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1 Introduction

In their seminal work, Hsieh and Klenow (2009) provide a theoretical frame-

work for the analysis of resource misallocation across firms.1 In their model,

firms differ in productivity and the efficiency requires that more productive

firms employ more of inputs. The efficient allocation will be implemented if

profit-maximizing firms face the same effective input prices. However, be-

cause of the government policies or the market frictions, the effective prices

can differ between the firms. The wedge between the price that the firm pays

for an input and its market price is referred to as the distortion. Taking their

model to the sample of Chinese and Indian firms, Hsieh and Klenow (2009)

show (i) that resource misallocation is indeed prevalent across firms in both

countries, and (ii) addressing this misallocation results in substantial output

gains. Specifically, Hsieh and Klenow (2009, Table IV) report the gains of

86.6% for China and 127.5% for India in 2005.

This has spurred huge interest in modelling and further understanding

the issue of resources misallocation. Consequently, the literature on this issue

now is quite considerable, extending the original work of Hsieh and Klenow

(2009) in several important directions. For example, Dias et al. (2016) adds

intermediate inputs, while Choi (2020) adds energy inputs in the model of

Hsieh and Klenow (2009) to make it more comprehensive. Several studies,

using somewhat different models, have endogenized firm’s productivity by

allowing it to depend on the allocation of resources in the economy. For

example, in Bello et al. (2011); Ranasinghe (2014); Da-Rocha et al. (2023),

firms invest in their productivity, but the amount of investment depends

negatively on the size of distortions. Relatedly, in Hopenhayn (2016), distor-

tions affect firm’s decision to enter and, hence, the average productivity in

the economy.

1Other early models of resource misallocation are by Hopenhayn and Rogerson (1993)
and Restuccia and Rogerson (2008). Surveys by Hopenhayn (2014); Restuccia and Roger-
son (2013, 2017) neatly summarize the earlier literature on resource misallocation.
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Important though it is, the extant literature does not consider resource

misallocation in the presence of externalities, particularly those originating

from R&D and knowledge spillovers. However, the impact of R&D and its

spillovers on productivity has been extensively studied in applied work. In

the words of Griliches (1992, p. S43), “a significant number of . . . studies

[are] all pointing in the same direction: R&D spillovers are present, their

magnitude may be quite large, and social rates of return remain significantly

above private rates.” More recent studies also confirm the importance of

R&D and its spillovers; see, for example, Lucking et al. (2019) for the US

and Audretsch and Belitski (2020) for the UK.

We aim to bridge this gap. We incorporate the R&D input as the third

factor of production, besides capital and labour, and we adopt the standard

production function from Griliches (1979, p. 102) which explicitly allows for

within-industry R&D spillovers. We compute each industry’s spillover pool

(see Section 2 for details) as a geometric average of R&D inputs that are

employed by the firms in that industry. We later argue that this measure of

spillover could be interpreted as a probability of information sharing, similar

to Bloom et al. (2013).

The existence of R&D spillovers introduces externalities in the model,

which changes the efficient allocation of resources. While it is still optimal

for more productive firms to employ more resources, the optimal allocation of

resources becomes more even across the firms when the spillovers are present

than when they are not. The intuition for this result is straightforward: the

spillover is maximized when R&D input is shared equally between the firms.

Because the output now depends on the spillover, the optimal allocation of

all inputs, but especially that of R&D input, is less sensitive to the differences

in productivities across firms. To induce the firms to choose the right amount

of inputs, all firms in the industry must still pay the same labour and capital

prices, but the price of R&D input must increase in the firm’s productivity.

The latter result has useful policy implications: as long as the firm size
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correlates with productivity, any tax incentives that promote R&D, should

favour smaller firms. This, for example, is true in the case of the UK tax

policy.

We apply our model to the firm-level data in the UK manufacturing

sector in 2019 and find some interesting results. First, the output gain from

equalizing the effective prices of all firms is substantially overestimated when

spillovers are present but ignored. In other words, the model of Hsieh and

Klenow (2009) is possibly overestimating the output gains by not considering

the knowledge spillover externalities across firms. We find that the output

gain is 128.1% when the spillovers are kept fixed at the original level, while

the gain is only 76.3% when the spillovers are allowed to change due to the

reallocation of R&D input between the firms. Second, as explained above,

the efficiency requires that more productive and bigger firms pay higher R&D

input prices. When this efficient allocation is implemented, the output gain is

118.8%, which is significantly higher than the gain of 76.3% that is obtained

when all firms face the same prices.

Third, we define industry-level total factor productivity (TFP) as the part

of aggregate industry output that is not explained either by inputs or the

spillover. When reallocating resources between the firms, the output changes

because of changes in both TFP and the spillover. When implementing the

efficient allocation, we find that most of the output gains come from the

increase in TFP. However, it does not mean that the spillover does not play

an important role in the output. For instance, if all firms faced the same

prices, TFP would be maximized2, but the output would not be maximized

because of the large drop in the size of spillover. Put differently, the sizeable

overestimation of output that we report above, is because of the decrease in

the spillover.

Fourth, we study how much different distortions contribute to the output

2Note that in the absence of spillovers, maximizing industry output is equivalent to
maximizing industry TFP.
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loss. We have three types of distortions in our model, one for each factor

of production. Following Hsieh and Klenow (2009); Chen and Irarrazabal

(2015); Ryzhenkov (2016), we write the output in terms of variances and co-

variances of these distortions where the covariances are between distortions

and the firm’s productivity. In the absence of externalities, the output is

maximized when these variances and covariances are zero because it corre-

sponds to the situation when all firms face the same prices. However, with

externalities present, the efficient allocation requires that R&D input prices

increase in productivity. Hence, the variance and covariance of R&D input

distortion are positive in the optimum. When we apply this output decom-

position in variances and covariances to the data, we find that the biggest

output gain comes from eliminating capital distortions. We also find that if

the variance and covariance of R&D input distortion are set equal to zero,

then ceteris paribus, the output would be lower than it actually was in 2019.

It again illustrates the importance of getting the policy right towards R&D.

Finally, we also compare the results across groups of industries and years.

We have 22 industries in our sample. We split them into four groups depend-

ing on their technological intensity and perform a separate analysis for each

group. The results are qualitatively similar across the groups. We also briefly

redo the calculations using the data from 2013. We find that R&D input dis-

tortions, rather than capital distortions, now play the largest role in the

potential output gain. Also, the joint growth of TFP and spillover between

2013 and 2019 has been poor, but we conclude that it cannot be attributed

to the spillover.

The rest of paper is organized as follows. Section 2 describes the model,

identifies the optimal allocation of resources, and decomposes the output in

terms of capital, labour, and R&D input distortions. Section 3 describes the

data and calibrates parameters of the model. Section 4 contains the empirical

results, while Section 5 concludes. Some of the derivations are relegated to

the Appendix.
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2 The Model

We take the model of Hsieh and Klenow (2009) and extend it by introducing

R&D spillovers. There is a single final good that is produced by a represen-

tative firm in a perfectly competitive market. To produce the final good, this

firm combines the outputs of industries s = 1, . . . , S using a Cobb-Douglas

production technology:

Y =
S∏

s=1

Y θs
s ,

where Y and Ys are the quantities of the final good and industry s output,

respectively. Production exhibits constant returns to scale, ΠS
s=1θs = 1.

In the equilibrium, θs = PsYs

PY
holds, where P and Ps are the prices of the

final good and industry s output, respectively. The final good serves as a

numeraire, and so P = 1.

