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Abstract: False positives on multiparametric MRIs (mp-MRIs) result in many unnecessary invasive
biopsies in men with clinically insignificant diseases. This study investigated whether quantitative
diffusion MRI could differentiate between false positives, true positives and normal tissue non-
invasively. Thirty-eight patients underwent mp-MRI and Vascular, Extracellular and Restricted
Diffusion for Cytometry in Tumors (VERDICT) MRI, followed by transperineal biopsy. The patients
were categorized into two groups following biopsy: (1) significant cancer—true positive, 19 patients;
(2) atrophy/inflammation/high-grade prostatic intraepithelial neoplasia (PIN)—false positive, 19 pa-
tients. The clinical apparent diffusion coefficient (ADC) values were obtained, and the intravoxel
incoherent motion (IVIM), diffusion kurtosis imaging (DKI) and VERDICT models were fitted via
deep learning. Significant differences (p < 0.05) between true positive and false positive lesions
were found in ADC, IVIM perfusion fraction (f ) and diffusivity (D), DKI diffusivity (DK) (p < 0.0001)
and kurtosis (K) and VERDICT intracellular volume fraction (fIC), extracellular–extravascular vol-
ume fraction (fEES) and diffusivity (dEES) values. Significant differences between false positives and
normal tissue were found for the VERDICT fIC (p = 0.004) and IVIM D. These results demonstrate
that model-based diffusion MRI could reduce unnecessary biopsies occurring due to false positive
prostate lesions and shows promising sensitivity to benign diseases.

Keywords: prostate cancer; diffusion MRI; false positives; biophysical modeling; deep learning

1. Introduction

Prostate cancer (PCa) is traditionally diagnosed via digital rectal inspection (DRE) and
a prostate-specific antigen (PSA) test, followed by transrectal ultrasound (TRUS)-guided
biopsy [1]. Multiparametric MRI (mp-MRI) has recently been introduced as a standard part
of the prostate cancer clinical diagnosis pathway [2]—it consists of T1- and T2-weighted
images, diffusion-weighted (DW) images and dynamic contrast-enhanced (DCE) imaging.
This technique has high sensitivity (90%) but moderate specificity (50%), translating to a
high rate of false positive cases [3]. This results in one in two men undergoing mp-MRI
having unnecessary uncomfortable biopsies and risking the associated side effects for
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benign conditions or clinically insignificant cancer [4]. This is a significant issue, as 75%
of suspected cancer patients have abnormal mp-MRI findings, and the number of people
considered for MRI and biopsy each year is set to increase; therefore, reducing the number
of unnecessary negative biopsies is an important clinical problem [5].

Benign pathologies such as atrophy, inflammation and high-grade prostatic intraep-
ithelial neoplasia (PIN) are examples of diseases that cause these false positive results [6].
This is due to the changes these diseases cause to the microstructure, similar to cancer.
For example, atrophy is characterized by shrinkage of prostate tissue due to the reduction
in cytoplasm prostatic acinar cells and has been associated with prostatic inflammation
(swelling of the prostate gland) [7]. High-grade PIN represents the pre-invasive end of
the range of cellular proliferations within the lining of prostatic ducts and acini and is
considered the most likely precursor of PCa, with most patients developing carcinoma
within 10 years [8]. It is critical to discriminate these cases from cancer to avoid unnecessary
procedures; however, it is also important to distinguish these diseases from normal tissue
and correctly identify the type of the disease [9]. Some of the benign diseases can present
with symptoms similar to PCa, such as difficult or frequent urination and pain, requiring
treatment of their own [10]. Identifying a unique noninvasive signature for such diseases
can lead to early and informed treatments.

