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Abstract: Detecting cyber security vulnerabilities in the Internet of Things (IoT) devices before they
are exploited is increasingly challenging and is one of the key technologies to protect IoT devices
from cyber attacks. This work conducts a comprehensive survey to investigate the methods and
tools used in vulnerability detection in IoT environments utilizing machine learning techniques
on various datasets, i.e., IoT23. During this study, the common potential vulnerabilities of IoT
architectures are analyzed on each layer and the machine learning workflow is described for detecting
IoT vulnerabilities. A vulnerability detection and mitigation framework was proposed for machine
learning-based vulnerability detection in IoT environments, and a review of recent research trends
is presented.

Keywords: IoT security; vulnerability detection; cyber attacks; device security

1. Introduction

The growth of technologies such as artificial intelligence (AI), smart sensors, cloud com-
puting, the sixth-generation wireless (6G), and edge computing has significantly enhanced
the capability of the Internet of Things (IoT), which is successfully transforming our daily
lives through developments such as smart homes, smart cities, Industry 4.0, healthcare, and
more [1,2]. They are now becoming broadly embraced because they offer cost-effectiveness
and improve people’s quality of life [3]. The IoT is also significantly impacting many
industrial sectors, including cyber security, manufacturing, shopping and retail, agriculture,
transportation, the infrastructure industry, smart grids, the hospitality industry, etc. Many en-
abling techniques have been developed in the IoT in parallel with their architectures, as
Strategy Analytics released that the IoT devices will rise more than USD 38 billion by the end
of 2025 and USD 50 billion by 2030 [4]. Many IoT ecosystems are being developed using
sensors and microprocessors and then transferring sensitive data within IoT networks.

As IoT devices transmit data by wire or wireless, most of this data should be secured
while transferring and storing. Aruba et al. conducted a study that indicated that 84% of
all reported security issues involving data breaches took place on the IoT in 2019 and these
attacks could deter the adoption of IoT techniques [5]. Securing IoT systems is crucial
and it is necessary to ensure that confidentiality, integrity, availability, non-repudiation,
authentication, and authorization are presented in IoT environments. Moreover, a weakness
in any of these security properties could lead to many attacks. The architecture of the IoT
systems comprises the perception layer, network layer, and application layer; all these
layers must be secured to avoid any attacks occurring [6]. Securing the IoT systems in each
layer is challenging because of the associated limitations, such as energy consumption,
limited memory capacity, and low-performance processing. However, there are certain
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techniques that have been proposed and used in specific IoT layers, such as blockchain and
authentication methods [7,8].

Furthermore, there are many challenges and security issues involving IoT systems
and most of these relate to authentication attacks such as DoS, ransomware, replay attack,
and spoofing attacks [9]. The top 10 security vulnerabilities include poor passwords, insecure
services, insecure interfaces, lack of update mechanism, insecure/outdated components, inadequate
privacy protection, insecure data transfer/storage, lack of device management, insecure default
setting, and lack of physical protection (https://www.cardinalpeak.com/blog/top-10-iot-
security-vulnerabilities, accessd on 5 September 2023). Importantly, it is impossible to fully
secure IoT devices and systems against any potential attacks and prevent attackers from
compromising IoT systems. However, it is crucial to have a good understanding of the
critical vulnerability and better design IoT systems without security holes.

In the past decade, many research efforts have been conducted to enhance IoT security
standards and actions by both industry and academia. The significant development of
security solutions for IoT systems is related to handling large volumes of data created by
the IoT, including using emerging techniques, such as AI, blockchain technology, security
strategies, protocols, standards, and actions, to secure these IoT assets from cyber attacks.
Recently, many enabling techniques have been developed using AI and machine learning
(ML) to detect, identify, monitor, and protect IoT devices, applications, users, and data
against cyber attacks [1]. Figure 1 indicates the number of recent studies that have used ML
in IoT vulnerability; this figure is based on SCOPUS, IEEE, and Science Direct databases,
and it shows the increase of use of ML to manage the vulnerabilities in IoT environments.
However, most of these studies use ML to detect different types of attacks, which means
they implement ML and deep learning (DL) algorithms to detect the attacks after they have
started. As a result, this paper investigates ML and DL used to detect attacks and then pro-
vides a brief overview of various algorithms that are used with different datasets, including
a summary of their limitations, to encourage future research to enhance IoT security.

Figure 1. The studies in ML and DL for secure IoT.

ML is a subset of AI that makes the machine or device perform its tasks automatically.
DL is a subset of machine learning that consists of three techniques, supervised, semi-
supervised, and unsupervised. It involves many layers of artificial neural networks and
each layer has multiple neurons. Neurons in each layer have activation functions that
can be exploited to produce non-linear responses. The structures of brain neurons are
reflected in this methodology [10,11]. It has been shown that ML algorithms are effective
in detecting security attacks due to these technologies supporting security requirements
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in IoT environments. Thus, focusing on using these techniques to detect IoT vulnerability
could efficiently improve security and avoid zero-day attacks. Vulnerability detection and
classification in the IoT ecosystem are dependent on defining characteristics that need to be
meticulously examined. A comprehensive understanding of IoT architecture and advanced
ML techniques is required, which is explained in this paper. Using ML algorithms, it is
possible to detect complex vulnerability within diverse IoT devices, enabling potential
threats to be avoided. Meanwhile, the classification characteristic involves a structured
taxonomy based on severity and impacted devices, thereby facilitating targeted mitigation
strategies, which will be discussed later.