The industry s output is also produced by a representative firm in a

perfectly competitive market. It combines the differentiated products of firms

si, i = 1, . . . ,ms, using a CES production technology:

Ys =

(
ms∑
i=1

Y
ρ−1
ρ

si

) ρ
ρ−1

, (1)

where Ysi is the quantity of firm si output. ρ is the elasticity of substitution

between products of different firms, which is the same for all industries. In

the equilibrium,

Psi = Ps

(
Ys

Ysi

) 1
ρ

holds, where Psi is the price of firm si output. Without loss of generality, we

impose a normalization that PsY
1/ρ
s = 1, and so Psi = Y

−1/ρ
si . We will say

that firms si, i = 1, . . . ,ms belong to industry s.

Firm si (s = 1, . . . , S, i = 1, . . . ,ms) produces its output using a Cobb-
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Douglas production technology:

Ysi = BsiK
αs
si L

βs
siH

γs
si X

δs
s , (2)

where Bsi, Ksi, and Lsi are firm si total factor productivity (TFP), capital,

and labour, respectively. Hsi stands for the resources that firm si devotes to

R&D. We will refer to Hsi as an R&D input. αs > 0, βs > 0, and γs > 0

are industry-specific elasticities. We assume that the production function

exhibits constant returns to scale in the capital, labour, and R&D inputs:

αs + βs + γs = 1.

There is ample empirical evidence of R&D spillovers when R&D of one

firm affects the productivity of other firms in the industry (see, for example,

Bloom et al. (2013); Lucking et al. (2019); Audretsch and Belitski (2020);

Ugur et al. (2020) and references therein). R&D spillover, which is the same

for all firms in industry s, is captured by Xδs
s where Xs is the spillover

pool and δs is the spillover parameter. Because any changes in the spillover

will only come from the changes in the spillover pool, for simplicity, we will

occasionally refer to Xs as the spillover.

We assume that the spillover pool is a geometric average of R&D inputs

of the firms in industry s:

Xs =
ms∏
j=1

H
1

ms
si . (3)

To motivate the formula, suppose Hsi stands for the number of scientists

employed by firm si. To share some knowledge between all ms firms, sup-

pose that a team of size ms, with one scientist from each firm, must be

formed. If a scientist of firm si joins the team with a probability of Hsi

Hs

where Hs =
∑ms

j=1Hsj, then the required team is formed with probability

(Xs/Hs)
ms . Because we will keep Hs fixed when reallocating resources be-

tween the firms in industry s, the spillover is simply an increasing function of

the likelihood of information sharing. Bloom et al. (2013, p. 1357) provide a

similar motivation when introducing their technological proximity measures.
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Furthermore, although R&D spillover depends on Hsi, we assume that firm

si treats Xs as exogenous.

Let rs, ws, and qs denote the rental rate of capital, the wage rate of

labour, and the price of R&D input, respectively. We allow the input prices

to be industry-specific. Firm si might employ an input at a level where the

marginal revenue product of that input is not equalized to its price. We can

think that firm si effectively faces prices of (1 + τKsi
)rs, (1 + τLsi

)ws, and

(1+ τHsi
)qs for capital, labour, and R&D input, respectively. We refer to the

variables τKsi
, τLsi

, and τHsi
as distortions.3

Because firm si produces a differentiated product, it possesses a market

power, meaning, it faces a downward sloping inverse demand function Psi =

Y
−1/ρ
si . Firm si chooses inputs to maximize its profit

PsiYsi − (1 + τKsi
)rsKsi − (1 + τLsi

)wsLsi − (1 + τHsi
)qsHsi

subject to the production function in (2) and the inverse demand function.

The first order conditions are

ρ− 1

ρ

αsY
ρ−1
ρ

si

Ksi

= (1 + τKsi
)rs, (4)

ρ− 1

ρ

βsY
ρ−1
ρ

si

Lsi

= (1 + τLsi
)ws, (5)

ρ− 1

ρ

γsY
ρ−1
ρ

si

Hsi

= (1 + τHsi
)qs. (6)

If there is a change in distortions, say, because of the government in-

tervention, it will lead to reallocation of resources and, consequently, to a

change in output. In fact, it is easier to start by defining the new allocation

of resources. We only consider the reallocation of resources that keep the

3Occasionally, it will be more convenient to refer to 1+ τKsi
, 1 + τLsi

, and 1+ τHsi
as

distortions.
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aggregate industry demand for inputs at the original level. Then, we use (3)

to calculate the new spillover pool of each industry and (2) to calculate the

new outputs. Finally, using (4)-(6), we recover the new distortions. Note

that we will keep the input prices at their original levels.

2.1 The Social Planner’s Problem

In this section, we identify a couple of scenarios for allocation of inputs.

Later we use the data from British manufacturing industries to evaluate the

output gains from implementing these allocations.

Let Ks =
∑ms

i=1 Ksi, Ls =
∑ms

i=1 Lsi, and Hs =
∑ms

i=1 Hsi be the aggregate

quantities of inputs in industry s. Consider the social planner who maximizes

Ys taking the aggregate quantities of inputs in industry s as given. Substi-

tuting (2) and (3) into (1) and taking the logarithm, the planner’s problem

is

max
{Ksi,Lsi,Hsi}ms

i=1

log Ys =
ρ

ρ− 1
log

ms∑
j=1

(
BsjK

αs
sj L

βs
siH

γs
sj

) ρ−1
ρ

+
δs
ms

ms∑
j=1

logHsj

subject to Ks =
∑ms

i=1 Ksi, Ls =
∑ms

i=1 Lsi, and Hs =
∑ms

i=1Hsi.

Suppose first that there is no R&D spillover effect: δs = 0. Then, the

solution to the planner’s problem is given by

Ksi

Ks

=
Lsi

Ls

=
Hsi

Hs

=
Y

ρ−1
ρ

si∑ms
j=1 Y

ρ−1
ρ

sj

=
Bρ−1

si∑ms
j=1 B

ρ−1
sj

(7)

for all i = 1, . . . ,ms. Comparison with (4)-(6) reveals that if we want to

implement this solution as the equilibrium outcome, the distortions must be

equalized across firms: there exist τKs , τLs , and τHs such that τKsi
= τKs ,

τLsi
= τLs , and τHsi

= τHs for all i = 1, . . . ,ms. This is the standard case that

is considered in the literature when there are no externalities (e.g., Hsieh and

Klenow, 2009; Dias et al., 2016; Garćıa-Santana et al., 2020).
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If we consider the planner’s problem in the presence of R&D spillover,

the conditions that describe the optimum, are

Ksi

Ks

=
Lsi

Ls

=
Y

ρ−1
ρ

si∑ms
j=1 Y

ρ−1
ρ

sj

(8)

and

Hsi

Hs

=
γsY

ρ−1
ρ

si + δs
ms

∑ms
j=1 Y

ρ−1
ρ

sj

(γs + δs)
∑ms

j=1 Y
ρ−1
ρ

sj

(9)

for all i = 1, . . . ,ms. These conditions imply that in the optimum, τKsi
= τKs

and τLsi
= τLs still hold for all i = 1, . . . ,ms, but τHsi

is increasing in Ysi.

To understand (9) better, note that when δs = 0, (9) together with (8)

reduces to the solution with no R&D spillover given in (7). But, when γs = 0,

(9) reduces to

Hsi =
Hs

ms

(10)

for all i = 1, . . . ,ms. This is the allocation of R&D input that we would

obtain if we maximized the spillover pool Xs or, equivalently,
∑ms

j=1 logHsj

subject to Hs =
∑ms

i=1Hsi. That is, R&D spillover is maximized if R&D input

is shared equally by the firms. Therefore, we can interpret the expression

in (9) as a weighted average of two extreme cases, with the weights being

determined by the R&D input parameter, γs and the spillover parameter, δs.