DW-MRI is an integral component of mp-MRI due to the unique insight it provides
into the tissue microstructure. Changes in histological features, such as the cellular density,
size, shape and arrangement, produce contrast in DW-MR images as they all affect tissue-
water mobility. Most studies using DW-MRI have focused on calculating the apparent
diffusion coefficient (ADC) to distinguish between tumor regions and healthy tissue [11,12].
Typically, ADC values are lower in prostate tumors than in the surrounding tissue, re-
flecting the highly cellular environment constraining the water mobility. However, the
simultaneous dependence of the ADC on a multitude of histological features limits its bio-
logical specificity [13], thus reducing its ability to distinguish cancer from similar diseases
such as high-grade PIN and hyperplasia, which often appear as false positive cases [14,15].
More sophisticated models have been proposed to improve the sensitivity and specificity
of DW-MRI for cancer diagnosis, such as the intravoxel incoherent motion (IVIM) model
that separates the pure water diffusion in tissue from the microcirculation of water in capil-
laries [16]. It has been used to study various cancer types, such as breast [17], prostate [18]
and pancreatic [19] tumors, showing improvement in data description over ADC. Another
method that has shown greater sensitivity for the discrimination of benign and cancerous
prostate tissue in comparison to ADC is diffusion kurtosis imaging (DKI) [20,21]; this
technique quantifies the Gaussian and non-Gaussian components of water diffusion in
biological tissues [22].

In an attempt to increase biological specificity, multicompartment microstructure
models have also been proposed for imaging the prostate. One of the first multicompart-
ment methods for cancer imaging is the Vascular, Extracellular and Restricted Diffusion
for Cytometry in Tumors (VERDICT) MRI framework, which is a non-invasive imaging
technique for quantifying microstructural features of tumors in vivo. It consists of a specific
imaging protocol, as well as a model for the DW-MRI signal [23]. VERDICT allows for
estimation of specific tissue properties, such as cell size and packing density. It has been
successful in delineating benign from cancerous lesions [24], and preliminary results from
the clinical trial INNOVATE [25] reveal that the VERDICT intracellular volume fraction can
discriminate between Gleason 3 + 3 and 3 + 4 lesions, in contrast to ADC [26].

This study used different DW-MRI techniques to investigate quantitative differences
between clinically significant cancer, false positive biopsy results and healthy tissue. The
aims were (i) to discriminate false positives from cancer and (ii) to discriminate false
positives from normal tissue in an attempt to identify potential diffusion signatures of
benign diseases that mimic cancer. We analyzed a total of 38 patients that underwent
mp-MRI followed by VERDICT-MRI. We fitted the diffusion models to the VERDICT-MRI
data and obtained the ADC from the mp-MRI. The model fitting procedure used deep
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neural networks (DNNs) for ultra-fast and robust parameter estimation [27]. We compared
parameter estimates between both false positives and clinically significant cancer and
normal tissue and false positives using statistical tests. We investigated the diagnostic
accuracy of different parameters using receiver operating characteristic (ROC) curves, and
analyzed the correlation between VERDICT parameters and those from the simpler models.
The key contributions of this study are that diffusion MRI models can differentiate between
false positives and true cancer, and that models that account for vasculature (IVIM and
VERDICT) have the further sensitivity to discriminate false positives from normal tissue.
This shows potential for quantitative diffusion MRI to reduce the number of unnecessary
invasive biopsies occurring in PCa patients and to identify unique diffusion signatures for
a variety of benign pathologies.

2. Materials and Methods
2.1. Patient Cohort

The study was performed with the approval of the local ethics committee embedded
within the INNOVATE clinical trial [25]. The trial is registered with ClinicalTrials.gov,
identifier NCT02689271. Thirty-eight men (median age, 67 years; age range, 50–79 years)
were recruited, and they provided informed written consent.

The inclusion criteria were as follows:

• Suspected PCa;
• Undergoing active surveillance for known PCa.
• Exclusion criteria included the following:
• Inability to have an MRI scan, or presence of an artefact that would reduce quality

of MRI;
• Previous hormonal/radiation therapy or surgical treatment for PCa;
• Biopsy within 6 months prior to the scan.

All patients underwent mp-MRI in line with international guidelines [28] on a 3T
scanner, supplemented by VERDICT MRI. The clinical dynamic contrast-enhanced (DCE)
part of mp-MRI was performed last, after the VERDICT DW-MRI. After the clinical mp-MRI
and VERDICT MRI indicated suspected PCa, all patients underwent targeted transperineal
template biopsy of their index lesion, defined as the highest-scoring lesion identified on
mp-MRI with Likert scores (3–5) [29]. Specialist genitourinary pathologists evaluated
histological specimens stained with hematoxylin and eosin from the biopsy cores. Patients
who had a biopsy with diagnoses of atrophy, inflammation, and high-grade PIN (or
combinations of these) or clinically significant PCa were retrospectively selected, as shown
in Figure 1a. Table 1 presents the clinical and pathological information of the patients.

