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SUMMARY
Pavlovian conditioning is evident in every species in which it has been assessed, and there is a consensus
about its interpretation across behavioral,1,2 brain,3–6 and computational analyses7–11: conditioned behavior
reflects the formation of a directional associative link from thememory of one stimulus (e.g., a visual stimulus)
to another (e.g., food), with learning stopping when there is no error between the prediction generated by the
visual stimulus and what happens next (e.g., food). This consensus fails to anticipate the results that we
report here. In our experiments with rats, we find that arranging predictive (visual stimulus/food) and non-
predictive (food/visual stimulus) relationships produces marked and sustained changes in conditioned be-
haviors when the visual stimulus is presented alone. Moreover, the type of relationship affects (1) the distri-
bution of conditioned behaviors related to the properties of both food (called goal-tracking) and the visual
stimulus (called sign-tracking) and (2) when in the visual stimulus, these two behaviors are evident. These re-
sults represent an impetus for a fundamental shift in how Pavlovian conditioning is interpreted: animals learn
about the relationship between two stimuli irrespective of the order in which they are presented, but they
exhibit this knowledge in different ways. This interpretation and our new results are captured by a recent
model of Pavlovian conditioning,12,13 HeiDI, and both are consistent with the need for animals to represent
the fact that the impact of a cause (e.g., the ingestion of nutrients or the bite of a predator) can be felt before
or after the cause has been perceived.
RESULTS AND DISCUSSION

Standard theoretical models of Pavlovian conditioning7–11 pre-

dict that while visual stimulus/food pairings result in the for-

mation of a directional associative link from the memory of

the visual stimulus to that of food, food/visual stimulus pair-

ings result in the visual stimulus developing an inhibitory link

with food: the two forms of trial are said to result in opposing

forms of learning, with one enabling the presentation of the vi-

sual stimulus to excite a memory of food and the other enabling

the visual stimulus to inhibit that memory. Certainly, when food

is presented 10 s before a visual stimulus, it acquires such

inhibitory properties,14 which could derive from a temporary in-

crease in the association between the experimental context

and food, resulting in food being predicted but not occurring af-

ter the visual stimulus.12 However, when food is presented just

before the visual stimulus (i.e., they are temporally contiguous),

the evidence for any form of learning is limited and equivocal.

Many years ago, Mackintosh15 concluded that ‘‘All in all, there

is little reason to accept the reality of backward conditioning’’

(p. 60), by which he was referring to backward conditioning

generating an excitatory link between the memories of the vi-

sual stimulus and food. In fact, the ongoing emphasis on pre-

dictive relationships has been fueled by the prevailing view

that the behavioral sequelae of backward conditioning are

weak and transient.16,17 However, although the behavioral

sequelae of forward conditioning have been investigated in
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great detail, those of backward (excitatory) conditioning

have not.

Unlike standard theoretical models, Asratyan18 suggested

that visual stimulus/food pairings result in the formation of

reciprocal associations between thememories of the visual stim-

ulus and food (i.e., visual stimulus%food) and assumed that

food/visual stimulus pairings should do likewise. On this basis,

he argued that intermixing visual stimulus/food with food/vi-

sual stimulus pairings should produce complementary effects

rather than the opposing (excitatory and inhibitory) effects envis-

aged by standard models.7–11 This prediction is integral to a

more formal model, HeiDI (How excitation and inhibition Deter-

mine Ideo-motion), in which reciprocal associations play a cen-

tral role. HeiDI also includes performance rules that specify

how the combined influence of the reciprocal associations af-

fects the differing behavioral sequelae of Pavlovian conditioning

across the duration of the visual stimulus: behaviors that reflect

the nature of the visual stimulus (e.g., orienting) and food (e.g.,

approaching the site of food delivery).12,13 We will return to this

model later, but the general idea that learning involves the en-

coding of reciprocal relationships between the visual stimulus

and food is also supported by recent neurobiological analyses.19

Experiments 1 and 3 evaluated whether intermixing the two

types of trial (forward and backward) has the predicted comple-

mentary behavioral effects or the opposing effects predicted by

standardmodels. Experiment 2 contrasted the impact of forward

and backward trials on the same measures.
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Figure 1. Forward and backward conditioning trials generate marked conditioned behavior

(A) An autoshaping procedure was used to investigate the impact of forward and backward conditioning trials on the emergence of different conditioned be-

haviors. In this procedure, rats receive trials in which the temporary insertion of a lever into the experimental chamber is paired with the delivery of food.