It appears that there is no closed form solution to the optimal allocation

of inputs in terms of the exogenous parameters. Therefore, we will consider

an allocation of inputs that while not optimal, is close to it. First, given any

allocation of R&D input, Hsi for i = 1, . . . ,ms, let the share of capital and

labour that is allocated to firm si, be given by

Ksi

Ks

=
Lsi

Ls

=
(BsiH

γs
si )

ρ−1
1+γs(ρ−1)∑ms

j=1

(
BsjH

γs
sj

) ρ−1
1+γs(ρ−1)

(11)
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for all i = 1, . . . ,ms. If we substitute (11) into (2), it can be shown that

Y
ρ−1
ρ

si∑ms
j=1 Y

ρ−1
ρ

sj

=
(BsiH

γs
si )

ρ−1
1+γs(ρ−1)∑ms

j=1

(
BsjH

γs
sj

) ρ−1
1+γs(ρ−1)

. (12)

It then follows from (4)-(5) that the proposed capital and labour allocation

in (11) still ensures τKsi
= τKs and τLsi

= τLs for all i = 1, . . . ,ms.

Now we turn to determine the allocation of R&D input. In the next

section, we decompose the industry output assuming that productivity and

distortions are jointly log-normally distributed. Given that decomposition,

output is maximized when

var (log (1 + τHsi
)) =

(
δs (ρ− 1)

γs + δs + γsδs (ρ− 1)

)2

var (logBsi) ,

cov (logBsi, log (1 + τHsi
)) =

δs (ρ− 1)

γs + δs + γsδs (ρ− 1)
var (logBsi) .

This implies that the allocation of R&D input Hsi for all i = 1, . . . ,ms is

Hsi

Hs

=
B

γs(ρ−1)
γs+δs+γsδs(ρ−1)

si∑ms
j=1B

γs(ρ−1)
γs+δs+γsδs(ρ−1)

sj

. (13)

To see it, combine (13) with (12) and (6). This gives that 1 + τHsi
∝

B
δs(ρ−1)

γs+δs+γsδs(ρ−1)

si and, hence, the above variance and covariance relationships

are indeed satisfied.

The allocation in (13) is only approximately optimal. We can improve on

it through the iterative process where we substitute (13) into (12), which we

then substitute into (9) to get a new allocation of R&D input:

Hsi

Hs

=
γsB

(γs+δs)(ρ−1)
γs+δs+γsδs(ρ−1)

si + δs
ms

∑ms
j=1B

(γs+δs)(ρ−1)
γs+δs+γsδs(ρ−1)

sj

(γs + δs)
∑ms

j=1B
(γs+δs)(ρ−1)

γs+δs+γsδs(ρ−1)

sj

. (14)
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Although we could continue iteratively producing new allocations of R&D

input by using (12) and (9), we view (14) already as a good approximation

and use it in the empirical analysis.

To summarize, the allocation of R&D input to firm si is increasing in its

productivity Bsi in (7), (13), and (14). However, compared to (7), Hsi in-

creases with Bsi at slower rates in (13) and (14), meaning that in the presence

of R&D spillover, it is optimal to allocate R&D input more evenly between

the firms than dictated by (7). Because the allocation in (7) corresponds to

the situation when all firms face the same R&D input distortion, the opti-

mal allocation requires that more productive firms face higher R&D input

distortions than the less productive firms.

Guner et al. (2008) study the output loss due to governmental policies

that depend on the firm size. In their model, such policies always lead to

resource misallocation. Our model tells that size-dependent policies that

affect the use of R&D input, can actually be welfare improving. To keep

matters simple, suppose we want to implement the allocation given by (11)

and (13). We have found that τKsi
= τKs , τLsi

= τLs , and 1 + τHsi
∝

B
δs(ρ−1)

γs+δs+γsδs(ρ−1)

si must hold for all i = 1, . . . ,ms in this case. Using (11) and

(13), the latter can be written as 1 + τHsi
∝ L

δs
γs+δs
si or

τHsi
≈ log (1 + τHsi

) = const+
δs

γs + δs
logLsi. (15)

If we view τHsi
as a tax rate on R&D input that is set by the government,

then it should increase with the number of employees but at a decreasing

rate.4

Currently, firms in the UK are eligible for R&D tax relief and the size

of this relief depends on the number of employees. From April 1, 2023, the

corporate tax rate is 25%. Firms with less than 500 employees can reduce

4Proviso that firms do not view the tax rate as dependent on their hiring decisions.
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their taxable income by additional 86% of R&D expenditure.5 Therefore,

compared with the situation of no R&D tax relief at all, the after-tax benefit

is 21.5% of R&D expenditure. Firms with 500 employees or more can claim

an expenditure credit equal to 20% of R&D expenditure which is subject to

the corporate tax. Hence, their after-tax benefit is 15% of R&D expenditure.

In short, the R&D tax relief is more generous for the smaller firms. Our model

lends support to this policy. Though, according to (15), resource allocation

would benefit from an even finer relationship between the firm size and the

R&D tax relief.

2.2 Decomposition of Industry Output

In order to gauge how much each type of distortion contributes to the output

loss, we now decompose the industry output similar to Hsieh and Klenow

(2009); Chen and Irarrazabal (2015); Ryzhenkov (2016)but by accounting for

R&D externalities. We assume that Bsi and 1+τIsi for I = K,L,H are drawn

from a multivariate log-normal distribution. The draws are independent

across firms. The variance-covariance matrix of logBsi and log (1 + τIsi) for

I = K,L,H for all i is

Σs =


σ2
Bs σBKs σBLs σBHs

σBKs σ2
Ks 0 0

σBLs 0 σ2
Ls 0

σBHs 0 0 σ2
Hs


where σ2

Bs stands for var (logBsi), and σ2
Is and σBIs respectively stand for

var (log (1 + τIsi)) and cov (logBsi, log (1 + τIsi)) for I = K,L,H. Thus, dis-

tortions can be correlated with the productivity, but for simplicity, we assume

that there is no correlation between the distortions.

5To qualify, these firms must additionally have a turnover of under 100 million euros or
a balance sheet total under 86 million euros. More information is available at: https://
www.gov.uk/government/collections/research-and-development-rd-tax-relief.
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Let industry s TFP be defined as

TFPs ≡
Ys

Kαs
s Lβs

s Hγs
s Xδs

s

. (16)

Then, the industry output can be expressed as log Ys = log TFPs+δs logXs+

log
(
Kαs

s Lβs
s Hγs

s

)
. We show in Appendix A that TFP can be approximated

as

log TFPs = E [logBsi] +
ρ− 1

2
σ2
Bs −

(ρ− 1)α2
s + αs

2
σ2
Ks (17)

−(ρ− 1) β2
s + βs

2
σ2
Ls −

(ρ− 1) γ2
s + γs

2
σ2
Hs.

(17) implies that industry s TFP is maximal when all firms face the same

distortions because then the variances are zero. Similarly, R&D spillover

pool can be approximated as

logXs = logHs −
(ρ− 1)2

2
σ2
Bs −

(ρ− 1)2 α2
s

2
σ2
Ks (18)

−(ρ− 1)2 β2
s

2
σ2
Ls −

(1 + (ρ− 1) γs)
2

2
σ2
Hs + (ρ− 1)2 αsσBKs

+(ρ− 1)2 βsσBLs + (ρ− 1) (1 + (ρ− 1) γs)σBHs.

(18) says that the spillover is decreasing in the variances of distortions but

increasing in their covariances with the productivity parameter. Of course,

one cannot have zero variance and positive covariance. That is, if the co-

variances are positive, then so are the variances. This, in turn, implies that

there is a trade off between maximizing industry TFP and R&D spillover.