Table 1. Clinical and pathological information of 38 patients included in the study (19 with
no/clinically insignificant cancer and 19 with clinically significant cancer). The median age and
PSA/PSAD results for each cohort are presented, along with the biopsy results/Gleason scores. The
false positive patient cohort had combinations of the three disease types considered.

No/Clinically Insignificant Cancer Clinically Significant Cancer

Age (Median) 65 66
PSA (Median) 6.91 14.22

PSAD (Median) 0.113 0.426
Biopsy Result Atrophy: 16 3 + 3: 1

Inflammation: 13 3 + 4: 7
High-grade PIN: 5 4 + 3: 9

4 + 4: 1
4 + 5: 1
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Figure 1. Flowcharts describing full methodology of study. (a) Image acquisition pipeline to deter-
mine nature of patient lesion. (b) Image analysis pipeline for deep learning parameter estimation 
used to fit IVIM, DKI and VERDICT models. 

2.2. Image Acquisition 
2.2.1. Mp-MRI 

All participants underwent mp-MRI with a 3T MRI system (Achieva; Philips, Best, 
the Netherlands) as part of their standard clinical care. A spasmolytic agent (Buscopan, 
Boehringer Ingelheim, Ingelheim am Rhein, Germany; 0.2 mg/kg, up to 20 mg) was ad-
ministered intravenously before imaging to reduce bowel peristalsis. Imaging parameters 
for the diffusion-weighted echo-planar imaging sequences were as follows: repetition 
time, 2753 ms; echo time, 80 ms; field of view, 220 × 220 mm; section thickness, 5 mm; no 
intersection gap; acquisition matrix, 168 × 169; b-values, 0, 150, 500 and 1000 s/mm2; and 
six signals acquired per b-value for signal averaging. The total imaging time for the clini-
cal diffusion-weighted sequences was 5 min and 16 s. ADC maps were calculated by using 
all b-values except b = 0 to reduce perfusion effects [30], and were calculated with the 
Camino Diffusion MRI toolkit [31]. 

2.2.2. VERDICT MRI 
VERDICT MRI was performed before dynamic contrast material–enhanced imaging 

on the same 3T unit as the clinical mp-MRI acquisition. A PGSE sequence was used at five 
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repetition time TR (in ms) in three orthogonal directions, using a cardiac coil. For each 

Figure 1. Flowcharts describing full methodology of study. (a) Image acquisition pipeline to deter-
mine nature of patient lesion. (b) Image analysis pipeline for deep learning parameter estimation
used to fit IVIM, DKI and VERDICT models.

2.2. Image Acquisition
2.2.1. Mp-MRI

All participants underwent mp-MRI with a 3T MRI system (Achieva; Philips, Best,
the Netherlands) as part of their standard clinical care. A spasmolytic agent (Buscopan,
Boehringer Ingelheim, Ingelheim am Rhein, Germany; 0.2 mg/kg, up to 20 mg) was
administered intravenously before imaging to reduce bowel peristalsis. Imaging parameters
for the diffusion-weighted echo-planar imaging sequences were as follows: repetition time,
2753 ms; echo time, 80 ms; field of view, 220 × 220 mm; section thickness, 5 mm; no
intersection gap; acquisition matrix, 168 × 169; b-values, 0, 150, 500 and 1000 s/mm2; and
six signals acquired per b-value for signal averaging. The total imaging time for the clinical
diffusion-weighted sequences was 5 min and 16 s. ADC maps were calculated by using all
b-values except b = 0 to reduce perfusion effects [30], and were calculated with the Camino
Diffusion MRI toolkit [31].