(B and C) Autoshaping generates two types of conditioned behavior during the lever that can be easily measured in an automated fashion: approaching the well

into which food is about to be delivered, called goal-tracking (GT; measured by the rate of food-well visits21), and orienting toward and interacting with the lever

itself, called sign-tracking (ST; measured by the rate of lever presses20,22–24).

(D–F) Experiment 1 contrasted the impact of forward conditioning trials (lever 1/food) with intermixed forward and backward conditioning trials (lever 1/food

and food/lever 1) on GT, ST, and their distribution across lever 1. A second lever (lever 2) was nonreinforced. Points represent mean response rates, and error

bars represent SEM.

(G–I) In Experiment 2, all rats received forward conditioning trials with lever 1 and backward conditioning trials with lever 2, and the impact of these trials on GT,

ST, and the distribution of these responses across levers 1 and 2 was assessed on nonreinforced probe trials. Points represent mean response rates, and error

bars represent SEM.
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Intermixing forward and backward conditioning trials
generates marked conditioned behavior
In Experiment 1, rats in group Forward (n = 32) received forward

conditioning trials on which the insertion of lever 1 (our visual

stimulus) into an experimental chamber for 10 s was immediately

followed by food (i.e., reinforced trials) and separate trials where

the insertion of lever 2 for 10 s was not paired with food (i.e., non-

reinforced trials; see STARMethods for further details). This pro-

cedure generated goal-tracking (Figure 1D) and sign-tracking

(Figure 1E) during lever 1, and during the final block of training

(when performancewas stable) goal-tracking wasmore vigorous

during the final parts of lever 1 and sign-tracking was more

apparent at the start of lever 1 (Figure 1F; replicating previous re-

sults20). There was little goal- or sign-tracking to lever 2, which

was not paired with food (Figures 1D and 1E). In group Inter-

mixed, half of the presentations of lever 1 were followed by
2 Current Biology 33, 1–6, October 9, 2023
food and the remainder were preceded by food. Presentations

of lever 2 were nonreinforced. Conditioned behaviors were as-

sessed on the forward trials with lever 1 when consummatory re-

sponses generated by the presentation of food could not

contaminate conditioned behaviors during the lever. There was

at least as much goal-tracking in group Intermixed as in group

Forward training, but less sign-tracking (Figures 1D and 1E).

That is, the effects of the two types of trial appeared to be com-

plementary for goal-tracking, but not for sign-tracking. The basis

for these distinct effects is evident from an analysis of the final

block of training: in group Intermixed, goal-tracking was

vigorous across all epochs of lever 1 and sign-tracking was

less vigorous across lever 1 (Figure 1F).

For all experiments, we estimated non-linear mixed-effects

models using a Bayesian framework and performed inference

on median posterior differences (MPDs) against a region of



Figure 2. Interaction between forward and

backward conditioning trials

(A and B) The impact of consistent training (lever 1/

food 1 and food 1/lever 1; lever 2/food 2 and

food 2/lever 2) and inconsistent training (lever 1/

food 1 and food 2/lever 1; lever 2/food 2 and

food 1/lever 2) on goal-tracking (GT) and sign-

tracking (ST) across 8 blocks of training. Points

represent mean response rates, and error bars

represent SEM.

