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Abstract. Multi-modal and multi-contrast imaging datasets have di-
verse voxel-wise intensities. For example, quantitative MRI acquisition
protocols are designed specifically to yield multiple images with widely-
varying contrast that inform models relating MR signals to tissue charac-
teristics. The large variance across images in such data prevents the use of
standard normalisation techniques, making super resolution highly chal-
lenging. We propose a novel self-supervised mixture-of-experts (SS-MoE)
paradigm for deep neural networks, and hence present a method enabling
improved super resolution of data where image intensities are diverse and
have large variance. Unlike the conventional MoE that automatically ag-
gregates expert results for each input, we explicitly assign an input to
the corresponding expert based on the predictive pseudo error labels in
a self-supervised fashion. A new gater module is trained to discriminate
the error levels of inputs estimated by Multiscale Quantile Segmentation.
We show that our new paradigm reduces the error and improves the ro-
bustness when super resolving combined diffusion-relaxometry MRI data
from the Super MUDI dataset. Our approach is suitable for a wide range
of quantitative MRI techniques, and multi-contrast or multi-modal imag-
ing techniques in general. It could be applied to super resolve images with
inadequate resolution, or reduce the scanning time needed to acquire im-
ages of the required resolution. The source code and the trained models
are available at https://github.com/hongxiangharry/SS-MoE.

Keywords: Self Supervision · Mixture of Experts · Quantitative MRI ·

Generalised Super Resolution · Pseudo labels.

1 Introduction

Quantitative Magnetic Resonance Imaging (qMRI) can measure and map chem-
ical, physical, and physiological values that strongly relate to underlying tissue

⋆ HL and YZ contributed equally.
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Fig. 1. (Blue block) Histogram of mean-squared-error (MSE) between interpolated LR
volumes and HR volumes in Subject cdmri0015 in the first anisotropic Super MUDI
Dataset. All MSE scores were clustered into 30 bins within log scale. (Red line) Density
of the gross MSE scores over all volumes. Cubic spline method was used to interpolate
LR volume.

structure and function. Such measurements have the potential to improve diag-
nosis, prognosis and monitoring of a wide variety of diseases. However, qMRI has
not yet been widely used in the clinic, due to long acquisition times and noise
sensitivity. Super-resolution (SR) reconstruction techniques enable images with
the same spatial resolution to be acquired within reduced scanning times and
with improved signal-to-noise ratios [30]. Improved SR techniques can hence
increase the likelihood of clinical adoption of qMRI, as well as similar multi-
modal or multi-contrast imaging techniques, such as multi-contrast X-ray [32]
and multi-modal functional imaging [29].

Deep learning based SR for medical imaging has demonstrated significant im-
provements over existing techniques [4, 5, 18, 19, 33, 34]. However, the data nor-
malisation required for deep learning SR hinders its application to multi-modal
or multi-contrast techniques such as qMRI, as such imaging datasets have di-
verse voxel-wise intensities leading to large variances that prevent the use of
standard normalisation techniques. In conventional MRI SR, intensity normali-
sation is performed within single images using a method such as Z-score, fussy
C-mean, or Gaussian mixture model [22]. These approaches can be applied to
individual qMRI images sequentially to normalise the intensity scale, but this
affects the relationship between voxelwise intensities and MR sequence parame-
ters, biasing downstream analyses that interpret these relationships to estimate
underlying tissue properties. An alternative, used by most state-of-the-art deep
learning architectures in computer vision and medical imaging, is batch normal-
isation [13]. However, similarly to intensity normalisation, the reconstruction
accuracy degrades rapidly when the training batches have a large variance [23].