This work aims to provide a comprehensive summary of IoT vulnerability detection
and classification using emerging techniques, such as ML and DL. The main contributions
can be summarized as follows:

• A comprehensive survey has been undertaken to focus on recent research studies
using ML and DL to detect and classify vulnerabilities and attacks in IoT ecosystems.

• This work investigates the common potential vulnerabilities at each layer in the IoT
architecture and summarises ML workflow to detect vulnerabilities in IoT devices.

• A framework is proposed to detect and mitigate the vulnerabilities in IoT environ-
ments, and recent research trends on machine-learning-based vulnerability detection
are summarized.

2. Related Works

Numerous prior surveys have reviewed IoT vulnerability detection by focusing on
particular areas such as firmware and IDS. The most related ones are summarized, which
inspires forward for our contributions in this paper. Neshenko et al. addressed IoT vulner-
abilities that are constantly evolving and explained a comprehensive approach in order
to categorize state-of-the-art surveys in [12]. In addition, the works in [13,14] focused
only on detecting IoT firmware vulnerability, whereas [15] described the common IoT
communication protocols and how they implemented specific security mechanisms to
make a comparison of the considered IoT technologies. In contrast, a paper described the
IoT vulnerabilities and reviewed state-of-the-art articles but without seeking deeper into
ML and DL techniques that are used to improve IoT security [16]. The latest published
survey proposed a state of the art to using AI to enhance the IoT security by focusing on
specific algorithms [17].

This paper added a crucial field of using ML and DL to enhance IoT security depend-
ing on each layer of the IoT architecture. The IoT systems, devices, users, and applications
suffer from various vulnerabilities that an attacker can potentially exploit. Due to limited re-
sources of IoT devices, the AI technology links high-security levels with low computational
complexity. Recently, ML and DL technologies have been increasingly used to enhance the
security of IoT environments, and a number of new solutions have developed to improve
the security of IoT systems. Due to the IoT ecosystems consisting of a hardware layer,
network layers, a middle-ware layer, such as intrusion detection systems (IDS), intrusion
prevention systems (IPS), and firewall, and, finally, a software layer, each vulnerability in
these layers could be exploited to undertake several attacks.

3. Vulnerabilities in IoT Environments

This work highlights the most recent studies aiming to use ML and DL to detect and
classify vulnerabilities and attacks in the hardware layer, middle-ware, network and soft-
ware layer. Figure 2 shows the potential vulnerabilities in each layer in the IoT architecture.
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Figure 2. Potential IoT vulnerabilities on the IoT architecture.

Table 1 presents the top 10 IoT vulnerabilities and their impact identified by the Open
Web Application Security Project (OWASP) [18].

Table 1. Top 10 IoT vulnerabilities and consequences.

Vulnerabilities Impact (Consequences)

Weak password

This vulnerability usually was performed to carry out attacks
against the authorization of the IoT devices which allows the
attacker to gain permission to control and access its
ecosystem [19–23].

Insecure network services Hampers both the confidentiality, integrity, and availability of
the system [24–26].

Insecure Interfaces

Alteration and injection could be implemented against
authorization and authentication. The authentication process
identifies the device, whereas authorization grants
permissions and both of these must exist in IoT devices to
perform their roles. The result of these types of attacks could
be unauthorized access and access to the network boundaries
that connect within the device [27–29].

Lack of update mechanism

Consists of unconfigured firmware, unencrypted delivery, no
anti-rollback mechanisms, and no notifications of security
updates, which leads to exploit the threat on the IoT software.
For instance, the software updates can be replaced with
malicious code by an attacker if there is an unsecured update
mechanism [27,30,31].

Insecure/outdated components

Using insecure components such as operating system
platforms or third-party hardware could compromise the
device, such as using hardware, like a server, which needs to
be secured to prevent an attacker from gaining access to it or
to the network for launching an attack or using it to initiate a
botnet attack [32–34].

Inadequate privacy protection

Most of the IoT ecosystems store personal information for
their users and any failure to protect these data could lead to
this information being stolen or compromised. In addition, the
users must be aware of the privacy methods that are used in
their devices, such as where and how their data will be stored
using the regulation to protect their privacy [35,36].

Insecure data transfer/storage

It is necessary to protect the data in the whole IoT for both
transferred data and saved data in order to protect the
consumers’ privacy. As the IoT ecosystem uses sensitive data
in transit and storage or when processing, these data must be
protected by using an efficient technique such as encryption to
ensure the integrity and confidentiality of the
ecosystem [20,35,37].
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Table 1. Cont.

Vulnerabilities Impact (Consequences)

Lack of device management

IoT device management issues occur when a company fails to
adequately protect and secure connected devices. In an IoT
environment, IoT device management is responsible for
configuring, monitoring, and maintaining connected devices.
Keeping the system updated and monitored, asset management,
and updating the response capabilities protect the system against
cyber attacks and data breaches [38–40].