2.2.2. VERDICT MRI

VERDICT MRI was performed before dynamic contrast material–enhanced imaging
on the same 3T unit as the clinical mp-MRI acquisition. A PGSE sequence was used at
five combinations of b-value (in s/mm2), gradient duration δ, separation ∆, echo time TE
and repetition time TR (in ms) in three orthogonal directions, using a cardiac coil. For
each combination, a separate b = 0 image was acquired. Sequences used an echo-planar
readout, and imaging parameters were as follows: repetition time, 2482–3945 ms/echo
time, 50–90 ms; field of view, 220 × 220 mm; voxel size, 1.3 × 1.3 × 5 mm; no intersection
gap; acquisition matrix, 176 × 176; b-values, 90, 500, 1500, 2000 and 3000 s/mm2; and
six signals acquired per b-value (except for b = 90 s/mm2, for which four signals were
acquired) for signal averaging. The total imaging time was 12 min and 25 s [32].
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2.3. Image Analysis
2.3.1. ROIs

Patients were biopsied depending on their mp-MRI score, as reported by two board-
certified experienced uroradiologists (reporting more than 2000 prostate MR scans per
year). The regions of interest (ROIs) were targeted and drawn by a board-certified study
radiologist (S. Singh) using a pictorial report made by the uroradiologist, and confirmed
as cancerous or non-cancerous retrospectively by transperineal biopsy. The ROIs were
chosen to be as large as possible, while having minimal contamination from surrounding
tissue. It was concluded that 19 of the patients had benign pathologies, such as atrophy,
inflammation or high-grade PIN, whilst the remaining 19 had cancerous prostate lesions.
After a review of the biopsy result confirmed the absence of a tumor on the contralateral
side of the peripheral zone for the 19 patients with PCa, ROIs were located for each patient
in an area of benign tissue to be used for comparison.

2.3.2. DW-MRI Data Preprocessing

The preprocessing pipeline included denoising of the raw DW-MRI using MP-PCA [33],
as implemented within MrTrix3 [34] ‘dwidenoise’, and then correction for Gibbs ringing [35]
with custom code in MATLAB (The MathWorks Inc., Natick, Massachusetts, USA). In an
effort to reduce possible artefacts caused by patient movement during scanning and eddy
current distortions, we applied mutual-information rigid and affine registration using
custom code in MATLAB [36].

2.3.3. Mathematical Models

The ADC model is a simple mono-exponential that characterizes the diffusion sig-
nal decay as a function of the b-value. It assumes an isotropic Gaussian distribution of
water molecule displacements and has one parameter to be estimated: the ADC, d. The
normalized signal is given by the following:

S = e−bd

The IVIM model is biexponential, with the assumption that the diffusion signal is
made up of two non-exchanging compartments of water molecules (one fast and one slow),
each following an ADC model. There are three parameters to be estimated: f, the volume
fraction associated with the fast (‘vascular’) component; D*, the diffusivity of the ‘fast’
component; and D, the diffusivity of the slow (‘cellular’) component [37]. The normalized
signal is given by the following:

S = f e−b(D+D∗) + (1 − f )e−bD

The mean signal DKI model relaxes the assumption in the ADC model of Gaussian
water dispersion. There are two parameters to be estimated: DK and K. The diffusivity pa-
rameter, DK, is similar to the ADC parameter d, whilst the kurtosis parameter, K, quantifies
the degree of deviation of the dispersion pattern from a Gaussian distribution [38]. The
normalized signal is calculated as follows:

S = e−bDK+
1
6 b2D2

KK

The VERDICT model for prostate is the sum of three parametric models, each describ-
ing the diffusion magnetic resonance signal in a separate population of water from one of
the three components:

• Signal S1 comes from intracellular water trapped within cells (including epithelium);
• Signal S2 comes from extracellular–extravascular water adjacent to but outside cells

and blood vessels (including stroma and lumen);
• Signal S3 comes from water in blood undergoing microcirculation in the capillary network.
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It is assumed that there is no water exchange between the three tissue compartments.
The total signal for the multi-compartment VERDICT model is as follows:

S =
3

∑
i=1

fiSi

where fi is the proportion of signal with no diffusion weighting (b = 0) from water molecules

in population i, where i = IC, VASC or EES; 0 ≤ fi ≤ 1; and
3
∑

i=1
fi = 1. This results in

the following:

S = fVASCSVASC(dVASC, b) + f ICSIC(dIC, R, b) + fEESSEES(dEES, b)

where fVASC + f IC + fEES = 1.
The VERDICT model used in this work [39] represents the intracellular component as

spheres of radius R and intra-sphere diffusivity fixed at dIC = µm2/ms; the extracellular-
extravascular component as Gaussian isotropic diffusion with effective diffusivity dEES
(Ball); and the vascular component as randomly oriented sticks with intra-stick diffusivity
fixed at dVASC = µm2/ms (AstroSticks). In total, there are four model parameters that
are estimated by fitting the signal model to DW-MRI data: fEES, fIC, R and dEES. The
vascular signal fraction, fVASC, is computed as 1 − fIC − fEES, and a cellularity index is
computed as fIC/R3. Several previous studies [24,32] have investigated the validity of
the assumptions made in this model under the experimental conditions of the optimized
DW-MRI acquisition for VERDICT in prostate.

2.3.4. Model Fitting

The IVIM, DKI and VERDICT models were fitted to the DW-MRI data using the signal
averaged across three gradient directions. To obtain an ultra-fast and robust parameter
estimation, we performed the fitting using a DNN known as a multilayer perceptron (MLP),
implemented using the ‘MLPregressor’ in Python scikit-learn 0.23 (https://scikitlearn.org/
stable/ (accessed on 12 October 2021)). We chose MLP for this study as it is the simplest
deep learning algorithm, and has been used successfully in previous studies for efficient
and robust microstructural parameter estimation [40,41]. The input of the DNN is a vector
of DW-MRI signals for each combination of b, TE and TR (a total of 10 in this specific
case). The DNN consists of three fully connected hidden layers with 150 neurons, each
characterized by a linear matrix operation, followed by an element-wise rectified linear
unit function (ReLU) and a final regression layer with the number of output neurons equal
to the number of tissue parameters to be estimated (i.e., four for the VERDICT model used
here). The DNN is optimized by backpropagating the mean squared error (MSE) between
ground truth model parameters and DNN predictions. We performed the optimization
with the adaptive moment estimation method for 1000 epochs (adaptive learning rate with
initial value of 0.001; one update per minibatch of 100 voxels; early stopping to mitigate
overfitting; and momentum = 0.9). We normalized the input data to [0, 1] and rescaled the
prediction back from the networks.

The DNN was trained using synthetic data, which has been proven to achieve equiva-
lent robustness to real data for deep learning model fitting [42]. We generated 100,000 syn-
thetic DW-MRI signals (split into 80% for training and 20% for validation) using the signal
equations above, with different values for the model parameters randomly chosen between
biophysically plausible intervals: f = [0.01, 0.99], D = [0.5, 3] µm2/ms and D* = [0.5, 3]
µm2/ms for IVIM; DK = [0.5, 3] µm2/ms and K = [0.01, 2.99] for DKI; and fEES = [0.01, 0.99],
fIC = [0.01, 0.99], R = [0.01, 15] µm and dEES = [0.5, 3] µm2/ms for VERDICT. We also added
Rician noise corresponding to SNR = 35 to consider the effect of experimental noise. For
the final parameter computation, we used the DNN at the epoch with minimum validation
loss. The creation of the training set and training of the DNN (which was performed only
once) took approximately 200 s (1.1 GHz Dual-Core Intel Core M processor). Prediction

https://scikitlearn.org/stable/
https://scikitlearn.org/stable/
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of the trained DNN for the whole unmasked DW-MRI dataset (roughly 5 × 105 voxels)
took approximately 50 s for each subject [27,36,43]. The image analysis pipeline is shown
in Figure 1b.

2.3.5. Statistical Analysis

The performance of each parameter for differentiating between the three tissue types
was evaluated via a Wilcoxon signed-rank test (preceded by a Shapiro–Wilk test for nor-
mality). This was performed using the scipy.stats package [44], and p < 0.05 was taken to
indicate significance. The data are presented using boxplots, allowing for visualization of
the median, interquartile range and any outliers. ROC curves were plotted for all models
to compare sensitivity and specificity, and the area under the curve (AUC) was calculated
from these to compare the parameters’ utility for tissue type discrimination. We also in-
vestigated the correlation between the VERDICT parameters and those from the DKI and
IVIM models via the r2-value.