Given (17) and (18), industry s output is

log Ys = −1

2

(
aKsσ

2
Ks + aLsσ

2
Ls + aHsσ

2
Hs (19)

−2bKsσBKs − 2bLsσBLs − 2bHsσBHs) + const
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where

aKs = αs + (ρ− 1)α2
s + δs (ρ− 1)2 α2

s,

aLs = βs + (ρ− 1) β2
s + δs (ρ− 1)2 β2

s ,

aHs = γs + (ρ− 1) γ2
s + δs (1 + (ρ− 1) γs)

2 ,

bKs = δs (ρ− 1)2 αs,

bLs = δs (ρ− 1)2 βs,

bHs = δs (ρ− 1) (1 + (ρ− 1) γs) ,

and const contains all those terms which are independent of distortions.

Maximizing (19) w.r.t. σ2
Is and σBIs for I = K,L,H subject to the constraint

that Σs is a positive semi-definite matrix, we find in Appendix B that σ2
Ks =

σ2
Ls = σBKs = σBLs = 0,

σBHs =
δs (ρ− 1)

γs + δs + γsδs (ρ− 1)
σ2
Bs,

σ2
Hs =

(
δs (ρ− 1)

γs + δs + γsδs (ρ− 1)

)2

σ2
Bs.

This solution corresponds to the allocation of resources given in (11) and

(13).

3 Data and Model Calibration

We apply the model to the firm-level data of the UK manufacturing sec-

tor. The data come from two datasets provided by the Office for National

Statistics (ONS). One is the Annual Business Survey (ONS, 2022a) and the

other is the Business Enterprise Research and Development Survey (ONS,

2022b). We take the data on PsiYsi, Ksi, Lsi, and Hsi directly from the sur-

veys. (Table 7 in Appendix C lists the names of the corresponding variables

in the surveys.) We use the value added to measure PsiYsi because our model
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does not have intermediate goods. We chose the number of scientists and

researchers to represent the R&D input, Hsi. While it is a narrow measure

of R&D input, the advantage is that we can take it directly from a survey

without the need of estimating it.

Because we only have the data on the total wage bill of firm si, Wsi ≡
wsLsi+qsHsi, we assume that it is split between the non-R&D and R&D em-

ployees proportionally to the expenditure on capital, IKsi
and R&D, IR&Dsi

:

wsLsi = Wsi
IKsi

IKsi
+ IR&Dsi

,

qsHsi = Wsi
IR&Dsi

IKsi
+ IR&Dsi

.

The input prices in industry s are the ratio of total industry expenditure on

the given input to the aggregate quantity of that input in industry s:

rs =

∑ms
i=1 (PsiYsi −Wsi)

Ks

,

ws =

∑ms
i=1 wsLsi

Ls

,

qs =

∑ms
i=1 qsHsi

Hs

,

while the output elasticities are the ratio of total industry expenditure on

the given input to the aggregate industry revenue:

αs =
rsKs∑ms

i=1 PsiYsi

,

βs =
wsLs∑ms

i=1 PsiYsi

,

γs =
qsHs∑ms

i=1 PsiYsi

.

Similar to Hsieh and Klenow (2009); Dias et al. (2016); Garćıa-Santana

et al. (2020), we set the elasticity of substitution equal to ρ = 3. It implies

16



a markup of 50%, which is comparable to the markup estimate of 68% by

De Loecker and Eeckhout (2018) for the UK in 2016. Note that because

Psi = Y
−1/ρ
si , we can obtain the output of firm si from its revenue: Ysi =

(PsiYsi)
ρ

ρ−1 .

To calibrate the spillover parameter, δs, we assume that it is the same for

all industries. We first calculate the firm-level productivity that includes the

R&D spillover:

Asi ≡ BsiX
δs
s =

Ysi

Kαs
sj L

βs
siH

γs
sj

,

and then, by using the variation in the spillover pool across industries, we

estimate the common δ from the regression

logAsi = δ0 + δ logXs + ϵsi.

OLS produced an estimate of δ = 0.12. The IV estimator with the aggregate

industry expenditure on R&D input, log qsHs as the instrumental variable

gave a slightly higher, but insignificant estimate of δ = 0.17.6 We chose to

set δs = 0.12 for all s.

If all firms in industry s were symmetric, then the private and social

marginal returns would be ρ−1
ρ

PsYs

Hs
γs and

ρ−1
ρ

PsYs

Hs
(γs + δs), respectively. Thus,

the social return exceeds the private one by δs
γs
· 100%. As we report in Table

1 below, the average value of γs is 0.22 in the sample, implying δs
γs

≈ 0.55.

There is substantial literature that attempts to estimate the elasticities γs

and δs so as to infer the private and social returns to R&D. However, there

does not seem to be a consensus about the relative sizes of these elasticities.

For example, Lucking et al. (2019) estimate the ratio of social to private

return for the US firms to be around four to one, implying δs
γs

= 3. Ugur

et al. (2020) conduct a meta-study and instead conclude that the spillover

effect is smaller than the own effect of R&D: γs = 0.073, while δs = 0.069 for

6The 95% confidence interval is [0.02, 0.23] in the case of OLS estimator and
[−0.05, 0.39] in the case of IV estimator.
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knowledge spillovers and δs = 0.036 for all spillover types.

Finally, once we have calibrated all the parameters, we can also recover

firm-level productivities, Bsi and distortions, τIsi for I = K,L,H and all si.

We use the data for 2019 when the economy is still not affected by the

Covid-19 pandemic. We exclude all firms with non-positive or missing values

of output or any input. To limit the influence of outliers, we also exclude the

firms with the capital stock in either the top or bottom 5th percentile. After

data cleaning, there are 1759 firms left in our database. These firms belong

to 22 different industries. In order to see if the results change systematically

with the technological intensity of industries, we follow ONS (2018, p. 20)

and group them into low, medium-low, medium-high, and high technology

groups. (See Table 8 in Appendix C.) There are 10, 5, 6, and 2 industries in

low, medium-low, medium-high, and high technology groups, respectively.

Table 1 contains descriptive statistics of the main variables. An average

firm employes 258 workers and 9 researchers, has £5.7m worth of capital,

and generates £19m in revenues (value added). Though, large standard

deviations imply that there is a lot of heterogeneity among firms. The firms

in the low-tech group are on average larger in terms of output as well as

in terms of capital and labour employed. If we compare across the groups,

then the use of R&D input increases while the use of labour input decreases

with the increase in the technological intensity of industry. A similar pattern

can be observed if we compare the output elasticity of labour, βs and that

of R&D input, γs across the groups. The output elasticity of capital, αs is

relatively stable across the groups and, on average, it is the largest between

the output elasticities, followed by the elasticity of labour, while the elasticity

of R&D input is the smallest. Though, in the case of high-tech group, the

elasticity of R&D input exceeds that of labour. Finally, the prices of capital

and labour inputs are relatively stable across the groups, while the price of

R&D input decreases quite substantially with the technological intensity of

industry: the price of R&D input in the high-tech group is only one third of
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that in the low-tech group.7

4 Empirical Results

4.1 Output Gains

Table 2 reports output gains for different allocations of inputs and different

technological intensities. Both in columns [1] and [2], the new input allocation

is given by eq. (7). It corresponds to the situation when all firms in a given

industry face the same distortions and, hence, the same input prices, which

is optimal in the absence of spillovers. In column [1], the spillover pool Xs for

all s is recalculated according to (3) given the new allocation of R&D input,

while in column [2], Xs is kept at the original level so that there are no

spillover effects. By comparing columns [1] and [2], the first conclusion that

we draw, is that the allocation given by (7) reduces the size of spillovers in the

economy. As a result, the output gains are overestimated quite substantially

when spillovers are ignored. If we take all manufacturing industries, we find

that the output gain is overestimated by around two-thirds or 50 percentage

points (pp).

