within the PBAIO process and native TPS optimiser given they are nec-

essary for defining the optimisation objective function. Such is the importance of navi-

gating PGs simultaneously and the importance of understanding the relative relationships

between navigated PG weights in terms of the dosimetry of the resulting plan.

Due to known intra-planner variance the feasibility of defining an appropriately rep-

resentative planner and patient-specific gold standard was previously unknown. In this

study it was shown that marked differences from session-to-session give lower Sørensen–Dice

coefficients. However, given the intuitive use of weighting factors and their relationship

to the PBAIO system using in this work, it was possible to define Average Session val-

ues that had a high degree of congruence with individual sessions and this approach is

considered appropriate for defining a planner-specific gold standard. This approach not

only showed consensus with individual planning but could help to mitigate some of the

discrepancies observed during individual planning sessions.

This study helps to fill a gap in the body of literature given so little information

is known regarding intra-planner variability and given newer planning methods such as

these rely heavily on the ability to define a suitable ground truth.

4.5.4 Conclusion

The results indicates small differences can be expected between expert-driven PGAP

planning sessions. Definition of an Average Session showed negligible clinically sig-

nificant differences between navigated session metrics and high degrees of consistency.

The Average Session is therefore considered an appropriate representative of planning

behaviour over multiple sessions and can be used as the definition of gold standard plan-

ning with individual sessions comparable and gold standard adjacent.
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4.6 Inter-planner study

4.6.1 Introduction

Even in highly regulated fields such as that of radiotherapy planning where qualified

practitioner adhere to strict local and universal practices, it is not unreasonable to expect

individuals will make different choices when presented with the same task. Controls

are in place to encourage safe and consistent planning that has congruence with clinical

preferences. Nevertheless, studies relating to inter-planner variability have already lead

to some heuristics surrounding variability between the planning behaviours of different

individuals.

van Beek (2018) conducted an inter-planner study to determine consistency in plan

selection for rectal cancer. The study found that improvements in defined guidelines

and an increase in experience of planners increased their level of agreement from 69%

to 87% in five months167. Erkal (2022) wanted to assess inter-planner variability with

respect to clinical preference and use the findings to define a planning protocol for the

prostate treatment site by isolating key optimisation objectives. Four planners produced

IMRT plans for 15 patients with plans assessed using dosimetric objectives. Notable dif-

ferences were observed dosimetrically including as the number of monitor units per plan

even when planners planned according to standardized protocol but found pre-determined

optimization protocols enable a transfer of experience168.

Therefore, studies have shown consistent planning among practitioners of the same

institution is attainable with the experience of the planner being one of the most signifi-

cant factors in deviations from clinically preferred planning. This study aims to explore

discrepancies in choices made by different qualified practitioners when using a PGAP.

Although all are qualified, practitioners were from a range of backgrounds and experi-

ence levels. Given a PGAP system is being used, it is hypothesised that the interactive and

intuitive nature of this approach will enable planning choices reflecting planner-specific

clinical preference. Hence, findings of this work will help to determine the clinically

relevant region of the Pareto front as defined by a range of qualified individuals.

4.6.2 Methods

All sessions took place between 1st December 2019 and 28th February 2020 and four

qualified professionals familiar with the PSV treatment site were selected to take part:
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• medical physicist (participant A)

• two oncologists (participant B and D).

• clinical technologist (participant C)

All professionals were fully qualified, highly familiar with the PSV treatment site and

had multiple years of experience. The clinical technologist will here and after be referred

to simply as a professional planner.

Given this was an inter-planner study where the differences in weighting factors was

the key outcome, it was not considered strictly necessary that a full clinical plan be cal-

ibrated. For this reason, only PGs 1-3 were calibrated with the remained PGs held con-

stant at the level defined by the original AutoPlan protocol. In this way, only PGs with

the most significant trade-off relationships were considered. Also, inter-planner choices

could be assessed without unnecessary burden to institution and its clinical resources.

Five weight levels were chosen for each PG with the middle value based on that given in

the clinically defined AutoPlan protocol. The remaining four weights were chosen such

that they followed a geometric progression.

Eight PSV patients were chosen for calibration from the set of patients defined in

section 3.6 and correspond to Patient 11-18 from this set. In this study, patients have

been label 1-8 for simplicity. A small set of patients was chosen such that it was con-

sidered large enough to observe a sufficient range of anatomies but small enough not to

become a time consuming task for participants. Participants completed the task under

similar conditions to the intra-planner case, in an environment fit for clinical planning.

They had access to the clinical goals and could interact with the TPS however they de-

sired. However, given not all participants were familiar with the PGAP system, they

were all required to complete a practice case before completing the eight study cases. As

in the intra-planner study, plans were compared in terms of absolute weighting factors,

relative weighting factors and dosimetric features. The results of the practice case were

not considered in this study.

4.6.3 Results

4.6.3.1 Weights

See Table 4.5 for a summary of navigated weighting factors. As expected, rectum Dmean,

bladder Dmean and PTV conformality showed similar relationships in absolute form as in

relative form. Differences were observed between participants for all PG groups except
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Planning Goal Participant A Participant B Participant C Participant D

A
bs

ol
ut

e

Rectum Dmean 94.1 ± 19.8 138 ± 59.3 53.6 ± 12.1 207 ± 80.7

Bladder Dmean 35.6 ± 10.9 44.0 ± 25.7 59.2 ± 27.7 42.8 ± 20.9

PTV Conformality 235 ± 71.3 118 ± 75.9 176 ± 25.2 251 ± 143

Other PGs 2278 2278 2278 2278
R

el
at

iv
e

Rectum Dmean 3.55% ± 0.659% 5.26% ± 2.11% 2.09% ± 0.462% 7.27% ± 2.66%

Bladder Dmean 1.34% ± 0.392% 1.67% ± 0.908% 2.30% ± 1.07% 1.50% ± 0.725%

PTV Conformality 8.84% ± 2.41% 4.48% ± 2.72% 6.85% ± 0.957% 8.71% ± 4.53%

Other PGs 86.3% + 2.95% 88.6% + 4.96% 88.8% + 1.00% 82.5% + 7.27%

Table 4.5: Summary of navigated weights for each PG group. Values are mean ± standard devi-

ation of navigated weights over all eight patients. Statistically significant difference differences

are indicated at the 5% level.

bladder Dmean. See Figure 4.6 for the distribution of relative weights across the patient

database for each participant.

ANOVA assumptions were not met by the rectum Dmean PG and a Friedman test of

significance was used. All other PGs were tested using ANOVA. Statistically significant

differences observed were the same for absolute weights and there relative weight coun-

terparts. No significant difference were observed for bladder Dmean but were observed

for all other PG groups.

Participant C prioritised rectum Dmean significantly lower than D and C and showed

consistently lower prioritisation of this PG in all cases. Participant A prioritised PTV

conformality higher than B overall. Borderline significant differences were observed

for the PG4 and higher PG group given comparably low prioritisation within this group

for participant D than any other group. Weighting factors for this group were not re-

calibrated from the original AutoPlan protocol but were prioritised lower for participant

D due to high relative prioritisation of the calibrated PGs.

For rectum Dmean, the highest degree of similarity was observed between B and D

and the lowest level of similarity observed between C and D with DiceC values 0.884 and

0.493 respectively. The PG with the highest degree of agreement between participants

was bladder Dmean. The lowest DiceC value for bladder Dmean was observed for C and D

with a value of 0.672. Similarity metrics indicate A and C prioritised PTV conformality

similarly and the significant difference between B and D yielding the lowest DiceC with

values of 0.950 and 0.625 respectively. All DiceC values are higher than 0.99 for the PG

4 and higher group. However, the most dissimilar pair was B and D with a DiceC value
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Figure 4.6: Relative weighting factor choices distributions.

of 0.9930.

Patient 4 stood out as an outlier given notable relative weighting factor inconsisten-

cies when compared to other patients. Participant B and C assigned Patient 4 a compa-

rably lower weight than other patients for rectum and bladder Dmean. Participants A and

D assigned a higher than average weight to patient 4 for PTV conformality and partici-

pant B and D assigned this patient a comparably lower weight for the higher PG group.

Figure 4.7 shows a sagittal slice of Patient 4. This patient has the largest PTV48 and

PTV60 volume in the patient database with volumes 3.07 and 2.66 times the database

median respectively. This patient also shows an atypical bowel position with notable

PTV overlap. The PTV overlap meant prioritisation of the rectum and bladder PGs is

likely to be lower than average to ensure appropriate dose coverage of the PTVs whilst

avoiding undesirable compromising of the bowel. Also, patient 1 was a notable outlier

for participant D only and resulted in weights for patient 1 that were outliers for rectum

Dmean and the higher PG group for this patient.
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Figure 4.7: A sagittal slice of Patient 4 showing the overlap of the delineated bowel with the

PTVs. ROIs include: rectum (brown) bowel (green), bladder (yellow), PTV60 (red) and PTV48

(orange)

4.6.3.2 Dosimetry

Normality assumptions were violated for four dose-volume metrics and a Friedman test

was used. These included PTV60 D98% (Gy), PTV48 D50% (Gy), conformality indices

of PTV60 and rectum V60.8Gy (%). See Table 4.6 for a summary of the key dose-volume

metrics of interest and Figure 4.8 for an illustration of key metrics. Few statistically sig-

nificant differences were observed with differences found for four metrics only: PTV60

D98% (Gy), PTV48 D50% (Gy) and conformality indices of PTV48 and PTV60.

Difference were observed between participant C and D for PTV60 D98% (Gy). Higher

doses were observed for C than D with a mean difference of 0.155 Gy. PTV48 difference

observed for D50% (Gy) related to participants A and B only. Observed dose was lower

for A than B with a mean difference of 0.832 Gy. For CI60 observed difference relate to

participant A and B with observed indices low for A on average given a mean difference

of 0.0315 units. CI48 saw participant B observe lower indices than all other participants

with deviations of 0.0973, 0.0899 and 0.0546 units for A, C and D respectively. All

observed difference were considered clinically small indicating differences is planning

decisions may be clinically negligible with this PGAP system.

The two most notably comparable participants in terms of dose-volume metrics are

participant A and C. On average, these participants differ little across the metrics. Figure

4.8 also illustrates the comparability of these dosimetric outcome for these participants at
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DVH Statistic Participant A Participant B Participant C Participant D

PT
V

60

D98% (Gy) 57.6 ± 0.264 57.7 ± 0.148 57.6 ± 0.264 57.5 ± 0.303
D50% (Gy) 60.0 ± 0.0746 60.0 ± 0.0592 60.1 ± 0.0756 60.0 ± 0.0537
D2% (Gy) 61.7 ± 0.0816 61.6 ± 0.0592 61.7 ± 0.086 61.7 ± 0.104

CI 0.850 ± 0.00965 0.820 ± 0.0235 0.845 ± 0.0111 0.838 ± 0.0187
HI 0.0686 ± 0.00547 0.0658 ± 0.00305 0.0677 ± 0.0055 0.0698 ± 0.00668

PT
V

48
D98% (Gy) 46.2 ± 0.197 46.4 ± 0.469 46.4 ± 0.238 46 ± 0.644
D50% (Gy) 53.8 ± 0.515 54.6 ± 0.907 54.0 ± 0.386 54.1 ± 0.681
D2% (Gy) 59.2 ± 0.202 59.4 ± 0.329 59.2 ± 0.118 59.3 ± 0.269

CI 0.815 ± 0.0156 0.717 ± 0.0549 0.808 ± 0.0175 0.769 ± 0.0417
HI 0.242 ± 0.00432 0.239 ± 0.00859 0.237 ± 0.00538 0.246 ± 0.0116

R
ec

tu
m

V24.3Gy (%) 27.2% ± 5.83% 25.3% ± 5.24% 28.6% ± 5.86% 24.8% ± 4.70%
V32.4Gy (%) 22.1% ± 5.23% 20.9% ± 4.57% 22.8% ± 5.25% 20.4% ± 4.09%
V40.5Gy (%) 17.2% ± 4.36% 16.8% ± 3.89% 17.8% ± 4.38% 16.1% ± 3.43%
V48.6Gy (%) 12.1% ± 2.99% 11.9% ± 2.88% 12.4% ± 3.08% 11.2% ± 2.39%
V52.7Gy (%) 8.93% ± 2.07% 8.84% ± 2.12% 9.25% ± 2.20% 8.30% ± 1.71%
V56.8Gy (%) 5.25% ± 1.38% 5.16% ± 1.46% 5.32% ± 1.54% 4.78% ± 1.13%
V60.8Gy (%) 0.0792% ± 0.1050% 0.0731% ± 0.1420% 0.0470% ± 0.1150% 0.0514% ± 0.0761%
Dmean (Gy) 17.9 ± 2.80 17.0 ± 2.80 18.7 ± 2.77 16.7 ± 2.26

B
la

dd
er

V40.5Gy (%) 12.6% ± 6.27% 12.9% ± 6.65% 12.5% ± 6.42% 12.8% ± 6.26%
V48.6Gy (%) 8.53% ± 4.29% 9.17% ± 5.07% 8.57% ± 4.44% 8.71% ± 4.40%
V52.7Gy (%) 6.83% ± 3.60% 7.27% ± 4.05% 6.83% ± 3.67% 6.96% ± 3.68%
V56.8Gy (%) 4.81% ± 2.67% 5.11% ± 3.01% 4.79% ± 2.74% 4.94% ± 2.76%
Dmean (Gy) 15.9 ± 6.44 15.2 ± 6.24 15.5 ± 6.70 15.7 ± 6.33

Table 4.6: Summary of key dose metrics. Values shown are mean ± 1 standard deviation and

statistical difference at the 95% level of significance of non-parametric analysis of variance are

indicated in boldface.

patient level with overall distributions showing high levels of similarity. This may suggest

planners and medical physicists follow similar heuristic knowledge and interpretation of

clinical desirability.

Patient 4 (Figure 4.7) also stood out for dosimetric irregularities showing the highest

CI60 and HI60 values across all participants as well as higher doses to bladder and rectum

than any other patient. Again, this was primarily due to the size and location of the

delineated bowel that overlapped PTVs. Patient 1 has notably low doses to OARs and

achieves a desirably high dose to PTVs irrespective of the participant. Patient 1 had the

largest external delineation and largest rectum volume in the database. Within the inverse

optimiser, this may have made the sparing of comparably large percentage volumes of

the rectum easier whilst still maintaining reasonable PTV coverage.

4.6.4 Discussion

There still exists a gap in the literature for further inter-planner studies, but of those

that do exist, there is evidence showing inconsistencies in participant choices165,168–170.

Given this expectation, the aim of applying PGAP to mitigate discrepancies was explored

here with a view of observing clinically significant differences.

It was observed that oncologists (participant B and D) applied a higher priority to
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sparing the rectum than do planners or physicists. Following interviews with the partici-

pants, participant B stated a preference to push dose in the anterior direction to help spare

the rectum even at some cost to conformality or even increasing dose to the bladder. This

participant considered the rectum a notably higher clinical priority over the bladder and

would increase sparing of the rectum given a suitable dose distribution to PTVs was still

achieved and all clinical goals were being met.

A key difference between the oncologists in this study was the tendency for partici-

pant D to use a higher range of the navigation scale than participant B. The tendency of

participant D to use the higher end of the scale resulted in a generally higher priority to

the navigated PGs over the other PGs than is seen for any other participant. However, in-

terviews with participant D revealed simple preferences. Participant D wanted to ensure

the achievement of the clinical goals but had fewer concerns about the planning details

than some of the other participants. Although traditional IMRT planning methods have

been criticised for being tedious and lacking an intuitive approaches that facilitates inter-

action of physicians67, this work suggests clinical preference can at times be broad. The

number of clinically applicable choices can be overwhelming for physicians even with

the use of intuitive techniques such PGAP.

The physicist (participant A) and the planner (participant C) performed the most

similarly by default with participant A in particular showing notably greater levels of

consistency in planning choices between patients. Nevertheless, the PBAIO system was

valuable in mitigated the majority of discrepancies in deviations at the calibration stage

with few statistically significant differences dosimetric observed none of which were

clinically significant.

4.6.5 Conclusion

When calibrating weighting factors with a PGAP for prostate seminal vesicle, individ-

uals will make different choices even when all participants are considered expert-level

qualified professions. Differences were considered partially due to background and ex-

perience. Oncologists prioritised the three PGs similarly but used different regions of

the sliding scale indicating difference in clinical preference even among members of

the same group and institution. The planner showed the greatest level of consistency

between patients but dosimetric difference were negligible between participants and pa-

tients. There is evidence that expert-driven PGAP can be used to deliver consistent dosi-
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Figure 4.9: A sagittal slice of a prostate seminal vesicles patient. Delineated are the rectum

(brown), bladder (yellow), low dose PTV (orange),/ high dose PTV (red), bowel 2cm superior of

the low dose PTV (teal green) and external (lilac)

metric planning with the clinically relevant region of the Pareto front defined comparably

by any expert.

4.7 Anatomy simulation

4.7.1 Introduction

As illustrated by the dosimetric outcomes of the previous two studies, dosimetry is de-

termined following inverse optimisation and cannot be assessed apriori from the input

parameters alone. Therefore, the direct relationships between input parameters, anatomy

and dosimetry can be difficult to understand and can be a road block to efficient plan-

ning. Given planning is a strongly geometric problem, studying patient geometry and

dose distribution in relation to gold standard planning parameters is valuable. However,
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studying variations in anatomy can inherently comes with confounding variables related

to individual patients given no two patients are necessarily comparable.

In order to directly research the relationships between anatomy, planning parameters

and dosimetry, an alternative approach could be to start with a single patient. For exam-

ple, one could determine the necessary change in planning parameters required to main-

tain a certain dose distribution given augmentation of a specific anatomy. First assume an

applicable planning solution (i.e. set of weighting factors) is defined for said patient; that

is an expert-driven clinically applicable gold standard plan. If one (and only one) element

of said patients anatomy varies, so will the dose distribution given the original planning

parameters. To maintain a comparable dose distribution for the augmented anatomy to

that of the original non-augmented version, planning parameters must be tweaked. The

question is, is it possible to determine the necessary change in related weighting factors

to results in a comparable dose distribution to the original gold standard plan for the aug-

mented anatomy? If this is possible, it may be possible to directly model the relationship

between anatomy, weighting factors and dosimetry. This will be a valuable finding for

plan calibrations and dose prediction in general with this automated planning system.

4.7.2 Method

The chosen patient was taken from the set of PSV patients defined in section 3.6 and

corresponds to patient 04 in that set. Figure 4.9 shows a CT scan slice of the PSV patient

of choice. This patient was chosen given their standard anatomical qualities including

ROI sizes and PTV overlaps with OARs. This patient’s base anatomy was used in all

simulated cases. As found in the intra- and inter-planner studies, expert-driven PGAP

can be used to calibrate a clinically applicable solution for patients and a single expert

medical physicist navigated a solution for this patient using EdgeVcc’s Pareto navigation

sliding interface and an AutoPlan protocol defined based on the navigated weighting

factors. As a base, the clinically approved PSV planning protocol presented in Tables

4.1a-4.1d was used. This was a preliminary exploration, and for simplicity only the three

most high priority PGs were navigated: 1. rectum Dmean, 2. bladder Dmean and 3. PTV

conformality. Remaining PGs were held constant at their predefined values as of the

clinically approved AutoPlan protocol similarly to the inter-planner study above. All

new volumes were created in Raystation using the built-in ROI algebra functions that

enable generation of new and derived volumes.
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The PG most closely associated with the augmented ROI was re-navigated in each

case with all other values remaining held at the level defined by the expert-driven gold

standard PGAP navigation and base AutoPlan protocol. Therefore, for each augmenta-

tion, a new weighing factor was determined for the PG most related to the augmented

ROIs only. During re-navigation, dose distribution of augmented anatomy was compared

to that of the original and similarity between dose distributions was determined using the

3D dose and DVH curves. The chosen plan for each augmentation would minimise DVH

deviations from the original plan especially for the non-augmented ROIs and the dose

distribution would map comparably well to other possible navigation choices. Figure

4.10 shows a rectum Dmean re-navigation and the chosen plan resulted in a comparable

dose distribution to that containing the original rectum contour.

Given the three PGs rectum Dmean, bladder Dmean and PTV conformality, the three

associated ROIs selected for augmentation were rectum, bladder and external volumes

respectively. ROIs were augmented one at a time and such that expansions or contrac-

tions were approximately equal to some predefined scaler of the original volume. For

example, contractions of non-external volumes (i.e. bladder and rectum) were always

0.5 or 0.75 times the original volume and expansions were up to 3 times the original vol-

ume. Augmentations of differing kinds were considered e.g. posterior only. This meant

not only could the general relationship between parameters and volume be explored, but

also specific relationships between parameters and certain kinds of anatomical variations.

The main requirement for augmentation was to avoid excessively encroaching on

PTVs beyond that found in the original case. Figure 4.9 shows the rectum and bladder

contours encroaching on the two PTVs in the original anatomy. Rectum expansions are

therefore not expanded in the anterior direction and inferior bladder extensions avoid

further PTV overlap. Figure 4.11 illustrate some examples of expansion types. Gener-

ally only one internal ROI contraction was applied to each internal ROI and expansions

were limited to those that would not encroach on or go outside of the external volume.

No expansions of the external volume were considered and external volume contractions

were limited to those not encroaching on internal ROIs. For a summary of rectum ROI

augmentations, see Table 4.7. Similar approaches were taken for bladder and the exter-

nal volumes and navigated weighting factors obtained for all of the augmented anatomy

generated.

Five augmentation types were considered in the rectum scenario with seventeen aug-
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Expansion Type Relative volume Volume Rectum Dmean
to original OAR navigated WF

Original 1 61.8 21.2
superior & inferior 0.75 47.3 29.4

1.5 92.8 39.2
posterior only 0.5 30.6 44.1

1.5 93.1 19.6
2 124 24.5

2.5 155 31.9
left & right 1.5 91.3 22.1

2 124 34.3
2.5 153 46.6

superior, inferior, 0.75 45.5 19.6
left & right 1.5 93.0 24.5

2 122 31.9
3 186 53.9
4 248 85.8

superior, inferior, left, 1.5 92.9 24.5
right & posterior 2 120 29.4

2.5 157 36.8

Table 4.7: Summary of re-navigated weighting factors for each of the augmented rectum volumes

mentations of the original rectum volume (Table 4.7). Superior & inferior expansions

consisted of copies of the most superior and inferior transverse slices transposes such

that the new volume extends directly up and down vertically with no change to the core

shape of the original rectum. Contractions were created by removing superior and infe-

rior transverse slices from the original volume. Posterior expansions were created using

the Raystation ROI algebra function for new ROI geometry creation and volumes were

grown and shrunk in the anterior-posterior directions only. This is similarly true for left

& right expansions which were created using ROI algebra also.

When all volume had been re-navigated, the weighing factor absolute values were

analysed. Relative weighting factor values were not considered in this study given weight-

ing factors for one and only one PG were being changed at a time and any change in

relative values of other PGs are due to this and only this change in every scenario. Three

variables relating to ROI volume (volumetric features) were extracted for each that in-

cluded 1. volume of ROI, 2. volume of ROI within the superior and inferior CT slices of

the low dose PTV (volume in field or VIF) and 3. volume of ROI outside of the superior

and inferior CT slices of the low dose PTV (volume out of field or VOF). Relationships

were illustrated using scatter plots and assessed using lines-of-best fit and coefficients of

determination (R2 values) as goodness-of-fit metrics. These measures will be discussed

in more detail in the following chapter.
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Figure 4.12: Plots showing the linear, quadratic and cubic line-of-best fit for rectum Dmean

weighting factors plotted against three features: volume of the rectum contour (Volume), vol-

ume of the rectum contour in field of PTV48 (VIF) and volume of the rectum contour out of field

of PTV48 (VOF).

4.7.3 Results

Seventeen, 20 and 21 different augmentations of the rectum, bladder and external were

generated. See Figure 4.12-4.14 for scatter plots and representative linear, quadratic and

cubic models. Navigation of rectum and bladder Dmean weighting factors was simple

for each augmentation case with the most appropriate new weighing factor readily dis-

cernible. Navigation of a new weighing factor for PTV conformality was not always as

readily discernible. This was due to DVHs for new anatomy not always being compa-

rable to the original case and 3D dose was found to be quite different from that of the

original anatomy.

Coefficients of determination (R2 values) increase as the degree of the polynomial of

the model increases. That is, as the model becomes increasingly complex and progresses

from linear to quadratic to cubic, the models fits better and deviations of individual values

decreases. Therefore, the best models (models with largest R2 values) were all cubic with

respect to R2 metrics. For the rectum Dmean PG, the best model was produced using the

Volume feature. For bladder Dmean PG VOF maximised R2 and for PTV conformality

VIF maximised R2. R2 values for the best models were 0.860, 0.837 and 0.328 for rectum

Dmean bladder Dmean and PTV conformality respectively.
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Figure 4.13: Plots showing the linear, quadratic and cubic line-of-best fit for bladder Dmean

weighting factors plotted against three features: volume of the bladder contour (Volume), vol-

ume of the bladder contour in field of PTV48 (VIF) and volume of the bladder contour out of

field of PTV48 (VOF).

4.7.4 Discussion

Bladder Dmean produced monotonic increasing models in all cases with an increase in

volume resulting in an increase in weighing factor regardless of the nature of changes in

volume or shape. Furthermore, the general relationship is strongly linear with coefficients

of x3 and x2 close to zero in all cases. Rectum Dmean models were strongly quadratic

given coefficients of x3 were close to zero in all cases. Augmenting the external and re-

navigating did not result in drastic or expected changes to the PTV conformality PG. In

fact, choosing a new weighing factor was not always straight forward and could have been

chosen differently based on the strategy taken. This may be due to the fact that this PG

is not being wholly related to the external volume and suggests the relationship between

PTV conformality weighting factors and anatomy is more complex than that seen for

rectum and bladder Dmean PGs. This could require more advanced regression modelling

such as multiple regression in which weighting factors are regressed against multiple

variables at once or a different ML technique altogether. Nevertheless, although the

relationship between PTV conformality and external volumetric features is more subtle

than that of the other two PGs, models suggest a cubic relationship that may become

more pronounced with advanced modelling such as multiple polynomial regression.

A key finding was the relationships between VIF and weighting factors of PGs re-
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Figure 4.14: Plots showing the linear, quadratic and cubic line-of-best fit for PTV conformality

weighting factors plotted against three features: volume of the external contour (Volume), volume

of the external contour in field of PTV48 (VIF) and volume of the external contour out of field of

PTV48 (VOF).

lated to volume increases outside of the PTV field. Rectum expansion showed increases

in volume outside of the field resulted in an increase in the rectum Dmean weighing fac-

tor. Bladder Dmean did not show this relationship given increases in the bladder volume

outside of the PTV field were shown to have no impact on the bladder Dmean weighing

factor. This finding indicates there may be a relationship between the distance from the

centre of an OAR from the centre of the target given the centre of the bladder volume was

always outside of the PTV field. This is supported by research in automated planning that

shows there is a relationship between OAR proximity to targets and dose67,120,148,166.

4.7.5 Conclusion

This study suggests a relationship between volumetric anatomical features and weight-

ing factors for the achievement of a given dose distribution and there is some evidence

to suggest a spatial relationship between weighting factors and dose given expansions

outside of the PTV field results in no weighing factor changes when the centre of the

volume is located outside of the PTV field. PTV conformality weighting factors showed

the weakest relationships potentially due to more complicated underlying relationships.
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4.8 Chapter Summary

These three studies have together supplemented the knowledge found in the literature re-

garding the feasibility of defining gold standard planning and understanding relationships

between anatomy and planning parameters. Findings of the intra-planner study indicate

expert-driven PGAP can be expected to result in consistent planning with high degrees of

similarity, few statistically significant differences and negligible impact on dose distribu-

tion. Planning choices were found to have high degrees of similarity and planner-specific

gold standard weighing factor readily discernible. These findings suggest that modelling

a single planners choices may be more desirable than attempting to define gold standard

planning across multiple planning professionals. This study also highlighted the impor-

tance of considering planning parameters in their relative form given relative values are

more closely related to objective functions.

The inter-planner study highlighted planning choice can vary between qualified plan-

ning professionals to notable degrees even amongst professions of the same training

background and institution. However, this study highlighted that clinical preference can

contain a broad range of choices especially after all clinical goals have already been

met. Moreover, the automated planning system can be valuable at mitigating variances

in individual planner choices as it led to dosimetrically comparable planning.

The volume expansion study highlighted there exist some simple relationships that

are discernible for certain PGs based on volumetric features alone. Findings also sug-

gested it may be necessary to explore more complicated models to uncover some of the

underlying relationships. Spatial features are also thought to have an impact given the

nature of relationships with features in proximity to targets. This study demonstrates

there is a foundation for further exploration of ML techniques to model the relationships

between weighting factors and anatomy.

However, there are limitations to these studies relating to the number of patient cases

considered, the number of planning goals considered, the number of participants re-

cruited and the number of treatment sites considered. The ability to make inferences

and generalise findings is enhanced with more data. Obtaining more data will have been

beneficial in all studies for avoidance of type I and type II errors. These limitations will

be discussed in detail in section 7.1.1. In the next chapter, ML techniques are presented,

explained and discussed. Included are the two chosen ML techniques including the rea-
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sons they were considered appropriate and ultimately chosen for further investigation.



Chapter 5

Modelling and cross validation

Given the modelling of weighting factors is a numerical problem, different mathematical

approaches are examined for their efficacy. The field of ML has brought forward predic-

tion techniques that may be useful in this regard and some of these established techniques

are explored in this chapter and will be presented later. First, an introduction to ML itself.

5.1 About machine learning

The term “learning” refers to knowledge that is acquired from exposure to information,

an established and well understood concept in a human context. Artificial intelligence is

a term referring to any intelligence exhibited by a machine opposed to a human, animal

or organism. It usually denotes the development of computer systems able to perform

tasks previously requiring human intelligence. ML is a development in the broader field

of artificial intelligence and posits it is feasible for machines to acquire knowledge171,172.

ML can be considered a data-driven artificial intelligence given it requires a knowledge-

base containing data in which to train on (i.e., learn from). The literature shows more than

one ML approach has been developed, some of which will be discussed in this chapter,

and all ML approaches can be defined in terms of two types of learning: supervised and

unsupervised.

5.1.1 Supervised and unsupervised learning

The two types of learning refer to the nature of the outputs they produce. Supervised

learning is categorised by the use of labelled data where the labels are determined in the

training data173. That is, the models are built such that outputs have a predefined form.

90
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Unsupervised learning does not contain such constraints and the outputs defined during

modelling are based only on the relationships between data points with no prior assump-

tions made173. Some examples of supervised learning include classification, regression

and neural networks, all of which define the desired output and use the data to establish

the relationships between independent variables that best fit those labels. Some examples

of unsupervised learning include automatic clustering, dimension reduction and associa-

tion rule learning all of which are used to establish key relationships within the data that

are later observed and labelled using human intelligence.

In this work, one of each learning type is explored for the purpose of weighing factor

prediction. The supervised learning technique of choice was regression with the unsu-

pervised choice being automatic clustering. These two methods will now be discussed

in more detail including their comparison to other ML techniques and the reasons they

were chosen over other methods.

5.2 Regression

Regression is a statistical technique used to determine a functional relationship between

independent variables and dependent variables174. An ordinary least squares (OLS)

method is defined such that the sum of squared differences between the points in the

data and the model are minimised. All modelling in this work aims to estimate and ul-

timately predict the underlying relationships between predictive features and weighing

factor with respect to dose. OLS regression produces statistics that are maximum likeli-

hood estimators of population parameters (a quality that is not a given with all regression

approaches)175. Therefore all regression models discussed in this thesis will be of the

OLS type.