Insecure default setting

By restricting operators from altering configurations, the system
cannot be secured, such as a lack of file system permissions could
be exploited by running the services as root. It is possible to
interrupt secret keys that are utilized to launch connections within
a restricted network during the on-boarding process for an IoT
device, thereby allowing the attackers to initiate an attack from
the deepest physical layer such as the motherboard [41–43].

Lack of physical protection

Poor physical hardening could make the IoT-connected network
vulnerable. It may allow attackers to gain sensitive information
that can be used in future remote attacks or to gain control of the
device [44–48].

It can be seen from Table 1 that most IoT vulnerabilities are caused by the weak built-in
security strategy. In our previous work, we have proposed a framework to test and evaluate
the security in an IoT device using TP-Link Tapo P100 smart plug as a use case. In the
framework, manual scanning was conducted to detect vulnerability that resulted in the
most critical vulnerability, some of which also has different sub-vulnerability, e.g., Treck
Transmission Control Protocol (TCP/IP) Stack (Ripple20). Actually, lots of work to detect
vulnerabilities has been undertaken at the device level [49]. Researchers at Joint Special
Operations Forces (JSOF) discovered a number of zero-day vulnerabilities, and a low-level
TCP/IP library introduced by Treck was used to exploit these vulnerabilities. It consists
of 19 vulnerabilities, 4 of which are classified as critical, in the high risk of conducting
remote code injections, enabling external access to the network and allowing malicious
code to be embedded in the devices which results in potentially dangerous effects on these
systems,that are reported in public corpora of Common Vulnerabilities and Exposures
(CVE), namely:

• CVE-2020-11896 could be triggered by sending multiple malformed IPv4 packets to a
device supporting IPv4 tunneling to cause a Denial of Service (DoS) attack.

• CVE-2020-11897 can be prompted by sending multiple malformed IPv6 packets to a
device that supports IPv6 to enable the execution of remote code.

• CVE-2020-11901 allows remote code execution by answering a single DNS request
made from the device, so it allows an attacker to gain control of the device via DNS
cache poisoning.

• CVE-2020-11898 could expose sensitive information when an unauthorized network
attacker send a handling packet.

Many IoT device manufacturers, including HP, Schneider Electric, Intel, Rockwell Automa-
tion, Caterpillar, and Baxter, are affected by these vulnerabilities, as are companies operating
in various fields such as medicine, transportation, industry, enterprise, and energy (oil/gas)
sectors. As the low-level TCP/IP library spreads widely, tracking it becomes very difficult.
JSOF discovered that this software has expanded worldwide through direct and indirect
use [50]. Efforts to exploit this vulnerability to conduct attacks in each layer of the IoT
architecture are summarized in the following subsections.

3.1. Vulnerabilities in the IoT Hardware Layer

IoT hardware includes smart sensors, gateways, switches, and some network infras-
tructure. The IoT hardware layer consists of all the physical devices and connectivity
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protocols which are responsible for collecting the actual data and transforming them into
the middle layer. It could consist of many sub-layers to increase IoT security, as proposed
in a framework to protect IoT chips using multi-layer hardware [51].

Making IoT devices incapable of performing their main task is one of the core aims
of attackers, so there are many attacks that target specific protocols such as TCP to switch
the device off or move it away from the network to make it unavailable. For example,
de-authentication attacks and DoS attacks which target the IoT device itself. Moreover,
from the previous work on the TP-Link Tapo P100 smart plug, there were two attacks that
targeted the Tapo device: de-authentication attack and TCP SYN flooding–DoS attack. Both
of these attacks were performed successfully by exploiting the plug vulnerabilities.

• De-authentication attack on the smart plug. It points to making a DoS attack on the
communication between the Wi-Fi access point and the targeted device and aims to
disconnect the device from the network, even if the network password is unknown.

• TCP SYN flooding–DoS attack. This involves sending a lot of lawful SYN requests
to the targeted IP address, and the victim’s system will never receive the final ACK
message; as is known, the TCP protocol uses a three-way handshake mechanism.
Therefore, the number of open connections will increase, causing the targeted machine
to break down. It could be conducted by sending the SYN packets from one specific
IP or from random IPs.

3.2. Vulnerabilities and Attacks in the IoT Network Layer/Middle-Layer

The IoT network layer acts as a bridge between the hardware layer and the application
layer (software layer). Due to the importance of routing and forwarding performed by the
network layer, attacks on the network layer could disrupt these services by causing packets
to be delayed or dropped [52].

This layer works with different connections in each system and is responsible for
transferring data to distributed applications. Network attacks in IoT systems are the most
common attacks because each IoT system uses different schemes with the connection such
as Bluetooth, Wi-Fi and mobile networks. The attacks could be internal, or external, and
the most common network attacks are Distributed DoS (DDoS) and Botnet. During the
evaluation of the IoT device, it was found that the most critical vulnerability was Ripple20,
which is a set of 19 vulnerabilities found on the Treck TCP/IP stack. These network
vulnerabilities could cause many attacks, and protecting the network from these attacks is
difficult because the solution for this vulnerability must be embedded within the system.
Therefore, exploiting this vulnerability leads to successful Dynamic Host Configuration
Protocol (DHCP) attacks, DHCP starvation, and Rogue DHCP server man-in-the-middle
(MITM) attacks. DHCP starvation aims to make all the IPs in a pool reserved to prevent
any device connecting to the network, and it involves a DHCP server on the router. Then,
a fake server is created after all the IP addresses have been starved, making the attacker
machine a DHCP server offering IP addresses for other devices that are going to connect
within the network. At the last stage, the attacked device takes a new IP address from the
Rogue DHCP server, which is the attacker’s machine, and then the attacker can capture the
traffic and control the attacked device.