3. Results

The aim of the first experiment was to analyze differences in parameter estimates
in false positive and true positive lesions from the different models. In Figure 2, we see
comparisons between parameter estimates from the ADC, IVIM, DKI and VERDICT models
in these two tissue types. All models provided discrimination between false positives and
true positives: ADC d with p = 0.002 (Wilcoxon signed-rank test); IVIM f with p = 0.0002
and D with p = 0.01; DKI DK with p < 0.0001 and K with p = 0.0001; and VERDICT fIC with
p = 0.001, fEES with p = 0.002 and dEES with p = 0.0004. The d, f, D, DK, fEES and dEES are
all lower in cancerous lesions than in false positives, while K and fIC values are higher in
cancerous lesions. The positive predictive value (PPV) for discrimination between false
positives and true positives is maximized for an ADC d of 503; IVIM f of 0.1838 and D of
0.2795; a DKI DK of 0.8384 and K 0.6446; and VERDICT fIC of 0.5256, fEES of 0.1556 and dEES
of 0.1598. High negative predictive values (NPVs) are found for IVIM f of 0.4725; DKI DK
of 1.7100; and VERDICT fIC of 0.0869, fEES of 0.8510 and dEES of 3.5629.

The next experiment analyzed differences in parameter estimates between false posi-
tive lesions and normal tissue; these are also presented in the boxplots in Figure 2. The only
parameters that show statistically significant differences between these tissue types are the
VERDICT fIC (p = 0.004), with normal tissue having lower values than false positives, and
the IVIM D (p = 0.02), with higher values in normal tissue than false positives. The PPV
for discrimination between false positives and normal tissue is maximized for IVIM D of
0.4091; and VERDICT fIC of 0.3165, fEES of 0.2072 and dEES of 1.623. The NPV is maximized
for IVIM D of 0.8971; DKI DK of 2.3562 and K of 0.3017; and VERDICT fIC of 0.0877 and
fEES of 0.8940.

Next, we analyzed the parameter maps obtained using the different models, focusing
on those parameters with statistically significant differences between true positive and
false positive lesions. Figure 3 illustrates parametric maps for two example patients: a
70-year-old with a false positive lesion in the left anterior prostate (atrophy and mild focal
chronic inflammation) and a 72-year-old with a Gleason score 4 + 3 tumor in the right
posterior peripheral zone (PZ). The parameter maps firstly show clear differences in the
data between the true cancer ROIs and the surrounding tissue, improving lesion conspicuity
over the mp-MRI images. They also demonstrate that the true positive lesions are more
noticeably different from the surrounding healthy tissue than the false positive lesions. We
observe that the fIC and K are higher in lesions than the surrounding tissue, whilst for all
the other parameters, the values are lower in the lesions than in the surrounding tissue.
The VERDICT fIC, fEES and dEES strongly highlight the true positive tumor in comparison to
the surrounding benign tissue, showing a clearer difference compared to the other models.
The VERDICT fIC map also significantly highlights the false positive lesion, which is not
evident in the other parametric maps.
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Figure 2. Boxplots showing the parameter estimates obtained using the ADC, DKI, IVIM and
VERDICT models. We observed significant differences between true and false positives in the ADC d
(p = 0.002); IVIM D (p = 0.01) and f (p = 0.0002); DKI DK (p < 0.0001) and K (p = 0.0001); and VERDICT
fIC (p = 0.001), fEES (p = 0.002) and dEES (p = 0.0004). The d, DK, D, f, fEES and dEES are all lower in
true positives than false positives, while K and fIC are higher. We also found statistically significant
differences between false positives and normal tissue for the VERDICT fIC (p = 0.004), with higher
values in false positive lesions than in normal tissue, and the IVIM D (p = 0.02) with lower values in
false positive lesions than in normal tissue. Outliers are denoted by a circle and asterisks indicate
statistical significance.
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Figure 3. Parametric maps obtained using the IVIM, DKI and VERDICT models in a 70-year-old
patient with a false positive lesion and a 72-year-old patient with a true positive lesion. Only the
parameters which successfully differentiated between the two lesion types are included, as well
as the clinical ADC maps. We observed that the VERDICT maps highlight the true positive lesion
most conspicuously, and the VERDICT fIC also distinguishes the false positive lesion from the
surrounding tissue.