Linear regressions are the most common OLS regression models and are of the

form176:

ŷi = β0 + β1xi1 + ...+ βnxin, (5.1)

βj =

∑
i(yi − ȳ)(xij − x̄j)∑

i(xij − x̄j)2
(5.2)

where ŷi is an m-dimensional model of the true dependent variable yi, xij are indepen-

dent variables (referred to as predictive features in this case) and ȳ and x̄j are the means

of yi and xij respectively. The βj are known as the coefficients of the equation and

chosen such that the sum of squared residuals of the model (SSRES) are minimised i.e.
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minimise

SSRES =
∑
i

(yi − ŷi)
2. (5.3)

Therefore linear models can take the general form:

yi = β0 + β1xi1 + ...+ βnxin + ϵi, (5.4)

where the ϵi are the residuals and represent the error between the model ŷi and the true

value yi. In OLS regression, values of ϵi are normally distributed and have a statistical

expected value of zero.

As seen, a goodness-of-fit metric commonly used with OLS regression is the coeffi-

cient of determination or R2 and this can be thought of as the ratio between the sum of

squares due to the regression (SSREG) with the total sum of squares (SSTOT ). Equiv-

alently, it can be thought of as one minus the ratio between the residual sum of squares

with the total sum of squares. It is defined as:

R2 =
SSREG

SSTOT
= 1− SSRES

SSTOT
(5.5)

=

∑
i(ŷi − ȳ)2∑
i(yi − ȳ)2

= 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
. (5.6)

This coefficient takes a value between zero and 1 and helps to give an indication of the

level of variability about the model. A model with a value close to 1 can be considered a

better fit to the data than models with lower R2 values given the former achieves smaller

error terms and therefore describes more of the variability in the data. Nevertheless, there

are other goodness-of-fit metrics that can be used to assess a regression model and these

will be discussed in more detail in section 5.4.

Regression modelling need not be purely linear however176. Although the most well

known form of regression is linear and will often contain a single variable, regression

models can be built using more complex statistics. For example, in the same way linear

regression models are expressed in a single degree polynomial (i.e., xij to the power of

1), quadratic, cubic and higher degree polynomials are also possible. Permitting higher

degree terms in the formula such as x2ij terms can increase the degrees of freedom and

the complexity of the model allowing for a better fit. However, although this may be

good for finding a better model that expresses the nature of the data at hand (the training

data), it may not be wholly positive if models are to be used for other reasons such as

predicting unseen data. This issue relates closely to the concept of overfitting and this

will be discussed in section 5.4.
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5.3 Clustering

Automatic clustering algorithms (also known as data clustering and cluster analysis)

refers to any ML technique in which sets of data are grouped together such that mem-

bers within a group are considered more similar to each other than the data outside of

the group177. These methods will be referred to simply as clustering from here onward.

When data are effectively clustered, the clusters aid in reducing the overall dimensions

of the data and potentially help to filter out noise and establish relationships that were

previously unknown. Compared to regression which produces a continuous model and

defines an infinite range of possible outcomes, clustering is thought to be valuable for

parameter prediction as the solution space will contain a finite number of elements hence

reducing the overall optimisation problem.

Many clustering methods exist in the literature178 and define the criteria used to deter-

mine inclusion and exclusion of each datum to a cluster. Certain clustering approaches

make special assumptions about the nature of the clusters. For example, distribution-

based clustering makes the assumption that all clusters follow a certain distribution such

as a Gaussian distribution177,179. Similarly, Density-based clustering methods such as

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)177,180,181 as-

sumes clusters to be high density with discernible boundaries between them. These are

powerful techniques with strong applications. However, they require some knowledge

about the nature of the data apriori in order to determine if they meet the assumption

criteria. These models can also be difficult to visualise and conceptualise, difficult to use

for modelling and prediction of unseen data, and can be computationally expensive to

achieve. These approaches are not appropriate in this case given little is known about the

nature of the data. The majority of clustering approaches make far fewer assumptions

and these methods can be categorised into two groups177: hierarchical and partitional

clustering.

5.3.1 Key types of clustering

5.3.1.1 Hierarchical clustering

Hierarchical clustering methods can be agglomerative (a bottom-up approach) or divisive

(a top-down approach). During each iteration of an agglomerative hierarchical clustering,

each data point begins as a member of its own cluster. Based on an aggregated cluster
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Figure 5.1: An illustration of clustering scenarios over two features. The plot on the left repre-

sents a clustering that is linearly separable. The solution on the right cannot be separated with a

linear function therefore is not linearly separable problem. Adapted from Baranwal et al. (2018)13

value (e.g., the sum or the mean), the algorithm determines the threshold of similarity for

the merge of existing clusters and clusters meeting this threshold are merged to form a

new cluster in the next level of the hierarchy. In the final iteration, all remaining clus-

ters are linked together into one master cluster. For example, in an agglomerative Ward

Linkage clustering, clusters are merged if the increase in the sum of squared deviation

for the mean due to the merge is minimal for all possible merges182. Divisive algorithms

begin with all data a member of a single cluster and during each iteration, the algorithm

will determine the point of greatest differentiation between data points within a cluster

for separation. At the final iteration, each datum will be a member of its own cluster.

A hierarchical clustering has a few advantages over partitional clustering including

simple and comprehensible visualisation and aposteriori selection of the most appropri-

ate cluster formation. Hierarchical clustering is not dependent on an initial state but on

explicitly defined values within the data and is therefore comparatively robust183 and has

been shown to maintain clustering structure well even when noise is presented into the

data184. This form of clustering is also often well visualised using a dendrogram that

shows the level at which the algorithm determined existing clusters be merged or sep-

arated to form new clusters and hence form the hierarchy. This can be very useful in

choosing the most appropriate value of K especially given that for a partitional clustering

it is a requirement that the number of clusters be defined upfront. This is an obstacle of

partitional methods even when for the data have low dimensions (e.g., up to three vari-

ables) and can be visualised using scatter plots. When the data have higher dimensions

that this, visualisation may be infeasible and the value of K can be difficult to choose.
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5.3.1.2 Partitional clustering

Partitional clustering (also known as centroid- or center-based clustering) differs from

hierarchical clustering in a few key ways. Partitional clustering is an optimisation algo-

rithm with improved solutions saved after each pass. To instantiate a partitional clus-

tering, data points are assigned to clusters arbitrarily. That is, they are clustered in some

random state that can then be used as a starting point to leverage the algorithm to improve

on the current state. Unlike hierarchical clustering where the appropriate number of clus-

ters is chosen aposteriori, partitional clustering usually requires the number of clusters

be defined prior to the algorithm being run.

An example, for the partitional clustering method K-medoid (also known as Parti-

tioning Around Medoids or PAM)185, a predefined number of clusters, K, is chosen prior

to the algorithm being run and a random selection of K data points are selected as the

initial cluster centroids. Using a distance or cost metric such as the Euclidean distance,

the other data points are assigned to a centroid and thus a cluster. With K clusters de-

fined, there is an attempt to establish new cluster centroids for each existing cluster by

swapping the initial centroid for another data point and recalculating the distance. New

centroids are defined given the distance from the new centroid is smaller than the initial

one. With new centroids established, existing clusters are discarded and a new pass be-

gins. In this work, the partitional method K-means was used. The benefits of this and

other partitional methods will be outline later in section 5.3.2.3.

5.3.2 K-means and why it was chosen

5.3.2.1 About K-means

K-means is a concept that has been around since the 1950s186,187 and is referred to as

one of the most efficient and widely used clustering algorithms180. As with many other

partitional methods, the value of K is predefined and initial centroids established based

on randomly chosen real data points. Using Euclidean distance, the distance between

each point and each centroid is calculated and each point assigned to a cluster based on

that which minimises the distance between it and a cluster centroid. When all data points

have been assigned to a cluster, new centroids are calculated by taking the mean value

across each dimension of the data. For example, given three predictive features, the data

have three dimensions (therefore n = 3) and the centroid of cluster K as a coordinate is
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calculated as:
q∑

p=1
x1p

q
,

q∑
p=1

x2p

q
,

q∑
p=1

x3p

q

 or
(
x̄K1 , x̄K2 , x̄K3

)
s.t. q ≤ m. (5.7)

where q is the number of data points in cluster K and m is the number of total data

points in the dataset. Once new cluster centroids have been calculated for each of the K

clusters, the algorithm begins again and continues until either it has been stable for two

consecutive iterations or the predefined maximum number of iterations is reached (e.g.

300).

5.3.2.2 Alternatives to K-means

K-means is a similar clustering approach to the K-medoid approach described earlier. In

a K-medoid approach, the centroid is chosen to be the medoid, a real data point within

the cluster that minimises the distance metrics with all other points in the cluster188 and

this is similarly true for variants that include CLARA, CLARANS and FANNY189. In

a K-means approach, the centroid is not necessarily a real data point, but a virtual data

point. The centroid in K-means is the geometric centre or arithmetic mean of the points

and is equivalent to the centre of gravity of the cluster if the cluster is thought of in terms

of real matter.

Other similar approaches include K-medians that takes the median value opposed to

the mean as new cluster centroids, and K-modes which can be useful for categorical data.

These alternative approaches were developed to try to solve some of the issues associated

with taking means such as the nature of means to be influenced more strongly by outliers

than other estimators or the fact the real data points can be interpreted whereas the mean

is a “virtual” value that in some cases may not carrying any intrinsic value.

There also exist alternative methods to the classic K-means approach. For example,

classic K-means is an exclusive clustering approach given data points are assigned to one

and only one cluster with final clusters being mutually exclusive. This is actually true

for all classic partitional methods as well as hierarchical clustering. However, inclusive

K-means approaches exist which allow data points to be assigned to more than one clus-

ter190. Such approaches are less restrictive than a classic approach and may have some

interesting applications for parameter prediction such as the ability to derive weighting

factors by aggregating values of each associated cluster.
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Another alternative method aims to mitigate the fact most standard partitional clus-

tering approaches optimise for the clustering of linearly separable data. That is, given

the clusters are separable using a linear function (such as a straight line), most clustering

algorithms will converge quickly. However, this is not always necessarily the case as can

be seen by the right-hand plot in Figure 5.1. Clustering approaches have been developed

to try to tackle this phenomenon. Given the data are not linearly separable, a DBSCAN

clustering can be used. Or, for an intuitive and potentially faster approach, kernel K-

mean can be employed. This approach takes advantage of a function (known as a kernel

function) that projects the data into additional dimensions and uses those new dimension

to create a linearly separable data space.

5.3.2.3 Why K-means was chosen

There are a number of clustering approaches that could have been applied in this work

but only K-means was chosen. The benefits and pitfalls of each method were consid-

ered and related to points discussed in the previous section. Here those points are ad-

dressed including why a partitional method was chosen over a hierarchical method, why

K-medians was not chosen, why fuzzy clustering method were not considered and why

kernel K-means was not used.

A benefit of partitional methods are how well suited they are to larger datasets187

given they are generally less computationally expensive to generate. In this work it is

also not valuable to determine a hierarchy of clusters, therefore it is more computationally

efficient to cycling through all possible values of K to determine the optimal value. The

optimal value of K can be chosen in an intuitive and efficient way, for example using

metrics such as silhouette scores or the MSE from the benchmark. The MSE metrics was

introduced in section 5.6.1 and silhoutte scores will be discussed in more detail in section

5.4. For this reason, hierarchical clustering was not used in this work and a partitional

method was chosen.

As mentioned, the centroid defined via K-means can be criticised for being a virtual

value with no intrinsic meaning. However in this work, a virtual centroid is not inap-

propriate given there is no restriction on obtaining a real valued points found within the

training data. Also, in this work, all predictive features will be standardised (discussed in

section 5.5.1) prior to clustering. Given all variables will be on a comparable scale and of

a comparable distribution, K-means is considered as appropriate for use. Also, given the
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widespread use of K-means and the increased computational expense of other methods,

with comparable performance expected from all methods following standardisation of

the data, K-means was the most sensible choice.

Regarding alternatives to classic exclusive K-means clustering, fuzzy approaches

may have merit especially in this work. However, application of these approaches are not

widespread and remain an area of research and development191 with many programming

applications yet to incorporate validated modules and packages into their systems192.

Also, application of these techniques require expert knowledge of the algorithms and

some knowledge about the nature of the data apriori for appropriate use193. Research of

the validity and usage of more established techniques (such as K-means) enables more

confidence not only in the application but also interpretation of results. There are also par-

tial clustering approaches that cluster based on density with certain outlying data points

being assigned to no clusters. Such approaches are definitely not useful in this work,

given it is necessary all data points obtain a predicted value following modelling.

Although K-means assumes data are linearly separable when in truth they many not

be, alternative choices such as kernel K-means can be useful for solving this problem.

However, the choice of kernel is not straight forward and can be complex194. Given the

choice of kernel can require extensive research of its own and the nature of underlying

relationships in the data are not known, the simple assumption of linear separability has

been applied in this work and a classic approach taken with mutually exclusive and com-

plete clusters considered in all cases. That is, defined clusters do not permit overlap with

other clusters, all data point will be assigned to a cluster and the only assumption applied

is that the data are expected to be linearly separable.

5.4 Goodness-of-fit: underfitting and overfitting

ML models can be used to discover if a relationship exists between the independent

variables and the dependent variables and the nature of those relationship. This is useful

given once models have been generated and relationships established, they can be used

to predict the outcome of unobserved data and form the basis of a ML technique such as

clustering and regression. When used for predictive means, independent variables can be

referred to as predictive features

Once predictive ML models have been generated, goodness-of-fit metrics can be cal-

culated and used to give an indication of how well the model defines the training data
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and may help to provide confidence in the model for it’s predictive abilities especially

when the model is simple. Examples of goodness-of-fit metrics are R2 for regression and

silhouette scores for clustering, the latter of which is defined as:

a(i) =
1

|q − 1|

q∑
i=1

q∑
j=1

d(i, j), (5.8)

where q is the number of data points in cluster K and d(i, j) is the distance between

points i and j. This metrics provides a value between -1 and 1 that indicates the level of

coherence within clusters and the level of separation between clusters182. Values close

to 1 indicate clusters that are desirably dense and separated with values less than zero

meaning the clusters are overlapping i.e., all silhouette scores under a classic K-means

clustering will be between 0 and 1.

However, robust model development should also involve an enhanced validation pro-

cess. This is because goodness-of-fit metrics may give an indication of the fit of the

known observations but they are not a definitive indication of the performance for novel

data. This is especially true when the model is thought to be overfitting to the data.

Overfitting occurs when a model fits not only the underlying relationship in the training

database data but also attempts fit to the noise in the training data. In this way, goodness-

of-fit metrics may appear excellent (i.e., values close to 1) but the predictive power of the

model will likely be minimal when validated and tested on previously unseen data. Over-

fitting becomes increasingly likely as the complexity in the model increases. Therefore,

as the number of predictive features and polynomial degree increases for regression, so

does the likelihood of overfitting. Likewise is true for clustering when the number of

clusters chosen increase. For this reason, when models are being built for predictive pur-

poses, combinations of inputs should be considered and validated either using a separate

database or using a re-sampling technique or both. Both were used in this work and the

re-sampling technique will be outlined in section 5.6.

Therefore, goodness-of-fit metrics may be key statistics for analysing the quality of

models, but have some limitations. For example, the more predictive features used for a

regression model the higher the R2 values by virtue of the way R2 values are calculation.

This is the case even when variables are known to have low (or no) variance and therefore

little impact on overall regression outcomes. To overcome this situation for regression,

the adjusted R2 can be employed to generate a comparable metric that is adjusted for the
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number of variables considered. The adjust R2 is defined as:

R2
adj = 1− (1−R2)(m− 1)

m− n− 1
, (5.9)

where m and n are the number of observations and variables respectively. Similarly,

models built using higher degree polynomials will almost always yield R2 values greater

than that of a lower degree polynomials given the increased degrees of freedom available

during modelling but there is no reason to mitigate this as it is an expected outcome of

increasing the complexity of a model.

5.5 Predictive features and preprocessing

Dose distribution is geometry dependent and an aim of this work is to understand the

relationships between geometric anatomy and the weighting factors that determine dose

distribution in RBP AP. Therefore, only geometric anatomical features have been consid-

ered and all variables chosen were continuous and appropriate for use with the two ML

approaches chosen (i.e., regression and clustering). Variables considered for predictive

features included:

• volumetric features - variables associated with the volumes of ROIs e.g. those

considered in the anatomical simulation study in the previous chapter

• spatial features such as the distance between ROIs

• other derived features such as the ratio between two volumetric features and the

slope between two versions of the same type of volumetric feature.

Across the three treatment sites considered, the predictive features chosen were sim-

ilar. The simple delineated volume of each ROI was taken including the external and

any PTVs. In addition to whole volumes, OAR overlap volumes with PTVs were also

considered. Studies have shown the dose distribution to be highly dependent on prox-

imity of key OAR to PTVs68 and OAR dose distribution is inversely correlated to its

distance from the surface of PTVs195. For this reason, spatial features were also consid-

ered including maximum and average distances of OAR to PTVs. Moreover, in line with

previous work in this area, distance-to-target style feature were also considered109,148.

These features have been shown to have strong predictive qualities for dose distribution

and factors related to planning. A summary of the types of variables considered is found

in Table 5.1.
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Type of Feature Variant Example
Feature

Volumetric
Volume individual OARs and

total OARs
volume of rectum (cm3)

Overlap of OAR with PTV None OVbladder,PTV48: volume of bladder in
PTV48 (cm3)

Volume-in-field of PTV:
OAR volume within the
superior-inferior slices of a
PTV

None bladder VIFPTV60: volume of the blad-
der within the superior-inferior slices of
PTV60 (cm3)

Volume-out-of-field of
PTV: OAR volume above
the superior slices and
below the inferior slice of a
PTV

None rectum VOFPTV48: volume of the rec-
tum above superior slice and below the
inferior slices of PTV48 (cm3)

Volume defined by nested
PTVs (i.e., PTV annulus)

None volume of PTV48 minus PTV60 (cm3)

Spatial Distance between ROIs minimum, maximum
and average surface-
to-surface distance
and distance between
centres-of-mass

minimum distance between rectum and
bladder (cm)

Derived
Overlap volume with ex-
panded PTV

0.2cm increments of
isotropic expansion up
to 2.4cm

OVrectum,PTV601.4cm : volume of rectum in
PTV601.4cm (cm3)

Rate of change (slope) be-
tween overlap volumes of
adjacent expanded PTVs
with OARs

None slope between OVrectum,PTV601.4cm and
OVrectum,PTV601.6cm (cm3)

Ratio of two ROI volumes None ratio of volume of rectum to volume of
PTV48

Table 5.1: Summary of variables considered for FeatureDS1 and FeatureDS2. Features fall

into three categories: volume related (volumetric), distance related (spatial) and derivations of

volumetric and/or spatial (derived). Variants are denoted where multiple features of their kind are

generated.

In terms of volumetric features, simple volumes were recorded for all ROIs including

targets, OARs and the external, but also excluding certain delineated ROIs used in plan-

ning. Simple overlaps volumes of OARs with targets were recorded as well as derived

overlap volume with isotropic expansions of target volumes which simulate distance-to-

target histogram data. In terms of spatial features, three kinds were considered: average

maximum distance, average distance and distance from ROI centre-to-centre. Average

and maximum distances were calculated for internal ROIs (i.e. not for the external) and

were calculated using Raystation’s RoiSurfaceToSurfaceDistanceBasedOnDT() function

within its Statetree. According to the function description it “measures the distance

between the surfaces of two ROI geometries using a distance transform based approach.

Each point (voxel) on the surface of the target ROI will be assigned the minimum distance

to a point (voxel) on the surface of the reference ROI.” ROI centre-to-centre differences

are defined by the difference from the centre-of-mass of one ROI in DICOM coordinates

to another.

In each case, data cleaning was performed. This was to ensure robustness during
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modelling196, better modelling performance (reduction of type I and II errors)197 and

computational efficiency198. Variables will be chosen such that they are potentially ap-

plicable for prediction in each case. Therefore, incomplete data will not be used in any

modeling. Low and no variance variables will also be removed given the lack of infor-

mation they provide and the potential inefficiency of leaving them in for modelling.

The number of variables extracted varied for each treatment site given the numbers

of ROIs vary. For PSV, 130 predictive features were identified. This site contained rec-

tum, bladder, external and bowel as non-target ROIs. Given bowel contours consisted

of delineations up to 2cm superior of PTVs, it was not considered a complete ROI and

although is applicable for planning, was not considered reliable to be used to create pre-

dictive features in these cases. Therefore, no variables derived of the bowel contour were

considered. A total of 142 variables were extracted in which bladder and rectum were

treated as the main OARs. Simple volumes were recorded for all ROIs including targets

and the external but excluding bowel as mentioned. A bladder-rectum combined vol-

ume was also recorded. Simple overlaps volumes of the rectum and bladder with PTVs

were recorded as well as derived overlap volumes with isotropic PTV expansions. PTVs

were isotropically expanded in 0.2cm increments (up to 2.4cm) and the overlap volumes

determined. From these new volumes, the slope (rate of change).

For rectum, 340 variable were extracted of which 281 remained after cleaning. Of

the 59 variables removed, 56 were zero variance and the remaining three were removed

due to low variances. All zero variance variables were uniquely zero in all instances and

low variance variables were zero in 85% of the instances or more. Of the 59, 52 were

stoma related and due to zero variance, four were related to bowel bag/aux ant and due to

zero variance and the three low variance were due to the genitals. Stoma related variable

included OVPT45,stoma and related PTV expansions given stomas values were generally

very far from the PTV or not a present contour for the patient.

For lung, 242 predictive features were identified from a total 313 extracted variables.

Of the 313, 4 variable were removed for having no variance and 47 variable were removed

for having low variance. Similarly to rectum, all zero variance variables were uniquely

zero in all instances and low variance variables were zero in 85% of the instances or more.

This site contained one target volume (PTV55), an external and five OARs including the

heart, oesophagus, ipsilateral lung, contralateral lung and cord. Of these, not all possible

variables relating to OARs were extracted due to missing data where the OAR had not
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been delineated for certain patients such as the liver or brachial plexus.

5.5.1 Standardisation

Before performing multivariate predictive analyses, the predictive features must be scaled.

The purpose of this is to produce models bases on the variance within the features and

not the variance between them. Min-max is one applicable data scaling method that in-

volves identifying the smallest and largest value of each feature in the training database

and setting them to some predefined values (e.g., zero and 1 or -1 and +1) and assigning

all intermediate values a new value proportional to the the newly assigned min and max

values. However, in this work, the transform of choice was a standard normal distribution

scaling transform.

Normal distributions are defined as a continuous probability density functions and

are used to illustrate the expected pattern followed by the majority of continuous data

as they grow large. In this study, due to the nature of the predictive features chosen

and size of the training databases, the underlying distribution of each is expected to be

approximately normal and an unbiased sample. Under this assumption, predictive feature

i can be expressed by a standard normal distribution given by

xi ∼ N(µi, σi), (5.10)

where µi and σi are the population parameters (mean and standard deviation respectively)

of the underlying population of the normally distributed predictive feature. In this case,

it is simple to recast them in terms of the standard normal distribution (or Z distribution)

which is given by

Z ∼ N(0, 1), Z =
xi − µi

σi
. (5.11)

As the datasets used here contain sample data, instead of using population parameters

µ and σ, their unbiased minimum variance estimators x̄i and si are used respectively.

Therefore

Z ≈ xi − x̄i
si

where x̄i =

m∑
j=1

xij

m
and si =

√√√√√ m∑
j=1

(xij − x̄i)2

m− 1
. (5.12)

Following a Shapiro-Wilks test of normality, no raw features for PSV or Rectum

were found to differ significantly from a normal distribution. This validates the appro-

priateness of a standard normal scaler for feature standardisation for these sites. Figure
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Robust Standard Robust
PSV Rectum Lung

RobustStandard Standard

Figure 5.2: Distribution of features under a standard and robust scaling. All values are repre-

sented on a green-yellow-red scale with the highest values in green and lowest values in red. For

legibility, feature databases have been transposed and represented a (features × patients) matrix.

Similarities between scaling methods indicate that either method is appropriate. Also see appen-

dices B.1-B.6

5.2 illustrates the distribution of scaled values under different scalers: a standard normal

scaler that uses mean and standard deviation and a robust scaler that uses the median and

inter-quartile range. Given all variables are approximately normally distributed, distri-

butions are comparable regardless of the method. However, of the 241 cleaned features

chosen for Lung, 26 were found to differ significantly from a normal distribution. This

means they are highly skewed and a standard normal scaler may not be appropriate. In

this case, both a standard and robust scaler are explored for use during modelling. Also

see Appendix B for box plot representations of value distributions under each scaler.
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5.5.2 Data cleaning and feature reduction

When independent variables are generated, to be considered for ML it is vital to assess

their quality and usability. Variables with low or no variance provide little information

for discrimination between data points and variables that are highly correlated to other

variables also have minimum utility. To generate models using such variables can cre-

ate some undesirable issues. For example, modelling over a large number of variables

can be computational inefficient due to there being more data to manage and removing

ineffectual variables is an easy way to improve the efficiency and may reduce modelling

time too198. Research has also shown that failure to appropriately clean data can lead to

poor modelling performance. This includes generating models with poorer performance

than otherwise might be achieved or models that are misleading (i.e., causing type I and

II errors)197. However, data cleaning and variable selection is a large area of data science

especially for larger datasets and more than one approach can be taken.

Feature reduction (or selection) is a complex field and techniques are classified in a

few ways. Learner dependent methods reduce features based on performance of a ML

approach with respect to the dependent variable. Learner independent methods reduce

features based on considerations among the predictive features only and with consid-

erations with respect to the dependent variable. Aside from learner dependence, there

is also the selection approach. One the most common learner dependent feature selec-

tion approaches is a wrapper method characterised by exploration of feature subsets after

training a ML model. Common learner independent methods are filter approaches char-

acterised by exploring correlations199.

Wrapper approaches consist of searching for combinations of features with a view

of identifying the optimal feature set for mapping to the dependent variable using the

modelling technique of choice. Searching methods can be random, systematic or ex-

haustive. Random methods often involve selecting random sets of features and settling

on that which yields the most desirable solution. An exhaustive search refers to a com-

plete search of all possible combinations and the categorical choice of the best solution.

Systematic searches involve using a strategic method such as forward selection where

the best single feature is identified using an exhaustive search and new features are added

based on that which yields the greatest improvement. Filter methods involve exploring

relationships among the features and removing variables with minimal utility. This usu-

ally involves managing variables with missing values, those with low variance and those
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that are highly correlated with other variables. Filter methods can be that include filter

methods such as removing one in a pair or correlated features.

By definition, wrapper methods are learner dependent methods and filter approach

are learner independent. Both have benefits and given there is no restriction on choosing

just one of them, the benefits of combining them can be exploited. Learner dependent

approaches are considered the best given given they are exploratory and ensure the best

possible selection but they can be computationally expensive especially in comparison to

filter techniques especially for big data or when using a fully exhaustive search method.

They also use the dependent variable potentially leading to overfitting. Filter methods

are much more computational efficient and ensure the data do not contain redundant

variables. However, they do not guarantee the resulting data are useful for prediction of

the dependent variable and given the filter method chosen, may lead to usual variable

being dropped from the database200.

In this work, a combination of filter and wrapper techniques were used for data clean-

ing and feature selection. Data cleaning involved eliminating incomplete features (if they

existed), removing zero-variance features (e.g., all zeros) and removing those with low

variance. Low variance features were considered based on percentage of values that were

constant. For example, the percentage of the variable that had the value 1. The threshold

was chosen to be 85% of the variable i.e. if 85% of the variable had the same value, the

variable was dropped. This threshold has been applied for other ML models and is con-

sidered an appropriate cutoff as these variables can be considered constant. An important

area of data cleaning involves managing outliers and this can be important given outliers

can skew the data and lead to misleading models or cannot be generalised or used for

prediction. However, in this work, outliers have not been removed. The aim of this work

is to establish the relationship between weighting factors and anatomy. Given all the

data were collected and checked systematically and with no generation errors expected,

outlying values are true and should be included. Outliers are also expected to aid in the

illustration of the strength of relationship between weighting factors and anatomy where

they exist.

5.6 Cross validation

A very popular re-sampling technique is cross validation and involves leaving out a por-

tion of the training database, modelling on the rest, validating using the left-out data and
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then re-sampling again. This method produces a series of models built and validated on

different samples of the database. Findings can then be aggregated and used to intuitively

forecast the expected performance of a model built on the entire database and validated on

separate database of unseen data. The most well known cross validation method is leave-

one-out cross validation (LOOCV). As the name implies, the process involves leaving a

single observation out of the training database, modelling on the remainder, producing a

predicted value for the left-out observation, adding the observation back and running the

process again for a new left-out patient.

In this work, a cross validation technique was employed for efficient data validation

and model selection. In all cases a LOOCV was employed and used to determine the

optimal model to take forward for final validation. Regression was thought to work well

for this given the preliminary work and similar work found in the literature.

Assuming a simple linear regression model formation, a LOOCV is performed by

leaving a single patient out of the training database and generating a linear regression

model over the remaining patients using one of standardised features. The left-out patient

can then be assigned a predicted value. When all patients have been left-out, the predicted

values can be compared against the true values. This can be done in a number of ways

and these will be discussed in the following section.

See Figure 5.3 for three examples of single feature regression models given patient 1

has been left out. The weighing factor in each case is for the PSV PG rectum Dmean and

the predict feature in each case is the volumetric feature Volume of the External (cm3). In

these examples, a Pearson correlation coefficient was used and weak positive correlations

are observed between the weighing factor and the feature. Nevertheless, each model is

favourable for predicting the left-out patient’s weighing factor. The error between the

model and the true value under the linear, quadratic and cubic model are 0.631, 2.37 and

1.45 respectively. Therefore, although the correlations were weak, each of these models

can be considered highly useful for estimating the true value of the patient that happened

to be left-out in this case. However, this will not always necessarily be the case and this

will now be discussed in the following section.

5.6.1 Assessing model performance after LOOCV

Once all of the cases have been considered within the LOOCV, performance of each is

assessed. There are a few ways of doing this including:
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The PSV weighting factor for the rectum Dmean planning goal
against the Volume of External predictive feature

Linear Quadratic Cubic

Figure 5.3: Regressions produced for PSV planning goal rectum Dmean and generated using

Volume of the External (cm3). Left to right shows a linear, quadratic and cubic model with patient

1 left out of model generation but overlaid on the axes as a yellow point. Models have R2 values

0.2145, 0.2419 and 0.2548 for the linear, quadratic and cubic model respectively.

• analysis of correlation coefficients (e.g, R) or coefficients of determination (R2)

• analysis of the distribution of differences including aggregated differences such as

the mean and median

• analysis of the mean squared error OR MSE

Analyses using R2 for example can have some intuitive benefits. Following LOOCV,

if the average R2 (or adjusted R2) were calculated over left-out patients, this provides

not only an idea of how well the feature fits to the data in general but could also be an

indication of how well such a model is likely to perform for unseen data. In this example

adjusted R2 is considered only but R2 values are also considered in the main study as

well as the adjusted values. A mean adjusted R2 with a strong value (e.g., greater than

0.65) and low standard deviation indicates a stable model with strong predictive power

and a model that is likely to perform well for unseen data.

Analysis of the distribution of the absolute differences found between modelled val-

ues and the true values is also highly values. Model with high levels of dispersion about

the true values is an indication that the model performs undesirably overall and can help

to filter poor models out of future consideration. Aggregated values such as the mean

and median can further help to highlight how models perform overall at the databases

population level.