In column [3], the input allocation is given by eqs. (11) and (13), while

in column [4], it is given by (11) and (14). In both cases, capital and labour

distortions are still equalized across the firms in the same industry, but now

R&D input distortions are increasing in firm productivity. Recall that the

R&D input allocation in (13) is the one that maximizes the aggregate output

of the approximate model in (19). Comparison with column [1] tells that the

output gain from a more even distribution of R&D input across firms can

be quite large. Thus, for the entire manufacturing sector, we find that the

7Note that output gains or losses do not depend on the input prices because the input
quantities at the industry level are fixed. If there is any mismeasurement of input prices,
then according to (4)-(6), it will only affect the level of distortions. However, the output
only depends on the dispersion of distortions, not on their level.
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output gain is more than two-fifth or around 34pp.

The results in column [4] are obtained by performing one additional itera-

tion on the R&D input allocation: we take the allocation in (13) and combine

it with (12) and (9) to arrive at (14). Although the output gain in column [4]

is even higher than in column [3], the increment is much smaller compared to

the difference between columns [3] and [1]. (Though, the increment in output

gain appears larger in more technology-intensive groups.) Therefore, we will

view the results in column [4] as the maximal output gain that the manu-

facturing industries can achieve in our model. In fact, the output gains in

column [4] are similar to the ones reported in column [2]. However, they are

based on different assumptions and have different policy implications. The

results in column [2] assume that there are no spillovers and it is optimal to

charge all firms the same input prices, while the results in column [4] hinge

on the presence of R&D spillovers and say that it is optimal to subsidize

R&D input for less productive firms. As noted previously, there is extensive

empirical evidence supporting the existence of R&D spillovers and so, they

need to be taken into account.

Finally, if we compare the output gains by the technological intensity,

the largest gains are in the medium-high tech group, followed by the low

tech, high tech, and the medium-low tech groups. We can infer from Table 1

that the medium-high tech group produces the largest output and uses most

inputs. Thus, it appears that the size of output gain is related to the size

of group. The ranking of the remaining three groups, however, is not clear-

cut: the low tech group employes more labour, the medium-low tech group

employes more capital, and the high tech group employes more R&D input.

In the following section, we will explore further if there are any systematic

differences in the distortions that these groups face.
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Table 2: Output Gains

[1] [2] [3] [4]
All Industries 76.28 128.09 110.48 118.77
Low Tech 75.17 128.61 116.48 121.18
Medium-Low Tech 43.16 82.31 67.81 73.76
Medium-High Tech 103.21 165.76 143.58 154.70
High Tech 69.08 114.39 92.76 104.86

Note: The output gain is measured as (Y ∗/Y − 1) ·100%, where Y is the initial output

and Y ∗ is the new output after reallocation of inputs. In column [1], the input allocation

is given by eq. (7); in column [2], it is also given by (7) but keeping Xs for all s at the

initial level; in column [3], it is given by (11) and (13); in column [4], it is given by (11)

and (14).

4.2 Output Decomposition

We now analyze the sources of potential output gains. In so doing, we sep-

arate the output gains due to changes in TFP and R&D spillover and then

relate them to the three types of distortions. Thus, Table 3 reports the

weighted averages of log Ys, log TFPs, δs logXs, and the variances and co-

variances that appear in (19) for the entire manufacturing sector. (With

some abuse of notation, for example, log Ys stands for
∑S

s=1 θs log Ys. It is

analogous for the other variables.) The values in column [1] correspond to the

actual allocation of inputs in the economy in 2019. The results in column

[4] correspond to the optimal allocation of inputs given by (11) and (14).

For the comparison purposes, we also report the values of variables when the

allocation of inputs is given by (7), in column [2].

We can make several observations based on Table 3. First, we conclude

from column [1] that the firms with higher productivity tend to face higher

distortions of all three types because all covariances (σBIs for I = K,L,H)

are positive. This is consistent with the earlier findings in the literature. For

instance, Hsieh and Klenow (2009, Table A.1) find it for China and India.

Guner et al. (2008) provide examples of size-dependent policies that lead
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to positively correlated distortions. Restuccia and Rogerson (2008); Bento

and Restuccia (2017) also analyze the consequences of positively correlated

distortions. The positive correlation between logBsi and log (1 + τHsi
) can

also be seen in Figure 1a.8

In column [2], all variance and covariance terms are obviously 0 because

all firms in the same industry face identical distortions. The allocation of

inputs is such that it maximizes TFP. Therefore, the increase in the (average)

log of TFP is higher in column [3] than in column [5]: 0.82 vs. 0.77. However,

identical distortions also mean that R&D input is less evenly spread between

the firms, which leads to lower spillover. This decrease in spillover is quite

substantial in column [3]: almost a third of the increase in the log of TFP goes

towards compensating for the decrease in the spillover. A related point is

that by equalizing R&D input distortions, ceteris paribus, the output would

be reduced by approximately 6% (0.22− 0.28) compared to the one realized

in 2019, which shows the importance of getting the policies that affect the

allocation of R&D input, right.

If we consider the variance and covariance terms in column [4], clearly the

only difference with column [2] is that the terms related to the R&D input

distortion are now different from 0. In fact, the absolute values of these

terms have actually increased compared to the initial values in column [1].

According to (18), the R&D spillover is increasing in covariances between the

distortions and the productivity because it leads to more even use of inputs

across the firms. Therefore, higher value of σBHs in column [4] compensates

for the reduction of σBKs and σBLs to 0, so that R&D spillover remains

approximately at the initial level. Because one now avoids a reduction in

spillover as happened in column [3], the resulting output gain in column [5] is

larger than in column [3]: 0.78 vs. 0.57.9 Figure 1b illustrates the relationship

between logBsi and log (1 + τHsi
) when the latter is set optimally.

8Scatter plots for the other two distortions are similar and, therefore, omitted.
9Note that these changes in the log of output correspond, respectively, to 118.77% and

76.28% reported in Table 2.
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Finally, according to column [5], capital distortions are the main source

of the output loss: the change in −aKs

2
σ2
Ks + bKsσBKs is equal to 0.24 com-

pared to the change of 0.06 in the labour distortions and that of 0.02 in the

R&D input distortions. Hence, while it is important to foster more even use

of R&D input by subsidizing less productive firms, it is also important to

ensure that all firms in the same industry face an identical price of capital so

that more productive firms use more of capital. Note, however, that the sum

of all variance and covariance terms in column [5] is 0.32, giving an output

gain of (e0.32 − 1) ·100% = 37.71%. This is the output gain as implied by the

decomposition in (19). But the actual output gain from the optimal alloca-

tion of inputs is 118.77% as shown in Table 2. Therefore, one should keep in

mind that the decomposition in (19) provides only a crude approximation of

the output.

Table 3: Output Decomposition for All Manufacturing Industries

[1] [2] [3]=[2]-[1] [4] [5]=[4]-[1]
log Ys 21.99 22.56 0.57 22.77 0.78

log TFPs 10.80 11.62 0.82 11.57 0.77
δs logXs 0.18 -0.08 -0.26 0.19 0.01
−aKs

2
σ2
Ks -0.41 0 0.41 0 0.41

−aLs

2
σ2
Ls -0.17 0 0.17 0 0.17

−aHs

2
σ2
Hs -0.22 0 0.22 -0.43 -0.20

bKsσBKs 0.17 0 -0.17 0 -0.17
bLsσBLs 0.11 0 -0.11 0 -0.11
bHsσBHs 0.28 0 -0.28 0.50 0.22

Note: aIsσ
2
Is/2 and bIsσBIs for I = K,L,H are the terms given in (19). The reported

values are weighted averages across industries where the weight of industry s is θs. In

column [1], the input allocation is the one given by the data; in column [2], the input

allocation is given by eq. (7); in column [4], it is given by eqs. (11) and (14).