(C and D) The impact of consistent and inconsistent

training on GT and ST during the first training ses-

sion. Bars denote means and error bars represent

SEM.
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practical equivalence (ROPE; see STAR Methods). Lever 1 pro-

voked goal-tracking that was similar to that exhibited by group

Forward (Figure 1D; MPD = 0.09, percentage of MPD in the re-

gion of practical equivalence [% in ROPE] = 0.07%). However,

the same treatment led to weaker levels of sign-tracking (Fig-

ure 1E; MPD = 0.12, 0% in ROPE). Moreover, unlike the rats

given only forward conditioning trials with lever 1, those given in-

termixed training showed similarly high levels of goal-tracking

and low levels of sign-tracking across all epochs of the lever (Fig-

ure 1F). Indeed, goal-tracking during the last epoch was higher

than during the first epoch for group forward (1F, MPD = 0.49,

0% in ROPE) but similar for group Intermixed (MPD = �0.07,

20.19% in ROPE); sign-tracking during the last epoch was lower

than during the first epoch for group Forward (MPD = 0.21, 0% in

ROPE), but similarly low for group Intermixed (MPD = 2 3 10�6,

76.57% in ROPE). Again, there was little goal-tracking or sign-

tracking to lever 2, which was not paired with food (Figures 1D

and 1E); and in none of the experiments were there differences

in the baseline levels of goal-tracking in the 10-s periods before

lever presentations. The observation that backward conditioning

trials change the nature and temporal distribution of conditioned

behavior was replicated in Experiment 2; and this pattern of re-

sults is inconsistent with the idea that backward conditioning tri-

als are simply de facto forward conditioning trials. Simulations of

the results using HeiDI will be discussed once the results of Ex-

periments 2 and 3 have been presented.

Contrasting the effects of forward and backward
conditioning trials
Experiment 2 directly contrasted the impact of forward and back-

wardconditioning trials ongoal-trackingandsign-tracking.All rats

(n = 32) received forward conditioning trials with one lever (e.g.,

lever 1/food) intermixed with backward conditioning trials with

asecond lever (e.g., food/lever 2), and they receivedsubsequent
probe trials inwhich levers 1 and2werepre-

sented in the absence of food, which avoids

the immediate impact of food consumption

on conditioned behaviors to lever 2. The

probe trials revealed that backward trials,

like forward trials, were highly effective in

generating goal-tracking (Figure 1G) but

were less effective in generating sign-

tracking (Figure 1H). Indeed, the probe trials

for the forward and backward levers pro-
voked marked and similar goal-tracking (Figure 1G, MPD = 0.01,

24.35%inROPE), but the forward leverelicitedmoresign-tracking

than thebackward lever (Figure1H,MPD=0.17,0%inROPE).The

distribution of the two responses across the duration of the levers

also differed. After forward trials with lever 1, goal-tracking was

more evident during the late than the early epochs. Relative to

the first epoch, goal-tracking during the last epoch was signifi-

cantly higher for the forward lever (Figure 1I, MPD = 0.14, 0% in

ROPE) but significantly lower for the backward lever (MPD =

0.35, 0% in ROPE). However, sign-tracking was stable across

lever epochs (Figure 1I); relative to the first epoch, sign-tracking

during the last epoch was not significantly different for either of

the levers (MPD = 0.02, 46.77% in ROPE and MPD = 0.01,

71.37% in ROPE, for forward and backward levers, respectively).

Interaction between forward andbackward conditioning
trials
Experiment 3 testedwhether the effects of forward and backward

trials interact. Rats received forward and backward trials in which

there was either a consistent relationship between two levers and

two foods (lever 1/food 1 and food 1/lever 1; lever 2/food 2

and food 2/lever 2; n = 32) or there was an inconsistent relation-

ship (lever 1/food 1 and food 2/lever 1; lever 2/food 2 and

food 1/lever 2; n = 32). We predicted that consistent training

would result in a faster rate of learning than inconsistent training:

for consistent training, backward and forward training trials with a

given lever and food affect changes in the sameassociative struc-

tures (i.e., lever 1%food 1 and lever 2%food 2); whereas for

inconsistent training, what is learned on backward trials will inter-

ferewith performanceon forward trials and vice versa. In contrast,

and for the reasons outlined in the context of Experiment 1, stan-

dardmodels of Pavlovian conditioning predict thatwhat is learned

on backward trials will bemore likely to opposewhat is learned on

forward trials in rats given consistent training than in those given
Current Biology 33, 1–6, October 9, 2023 3