3.3. Vulnerabilities and Attacks in the IoT Application Layer

The IoT application layer in the IoT ecosystem contains of all the applications, soft-
ware, and programming libraries, such as applications, web platforms, services, and the
operating system for the IoT ecosystem which plays an important core in the security of IoT
environments. Each component of this software has its protocols that manage and transfer
data through the IoT ecosystems [53]. In addition, it is responsible for transferring data
from the end devices, such as sensors or passing commands and gateways which are the
bridge between the end device, the storage and applications [54].

Due to the end-requirement users for privacy protection, it may take into account
the central system protection for machine-to-machine communication depending on the
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privacy level [55]. Regarding IoT web application attacks, there have been several ex-
ploitations in the past with Android systems which were released in 2008 [56]. As a result,
data storage should be secured to avoid any threats that may cause attacks. Furthermore,
any vulnerable component of the software layer or web applications could lead to many
types of attacks, such as stealing data or credential information, and, therefore, securing
such software would require different methods depending on the task of the IoT systems;
dealing with video or voice will be different to dealing with text.

4. Vulnerability Analysis Using ML and DL

After exploring the potential vulnerabilities and attacks in each layer in the IoT archi-
tecture in the previous section, this section will explain the existing studies that use ML
and DL to detect these threats.

Vulnerability in the IoT is the weak points in the ecosystem that make it easy for attacks
to be conducted, such as poor saving of data, which could lead to sensitive data being
stolen [57]. There are many studies that advocate securing the IoT by using ML and DL
techniques. Figure 3 shows the recent ML and DL algorithms, classified depending on the
type of ML algorithms, that are used to secure IoT environments by detecting attacks and
threats as well as enhancing IDS security in IoT environments; also, it shows the methods
with the best result’s study that used them. This study presents the recent vulnerabilities
and attack detection over the layered structure to help future researchers resolve the issues
and make any further implementation to improve their security in a way that is easy to
understand and conduct. In addition, layering makes it easier to distinguish between the
duties allocated to each layer, making it simple to identify a task utilizing the layering
structure. Moreover, it facilitates scalability because knowing the assets and the objects that
need to be protected in each layer could help to implement security measures and increase
the security in each layer. Detecting vulnerabilities, attacks, and threats by using ML and
DL will be discussed in the next sections based on the IoT layers.

Figure 3. IoT security taxonomy using machine learning and deep learning [58–75].
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4.1. Machine Learning Techniques in Detecting Attacks in the IoT Hardware Layer

Recently, there has been considerable research attention focusing on the use of ML
and DL empowered intrusion detection and prevention analysis. The recent research
works [76] focused on securing agricultural IoT using a federated-learning (FL)-based
intrusion detection system. ML and DL techniques show great potential in automated vul-
nerability detection because both techniques are able to determine patterns and learn from
them to identify similar vulnerabilities or threats and respond to changing behaviors [58].
The ML and DL techniques are able to enhance IoT security by providing proactive insights
into the detection, classification, and prevention from threats and active attacks. Specifically,
DL techniques are able to detect and categorize potential vulnerabilities from large amounts
of data over IoT.

Moreover, DL-based methods are able to scan for vulnerabilities in the whole IoT
system at an early stage. Numerous DL-based solutions have recently been developed by
researchers [58,59,77]. They implemented their DL-based solutions by using three classifier
DL algorithms: deep neural networks (DNNs), convolutional neural network (CNNs), recurrent
neural networks (RNNs) . These methods were validated by two datasets, CSE-CIC-IDS2018
dataset and InSDN dataset. The results indicated that the RNN achieved the highest
accuracy on the CSE-CIC-IDS2018, whereas CNN had the highest accuracy on the second
dataset. In addition, Jain et al. used an intrusion detection system based on a neural
network to discover and restrict suspect devices in the IoT healthcare systems [77]. This
study achieved an accuracy of 99.4% by implementing real data [77].

Other studies have used the same NSL-KDD dataset, which was collected in the
wired network environment. One demonstrated a deep-learning-based IDS model to
solve the restrictions of NN-based IDS, which involved implementing on multi-cloud IoT
systems [59]. This model exists between the IoT gateway and the IoT cloud, which results
in the IoT and the cloud networks being secured. In addition, it achieved 96.28% in terms
of detection accuracy. In 2019, a study confirmed the efficiency of using ML for IDS, and it
showed that it can improve the system’s performance by using a multi-agent reinforcement
algorithm [60]. They used the same dataset, and it achieved the highest accuracy of DNN
on the transport layer of the IoT environment, which was 98%. This was followed in 2020
by research which demonstrated how the DL could be used beside the blockchain and
multi-agent system to build an intrusion detection system [61]. They reached the same
conclusion with more than performance and arrived at the best method offering the highest
performance in terms of detection, which is DNN within a simulation with the blockchain
technique in the transport layer.