MSE, however, is the standard metric of choice in such cases and is defined as the sum

of the mean of the squared differences between the predicted value and the true value. It

is also closely linked to the predicted residual error sum of square or PRESS statistic201,
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which can be used to determine the optimal model from a selection of candidate models

during cross validation. PRESS and MSE are defined as:

PRESS =
n∑

i=1

m∑
j=1

(yij − ŷij)
2, (5.13)

MSE =
1

n

n∑
i=1

m∑
j=1

(yij − ŷij)
2 (5.14)

and are particularly useful for a few reasons. First of all, like the other methods men-

tioned, MSE is a single metric that can determine the performance of a model formation

in comparison to other formations but has the quality of penalising larger differences

more than smaller differences hence making the differentiation between good and bad

fitting models much greater than the other metrics. It is noteworthy that MSE is asymp-

totically equivalent to the Akaike Information Criterion, another well known and appro-

priate metric for assessing performance202

5.7 Regression LOOCV example

To illustrate the modelling and cross validation methodology, a reduced method is em-

ployed. Consider the models illustrated in the Figure 5.4. For the purpose of this illus-

tration, these four patients (patient 1-4) are deemed representative of the entire training

database of 20 patients therefore only these data will be used to demonstrate the LOOCV

method. Also for illustration purposes only, only single feature models of the four fea-

tures presented are considered for modelling in this example. However, in all latter por-

tions of this thesis, all 20 patients will be considered during LOOCV as well a greater

number of variables including those containing multiple features.

The aim is to establish the optimal feature set and in this example there are four

feature sets each containing a single feature. Features include: volume of external or

VolumeExternal (cm3), overlap volume between PTV48 and the rectum volume or OVPTV48,Rectum

(cm3), the maximum distance between PTV48 and the rectum or DistMaxPTV48,Rectum

(cm), the volume of the rectum in field of (i.e. within the most inferior and superior slice

of PTV48) or VIFPTV48,Rectum (cm) and distance between the geometric center of PTV48

and the rectum or DistCentrePTV48,Rectum (cm). The MSE (or PRESS) is calculated be-

tween the true and modelled values (i.e., for the modelling error) and used to determine

optimality. In addition, other metrics are used to assist in the analysis and include the

average adjusted R2 as well as metrics related to the difference such as mean and median
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Model Metric
Adj R2 Error %Error

P 1 P 2 P 3 P 4 P 1 P 2 P 3 P 4 P 1 P 2 P 3 P 4

Vo
lu

m
e E

xt
er

na
l Linear 0.215 0.123 0.160 0.229 -45.4 -26.3 22.3 -50.0 -29.9% -17.2% 23.5% -32.2%

Quadratic 0.242 0.160 0.217 0.260 -43.7 -26.0 27.5 48.8 -28.7% -17.0% 29.0% 31.5%

Cubic 0.255 0.160 0.217 0.275 -40.4 -19.4 20.9 51.5 -26.6% -12.7% 22.1% 33.2%

O
V

PT
V

48
,R

ec
tu

m Linear 0.047 0.027 0.075 0.044 -39.3 -36.3 35.4 -41.3 -25.8% -23.7% 37.4% -26.6%

Quadratic 0.054 0.031 0.080 0.051 -41.1 -37.6 37.5 -43.4 -27.0% -24.5% 39.6% -28.0%

Cubic 0.080 0.054 0.110 0.070 -40.3 -30.9 31.4 -42.0 -26.5% -20.2% 33.2% -27.1%

D
is

tM
ax

PT
V

48
,R

ec
tu

m

Linear 0.101 0.076 0.126 0.103 -33.5 -29.2 26.3 -37.0 -22.0% -19.0% 27.8% -23.9%

Quadratic 0.101 0.077 0.129 0.104 -33.9 -29.3 27.7 -37.5 -22.3% -19.1% 29.3% -24.2%

Cubic 0.104 0.078 0.143 0.107 -32.6 -26.0 23.2 -36.2 -21.4% -17.0% 24.5% -23.4%

V
IF

PT
V

48
,R

ec
tu

m Linear 0.049 0.125 0.071 0.088 -27.1 -44.1 11.6 -38.4 -17.8% -28.8% 12.3% -24.8%

Quadratic 0.062 0.126 0.074 0.088 -30.6 -43.7 9.94 -38.2 -20.1% -28.5% 10.5% -24.7%

Cubic 0.073 0.126 0.080 0.111 -23.3 -36.9 9.27 -38.6 -15.3% -24.1% 9.80% -24.9%

D
is

tC
en

tr
e P

T
V

48
,R

ec
tu

m

Linear 0.104 0.059 0.026 0.035 -53.6 -43.7 18.9 -40.4 -35.2% -28.5% 20.0% -26.1%

Quadratic 0.107 0.081 0.042 0.077 -57.8 -44.6 18.8 -45.7 -38.0% -29.1% 19.9% -29.5%

Cubic 0.125 0.128 0.054 0.106 -27.8 -43.0 13.3 -36.5 -18.3% -28.1% 14.1% -23.5%

Table 5.2: A summary of the raw metrics for example data

absolute error and mean and median parentage difference. To determine MSE and these

other metrics, some values are taken which include the absolute error in the model for

each left-out patient. A summary of these values are found in Table 5.2.

To gain the insights needed to determine the optimal model, these data are aggregated

and compared and a summary of this is found in Table 5.3. Ultimately, the choice of

optimal model is chosen based on that which minimises the MSE or PRESS which in

this example is a cubic model built using VIFPTV48,Rectum with a LOOCV MSE of 870.

This model is closely followed by a cubic model built on DistMaxPTV48,Rectum. It is

favourable that optimal models show desirable characteristics for the other metrics also.

This helps to inspire confidence in the chosen model and establish it as the true optimum

and not a spurious outcome based on the data sample. However, that is not the case

in this example which shows desirable characteristics for quadratic and cubic models

built using VolumeExternal, a very different feature altogether. This may be evidence that

VIFPTV48,Rectum is not the true optimal model but is more likely a consequence of not

basing this exploration on sufficient data.

The additional metrics are not only helpful for identifying the optimal model but
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Model Metric MSE
Average

Mean Error Median Error
Mean Percentage Median Percentage

Adjusted R2 Error Error

VolumeExternal

Linear 1438 0.184 -24.9 -35.9 -14.0% -23.6%

Quadratic 1431 0.220 1.65 0.750 3.70% 6.00%

Cubic 1274 0.227 3.15 0.750 4.00% 4.70%

OVPTV48,Rectum

Linear 1455 0.048 -20.4 -37.8 -9.68% -24.8%

Quadratic 1598 0.054 -21.2 -39.4 -10.0% -25.8%

Cubic 1332 0.079 -20.5 -35.6 -10.2% -23.4%

DistMaxPTV48,Rectum

Linear 1009 0.102 -18.4 -31.4 -9.28% -20.5%

Quadratic 1045 0.103 -18.3 -31.6 -9.08% -20.7%

Cubic 897 0.108 -17.9 -29.3 -9.33% -19.2%

VIFPTV48,Rectum

Linear 1072 0.083 -24.5 -32.8 -14.8% -21.3%

Quadratic 1101 0.088 -25.6 -34.4 -15.7% -22.4%

Cubic 870 0.098 -22.4 -30.1 -13.6% -19.7%

DistCentrePTV48,Rectum

Linear 1693 0.056 -29.7 -42.1 -17.5% -27.3%

Quadratic 1943 0.077 -32.3 -45.2 -19.2% -29.3%

Cubic 1003 0.103 -23.5 -32.2 -14.0% -20.9%

Table 5.3: A summary of key aggregated metrics for the example data.

also help establish the expected performance of that model. That is, the most desirable

models (optimal or not) will have an R2 values close to 1 and error metrics close to 0

and 0%. Under these criteria, all models in this example can be said to be performing

poorly. This may be due to the data being ill-defined for the presiding methodology

(regression), but is most likely related to the limited data used in the example and poor

underlying relationships between the parameter being predicted (rectum Dmean) and the

features sets considered. When the LOOCV is applied to the entire training databases

and more feature sets are considered, more meaningful relationships may be established

that are applicable for making predictions.

5.8 Chapter summary and next steps

The purpose of the work presented in this chapter was to consider different ML tech-

niques and explore the approach to be used in the main study. This was achieved suc-

cessfully with a simulated example illustrating the process with example output for the

cross validation stage.
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The next chapter builds on this work in the following ways. Firstly, no assumptions

will be made about the representation of a sample of the training database as in this ex-

ample, instead the entire database will be included in all stages of the LOOCV. This will

provide a larger and more representative foundation that better indicates the performance

each model will have in truth hence will aid the identification of the optimal model in

each case as well as the identification of features that consistently perform well regard-

ing prediction.

Secondly, a greater number of feature sets will be used including combinations of

up to five sets of features. This will not only mean modelling on a single feature at a

time as in this example, but will consider all possible combinations of the features up to

sets of five. This will enable the identification of the performance of not only individual

features but the relationships between interacting features. Not only will using a larger

set of features allow for deeper exploration and increased likelihood of identifying the

best models but modelling over all possible combinations will help gauge understanding

of which features are interacting in a way that supports prediction. Similarly to this

example, statistics considered in addition to MSE will be calculated to assist critique of

the optimal model with the most desirable model achieving an R2 close to 1 and a error

and percentage error terms close to zero and zero percent.



Chapter 6

Regression and cluster modelling

Under the paradigms outlined in previous chapters, each of the two ML methods (i.e.,

regression and clustering) will be applied to try to predict gold standard planning across

each of the three clinical sites. Research questions include:

1. Is there a relationship between gold standard weighting factors and numerical

anatomical features such as volume of ROIs and distance between ROIs?

2. Can this relationship be determined using a ML technique such as multiple poly-

nomial regression or K-means clustering method and used to generate weighting

factors for automated plan calibration?

3. Do modelled weighting factors lead to dosimetrically comparable gold standard

planning via PBAIO?

Rules-based AP methods including the Erasmus iCycle’s lexicographic order method,

Pinnacle’s Auto-Planning software and Velindre Cancer centre’s EdgeVcc have all been

used to deliver clinically applicable planning and RBP planning has been implemented

for treatment sites including PSV, lung, rectum, breast and oesophagus. Nevertheless,

RBP planning requires some apriori calibration of which a “one size fits all” or universal

standard prioritisation is usually defined for all patients (Std).

However, studies have shown that such calibration methods are not always appropri-

ate. Vanderstraeten et al. (2018) found benefits of a Std approach with regard to planning

time and dosimetric outcomes were found to be appropriate for the majority of plans

with no need for further fine tuning (>75%). However, there was a significant proportion

of cases that failed the clinical objectives203. Zhang et al. (2021) found that not only

can a Std approach show some clinically undesirable characteristics in certain cases, it

114
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suggested there is a spatial (distance-related) relationship between the calibration solu-

tion and the dosimetric outcomes204. Janssen et al. (2019) noted the benefits of an RBP

approach but stressed the need for independent planning QA for plan assessment given

there is evidence to suggest a fully optimal plan is not always guaranteed205. Given the

anatomical variance study presented in Chapter 4, there is strong evidence of weighting

factor dependence of geometry and applying this knowledge of weighting factor gener-

ation may be the key to fully optimal and clinically applicable planning with these AP

methods.

This chapter presents the full methodology of each of the two ML approaches chosen

in light of the examples presented in the Chapter 5 with the results of each including a

dosimetric comparison to the gold standard.

6.1 The RATING framework

This work was completed with reference to the RATINGS framework defined by Hansen

(2020)206. The aim of the framework is to “improve the scientific quality of treatment

planning studies and papers”. The framework contains a list of 76 considerations for

researchers to make when completing a study. A self-rating is applied for each and

aggregated to an overall score used for reference and comparison against other studies.

This framework encourages quality implementation of the methodology207–209 hence im-

proving the reproducible of the results. All studies in this work were completed under

comparable conditions hence all obtained the same self-rated score: 173/203. Points

were lost, for example, given there are some restriction to data and software that can

be made available to a wide audience for replication of results. Given this 85% quality

metric, studies in this work are considered reasonable quality against these criteria. See

Appendix A for the full criteria of scoring.

6.2 Patients

Patient selection is defined in Section 3.6. For PSV, the full patient dataset consisted

of 40 randomly selected prostate seminal vesicles (PSV) patients. Of those 40, 20 were

randomly assigned to the training cohort (Patient 01-20) and 20 to the validation cohort

(Patient 21-40). The number of patients selected for training reflected numbers found

in previous work related to RBP96,105,120 and planning parameter prediction for PSV148.
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For rectum and lung, the full patient dataset in each case consisted of 60 randomly se-

lected patients of which 40 were assigned to the training cohort (Patient 01-40) and 20 to

validation (Patient 41-60). Given rectum and lung have had far fewer AP cases reviewed

with this RBP method than PSV, more patients were considered to increase the statistical

power of the results in these cases.

6.3 Feature Set Databases

Collinearity between variables can leading to modelling bias210 therefore to improve

modelling efficiency and improve model performance, associations between extracted

features were explored and a subset of features defined by removing one in every pair

of highly correlated features. To determine the strength of associations between pairs of

features in the training database, a Pearson correlation coefficient was calculated. For

coefficients greater than 0.85, one of the two features was randomly removed. A value of

0.85 was considered a reasonable cut-off and is in-line with other ML studies in the gen-

eral ML literature211–213. A second feature dataset is therefore defined for each treatment

site: the full set of cleaned features (FeatureDS1) and a subset of FeatureDS1 containing

uncorrelated features (FeatureDS2). The full list of features in FeatureDS1 datasets can

be found in Appendix C.

Note that Pearson’s correlation coefficient determines the strength of a linear rela-

tionship between features where one exists. In reality, there are a greater number of

possible relationships that could exist between pairs of features but exploring all of them

is impracticable. Removing pairs of linearly correlated features will nonetheless always

have a positive outcome on modelling both in terms of bias and computational efficiency.

6.4 Modelling approach

Training and validation was performed using a “gold standard” dataset, where patient-

specific weighting factors were obtained following navigation by an expert practitioner

familiar with the system and qualified to create and validate plans for each site consid-

ered. The practitioner responsible for navigating the gold standard plans in all cases was

a medical physicist with 15 years experience who was highly familiar with EdgeVcc and

it’s functionality and experienced in plan creation and validation for each site.

The weighting factors obtained during gold standard calibration were used to gen-
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Figure 6.1: An outline of how the process defined in this work (bottom) differs from the more

classic site-specific methods (top)

erate plans via PBAIO and are considered the modelling ground truth for comparison

(MCOgs). Predictive ML models were trained on this MCOgs calibrated dataset with

the aim of identifying the relationships between anatomical features and patient-specific

weighting factors obtains via PGAP calibration. Once trained, predicted weighting fac-

tors can be generated for novel patients and used to form the inputs for the PBAIO system

with the aim of generating plans of equivalent quality to MCOgs. This method contrasts

with classic approach to calibration (Std) where all patients are planned with the same

site-specific calibration of RBP parameters. In this work, Std was defined by taking the

mean gold standard weighting factor values for each patient in the training dataset. Std

calibration, regression ML calibration (MLreg) and cluster calibration (MLclus) weighting

factors were validated against MCOgs using an independent set of patients.

All plans in these studies were generated within RayStation (Raysearch Laboratories,

Stockholm, version 8B) using a single 360◦ VMAT arc. Patients were planned according

to 20 fractions with a simultaneous integrated boost technique for PTVs. PGs for three

all sites were derived from local clinical goals with PSV PGs based on the UK PIVOTAL

trial144. Rectum cases contained a combination of PGs given genitals and stoma were

not delineated for all patients.

For lung many originally chosen PGs were later set to static values resulting from

limited clinical impact. These choices were made retrospectively given the expert opera-

tor determined their own choices to be redundant for all patients regardless of the weight

chosen. PG4 (liver Dmean) was determined to have negligible impact. PG5 (oesopha-
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gus/brachial plexus Dmean) also had negligible impact except for one patient. PG7 (PTV

conformality precision) was not considered clinically relevant in these cases and PG8

(high dose to lung) was not navigated given little impact shown to the dose distribution.

Lung PG1-3 and 6 were navigated as normal and correspond to Lung Dmean, Heart Dmax,

PTV conformality and Lung Dmax. PG 4,5 and 8 were set to the static values zero, 2445

and zero respectively. Optimal models were defined using the training data via a LOOCV

with final models defined using all training patients and validated on unseen cases.

6.4.1 Regression

Two approaches were explored for regression modelling: (1) modelling using combina-

tions of raw features within FeatureDS2 (reg-raw), (2) forward selection using Principal

Components generated using FeatureDS1 (reg-PCA). In all cases the same method was

followed and regressions built using the SKlearn Version 0.15.2 Linear Model and Pre-

processing algorithms. Linear and polynomial regression models were explored in-line

with the literature117,148,214,215 and preliminary research. Modelling and prediction were

performed for each PG individually.

As raw features are not ordinal, all possible combinations of features (feature sets)

were considered in the reg-raw approach. To limit the search space, up to a maximum

of 5 features were allowed within a feature set. A separate ‘feature set selection’ step

was performed prior to model selection to identify the optimum feature set per model

formation. The methodology involved identifying the feature set with the smallest MSE

under each model formation.

Given PCA features are ordinal, in the reg-PCA approach FeatureDS1 is transformed

to Principal Components and models generated using forward selection i.e. the first Prin-

cipal Component (PC1) was used for all one feature models, PC1 and PC2 for all two

feature models and so on up to the maximum features. For both approaches (reg-raw

and reg-PCA), models explored were linear, quadratic and cubic. Therefore for each

PSV PG, 15 model formations were defined using the reg-raw approach and 60 for reg-

PCA. A single choice was made from among the 75 model formation given that which

minimised MSE.
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6.4.2 Clustering

K-means clustering was facilitated by the SKlearn Version 0.15.2 Cluster package. The

two approaches considered were: (1) clustering over FeatureDS2 (clus-raw), (2) cluster-

ing over Principal Components of FeatureDS1 (clus-PCA). Training patients were clus-

tered over all data available using a random initial state of 42 and 300 maximum iterations

with all possible values of K considered.

The initial state defines a random state for the initial position of centroids and 42 was

chosen arbitrarily and kept constant to ensure repeatability should the code be run again.

The maximum number of iterations defines the number of K-means passes before should

the model not stabilise prior to reaching this point. This threshold ensures the model does

not run for an infinite number of passes should there be no absolute optimum and should

be chosen such that it is large enough that the model is approximately stable once the

threshold is reached. The value 300 was considered significantly high given the number

of data points and computationally practicable.

Once clusters had been defined using the training cases, the mean average PG weight

over the training cases in each cluster was calculated. These PG average weights are the

machine learned PG weights. Validation patients were then assigned to clusters based on

centroids that minimised Euclidean distance and a machine learned PG weight assigned.

Hence, models are defined once using the training patients and machine learned weights

defined. The model is then applied to all novel cases that had not been used to train it. In

this way, the Std approach can be compared to a MLclus approach in which all training

patients (and henceforth novel cases) are assigned to a single cluster for all PGs.

To aid the analysis of cluster performance, two metrics were calculated for each

model formation: (1) the sum of the squared differences between each point and its

cluster centroid (SSE), (2) a silhouette coefficient - a value between -1 and 1 that scores

the goodness-of-fit of each formation based on average inter- and intra-cluster distances.

SSE values close to zero and silhouette scores close to 1 indicate models that are well

defined.

6.4.3 Validation and statistical analysis

All patients in the validation dataset were planned according to the four approaches:

MCOgs, Std, MLreg and MLclus. Given weighting factors are essentially relative values

but can theoretically range between zero and infinity, for the purposes of analysis all
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weighting factors will be converted to relative values and expressed as a percentage by

dividing by the summed weight of all PGs.

For the validation cohort, the difference between the modelled relative PG weights

and gold standard (MCOgs) relative PG weights are the primary metric used to assess

model quality, with MSE additionally calculated to aid in the comparison with training

results. Plans are compared against MCOgs in terms of relative weighting factors as well

as dosimetric features with statistical testing carried out.

For PSV, dose metrics of interest have been adapted from the UK PIVOTAL trials144.

Rectum and lung have been defined internally based on current clinical practice at Velin-

dre Cancer Center. PTV homogeneity index (HI) and Paddick’s conformality index (CI)

were also calculated for the analysis216 and all outliers were defined as values outside of

the range [Q1− (1.5× IQR), Q3 + (1.5× IQR)], where Q1, Q3 and IQR are quartile

1, quartile 3 and inter-quartile range (Q3-Q1) respectively.

Given a gold standard was explicitly defined in this work, all other plans are com-

pared directly to this baseline. Therefore, no composite plan quality metrics have been

considered to compare different plans produced for the same patient. Prediction of

MCOgs is the aim hence comparison against MCOgs is done at all stages. Neverthe-

less, dosimetric improvements over MCOgs for specific cases will be highlighted and

discussed where they exist.

6.4.4 Definition of PCA features

Given there are a greater number of features in FeatureDS1 than patients in all cases,

fewer Principal Components were generated than features in FeatureDS1. For any m×n

matrix A

A =


a11 a12 . . . a1n

a21 a21 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 ,

when A is reduced to Principal Components, the number of Principal Components re-

turned depends on m > n or otherwise. Given m > n, an m × n matrix is returned i.e.

the same shape as the original data. When m ≤ n, an n × n matrix is returned where

the nth Principal Component is a zero vector. This is due to the extra dimensions beyond

n− 1 becoming redundant given the number of data points.
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For example, given three data points x1, x2, x3 ∈ R3, the relationship between the

three points can be fully determined using only two-dimensions (i.e., axes or variables).

Similarly, given four point x1, x2, x3, x4 ∈ R4, when transforming the axes such that the

number of necessary axes is minimised (as in PCA), given all four points can be defined

in R3 space, the extra dimension becomes redundant.

6.5 PSV Modelling Results

6.5.1 Predictive features

As mentioned in section 5.5, a total of 139 predictive features were generated for Fea-

tureDS1. Of these, 27 were retained for FeatureDS2. A summary of features retained in

FeatureDS2 can be found in Table 6.1 along with the number of excluded features that

were correlated with it in FeatureDS1. Excluded features may have been correlated with

more than one retained feature.

For reg-PCA PSV LOOCV, a 20× 20 matrix is defined given FeatureDS1 represents

a 130 × 20 matrix. The first PC accounts for 46.5% of the variance with the first eight

PCs accounting over 95% of the variance in the entire database.

6.5.2 Leave-one-out summary

To define the optimal model, LOOCV of the training cohort is used. For reg-raw PSV

LOOCV, a total of 36,656,880 individual regression models were generated:

6 × 20 × 3 ×
5∑

k=1

(
27
k

)
= 36,656,880.

(PGs) (patients) (degrees) (combinations) (total)
Therefore, given the number of PG and degrees, 18 full LOOCV models were defined

over the training patients for each combination type (1-5 feature combinations). One

model was chosen for each of the six PGs given MSE was minimised as in the method

outlined in section 5.7. Building on work from the previous chapter where only 1-feature

models were built, more feature sets and patients have been considered here. The results

of chosen models for each PG following LOOCV can be found in Table 6.2. The mean

R2 value was greater than 0.8 for all PGs indicating a strong positive relationship on

average. The validation MSE indicates a poorer fit to the validation database than the

training database. No models chosen were a higher degree than quadratic which suggests

the relationships between weights and anatomical features are simple.
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Type Feature Excluded

Features

Derived Slope between OVbladder,PTV480.2cm and OVbladder,PTV480.4cm 36

Derived Slope between OVbladder,PTV481.2cm and OVbladder,PTV481.4cm 25

Volumetric OVbladder,PTV60 (cm3) 24

Derived Slope between OVrectum,PTV481.4cm and OVrectum,PTV481.6cm 14

Derived Slope between OVrectum,PTV600.8cm and OVrectum,PTV601.0cm 14

Derived Slope between OVrectum,PTV480.6cm and OVrectum,PTV480.8cm 13

Derived Slope between OVrectum,PTV480.2cm and OVrectum,PTV480.4cm 11

Derived Slope between OVrectum,PTV600.2cm and OVrectum,PTV600.4cm 11

Volumetric Bladder (cm3) 7

Volumetric OVrectum,PTV48 (cm3) 5

Volumetric OVrectum,PTV60 (cm3) 5

Spatial Maximum distance between bladder and PTV48 (cm) 3

Spatial Maximum distance between rectum and PTV48 (cm) 3

Derived Slope between OVrectum,PTV482.2cm and OVrectum,PTV482.4cm 3

Spatial Distance between the center of bladder and rectum (cm) 4

Volumetric Volume of the rectum (cm3) 2

Spatial Distance between the center of rectum and PTV48 (cm) 2

Volumetric Volume of the PTV48 (cm3) 1

Derived Ratio of PTV48 to bladder 1

Derived Ratio of PTV48 to rectum 1

Volumetric Total OAR VIFPTV48 (cm3) 1

Volumetric Total OAR VIFPTV60 (cm3) 1

Volumetric Rectum VIFPTV60 (cm3) 1

Spatial Distance between the center of PTV60 and PTV48 (cm) 0

Volumetric Volume of the PTV48 minus PTV60 (cm3) 0

Volumetric Volume of the external (cm3) 0

Derived Ratio of bladder to rectum 0

Table 6.1: Summary of the features chosen for FeatureDS2 from FeatureDS1. The number of

correlated features in FeatureDS1 that were excluded from FeatureDS2 are summarised in the

columm Excluded Features.

For reg-PCA PSV LOOCV, 7,200 models were created:

6 × 20 × 3 × 20 = 7,200.

(PGs) (patients) (degrees) (PC combinations) (total)
However, none of the optimal models used Principal Components. With only raw features
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chosen and high R2 values, this indicates key relationships between the weighting factors

and the specified variables.

To generate all 1-feature reg-raw model combinations and all reg-PCA model combi-

nations, the LOOCV python scripts ran for approximately 0.05 minutes. Two-feature reg-

raw models took approximately 0.35 minutes, 3-features took approximately 2.5 minutes,

4-features approximately 40 minutes and 5-features approximately 300 minutes. This il-

lustrates the exponential increase in computation time given the exponential increase in

the number of feature set combinations as the total number of predictive features in-

creases.

For clus-raw and clus-PCA, a total of 400 models were generated for each:

20 × 20 = 400.

(patients) (no. clusters) (total)
For the generation of clus-raw and clus-PCA solutions, python scripts took approximately

1 minute to produce all clusters. The maximum number of possible clusters is determined

by the number of data points which is determine by the number of training patients in

this case. A summary of the LOOCV for MLclus can be found in Table 6.3. Of the six

PGs, the optimal model for the PTV Dose Falloff PG was defined using the mean of all

training patients and therefore the outcomes of the clustering methods (i.e., reg-raw or

rerg-PCA) were equivalent. Of the remaining PGs, two were defined over clusters of

raw features and three over PCA features. This indicates the advantage of reducing the

dimensions of the predictive features prior to clustering for the PSV treatment site.

Comparing optimal MLreg and MLclus models following LOOCV, MSE values indi-

cate regression performed better at modelling training PGs than clustering for four of the

six PGs: rectum Dmean, PTV Conformality and rectum Dmax. Nevertheless, MSE val-

ues for the validation database indicate MLclus may be better at predicting MCOgs than

MLreg. Validation MSE values indicate MLclus is optimal for rectum Dmean, PTV Con-

formality, PTV dose falloff and bladder Dmaxand MLreg is optimal for bladder Dmean and

rectum Dmax.

Although, the MLreg model was optimal for the two PGs bladder Dmean and rectum

Dmax, the MLclus model for them is comparable for each in terms of performance given

validation MSE values are similar. All other PGs show stronger MSE values for under

their optimal models.
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6.5.3 Weight Summary

See Table 6.4 and Figure 6.2 for an overview of relative weight calibrations for the vali-

dation dataset and Figure 6.3 for the underlying patient level distributions for differences

from MCOgs. No weighing factor distributions met ANOVA assumptions and all were

tested using a Friedman test. Significant differences relative weighing factor differences

were observed between MCOgs and at least one of Std, MLreg and MLclus for six of the

Planning Regression Features Training Validation

Goal equation Av adj R2 MSE MSE

Rectum 3 features Volume of the external (cm3) 0.835 368 7025

Dmean quadratic Rectum VIFPTV48 (cm3)

Slope between OVrectum,PTV480.2cm and OVrectum,PTV480.4cm

Bladder 5 features Volume of the rectum (cm3) 0.858 24.5 271

Dmean linear OVrectum,PTV48 (cm3)

Total OAR VIFPTV60 (cm3)

Distance from center of PTV48 to the center of rectum (cm)

Ratio between PTV48 and rectum volume

PTV 5 features Volume of the PTV48 (cm3) 0.907 1441 19442

Conformality linear Distance from center of PTV48 to the center of rectum (cm)

Slope between OVrectum,PTV480.2cm and OVrectum,PTV480.4cm

Ratio between bladder and rectum volume

Ratio between PTV48 and bladder volume

Rectum 4 features Volume of the rectum (cm3) 0.997 0.125 5.82

Dmax quadratic Distance from center of PTV48 to the center of rectum (cm)

Distance from center of PTV48 to the center of PTV60 (cm)

Ratio between bladder and rectum volume

PTV Dose 4 features Volume of the PTV48 (cm3) 0.998 2.62 495

Falloff quadratic Rectum VIFPTV48 (cm3)

Distance from center of bladder to the center of rectum (cm)

Distance from center of PTV48 to the center of rectum (cm)

Bladder 4 features OVrectum,PTV60 (cm3) 0.999 0.309 69.3

Dmax quadratic Total OAR VIFPTV48 (cm3)

Distance from center of bladder to the center of rectum (cm)

Slope between OVbladder,PTV481.2cm and OVbladder,PTV481.4cm

Table 6.2: Summary of MLreg model formations determined automatically for PSV via leave-

one-out.
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Planning Number Feature Cluster Silhouette Training Validation

goal of clusters Type SSE Score WF MSE WF MSE

Rectum Dmean 2 Raw 416 0.173 698 1273

Bladder Dmean 11 Raw 123 0.058 9.89 298

PTV Conformality 9 PCA 562 0.162 2320 4037

Rectum Dmax 7 PCA 802 0.182 0.592 6.42

PTV Dose Falloff 1 n/a 540 n/a 10.8 133

Bladder Dmax 12 PCA 416 0.128 0.791 37.9

Table 6.3: Summary of MLclus model formations determined automatically for PSV via leave-

one-out.

eight PG groups. These included rectum Dmean and Dmax PTV conformality and dose

falloff, bowel Dmedium and PGH.

For rectum Dmean, MCOgs differed from Std only. Mean and median difference from

MCOgs for Std was greatest compared with other methods with a value of 0.079%. Im-

portantly, Std weighting factors were higher than MCOgs weighting factors for 17/20 pa-

tients leading to rank differences within statistical tests indicating Std weighting factors

to be significantly greater than MCOgs weighting factors. Significant differences were

observed for rectum Dmax between MCOgs and all other methods. Relative weighting

factors for Std, MLreg and MLclus were significantly lower than MCOgs of which mean

the largest median difference was observed for MLclus.

PTV conformality difference against MCOgs was observed for Std only. Similarly to

the rectum Dmeancase, Std showed the greatest mean and median difference from MCOgs

and weighing factor values were greater than MCOgs values in 17/20 cases. PTV dose

falloff showed differences from MCOgs for Std and MLreg. MLreg weighing factor values

are less than MCOgs in 16/20 cases and is similarly true for Std. The largest deviations

from MCOgs were observed for Std with mean and median deviations of 0.231% 0.296%

relative weight difference respectively.

Bowel Dmedium and PGH differences from MCOgs were observed from Std only. The

largest mean and median differences were observed for this method with values lower

than MCOgs in 15/20 cases for each these PGs. In addition, differences were observed

for rectum Dmean between Std and MLregwith Std greater than MLreg in 14/20 cases.