Figure 3. HeiDI fits to the experimental results

(A–C) Model fits to experimental data across lever bins during the last block of training of Experiment. 1 (A), the probe trials of Experiment 2 (B), and the first block

of training of Experiment 3 (C). In each panel, closed symbols and solid lines denote the fits by the base HeiDI model (left column) and the expanded model with

the lowest negative log likelihood (right column). The corresponding experimental results are shown as means in open symbols and dashed lines (GT, goal-

tracking and ST, sign-tracking).
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inconsistent training. However, note that in Experiment 3, unlike

Experiment 1, predictions based on HeiDI and standard models

rely on the rats being sensitive to the distinct properties of the

two foods.

Inspection of Figure 2 revealed a rapid increase in goal-

tracking and the dominance of goal-tracking over sign-tracking.

This reflects the fact that both levers are always either

preceded or succeeded by the presentation of food (1 or 2).

It is also clear that during session 1 (Figure 2C), if not

throughout training (Figure 2A: 2-session blocks), consistent

training resulted in more goal-tracking than inconsistent

training (as assessed on forward conditioning trials; MPD =

0.04, 95% highest posterior density of the MPD [0.002, 0.08],

2.29% in ROPE and MPD = 0.01, 34.19% in ROPE for session

1 rates and overall response rates, respectively). There was no

effect of the nature of training on the low levels of sign-tracking

at any point during training (Figure 2B: 2-session blocks; Fig-

ure 2D: session 1). The levels of goal-tracking and sign-tracking

tended to rise across epochs of the lever, with the higher

levels of goal-tracking in the group Consistent than in group

Inconsistent across successive epochs on forward trials (not

shown).

Simulations of experimental results using the HeiDI
model
HeiDI involves two principal departures from standard models

which allow it to predict the results of Experiments 1–3: (1) the

associative structures that are acquired and (2) the rules govern-

ing their behavioral expression. HeiDI assumes that reciprocal

associations between stimuli develop, with the perceived inten-

sity of the unconditioned stimulus (e.g., food) and conditioned

stimulus (e.g., lever) determining the asymptotes for the

lever/food and food/lever associations, respectively. The

learning rules for these reciprocal associations involve a ration-

alization of the well-known Rescorla and Wagner rule.7 To ac-

count for systematic variation in the timing of behaviors across

a conditioned stimulus, HeiDI assumes that the perceived inten-

sity of the lever declines across its presentation (e.g., due to

short-term habituation20) and that the specific perceived inten-

sity of the lever when food is delivered becomes linked to the
4 Current Biology 33, 1–6, October 9, 2023
memory of food.13 Under those assumptions, the conditioned

lever intensity will be high on backward conditioning trials and

low on forward conditioning trials, with the similarity of the re-

maining lever intensities to these two conditioned intensities

providing a basis for generalization. Furthermore, the rules gov-

erning the behavioral expression of the reciprocal associations

assume that when a lever is presented, the relative perceived in-

tensities of the lever and the memory of food (that it retrieves)

determine the distribution of what has been learned into behav-

iors related to the nature of the lever (e.g., sign-tracking) and

food (e.g., goal-tracking). Other things being equal, when the

lever has a perceived intensity that is higher than the perceived

intensity of the memory of food then sign-tracking will dominate,

but when the reverse is the case then goal-tracking will

dominate.