A number of ML-based IoT IDSs have been developed that performed on collected
data from MQTT protocol (MQTT-IoT-IDS2020 Dataset) to classify the attacks on the MQTT
network, including the algorithms: Logistic Regression (LR), k-Nearest Neighbors (KNNs),
Gaussian Naive Bayes (GNB), Decision Trees (DTs), Random Forests (RFs) and Support
Vector Machine (SVM). The result from this study demonstrated that the common network
attacks are easy to identify due to their behaviors and modes, whereas MQTT-based attacks
are more complicated to categorize and could be simply imitating benign operations.
Nevertheless, using the flow-based features is more appropriate to classify benign and
MQTT attacks because they have similar characteristics [62]. Another study that aims
to detect attacks on MQTT-IoT Protocol by creating multi-classification models that can
feed an IDS on collected data. The classification methods consist of two ensemble methods
and deep learning models, such as LSTM, GRU, and XGBoost. The result indicates that
ensemble methods achieved better results than DL models [63].

Saipriya et al. designed a machine-learning-empowered IDS to secure IoT nodes [64],
in which a number of ML algorithms were used, including RF, DT, GNB, SVM, and LR on
the Kddcup99 dataset. This IDS achieved an accuracy of approximately 99%, the highest
accuracy being RF with 99.96%, whereas GNB achieved the lowest with 95.05%.
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4.2. Machine Learning and Deep Learning in Detecting Attacks in the Middle Layer

Regarding the latest review of the previous studies, the most common attacks affecting
IoT environments are DoS attacks, DDoS attacks, Botnet, malware, and malicious data [78].
However, there are many solutions that could be implemented by using DL and ML, which
are summarized below:

Detecting attacks in the IoT network , such as Dos, DDoS, and Botnet. Table 2 shows
the previous studies that focused on detecting network attacks with the relevant details.

Table 2. ML/DL techniques against IoT network attacks.

Works Attacks Methods and Algorithms Dataset and Results

Aliandy et al. [65] DoS in MQTT-based IoT systems Generalized linear model (GLM),
RF, GBM, DL, Stack Ensemble

Data from Indonesia oil services
company and the result was that

the Stack Ensemble offers the
best prediction accuracy and

achieved the best results,
followed by RF technique.

Satam et al. [66] DoS attacks, Random Signal
Attacks, and Replay Attacks

DT, AdaBoost, SVM, Naive
Bayes, Ripper, and Bagging

Two datasets: the first was
collected from Bluetooth traffic

and the second from three
temperature sensors. In the

sensor datasets, the best
performing technique was

AdaBoost, whereas the
bagging-based model was the
best on the Bluetooth dataset.

Touga et al. [79] DDoS attacks, Botnet
Probabilistic (BNN) Bayesian
neural networks and normal

Bayesian neural networks

Two datasets: Botnet-IoT and
UNSWNB-15; 100% accuracy on
Botnet-IoT 99.99% accuracy on

UNSWNB-15.

Khempetch et al. [80] DDoS attack (Syn Flood, UDP,
and UDP-Lag)

DNN and long short-term
memory (LSTM) algorithm

CICDDoS2019 dataset and the
results indicate that 99.90–9.97%
of all three types of DDoS attacks

were identified.

Roopak et al. [67] DDoS attack

Four different DL models:
multilayer perceptron (MLP),
1d-CNN, Long Short-Term

Memory (LSTM), CNN + LSTM

CICIDS2017 dataset and the
highest accuracy was 97.16%

using the CNN + LSTN model,
whereas the lowest accuracy was

with the MLP.

Brun et al. [81] TCP, SYN attacks on IoT
gateways Dense RNN

Used a constructed dataset and it
was able to predict with

high-performance.

Dong et al. [68] Botnet detection Classify Botnet traffic and normal
traffic based on ELM algorithm

ISCX-Bot-2014 dataset and the
accuracy of ELM model

was 98.67%.

Parra et al. [69] Phishing and Botnet attack Using both methods: DCNN
with cloud-based LSTM

Two data sets: created a dataset
and N_BaIoT . CNN models are
efficient at detecting phishing

attacks with an accuracy of 94.3%
and detect Botnet attacks with an

accuracy of 94.80%.

Li et al. [82] Vulnerability detection Automatically VulDeeLocator

An automatic software
vulnerability detector was

developed using deep learning
techniques, with accuracy up

to 80.0%.
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Table 2. Cont.

Works Attacks Methods and Algorithms Dataset and Results

Aamir et al. [70] DDoS attack

It provides a clustering-based
approach for identifying network

traffic flows, including normal and
DDoS traffic by using kNN, SVM

and RF models

OPNET Modeler 14.5 simulator
resulted in an accuracy of 95% in

kNN, 92% in SVM and
96.66% in RF.

Roy et al. [83] Network attacks

Proposed a two-layer hierarchical
approach using fog layer resources

by employing a multi-layered
feedforward NNs

The proposed approach for both
datasets CICIDS2017 and NSL-KD
showed better result than existing
IDs and using the fog-cloud design

reduced power and time
consumption.