However, although statistically significant differences were observed, differences were

considered to be clinically insignificant. The greatest percentile difference from MCOgs
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Figure 6.2: Plots showing relative weight distribution for all calibration methods for the PSV

validation dataset.

were all within 10% and comparable on aggregate across patients for relative weights.

MLclus was considered the closest to MCOgsṀean differences from MCOgs of less

than 1.17% were observed for all PGs and the median difference from MCOgs was closest

to zero for three of the eight PGs. Although median weighing factor differences of MLreg

from MCOgs was closest to zero for four PGs, MLclus was comparably close to zero in

all four cases with notably larger distribution spreads observed within the data for MLreg.

For this reason, MLreg can be considered the poorest performer overall with deviations

as great as 2.49% and 3.57% for PTV conformality and PGH respectively. Also, the

most extreme ranges were observed for MLreg model for all PGs and included some

of the most extreme outliers. This indicates MLreg models are the most volatile and

prone to undesirable outliers. Std and MLclus performed comparably to each other given

similar medians, ranges and inter-quartile ranges for many key dosimetric features. This

is particularly true for rectum Dmean, rectum Dmax and PTV dose falloff.

Figure 6.2 illustrates relative weight deviations from MCOgs at patient level for all

three methods. In general, patient-level deviations were moderately small overall. Max-

imum deviations of 7.39%, 17.1% and 5.58% were observed for Std, MLreg and MLclus

respectively. MLclus was considered the optimal calibration method given median relative

weighing factor difference from MCOgs close to zero in all cases and the small differ-

ence ranges. MLreg was considered the poorest performer of the three methods given the

largest range and inter-quartile range differences from MCOgs in all cases.
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Figure 6.3: Plots showing relative weight difference from MCOgs for the validation dataset. Bar

chart are order patient 21-40 and box plot represent the overall distribution.
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Weight metric MCOgs Std MLreg MLclus

Rectum Dmean 3.46% ± 0.999% 4.18% 3.37% ± 1.51% 4.17% ± 0.257%

Bladder Dmean 1.10% ± 0.421% 1.18% 1.34% ± 0.820% 1.14% ± 0.404%

PTV Conformality 8.86% ± 2.252% 10.7% 10.1% ± 6.27% 9.55% ± 1.75%

Rectum Dmax 0.163% ± 0.0800% 0.102% 0.0943% ± 0.0771% 0.102% ± 0.00820%

PTV Dose Falloff 0.926% ± 0.390% 0.695% 0.763% ± 0.720% 0.705% ± 0.0153%

Bladder Dmax 0.487% ± 0.239% 0.459% 0.641% ± 0.598% 0.481% ± 0.116%

bowel Dmedium 0.0575% ± 0.00204% 0.0559% 0.0567% ± 0.00400% 0.0568% ± 0.00123%

Higher Goals 85.0% ± 3.02% 82.6% 83.6% ± 5.87% 83.8% ± 1.82%

Table 6.4: Summary of PG relative weights for PSV. Values are mean averages across the the

validation dataset ± one standard deviation. Boldface indicates statistically significant differences

from MCOgs at the 95% level.

6.5.4 Dose Summary

See Table 6.5 for a dosimetric summary of the calibration methods. Also, see Figure 6.4

for an illustration of dosimetric differences from MCOgs for key dose-related metrics for

each patient in the validation dataset. Of the 24 key metrics tested, ANOVA assumptions

were met by seven. The rest were tested using a Friedman test. Of the 24 metrics, statis-

tically significant difference were observed for five including PTV60 D98% (Gy), rectum

V24.3Gy (%), rectum Dmean, homogeneity indices of PTV60 (CI60) and homogeneity in-

dices of PTV48 (CI48).

Regression models are clearly the poorest performers in this scenario given substan-

tial evidence they do not reflect MCOgsweighting factors. Median differences are not

minimised for any metrics and large variance show low concordance between predicted

weighing factor values and those of MCOgs. MLregwas not anaylsed further and the re-

mainder of this PSV dosimetric summary will refer to Std and MLclus only. PTV cover-

age and hotspot metrics (i.e., PTV60 and PTV48 D98%, D50% and D2%) for Stdand MLclus

were within 0.642Gy of MCOgs and OAR objectives were within 2.49% and 1.27Gy for

volume and dose metrics respectively.

MLregand MLclus are considered equivalent given of the 24 metrics of interest, median

dosimetric difference from MCOgs are minimised by Std for 12 metrics and MLregfor

12 metrics. In addition, these two methods are highly dosimetrically comparable as in

general dosimetric deviations from MCOgs across all patients were considered small,

likely not of clinical significance and of a similar magnitude at per-patient.
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Figure 6.4: Plots for PSV showing absolute difference of Std, MLreg and MLclus from MCOgs.

Distributions are across the validation dataset and show key dose related metrics for each of the

three calibration techniques.
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Metric MCOgs Std MLreg MLclus

PT
V

60

D98% (Gy) 57.5 ± 0.200 57.5 ± 0.171 57.3 ± 0.570 57.5 ± 0.134

D50% (Gy) 60.0 ± 0.0748 59.9 ± 0.0611 59.9 ± 0.122 59.9 ± 0.0395

D2% (Gy) 61.7 ± 0.0879 61.7 ± 0.0853 61.7 ± 0.104 61.7 ± 0.0794

CI 0.853 ± 0.00910 0.851 ± 0.0108 0.834 ± 0.0523 0.848 ± 0.0112

HI 0.0700 ± 0.00435 0.0696 ± 0.00358 0.0742 ± 0.0108 0.0694 ± 0.00309

PT
V

48

D98% (Gy) 46.3 ± 0.532 46.1 ± 0.407 46.2 ± 0.592 46.2 ± 0.422

D50% (Gy) 53.3 ± 1.32 53.2 ± 1.20 53.3 ± 1.48 53.3 ± 1.22

D2% (Gy) 59.1 ± 0.277 59.2 ± 0.242 59.3 ± 0.501 59.1 ± 0.236

CI 0.812 ± 0.0327 0.823 ± 0.0210 0.789 ± 0.0779 0.813 ± 0.0291

HI 0.241 ± 0.0112 0.246 ± 0.00892 0.246 ± 0.0141 0.243 ± 0.0101

R
ec

tu
m

V24.3Gy (%) 29.1% ± 8.47% 28.5% ± 7.94% 32.3% ± 11.4% 28.4% ± 8.21%

V32.4Gy (%) 23.7% ± 7.44% 23.2% ± 7.14% 25.8% ± 9.07% 23.3% ± 7.29%

V40.5Gy (%) 18.6% ± 6.17% 18.2% ± 6.01% 20.0% ± 7.26% 18.3% ± 6.11%

V48.6Gy (%) 12.8% ± 4.41% 12.6% ± 4.38% 13.5% ± 5.09% 12.7% ± 4.46%

V52.7Gy (%) 9.32% ± 3.28% 9.23% ± 3.26% 9.77% ± 3.69% 9.32% ± 3.37%

V56.8Gy (%) 5.32% ± 2.12% 5.48% ± 2.20% 5.97% ± 2.61% 5.46% ± 2.31%

V60Gy (%) 0.299% ± 0.445% 0.271% ± 0.221% 0.596% ± 0.770% 0.180% ± 0.168%

V60.8Gy (%) 0.0690% ± 0.129% 0.0430% ± 0.0419% 0.0220% ± 0.0357% 0.0223% ± 0.0351%

Dmean(Gy) 18.7 ± 3.72 18.4± 3.50 20.1 ± 5.30 18.3 ± 3.69

B
la

dd
er

V40.5Gy (%) 18.0% ± 11.3% 18.0% ± 11.3% 20.9% ± 10.4% 18.1% ± 11.4%

V48.6Gy (%) 12.2% ± 7.83% 12.0% ± 7.70% 14.3% ± 7.55% 12.3% ± 7.83%

V52.7Gy (%) 9.46% ± 6.33% 9.37% ± 6.25% 11.1% ± 6.02% 9.47% ± 6.29%

V56.8Gy (%) 6.49% ± 4.58% 6.54% ± 4.65% 7.35% ± 4.01% 6.44% ± 4.59%

Dmean(Gy) 20.2 ± 8.72 20.3 ± 8.77 22.2 ± 8.32 20.3 ± 8.91

Table 6.5: Summary of key dose metrics for PSV. Values shown are Mean ± 1 Standard Deviation.

Statistical difference from MCOgs at the 95% level of significance is indicated by boldface.

All three methods have comparable dosimetric qualities to MCOgs with deviations

either not statistically significant at the 95% level, or of a small magnitude.

6.5.5 Conclusions

Following exhaustive searches for the optimal models in each case, MLclus was found to

predict MCOgs more closely than any other method. Nevertheless, all methods performed

favourably and achieved clinically acceptable planning. This was positive outcome espe-

cially given the small size of the training database.



CHAPTER 6. REGRESSION AND CLUSTER MODELLING 131

6.6 Rectum Modelling Results

The rectum site is a peculiar case for the generation of calibration parameters for an AP

system given the PGs are inhomogenous. There are cases that are missing genitals and/or

stoma delineations. To manage this, regression and clustering were defined in a similar

way to other sites but predicted values set to zero where the volume of the related ROI

is zero. Therefore, models are defined using homogenous predictive features only and

cases with missing delineations automatically set to zero.

FeatureDS1 contained 114 predictive features, of which 23 were retained for Fea-

tureDS2. A summary of variables in FeatureDS2 can be found in Table 6.6. Of the 40

Principal Components defined using FeatureDS1, PC1 accounts for 61.2% of the vari-

ance with PC1-6 accounting to approximately 95% of the variance in all 40.

Type Feature Excluded

Features

Volumetric OVPTV45+0.2,reduced Bowel Bag 44

Derived Slope OVPTV45+2.0,External and OVPTV45+2.2,External 24

Volumetric Volume of the PTV45 23

Volumetric OVPTV45,Full Bowel Bag 12

Volumetric Volume of the Full Bowel Bag 7

Volumetric Volume of the External 5

Spatial Av. distance between the Full Bowel Bag and External 4

Spatial Min. distance between the Full Bowel Bag and External 2

Derived Ratio of Full Bowel Bag and External 1

Spatial Distance between the centers of the Full Bowel Bag and External 1

Spatial Max. distance between PTV45 and reduced Bowel Bag 1

Derived OVVIFPT+45.4500,reduced Bowel Bag 1

Spatial Av. distance between the Full Bowel Bag and reduced Bowel Bag 1

Spatial Distance between the centers of the PTV45 and reduced Bowel Bag 1

Spatial Max. distance between PTV45 and Full Bowel Bag 1

Spatial Distance between the centers of the Full Bowel Bag and reduced Bowel Bag 0

Derived Ratio of PTV45 and Full Bowel Bag 0

Derived Ratio of PTV45 and reduced Bowel Bag 0

Derived Ratio of Full Bowel Bag and reduced Bowel Bag 0

Spatial Distance between the centers of the PTV45 and External 0

Spatial Min. distance between PTV45 and External 0

Spatial Max. distance between the Full Bowel Bag and reduced Bowe Bag 0
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Derived Ratio of PTV45 and External 0

Table 6.6: Summary of the rectum predictive features chosen for FeatureDS2 from FeatureDS1.

The number of correlated features in FeatureDS1 that were excluded from FeatureDS2 are sum-

marised in the column Excluded Features.

6.6.1 Leave-one-out summary

For reg-raw rectum LOOCV, a total of 21,384,480 individual regression models were

generated:

4 × 40 × 3 ×
5∑

k=1

(
23
k

)
= 21,384,480.

(PGs) (patients) (degrees) (combinations) (total)

Therefore, given the number of PG and degrees, 12 full LOOCV models were defined

over the training patient for each combination type. For each PG and degree, it took

approximately 0.15 minutes to generate all 1-feature LOOCV models, approximately 0.5

minutes for 2-feature models, approximately 3.5 minutes for three, approximately 15

minutes for four and approximately 65 minutes for five. For reg-PCA, 19,200 LOOCV

models were generated:

4 × 40 × 3 × 40 = 19,200,

(PGs) (patients) (degrees) (PC combinations) (total)

and it took comparably long to generate each reg-PCA model for any one PG and

degree as a 1-feature reg-raw model.

Of the four PGs, two of the optimal models were defined using raw features (i.e., PTV

conformality and stoma Dmean) and two using PCA features (i.e., bowel bag Dmeanand

genitals Dmean). Models defined using raw features yielded higher average R2 values

than those defined using PCA features. Similarly to PSV, this indicates a strong linear

relationships between raw predictive features and weighting factors. All regression mod-

els predicting genitals Dmean weighting factors were very low given the LOOCV model

that minimised MSE obtained an average R2 of less than 0.1. This suggests there are

no strong relationships between the weighting factors and any of the predictive features

considered.

Of the 23 raw predictive features in FeatureDS2, seven were used across the two

optimal reg-raw models. Of the 40 PCA features generated from FeatureDS1, three

were used in the two optimal reg-PCA models (PC1-3). PC1-2 and PC1-3 accounted
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Planning Regression Features Training Validation

Goal Model Type Av adj R2 MSE MSE

PTV 3 features Volume of PTV45 0.841 269,664 1,050,892

Conformalty cubic Minimum distance between PTV45 and the External

Ratio between PTV45 and Bowel Bag

Bowel Bag 3 features PC1 0.339 30,645 72,799

Dmean linear PC2

PC3

Genitals 2 features PC1 0.09 25,782 35,469

Dmean linear PC2

Stoma 4 features Volume of the Bowel Bag 0.974 3,123 96,396

Dmean cubic Centre of the Bowel Bag to centre of Full Bowel Bag

Volume of the External in field of PTV45

Volume of Full Bowel Bag in field of PTV45

Table 6.7: Summary of MLreg model formations determined automatically for Rectum via leave-

one-out.

for 76% and 86% of the variance in FeatureDS1 respectively. So much of the variance

being described with a small number of Principal Components is likely the reason PCA

features were found to be optimal during LOOCV.

Of the four PGs, all optimal cluster models contained PCA features except stoma

Dmean. With a similar outcome noted for PSV, this suggests the prepossessing of the

variance to Principal Components and modelling over fewer dimensions is better suited

to clustering than raw features are. In comparison to optimal regression models, MSE

indicates cluster models are a better fit to MCOgs than regression models given lower

validation MSE values for all PGs with validation values even lower than training MSE

values for two Ps: PTV conformality and bowel bag. Nevertheless, this data are not

considered typically well suited to clustering in general given high SSE values (very far

from zero) and lower silhouette scores (close to zero) in addition to large MSE values.

However, given the results observed for PSV weighting factors and dosimetry, this does

not necessarily mean poor performance.

Comparing regression models to the cluster models, clustering showed clear mod-

elling benefits over regression. MSE value were smaller for all PGs for both training and

validation. This is particularly true for PTV conformality and Bowel Bag Dmean where

significant reductions are noted in validation MSE values.
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Planning Number Feature Cluster Silhouette Training Validation

goal of clusters Type SSE Score WF MSE WF MSE

PTV Conformalty 7 PCA 1331 0.18369 366,939 296,567

Bowel Bag Dmean 10 PCA 989 0.15633 39,339 5,985

Stoma Dmean 5 Raw 471 0.1503 10,727 31,573

Genitals Dmean 4 PCA 1895 0.18526 27,086 75,603

Table 6.8: Summary of MLclus model formations determined automatically for Rectum via leave-

one-out.

6.6.2 Weight Summary

Weight summaries across the validation database can be found in Table 6.9 and Figure

6.5. Patient level distributions can be found in Figure 6.6. Overall, distributions were

found were found to be highly comparable across PGs regardless of the method chosen.

Mean deviations from MCOgs did not differ by more than 2.4% and following a Friedman

test (a non-parametric analysis of variance test for repeated measures), no significant

differences were found even at very lenient levels (e.g., 20% level of significance).

However, although there was no statistical evidence to suggest differences between

models, standard deviation values indicate smaller weighing factor variance for models

than MCOgs. Therefore, much of the variation seen in the difference plots in Figure 6.6

Figure 6.5: Plots showing relative weighting factor distribution for all calibration methods for

the Rectum validation dataset.
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is actually due to the variance in MCOgs. Given the median difference from MCOgs

illustrated in Figure 6.6, Std is the optimal method as the median is closest to zero in

three of the five cases: PTV conformality, stoma Dmean and PGH. Nevertheless, given

comparable ranges, similar medians and few outlier patients, MLclus can be considered

equivalent to Std. MLreg was considered the poorest performed given some extreme

outliers especially for conformality, stoma Dmean and PGH. Regardless, all differences

were considered to be small overall given small ranges and comparable averages.

At patient-level, the most extreme differences were observed for patient 45 under Std

and MLreg and patient 60 under MLreg. For example, Patient 45’s MLreg weighing factor

for the PTV conformality PG was 38.7% higher than MCOgs, the most extreme outlier

seen among the predicted weighting factors. Patient 60’s weighing factor for this PG and

method was also extreme at 30.9% lower than MCOgs. Patient 45 and 60 under MLreg

were also notably extreme for PGH at -14.9% and +17.3% respectively. This indicates

the model prioritised navigated PGs more highly than MCOgs for this patient and this

may be due to the fact patient 45’s MCOgs weights were notable lower than the average

MCOgs weight.

Given similar weighting factors, similar dose related metrics are expected. This

would mean methods are comparable with few clinical benefits of gold standard plan-

ning or complex modelling. This would imply that even basic calibration methods such

as Std can be used to achieve acceptable planning in general. Dose-related summaries

are discussed in the following section.

Planning Goal MCOgs Std MLreg MLclus

Bowel Bag Dmean 13.5% ± 6.37% 13.7.0% ± 2.88% 13.6% ± 4.18% 14.5% ± 5.78%

PTV Conformality 52.5% ± 10.5% 51.9% ± 6.32% 49.9% ± 8.51% 50.2% ± 7.07%

Genitals Dmean 10.6% ± 5.95% 9.76% ± 2.69% 11.0% ± 3.99% 10.8% ± 3.29%

Stoma Dmean 2.59% ± 4.83% 3.10% ± 5.50% 3.10% ± 6.83% 2.76% ± 4.97%

Higher Goals 20.9% ± 3.17% 21.5% ± 1.03% 22.5% ± 5.39% 21.9% ± 2.23%

Table 6.9: Summary of PG relative weights for Rectum. Values are mean averages across the the

validation dataset ± one standard deviation. Boldface indicates statistically significant differences

from MCOgs at the 95% level.
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Figure 6.6: Plots showing relative weight difference from MCOgs for the Rectum validation

dataset. Bar chart are order patient 41-60 and box plot represent the overall distribution.

6.6.3 Dose Summary

A summary of dosimetric features related to plans can be found in Table 6.10 with

patient-level distributions illustrated in Figure 6.7. No statistically significant dosimetric

differences were observed between the generated plans under each model. therefore, no

boldface is used in Table 6.10. Not only were mean values comparable, standard de-

viations were very similar also. This is reflected at patient-level given small ranges of

the individual differences and comparable medians for all key dose-related metrics. At

population level, the relative weighting factors between methods different by less than

2.07% for all PGs and suggests all methods will perform similarly to MCOgs.

There is also no clear optimal method. Regarding median differences from MCOgs

across the metrics, both Std and MLclus perform favourably with Std medians closest
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ROI Name DVH Statistic Type MCOgs Std MLreg MLclus

PTV45

D98% (Gy) 43.4 ± 0.107 43.5 ± 0.0751 43.5 ± 0.107 43.4 ± 0.112

D50% (Gy) 44.9 ± 0.0536 44.9 ± 0.0576 44.9 ± 0.0599 44.9 ± 0.0508

D2% (Gy) 46.4 ± 0.142 46.3 ± 0.121 46.3 ± 0.127 46.3 ± 0.124

CI 0.879 ± 0.0213 0.875 ± 0.0190 0.872 ± 0.0269 0.873 ± 0.0191

HI 0.0651 ± 0.00532 0.0637 ± 0.00410 0.0637 ± 0.00491 0.0643 ± 0.00509

Stoma Region Dmean 0.473 ± 0.945 0.436 ± 0.909 0.488 ± 0.994 0.482 ± 0.995

Genital Region Dmean 2.59 ± 2.00 2.48 ± 1.81 2.47 ± 1.82 2.42 ± 1.79

Bowel Bag Dmean 26.8 ± 3.28 26.5 ± 3.13 26.5 ± 3.29 26.4 ± 3.37

Table 6.10: Summary of key dose metrics for Rectum. Values shown are Mean ± 1 Standard

Deviation. Statistical difference at the 95% level of significance is indicated by boldface.

to zero for four metrics (i.e., PTV45 D98%, PTV45 D2%, HI45 and genital region) and

MLclus closest to zero for the other four (i.e., PTV45 D50%, CI45, bowel bag Dmean and

Stoma Dmean). These finding shows so evidence to suggest the PTV and other PGH re-

lated dose metrics are prioritise more highly under Std than MLclus and navigated PG

related metrics are prioritised more highly under MLclus. There is not evidence suggest-

ing this to a significant difference however.

Patient 60 is a notable outlier for CI45 under MLreg and patient 57 is a notable outlier

in a number of cases: PTV45 D98% under Std, PTV45 D2% under MLclus, HI45 under

MLclus. Patient 60 is likely an outlier for CI45 under MLreg given a notably high PTV

conformality EF for this patient that deviated patterns seen in training database. Patient

57 is an anatomical outlier with a notably large PTV, a case not well defined given cases

considered in the training database.

6.6.4 Conclusion

Even given the homogeneity of the site, all calibration methods were comparable to

MCOgs. Even the simplest method, Std, yielded clinically applicable planning with few

outliers. This is though to be due planning being simple for this site given a small number

of PGs and few OAR to balance. Many anatomical features were also found to be highly

correlated and followed a standard normal distribution making them very well suited to

scaling and machine learning.
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Figure 6.7: Plots for Rectum showing absolute difference of Std, MLreg and MLclus from MCOgs.

Distributions are across the validation dataset and show key dose related metrics for each of the

three calibration techniques.
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6.7 Lung Modelling Results

A total of 241 predictive features were defined for FeatureDS1 of which 95 were retained

for FeatureDS2. Following a Shapiro-Wilks test for normality, 23 of the 241 predictive

features were found to differ significantly from a normal distribution hence a standard

normal distribution scaler with mean centralisation and standard deviation scaling could

not be employed as in the PSV and rectum cases. For this reason, a robust scaler based

on median centralisation and inter-quartile range scaling was considered in addition to a

standard scaler. See Figure 5.2 for a comparsion of each scaler and Appendix B for box

plot representations under each scaler. This was done for comparison but also to ensured

PCA features were generated appropriately and K-means clustering was valid. Regarding

regression, scaling features has no mathematical implications for the predicted feature,

only the ability to interpret the coefficients of the equation. Interpretation of regression

coefficients is not valuable in this context hence regression is considered unaffected by

scaling.

However, PCA transformation is highly dependent on the scale of each variable. If

the variance within variables is more valuable than the variance between them (as in this

work), applying an appropriate scaling technique to the raw variables is vital especially

when the resulting Principal Components are to be used for prediction. Not doing so

can result in misleading results as variables with inordinately large scales are essentially

being given more weight in the PCA transform than those on smaller scales. Similarly,

centroid-based clustering such as K-means uses an isotropic search and is highly depen-

dent on the spatial relationships between data points. That is, data points are assigned

to clusters based on minimum distance. Therefore, allowing any one variable to have

an inordinately large scale is comparable to assigning a lower priority to that variable

than other variables with smaller scales. Given no one predictive feature in this work is

considered more valuable than another, all must be appropriately scaled.

6.7.1 Leave-one-out summary

Given the number of patients and number of features in FeatureDS2, 4- and 5-feature

reg-raw models were not generated using an exhaustive search but instead stepwise for-

ward selection was employed using the optimal 3-feature model in each case. In total,

68,719,200 reg-raw models were defined using LOOCV:
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Planning Regression Features Training MSE

Goal Equation Av adj R2 training validation

Lung 5 features Volume of the Oesophagus 0.859 9,600 40,177

Dmean quadratic OVOespahagus,PTV55

VIFIps Lung,PTV55

Maximum distance between the Cont Lung and PTV55

Distance from the center of of the Spinal Cord and Heart

Heart 5 features VIFSpinal Cord,PTV55 0.703 481 842

Dmax linear Distance from the center of the Spinal Cord to the External

Slope of OVPTV1.6cm ,Spinal Cord and OVPTV1.8cm ,Spinal Cord

OVCont Lung,PTV55

Ratio of External and the Spinal Cord

PTV 3 features Volume of the Cont Lung in field of the PTV55 0.593 11,878 34,824

Conformality quadratic Distance from the center of Ips Lung and Combined Lung

Maximum distance between the Cont Lung and the Heart

Lung 3 features Distance from the center of External and Cont Lung 0.596 931 18,194

Dmax quadratic Distance from the center of Ips Lung and Combined Lung

Ratio between PTV55 and Ipsi Lung

Table 6.11: Summary of MLreg model formations determined automatically for Lung via leave-

one-out.

4 × 40 × 3 ×
(
3
(
95
1

)
+
(
95
2

)
+
(
95
3

))
= 68,719,200.

(PGs) (patients) (degrees) (combinations) (total)
Therefore, given the number of PG and degrees, 12 full LOOCV models were defined

over the training patients for each combination type. Following an exhaustive search, 1-

feature LOOCV models for each lung PG and degree took approximately 0.75 minutes,

2-features took approximately 15 minutes each and 3-feature models took approximately

450 minutes each. Running models in parallel did not reduced the time taken for the code

to run. All 4- and 5-feature models each took approximately 0.75 minutes; comparatively

long as the 1-feature cases. When optimal 3-feature models had been defined, 4-features

models were chosen by exploring all combinations of four features given the first three

were fixed as features defined in by optimal 3-feature model. Similarly, once the optimal

4-feature model had been established, the optimal 5-feature model was determined simi-

larly: by fixing the first four features given the optimal 4-feature model and exploring all

combinations of five features varying only feature number 5. For reg-PCA models, as in
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Scaler
Planning Number Feature SSE Silhouette Training Validation

goal of clusters Type Score MSE MSE

Standard

Lung Dmean 15 Raw 1427 0.0406 17481 33443

Heart Dmax 11 PCA 3376 0.124 580 869

PTV Conformality 1 Raw 3800 22107 19042

Lung Dmax 15 PCA 1427 0.0406 664 915

Robust

Lung Dmean 1 Raw 8662 26499 16950

Heart Dmax 8 PCA 3398 0.103 861 975

PTV Conformality 16 Raw 1040 0.0400 21041 45664

Lung Dmax 10 Raw 1521 0.0390 1262 1408

Table 6.12: Summary of MLclus model formations determined automatically for Lung via leave-

one-out using a standard and a robust scaler.

the rectum reg-PCA case, 19,200 LOOCV models were generated in total.

A summary of optimal models following reg-raw LOOCV is found in Table 6.11.

Optimal model for all PGs contained raw features only. Of the features within feature

sets, 15 unique features were used of which only one occurred in more than one feature

set: distance from the center of Ipsilateral Lung and Combined Lung. This suggests each

PG is influenced by very different anatomical factors. Average R2 values were high for

PG1 (lung Dmean) and PG2 (heart Dmax) indicating these PGs have a strong curvilinear

relationship that is well defined for regression in general. Poor average R2 values for

PG3 and PG4 suggests a poor curvilinear relationship and may be best modelled using a

clustering technique other than K-means.

A summary of cluster LOOCV optimal models can be found in Table 6.12. Given 23

of the features in FeatureDS1 did not follow a normal distribution, both a standard and

robust scaler were considered for this treatment site. Training MSE values were lower

using a standard scaler than a robust scaler with the exception of PTV conformality which

was relatively comparably given a value 4.82% lower than the robust scaler. Therefore,

only the standard scaler was used.

Silhouette scores and SSE values indicate the solutions were not well defined for K-

means clustering in general. Nevertheless, regarding validation MSE values, clustering

indicates solutions that optimised for MCOgs for all PG given validation MSE values

were minimised using a clustering solutions (standard scaler).
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6.7.2 Weight Summary

Weighing factor summaries across the validation database can be found in Table 6.13 and

Figure 6.8. Patient level distributions can be found in Figure 6.9. Similarly to PSV and

rectum, overall distributions were found to be highly comparable across PGs regardless

of the method chosen. Mean deviations from MCOgs did not differ by more than 1.72%

and following a Friedman χ2 test, there is very little evidence to suggest a difference

given a p-value of 0.978.

Even with very little evidence to suggest differences, Std may be considered the most

optimal given median deviations from MCOgs across the validation database differ least

for three of the six PG groups: PG4, PG5 and PGH. Std also had the smallest ranges

MLclus minimised the median the difference from MCOgs for two PGs (lung Dmean and

PTV conformality) and MLreg for one PG (Heart Dmax).

The poorest performing method was Std. The median difference from MCOgs was

largest for MLreg for five of the six PG groups. Therefore, although the median difference

was minimised for Heart Dmax, MLreg showed the largest deviations from MCOgs on

average for all other PGs. This method also led to the most extreme outliers for all

PG groups. The two most notable outliers were observed for patient 55 lung Dmean and

patient 53 lung Dmax under MLreg showing relative weight differences of 11.4% and

8.93% respectively.

Planning Goal MCOgs Std MLreg MLclus

Lung Dmean 8.94% ± 1.99% 7.94% 7.61% ± 2.87% 8.25% ± 1.85%

Heart Dmax 0.698% ± 0.711% 0.84% 0.677% ± 0.45% 0.608% ± 0.549%

PTV Conformality 7.50% ± 2.23% 6.69% 5.78% ± 2.49% 6.70% ± 0.140%

Oesophagus + Brachial Plexus Dmean 44.8% ± 1.25% 45.70% 46.0% ± 2.04% 45.8% ± 0.955%

Lung Dmax 1.42% ± 0.556% 1.51% 2.25% ± 1.97% 1.25% ± 0.284%

Higher Goals 36.6% ± 1.03% 37.40% 37.7% ± 1.67% 37.4% ± 0.781%

Table 6.13: Summary of relative weights for Lung. Values are mean averages across the the

validation dataset ± one standard deviation. Boldface indicates statistically significant differences

from MCOgs at the 95% level.
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Figure 6.8: Plots for showing relative weight distribution for all calibration methods for the Lung

validation dataset.

6.7.3 Dose Summary

A summary of key dosimetric outcomes can be found in Table 6.14 and illustrated in

Figure 6.10. There were no statistically significant differences observed and there was

considered to be no clinically significant difference between the calibration methods. On

average across the validation database, PTV differences between all methods were within

± 0.043 Gy.

When compared to MCOgs, the largest patient-level deviations observed were for

average dose to the heart with a maximum deviation of 3.52 Gy observed for patient

48 under MLreg. Patient 50 is a notable outlier patient under Std given comparatively

extreme values observed for PTV55 D98%, PTV55 D2% and PTV55 homogeneity. Std

and MLclus are comparatively optimal given median differences from MCOgs were min-

imised by each method for five of the key metrics. Std minimised median differences

from MCOgs for CI55, HI55, average dose to the heart, heart D48ccGy, ipsilateral lung

Dmean, ipsilateral lung D19ccGy, Contralateral Lung Dmean. contralateral lung D19ccGy and

Oesophagus Dmean. MLreg was comparatively the poorest performer given median dif-

ference from MCOgs were largest with this method for eight of the key metrics. A zero

median difference was observed for all methods for the heart Dcc48Gy metric.
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Figure 6.9: Plots showing relative weight difference for Std, MLreg and MLclus from MCOgs for

the Lung validation dataset. Bar chart are ordered patient 41-60 and box plot represent the overall

distribution.