To generalise SR to data with large underlying variance, such as qMRI, we
propose a self-supervised mixture-of-experts (SS-MoE) paradigm that can aug-
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ment any encoder-decoder network backbone. The conventional mixture of ex-
perts automatically aggregates expert results for each input; see [14] and its
recent extensions in [8, 24, 35]. Unlike this, our proposed SS-MoE discriminates
an input data by predicting the error class in a self-supervised fashion, to make
hard assignments to the corresponding expert decoder network [8]. This divide-
and-conquer strategy predictively clusters input data belonging to the same er-
ror level, thereby reducing the variance in each cluster. As such, the resulting
outputs of the multi-hand networks formulate a predictive distribution with
multiple peaks with respect to error clusters, rather than a single peak; see
a similar analysis developed in [31]. In this paper, we select a U-Net variant
as an encoder-decoder network backbone [11, 17], which was employed in the
Image Quality Transfer framework, a patch-based machine learning approach
used to enhance the resolution and/or contrast in diffusion MRI and structural
MRI [2, 3, 17, 26, 27]. We apply our method to Super MUDI challenge [21] com-
bined diffusion-relaxometry MRI data; this is a challenging qMRI dataset for SR
as the simultaneous inversion recovery, multi-echo gradient echo, and diffusion
sequences all combine to yield large intensity variance in voxels across volumes.

Our main contributions are: 1) To reduce population variance, we separately
assign the inputs into multiple expert networks based on the predictive pseudo
error labels. 2) We train a new gater module to predict the pseudo error labels
from the extracted high-level perceptual features from the baseline network;
pseudo error labels are typically estimated by unsupervised or heuristic ways,
and are used to train the gater. Our overall paradigm is non-end-to-end so is
potentially extendable to most other encoder-decoder network architectures.

2 Method

2.1 Data Description

We perform SR on the publicly available Super MUDI dataset [1, 21], which com-
prises combined diffusion-relaxometry brain scans on 5 healthy subjects using
the ZEBRA technique [12]. Each subject comprises: original isotropic data with
2.5× 2.5× 2.5 mm high-resolution (HR) voxels, corresponding 2×-downsampled
anisotropic data with 2.5 × 2.5 × 5 mm low-resolution (LR) voxels, and 2×-
downsampled isotropic data with 5 × 5 × 5 mm LR voxels. Thus, two super
resolution tasks can be defined: 2× through-plane SR and 2× isotropic SR. We
split each kind of data to have 6720 3D volumes to enable an error analysis across
the volumes on a subject. We observed that the majority of reconstruction errors
are concentrated in regions with small errors, whilst the largest errors contribute
most to the overall error; see Fig. 1.

Next, to establish the training paired patches for the two tasks, we first
randomly cropped N patches of the shape (16, 16, 16) whose non-background
voxels account for over 50% of patch volume from the original resolution data
to serve as the ground-truth HR patch yi, where i = 1, · · · , N . To form the
corresponding LR half xi, we cropped the same field of view, respectively from
the two downsampled data.
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Fig. 2. Conceptual comparison of (a) the baseline network and (b) the proposed self-
supervised mixture-of-expert (SS-MoE) network. The two networks are commonly built
on an encoder-decoder (E-D) architecture. The gater G infers the pseudo error label
c by inputting a combination of the acquisition parameter and GAP-encoded features
from the input LR patch x. (a) The HR patch y is predicted from a single network
that is trained on all data with diverse intensity levels. The predicted HR patch will be
subject to a distribution with single peak centred at the average MSE score. (b) The
network performs in two stages: we first infer the pseudo error label c for the input LR
patch x. Then the HR patch outputs via the particular expert decoder Dc identified
by the error class c. Under this framework, the output HR patches demonstrate multi-
peak distribution which satisfies the need of quantitative super resolution with diverse
intensities.