4.3. Machine Learning and Deep Learning in Detecting Attacks in the Software Application Layer

The latest study that sought to predict and identify anomalous and malicious data used
collected data from four sensors and then applied the following supervised ML algorithms:
DT, RF, LR, SVM, and KNN. The results from this study demonstrate that the K-NN is the
best-performing algorithm with an accuracy of 96.5% and a shorter execution time [71].
Another study focused on detecting malware attacks on the Internet of Medical Things
(IoMT); they designed a hybrid architecture software-defined networking (SDN) model
(CNN-LSTM) driven by DL techniques and then applied this method to an IoT malware
dataset, giving an accuracy of 99.83% when using a high-capacity CPU and memory [84].

There are many studies that proposed methods and frameworks to secure IoT environ-
ments using ML and DL that have been applied to various datasets. One of these proposed
a new method consisting of a time window and classification of transformer-based traf-
fic [85]. The experiment was implemented on the IoT23 dataset and resulted in the best
performance in all of the tested scenarios. Another study proposed a framework to detect
and attribute cyber attacks on IoT-Enabled cyber-physical systems (CPSs). The framework
consisted of various DNNs and two unsupervised stacked autoencoders, principal compo-
nent analysis (PCA), and a DT classifier to detect the samples of attacks. This framework
was tested using two datasets: the first was collected at the Mississippi State University
from a gas pipeline system, and the second was an SWaT data set collected at the Singapore
University of Technology from a water treatment system and resulted in better results for
detecting and attributing than had been achieved in prior works [72].

One study proposed SecureDeepNet-IoT, a DL application for detecting invasive
attacks in industrial IoT sensing systems. It used many DL algorithms, such as DBL, and
deep autoencoders and was tested using the UNSW-NB15 dataset, achieving accuracy of
up to 95.05% for DBNs and 94.39% for DNNs [73]. In [74], they revealed the result of using
ML algorithms to secure smart city applications, such as LR, SVM, DT, RF, an artificial
neural network (ANN), and KNN to detect and mitigate the attacks [86,87]. The study used
various methods to improve the detection systems of bagging, boosting and stacking. They
used two datasets, UNSW-NB15 and CICIDS2017, to evaluate the performance of these
methods. The study used clustering methods to identify the attacks in IoT-Based Traffic
Signal Systems and implemented various ML methods by using two real-time datasets that
were taken from data.gov. Utilizing clustering approaches, such as K-Means, K-Medoids,
RF, and linear discriminant analysis (LDA) methods, the results show that RF offered the best
algorithm to verify the attacks, whereas the K-Medoids was the worst [75].

4.4. Machine Learning and Deep Learning in Detecting Threats and Vulnerabilities across
All Layers

ML and DL have recently been used to detect threats and vulnerabilities. There are
a few studies that focused on the detection of vulnerabilities. The first of these aimed
to support the monitoring tool for detecting vulnerabilities in critical infrastructure by
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using DL techniques. It works by taking snapshots of many control panels of industrial
control systems and then classifying the snapshots by choosing the best CNN architecture
depending on the result of comparing the transfer learning and fine-tuning on ImageNet.
The experiment was applied by using a critical infrastructure dataset (CRINF-300), and the
result with the best architecture was MobileNet-V1, which had the highest accuracy and
F1-score [88]. The second study aimed to identify the vulnerabilities in IoT applications by
using DL algorithms to analyze the flaw flow. The method entails analyzing the source code
and then transferring the code token and taint flow into vectors. This method was applied
using two datasets, Corpus1 and Corpus2, and the resulting in accuracy of the prediction
models was 77.78–92.59% for Corpus1 and 61.11–87.03% for Corpus2 [89]. Another study
focused on detecting vulnerable IoT devices to protect telecommunication service providers.
This study sought to detect specific IoT devices on a domestic NAT network to protect the
telcos’ infrastructure. The ML-based method identifies the IoT devices from the list and
then classifies them in a centered training. The result from this study indicated that the long
short-term memory networks (LGBM) algorithm offered the best detection result [90].

Ullah et al. developed a combination of TensorFlow deep neural networks to detect
plagiarized software and a CNN to detect files that are infected within malware depending
on the color image visualization through the IoT network. It was evaluated on Google Code
Jam (GCJ) and Mailing datasets and resulted in it having the best performance compared
with other methods in this period [91].

5. Vulnerability Detection and Classification

This section focuses on detecting the vulnerabilities in IoT ecosystems by using ML
and DL based on the vulnerability’s location and the impacted severity in IoT devices.

5.1. Procedure

Detecting vulnerability in IoT environments offers the means to detect existing vul-
nerabilities by designing and training a model to detect the common pattern of these
vulnerabilities, which is similar to the instance-based models such as the vulnerabilities
from CVEs and CWEs. However, it could be developed to detect new vulnerabilities that
relate to the IoT ecosystems by designing a learning-based model that analyses the packets
on the IoT ecosystems to extract the main features and analyze them to detect the vulnerabil-
ities and finally report them. It may develop the model that proposed in [92] to be effective
for IoT ecosystems. Figure 4 illustrates that the workflow for detecting vulnerabilities in
IoT devices, which is similarly followed by some previous studies. The main steps that
ML should follow can be summarized in three main steps: preparing data, modeling and
deployment with some sub-process in order to detect and classify the vulnerabilities and
attacks as:

- Data collection: collected data from real-life scenarios from IoT networks which
connect to other devices such as mobiles and computers; it consists of normal use
traffic and suspected traffic trying to conduct some attacks. The data type could be
network traffic, logs, or other related data.