6.7.4 Conclusion

Similarly to PSV and rectum, differing calibration approaches were not found to have

have clinically significant differences for weighting factors with all approaches highly

comparable.

6.8 Chapter Summary

These studies have shown evidence expert-driven RBP calibration parameters can be ef-

fectively modelled using ML. Clustering techniques in particular show notable promise

given median differences from MCOgs consistently tended towards zero more often than
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Figure 6.10: Plots for Lung showing absolute difference of Std, MLreg and MLclus from MCOgs.

Distributions are across the validation dataset and show key dose related metrics for each of the

three calibration techniques.
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ROI Name DVH Statistic Type MCOgs Std MLreg MLclus

PTV55 D98% (Gy) 53.4 ± 0.179 53.4 ± 0.276 53.4 ± 0.197 53.4 ± 0.202

D50% (Gy) 55.3 ± 0.274 55.4 ± 0.280 55.3 ± 0.241 55.4 ± 0.266

D2% (Gy) 56.8 ± 0.242 56.9 ± 0.372 56.9 ± 0.304 56.8 ± 0.268

CI 0.809 ± 0.0281 0.802 ± 0.0307 0.789 ± 0.043 0.798 ± 0.0339

HI 0.0703 ± 0.00829 0.0711 ± 0.0121 0.0696 ± 0.00931 0.0695 ± 0.00925

Heart Dmean(Gy) 8.12 ± 8.00 8.12 ± 8.04 8.18 ± 8.31 8.22 ± 8.15

D48Gy (ccGy) 8.32 ± 13.9 8.95 ± 15.1 8.76 ± 14.9 9.2 ± 15.2

Ipsilateral Lung Dmean(Gy) 17.4 ± 6.29 17.4 ± 6.19 17.4 ± 6.19 17.4 ± 6.25

D19Gy (ccGy) 477 ± 157 473 ± 157 474 ± 163 474 ± 153

Contralateral Lung Dmean(Gy) 3.91 ± 2.18 3.94 ± 1.98 4.06 ± 2.23 3.82 ± 1.93

D19Gy (ccGy) 30.2 ± 77.3 29.1 ± 64.9 27.8 ± 67.6 25.5 ± 62.5

Oesophagus Dmean(Gy) 16.7 ± 10.9 16.9 ± 10.8 16.6 ± 11.2 16.8 ± 11.1

Table 6.14: Summary of key dose metrics for Lung. Values shown are Mean ± 1 Standard

Deviation. Statistical difference at the 95% level of significance is indicated by boldface.

alternative methods. Not only did clustering present a feasible solution in general, pa-

tient level analysis showed deviations from the MCOgs to be consistently small given

tight distribution in comparison to alternative methods especially the regression tech-

nique. Clustering and standard approach in this work were found to have high degrees

of congruence in performance for both weighs and dosimetry. This is likely linked to the

methodology for MLclus weighting factors selection. The method involved taking means

across the training database of clustered patient weighting factors and can be thought of

as an enhanced version of the standard approach.

Regression methods consistently showed poorer performance against other methods.

The average deviations of MLreg from MCOgs were larger than other methods in majority

of cases the distribution of values about MCOgs indicated poor congruence with MCOgs

weighting factors in general. The reason for the performance of each metho this will be

more thoroughly assessed in the following chapter.



Chapter 7

Discussion, future work and

conclusions

7.1 Discussion

7.1.1 Hypothesis generation

The overall aim the work presented in this thesis was to develop a proof-of-concept that

a fully automated planning system delivering patient-tailored plans is feasible. Ensuring

clinical preference is achieved is a key challenge of automated planning today and with

RBP systems such as the in-house built PBAIO system used in work, the most significant

manual stage is achieving clinically acceptable calibration of the PGs. In Chapter 4 an

intra- and inter-planner study were conducted using a novel and intuitive PGAP approach

within the planning system. It had been hypothesised that incorporation of MCO tech-

niques within the planning process is expected to have a positive association with clinical

preference67,105 hence MCO techniques were explored for efficacy and for the feasibility

of defining gold standard planning.

7.1.1.1 Intra-planner study

Regarding calibration of the AP system using PGAP to generate patient-tailored plans,

findings of the intra-planning study suggest experts perform comparably between ses-

sions. This was a positive finding for a few reasons. Firstly, given experts use their

experience and knowledge to make judgements during calibration, it implies the desir-

able consistency observed during AP calibration is applied by experts in other methods

147
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of planning such as standard manual planning. More notably, this is a positive finding in

this work because it implies gold standards planning (as defined by an individual plan-

ner) is a strong benchmark comparison to ML performance. In addition, given the robust

procedure and rich data capture within the intra-planner study, there is reason to believe

the findings can be generalised.

However, one of the main limitations of this study is it contains only a single par-

ticipant. Evidence of intra-planner choices illustrating this degree of consistency across

multiple participants has not been collected. Therefore, defining gold standard using cal-

ibration choices of a single participant is only acceptable for the participant in question

and not others. This limitation has been mitigated by doing just that. All gold standard

planning considered in the main studies presented in Chapter 6 were defined using the

calibration choices of a single qualified expert, the participant of this intra-planner study.

7.1.1.2 Inter-planner study

The inter-planner study was novel due to the calibration method of the AP system and

served to fill a gap in the literature regarding rules-based AP. Nevertheless, the procedure,

number of participants and data captured is comparable to that of other inter-planner work

in this field168. Therefore, a strength was its ability to be compared to other studies as

it has scientific validity. Moreover, it was also important for helping identify differences

in planning choices between different expert planning professionals as although differ-

ent professionals are qualified to create and validate plans in the clinic, differences in

calibration choices for this AP method were previously unknown. The study not only

indicates difference in choice but also similarities and some of the reasoning behind cer-

tain choices. For example, one of the oncologists expressed a preference for sparing the

rectum hence compromising on other PGs and leading to a detriment for these PGs in

comparison. These findings aid in building an understanding of what constitutes ‘clinical

preference’ and can be built up in future work. This will be discussed in more detail in

section 7.2.

However, the degree of difference in planning choices between participants indicate

clinical preference is nuanced and the study did not aid in the definition of “gold stan-

dard” in thesis. This work could be improved in a number of ways. For example, a small

number of participants were considered and two of them were oncologists. A larger

group of participants from a wider range of backgrounds will have enriched the findings
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such as participants from a wider range of tenures and institutions. A small number of

patient cases were also considered and this may have implications regarding the repre-

sentation of cases typically seen in the clinic. Also, given participants performed the task

only once per patient case, their intra-planner variability was not captured. This would

have enabled inference about inter- and intra-planner variability in one study. It would

have lead to more insights about planning choices among qualified professionals, insights

around definition of clinical preference among different groups of professionals and the

exploration of interacting factors such as background and tenure on planning choices.

These are limiting factors to the data obtained when it comes to making statistical gen-

eralisation from the findings and all of these limitations relate to the finite capacity of

such professionals to take part in research studies. Nevertheless, the studies were still

scientifically robust in methodology and the data collected. The study also showed the

AP approach was robust enough to mitigate differences observed during calibration as it

generated plans that were dosimetrically comparable.

7.1.1.3 Anatomy simulation study

The objective of the anatomy simulation study was to explore planning parameters and

the changes necessary to achieve comparable dose distributions even when anatomy

varies greatly between cases. This was done using a single patient’s original anatomy,

augmenting it, and establishing the change in the planning parameter necessary to achieve

a dose distribution comparable to that of the original gold standard plan. There are many

benefits to such an approach. Most notably, because it is a computationally cheap in sil-

ico method, it can be used to generated a range of data points for analysis very quickly.

Generation of the data enabled a rudimentary view of what constitutes consistent plan-

ning between patients of varying anatomy. Another strength of this study is the ability to

augment anatomy beyond physical constraints. In reality there are limitations to the size

a human rectum can be for example. Being able to produce ROI volumes exceeding these

limitations has mathematical benefits for prediction that should hold true even when the

variance observed between cases is less exaggerated.

However, this study has a key weakness in not being clinically relevant. That is,

anatomy in each case was contrived and not representative of true cases. Although there

are mathematical benefits of this, results must be validated with true cases. To overcome

this limitation, the findings of this study were used for generation of hypotheses and
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heuristics only. This study considered only a small number of predictive features but

these features and those found in the literature were used to identify which kinds of

spatial, volumetric and derived variables would be considered in the main study. The

full list of variables considered in the main study (FeatureDS1 variables) can be found in

Appendix C.

Furthermore, there were limitations due to the generation of the data. ROI volumes

were augmented in a structured way such that the new volume was a predefined ratio

of the original. This was done to ensure there was a variance of volumes to considered

when modelling. However, some augmentation types resulted in a greater number of data

points being captured than for others. This was due to certain physiological constraints

being applied during augmentation to ensure the augmented scenario did not contravene

that of a true scenario. For example, in Figure 4.12 where rectum augmentations are

seen, models appear highly influenced by a single volume. The largest superior-inferior-

left-right expansions in this case is the only volume of that size in the dataset and given

the constraints on the creation of new volumes (e.g. cannot overlap the External volume),

no other volumes of this size could be created for comparison. This resulted in a single

data point seemingly having a large influence on the final model and potentially biases

the true strength of the relationship that is reported in the study.

Related to this, a further issue with the approach was the study was only carried out

for one ROI at a time when in reality, patients differ based on many anatomical attributes.

Not augmenting more than one ROI at a time may have lead to misleading models or

results that do not take into consideration the interaction of features related to more than

one change occurring at once. These issues are confounded by the fact only a single

patients anatomy was considered. Considering more than a single patients anatomy will

have enriched the data and produced more holistic models with a better view of which

variables are the most predictive of parameter changes. These developments to this work

will be discussed in more detail in section 7.2.

7.1.2 Model definition

ML was a natural choice given a broad scope of possible approaches could be considered.

ML models were built using numerical anatomical features hence there was a reliance on

a dataset of geometric information derived from delineated patient anatomy. The cho-

sen dataset came from a single planner in each case. This follows on from the insights
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gained from Chapter 4 where a single qualified professional was found to produce con-

sistent planning both in terms of weighting factors and dose metrics. A criticism of this

approach is models are planner dependent and reflective of only a single persons judge-

ment. However, a justification for this approach is that this planner was qualified and

familiar with these treatment sites and consistent planning was evident in previous plan-

ning. From a ML perspective, this stability in the gold standard data is most suitable to

modelling.

More than one ML method was considered for comparison in this work. This is a

benefit to the work given different models are better suited to some data and not others

and the underlying nature of this data had not previously been explored in this regard.

Nevertheless, exploring a third ML model would have been advantageous. It would have

not only provided another comparison, but may also have allowed for the nature of the

data to be better understood. For example, the clustering methods chosen, K-means, is

well defined for data that are linearly separable. However, the linear separability of this

data is not known. Exploration of a fuzzy clustering approach has merit in this regard as

there is no assumption of linear separability. For this reason it would allow definition of

planning parameters based on an aggregation of cluster values calculated on the degree

of proximity each has to cluster centroids.

Introducing ML upstream of the PBAIO AP algorithm served in the development of a

hybrid KBP-RBP planning approach, a notable development in the area of AP. However,

a particular advantage of this work is that unlike traditional planning studies, generated

models were compared to gold standard PGAP planning opposed to trial-and-error AP

or manual planning204,217–219.

ML techniques used were not new to radiotherapy planning. PCA214, regression214,215

and clustering121 have all been used in KBP to make predictions based on anatomical

features with notable success. This work builds upon this knowledge with a method to

evaluate the performance of different model formations using a LOOCV decision frame-

work, such that the optimal model for a given site is selected. This allows for an auto-

matic and unbiased choice from among candidate model and removes the requirement

for a homogeneous ML approach, which may not always be appropriate.
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7.1.3 Modelling

Regarding multiple polynomial regressions, the maximum number of features was lim-

ited to five. In relation to Chapter 4, exhaustive search using more than one model

fulfilled the need to explore true patient cases in more detail than the contrived case.

However, this approach applies a restriction on the exhaustive search. Although the com-

puting power and time to go beyond 5 features was available, the justification for not was

to limit the probability of overfitting the model to the training data as well as to limit the

complexity of resulting models and prevent it becoming a black box.

With regard to results, the largest variances in difference from MCOgs for all studies

was observed for MLreg and this was in terms of both weighting factors and dosimetry.

Std and MLclus were more robust models especially for PSV, with small deviations from

MCOgs observed even for outlier patients. Given regression allows predictions to be

extrapolated beyond the bounds defined by the training dataset, robustness of Std and

MLclus compared to MLreg is thought to be due to Std and MLclus prediction weights

being bounded by the training data. For outlier patients MLreg could therefore lead to

predictions less consistent with the training data and lead to extreme outliers. Therefore,

despite some of the promising results obtained during hypothesis testing, results of the

larger study indicate regression methods may not be the best suited for routine clinical

application.

Of the three methods, MLclus was considered to have the best congruence with MCOgs

based on overall distributions, number of outliers and number of statistically signifi-

cant differences observed. However, the superiority of MLclus over the standard method

was marginal and this is due to the relation between the methods. Results indicate that

marginal improvements may be gained over a traditional “one size fits all” approach for

patients who are anatomical outliers. The logic being, clustering isolates major devia-

tions and assigns a weighing factor. Anatomical variance between patients may be due in

general to patients that have large anatomical outliers such as those with a large bladder

for example. This work therefore suggests ML may help to provide improvements over

standard methods where larger anatomical variations would have otherwise caused the

patient’s plan to be subpar under a standard “one size fits all” approach.
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7.2 Future work

The studies presented in the thesis served the purpose of fulfilling the goals and objectives

of the overall project. Nevertheless, they could each be developed to build on the work

presented and serve as a basis for future work. First of all, repeating each of the studies

will be beneficial for determination of replicability and hence how reliable the results of

each study are. Secondly, the exclusion criteria could be slackened to include a wider

range of patient cases such as those with non-standard areas of treatment avoidance.

But there are specifically a number of developments that could be made to prelimi-

nary studies. All of the preliminary studies were carried out for a single treatment site:

prostate and seminal vesicles. An assumption has been made that findings can be gen-

eralised to other sites but this has not been explored in this work. There is also scope in

all studies to consider a larger range of patient cases. This will ensure greater statistical

power when making inferences and will lead to more reliable models particularly for the

anatomy simulation study. Specifically regarding the intra-planner study, given a limita-

tion of the study relates to the recruitment of a single participant, recruiting a range of

planning professionals could be a development. The results of the study in this work sug-

gest intra-planner variability is low but results may be heavily biased by the participant

recruited and variability may be higher for planning professionals in general. Studying

this will aid in the definition of the gold standard and illustrate how justifiable it is to use

a single participant.

Regarding the inter-planner study, this could be developed in a number of ways.

Firstly, the inclusion of more participants from a range of backgrounds and more patient

cases. Secondly, repeat expose of participants to the same cases. This study could be

designed to gauge a much larger and more holistic view of planning behaviour across

planning professionals. This will not only enable a view of similarities and difference

between individuals, but also within and between professions, tenures and institutions.

Moreover, assuming each participant is required to perform the task more than once,

intra-planner variability will be captured in the same study building on the richness of the

data. Such a study would then present evidence of the range of planning practices across

professions and provide a foundation for the definitions of a universal gold standard in

planning.

The anatomy simulation study could also be developed in a number of ways. As
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mentioned, the augmentation type was a limitation due to the number of data points

for certain volumes. Also, only one ROI was altered at a time. A new study could be

designed to include a greater number of augmentation types in which more than on ROI

is altered in a scenario as well as smaller incremental changes. This will provide more

evidence of relationships between anatomy and planning parameters using this in silico

method. Replicating this for more than one original patient case will determine whether

this approach can be generalised across patients and the degree of difference in planning

parameters that can be expected among patients.

To build on the modelling work, there could be a consideration of other features

that may help improve versatility and modelling accuracy. For example, utilisation of

neural network generated features may be promising and has been explored by other

researchers122,220. Neural networks could be utilised to directly generate patient-specific

AP protocols or used in a two step approach to generate dosimetric features (rather than

anatomical features) from which PG weights are derived221.

But also, in this study, PG weight predictions were considered individually with their

own optimal model defined. This made performing regression and clustering straight

forward and helped to identify anatomical features that are important when optimising a

given trade-off. An alternative approach could be to use multi-output ML technique such

as multi-output regression or deep learning to predict not only PG weights but relative

PG weights. There is the potential that such an approach can be generalised because PG

weights are strongly relative in plan optimisation.

And given favourable outcomes have been observed for clustering, deep diving into

and exploring difference approaches may have value. Despite the ultimate dosimetric

strength of the clustering technique used here, there is some evidence to suggest the

method may be improvable. For example, silhouette scores were not always necessarily

favourable given the the K-means approach and this may be because the data are better

suited to techniques that do not rely on the assumption of linear separability. A study

that explores only clustering techniques may yield some interesting findings, desirable

results and lead to a greater understanding of the underlying nature of the data. A class of

clustering techniques that may be of particular valuable are fuzzy clustering approaches.

With a hard clustering technique like K-means, novel cases are assigned one of a finite

number of values for each PG. With fuzzy clustering technique where data points may be

assigned to more than one cluster, relative distance from centroids may enable assignation
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of a unique and more appropriate machine learned value leading to true patient-tailored

planning.

One of the key challenges related to this work was actually generation of the Pareto

plans to enable PGAP. The process is time consuming and resource intensive taking up

bandwidth to generate and computing memory to store. A pivotal development to the this

work would therefore not only relate to the development of a machine learned calibration

solution, but also machine learned Pareto sets to calibrate over. This will save time,

computing power and potentially computing memory making the process more efficient.

7.3 Final conclusions

The goal of this work was to develop a fully automated planning system for optimal

patient-tailored planning. Using an existing rules-based AP system, the objectives were

to train models to predict gold standard parameters and to determine dosimetric differ-

ences between plans generated via different methods. The two objectives were achieved

successfully. Regarding the first objective, this thesis presents the successful incorpora-

tion of ML into an AP planning procedure to generate a fully automated hybrid RBP-KBP

AP method.

Regarding the second objective, heuristics were gained regarding expert-driven plan-

ning parameters, dosimetry and anatomy to determine what constitutes gold standard

planning. Although there is strong evidence the PBAIO method used is a robust and clin-

ically applicable planning methodology with comparable dose distributions achieved via

different calibration methods. Additionally, this work serves to supplement the body of

knowledge regarding intra- and inter-planner behaviours.

Therefore the overall goal of developing a fully automated planning system for op-

timal patient-tailored planning has also been achieved. However, there is evidence the

underlying AP method is fit for purpose as is. The hypothesis was that patient-tailored

planning requires bespoke calibration. Although some dosimetric differences were ob-

served between different calibration methods, differences were often small and statis-

tically or clinically insignificant. Therefore, this work illustrates it may be possible to

achieve incremental improvements using advanced calibration methods but the dosimet-

ric benefits are arguably negligible.
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Appendix A

RATINGS framework criteria and

self rated score

RATING score sheet Points

Questions for the Introduction

The study aim formulated by research questions

1 Does the study have a concise and precise study aim, defined with a restricted number of interconnected questions? 10

The motivation for the research questions

2 Has relevant up to date literature been included to support the need for the current study? 5

3 Does the study address an existing knowledge gap? 10

Questions for Materials and Methods

4 Is the global study design adequate for answering the posed research questions? 10

5 Is the global study design described in sufficient detail for others to interpret and reproduce the results? 5

Patient cohort

6 Are the inclusion and exclusion criteria of the patient cohort described? 1

7 Is the clinical patient information of the cohort presented, including disease type, site(s) and clinical staging? 1

8 Is the included number of patients stated, explained and justified? 1

9 Has there been consideration of the need for ethical and/or legal approval for the study and if needed, is there a statement about this? 5

Imaging procedures

10 Have the scanning parameters been reported in sufficient detail (image modalities, equipment model, slice thickness, voxel size, patient position

(e.g. head first, supine, etc.) etc.)?

1

11 Has the applied immobilisation equipment been described, (e.g. vendor and type, standard settings, etc.) where relevant? 1

Treatment machine and settings

12 Have the treatment machine and relevant parameters been described with sufficient detail (model, beam energy, MLC, etc.)? 1

13 Have the monitor unit reference conditions been defined, where relevant? 1

Definition of targets and OARs
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14 Has GTV definition been described in sufficient detail, with references if possible? 1

15 Has CTV definition been described in sufficient detail, with references if possible? 1

16 Has the establishment of PTVs (or alternatively robustness settings) been described in sufficient detail? 1

17 Have PTV sizes in the patient cohort been described? 1

18 Have OAR definitions been described in sufficient detail, with references if possible? 1

19 Have PRV margins been described in sufficient detail, with references if available? 1

Treatment planning system and dose calculation

20 Have all applied dose calculation algorithms been described in sufficient detail? 1

21 For any commercial software used, have the manufacturer, algorithms and specific versions been stated? 1

22 Have all relevant user parameters and settings in the TPS been reported, e.g. beams, dose grid, control point spacing? 1

23 Have all volumes been evaluated with the same software/methodology? 1

Planning aims and optimisation

24 Are clear planning aims defined, including imposed hard constraints and planning objectives (with or without soft constraints)? 5

25 Has the ranking of planning objectives (priorities) been described? 5

26 Is the dose prescription clearly defined? 10

27 Is there a narrative description of the applied optimisation process, including the handling of all objectives with their ranking? 5

28 If manual intervention during or after optimisation is allowed, has this been described? 1

Bias mitigation

29 Have enough study details been provided such that bias issues could be noted? 5

30 Has bias been sufficiently mitigated to reliably answer the posed research question? 10

Plan acceptability – minor and major protocol deviations

31 Was the procedure for assessment of plan acceptability well-described? 1

32 Was the procedure for assessment of minor and major protocol deviations well described? 1

Plan (re-)normalisation for plan comparisons

33 Has plan (re-)normalisation been described sufficiently? 1

Dose-volume parameters for plan evaluation and comparison

34 Have sufficiently comprehensive dose-volume parameters been used for plan evaluations and comparisons? 5

Population-mean DVHs

35 Has the algorithm for creating population-mean/median DVHs been reported? 1

36 Have the definitions of confidence intervals been included? 1

Plan evaluations by clinicians

37 Have clinicians scored plans to assess quality? 1

38 Were plan comparisons by clinicians blinded? 1

Predicted tumour control probability and normal tissue complication probabilities for plan evaluation and comparison

39 Have any applied TCP models been described and referenced? 1

40 Have any applied NTCP models been described and referenced? 1

Plan deliverability and complexity

41 Have methods used to assess plan deliverability and complexity been described in sufficient detail? 1
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Composite plan quality metrics

42 Is there a sufficient basis (e.g. in the literature) for any selected composite plan quality metrics? 1

43 Is there an adequate description of the calculation of the composite plan quality metrics? 1

Planning and delivery times

44 Has measurement of planning times been described in sufficient detail? 1

45 Has the establishment of delivery times been described in sufficient detail? 1

= Statistical analysis

46 Have proper statistical methods been used and described in sufficient detail? 5

47 In case of multiple testing for research questions, has this been handled appropriately? 1

Questions for Results

48 Does the provided data contribute to (at least partly) answering all aspects of the research questions, e.g. plan acceptability, dosimetric quality,

deliverability and planning and delivery times?

10

Dose distribution reporting

49 Are complete summaries of the dose distributions in the patient cohort provided (low doses, high doses, OARs, PTV, patient, etc.)? 5

50 Are tables and figures optimised to clearly present the results obtained? 1

51 Have the answers to the research questions been illustrated for an example patient by providing dose distributions, DVHs, etc.? 1

Plan acceptability reporting – minor and major protocol deviations

52 In case of treatment technique or planning technique comparisons, was plan acceptability reported separately for each technique? 1

53 Has plan acceptability been reported in sufficient detail: how many plans were acceptable, how many were not and for what reasons (e.g.

violation of hard constraints, violation of soft constraints, other reasons)?

1

54 Was there adequate reporting of minor and major protocol deviations? 1

Deliverability and complexity reporting

55 Has the deliverability of the plans been adequately reported? 1

56 Have plan deliverability and complexity been investigated in sufficient detail in relation to the posed research questions? 1

Planning and delivery times reporting

57 Have planning and delivery times been adequately evaluated and reported? 1

Patient-specific analyses reporting

58 Is there sufficient description of inter-patient variations in the results presented? 1

59 Have outlier patients been reported and has any exclusion from population analyses been sufficiently motivated and explained? 1

Statistical reporting

60 Are the p-values reported appropriately? 1

61 Are there confidence intervals for the appropriate parameters? 1

Questions for discussions

62 Is there an overall interpretation of the data presented in the Results section as to how the posed research questions are answered? 10

Comparison with literature

63 Has the study been sufficiently discussed in the context of existing literature? 5

Clinical and statistical significance

64 Does the discussion focus on statistically significant results? 1
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65 Is the potential clinical significance of the results clearly discussed (assuming practical application would be feasible)? 5

Clinical applicability of the study

66 Is future the clinical applicability sufficiently discussed? 1

Study limitations

67 Has the impact of the study limitations on the provided answers to the research questions been sufficiently discussed? 10

Future work

68 Has the potential future work arising from the study been discussed? 1

Questions for conclusions

69 Do the presented conclusions represent answers to the posed research questions? 5

70 Are the conclusions fully supported by the results? 5

71 Are the conclusions a fair summary of all results? 5

Questions for supplementary

Supplementary materials

72 Is the information presented in the supplementary material of sufficient relevance? 1

73 Is the presentation of the included information of sufficient quality, including readability? 1

74 Has sufficient underlying data been made available or a willingness to share data been indicated, within local data sharing restrictions? 5

RATING remarks

75 Is the RATING score added to the manuscript? 5

76 Is the accompanying question table added to the cover letter or the supplementary material? 1
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Appendix C

Predictive Features in FeatureDS1

C.1 PSV features

Variable Alias Variable

Bladder Volume of the bladder

External Volume of the external

Rectum Volume of the rectum

dm ptv48p00 sum Volume of PTV48 minus PTV60

total OAR Sum of rectum and bladder volume

PTV60 Volume of PTV60

PTV48 Volume of PTV48

PTV60 0p0 Bladder Volume of PTV60 expanded 0cm isoptropically overlapping the bladder

volume

PTV60 0p2 Bladder Volume of PTV60 expanded 0.2cm isoptropically overlapping the blad-

der volume

PTV60 0p4 Bladder Volume of PTV60 expanded 0.4cm isoptropically overlapping the blad-

der volume

PTV60 0p6 Bladder Volume of PTV60 expanded 0.6cm isoptropically overlapping the blad-

der volume

PTV60 0p8 Bladder Volume of PTV60 expanded 0.8cm isoptropically overlapping the blad-

der volume

PTV60 1p0 Bladder Volume of PTV60 expanded 1cm isoptropically overlapping the bladder

volume

PTV60 1p2 Bladder Volume of PTV60 expanded 1.2cm isoptropically overlapping the blad-

der volume

PTV60 1p4 Bladder Volume of PTV60 expanded 1.4cm isoptropically overlapping the blad-

der volume
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PTV60 1p6 Bladder Volume of PTV60 expanded 1.6cm isoptropically overlapping the blad-

der volume

PTV60 1p8 Bladder Volume of PTV60 expanded 1.8cm isoptropically overlapping the blad-

der volume

PTV60 2p0 Bladder Volume of PTV60 expanded 2cm isoptropically overlapping the bladder

volume

PTV60 2p2 Bladder Volume of PTV60 expanded 2.2cm isoptropically overlapping the blad-

der volume

PTV60 2p4 Bladder Volume of PTV60 expanded 2.4cm isoptropically overlapping the blad-

der volume

PTV60 0p0 Rectum Volume of PTV60 expanded 0cm isoptropically overlapping the rectum

volume

PTV60 0p2 Rectum Volume of PTV60 expanded 0.2cm isoptropically overlapping the rec-

tum volume

PTV60 0p4 Rectum Volume of PTV60 expanded 0.4cm isoptropically overlapping the rec-

tum volume

PTV60 0p6 Rectum Volume of PTV60 expanded 0.6cm isoptropically overlapping the rec-

tum volume

PTV60 0p8 Rectum Volume of PTV60 expanded 0.8cm isoptropically overlapping the rec-

tum volume

PTV60 1p0 Rectum Volume of PTV60 expanded 1cm isoptropically overlapping the rectum

volume

PTV60 1p2 Rectum Volume of PTV60 expanded 1.2cm isoptropically overlapping the rec-

tum volume

PTV60 1p4 Rectum Volume of PTV60 expanded 1.4cm isoptropically overlapping the rec-

tum volume

PTV60 1p6 Rectum Volume of PTV60 expanded 1.6cm isoptropically overlapping the rec-

tum volume

PTV60 1p8 Rectum Volume of PTV60 expanded 1.8cm isoptropically overlapping the rec-

tum volume

PTV60 2p0 Rectum Volume of PTV60 expanded 2cm isoptropically overlapping the rectum

volume

PTV60 2p2 Rectum Volume of PTV60 expanded 2.2cm isoptropically overlapping the rec-

tum volume

PTV60 2p4 Rectum Volume of PTV60 expanded 2.4cm isoptropically overlapping the rec-

tum volume

PTV48 0p0 Bladder Volume of PTV48 expanded 0cm isoptropically overlapping the bladder

volume

PTV48 0p2 Bladder Volume of PTV48 expanded 0.2cm isoptropically overlapping the blad-

der volume
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PTV48 0p4 Bladder Volume of PTV48 expanded 0.4cm isoptropically overlapping the blad-

der volume

PTV48 0p6 Bladder Volume of PTV48 expanded 0.6cm isoptropically overlapping the blad-

der volume

PTV48 0p8 Bladder Volume of PTV48 expanded 0.8cm isoptropically overlapping the blad-

der volume

PTV48 1p0 Bladder Volume of PTV48 expanded 1cm isoptropically overlapping the bladder

volume

PTV48 1p2 Bladder Volume of PTV48 expanded 1.2cm isoptropically overlapping the blad-

der volume

PTV48 1p4 Bladder Volume of PTV48 expanded 1.4cm isoptropically overlapping the blad-

der volume

PTV48 1p6 Bladder Volume of PTV48 expanded 1.6cm isoptropically overlapping the blad-

der volume

PTV48 1p8 Bladder Volume of PTV48 expanded 1.8cm isoptropically overlapping the blad-

der volume

PTV48 2p0 Bladder Volume of PTV48 expanded 2cm isoptropically overlapping the bladder

volume

PTV48 2p2 Bladder Volume of PTV48 expanded 2.2cm isoptropically overlapping the blad-

der volume

PTV48 2p4 Bladder Volume of PTV48 expanded 2.4cm isoptropically overlapping the blad-

der volume

PTV48 0p0 Rectum Volume of PTV48 expanded 0cm isoptropically overlapping the rectum

volume

PTV48 0p2 Rectum Volume of PTV48 expanded 0.2cm isoptropically overlapping the rec-

tum volume

PTV48 0p4 Rectum Volume of PTV48 expanded 0.4cm isoptropically overlapping the rec-

tum volume

PTV48 0p6 Rectum Volume of PTV48 expanded 0.6cm isoptropically overlapping the rec-

tum volume

PTV48 0p8 Rectum Volume of PTV48 expanded 0.8cm isoptropically overlapping the rec-

tum volume

PTV48 1p0 Rectum Volume of PTV48 expanded 1cm isoptropically overlapping the rectum

volume

PTV48 1p2 Rectum Volume of PTV48 expanded 1.2cm isoptropically overlapping the rec-

tum volume

PTV48 1p4 Rectum Volume of PTV48 expanded 1.4cm isoptropically overlapping the rec-

tum volume

PTV48 1p6 Rectum Volume of PTV48 expanded 1.6cm isoptropically overlapping the rec-

tum volume
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PTV48 1p8 Rectum Volume of PTV48 expanded 1.8cm isoptropically overlapping the rec-

tum volume

PTV48 2p0 Rectum Volume of PTV48 expanded 2cm isoptropically overlapping the rectum

volume

PTV48 2p2 Rectum Volume of PTV48 expanded 2.2cm isoptropically overlapping the rec-

tum volume

PTV48 2p4 Rectum Volume of PTV48 expanded 2.4cm isoptropically overlapping the rec-

tum volume

PTV60 0p0 0p2 slope Bladder Slope between PTV60 expanded 0cm overlapping the bladder and