Table 4 provides output decomposition separately for each group of tech-

nological intensity. (Now, log Ys stands for
∑

s∈G θs log Ys/ (
∑

s∈G θs) where
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(a) Actual R&D Input Distortions (b) Optimal R&D Input Distortions

Figure 1: Scatter plots of log(1 + τHsi
) against logBsi

G is the group of industries of given technological intensity.10 It is analogous

for the other variables.) The table reports the values of variables for the

actual allocation of inputs in 2019 (columns [1], [4], [7], and [10]) and for the

optimal allocation of inputs (columns [2], [5], [8], and [11]), as well as their

difference (columns [3], [6], [9], and [12]).

Qualitatively, the results for each group are similar to the results for the

entire manufacturing sector. For all groups, the output gains due to the

optimal allocation of inputs come almost exclusively from the increase in

TFP, and the largest gain in TFP occurs in the medium-high tech group.

As noted before, this group has the largest number of firms and employs the

largest amount of inputs. Between the three types of distortions, the capital

distortion contributes the most, while the R&D input distortion contributes

the least to the output gain irrespective of the technological intensity of the

group. The largest contribution of the capital distortion is in the high tech

group: 0.32. The largest contributions of labour and R&D input distortions

are both in the low tech group: 0.10 and 0.08, respectively.

Even though the R&D input distortion does not add much to the output

10The groups are given in Table 8.
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gain, the terms related to this distortion, aHs

2
σ2
Hs and bHsσBHs, approximately

double in the absolute size under the optimal allocation of inputs. This helps

to keep the R&D spillover high. If besides capital and labour distortions, we

also equalized the R&D input distortions across firms, that is, set σ2
Hs =

σBHs = 0, the spillover δs logXs would decrease by 0.24 to 0.27 depending

on the group (not shown in Table 4). Therefore, any policy that affects the

allocation of R&D input, still has an important impact on output.

4.3 Output Decomposition in 2013

We also briefly perform a similar exercise using the data from 2013 to see if

the results are qualitatively similar. By this year, the effects of the Global

Financial Crisis of 2007-2008 had receded, while the “Brexit” referendum has

not yet taken place. The sample for 2013 only contains 1141 firms compared

to 1759 firms in the 2019 sample. Table 5 contains the descriptive statistics

of the variables. One thing to note is that the firms in the 2013 sample are

on average larger both in terms of the output produced and the amount of

inputs employed. At the same time, the average output elasticities of capital,

labour, and R&D input are quite similar in both years. The estimated value

of δ is 0.25 in 2013, which is higher than in 2019.

Table 6 reports the same results as Table 3 but for 2013. Compared to

2019, the R&D spillover and R&D input distortions play a larger role in the

output, which is to be expected given that now δs = 0.25 instead of 0.12 for

all s. Thus, according to column [3], when all variations in distortions are

eliminated, now more than half of the TFP gain goes towards compensating

for the reduction in the spillover. In column [5], although the increase in TFP

still explains most of the output gain arising from the optimal allocation of

inputs, the contribution of the spillover δs logXs to the output gain is an order

of magnitude larger than in Table 3. In terms of individual distortions, the

R&D input distortion now contributes twice as much as the capital distortion

to the output gain in column [5]: −aHs

2
σ2
Hs + bHsσBHs = 0.27 vs. −aKs

2
σ2
Ks +
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Table 5: Descriptive Statistics for the Data in 2013

Variable Mean Std. Dev.
PsiYsi 26932.88 56966.83
Ksi 7291.67 9252.50
Lsi 394.29 715.08
Hsi 12.92 39.73
αs 0.41 0.09
βs 0.35 0.11
γs 0.25 0.11
rs 1.53 0.99
ws 22.15 5.55
qs 489.45 141.32

Note: Revenue PsiYsi, capital Ksi, wage rate ws, and the price of R&D input qs are

reported in thousand GBP.

bKsσBKs = 0.13.

Finally, if we compare column [1] in Tables 3 and 6, we find that log TFPs+

δs logXs has only increased by 0.02 over the six year period. One could ask

if this poor performance can be attributed to changes in the R&D spillover.

Besides lower δs, we find that the average size of Xs has indeed decreased

from 4.96 to 4.40 between 2013 and 2019. However, this decrease could be

due to changes in the sample composition. As noted, the 2013 sample has

less firms but they are, on average, larger. Therefore, we also compute Xs

Hs/ms

(and average it across industries). The maximal value that Xs

Hs/ms
can take

is 1, irrespective of H s and ms. Therefore, any differences in Xs

Hs/ms
between

2013 and 2019 only depend on how evenly the R&D input is distributed be-

tween the firms. We find that Xs

Hs/ms
= 0.48 in 2013 and Xs

Hs/ms
= 0.60 in

2019. Thus, the R&D input is actually more evenly distributed in 2019 than

in 2013. This increase in Xs

Hs/ms
even outweighs the decrease in δs, that is,

δs log
(

Xs

Hs/ms

)
has increased by 0.12 from 2013 to 2019 or approximately 2%

a year. Hence, we conclude that the poor performance of log TFPs+δs logXs

is not because of decline in R&D spillovers in the economy.
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Table 6: Output Decomposition for All Manufacturing Industries in 2013

[1] [2] [3]=[2]-[1] [4] [5]=[4]-[1]
log Ys 21.89 22.26 0.37 22.78 0.89

log TFPs 10.56 11.41 0.85 11.33 0.76
δs logXs 0.40 -0.08 -0.48 0.53 0.13
−aKs

2
σ2
Ks -0.54 0 0.54 0 0.54

−aLs

2
σ2
Ls -0.16 0 0.16 0 0.16

−aHs

2
σ2
Hs -0.40 0 0.40 -0.75 -0.35

bKsσBKs 0.41 0 -0.41 0 -0.41
bLsσBLs 0.20 0 -0.20 0 -0.20
bHsσBHs 0.55 0 -0.55 1.17 0.62

Note: aIsσ
2
Is/2 and bIsσBIs for I = K,L,H are the terms given in (19). The reported

values are weighted averages across industries where the weight of industry s is θs. In

column [1], the input allocation is the one given by the data in 2013; in column [2], the

input allocation is given by eq. (7); in column [4], it is given by eqs. (11) and (14).

5 Conclusion

Motivated by the applied work on R&D spillovers, we introduce them in

the model of Hsieh and Klenow (2009) and study their effect on resource

(mis)allocation. Because of the externalities associated with R&D spillovers,

the efficient allocation of resources requires that more productive firms face

higher R&D input distortions and, consequently, higher R&D input prices.

We apply the model to the firm-level data in the UK manufacturing sector in

2019 and find that the output gains from eliminating resource misallocation

are significantly overestimated if the spillovers are not taken into account.

When we express output as a function of factor distortions, we find that the

capital distortions are the main contributor to output loss. However, if a

wrong policy is adopted towards R&D, the output loss due to R&D input

distortions is also significant.