- Data preparation: data cleaning or data preparation acts as a critical step in ML
methods, especially when the data is collected from heterogeneous sources. It aims to
identify errors and correct them by using different types of ML algorithms. In some
complex cases, the data need to be cleaned and transformed. This stage could affect
the result of the whole procedure. The quality of data can be measured in terms of
its accuracy, balance, and completeness [93]. Any errors in this stage could result
in enormous mistakes in the predictive models. The problems with the data could
be simple, such as empty columns and duplicate rows or, in some cases, different
types of data. In this stage, there are many sub-steps that should be followed, such as
cleaning data, which focuses on identifying and correcting the faults in the dataset.
Then, it is necessary to select features which aim to find the most important inputs.
Next, transform data, which aims to change the size or allocate the variables. Then,
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the features that work to use the existing data are engineered to gain new variables.
Finally, reduce the dimensional, which aims to generate the compacted predictions of
the data [94].

- Feature extraction: It aims to identify the most useful features in the data to feed the
model, which could be conducted using a DL technique and creating some useful
features which help the classifying model to make a decision. In some cases, in a DL
model, this step does not need to be performed manually due to the DL model’s ability
to learn to extract them during the training phase, which is the biggest advantage of
DL [95].

- Model training: A model can be trained to learn (define) the best values for all the
weights and the bias from trained data. It could differ depending on the type of
algorithms; for example, in supervised learning, an ML algorithm builds a model by
investigating many examples and attempting to find a good model which reduces cost;
this method is called practical risk minimization [94]. The model is usually trained in
part of the main dataset by splitting them into training data and excused (tested) data
which will be training them in the predictive model.

- Model evaluation: This aims to evaluate the trained model using various metrics
with predicted models to assess the quality of the ML model, such as calculating the
accuracy, precision, recall, and F1 in these algorithms to ensure the effectiveness [96].

- Tuning/hyperparameterizing the model: This is an optional step for some algorithms,
such as DT and SVM. The tuning of hyperparameters is the process of selecting the
best hyperparameters for an algorithm with the aim of increasing the effectiveness of
its task [97].

- Detection: This stage aims to detect vulnerabilities, attacks, or threats in the IoT
ecosystems; it uses the tested data from the main dataset. The result from this step
differs depending on the dataset and algorithms used; it could be supervised, unsuper-
vised or semi-supervised. In addition, this step may utilize another dataset to approve
the performance of the detection model. The output from this step is forwarded to the
classification step to determine the type of detected data.

- Classification: This is the final stage which is deployed in order to classify and analyze
the upcoming data to determine whether or not they are normal using various types of
ML algorithms and classifiers. In some cases, these data are categorized into numerous
types of non-normal data, which is called multi-classification. If the data is non-normal,
it will be passed to the mitigation framework.
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Figure 4. Machine learning workflow for detecting vulnerabilities in IoT devices.

5.2. Research Challenges

According to the common vulnerability scoring system (CVSS v3) developed by NIST,
the vulnerability severity can be rated as { low, medium, high, critical }. It is noted that the
’medium’ vulnerability increased significantly. In the results from intensive research of
the previous studies from 2018 to 2022 using ML and DL to detect attacks, threats, and
vulnerabilities, there are some critical challenges that still need to be addressed:

• Incomplete data can bias the detection result of machine learning models or compro-
mise the accuracy of the model. Missing certain details may make it difficult for a
classifier to learn representative vulnerability features.

• Most existing works focused on detecting attacks as soon as they start to be imple-
mented; actually, a previously undiscovered vulnerability can be triggered by specific
events or conditions, which makes it challenging to predict.

• Resource issues in IoT devices, which are memory and time issues, play an important
role in implementing ML and DL models in IoT systems. In addition, implementing
these models usually occurs offline, and applying these techniques in real life remains
an issue.
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• Another challenge is found that the IoT ecosystems work in different ways. For
example, some of them work with Bluetooth and others work with sensors which
results in different types of data, which means no one method is generally better
than others. Therefore, standardization of the IoT ecosystems is important to make
improvements in IoT security easier and more effective. In addition, secure by design
could also be beneficial for IoT device security.

• IoT devices deal with various types of data with different scales. In addition, all
previous research studies were implemented with different datasets. Some of them
are collected from wired networks and others from wireless networks. As a result, the
accuracy of implementing ML and DL methods is different depending on the type of
the datasets and their features.

For instance, the latest study [98] sought to analyze the need for standardized features
and the type of attacks in IoT datasets, which was implemented on collected data from a
realistic and large-scale testbed network designed at the IoT Lab of UNSW Canberra Cyber
and called novel ToN-IoT with a specific focus on its heterogeneity, and combined other
datasets were organized from four sources: pcap files, evt logs, sensor data, and operating
system logs. Then, various algorithms were applied including GBM, RF, and NN. The
results from this experiment indicated that the accuracy from training on the combined
dataset, which is standardized, is somewhat better than training on separate datasets.