Figure 3 depicts model fits to the data from Experiments 1–3,

using the base HeiDI model12,13 and additional versions of the

model equipped with subsidiary mechanisms. For the base

HeiDI model, we estimated the US intensity, the perceived in-

tensity of the lever at its onset (i.e., the intensity conditioned

with the food on backward pairings), and the rate and shape

parameters of the power decay function that determined the

decrease of lever intensity across its duration (and thus the final

intensity conditioned with food on forward pairings). Three

additional extensions were considered: (1) a model with addi-

tional baseline response rates for goal- and sign-tracking (H +

Baselines); (2) a model with response competition (H + Compe-

tition), in which responses inhibit each other according to their

relative strength; and (3) a model that estimated separate

maximal lever (perceived) intensities or saliences for forward

and backward trials (H + Saliences). Table 1 contains good-

ness-of-fit measures for each of those models (see STAR

Methods).

The base model can capture the overall temporal dynamics of

goal- and sign-tracking across the conditioned stimuli relatively

well. In fact, metrics that penalize model complexity (AIC and

BIC) nearly always positioned the base model as the most suit-

able to explain the data presented here (Table 1). The base

model can account for each group in Experiment 1 separately

(Figure 3A, bottom row), and its best-fitting parameters (not



Table 1. Goodness-of-fit measures for HeiDI and its extensions

Model

Exp.1 Exp. 2 Exp. 3

NLL AIC BIC NLL AIC BIC NLL AIC BIC

HeiDI 604.33 1224.67* 1254.82* 600.51 1209.01 1226.86* 592.54 1193.07* 1210.92*

H + Baselines 605.20 1234.41 1279.63 600.36 1212.72 1239.49 592.46* 1196.91 1223.68

H + Saliences 605.93 1241.86 1298.39 599.03* 1208.07* 1230.38 592.85 1195.71 1218.02

H + Competition 603.59* 1227.19 1264.87 600.49 1210.98 1233.28 593.17 1196.34 1218.64

Note: NLL, negative log-likelihood; AIC, Akaike information criterion; BIC, Bayesian information criterion. For all measures, smaller values are better;

and the smallest values for each metric/experiment combination are denoted by asterisks.
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shown) suggest that food delivery on backward trials led to a

general disruption in the processing of the lever.25–27 Indeed,

the base model predicts equal degrees of sign-tracking for for-

ward and backward levers in Experiment 2 (Figure 3B, bottom

left); but equipping it with lower lever saliences for backward

than forward conditioning trials results in closer fits (Figure 3B,

bottom right). Notably, the base model provided a good fit to

the different impacts of consistency on sign- and goal-tracking

observed in session 1 of Experiment 3. A consistent difference

between the models and the data is that the models do not cap-

ture the initial rise in sign-tracking. As we have noted else-

where,20 the low levels of sign-tracking (and goal-tracking)

upon lever presentation are likely affected by the time taken for

the rats to approach and contact the lever and food well.
Conclusion
Our results and model represent a basis for a significant revision

in how learning is understood within the model system of

Pavlovian conditioning. They are consistent with the idea

that reciprocal associative links (i.e., conditioned stimu-

lus%unconditioned stimulus) develop during Pavlovian condi-

tioning trials and these links impact behavior.12,13 This idea has

been implemented formally and provides a coherent explanation

for a broad range of results that have proven resistant to analysis

by standard models, based on a directional link between a

conditioned and unconditioned stimulus.7–11 More generally,

the view that adaptive behavior reflects the development of er-

ror-driven reciprocal associations, combined with performance

rules that capture hitherto ignored aspects of the nature of condi-

tioned behavior, represents a clear impetus for further research.