The model we study is static, with an exogenously-given amount of re-

sources. A possible next step is to build a dynamic model where current
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decisions determine the future stock of inputs. Whether our conclusions

about the optimal allocation of R&D input will continue to hold, is likely to

depend on how the accumulation of R&D stock is modelled. If the investment

in R&D depends on the aggregate output in the economy, we expect that it

is still optimal to favour less productive firms to achieve more even use of

R&D input because it maximizes the output. If, instead, the production of

new R&D only requires the R&D input, it might be optimal to concentrate

the R&D input in more productive firms.
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Appendix

A Decomposition of Industry TFP and Spillover

We start by substituting (4)-(6) into the production function (2) to arrive at

Ysi =

(
BsiΓsX

δs
s

Θsi

)ρ

, (20)

where

Γs ≡
ρ− 1

ρ

(
αs

rs

)αs
(
βs

ws

)βs
(
γs
qs

)γs

and

Θsi ≡ (1 + τKsi
)αs (1 + τLsi

)βs (1 + τHsi
)γs .

Given (20), the industry s output in (1) becomes

Ys =
(
ΓsX

δs
s

)ρ (ms∑
i=1

(
Bsi

Θsi

)ρ−1
) ρ

ρ−1

.
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Also, if we substitute (20) back into (4)-(6) and sum across the firms, input

demands by industry s are

Ks =
ρ− 1

ρ

(
ΓsX

δs
s

)ρ−1 αs

rs

ms∑
i=1

1

1 + τKsi

(
Bsi

Θsi

)ρ−1

,

Ls =
ρ− 1

ρ

(
ΓsX

δs
s

)ρ−1 βs

ws

ms∑
i=1

1

1 + τLsi

(
Bsi

Θsi

)ρ−1

,

Hs =
ρ− 1

ρ

(
ΓsX

δs
s

)ρ−1 γs
qs

ms∑
i=1

1

1 + τHsi

(
Bsi

Θsi

)ρ−1

.

We can use the above expressions for Ys, Ks, Ls, and Hs to write industry

TFP in (16) as

TFPs =

(∑ms
i=1

(
Bsi

Θsi

)ρ−1
) ρ

ρ−1

(∑ms
i=1

1
1+τKsi

(
Bsi

Θsi

)ρ−1
)αs

(∑ms
i=1

1
1+τLsi

(
Bsi

Θsi

)ρ−1
)βs

(∑ms
i=1

1
1+τHsi

(
Bsi

Θsi

)ρ−1
)γs

.

Similar to Chen and Irarrazabal (2015), we now provide an approximation of

TFPs assuming that distortions and firm TFPs are log-normally distributed

with the variance-covariance matrix given by Σs and that the number of firms

in the industry tends to infinity. Let µBs ≡ E [logBsi], µΘs ≡ E [log Θsi],

σ2
Θs ≡ var (logΘsi), and σBΘs = cov (logBsi, log Θsi). Then,

log TFPs =
ρ

ρ− 1
log

∫ (
Bsi

Θsi

)ρ−1

di− αs log
∫ 1

1 + τKsi

(
Bsi

Θsi

)ρ−1

di

−βs log
∫ 1

1 + τLsi

(
Bsi

Θsi

)ρ−1

di− γs log
∫ 1

1 + τHsi

(
Bsi

Θsi

)ρ−1

di,

where

log
∫ (

Bsi

Θsi

)ρ−1

di = (ρ− 1) (µBs − µΘs)+
(ρ− 1)2

2

(
σ2
Bs + σ2

Θs

)
−(ρ− 1)2 σBΘs,
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and

log
∫ 1

1 + τIsi

(
Bsi

Θsi

)ρ−1

di = (ρ− 1) (µBs − µΘs)− µIs +
(ρ− 1)2

2

(
σ2
Bs + σ2

Θs

)
+
1

2
σ2
Is − (ρ− 1)2 σBΘs − (ρ− 1) (σBIs − σΘIs) ,

for I = K,L,H. Observe that

µΘs = αsµKs + βsµLs + γsµHs,

σ2
Θs = α2

sσ
2
Ks + β2

sσ
2
Ls + γ2

sσ
2
Hs,

σΘIs = ϕIsσ
2
Is,

where ϕIs = αs, βs, γs for I = K,L,H, respectively. Substituting it all in

the expression for log TFPs and noting that αs + βs + γs = 1, we obtain the

expression in (17).

To write logXs in terms of variances and covariances of distortions and

firm TFPs, we note that

logHs = log
∫

Hsidi = E [logHsi] +
1

2
var (logHsi)

= logXs +
1

2
var

(
log

(
1

1 + τHsi

(
Bsi

Θsi

)ρ−1
))

.

Hence,

logXs = logHs−
(ρ− 1)2

2

(
σ2
Bs + σ2

Θs

)
−1

2
σ2
Hs+(ρ− 1)2 σBΘs+(ρ− 1) (σBHs − σΘHs) .

After substituting the expressions for σ2
Θs, σΘHs, and σBΘs = αsσBKs +

βsσBLs + γsσBHs, we arrive at (18).
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B Maximizing Industry Output

We want to maximize (19) subject to the constraint that Σs is a positive

semi-definite matrix. A symmetric matrix is positive semi-definite if and

only if all of its principal minors are nonnegative:

σ2
Ks ≥ 0, (21)

σ2
Ls ≥ 0, (22)

σ2
Hs ≥ 0, (23)

σ2
Bsσ

2
Ks − σ2

BKs ≥ 0, (24)

σ2
Bsσ

2
Ls − σ2

BLs ≥ 0, (25)

σ2
Bsσ

2
Hs − σ2

BHs ≥ 0, (26)

σ2
Bsσ

2
Ksσ

2
Ls − σ2

BKsσ
2
Ls − σ2

BLsσ
2
Ks ≥ 0, (27)

σ2
Bsσ

2
Ksσ

2
Hs − σ2

BKsσ
2
Hs − σ2

BHsσ
2
Ks ≥ 0, (28)

σ2
Bsσ

2
Lsσ

2
Hs − σ2

BLsσ
2
Hs − σ2

BHsσ
2
Ls ≥ 0, (29)

σ2
Bsσ

2
Ksσ

2
Lsσ

2
Hs − σ2

BKsσ
2
Lsσ

2
Hs − σ2

BLsσ
2
Ksσ

2
Hs − σ2

BHsσ
2
Ksσ

2
Ls ≥ 0. (30)

There are four more constraints σ2
Ksσ

2
Ls ≥ 0, σ2

Ksσ
2
Hs ≥ 0, σ2

Lsσ
2
Hs ≥ 0,

σ2
Ksσ

2
Lsσ

2
Hs ≥ 0, but they are automatically satisfied if the other constraints

are satisfied.

We minimize

aKsσ
2
Ks + aLsσ

2
Ls + aHsσ

2
Hs − 2bKsσBKs − 2bLsσBLs − 2bHsσBHs

subject to (21)-(30) where the coefficients aIs and bIs for I = K,L,H are

given right after (19). As it turns out, the constraint qualifications are not

satisfied in this problem and, therefore, the Kuhn-Tucker conditions are not

necessary conditions. We identify the solution in several steps.

First, suppose the solution is such that σ2
BKs > 0, σ2

BLs > 0, and σ2
BHs >

0. But then from (24)-(26), σ2
Ks > 0, σ2

Ls > 0, σ2
Hs > 0. Furthermore, the
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only constraint that binds is (30). To see it, suppose for example that (24)

binds. But then from (30), σ2
BLsσ

2
Ksσ

2
Hs + σ2

BHsσ
2
Ksσ

2
Ls = 0, a contradiction.

The same applies if we assume that any other constraint from (25) to (29)

binds. Hence, we solve the following problem:

minL = aKsσ
2
Ks + aLsσ

2
Ls + aHsσ

2
Hs − 2bKsσBKs − 2bLsσBLs − 2bHsσBHs

−λ
(
σ2
Bsσ

2
Ksσ

2
Lsσ

2
Hs − σ2

BKsσ
2
Lsσ

2
Hs − σ2

BLsσ
2
Ksσ

2
Hs − σ2

BHsσ
2
Ksσ

2
Ls

)
.