2.2 Backbone Network Architecture

Figure 2 (a) and (b) show two digraphs of the proposed backbone network, where
its nodes represent the block of neural network layers and the edges are directed.
Let adjacency matrices E, D, and G be the encoder, decoder, gater branches,
respectively, and let EO := O◦E output the last activation in the encoder where
O denotes an adjacency matrix used to operate Global Average Pooling (GAP)
to the last activation node of the encoder. The nodes in E and D consist of
regular convolutional neural networks with the down- or up-sampling operations,
whereas the nodes inG comprise a feedforward network with a softmax activation
at the end. Given the input LR patch x a combination of E and D outputs the
HR patches y:

y = D ◦ E(x). (1)

Moreover, we can incorporate the additional condition of the MR acquisition
parameter a into the encoder features, making the error class estimation more
robust in terms of the scanning process. A combination of EO and G outputs a
predictive pseudo error label c:

c = G ◦ [EO(x), a], (2)

where [·] is a concatenation operation. This implies that x should be assigned to
the cth expert network. Note that the weights of E are shared in Eqs. 1 and 2,
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which enables the gater to identify the error class and then assign the identical
high-level features to the corresponding expert decoder.

Here, we adopt a variant of SR U-Net in [11, 17] as the exampled encoder-
decoder architecture. It is comprised of two common modules, bottleneck block
right before concatenation and residual block in each level. The bottleneck block
has a similar design as FSRCNN [6]. The residual block includes a skip connec-
tion over a number of “Conv+ReLU+BN” operations [10]. The detailed specifi-
cations of the backbone network are given in Fig. S1.

2.3 Self-supervised Mixture of Experts

Training Phase One: Estimate Pseudo Error Labels via Baseline Model.

We first train a baseline model based on Eq.1. Given N training LR-HR patch
pairs {(xi, yi)}

N
i=1, we optimise the weights θ, ϕ in terms of the baseline encoder

and decoder by minimising the mean-squared-error (MSE) loss function L:

θ∗, ϕ∗ = argmin
θ,ϕ

N∑

i=1

L(yi, Dϕ ◦ Eθ(xi)). (3)

The trained encoder and decoder can be used to calculate the baseline MSE
score: ei = L(yi, Dϕ∗ ◦ Eθ∗(xi)).

Next, we estimateK clusters from the obtained error scores. Multiscale quan-
tile segmentation (MQS) is a way to partition the error scores into K clusters
at K − 1 quantiles [15]. Here, we adopted MQS, denoted by J , to presumably
identify pseudo error labels ci ∈ {1, · · · ,K} mapped from ei, i.e.

ci = J (ei) = J (L(yi, Dϕ∗ ◦ Eθ∗(xi))) . (4)

The estimated ci will be used as the ground-truth labels when training the gater
G in Phase Two. We also tested on other alternative segmenters such as the
empirical rule 6 or K-means clustering, but observed that the overall approach
performed best using MQS.

Training Phase Two: Train Gater to Classify Input Patch for Expert

Network. We adopt a supervised way to train the gater G. The detailed ar-
chitecture of G is specified in the supplementary material. Given the trained
encoder Eθ∗ , the input LR patch xi, the pseudo error class ci, and the acqui-
sition parameter ai, we optimise the weights ψ of the gater by minimising the
cross-entropy loss LCE :

ψ∗ = argmin
ψ

N∑

i=1

LCE(ci, Gψ ◦ [EOθ∗(xi), ai]). (5)

6 The rule empirically selects an equispaced grid along a power-law distribution as
class boundaries
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Then we calculate the predictive pseudo error labels c̃i by Eq. 2, that is, c̃i =
Gψ∗ ◦ [EOθ∗(xi), ai].

We finally group up LR-HR patch pairs into K subsets according to their
error class indices. We denote the kth subset as S(k), where k = 1, · · · ,K,
and rename the indices of LR-HR patch pairs into the kth subset as S(k) =

{(x
(k)
i , y

(k)
i ) : i = 1, · · · , N (k)}. Each subset will be used to train an expert

network in Phase Three.