Following this, we investigated the diagnostic accuracy of the different parameters
using ROC curves; we compared the performance of all parameters that can successfully
discriminate between true and false positive lesions. Figure 4 presents discrimination
between normal tissue and false positives on the left and between false positives and true
positives on the right. We observed that the largest AUC value for discrimination between
true positives and false positives is found for the DKI DK (0.9086), followed by IVIM f
(0.8476), VERDICT dEES and DKI K (0.8338). For the discrimination between false positives
and normal tissue, the largest AUC is found for the IVIM D (0.7036), followed by the
VERDICT fIC (0.6981).

The final experiment investigated the correlations between the VERDICT fIC, R, fEES
and fVASC; IVIM D, f and D*; and DKI DK and K for each voxel within the ROIs of all
patients; the strongest correlations are presented in Figure 5. The color coding distinguishes
individual patients, with the cancer ROIs shown as circles, whilst the benign ROIs are
shown as crosses. We observed similar trends for DK and D: negative correlation with fIC
and positive correlation with fEES and dEES. K showed a strong positive correlation with fIC
and negative correlation with fEES. Finally, D* showed a negative correlation with fEES and
a positive correlation with fVASC.



Diagnostics 2022, 12, 1631 10 of 15

Diagnostics 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 

and normal tissue, the largest AUC is found for the IVIM D (0.7036), followed by the VER-
DICT fIC (0.6981). 

 
Figure 4. ROC curves for ADC, DKI, IVIM and VERDICT parameters—those on the left are for dis-
criminating true (TP) and false positives (FP), and those on the right are for discriminating false 
positives and normal tissue (NT). We observed that the largest AUC for discrimination between 
true and false positives is achieved by the DKI DK (AUC = 0.9086). The largest AUC for discrimina-
tion between false positives and normal tissue is achieved by the IVIM D (AUC = 0.7036), closely 
followed by the VERDICT fIC (AUC = 0.6981). 

The final experiment investigated the correlations between the VERDICT fIC, R, fEES 
and fVASC; IVIM D, f and D*; and DKI DK and K for each voxel within the ROIs of all pa-
tients; the strongest correlations are presented in Figure 5. The color coding distinguishes 
individual patients, with the cancer ROIs shown as circles, whilst the benign ROIs are 
shown as crosses. We observed similar trends for DK and D: negative correlation with fIC 
and positive correlation with fEES and dEES. K showed a strong positive correlation with fIC 

Figure 4. ROC curves for ADC, DKI, IVIM and VERDICT parameters—those on the left are for
discriminating true (TP) and false positives (FP), and those on the right are for discriminating false
positives and normal tissue (NT). We observed that the largest AUC for discrimination between true
and false positives is achieved by the DKI DK (AUC = 0.9086). The largest AUC for discrimination
between false positives and normal tissue is achieved by the IVIM D (AUC = 0.7036), closely followed
by the VERDICT fIC (AUC = 0.6981).
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Figure 5. Scatter plots showing the correlation between VERDICT parameters and the DKI and IVIM
parameters. For DK and D, we observed a negative correlation with fIC and positive correlation with
fEES and dEES. K shows a positive correlation with fIC and negative correlation with fEES. Finally,
D* shows a negative correlation with fEES and positive correlation with fVASC.

4. Discussion

Benign prostate pathologies, such as atrophy, inflammation and high-grade PIN, can
cause false positives on mp-MRI by having signal characteristics that mimic PCa. We
aimed to firstly differentiate false positives from true cases of PCa, and then to discriminate
false positives from normal tissue, using various diffusion MRI models. We analyzed
the clinical ADC and then fitted the IVIM, DKI and VERDICT models to the acquired
DW-MRI from 38 patients using a deep learning approach. We then compared the model
parameter estimates between tissue types using statistical tests, to draw conclusions about
the diagnostic utility of the different models for characterizing false positive cases of PCa.