The Kuhn-Tucker conditions are

∂L

∂σ2
Ks

= aKs − λσ2
Lsσ

2
Hs

(
σ2
Bs −

σ2
BLs

σ2
Ls

− σ2
BHs

σ2
Hs

)
= 0, (31)

∂L

∂σ2
Ls

= aLs − λσ2
Ksσ

2
Hs

(
σ2
Bs −

σ2
BKs

σ2
Ks

− σ2
BHs

σ2
Hs

)
= 0, (32)

∂L

∂σ2
Hs

= aHs − λσ2
Ksσ

2
Ls

(
σ2
Bs −

σ2
BKs

σ2
Ks

− σ2
BLs

σ2
Ls

)
= 0, (33)

∂L

∂σBKs

= −bKs + λσBKsσ
2
Lsσ

2
Hs = 0, (34)

∂L

∂σBLs

= −bLs + λσBLsσ
2
Ksσ

2
Hs = 0, (35)

∂L

∂σBHs

= −bHs + λσBHsσ
2
Ksσ

2
Ls = 0, (36)

∂L

∂λ
= σ2

Bs −
σ2
BKs

σ2
Ks

− σ2
BLs

σ2
Ls

− σ2
BHs

σ2
Hs

= 0. (37)

If one plugs (37) into (31)-(33), one gets that

aKs − λσ2
Lsσ

2
Hs

σ2
BKs

σ2
Ks

= 0,

aLs − λσ2
Ksσ

2
Hs

σ2
BLs

σ2
Ls

= 0,

aHs − λσ2
Ksσ

2
Ls

σ2
BHs

σ2
Hs

= 0.
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Substituting (34)-(36) into the above expressions, one obtains that

σBKs

σ2
Ks

=
aKs

bKs

,

σBLs

σ2
Ls

=
aLs
bLs

,

σBHs

σ2
Hs

=
aHs

bHs

.

However, from (34)-(36), we also have that

bKs

bLs
=

σBKsσ
2
Ls

σBLsσ2
Ks

,

bKs

bHs

=
σBKsσ

2
Hs

σBHsσ2
Ks

,

which imply

σBKs

σ2
Ks

=
bKs

bLs

σBLs

σ2
Ls

=
bKs

bHs

σBHs

σ2
Hs

,

aKs

bKs

=
bKs

bLs

aLs
bLs

=
bKs

bHs

aHs

bHs

.

However, these equalities cannot be satisfied simultaneously. It follows that

the solution cannot be such that σ2
BKs > 0, σ2

BLs > 0, and σ2
BHs > 0 hold.

Second, suppose the solution is such that σ2
BKs > 0 and σ2

BLs > 0, while

σ2
BHs = 0. From (24)-(25), σ2

Ks > 0 and σ2
Ls > 0 hold. Further, inspection

of (21)-(30) tells that σ2
Hs > 0 does not help to relax any of the constraints,

while the objective is decreasing in σ2
Hs. Therefore, σ2

Hs = 0 must hold.

Then, (26) and (28)-(30) are all automatically satisfied. Of the remaining

constraints, (24)-(25) and (27), only the last will bind. To see it, suppose for

example that (24) binds. But then from (27), σ2
BLsσ

2
Ks = 0, a contradiction.

The same applies if we assume that (25) binds. Hence, we solve the following
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problem:

minL = aKsσ
2
Ks + aLsσ

2
Ls − 2bKsσBKs − 2bLsσBLs

−λ
(
σ2
Bsσ

2
Ksσ

2
Ls − σ2

BKsσ
2
Ls − σ2

BLsσ
2
Ks

)
.

Using similar steps as before, we find the solution where

σBKs

σ2
Ks

=
bKs

bLs

σBLs

σ2
Ls

,

aKs

bKs

=
bKs

bLs

aLs
bLs

.

However, this equality is not again satisfied. It follows that the solution

cannot be such that σ2
BKs > 0, σ2

BLs > 0, and σ2
BHs = 0 hold. By symmetry,

the same is true if only σ2
BKs = 0 or σ2

BLs = 0 holds.

Third, the remaining case is when only one of the covariances is strictly

positive. Thus, suppose that σ2
BKs > 0, while σ2

BLs = 0 and σ2
BHs = 0. From

(24), σ2
Ks > 0 holds. Further, inspection of (21)-(30) tells that σ2

BLs > 0 or

σ2
Hs > 0 does not help to relax any of the constraints, while the objective is

decreasing in σ2
BLs and σ2

Hs. Therefore, σ2
BLs = σ2

Hs = 0 must hold. Then,

(25)-(30) are all automatically satisfied. The only constraint that we need

to take into account is (24), which will bind. If it did not, we could decrease

the objective by decreasing σ2
Ks. Hence, we solve the following problem:

minL = aKsσ
2
Ks − 2bKsσBKs − λ

(
σ2
Bsσ

2
Ks − σ2

BKs

)
.

The solution is

σBKs =
bKs

aKs

σ2
Bs,

σ2
Ks =

(
bKs

aKs

)2

σ2
Bs.
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Evaluating the objective at this solution, gives that

− b2Ks

aKs

σ2
Bs.

Similar analysis would apply if we assumed that either only σ2
BLs > 0 or only

σ2
BHs > 0. To decide which of these covariances is strictly positive, we need

to compare
b2Ks

aKs
,

b2Ls

aLs
, and

b2Hs

aHs
, and pick the largest. One can verify that

b2Hs

aHs

takes the largest value if either 0 ≤ δs ≤ max {1, ρ} or ρ ≥ 2 holds, both of

which are satisfied by our calibration of the model. We conclude that the

output is maximized when σ2
Ks = σ2

Ls = σBKs = σBLs = 0,

σBHs =
δs (ρ− 1)

γs + δs + γsδs (ρ− 1)
σ2
Bs,

σ2
Hs =

(
δs (ρ− 1)

γs + δs + γsδs (ρ− 1)

)2

σ2
Bs.

C Data Description

This section contains the tables omitted from the main text. Table 7 lists

the data sources, while Table 8 classifies industries by their technological

intensity.

Table 7: Data Sources

Variable in Dataset Variable in Label
the model the dataset

PsiYsi ABS wq613 Approximate Gross Value Added (aGVA)
at basic prices (£,000)

Ksi ABS wq599 Total value of all stocks at the end of the year (£,000)
Lsi +Hsi ABS empment IDBR employment at time of sample selection
Hsi BERD emp sci Number of scientists, researchers
Wsi BERD slries Salaries and wages (£,000)
IKsi ABS wq522 Value of total net capex (excluding NYIP) (£,000)
IR&Dsi

BERD intram Total in-house capital and non-capital expenditure
for performing R&D (£,000)
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Table 8: Industry Classification by Technological Intensity

Code SIC07 2-digit Level Code

10 Manufacture of food products
11 Manufacture of beverages
13 Manufacture of textiles

Low 15 Manufacture of leather products
Technology 16 Manufacture of wood products, except furniture

17 Manufacture of paper products
18 Printing and reproduction of recorded media
31 Manufacture of furniture
32 Other manufacturing

22 Manufacture of rubber and plastic products
Medium-Low 23 Manufacture of other non-metallic mineral products
Technology 24 Manufacture of basic metals

25 Manufacture of fabricated metal products
33 Repair and installation of machinery and equipment

19 Manufacture of coke and petroleum
20 Manufacture of chemicals

Medium-High 27 Manufacture of electrical equipment
Technology 28 Manufacture of machinery and equipment

29 Manufacture of motor vehicles
30 Manufacture of other transport equipment

High 21 Manufacture of pharmaceutical products
Technology 26 Manufacture of computer, electronic and optical products
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