Training Phase Three: Train Multiple Expert Networks with Assigned

Training Patches. We freeze the encoder section and train multiple decoders
with respect to the aforementioned split training subsets. Given any S(k) for
k = 1, · · · ,K, we optimise the weights ϕ(k) of the kth decoder D(k) in a way
similar to Eq.3:

ϕ(k)∗ = argmin
ϕ(k)

N(k)∑

i=1

L(y
(k)
i , D

(k)

ϕ(k) ◦ Eθ∗(x
(k)
i )). (6)

Usually, we can train the decoder D(k) from scratch. However, when one subset
has a relatively small number of data, we choose to initialise the decoder weights
with the pre-trained baseline decoder weights ϕ∗, and then continuously train
on the subset S(k).

Test Phase. At the test phase, we need to first predict the pseudo error label
by the test LR patch x̂ and its acquisition parameter â, and then assign x̂ to the
corresponding expert network to predict the output HR patch ŷ. Specifically, we
predict the pseudo error class label ĉ by Eq.2:

ĉ = Gψ∗ ◦ [EOθ∗(x̂), â], (7)

and then predict the HR output by Eq.1:

ŷ = Dĉ
ϕĉ ◦ Eθ∗(x̂). (8)

3 Experiments

3.1 Implementation details

The overall method was implemented by Tensorflow 2.0. Our program is required
to run on an Nvidia GPU with at least 12 gigabyte memory. For training, we used
ADAM [16] as the optimiser with a starting learning rate of 10−3 and a decay
of 10−6. We set the batch size as 64. We initialised the network weights with
Glorot normal initialiser [7]. All networks required 100/20/20 training epochs
respectively from Phase One to Three. All networks at Phases One and Two
were trained on uniformly sampled patch pairs of around 270k 7, while at Phase

7 Uniformly crop patches by the function extract patches in scikit-learn 0.22.
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Three, the expert networks fine-tuned through randomly sampled 100k pairs for
speedup. MSE was used as both the loss function and the evaluation metric. We
employed 5-fold cross validation to evaluate the proposed method on the Super
MUDI datasets. Specifically, one of the subjects containing 1344 volumes was
used for validation on a fold, and we randomly sampled 100k patch pairs out
of the remaining 5376 volumes for training. We employed the statistics, such as
average, variance, and quartiles, to summarise of the distribution of MSE scores
over all volumes. We used a two-tailed Wilcoxon signed-rank test to determine
statistical significance of the performance between any two compared methods.

3.2 Results

Since the results comprised 1344 MSE scores we used descriptive statistics to
characterise the distribution of MSE scores. We conducted the comparative study
over cubic spline interpolation, SR U-Net [17] as a backbone, Hard MoE [8]
as a baseline model, and the proposed SS-MoE. All the neural networks had
comparable model capacity. In Table 1, we observe that SS-MoE had the best
performance over the others measured by average, variance, and median, and
significantly reduced maximal MSE score; The full MSE score distributions are
shown in Fig. S2. With Table S1, we further confirmed that SS-MoE boosted the
performance of the SR U-Net backbone, outperformed over nearly all the rest
methods with statistical significance (p < 0.001), and reduced the distribution
variance. To visualise SR performance in an individual volume map, Fig. 3 com-
pares the coronal views of different reconstructed results on the 119th volume
of the last subject for 2× through-plane SR task. We observe that our proposed
method enhanced resolution and showed lower error score in a zoomed region.

We further analysed the effect of hyper-parameters by increasing the number
of pseudo error classes as shown in Table 2. We observe a large improvement over
all statistics when increasing from 2 to 4, and a modest improvement going from
4 to 8. The computational cost grew several times with more pseudo error classes
since the number of network weights increased. Considering the cost-performance
ratio, we recommend choosing 4 pseudo error classes for SS-MoE in this context.
We infer from Fig. S3 that the mis-classified labels were mostly concentrated
around the hard boundary, which implied that clusters of predictive error labels
may be overlapping but may not largely degrade the performance of SS-MoE.