This analysis, coupled with our results, is consistent with the fact

that stimuli presented before or after nutrients have been in-

gested, or a predator has attacked, provide useful information

to guide future approach and avoidance behaviors.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 160 naı̈ve adult male Lister Hooded rats (mean ad libitum weight = 334 g; range = 260–410 g; supplied by Envigo, Black-

thorn, UK) were used: Experiment 1 (n = 64), Experiment 2 (n = 32), and Experiment 3 (n = 64). Rats were housed in groups (range: 2–4)

in standard cages in a vivarium where there was a 12-h/12-h light/dark cycle (lights on at 7 a.m.). They were maintained at between

85%and 95%of their ad libitumweights by restricting their access to food until the end of each day. Access to food was given in their

home cages, where they also had continuous access to water. Subjects were randomly assigned to each group before the beginning

of each experiment.

METHOD DETAILS

Regulations
The research was conducted following Home Office regulations under the Animal (Scientific Procedures) Act 1986. Approval of the

study protocol was granted to Dominic M. Dwyer (Affect and Cognition in Rodents. PPL number: PP3468526).

Apparatus
Sixteen identical conditioning boxes (303 243 21 cm:H3W3D;MedAssociates, Fairfax, VT, USA) were used. Each boxwas placed

in a sound-attenuating shell incorporating a ventilation fan, which maintained the background noise at 68 dB(A). The side walls of the

boxes were made from aluminium and the front, back and ceiling were clear acrylic. The floors were formed from 19 steel rods

(4.8 mm diameter, 16 mm apart) and were positioned above a stainless-steel tray. Food pellets (45 mg; LabDiet, St. Louis, MO,

USA) and an 8%sucrose solution were delivered to a recessed foodwell (aperture: 5.33 5.3 cm) positioned at floor level in the center

of the left wall. Infrared detectors across the entrance to the food well allowed the presence of the rat to be recorded automatically.
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When the detector was interrupted (e.g., when a rat’s snout entered the food well) a single response was registered. Two retractable

levers (4.53 1.83 0.2 cm) were located on either side of the food well, one 3 cm to the left and one 3 cm to the right of the food well,

and positioned at a height of 4.6 cm and 1.5 cm from the edge of the wall. Depression of the lever by 4mm from its horizontal resting

position was recorded as a response. MED-PC IV software (Med Associates, Fairfax, VT, USA) controlled the insertion of levers, de-

livery of food pellets, and recorded food well entries and lever presses.

Pre-training
In two 21-min sessions, rats were first trained to retrieve the unconditioned stimulus (food) or unconditioned stimuli (food and su-

crose) used in the conditioning procedures. In each session, the rats received 20 unconditioned stimulus presentations (mean in-

ter-trial interval = 60 s; sampled uniformly from 40, 50, 60, 70, and 80 s). In Experiment 1, standard food pellets were presented,

whereas in Experiments 2 and 3, pellets were used alongside sucrose.

Conditioning procedures
There were 10 presentations of each lever during each 20-min session, which were scheduled in the same way as pre-training. In all

experiments, forward trials involved the presentation of a lever for 10 s, upon which food was delivered, whereas backward trials

involved the delivery of food, a delay (1.0 or 1.5 s for pellet and sucrose, respectively), and then the presentation of a lever for 10

s. Non-reinforced trials and probe trials involved the presentation of a lever for 10 s. Trials were pseudo-randomized such that no

trial type occurred more than 2 times in succession. The identities of each lever were counterbalanced across rats, as were and

the two food types (pellets and sucrose) used in Experiments 2 and 3.

Experiment 1. Rats (n = 64) received 16 sessions of training. In each session, group Forward (n = 32) received 10 forward trials

involving lever 1 and 10 non-reinforced trials of lever 2, while rats in group Intermixed (n = 32) received 5 forward trials and 5 backward

trials involving lever 1, and 10 non-reinforced presentations of lever 2.