Our results showed that all models are able to discriminate false positives from true
positives. The strongest statistical significance is observed for the DKI DK (p < 0.0001)
and K (p = 0.0001), followed by the IVIM f (p = 0.0002); VERDICT dEES (p = 0.0004), fIC
(p = 0.001) and fEES (p = 0.002); ADC d (p = 0.002); and IVIM D (p = 0.01). The DK, dEES, D,
fEES, f and d are lower in true cancer than in false positives, whilst K and fIC are higher.
This reflects the reduced diffusivity and larger deviations from Gaussian dispersion due
to the increased cellularity in prostate carcinoma than in non-cancer diseases [45]. No
significant differences were found in IVIM D*, VERDICT fVASC, R or Cellularity. The best
diagnostic performance was found for DK (AUC = 0.9086), followed by f (AUC = 0.8476),
dEES and K (AUC = 0.8338). We also observed that the VERDICT maps emphasize the
true positive lesion in comparison to the surrounding tissue most clearly. Our finding of
significantly decreased ADC values in true positives agrees with work by Stavrinides et al.,
who concluded that ADC could predict clinically significant PCa in biopsy-naive men with
indeterminate lesions [46]. Falaschi et al. similarly found a lower ADC ratio in tumors than
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false positives; however, they could not draw any firm conclusions about the usefulness of
the ADC ratio in detecting cancer [47].

The VERDICT fIC and IVIM D are the only parameters that are able to discriminate false
positives from normal tissue. Significantly higher values of fIC (p = 0.004) and significantly
lower values of D (p = 0.02) were found in false positives, thus agreeing with histological
findings of increased cellularity and reduced diffusivity in the false positive disease types in
comparison to healthy tissue [48]. The diagnostic accuracy is highest for D (AUC = 0.7036),
closely followed by fIC (AUC = 0.6981). We did not find any significant differences in
ADC or DKI parameters, potentially due to the models’ limited biological specificity [45].
Both the IVIM and VERDICT models account for vasculature, which may explain their
increased diagnostic efficacy for this discrimination, in agreement with Wang et al. [49].
This indicates potential for these models to identify unique diffusion signatures of diseases
that mimic PCa.

This study demonstrated the utility of various diffusion MRI models for tackling
the specific diagnostic obstacle of false positive cases of PCa. All diffusion models (ADC,
IVIM, DKI and VERDICT) were able to discriminate false positives from true positives;
however, only VERDICT and IVIM revealed significant differences between false positives
and normal tissue. The VERDICT parameters also allow for inferences to be made about
microstructural differences between tissue types, as shown by the correlation analysis. We
observed negative a correlation of DK and D with fIC, but a positive correlation with fEES.
This is expected, as diffusivities tend to decrease as the proportion of water trapped in cells
increases. The DKI K showed a strong positive correlation with fIC and negative correlation
with fEES, which is also expected due to larger deviations from Gaussian dispersion as the
proportion of water trapped in cells decreases. These observations emphasize VERDICT’s
enhanced biological specificity, a finding which is supported by the fIC discriminating
between all tissue types with stronger statistical significance than D.

The main limitation of this work was the number of participants—a larger patient
cohort would allow us to improve the significance level of the results obtained, as well
as potentially enable the identification of unique diffusion signatures for the different
benign pathologies. However, we still achieved statistical significance for all the diffusion
models considered. Moreover, this analysis was performed on retrospective data with
an acquisition protocol optimized for VERDICT, and this may mean that the choice of
b-values was not optimal for IVIM and DKI parameter estimation. In addition, the range
of benign pathologies in our study was limited to atrophy, inflammation and high-grade
PIN, but the inclusion of others, such as benign prostatic hyperplasia, may allow for more
comprehensive benign disease characterization. Future work will increase the size of the
patient cohort, encompassing a wider range of prostatic diseases and potentially allowing
for the identification of transitionary periods in which benign diseases become malignant.
We will also investigate more sophisticated models that take relaxation effects into account,
such as relaxed-VERDICT [50].

5. Conclusions

In this work, we demonstrated that quantitative diffusion MRI (ADC, IVIM, DKI and
VERDICT) can successfully discriminate false positive prostate lesions from cancerous
tumors, showing the potential to avoid unnecessary biopsies. The best diagnostic accuracy
for discriminating false positives and true positives was observed for the DKI DK. Among
the different diffusion models, only VERDICT and IVIM were able to also differentiate
false positive lesions from normal prostate tissue, correctly identifying benign diseases
that mimic cancer. This work was primarily limited by the small size of the patient cohort;
future work will include more patients with a wider range of benign pathologies.
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