4 Discussion and Conclusion

We propose a novel SS-MoE paradigm for SR of multi-modal or multi-contrast
imaging datasets that have diverse intensities and large variance, such as [9,
28, 29, 32]. Our SS-MoE approach can append to any baseline encoder-decoder
network, allowing incorporation of state-of-the-art SR networks; in this paper
we utilised the best deep neural network in the leaderboard of the Super MUDI
challenge. We demonstrate that our approach reduces both errors and variances
when super resolving combined diffusion-relaxometry qMRI data. The proposed
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Table 1. 5-fold cross-validation results for cubic spline interpolation, SR U-Net, Hard
MoE and the proposed SS-MoE both with the SR U-Net backbone. Two SR tasks were
performed on the anisotropic-voxel (Aniso.) and the isotropic-voxel (Iso.) Super MUDI
datasets. For each fold, we evaluated MSE scores on 1344 volumes and used their
statistics (Stats.) to characterise the distribution. The mean and std of the average
statistics over the 5 cross-validation folds were computed.

Dataset Stats. Cubic Spline SR U-Net [17] Hard MoE [8] SS-MoE
Interpolation (Baseline) (MoE baseline) (Proposed)

Aniso. Average 0.744± 0.010 0.363± 0.049 0.383± 0.042 0.305± 0.048
Variance 14.899± 1.496 3.607± 1.105 4.230± 0.857 2.765± 0.941
Median 0.104± 0.002 0.048± 0.006 0.045± 0.008 0.041± 0.006
Max 97.28± 12.02 50.45± 6.77 55.24± 4.64 43.59± 5.94.

Iso. Average 1.583± 0.014 0.658± 0.075 0.717± 0.088 0.648± 0.036
Variance 62.905± 4.2393 13.927± 3.893 17.289± 5.353 13.829± 4.064
Median 0.2351± 0.0029 0.0781± 0.010 0.083± 0.009 0.075± 0.010
Max 194.89± 18.67 96.64± 11.12 108.91± 14.27 96.09± 11.01

Table 2. Statistics of MSE-score distribution on the isotropic-voxel Super MUDI
dataset v.s. the number of pseudo error classes (#Classes) in SS-MoE. The number
of network Weights (#Weights) are given. All the experiments were validated on the
setup of the first cross-validation fold that was used to train the SS-MoE model and
predict on the same 1344 volumes.

#Classes #Weights Average Variance Min Q1 Median Q3 Max

2 4.42× 106 0.5593 9.8079 0.0032 0.0230 0.0664 0.2297 85.0411
4 8.76× 106 0.5537 9.5210 0.0032 0.0228 0.0653 0.2294 83.8385
8 1.74× 107 0.5527 9.4552 0.0031 0.0228 0.0649 0.2282 83.3759

SS-MoE performed better than MoE due to convex loss function enabling robust
training and memory footprint independent to the number of experts [20].

The SS-MoE paradigm also provides a way for future improvement and ap-
plication. First, the pseudo error labels are estimated and then predicted in a
self-supervised way, and hence the gater used to predict them may highly depend
on the segmenters, such as MQS, and how good the baseline model is. This may
limit the entire performance of SS-MoE, especially for the generalisablility of the
gater; see the supplementary material. Automatically discriminating the inputs
without using the baseline model like the idea in [25] will be valuable to explore.
On the other hand, our method has the potential to super resolve a variety of
qMRI data types, ultimately accelerating the acquisition process and increasing
clinical viability. In future work, we will investigate if super resolved images offer
better visualisation of pathologies, such as lesions or tumours.
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Fig. 3. Visual comparison of the coronal views by (a) LR, (b) Interpolation (Interp.),
(c) the variant SR U-Net backbone, (d) the Hard MoE baseline, (e) the proposed SS-
MoE, and (f) HR images on the 119th volume of the last subject for 2× through-plane
SR task. The error maps are normalised square difference between the reconstructed
volumes and the HR volumes for each voxel. Zoomed regions of the error maps are
highlighted.
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