Experiment 2. Rats (n = 32) received 16 training sessions. These sessions employed the same procedure as Experiment 1, and

each contained 10 forward trials with lever 1 and 10 backward trials with lever 2. For half of the rats, both levers were paired with

the same outcome (a food pellet or sucrose), whereas for the other half, one lever was followed by a food pellet and the other by

sucrose. Whether the same or different outcomes were paired with the two levers did not affect the pattern of results, with the excep-

tion that when two outcomes were used the overall level of behavior tended to be higher. To simplify the analysis, this factor was

omitted in the presentation and analysis of the results. After training, rats received 2, 5-day test blocks in which days 1, 3, and 5

were training sessions (as described above), and days 2 and 4 were test sessions. In test sessions, the first 8 trials were forward

and backward warm-up trials (as described for training; 4 trials with each lever). The remaining 12 trials were organized in blocks,

each containing 1 training trial and 1 probe trial per lever (for a total of 4 trials per block). The probe trials were pooled across cycles

for presentation and analysis because the results were highly consistent across the cycles of testing and retraining.

Experiment 3. Rats in group consistent (n = 32) received 16 sessions of training inwhich the forward and backward trials with lever 1

involved food 1 and the trials of lever 2 involved food 2 (i.e., lever 1/food 1 and food 1/lever 1; lever 2/food 2 and food 2/lever

2). Rats in group inconsistent (n = 32) received training trials in which the food paired with a given lever differed on forward and back-

ward trials (i.e., lever 1/food 1 and food 2/lever 1; lever 2/food 2 and food 1/lever 2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was done via mixed-effects models estimated under a Bayesian framework. We chose mixed-effects models

because all of our experiments involved within-subject comparisons, and thus much group-level parameter shrinkage was to be

gained from capturing variance due to individual differences. We chose a Bayesian framework, because of its capacity to quantify

uncertainty and its inherent ability in quantifying the evidence in favor of experimentally important null hypotheses. The response

rates for nose pokes and lever presses were assessed separately for each experiment, via nonlinear, hurdle lognormal models.

The nonlinear portion of the model estimated the rate of responding via rate � asym+(r0-asym)*exp(-exp(lrc)*x), where the exp func-

tion denotes exponentiation, asym is the asymptotic rate, r0 is the rate when x = 0, lrc is the natural logarithm of the rate constant, and

x is the longitudinal variable used in the model (block or epoch). For analyses focusing on overall means, a simpler linear model was

used. The linear model estimated the rate of responding via rate � Xb where X is the design matrix and b is a vector containing its

corresponding parameters. In parallel to the estimation of response rates, the hurdle part of the hurdle lognormal models estimated

the probability of no responding. In all analyses, we regressed rates of responding as a function of fixed and random effects, but

neither its dispersion nor hurdle to reducemodel complexity. Statistical inference was performed based on the posterior distributions

of median differences, accepting or rejecting these differences via practical equivalence tests using an HD + ROPE criterion.28 This

type of equivalence test computes the percentage of the posterior distribution that falls within a region of practical equivalence

(ROPE). For the present application, we used a default ROPE in the range of �0.1s to +0.1s (where s is the standard deviation of

the response rates estimated by each model). Such a ROPE range represents negligible differences in the positive and negative

directions.29 Differences were deemed true null differences if the 95% central posterior distribution fell within the ROPE, or true sig-

nificant differences if that same portion of the posterior distribution fell outside the ROPE. The test was deemed inconclusive if neither

of the previous cases was true. All analyses were carried out in R,30 using packages brms31 (version 2.17.0), tidybayes32 (version

3.0.2), bayestestR33 (version 0.11.5), and emmeans34 (version 1.7.3). All models were estimated by running 8 independent chains
e2 Current Biology 33, 1–6.e1–e3, October 9, 2023
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of 4000 iterations each (1000 iterations were used as a warmup and were not included in the final posterior distribution). See OSF site

(Data availability) for additional information on the approach, the exact model specification for each analysis and the full results. All

models and R scripts used are available on the same site.