PTV60 expanded 0.2cm overlapping the bladder

PTV60 0p2 0p4 slope Bladder Slope between PTV60 expanded 0.2cm overlapping the bladder and

PTV60 expanded 0.4cm overlapping the bladder

PTV60 0p4 0p6 slope Bladder Slope between PTV60 expanded 0.4cm overlapping the bladder and

PTV60 expanded 0.6cm overlapping the bladder

PTV60 0p6 0p8 slope Bladder Slope between PTV60 expanded 0.6cm overlapping the bladder and

PTV60 expanded 0.8cm overlapping the bladder

PTV60 0p8 1p0 slope Bladder Slope between PTV60 expanded 0.8cm overlapping the bladder and

PTV60 expanded 1cm overlapping the bladder

PTV60 1p0 1p2 slope Bladder Slope between PTV60 expanded 1cm overlapping the bladder and

PTV60 expanded 1.2cm overlapping the bladder

PTV60 1p2 1p4 slope Bladder Slope between PTV60 expanded 1.2cm overlapping the bladder and

PTV60 expanded 1.4cm overlapping the bladder

PTV60 1p4 1p6 slope Bladder Slope between PTV60 expanded 1.4cm overlapping the bladder and

PTV60 expanded 1.6cm overlapping the bladder

PTV60 1p6 1p8 slope Bladder Slope between PTV60 expanded 1.6cm overlapping the bladder and

PTV60 expanded 1.8cm overlapping the bladder

PTV60 1p8 2p0 slope Bladder Slope between PTV60 expanded 1.8cm overlapping the bladder and

PTV60 expanded 2cm overlapping the bladder

PTV60 2p0 2p2 slope Bladder Slope between PTV60 expanded 2cm overlapping the bladder and

PTV60 expanded 2.2cm overlapping the bladder

PTV60 2p2 2p4 slope Bladder Slope between PTV60 expanded 2.2cm overlapping the bladder and

PTV60 expanded 2.4cm overlapping the bladder

PTV60 0p0 0p2 slope Rectum Slope between PTV60 expanded 0cm overlapping the bladder and

PTV60 expanded 0.2cm overlapping the bladder

PTV60 0p2 0p4 slope Rectum Slope between PTV60 expanded 0.2cm overlapping the bladder and

PTV60 expanded 0.4cm overlapping the bladder

PTV60 0p4 0p6 slope Rectum Slope between PTV60 expanded 0.4cm overlapping the bladder and

PTV60 expanded 0.6cm overlapping the bladder

PTV60 0p6 0p8 slope Rectum Slope between PTV60 expanded 0.6cm overlapping the bladder and

PTV60 expanded 0.8cm overlapping the bladder
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PTV60 0p8 1p0 slope Rectum Slope between PTV60 expanded 0.8cm overlapping the bladder and

PTV60 expanded 1cm overlapping the bladder

PTV60 1p0 1p2 slope Rectum Slope between PTV60 expanded 1cm overlapping the bladder and

PTV60 expanded 1.2cm overlapping the bladder

PTV60 1p2 1p4 slope Rectum Slope between PTV60 expanded 1.2cm overlapping the bladder and

PTV60 expanded 1.4cm overlapping the bladder

PTV60 1p4 1p6 slope Rectum Slope between PTV60 expanded 1.4cm overlapping the bladder and

PTV60 expanded 1.6cm overlapping the bladder

PTV60 1p6 1p8 slope Rectum Slope between PTV60 expanded 1.6cm overlapping the bladder and

PTV60 expanded 1.8cm overlapping the bladder

PTV60 1p8 2p0 slope Rectum Slope between PTV60 expanded 1.8cm overlapping the bladder and

PTV60 expanded 2cm overlapping the bladder

PTV60 2p0 2p2 slope Rectum Slope between PTV60 expanded 2cm overlapping the bladder and

PTV60 expanded 2.2cm overlapping the bladder

PTV60 2p2 2p4 slope Rectum Slope between PTV60 expanded 2.2cm overlapping the bladder and

PTV60 expanded 2.4cm overlapping the bladder

PTV48 0p0 0p2 slope Bladder Slope between PTV48 expanded 0cm overlapping the bladder and

PTV48 expanded 0.2cm overlapping the bladder

PTV48 0p2 0p4 slope Bladder Slope between PTV48 expanded 0.2cm overlapping the bladder and

PTV48 expanded 0.4cm overlapping the bladder

PTV48 0p4 0p6 slope Bladder Slope between PTV48 expanded 0.4cm overlapping the bladder and

PTV48 expanded 0.6cm overlapping the bladder

PTV48 0p6 0p8 slope Bladder Slope between PTV48 expanded 0.6cm overlapping the bladder and

PTV48 expanded 0.8cm overlapping the bladder

PTV48 0p8 1p0 slope Bladder Slope between PTV48 expanded 0.8cm overlapping the bladder and

PTV48 expanded 1cm overlapping the bladder

PTV48 1p0 1p2 slope Bladder Slope between PTV48 expanded 1cm overlapping the bladder and

PTV48 expanded 1.2cm overlapping the bladder

PTV48 1p2 1p4 slope Bladder Slope between PTV48 expanded 1.2cm overlapping the bladder and

PTV48 expanded 1.4cm overlapping the bladder

PTV48 1p4 1p6 slope Bladder Slope between PTV48 expanded 1.4cm overlapping the bladder and

PTV48 expanded 1.6cm overlapping the bladder

PTV48 1p6 1p8 slope Bladder Slope between PTV48 expanded 1.6cm overlapping the bladder and

PTV48 expanded 1.8cm overlapping the bladder

PTV48 1p8 2p0 slope Bladder Slope between PTV48 expanded 1.8cm overlapping the bladder and

PTV48 expanded 2cm overlapping the bladder

PTV48 2p0 2p2 slope Bladder Slope between PTV48 expanded 2cm overlapping the bladder and

PTV48 expanded 2.2cm overlapping the bladder

PTV48 2p2 2p4 slope Bladder Slope between PTV48 expanded 2.2cm overlapping the bladder and

PTV48 expanded 2.4cm overlapping the bladder
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PTV48 0p0 0p2 slope Rectum Slope between PTV48 expanded 0cm overlapping the bladder and

PTV48 expanded 0.2cm overlapping the bladder

PTV48 0p2 0p4 slope Rectum Slope between PTV48 expanded 0.2cm overlapping the bladder and

PTV48 expanded 0.4cm overlapping the bladder

PTV48 0p4 0p6 slope Rectum Slope between PTV48 expanded 0.4cm overlapping the bladder and

PTV48 expanded 0.6cm overlapping the bladder

PTV48 0p6 0p8 slope Rectum Slope between PTV48 expanded 0.6cm overlapping the bladder and

PTV48 expanded 0.8cm overlapping the bladder

PTV48 0p8 1p0 slope Rectum Slope between PTV48 expanded 0.8cm overlapping the bladder and

PTV48 expanded 1cm overlapping the bladder

PTV48 1p0 1p2 slope Rectum Slope between PTV48 expanded 1cm overlapping the bladder and

PTV48 expanded 1.2cm overlapping the bladder

PTV48 1p2 1p4 slope Rectum Slope between PTV48 expanded 1.2cm overlapping the bladder and

PTV48 expanded 1.4cm overlapping the bladder

PTV48 1p4 1p6 slope Rectum Slope between PTV48 expanded 1.4cm overlapping the bladder and

PTV48 expanded 1.6cm overlapping the bladder

PTV48 1p6 1p8 slope Rectum Slope between PTV48 expanded 1.6cm overlapping the bladder and

PTV48 expanded 1.8cm overlapping the bladder

PTV48 1p8 2p0 slope Rectum Slope between PTV48 expanded 1.8cm overlapping the bladder and

PTV48 expanded 2cm overlapping the bladder

PTV48 2p0 2p2 slope Rectum Slope between PTV48 expanded 2cm overlapping the bladder and

PTV48 expanded 2.2cm overlapping the bladder

PTV48 2p2 2p4 slope Rectum Slope between PTV48 expanded 2.2cm overlapping the bladder and

PTV48 expanded 2.4cm overlapping the bladder

av dist PTV60 Bladder Average distance between PTV60 and the bladder

av dist PTV60 Rectum Average distance between PTV60 and the rectum

av dist PTV48 Bladder Average distance between PTV48 and the bladder

av dist PTV48 Rectum Average distance between PTV48 and the rectum

max dist PTV60 Bladder The largest distance between PTV60 and the bladder

max dist PTV60 Rectum The largest distance between PTV60 and the rectum

max dist PTV48 Bladder The largest distance between PTV48 and the bladder

max dist PTV48 Rectum The largest distance between PTV48 and the rectum

VIF PTV60 Bladder Volume of the bladder between the most superior and inferior transverse

slices of PTV60

VIF PTV60 Rectum Volume of the rectum between the most superior and inferior transverse

slices of PTV60

VIF PTV48 Bladder Volume of the bladder between the most superior and inferior transverse

slices of PTV48

VIF PTV48 Rectum Volume of the rectum between the most superior and inferior transverse

slices of PTV48
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VOF PTV60 Bladder Volume of the bladder above the most superior and below the most in-

ferior transverse slices of PTV60

VOF PTV60 Rectum Volume of the rectum above the most superior and below the most infe-

rior transverse slices of PTV60

VOF PTV48 Bladder Volume of the bladder above the most superior and below the most in-

ferior transverse slices of PTV48

VOF PTV48 Rectum Volume of the rectum above the most superior and below the most infe-

rior transverse slices of PTV48

Total VIF PTV60 Rectum and bladder between the most superior and inferior transverse

slices of PTV60

Total VIF PTV48 Rectum and bladder between the most superior and inferior transverse

slices of PTV48

Total VOF PTV60 Rectum and bladder above the most superior and below the most infe-

rior transverse slices of PTV60

Total VOF PTV48 Rectum and bladder above the most superior and below the most infe-

rior transverse slices of PTV48

centre dist ptv60p00 ptv48p00 Distance between the centre of PTV60 and the centre of PTV48

centre dist ptv60p00 Bladder Distance between the centre of PTV60 and the centre of the bladder

centre dist ptv60p00 Rectum Distance between the centre of PTV60 and the centre of the rectum

centre dist ptv48p00 Bladder Distance between the centre of PTV48 and the centre of the bladder

centre dist ptv48p00 Rectum Distance between the centre of PTV48 and the centre of the rectum

centre dist Bladder Rectum Distance between the centre of the bladder and the centre of the rectum

ratio ptv60p00 ptv48p00 The voume of PTV60 divided by the volume of PTV48

ratio ptv60p00 Bladder The volume of PTV60 divided by the volume of the bladder

ratio ptv60p00 Rectum The volume of PTV60 divided by the volume of the rectum

ratio ptv48p00 Bladder The volume of PTV48 divided by the volume of the bladder

ratio ptv48p00 Rectum The volume of PTV48 divided by the volume of the rectum

ratio Bladder Rectum The volume of the bladder divided by the volume of the rectum
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C.2 Rectum features

Variable alias Variable

External Volume of the external

BowelBag Volume of the Bowel Bag

PTV45 Volume of PTV45

aux ant Volume of aux ant (bowel bag minus PTV45)

total OAR Volume of bowel bag, genitals and stoma

min dist BowelBag External The smallest distance between the bowel bag and the external

min dist aux ant External The smallest distance between the aux ant and the external

min dist PTV 4500 External The smallest distance between PTV45 and the external

centre dist PTV 4500 BowelBag The distance between the centre of PTV45 and the centre of the bowel

bag

centre dist BowelBag External The distance between the centre of the bowel bag and the centre of the

external

centre dist PTV 4500 External The distance between the centre of PTV45 and the centre of the external

centre dist PTV 4500 aux ant The distance between the centre of PTV45 and aux ant

centre dist BowelBag aux ant The distance between the centre of the bowl bag and aux ant

centre dist aux ant External The distance between the centre of aux ant and the external

max dist BowelBag External The largest distance between the bowel bag and the external

max dist PTV 4500 BowelBag The largest distance between PTV45 and the bowel bag

max dist PTV 4500 External The largest distance between PTV45 and the external

max dist PTV 4500 aux ant The largest distance between PTV45 and aux ant

max dist BowelBag aux ant The largest distance between the bowel bag and aux ant

max dist aux ant External The largest distance between aux ant and the external

av dist BowelBag External The average distance between bowel bag and the external

av dist PTV 4500 External The average distance between PTV45 and the external

av dist PTV 4500 BowelBag The average distance between PTV45 and the bowel bag

av dist BowelBag aux ant The average distance between bowel bag and the aux ant

av dist aux ant External The average distance between aux ant and the external

av dist PTV 4500 aux ant The average distance between PTV45 and aux ant

PTV 4500 0p0 External The volume of PTV45 expanded 0cm isotropically overlapping the ex-

ternal

PTV 4500 0p2 External The volume of PTV45 expanded 0.2cm isotropically overlapping the

external

PTV 4500 0p4 External The volume of PTV45 expanded 0.4cm isotropically overlapping the

external

PTV 4500 0p6 External The volume of PTV45 expanded 0.6cm isotropically overlapping the

external
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PTV 4500 0p8 External The volume of PTV45 expanded 0.8cm isotropically overlapping the

external

PTV 4500 1p0 External The volume of PTV45 expanded 1cm isotropically overlapping the ex-

ternal

PTV 4500 1p2 External The volume of PTV45 expanded 1.2cm isotropically overlapping the

external

PTV 4500 1p4 External The volume of PTV45 expanded 1.4cm isotropically overlapping the

external

PTV 4500 1p6 External The volume of PTV45 expanded 1.6cm isotropically overlapping the

external

PTV 4500 1p8 External The volume of PTV45 expanded 1.8cm isotropically overlapping the

external

PTV 4500 2p0 External The volume of PTV45 expanded 2cm isotropically overlapping the ex-

ternal

PTV 4500 2p2 External The volume of PTV45 expanded 2.2cm isotropically overlapping the

external

PTV 4500 2p4 External The volume of PTV45 expanded 2.4cm isotropically overlapping the

external

PTV 4500 0p0 BowelBag The volume of PTV45 expanded 0cm isotropically overlapping the

bowel bag

PTV 4500 0p2 BowelBag The volume of PTV45 expanded 0.2cm isotropically overlapping the

bowel bag

PTV 4500 0p4 BowelBag The volume of PTV45 expanded 0.4cm isotropically overlapping the

bowel bag

PTV 4500 0p6 BowelBag The volume of PTV45 expanded 0.6cm isotropically overlapping the

bowel bag

PTV 4500 0p8 BowelBag The volume of PTV45 expanded 0.8cm isotropically overlapping the

bowel bag

PTV 4500 1p0 BowelBag The volume of PTV45 expanded 1cm isotropically overlapping the

bowel bag

PTV 4500 1p2 BowelBag The volume of PTV45 expanded 1.2cm isotropically overlapping the

bowel bag

PTV 4500 1p4 BowelBag The volume of PTV45 expanded 1.4cm isotropically overlapping the

bowel bag

PTV 4500 1p6 BowelBag The volume of PTV45 expanded 1.6cm isotropically overlapping the

bowel bag

PTV 4500 1p8 BowelBag The volume of PTV45 expanded 1.8cm isotropically overlapping the

bowel bag

PTV 4500 2p0 BowelBag The volume of PTV45 expanded 2cm isotropically overlapping the

bowel bag
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PTV 4500 2p2 BowelBag The volume of PTV45 expanded 2.2cm isotropically overlapping the

bowel bag

PTV 4500 2p4 BowelBag The volume of PTV45 expanded 2.4cm isotropically overlapping the

bowel bag

PTV 4500 0p2 aux ant The volume of PTV45 expanded 0cm isotropically overlapping the aux

ant

PTV 4500 0p4 aux ant The volume of PTV45 expanded 0.2cm isotropically overlapping the

aux ant

PTV 4500 0p6 aux ant The volume of PTV45 expanded 0.4cm isotropically overlapping the

aux ant

PTV 4500 0p8 aux ant The volume of PTV45 expanded 0.6cm isotropically overlapping the

aux ant

PTV 4500 1p0 aux ant The volume of PTV45 expanded 0.8cm isotropically overlapping the

aux ant

PTV 4500 1p2 aux ant The volume of PTV45 expanded 1cm isotropically overlapping the aux

ant

PTV 4500 1p4 aux ant The volume of PTV45 expanded 1.2cm isotropically overlapping the

aux ant

PTV 4500 1p6 aux ant The volume of PTV45 expanded 1.4cm isotropically overlapping the

aux ant

PTV 4500 1p8 aux ant The volume of PTV45 expanded 1.6cm isotropically overlapping the

aux ant

PTV 4500 2p0 aux ant The volume of PTV45 expanded 1.8cm isotropically overlapping the

aux ant

PTV 4500 2p2 aux ant The volume of PTV45 expanded 2cm isotropically overlapping the aux

ant

PTV 4500 2p4 aux ant The volume of PTV45 expanded 2.2cm isotropically overlapping the

aux ant

PTV 4500 0p0 0p2 slope External Slope between PTV45 expanded 0cm overlapping the external and

PTV45 expanded 0.2cm overlapping the external

PTV 4500 0p2 0p4 slope External Slope between PTV45 expanded 0.2cm overlapping the external and

PTV45 expanded 0.4cm overlapping the external

PTV 4500 0p4 0p6 slope External Slope between PTV45 expanded 0.4cm overlapping the external and

PTV45 expanded 0.6cm overlapping the external

PTV 4500 0p6 0p8 slope External Slope between PTV45 expanded 0.6cm overlapping the external and

PTV45 expanded 0.8cm overlapping the external

PTV 4500 0p8 1p0 slope External Slope between PTV45 expanded 0.8cm overlapping the external and

PTV45 expanded 1cm overlapping the external

PTV 4500 1p0 1p2 slope External Slope between PTV45 expanded 1cm overlapping the external and

PTV45 expanded 1.2cm overlapping the external
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PTV 4500 1p2 1p4 slope External Slope between PTV45 expanded 1.2cm overlapping the external and

PTV45 expanded 1.4cm overlapping the external

PTV 4500 1p4 1p6 slope External Slope between PTV45 expanded 1.4cm overlapping the external and

PTV45 expanded 1.6cm overlapping the external

PTV 4500 1p6 1p8 slope External Slope between PTV45 expanded 1.6cm overlapping the external and

PTV45 expanded 1.8cm overlapping the external

PTV 4500 1p8 2p0 slope External Slope between PTV45 expanded 1.8cm overlapping the external and

PTV45 expanded 2cm overlapping the external

PTV 4500 2p0 2p2 slope External Slope between PTV45 expanded 2cm overlapping the external and

PTV45 expanded 2.2cm overlapping the external

PTV 4500 2p2 2p4 slope External Slope between PTV45 expanded 2.2cm overlapping the external and

PTV45 expanded 2.4cm overlapping the external

PTV 4500 0p0 0p2 slope BowelBag Slope between PTV45 expanded 0cm overlapping the bowel bag and

PTV45 expanded 0.2cm overlapping the bowel bag

PTV 4500 0p2 0p4 slope BowelBag Slope between PTV45 expanded 0.2cm overlapping the bowel bag and

PTV45 expanded 0.4cm overlapping the bowel bag

PTV 4500 0p4 0p6 slope BowelBag Slope between PTV45 expanded 0.4cm overlapping the bowel bag and

PTV45 expanded 0.6cm overlapping the bowel bag

PTV 4500 0p6 0p8 slope BowelBag Slope between PTV45 expanded 0.6cm overlapping the bowel bag and

PTV45 expanded 0.8cm overlapping the bowel bag

PTV 4500 0p8 1p0 slope BowelBag Slope between PTV45 expanded 0.8cm overlapping the bowel bag and

PTV45 expanded 1cm overlapping the bowel bag

PTV 4500 1p0 1p2 slope BowelBag Slope between PTV45 expanded 1cm overlapping the bowel bag and

PTV45 expanded 1.2cm overlapping the bowel bag

PTV 4500 1p2 1p4 slope BowelBag Slope between PTV45 expanded 1.2cm overlapping the bowel bag and

PTV45 expanded 1.4cm overlapping the bowel bag

PTV 4500 1p4 1p6 slope BowelBag Slope between PTV45 expanded 1.4cm overlapping the bowel bag and

PTV45 expanded 1.6cm overlapping the bowel bag

PTV 4500 1p6 1p8 slope BowelBag Slope between PTV45 expanded 1.6cm overlapping the bowel bag and

PTV45 expanded 1.8cm overlapping the bowel bag

PTV 4500 1p8 2p0 slope BowelBag Slope between PTV45 expanded 1.8cm overlapping the bowel bag and

PTV45 expanded 2cm overlapping the bowel bag

PTV 4500 2p0 2p2 slope BowelBag Slope between PTV45 expanded 2cm overlapping the bowel bag and

PTV45 expanded 2.2cm overlapping the bowel bag

PTV 4500 2p2 2p4 slope BowelBag Slope between PTV45 expanded 2.2cm overlapping the bowel bag and

PTV45 expanded 2.4cm overlapping the bowel bag

PTV 4500 0p0 0p2 slope aux ant Slope between PTV45 expanded 0cm overlapping aux ant and PTV45

expanded 0.2cm overlapping aux ant

PTV 4500 0p2 0p4 slope aux ant Slope between PTV45 expanded 0.2cm overlapping the aux ant and

PTV45 expanded 0.4cm overlapping the aux ant



APPENDIX C. PREDICTIVE FEATURES IN FEATUREDS1 203

PTV 4500 0p4 0p6 slope aux ant Slope between PTV45 expanded 0.4cm overlapping the aux ant and

PTV45 expanded 0.6cm overlapping the aux ant

PTV 4500 0p6 0p8 slope aux ant Slope between PTV45 expanded 0.6cm overlapping the aux ant and

PTV45 expanded 0.8cm overlapping the aux ant

PTV 4500 0p8 1p0 slope aux ant Slope between PTV45 expanded 0.8cm overlapping the aux ant and

PTV45 expanded 1cm overlapping the aux ant

PTV 4500 1p0 1p2 slope aux ant Slope between PTV45 expanded 1cm overlapping the aux ant and

PTV45 expanded 1.2cm overlapping the aux ant

PTV 4500 1p2 1p4 slope aux ant Slope between PTV45 expanded 1.2cm overlapping the aux ant and

PTV45 expanded 1.4cm overlapping the aux ant

PTV 4500 1p4 1p6 slope aux ant Slope between PTV45 expanded 1.4cm overlapping the aux ant and

PTV45 expanded 1.6cm overlapping the aux ant

PTV 4500 1p6 1p8 slope aux ant Slope between PTV45 expanded 1.6cm overlapping the aux ant and

PTV45 expanded 1.8cm overlapping the aux ant

PTV 4500 1p8 2p0 slope aux ant Slope between PTV45 expanded 1.8cm overlapping the aux ant and

PTV45 expanded 2cm overlapping the aux ant

PTV 4500 2p0 2p2 slope aux ant Slope between PTV45 expanded 2cm overlapping the aux ant and

PTV45 expanded 2.2cm overlapping the aux ant

PTV 4500 2p2 2p4 slope aux ant Slope between PTV45 expanded 2.2cm overlapping the aux ant and

PTV45 expanded 2.4cm overlapping the aux ant

VIF PTV 4500 BowelBag Volume of the bowel bag between the most superior and most inferior

transverse slice of PTV45

VIF PTV 4500 External Volume of the external between the most superior and most inferior

transverse slice of PTV45

VIF PTV 4500 aux ant Volume of the aux ant between the most superior and most inferior

transverse slice of PTV45

VOF PTV 4500 BowelBag Volume of the bowel bag above the most superior below the most infe-

rior transverse slice of PTV45

VOF PTV 4500 External Volume of the external above the most superior below the most inferior

transverse slice of PTV45

VOF PTV 4500 aux ant Volume of the aux ant above the most superior below the most inferior

transverse slice of PTV45

Total VIF PTV45 Volume of bowel bag, genital region and stoma region between the most

superior and most inferior transverse slice of PTV45

Total VOF PTV45 Volume of thebowel bag, genital region and stoma region above the

most superior below the most inferior transverse slice of PTV45

ratio BowelBag External Volume of the bowel bag divided by the volume of the external

ratio PTV 4500 External Volume of PTV45 divided by the volume of the external

ratio PTV 4500 BowelBag Volume of PTV45 divided by the volume of the bowel bag

ratio aux ant External Volume of aux ant divided by the volume the external

ratio PTV 4500 aux ant Volume of PTV45 divided by the volume of aux ant
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ratio BowelBag aux ant Volume of the bowel bag divided by the volume of aux ant
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C.3 Lung features

Variable alias Variable

External Volume of the external

IpsLung Volume of the ipsilateral lung minus GTV volume

ConLung Volume of the contralateral lung

Cord Volume of the spinal cord

Heart Volume of the heart

Oesophagus Volume of the oesophagus

CombinedLungs - GTV Volume of the contralateral lung and ipsilateral lung minus the GTV

total OAR Volume of the heart, combined lungs (minus GTV volume) and

PTV55 Volume of PTV55

av dist ptv55p00 IpsLung The average distance between PTV55 and the ipsilateral lung

av dist ptv55p00 ConLung The average distance between PTV55 and the ipsilateral lung

av dist ptv55p00 Cord The average distance between PTV55 and the ipsilateral lung

av dist ptv55p00 Heart The average distance between PTV55 and the ipsilateral lung

av dist ptv55p00 Oesophagus The average distance between PTV55 and the ipsilateral lung

av dist ptv55p00 CombinedLungs -

GTV

The average distance between PTV55 and the ipsilateral lung

av dist IpsLung ConLung The average distance between the ipsilateral lung and the contralateral

lung

av dist IpsLung Cord The average distance between the ipsilateral lung and the spinal cord

av dist IpsLung Heart The average distance between the ipsilateral lung and the heart

av dist IpsLung Oesophagus The average distance between the ipsilateral lung and the oesophagus

av dist ConLung Cord The average distance between contralateral lung and the spinal cord

av dist ConLung Heart The average distance between contralateral lung and the heart

av dist ConLung Oesophagus The average distance between contralateral lung and the oesophagus

av dist Cord Heart The average distance between the spinal cord and the heart

av dist Cord Oesophagus The average distance between the spinal cord and the oesophagus

av dist Cord CombinedLungs - GTV The average distance between the spinal cord and the spinal cord

av dist Heart Oesophagus The average distance between the heart and the oesophagus

av dist Heart CombinedLungs - GTV The average distance between the heart and the combine lungs

av dist Oesophagus CombinedLungs -

GTV

The average distance between the oesophagus and the combine lungs

min dist ptv55p00 ConLung The smallest distance between PTV55 and the contralateral lung

min dist ptv55p00 Cord The smallest distance between PTV55 and spinal cord

min dist IpsLung ConLung The smallest distance between the ipsilateral lung and the contralateral

lung

min dist IpsLung Cord The smallest distance between the ipsilateral lung and the spinal cord

min dist IpsLung Oesophagus The smallest distance between the ipsilateral lung and the oesophagus
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min dist ConLung Cord The smallest distance between the contralateral lung and the spinal cord

min dist ConLung Oesophagus The smallest distance between the contralateral lung and the oesopha-

gus

min dist Cord Heart The smallest distance between the contralateral lung and the heart

min dist Cord Oesophagus The smallest distance between the spinal cord and the oesophagus

min dist Cord CombinedLungs - GTV The smallest distance between the spinal cord and the combined lungs

min dist Heart Oesophagus The smallest distance between the heart and the oesophagus

min dist Oesophagus CombinedLungs

- GTV

The smallest distance between the oesophagus and the combined lungs

centre dist ptv55p00 External The distance from the centre of the PTV55 volume to the centre of the

external volume

centre dist ptv55p00 IpsLung The distance from the centre of the PTV55 volume to the centre of the

ipsilateral lung volume

centre dist ptv55p00 ConLung The distance from the centre of the PTV55 volume to the centre of the

contralateral lung volume

centre dist ptv55p00 Cord The distance from the centre of the PTV55 volume to the centre of the

spinal cord volume

centre dist ptv55p00 Heart The distance from the centre of the PTV55 volume to the centre of the

heart volume

centre dist ptv55p00 Oesophagus The distance from the centre of the PTV55 volume to the centre of the

oesophagus volume

centre dist ptv55p00 CombinedLungs

- GTV

The distance from the centre of the PTV55 volume to the centre of the

combined lungs volume

centre dist External IpsLung The distance from the centre of the external volume to the centre of the

ipsilateral lung volume

centre dist External ConLung The distance from the centre of the external volume to the centre of the

contralateral lung volume

centre dist External Cord The distance from the centre of the external volume to the centre of the

spinal cord volume

centre dist External Heart The distance from the centre of the external volume to the centre of the

heart volume

centre dist External Oesophagus The distance from the centre of the external volume to the centre of the

oesophagus volume

centre dist External CombinedLungs -

GTV

The distance from the centre of the external volume to the centre of the

combined lungs volume

centre dist IpsLung ConLung The distance from the centre of the ipsilateral lung volume to the centre

of the contralateral lung volume

centre dist IpsLung Cord The distance from the centre of the ipsilateral lung volume to the centre

of the spinal cord volume

centre dist IpsLung Heart The distance from the centre of the ipsilateral lung volume to the centre

of the heart volume
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centre dist IpsLung Oesophagus The distance from the centre of the ipsilateral lung volume to the centre

of the oesophagus volume

centre dist IpsLung CombinedLungs -

GTV

The distance from the centre of the ipsilateral lung volume to the centre

of the combined lungs volume

centre dist ConLung Cord The distance from the centre of the contralateral lung volume to the

centre of the spinal cord volume

centre dist ConLung Heart The distance from the centre of the contralateral lung volume to the

centre of the heart volume

centre dist ConLung Oesophagus The distance from the centre of the contralateral lung volume to the

centre of the oesophagus volume

centre dist ConLung CombinedLungs

- GTV

The distance from the centre of the contralateral lung volume to the

centre of the combined lungs volume

centre dist Cord Heart The distance from the centre of the spinal cord volume to the centre of

the heart volume

centre dist Cord Oesophagus The distance from the centre of the spinal cord volume to the centre of

the oesophagus volume

centre dist Cord CombinedLungs -

GTV

The distance from the centre of the spinal cord volume to the centre of

the combined lungs volume

centre dist Heart Oesophagus The distance from the centre of the heart volume to the centre of the

oesophagus volume

centre dist Heart CombinedLungs -

GTV

The distance from the centre of the heart volume to the centre of the

combined lungs volume

centre dist Oesophagus CombinedLungs

- GTV

The distance from the centre of the oesophagus volume to the centre of

the combined lungs volume

max dist ptv55p00 IpsLung The largest distance beween PTV55 to the the ipsilateral lung volume

max dist ptv55p00 ConLung The largest distance beween PTV55 to the the contralateral lung volume

max dist ptv55p00 Cord The largest distance beween PTV55 to the the spinal cord volume

max dist ptv55p00 Heart The largest distance beween PTV55 to the the heart volume

max dist ptv55p00 Oesophagus The largest distance beween PTV55 to the the oesophagus volume