Model fits
The implementation of the HeiDI model involves an adaptation process across the lever duration, described by a decay function of

the form: ae
i = ðae� 1

i � aminÞ3 ð1 � lÞr +amin, where ae
i is the perceived intensity or salience of the ith lever on epoch e (for e = 1,

the maximal salience the lever takes), amin is the minimum salience lever can take (here, set to 0), l is the rate of decay, and r is a

parameter that determines the shape of the decay function. This adaptation process allows the model to provide an analysis of

the distribution of different types of responses (here sign-tracking and goal-tracking) across the duration of the lever.20 HeiDI as-

sumes that reciprocal associations between stimuli (e.g., lever/food and food/lever associations) update according to a global

error correction rule. For example, on trial n the association between the ith CS (conditioned stimulus; e.g., a lever) and the US (un-

conditioned stimulus; e.g., food) on epoch e updates according to: Ve;n
i/US = Ve;n� 1

i/US +ae
i ðae

US � PJ
j V

e;n� 1
j/US Þ, where ae

US is the

perceived intensity or salience of the US on epoch e, and the set J contains all stimuli present on epoch e. The same equation

can be used to update the association between the US and the CS (or CSs, if more than one CS is present at the time of US delivery).

Furthermore, the model proposes that reciprocal associations combine into stimulus ensembles via direct and indirect pathways,

with each weighted according to generalization between different perceived intensities of a given lever. Ignoring the trial notation

for simplicity, the strength of the direct pathway between the ith lever and the US on epoch e is given by: Oe
i/US =

PM
mSðae

i ;

am
i Þ3 Vm

i/USð1 +Vm
US/iÞ, where the set M contains all epochs of lever presentation (including e) and the function S is a similarity func-

tion of the form Sðe;mÞ = e
e+je�mj3

m
m+je�mj. The strength of the indirect pathway between the ith lever and the US on epoch e is given

by:He
i/US =

PM
mSðae

i ;a
m
i Þ3

PK
k Sðae

k ;a
0e
kÞVm

i/kO
m
k/US, where the set K contains all absent stimuli, ae

k is the nominal salience of the kth

stimulus if it was present on epoch e, and a0e
k is the similarity-weighted activation of the kth stimulus on epoch e, a0e

k =
PJ

j

PM
mSðae

j ;

am
j ÞVm

j/k . Finally, the net ensemble involving the US on epoch e, Ae
US =

PJ
j ðOe

j/US +He
j/USÞ, is distributed into stimulus-oriented re-

sponses according to the relative activation of all stimuli. The strength of responding supported by the xth stimulus (e.g., CS- or US-

oriented responding) on epoch e is given by: Re
x = Ae

US 3
qexPX

x
qex

, where X is the set containing all experimental stimuli, and qex is the

nominal or retrieved salience of the xth stimulus on epoch e. If stimulus x is present (x˛J), then qex = ae
x , however, if stimulus x is absent

(x˛K), then qex = a0e
x , as described above.

The extensions of the base HeiDI model capture some plausible subsidiary mechanisms: response competition, baseline differ-

ences in the different types of response, and differences in lever salience generated on forward and backward training trials. The

H + Competition model proposes that stimulus-oriented responses will inhibit each other according to their relative strength. In

that model, the final responding supported by the ith stimulus on epoch e is given by: R0e
i = Re

i � PX
xsikR

e
x , where k is a parameter

between 0 and 1 governing the intensity of response competition. The H + Baselines model adds a stimulus-specific constant to the

response rates, R0e
i =Re

i + ci. In the present application, we estimated a constant for US-oriented responses and a constant for lever-

oriented responses shared among all lever stimuli. Finally, the H + Saliences model estimated separate lever saliences for forward

and backward conditioned trials. The data shown in Figure 3 used the salience value for forward trials (when food is not delivered until

after the lever offset).

The parameters were estimated for each experiment separately (and for all rats within an experiment simultaneously, except for

Experiment 1) via MLE on model residuals using a genetic algorithm run over 300 populations per model/experiment combination

(convergence into stable estimates was obtained much earlier). The upper and lower limits for all parameters were set between

0 and 1, except for the limits for the shape parameter for the power decay function, which was set between 0 and 5.
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