max dist ptv55p00 CombinedLungs -

GTV

The largest distance beween PTV55 to the the combined lungs volume

max dist IpsLung ConLung The largest distance beween the ipsilateral lung to the the contralateral

lung volume

max dist IpsLung Cord The largest distance beween the ipsilateral lung volume to the the spinal

cord volume

max dist IpsLung Heart The largest distance beween the ipsilateral lung volume to the the heart

volume

max dist IpsLung Oesophagus The largest distance beween the ipsilateral lung volume to the the oe-

sophagus volume

max dist ConLung Cord The largest distance beween the contralateral lung volume to the the

spinal cord volume
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max dist ConLung Heart The largest distance beween the contralateral lung volume to the the

heart volume

max dist ConLung Oesophagus The largest distance beween the contralateral lung volume to the the

oesophagus volume

max dist Cord Heart The largest distance beween the spinal cord volume to the the heart

volume

max dist Cord Oesophagus The largest distance beween the spinal cord volume to the the oesopha-

gus volume

max dist Cord CombinedLungs - GTV The largest distance beween the spinal cord volume to the the combined

lungs volume

max dist Heart Oesophagus The largest distance beween the heart volume to the the oesophagus

volume

max dist Heart CombinedLungs -

GTV

The largest distance beween the heart volume to the the combined lungs

volume

max dist Oesophagus CombinedLungs

- GTV

The largest distance beween the oesophagus volume to the the combined

lungs volume

ptv55p00 0p0 IpsLung The volume of PTV55 expanded 0cm isoptropically overlapping the

ipsilateral lung

ptv55p00 0p2 IpsLung The volume of PTV55 expanded 0.2cm isoptropically overlapping the

ipsilateral lung

ptv55p00 0p4 IpsLung The volume of PTV55 expanded 0.4cm isoptropically overlapping the

ipsilateral lung

ptv55p00 0p6 IpsLung The volume of PTV55 expanded 0.6cm isoptropically overlapping the

ipsilateral lung

ptv55p00 0p8 IpsLung The volume of PTV55 expanded 0.8cm isoptropically overlapping the

ipsilateral lung

ptv55p00 1p0 IpsLung The volume of PTV55 expanded 1cm isoptropically overlapping the

ipsilateral lung

ptv55p00 1p2 IpsLung The volume of PTV55 expanded 1.2cm isoptropically overlapping the

ipsilateral lung

ptv55p00 1p4 IpsLung The volume of PTV55 expanded 1.4cm isoptropically overlapping the

ipsilateral lung

ptv55p00 1p6 IpsLung The volume of PTV55 expanded 1.6cm isoptropically overlapping the

ipsilateral lung

ptv55p00 1p8 IpsLung The volume of PTV55 expanded 1.8cm isoptropically overlapping the

ipsilateral lung

ptv55p00 2p0 IpsLung The volume of PTV55 expanded 2cm isoptropically overlapping the

ipsilateral lung

ptv55p00 2p2 IpsLung The volume of PTV55 expanded 2.2cm isoptropically overlapping the

ipsilateral lung
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ptv55p00 2p4 IpsLung The volume of PTV55 expanded 2.4cm isoptropically overlapping the

ipsilateral lung

ptv55p00 1p4 ConLung The volume of PTV55 expanded 1.4cm isoptropically overlapping the

contralateral lung

ptv55p00 1p6 ConLung The volume of PTV55 expanded 1.6cm isoptropically overlapping the

contralateral lung

ptv55p00 1p8 ConLung The volume of PTV55 expanded 1.8cm isoptropically overlapping the

contralateral lung

ptv55p00 2p0 ConLung The volume of PTV55 expanded 2cm isoptropically overlapping the

contralateral lung

ptv55p00 2p2 ConLung The volume of PTV55 expanded 2.2cm isoptropically overlapping the

contralateral lung

ptv55p00 2p4 ConLung The volume of PTV55 expanded 2.4cm isoptropically overlapping the

contralateral lung

ptv55p00 0p0 Heart The volume of PTV55 expanded 0cm isoptropically overlapping the

heart

ptv55p00 0p2 Heart The volume of PTV55 expanded 0.2cm isoptropically overlapping the

heart

ptv55p00 0p4 Heart The volume of PTV55 expanded 0.4cm isoptropically overlapping the

heart

ptv55p00 0p6 Heart The volume of PTV55 expanded 0.6cm isoptropically overlapping the

heart

ptv55p00 0p8 Heart The volume of PTV55 expanded 0.8cm isoptropically overlapping the

heart

ptv55p00 1p0 Heart The volume of PTV55 expanded 1cm isoptropically overlapping the

heart

ptv55p00 1p2 Heart The volume of PTV55 expanded 1.2cm isoptropically overlapping the

heart

ptv55p00 1p4 Heart The volume of PTV55 expanded 1.4cm isoptropically overlapping the

heart

ptv55p00 1p6 Heart The volume of PTV55 expanded 1.6cm isoptropically overlapping the

heart

ptv55p00 1p8 Heart The volume of PTV55 expanded 1.8cm isoptropically overlapping the

heart

ptv55p00 2p0 Heart The volume of PTV55 expanded 2cm isoptropically overlapping the

heart

ptv55p00 2p2 Heart The volume of PTV55 expanded 2.2cm isoptropically overlapping the

heart

ptv55p00 2p4 Heart The volume of PTV55 expanded 2.4cm isoptropically overlapping the

heart
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ptv55p00 0p0 Oesophagus The volume of PTV55 expanded 0cm isoptropically overlapping the

oesophagus

ptv55p00 0p2 Oesophagus The volume of PTV55 expanded 0.2cm isoptropically overlapping the

oesophagus

ptv55p00 0p4 Oesophagus The volume of PTV55 expanded 0.4cm isoptropically overlapping the

oesophagus

ptv55p00 0p6 Oesophagus The volume of PTV55 expanded 0.6cm isoptropically overlapping the

oesophagus

ptv55p00 0p8 Oesophagus The volume of PTV55 expanded 0.8cm isoptropically overlapping the

oesophagus

ptv55p00 1p0 Oesophagus The volume of PTV55 expanded 1cm isoptropically overlapping the

oesophagus

ptv55p00 1p2 Oesophagus The volume of PTV55 expanded 1.2cm isoptropically overlapping the

oesophagus

ptv55p00 1p4 Oesophagus The volume of PTV55 expanded 1.4cm isoptropically overlapping the

oesophagus

ptv55p00 1p6 Oesophagus The volume of PTV55 expanded 1.6cm isoptropically overlapping the

oesophagus

ptv55p00 1p8 Oesophagus The volume of PTV55 expanded 1.8cm isoptropically overlapping the

oesophagus

ptv55p00 2p0 Oesophagus The volume of PTV55 expanded 2cm isoptropically overlapping the

oesophagus

ptv55p00 2p2 Oesophagus The volume of PTV55 expanded 2.2cm isoptropically overlapping the

oesophagus

ptv55p00 2p4 Oesophagus The volume of PTV55 expanded 2.4cm isoptropically overlapping the

oesophagus

ptv55p00 0p0 CombinedLungs - GTV The volume of PTV55 expanded 0cm isoptropically overlapping the

combined lungs

ptv55p00 0p2 CombinedLungs - GTV The volume of PTV55 expanded 0.2cm isoptropically overlapping the

combined lungs

ptv55p00 0p4 CombinedLungs - GTV The volume of PTV55 expanded 0.4cm isoptropically overlapping the

combined lungs

ptv55p00 0p6 CombinedLungs - GTV The volume of PTV55 expanded 0.6cm isoptropically overlapping the

combined lungs

ptv55p00 0p8 CombinedLungs - GTV The volume of PTV55 expanded 0.8cm isoptropically overlapping the

combined lungs

ptv55p00 1p0 CombinedLungs - GTV The volume of PTV55 expanded 1cm isoptropically overlapping the

combined lungs

ptv55p00 1p2 CombinedLungs - GTV The volume of PTV55 expanded 1.2cm isoptropically overlapping the

combined lungs
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ptv55p00 1p4 CombinedLungs - GTV The volume of PTV55 expanded 1.4cm isoptropically overlapping the

combined lungs

ptv55p00 1p6 CombinedLungs - GTV The volume of PTV55 expanded 1.6cm isoptropically overlapping the

combined lungs

ptv55p00 1p8 CombinedLungs - GTV The volume of PTV55 expanded 1.8cm isoptropically overlapping the

combined lungs

ptv55p00 2p0 CombinedLungs - GTV The volume of PTV55 expanded 2cm isoptropically overlapping the

combined lungs

ptv55p00 2p2 CombinedLungs - GTV The volume of PTV55 expanded 2.2cm isoptropically overlapping the

combined lungs

ptv55p00 2p4 CombinedLungs - GTV The volume of PTV55 expanded 2.4cm isoptropically overlapping the

combined lungs

ptv55p00 0p0 0p2 slope IpsLung Slope between PTV55 expanded 0cm overlapping the ipsilateral lung

and PTV55 expanded 0.2cm overlapping the ipsilateral lung

ptv55p00 0p2 0p4 slope IpsLung Slope between PTV55 expanded 0.2cm overlapping the ipsilateral lung

and PTV55 expanded 0.4cm overlapping the ipsilateral lung

ptv55p00 0p4 0p6 slope IpsLung Slope between PTV55 expanded 0.4cm overlapping the ipsilateral lung

and PTV55 expanded 0.6cm overlapping the ipsilateral lung

ptv55p00 0p6 0p8 slope IpsLung Slope between PTV55 expanded 0.6cm overlapping the ipsilateral lung

and PTV55 expanded 0.8cm overlapping the ipsilateral lung

ptv55p00 0p8 1p0 slope IpsLung Slope between PTV55 expanded 0.8cm overlapping the ipsilateral lung

and PTV55 expanded 1cm overlapping the ipsilateral lung

ptv55p00 1p0 1p2 slope IpsLung Slope between PTV55 expanded 1cm overlapping the ipsilateral lung

and PTV55 expanded 1.2cm overlapping the ipsilateral lung

ptv55p00 1p2 1p4 slope IpsLung Slope between PTV55 expanded 1.2cm overlapping the ipsilateral lung

and PTV55 expanded 1.4cm overlapping the ipsilateral lung

ptv55p00 1p4 1p6 slope IpsLung Slope between PTV55 expanded 1.4cm overlapping the ipsilateral lung

and PTV55 expanded 1.6cm overlapping the ipsilateral lung

ptv55p00 1p6 1p8 slope IpsLung Slope between PTV55 expanded 1.6cm overlapping the ipsilateral lung

and PTV55 expanded 1.8cm overlapping the ipsilateral lung

ptv55p00 1p8 2p0 slope IpsLung Slope between PTV55 expanded 1.8cm overlapping the ipsilateral lung

and PTV55 expanded 2cm overlapping the ipsilateral lung

ptv55p00 2p0 2p2 slope IpsLung Slope between PTV55 expanded 2cm overlapping the ipsilateral lung

and PTV55 expanded 2.2cm overlapping the ipsilateral lung

ptv55p00 2p2 2p4 slope IpsLung Slope between PTV55 expanded 2.2cm overlapping the ipsilateral lung

and PTV55 expanded 2.4cm overlapping the ipsilateral lung

ptv55p00 1p2 1p4 slope ConLung Slope between PTV55 expanded 1.2cm overlapping the contralateral

lung and PTV55 expanded 1.4cm overlapping the contralateral lung

ptv55p00 1p4 1p6 slope ConLung Slope between PTV55 expanded 1.4cm overlapping the contralateral

lung and PTV55 expanded 1.6cm overlapping the contralateral lung
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ptv55p00 1p6 1p8 slope ConLung Slope between PTV55 expanded 1.6cm overlapping the contralateral

lung and PTV55 expanded 1.8cm overlapping the contralateral lung

ptv55p00 1p8 2p0 slope ConLung Slope between PTV55 expanded 1.8cm overlapping the contralateral

lung and PTV55 expanded 2cm overlapping the contralateral lung

ptv55p00 2p0 2p2 slope ConLung Slope between PTV55 expanded 2cm overlapping the contralateral lung

and PTV55 expanded 2.2cm overlapping the contralateral lung

ptv55p00 2p2 2p4 slope ConLung Slope between PTV55 expanded 2.2cm overlapping the contralateral

lung and PTV55 expanded 2.4cm overlapping the contralateral lung

ptv55p00 0p0 0p2 slope Heart Slope between PTV55 expanded 0cm overlapping the heart and PTV55

expanded 0.2cm overlapping the heart

ptv55p00 0p2 0p4 slope Heart Slope between PTV55 expanded 0.2cm overlapping the heart and

PTV55 expanded 0.4cm overlapping the heart

ptv55p00 0p4 0p6 slope Heart Slope between PTV55 expanded 0.4cm overlapping the heart and

PTV55 expanded 0.6cm overlapping the heart

ptv55p00 0p6 0p8 slope Heart Slope between PTV55 expanded 0.6cm overlapping the heart and

PTV55 expanded 0.8cm overlapping the heart

ptv55p00 0p8 1p0 slope Heart Slope between PTV55 expanded 0.8cm overlapping the heart and

PTV55 expanded 1cm overlapping the heart

ptv55p00 1p0 1p2 slope Heart Slope between PTV55 expanded 1cm overlapping the heart and PTV55

expanded 1.2cm overlapping the heart

ptv55p00 1p2 1p4 slope Heart Slope between PTV55 expanded 1.2cm overlapping the heart and

PTV55 expanded 1.4cm overlapping the heart

ptv55p00 1p4 1p6 slope Heart Slope between PTV55 expanded 1.4cm overlapping the heart and

PTV55 expanded 1.6cm overlapping the heart

ptv55p00 1p6 1p8 slope Heart Slope between PTV55 expanded 1.6cm overlapping the heart and

PTV55 expanded 1.8cm overlapping the heart

ptv55p00 1p8 2p0 slope Heart Slope between PTV55 expanded 1.8cm overlapping the heart and

PTV55 expanded 2cm overlapping the heart

ptv55p00 2p0 2p2 slope Heart Slope between PTV55 expanded 2cm overlapping the heart and PTV55

expanded 2.2cm overlapping the heart

ptv55p00 2p2 2p4 slope Heart Slope between PTV55 expanded 2.2cm overlapping the heart and

PTV55 expanded 2.4cm overlapping the heart

ptv55p00 0p0 0p2 slope Oesophagus Slope between PTV55 expanded 0cm overlapping the oesophagus and

PTV55 expanded 0.2cm overlapping the oesophagus

ptv55p00 0p2 0p4 slope Oesophagus Slope between PTV55 expanded 0.2cm overlapping the oesophagus and

PTV55 expanded 0.4cm overlapping the oesophagus

ptv55p00 0p4 0p6 slope Oesophagus Slope between PTV55 expanded 0.4cm overlapping the oesophagus and

PTV55 expanded 0.6cm overlapping the oesophagus

ptv55p00 0p6 0p8 slope Oesophagus Slope between PTV55 expanded 0.6cm overlapping the oesophagus and

PTV55 expanded 0.8cm overlapping the oesophagus
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ptv55p00 0p8 1p0 slope Oesophagus Slope between PTV55 expanded 0.8cm overlapping the oesophagus and

PTV55 expanded 1cm overlapping the oesophagus

ptv55p00 1p0 1p2 slope Oesophagus Slope between PTV55 expanded 1cm overlapping the oesophagus and

PTV55 expanded 1.2cm overlapping the oesophagus

ptv55p00 1p2 1p4 slope Oesophagus Slope between PTV55 expanded 1.2cm overlapping the oesophagus and

PTV55 expanded 1.4cm overlapping the oesophagus

ptv55p00 1p4 1p6 slope Oesophagus Slope between PTV55 expanded 1.4cm overlapping the oesophagus and

PTV55 expanded 1.6cm overlapping the oesophagus

ptv55p00 1p6 1p8 slope Oesophagus Slope between PTV55 expanded 1.6cm overlapping the oesophagus and

PTV55 expanded 1.8cm overlapping the oesophagus

ptv55p00 1p8 2p0 slope Oesophagus Slope between PTV55 expanded 1.8cm overlapping the oesophagus and

PTV55 expanded 2cm overlapping the oesophagus

ptv55p00 2p0 2p2 slope Oesophagus Slope between PTV55 expanded 2cm overlapping the oesophagus and

PTV55 expanded 2.2cm overlapping the oesophagus

ptv55p00 2p2 2p4 slope Oesophagus Slope between PTV55 expanded 2.2cm overlapping the oesophagus and

PTV55 expanded 2.4cm overlapping the oesophagus

ptv55p00 0p0 0p2 slope CombinedLungs

- GTV

Slope between PTV55 expanded 0cm overlapping the combined lungs

and PTV55 expanded 0.2cm overlapping the combined lungs

ptv55p00 0p2 0p4 slope CombinedLungs

- GTV

Slope between PTV55 expanded 0.2cm overlapping the combined lungs

and PTV55 expanded 0.4cm overlapping the combined lungs

ptv55p00 0p4 0p6 slope CombinedLungs

- GTV

Slope between PTV55 expanded 0.4cm overlapping the combined lungs

and PTV55 expanded 0.6cm overlapping the combined lungs

ptv55p00 0p6 0p8 slope CombinedLungs

- GTV

Slope between PTV55 expanded 0.6cm overlapping the combined lungs

and PTV55 expanded 0.8cm overlapping the combined lungs

ptv55p00 0p8 1p0 slope CombinedLungs

- GTV

Slope between PTV55 expanded 0.8cm overlapping the combined lungs

and PTV55 expanded 1cm overlapping the combined lungs

ptv55p00 1p0 1p2 slope CombinedLungs

- GTV

Slope between PTV55 expanded 1cm overlapping the combined lungs

and PTV55 expanded 1.2cm overlapping the combined lungs

ptv55p00 1p2 1p4 slope CombinedLungs

- GTV

Slope between PTV55 expanded 1.2cm overlapping the combined lungs

and PTV55 expanded 1.4cm overlapping the combined lungs

ptv55p00 1p4 1p6 slope CombinedLungs

- GTV

Slope between PTV55 expanded 1.4cm overlapping the combined lungs

and PTV55 expanded 1.6cm overlapping the combined lungs

ptv55p00 1p6 1p8 slope CombinedLungs

- GTV

Slope between PTV55 expanded 1.6cm overlapping the combined lungs

and PTV55 expanded 1.8cm overlapping the combined lungs

ptv55p00 1p8 2p0 slope CombinedLungs

- GTV

Slope between PTV55 expanded 1.8cm overlapping the combined lungs

and PTV55 expanded 2cm overlapping the combined lungs

ptv55p00 2p0 2p2 slope CombinedLungs

- GTV

Slope between PTV55 expanded 2cm overlapping the combined lungs

and PTV55 expanded 2.2cm overlapping the combined lungs

ptv55p00 2p2 2p4 slope CombinedLungs

- GTV

Slope between PTV55 expanded 2.2cm overlapping the combined lungs

and PTV55 expanded 2.4cm overlapping the combined lungs
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VIF ptv55p00 IpsLung Volume of the ipsilateral lung between the most superior and most infe-

rior transverse slice of PTV55

VIF ptv55p00 ConLung Volume of the contralateral lung between the most superior and most

inferior transverse slice of PTV55

VIF ptv55p00 Cord Volume of the spinal cord between the most superior and most inferior

transverse slice of PTV55

VIF ptv55p00 Heart Volume of the heart between the most superior and most inferior trans-

verse slice of PTV55

VIF ptv55p00 Oesophagus Volume of the oesophagus between the most superior and most inferior

transverse slice of PTV55

VIF ptv55p00 CombinedLungs - GTV Volume of the combined lungs between the most superior and most in-

ferior transverse slice of PTV55

VOF ptv55p00 IpsLung Volume of the ipsilateral lung above the most superior and below the

most inferior transverse slice of PTV55

VOF ptv55p00 ConLung Volume of the contralateral lung above the most superior and below the

most inferior transverse slice of PTV55

VOF ptv55p00 Cord Volume of the spinal cord above the most superior and below the most

inferior transverse slice of PTV55

VOF ptv55p00 Heart Volume of the heart above the most superior and below the most inferior

transverse slice of PTV55

VOF ptv55p00 Oesophagus Volume of the oesophagus above the most superior and below the most

inferior transverse slice of PTV55

VOF ptv55p00 CombinedLungs -

GTV

Volume of the combined lungs above the most superior and below the

most inferior transverse slice of PTV55

Total VIF PTV55 Volume of the combined lungs, heart and oesophagus between the most

superior and most inferior transverse slice of PTV55

Total VOF PTV55 Volume of the combined lungs, heart and oesophagus above the most

superior and below the most inferior transverse slice of PTV55

ratio ptv55p00 External Volume of PTV55 divided by the external

ratio ptv55p00 IpsLung Volume of PTV55 divided by the ipsilateral lung

ratio ptv55p00 ConLung Volume of PTV55 divided by the contralateral lung

ratio ptv55p00 Cord Volume of PTV55 divided by the spinal cord

ratio ptv55p00 Heart Volume of PTV55 divided by the heart

ratio ptv55p00 Oesophagus Volume of PTV55 divided by the oesophagus

ratio ptv55p00 CombinedLungs - GTV Volume of PTV55 divided by the combined lungs

ratio External IpsLung Volume of the external divided by the ipsilateral lung

ratio External ConLung Volume of the external divided by the contralateral lung

ratio External Cord Volume of the external divided by the spinal cord

ratio External Heart Volume of the external divided by the heart

ratio External Oesophagus Volume of the external divided by the oesophagus

ratio External CombinedLungs - GTV Volume of the external divided by the combined lungs
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ratio IpsLung ConLung Volume of the ipsilalteral lung divided by the contralateral lung

ratio IpsLung Cord Volume of the ipsilalteral lung divided by the spinal cord

ratio IpsLung Heart Volume of the ipsilalteral lung divided by the heart

ratio IpsLung Oesophagus Volume of the ipsilalteral lung divided by the oesophagus

ratio IpsLung CombinedLungs - GTV Volume of the ipsilalteral lung divided by the combined lungs

ratio ConLung Cord Volume of the contralateral lung divided by the spinal cord

ratio ConLung Heart Volume of the contralateral lung divided by the heart

ratio ConLung Oesophagus Volume of the contralateral lung divided by the oesophagus

ratio ConLung CombinedLungs - GTV Volume of the contralateral lung divided by the combined lungs

ratio Cord Heart Volume of the spinal cord divided by the heart

ratio Cord Oesophagus Volume of the spinal cord divided by the oesophagus

ratio Cord CombinedLungs - GTV Volume of the spinal cord divided by the combined lungs

ratio Heart Oesophagus Volume of the spinal cord divided by the oesophagus

ratio Heart CombinedLungs - GTV Volume of the heart divided by the combined lungs

ratio Oesophagus CombinedLungs -

GTV

Volume of the oesophagus divided by the combined lungs
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Regression python script

import time

import pandas as pd

import numpy as np

import ast

from sklearn.cross_validation import LeaveOneOut

import sklearn.linear_model as sm

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.preprocessing import PolynomialFeatures

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

from sklearn.decomposition import PCA

pca = PCA()

##preparing the combinations of variable to be input into

↪→ the MLR

def combinations(iterable, r):

pool = tuple(iterable)

216
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n = len(pool)

if r > n:

return

indices = range(r)

yield list(pool[i] for i in indices)

while True:

for i in reversed(range(r)):

if indices[i] != i + n - r:

break

else:

return

indices[i] += 1

for j in range(i+1, r):

indices[j] = indices[j-1] + 1

yield list(pool[i] for i in indices)

def multiregRaw(site=’PSV’,metric=’Weight’,to_predict=’

↪→ Bladder’,n_features=2,n_degrees=1,leaveout=1,same=1,

↪→ select_features=[]):

polyreg=make_pipeline(PolynomialFeatures(n_degrees),sm.

↪→ LinearRegression())

##import data from excel

File= "H:\Users\IonaF\DataWorkbook"+site+".xlsx"

X_train = pd.read_excel(File,sheetname=’

↪→ FeaturesTrainingForRaw’,index_col=’Patient_ID’)
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y_train = pd.read_excel(File,sheetname=’WeightsTraining

↪→ ’,index_col=’Patient_ID’)

y_train = y_train[y_train[’Metric’]==metric].loc[:,

↪→ y_train.columns != ’Metric’]

y_train = y_train.loc[y_train[to_predict] != 0]

y_train.dropna(axis=1, how=’any’, inplace=True) #if

↪→ there still remain predictive features with null

↪→ values, delete.

X_train = X_train.loc[y_train.index]

if len(select_features) == 0:

combis = combinations(X_train.columns, n_features)

else:

combis = [select_features]

##initialising variables that will populate the "final"

↪→ dictionary that will be converted to the "

↪→ final_df" dataframe

for i in range(n_features):

exec ’feat%s=[]’ % str(i+1)

r2 = []

leftout = []

novel = []

existing = []

predicting = []

feat_count=[]

poly_degree=[]

actuals=[]

predictions=[]

featsALL=[]

final = {}

SSE = []



APPENDIX D. REGRESSION PYTHON SCRIPT 219

if leaveout == 0:

scaler.fit(X_train)

if same == 0: #predicting for novel cases. Never a

↪→ L1O with such data as all data is unseen

X_train = pd.DataFrame(scaler.transform(X_train),

↪→ columns=X_train.columns,index=X_train.index)

X_test = pd.read_excel(File,sheetname=’

↪→ FeaturesTestingForRaw’,index_col=’Patient_ID

↪→ ’)

X_test.dropna(axis=1, how=’any’, inplace=True) #

↪→ if there still remain predictive features

↪→ with null values, delete.

X_test = pd.DataFrame(scaler.transform(X_test),

↪→ columns=X_test.columns,index=X_test.index)

y_test = pd.read_excel(File,sheetname=’

↪→ WeightsTesting’,index_col=’Patient_ID’)

y_test = y_test[y_test[’Metric’]==metric].loc[:,

↪→ y_test.columns != ’Metric’]

y_test = y_test[y_test[to_predict].notnull()] #

↪→ clean for missing data

y_test = y_test.loc[y_test[to_predict] != 0]

X_test = X_test.loc[y_test.index]

training_patients=y_train.index.tolist()

testing_patients =y_test.index.tolist()

novel_patients=[x for x in testing_patients if x

↪→ not in training_patients] #shouldn’t be any

↪→ overlap but just a precaution

for feature_set in combis:

for novel_patient in novel_patients:
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for feat_count_minus1, current_feat in

↪→ enumerate(feature_set):

exec ’feat%s+=[current_feat]’ % str(

↪→ feat_count_minus1+1) #splitting the

↪→ features

novel += [novel_patient]

predicting += [to_predict]

feat_count += [n_features]

poly_degree += [n_degrees]

polyreg.fit(X_train[feature_set],y_train[

↪→ to_predict])

r2 += [polyreg.score(X_train[feature_set],

↪→ y_train[to_predict])]

X_test_ = X_test[feature_set].loc[

↪→ novel_patient]#include only the novel

↪→ patients

y_test_ = y_test[to_predict].loc[

↪→ novel_patient]

y_pred = polyreg.predict(X_test_).tolist()

actuals+=[y_test_]

predictions+=y_pred

featsALL+=[’,’.join(map(str, feature_set))]

for feat_count_minus1, feat in enumerate(

↪→ feature_set):

exec "final[’feat%s’]=feat%s" % (str(

↪→ feat_count_minus1+1), str(

↪→ feat_count_minus1+1))

final[’r2’] = r2

final[’predicting’] = predicting
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final[’number_of_feats’]=feat_count

final[’degree’] = poly_degree

final[’novel patient’]=novel

final[’actual y’] = actuals

final[’predicted y’] = predictions

final[’featsALL’] = featsALL

final_df = pd.DataFrame(final)

final_df[’diff’]=final_df[’actual y’]-final_df

↪→ [’predicted y’]

final_df[’perc diff’]=(final_df[’actual y’]-

↪→ final_df[’predicted y’])/final_df[’actual

↪→ y’]

final_df[’squared error’]=final_df[’diff’]**2

col_list_order = [’predicting’,’

↪→ number_of_feats’,’degree’,’novel patient’

↪→ ,’feat1’,’feat2’,’feat3’,’feat4’,’feat5’,

↪→ ’r2’,’actual y’,’predicted y’,’squared

↪→ error’,’diff’,’perc diff’,’featsALL’]

col_order=[]

for col in col_list_order:

if col in final_df.columns:

col_order+=[col]

final_df = final_df[col_order]

elif same == 1: #no L1O but using training data.

↪→ Used to view the final model created by the

↪→ training data

training_patients=X_train.index.tolist()

X_train = pd.DataFrame(scaler.transform(X_train),

↪→ columns=X_train.columns,index=X_train.index)

for feature_set in combis:

for training_patient in training_patients:
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for feat_count_minus1, current_feat in

↪→ enumerate(feature_set):

exec ’feat%s+=[current_feat]’ % str(

↪→ feat_count_minus1+1) #splitting the

↪→ features

existing += [training_patient]

predicting += [to_predict]

feat_count += [n_features]

poly_degree += [n_degrees]

polyreg.fit(X_train[feature_set],y_train[

↪→ to_predict])

r2 += [polyreg.score(X_train[feature_set],

↪→ y_train[to_predict])]

X_train_ = X_train[feature_set].loc[

↪→ training_patient]

y_train_ = y_train[to_predict].loc[

↪→ training_patient]

y_pred = polyreg.predict(X_train_).tolist()

actuals+=[y_train_]

predictions+=y_pred

featsALL+=[’,’.join(map(str, feature_set))]

for feat_count_minus1, feat in enumerate(

↪→ feature_set):

exec "final[’feat%s’]=feat%s" % (str(

↪→ feat_count_minus1+1), str(

↪→ feat_count_minus1+1))

final[’r2’] = r2

final[’predicting’] = predicting
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final[’number_of_feats’]=feat_count

final[’degree’] = poly_degree

final[’existing patient’]=existing

final[’actual y’] = actuals

final[’predicted y’] = predictions

final[’featsALL’] = featsALL

final_df = pd.DataFrame(final)

final_df[’diff’]=final_df[’actual y’]-final_df[’

↪→ predicted y’]

final_df[’perc diff’]=(final_df[’actual y’]-

↪→ final_df[’predicted y’])/final_df[’actual y’

↪→ ]

final_df[’squared error’]=final_df[’diff’]**2

col_list_order = [’predicting’,’number_of_feats’,

↪→ ’degree’,’existing patient’,’feat1’,’feat2’,

↪→ ’feat3’,’feat4’,’feat5’,’r2’,’actual y’,’

↪→ predicted y’,’squared error’,’diff’,’perc

↪→ diff’,’featsALL’]

col_order=[]

for col in col_list_order:

if col in final_df.columns:

col_order+=[col]

final_df = final_df[col_order]

elif leaveout == 1: #same is redundant here. Only

↪→ trainin data will ever be used n this step

loo = LeaveOneOut(n=len(y_train))

for feature_set in combis:

leftout_ = []

predicting_ = []

feat_count_ = []

poly_degree_ = []
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r2_ = []

y_pred_ = []

actuals_ = []

predictions_ = []

featsALL_ = []

for included_patients,left_out_patient in loo:

for feat_count_minus1, current_feat in

↪→ enumerate(feature_set):

exec ’feat%s+=[current_feat]’ % str(

↪→ feat_count_minus1+1)

leftout_ += X_train.iloc[left_out_patient].

↪→ index.tolist()

predicting_ += [to_predict]

feat_count_ += [n_features]

poly_degree_ += [n_degrees]

X_train_left_in = X_train[feature_set].iloc[

↪→ included_patients]

scaler.fit(X_train_left_in)

X_train_left_in = scaler.transform(

↪→ X_train_left_in)

X_train_left_out = X_train[feature_set].iloc[

↪→ left_out_patient]

X_train_left_out = scaler.transform(

↪→ X_train_left_out)

y_train_left_in = y_train[to_predict].iloc[

↪→ included_patients]

y_train_left_out = y_train[to_predict].iloc[

↪→ left_out_patient]
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polyreg.fit(X_train_left_in,y_train_left_in)

r2_ += [polyreg.score(X_train_left_in,

↪→ y_train_left_in)]

y_pred_ += polyreg.predict(X_train_left_out).

↪→ tolist()

actuals_ += y_train_left_out.tolist()

predictions_ = y_pred_

featsALL_ += [’,’.join(map(str, feature_set))]

#for feat_count, feat in enumerate(feature_set

↪→ ):

# exec "final[’feat%s’]=feat%s" % (str(

↪→ feat_count+1), str(feat_count+1))

SSE_ = sum([i**2 for i in np.subtract(y_pred_,

↪→ actuals_).tolist()])

if len(SSE)==0:

leftout = leftout_

predicting = predicting_

feat_count = feat_count_

poly_degree = poly_degree_

r2 = r2_

actuals = actuals_

predictions = predictions_

featsALL = featsALL_

elif len(SSE)>0 and SSE_ < min(SSE):

leftout = leftout_

predicting = predicting_

feat_count = feat_count_

poly_degree = poly_degree_

r2 = r2_

actuals = actuals_
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predictions = predictions_

featsALL = featsALL_

SSE += [SSE_]

final[’r2’] = r2

final[’predicting’] = predicting

final[’number_of_feats’]=feat_count

final[’degree’] = poly_degree

final[’left out patient’]=leftout

final[’actual y’] = actuals

final[’predicted y’] = predictions

final[’featsALL’] = featsALL

final_df = pd.DataFrame(final)

final_df[’diff’]=final_df[’actual y’]-final_df[’

↪→ predicted y’]

final_df[’perc diff’]=(final_df[’actual y’]-final_df

↪→ [’predicted y’])/final_df[’actual y’]

final_df[’squared error’]=final_df[’diff’]**2

final_df[’SSE’] = final_df.groupby(’featsALL’)[’

↪→ squared error’].transform(’sum’)

col_list_order = [’predicting’,’number_of_feats’,’

↪→ degree’,’left out patient’,’feat1’,’feat2’,’

↪→ feat3’,’feat4’,’feat5’,’r2’,’actual y’,’

↪→ predicted y’,’squared error’,’diff’,’perc diff’

↪→ ,’featsALL’]

col_order=[]

for col in col_list_order:

if col in final_df.columns:

col_order+=[col]

final_df = final_df[col_order]

return final_df
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def multiregPCA(site=’PSV’,metric=’Weight’,to_predict=’

↪→ Bladder’,n_features=2,n_degrees=1,leaveout=1,same=1):

polyreg=make_pipeline(PolynomialFeatures(n_degrees),sm.

↪→ LinearRegression())

##import data from excel

File= "H:\Users\IonaF\DataWorkbook"+site+".xlsx"

X_train = pd.read_excel(File,sheetname=’

↪→ FeaturesTrainingForPCA’,index_col=’Patient_ID’)

y_train = pd.read_excel(File,sheetname=’WeightsTraining

↪→ ’,index_col=’Patient_ID’)

y_train = y_train[y_train[’Metric’]==metric].loc[:,

↪→ y_train.columns != ’Metric’]

y_train = y_train.loc[y_train[to_predict] != 0]

y_train.dropna(axis=1, how=’any’, inplace=True)

X_train = X_train.loc[y_train.index]

##initialising variables that will populate the "final"

↪→ dictionary that will be converted to the "

↪→ final_df" dataframe

for i in range(n_features):

exec ’feat%s=[]’ % str(i+1)

r2 = []
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leftout = []

novel = []

existing = []

predicting = []

feat_count=[]

poly_degree=[]

y_pred_name=[]

actuals=[]

predictions=[]

featsALL=[]

predict_time=[]

fit_time=[]

final = {}

if leaveout == 0:

scaler.fit(X_train)

training_patients=y_train.index.tolist()

if same == 0: #predicting for novel cases. Never a

↪→ L1O with such data as all data is unseen

y_test = pd.read_excel(File,sheetname=’

↪→ WeightsTesting’,index_col=’Patient_ID’)

y_test = y_test[y_test[’Metric’]==metric].loc[:,

↪→ y_test.columns != ’Metric’]

y_test = y_test[y_test[to_predict].notnull()] #

↪→ clean for missing data

y_test = y_test.loc[y_test[to_predict] != 0]

X_train = pd.DataFrame(scaler.transform(X_train),

↪→ columns=X_train.columns,index=X_train.index)

X_test = pd.read_excel(File,sheetname=’

↪→ FeaturesTestingForPCA’,index_col=’Patient_ID

↪→ ’)
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X_test.dropna(axis=1, how=’any’, inplace=True) #

↪→ if there still remain predictive features

↪→ with null values, delete.

X_test = X_test.loc[y_test.index]

X_test = pd.DataFrame(scaler.transform(X_test),

↪→ columns=X_test.columns,index=X_test.index)

pca.fit(X_train)

PC_cols=["PC"+str.zfill(str(x+1),2) for x in

↪→ range(min(X_train.shape))]

X_train = pd.DataFrame(pca.transform(X_train),

↪→ columns=PC_cols)

X_test = pd.DataFrame(pca.transform(X_test),

↪→ columns=PC_cols)

testing_patients =y_test.index.tolist()

novel_patients=[x for x in testing_patients if x

↪→ not in training_patients] #shouldn’t be any

↪→ overlap but just a precaution

feature_set=PC_cols[:n_features]

for novel_i,novel_patient in enumerate(

↪→ novel_patients):

novel += [novel_patient]

predicting += [to_predict]

feat_count += [n_features]

poly_degree += [n_degrees]

polyreg.fit(X_train[feature_set],y_train[

↪→ to_predict])

r2 += [polyreg.score(X_train[feature_set],

↪→ y_train[to_predict])]
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X_test_ = X_test[feature_set].iloc[novel_i]#

↪→ include only the novel patients

y_test_ = y_test[to_predict].iloc[novel_i]

y_pred = polyreg.predict(X_test_).tolist()

actuals+=[y_test_]

predictions+=y_pred

featsALL+=[’,’.join(map(str, feature_set))]

final[’r2’] = r2

final[’predicting’] = predicting

final[’number_of_PCs’]=feat_count

final[’degree’] = poly_degree

final[’novel patient’]=novel

final[’actual y’] = actuals

final[’predicted y’] = predictions

final[’featsALL’] = featsALL

final_df = pd.DataFrame(final)

final_df[’diff’]=final_df[’actual y’]-final_df[’

↪→ predicted y’]

final_df[’perc diff’]=(final_df[’actual y’]-

↪→ final_df[’predicted y’])/final_df[’actual y’

↪→ ]

final_df[’SSE’] = final_df.groupby(’featsALL’)[’

↪→ squared error’].transform(’sum’)

final_df=final_df[final_df[’SSE’]==min(final_df[’

↪→ SSE’])]

#final_df[’squared error’]=final_df[’diff’]**2

col_list_order = [’predicting’,’number_of_PCs’,’

↪→ degree’,’novel patient’,’r2’,’actual y’,’

↪→ predicted y’,’squared error’,’diff’,’perc

↪→ diff’,’featsALL’]

col_order=[]
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for col in col_list_order:

if col in final_df.columns:

col_order+=[col]

final_df = final_df[col_order]

elif same == 1: #no L1O but using training data.

↪→ Used to view the final model created by the

↪→ training data

training_patients=y_train.index.tolist()

X_train = pd.DataFrame(scaler.transform(X_train),

↪→ columns=X_train.columns,index=X_train.index)

pca.fit(X_train)

PC_cols=["PC"+str.zfill(str(x+1),2) for x in

↪→ range(min(X_train.shape))]

X_train = pd.DataFrame(pca.transform(X_train),

↪→ columns=PC_cols)

feature_set=PC_cols[:n_features]

for training_i,training_patient in enumerate(

↪→ training_patients):

existing += [training_patient]

predicting += [to_predict]

feat_count += [n_features]

poly_degree += [n_degrees]

polyreg.fit(X_train[feature_set],y_train[

↪→ to_predict])

r2 += [polyreg.score(X_train[feature_set],

↪→ y_train[to_predict])]

X_train_ = X_train[feature_set].iloc[

↪→ training_i]
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y_train_ = y_train[to_predict].iloc[training_i

↪→ ]

y_pred = polyreg.predict(X_train_).tolist()

actuals+=[y_train_]

predictions+=y_pred

featsALL+=[’,’.join(map(str, feature_set))]

final[’r2’] = r2

final[’predicting’] = predicting

final[’number_of_PCs’]=feat_count

final[’degree’] = poly_degree

final[’existing patient’]=existing

final[’actual y’] = actuals

final[’predicted y’] = predictions

final[’featsALL’] = featsALL

final_df = pd.DataFrame(final)

final_df[’diff’]=final_df[’actual y’]-final_df[’

↪→ predicted y’]

final_df[’perc diff’]=(final_df[’actual y’]-

↪→ final_df[’predicted y’])/final_df[’actual y’

↪→ ]

final_df[’squared error’]=final_df[’diff’]**2

final_df[’SSE’] = final_df.groupby(’featsALL’)[’

↪→ squared error’].transform(’sum’)

final_df=final_df[final_df[’SSE’]==min(final_df[’

↪→ SSE’])]

#final_df=final_df[final_df[’r2’]==max(final_df[’

↪→ r2’])]

col_list_order = [’predicting’,’number_of_PCs’,’

↪→ degree’,’existing patient’,’r2’,’actual y’,’

↪→ predicted y’,’squared error’,’diff’,’perc

↪→ diff’,’featsALL’]
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col_order=[]

for col in col_list_order:

if col in final_df.columns:

col_order+=[col]

final_df = final_df[col_order]

elif leaveout == 1: #same is redundant here.

loo = LeaveOneOut(n=len(y_train))

for included_patients,left_out_patient in loo:

leftout += X_train.iloc[left_out_patient].index.

↪→ tolist()

predicting += [to_predict]

feat_count += [n_features]

poly_degree += [n_degrees]

X_train_left_in = X_train.iloc[included_patients]

scaler.fit(X_train_left_in)

X_train_left_in = scaler.transform(

↪→ X_train_left_in)

pca.fit(X_train_left_in)

X_train_left_in = pca.transform(X_train_left_in)

PC_cols=["PC"+str.zfill(str(x+1),2) for x in

↪→ range(min(X_train_left_in.shape))]

X_train_left_in = pd.DataFrame(X_train_left_in,

↪→ columns=PC_cols)

X_train_left_out = X_train.iloc[left_out_patient]

X_train_left_out = pd.DataFrame(scaler.transform(

↪→ X_train_left_out),columns=X_train_left_out.

↪→ columns,index=X_train_left_out.index)
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X_train_left_out = pd.DataFrame(pca.transform(

↪→ X_train_left_out),columns=PC_cols)

feature_set=PC_cols[:n_features]

y_train_left_in = y_train[to_predict].iloc[

↪→ included_patients]

y_train_left_out = y_train[to_predict].iloc[

↪→ left_out_patient]

polyreg.fit(X_train_left_in[feature_set],

↪→ y_train_left_in)

#r2 += [pd.to_numeric(polyreg.score(

↪→ X_train_left_in[feature_set],y_train_left_in

↪→ [feature_set]), errors=’coerce’).isnull()]

r2 += [polyreg.score(X_train_left_in[feature_set

↪→ ],y_train_left_in)]

y_pred = polyreg.predict(X_train_left_out[

↪→ feature_set])

#y_pred_name+=X_train.index[left_out_patient]

actuals+=y_train_left_out.tolist()

predictions+=y_pred.tolist()

featsALL+=[’,’.join(map(str, feature_set))]

final[’r2’] = r2

final[’predicting’] = predicting

final[’number_of_PCs’]=feat_count

final[’degree’] = poly_degree

final[’left out patient’]=leftout

final[’actual y’] = actuals

final[’predicted y’] = predictions

final[’featsALL’] = featsALL

final_df = pd.DataFrame(final)
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final_df[’diff’]=final_df[’actual y’]-final_df[’

↪→ predicted y’]

final_df[’perc diff’]=(final_df[’actual y’]-final_df

↪→ [’predicted y’])/final_df[’actual y’]

final_df[’squared error’]=final_df[’diff’]**2

final_df[’SSE’] = final_df.groupby(’featsALL’)[’

↪→ squared error’].transform(’sum’)

col_list_order = [’predicting’,’number_of_PCs’,’

↪→ degree’,’left out patient’,’r2’,’actual y’,’

↪→ predicted y’,’squared error’,’diff’,’perc diff’

↪→ ,’featsALL’]

col_order=[]

for col in col_list_order:

if col in final_df.columns:

col_order+=[col]

final_df = final_df[col_order]

return final_df
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Clustering python script

import pandas as pd

import numpy as np

import sklearn.cluster as clus

from sklearn.metrics import mean_squared_error, r2_score,

↪→ silhouette_samples, silhouette_score

from sklearn.model_selection import LeaveOneOut

loo = LeaveOneOut()

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

from sklearn.decomposition import PCA

pca = PCA()

Stem = ’/Users/ionafoster/Desktop/ModellingCodes/’

def clusteringmethodRaw(site=’PSV’,metric=’Weight’,

↪→ n_clusts=1,leaveout=0,same=0):

kmeans = clus.KMeans(

init="random",

n_clusters=n_clusts,

n_init=10,

max_iter=300,

236
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random_state=42

)

##import data from excel

File= Stem+"DataWorkbook"+site+".xlsx"

X_train = pd.read_excel(File,sheet_name=’

↪→ FeaturesTrainingForRaw’,index_col=’Patient_ID’).

↪→ fillna(0)

y_train = pd.read_excel(File,sheet_name=’

↪→ WeightsTraining’,index_col=’Patient_ID’)

y_train = y_train[y_train[’Metric’]==metric].loc[:,

↪→ y_train.columns != ’Metric’]

y_train.dropna(axis=1, how=’any’, inplace=True) #if

↪→ there still remain predictive features with null

↪→ values, delete.

y_train = y_train.replace(0, np.NaN)

##initialising variables that will populate the "final"

↪→ dictionary that will be converted to the "

↪→ final_df" dataframe

actuals=[]

predictions=[]

sse=[]

final = {}

if leaveout==0:

scaler.fit(X_train)

if same==0:

X_train = pd.DataFrame(scaler.transform(X_train),

↪→ columns=X_train.columns,index=X_train.index)

↪→ .fillna(0)
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X_test = pd.read_excel(File,sheet_name=’

↪→ FeaturesTestingForRaw’,index_col=’Patient_ID

↪→ ’).fillna(0)

X_test.dropna(axis=1, how=’any’, inplace=True) #

↪→ if there still remain predictive features

↪→ with null values, delete.

X_test = pd.DataFrame(scaler.transform(X_test),

↪→ columns=X_test.columns,index=X_test.index)

y_test = pd.read_excel(File,sheet_name=’

↪→ WeightsTesting’,index_col=’Patient_ID’)

y_test = y_test[y_test[’Metric’]==metric].loc[:,

↪→ y_test.columns != ’Metric’]

y_test.dropna(axis=1, how=’any’, inplace=True)

y_test = y_test.replace(0, np.NaN)

kmeans.fit(X_train)

train_clus_groups = kmeans.predict(X_train)+1

y_train[’Cluster_Group’]=train_clus_groups

means = y_train.replace(0, np.NaN).groupby(’

↪→ Cluster_Group’).mean()

test_clus_groups = kmeans.predict(X_test)+1

y_test[’Cluster_Group’]=test_clus_groups

y_pred = y_test[[’Cluster_Group’]].merge(means,

↪→ left_on=’Cluster_Group’,right_index=True)

final[’actual y’] = y_test

final[’predicted y’] = y_pred

final[’sse’] = kmeans.inertia_

if n_clusts>1 and n_clusts<len(X_train):

final[’silhouette_avg’] = silhouette_score(

↪→ X_train, train_clus_groups)
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final[’sample_silhouette_values’] = pd.

↪→ DataFrame(silhouette_samples(X_train,

↪→ train_clus_groups),columns=[’

↪→ silhouette_values’],index=X_train.index)

diff_df=y_test.drop(’Cluster_Group’,axis=1)-

↪→ y_pred.drop(’Cluster_Group’,axis=1)

percent_diff_df=(y_test.drop(’Cluster_Group’,axis

↪→ =1)-y_pred.drop(’Cluster_Group’,axis=1))/

↪→ y_test.drop(’Cluster_Group’,axis=1)

summary={}

summary[’MSE’]=np.square(diff_df).replace(0, np.

↪→ NaN).mean()

summary[’mean_diff’]=diff_df.replace(0, np.NaN).

↪→ mean()

summary[’median_diff’]=diff_df.replace(0, np.NaN)

↪→ .median()

summary[’mean_perc_diff’]=percent_diff_df.replace

↪→ (0, np.NaN).mean()

summary[’median_perc_diff’]=percent_diff_df.

↪→ replace(0, np.NaN).median()

final[’summary’]=pd.DataFrame(summary)

elif same==1:

X_train = pd.DataFrame(scaler.transform(X_train),

↪→ columns=X_train.columns,index=X_train.index)

training_patients=X_train.index.tolist()

kmeans.fit(X_train)

train_clus_groups = kmeans.predict(X_train)+1

y_train[’Cluster_Group’]=train_clus_groups

means = y_train.replace(0, np.NaN).groupby(’

↪→ Cluster_Group’).mean()
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y_pred = y_train[[’Cluster_Group’]].merge(means,

↪→ left_on=’Cluster_Group’,right_index=True)

final[’actual y’] = y_train

final[’predicted y’] = y_pred

final[’sse’] = kmeans.inertia_

if n_clusts>1 and n_clusts<len(X_train):

final[’silhouette_avg’] = silhouette_score(

↪→ X_train, train_clus_groups)

final[’sample_silhouette_values’] = pd.

↪→ DataFrame(silhouette_samples(X_train,

↪→ train_clus_groups),columns=[’

↪→ silhouette_values’],index=X_train.index)

diff_df=y_train.drop(’Cluster_Group’,axis=1)-

↪→ y_pred.drop(’Cluster_Group’,axis=1)

percent_diff_df=(y_train.drop(’Cluster_Group’,

↪→ axis=1)-y_pred.drop(’Cluster_Group’,axis=1))

↪→ /y_train.drop(’Cluster_Group’,axis=1)

summary={}

summary[’MSE’]=np.square(diff_df).replace(0, np.

↪→ NaN).mean()

summary[’mean_diff’]=diff_df.replace(0, np.NaN).

↪→ mean()

summary[’median_diff’]=diff_df.replace(0, np.NaN)

↪→ .median()

summary[’mean_perc_diff’]=percent_diff_df.replace

↪→ (0, np.NaN).mean()

summary[’median_perc_diff’]=percent_diff_df.

↪→ replace(0, np.NaN).median()

final[’summary’]=pd.DataFrame(summary)

elif leaveout==1:

loo.get_n_splits(X_train)
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actuals=pd.DataFrame()

predictions=pd.DataFrame()

sse=[]

silhouette=[]

for included_patients,left_out_patient in loo.split(

↪→ y_train):

X_train_left_in = X_train.iloc[included_patients]

scaler.fit(X_train_left_in)

X_train_left_in = pd.DataFrame(scaler.transform(

↪→ X_train_left_in),columns=X_train_left_in.

↪→ columns,index=X_train_left_in.index)

X_train_left_out = X_train.iloc[left_out_patient]

X_train_left_out = pd.DataFrame(scaler.transform(

↪→ X_train_left_out),columns=X_train_left_out.

↪→ columns,index=X_train_left_out.index)

y_train_left_in = y_train.iloc[included_patients]

y_train_left_out = y_train.iloc[left_out_patient]

kmeans.fit(X_train_left_in)

left_in_clus_groups = kmeans.predict(

↪→ X_train_left_in)+1

y_train_left_in[’Cluster_Group’]=

↪→ left_in_clus_groups

means = y_train_left_in.replace(0, np.NaN).

↪→ groupby(’Cluster_Group’).mean()

left_out_clus_groups = kmeans.predict(

↪→ X_train_left_out)+1

y_train_left_out[’Cluster_Group’]=

↪→ left_out_clus_groups
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y_pred = y_train_left_out[[’Cluster_Group’]].

↪→ merge(means,left_on=’Cluster_Group’,

↪→ right_index=True)

sse+=[kmeans.inertia_]

if n_clusts>1 and n_clusts<len(X_train)-1:

silhouette+=[silhouette_score(X_train_left_in,

↪→ left_in_clus_groups)]

actuals=pd.concat([actuals,y_train_left_out])

predictions=pd.concat([predictions,y_pred])

final[’actual y’] = actuals

final[’predicted y’] = predictions

final[’sse’] = pd.DataFrame(sse,columns=[’sse’],

↪→ index=X_train.index)

if n_clusts>1 and n_clusts<len(X_train):

final[’silhouette_avg’] = pd.DataFrame(silhouette

↪→ ,columns=[’silhouette_averages’],index=

↪→ X_train.index)

diff_df=actuals.drop(’Cluster_Group’,axis=1)-

↪→ predictions.drop(’Cluster_Group’,axis=1)

percent_diff_df=(actuals.drop(’Cluster_Group’,axis

↪→ =1)-predictions.drop(’Cluster_Group’,axis=1))/

↪→ actuals.drop(’Cluster_Group’,axis=1)

summary={}

summary[’MSE’]=np.square(diff_df).replace(0, np.NaN)

↪→ .mean()

summary[’mean_diff’]=diff_df.replace(0, np.NaN).mean

↪→ ()

summary[’median_diff’]=diff_df.replace(0, np.NaN).

↪→ median()
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summary[’mean_perc_diff’]=percent_diff_df.replace(0,

↪→ np.NaN).mean()

summary[’median_perc_diff’]=percent_diff_df.replace

↪→ (0, np.NaN).median()

final[’summary’]=pd.DataFrame(summary)

return final

def clusteringmethodPCA(site=’PSV’,metric=’Weight’,

↪→ n_clusts=1,leaveout=0,same=0):

kmeans = clus.KMeans(

init="random",

n_clusters=n_clusts,

n_init=10,

max_iter=300,

random_state=42

)

##import data from excel

File= Stem+"DataWorkbook"+site+".xlsx"

X_train = pd.read_excel(File,sheet_name=’

↪→ FeaturesTrainingForPCA’,index_col=’Patient_ID’).

↪→ fillna(0)

y_train = pd.read_excel(File,sheet_name=’

↪→ WeightsTraining’,index_col=’Patient_ID’)
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y_train = y_train[y_train[’Metric’]==metric].loc[:,

↪→ y_train.columns != ’Metric’]

y_train.dropna(axis=1, how=’any’, inplace=True) #if

↪→ there still remain predictive features with null

↪→ values, delete.

y_train = y_train.replace(0, np.NaN)

##initialising variables that will populate the "final"

↪→ dictionary that will be converted to the "

↪→ final_df" dataframe

actuals=[]

predictions=[]

sse=[]

final = {}

if leaveout==0:

scaler.fit(X_train)

if same==0:

X_train = pd.DataFrame(scaler.transform(X_train),

↪→ columns=X_train.columns,index=X_train.index)

↪→ .fillna(0)

X_test = pd.read_excel(File,sheet_name=’

↪→ FeaturesTestingForPCA’,index_col=’Patient_ID

↪→ ’).fillna(0)

X_test.dropna(axis=1, how=’any’, inplace=True) #

↪→ if there still remain predictive features

↪→ with null values, delete.

X_test = pd.DataFrame(scaler.transform(X_test),

↪→ columns=X_test.columns,index=X_test.index)

y_test = pd.read_excel(File,sheet_name=’

↪→ WeightsTesting’,index_col=’Patient_ID’)
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y_test = y_test[y_test[’Metric’]==metric].loc[:,

↪→ y_test.columns != ’Metric’]

y_test.dropna(axis=1, how=’any’, inplace=True)

y_test = y_test.replace(0, np.NaN)

pca.fit(X_train)

PC_cols=["PC"+str.zfill(str(x+1),2) for x in

↪→ range(min(X_train.shape))]

X_train = pd.DataFrame(pca.transform(X_train),

↪→ columns=PC_cols)

X_test = pd.DataFrame(pca.transform(X_test),

↪→ columns=PC_cols)

kmeans.fit(X_train)

train_clus_groups = kmeans.predict(X_train)+1

y_train[’Cluster_Group’]=train_clus_groups

means = y_train.replace(0, np.NaN).groupby(’

↪→ Cluster_Group’).mean()

test_clus_groups = kmeans.predict(X_test)+1

y_test[’Cluster_Group’]=test_clus_groups

y_pred = y_test[[’Cluster_Group’]].merge(means,

↪→ left_on=’Cluster_Group’,right_index=True)

final[’actual y’] = y_test

final[’predicted y’] = y_pred

final[’sse’] = kmeans.inertia_

if n_clusts>1 and n_clusts<len(X_train):

final[’silhouette_avg’] = silhouette_score(

↪→ X_train, train_clus_groups)

final[’sample_silhouette_values’] = pd.

↪→ DataFrame(silhouette_samples(X_train,

↪→ train_clus_groups),columns=[’
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↪→ silhouette_values’],index=X_train.index)

diff_df=y_test.drop(’Cluster_Group’,axis=1)-

↪→ y_pred.drop(’Cluster_Group’,axis=1)

percent_diff_df=(y_test.drop(’Cluster_Group’,axis

↪→ =1)-y_pred.drop(’Cluster_Group’,axis=1))/

↪→ y_test.drop(’Cluster_Group’,axis=1)

summary={}

summary[’MSE’]=np.square(diff_df).replace(0, np.

↪→ NaN).mean()

summary[’mean_diff’]=diff_df.replace(0, np.NaN).

↪→ mean()

summary[’median_diff’]=diff_df.replace(0, np.NaN)

↪→ .median()

summary[’mean_perc_diff’]=percent_diff_df.replace

↪→ (0, np.NaN).mean()

summary[’median_perc_diff’]=percent_diff_df.

↪→ replace(0, np.NaN).median()

final[’summary’]=pd.DataFrame(summary)

elif same==1:

training_patients=X_train.index.tolist()

X_train = pd.DataFrame(scaler.transform(X_train),

↪→ columns=X_train.columns,index=X_train.index)

pca.fit(X_train)

PC_cols=["PC"+str.zfill(str(x+1),2) for x in

↪→ range(min(X_train.shape))]

X_train = pd.DataFrame(pca.transform(X_train),

↪→ columns=PC_cols)

kmeans.fit(X_train)

train_clus_groups = kmeans.predict(X_train)+1

y_train[’Cluster_Group’]=train_clus_groups
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means = y_train.replace(0, np.NaN).groupby(’

↪→ Cluster_Group’).mean()

y_pred = y_train[[’Cluster_Group’]].merge(means,

↪→ left_on=’Cluster_Group’,right_index=True)

final[’actual y’] = y_train

final[’predicted y’] = y_pred

final[’sse’] = kmeans.inertia_

if n_clusts>1 and n_clusts<len(X_train):

final[’silhouette_avg’] = silhouette_score(

↪→ X_train, train_clus_groups)

final[’sample_silhouette_values’] = pd.

↪→ DataFrame(silhouette_samples(X_train,

↪→ train_clus_groups),columns=[’

↪→ silhouette_values’],index=X_train.index)

diff_df=y_train.drop(’Cluster_Group’,axis=1)-

↪→ y_pred.drop(’Cluster_Group’,axis=1)

percent_diff_df=(y_train.drop(’Cluster_Group’,

↪→ axis=1)-y_pred.drop(’Cluster_Group’,axis=1))

↪→ /y_train.drop(’Cluster_Group’,axis=1)

summary={}

summary[’MSE’]=np.square(diff_df).replace(0, np.

↪→ NaN).mean()

summary[’mean_diff’]=diff_df.replace(0, np.NaN).

↪→ mean()

summary[’median_diff’]=diff_df.replace(0, np.NaN)

↪→ .median()

summary[’mean_perc_diff’]=percent_diff_df.replace

↪→ (0, np.NaN).mean()

summary[’median_perc_diff’]=percent_diff_df.

↪→ replace(0, np.NaN).median()

final[’summary’]=pd.DataFrame(summary)
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elif leaveout==1:

loo.get_n_splits(X_train)

actuals=pd.DataFrame()

predictions=pd.DataFrame()

sse=[]

silhouette=[]

for included_patients,left_out_patient in loo.split(

↪→ y_train):

X_train_left_in = X_train.iloc[included_patients]

scaler.fit(X_train_left_in)

X_train_left_in = pd.DataFrame(scaler.transform(

↪→ X_train_left_in),columns=X_train_left_in.

↪→ columns,index=X_train_left_in.index)

pca.fit(X_train_left_in)

PC_cols=["PC"+str.zfill(str(x+1),2) for x in

↪→ range(min(X_train_left_in.shape))]

X_train_left_in = pca.transform(X_train_left_in)

X_train_left_in = pd.DataFrame(X_train_left_in,

↪→ columns=PC_cols)

X_train_left_out = X_train.iloc[left_out_patient]

X_train_left_out = pd.DataFrame(scaler.transform(

↪→ X_train_left_out),columns=X_train_left_out.

↪→ columns,index=X_train_left_out.index)

X_train_left_out = pd.DataFrame(pca.transform(

↪→ X_train_left_out),columns=PC_cols)

y_train_left_in = y_train.iloc[included_patients]

y_train_left_out = y_train.iloc[left_out_patient]

kmeans.fit(X_train_left_in)
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left_in_clus_groups = kmeans.predict(

↪→ X_train_left_in)+1

y_train_left_in[’Cluster_Group’]=

↪→ left_in_clus_groups

means = y_train_left_in.replace(0, np.NaN).

↪→ groupby(’Cluster_Group’).mean()

left_out_clus_groups = kmeans.predict(

↪→ X_train_left_out)+1

y_train_left_out[’Cluster_Group’]=

↪→ left_out_clus_groups

y_pred = y_train_left_out[[’Cluster_Group’]].

↪→ merge(means,left_on=’Cluster_Group’,

↪→ right_index=True)

sse+=[kmeans.inertia_]

if n_clusts>1 and n_clusts<len(X_train)-1:

silhouette+=[silhouette_score(X_train_left_in,

↪→ left_in_clus_groups)]

actuals=pd.concat([actuals,y_train_left_out])

predictions=pd.concat([predictions,y_pred])

final[’actual y’] = actuals

final[’predicted y’] = predictions

final[’sse’] = pd.DataFrame(sse,columns=[’sse’],

↪→ index=X_train.index)

if n_clusts>1 and n_clusts<len(X_train):

final[’silhouette_avg’] = pd.DataFrame(silhouette

↪→ ,columns=[’silhouette_averages’],index=

↪→ X_train.index)
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diff_df=actuals.drop(’Cluster_Group’,axis=1)-

↪→ predictions.drop(’Cluster_Group’,axis=1)

percent_diff_df=(actuals.drop(’Cluster_Group’,axis

↪→ =1)-predictions.drop(’Cluster_Group’,axis=1))/

↪→ actuals.drop(’Cluster_Group’,axis=1)

summary={}

summary[’MSE’]=np.square(diff_df).replace(0, np.NaN)

↪→ .mean()

summary[’mean_diff’]=diff_df.replace(0, np.NaN).mean

↪→ ()

summary[’median_diff’]=diff_df.replace(0, np.NaN).

↪→ median()

summary[’mean_perc_diff’]=percent_diff_df.replace(0,

↪→ np.NaN).mean()

summary[’median_perc_diff’]=percent_diff_df.replace

↪→ (0, np.NaN).median()

final[’summary’]=pd.DataFrame(summary)

return final
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