Other research studies that used the IoT 23 dataset arrived at different results. The
authors of [99] aim to find the best solution with high accuracy and less time. They proposed
an anomaly detection system model using ML and DL algorithms NB, SVM, DT, and CNN
and found that the DL method offered the highest accuracy and shortest implementing time,
whereas NB was the least accurate. On the other hand, another study [100] used the same
dataset and aimed to explain the need for engineering the feature by using the featureless
1D-CNN ML method. This experiment resulted in 100% accuracy for the proposed model,
and it has low memory time-series consumption for analyzing the network traffic.

Meanwhile, another study [101] compared NSL-KDD and NaBIoT datasets to identify
the best dataset for wireless IoT IDS and sought to detect the common attacks on IoT
systems Dos, probing, U2R, and R2L. It worked by developing an IDS system using different
sources of the data and then implemented SVM, RF, NB, and DT methods, resulting in
the NaBIoT dataset being the best for attack detection and the SVM classifier having the
highest accuracy of 95%. However, the datasets were collected from the wireless network
where their IoT devices work by Bluetooth sensors.

The last study used heterogeneous datasets to network intrusion detection by propos-
ing a stacking ensemble framework which used stacked generalization LR, KNN, RF, SVM
for two datasets: UNSW NB-15 a packet-based dataset and UGR’16 a flow-based dataset.
The result from this ensemble model was that the best predictions of attacks were made
using a real-time dataset which offered 97% of accuracy, whereas the accuracy of the
simulated datasets was 94% [102].

As a result, due to the characteristics of the IoT systems, network technologies are
more heterogeneous than traditional networks, posing new cybersecurity challenges. In
addition, the type of the datasets and engineering features play a critical role in research
that aims to determine efficient methods.

6. Vulnerability Mitigation
6.1. Vulnerability Mitigation Strategies in IoT

In practice, the most reported vulnerability could be mitigated simply by reducing the
attack surface. Vulnerability management and mitigation are cyclical process to prevent
malicious attackers from exploiting vulnerabilities in IoT ecosystems.

Mitigating vulnerabilities is essential in order to reduce the risk of an exploit being
carried out on the vulnerability and it focuses on implementing internal and external
procedures to protect the system from being attacked. Vulnerability mitigation is crucial,
especially in IoT environments, because it plays a critical role in avoiding any exploitation
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that could be occurred. The main objective of the vulnerability mitigation is ensuring the
cybersecurity properties and cyber resilience are involved in the IoT ecosystems. Some
studies focused on vulnerability mitigation for a specific method of the IoT ecosystems; for
instance, Ref. [103] aims to mitigate the vulnerability of Bluetooth devices in IoT systems by
applying countermeasures and mitigating the risk. Mitigating the issues with the Bluetooth
system is significantly different from other systems, and it is more complex in upgrading the
system because it requires a patching system in its device firmware which is not available
for the users. Therefore, this study recommended applying countermeasures to reduce
the risk of exploiting the vulnerability, such as increasing the awareness among Bluetooth
users and encouraging them to enhance Bluetooth security by taking some steps in their
system such as ensuring the encryption for the entire system and increasing the key size,
preventing MITM attacks by using combination keys in linking keys and encrypting the
link when transmitting data, applying multi-authentication for the device connection, and
finally enhancing Bluetooth security by implementing certain applications on the device,
such as firewall and file transfer.

Vulnerabilities in IoT could be attributable to weaknesses in software, insecure IoT
device configuration or IoT network configuration, depending on the vulnerability category.
Three strategies could be followed:

• Avoid: Avoid mitigation strategies allow a vulnerable node to be protected perma-
nently by patching its weaknesses or using a secure protocol and encryption.

• Reduce: Reduce mitigation strategies stop the spread of weaknesses or stop these
vulnerabilities from being used as a privilege to deep with more attacks. Due to the
limitation of processing power and remote location in IoT environments, reduction
strategies are considered safe for IoT devices.

• Manage: Manage strategies involve accepting the risk and implementing another
solution for the device, such as setting the access control or allowing trusted commu-
nication within the system.

• Mitigate: Risk mitigate involves the mitigation of responsibility to a third party who
is willing to take on the risk. In order to minimize the organization’s exposure to
that risk, this procedure is undertaken. External entities that specialize in certain
areas of risk management can be delegated certain responsibilities and aspects of
risk management.

6.2. Vulnerability Mitigation Frameworks

There are some previous studies that proposed frameworks depending on the location
for the mitigation. For instance, Ref. [104] proposed a lightweight innovative cloud-based
framework to protect IoT security from Botnet attacks. It consists of a cloud service and IoT
security hardware. The security machine monitors the networks to and from the IoT device
and checks that traffic it commits to a set of rules, based on a vulnerability mitigation policy.
The cloud service stemmed and produced this policy depending on the public corpora of
CVEs. There have been a number of studies involving detecting DDoS attacks that have
released frameworks in different ways. Ref. [105] designed a framework to detect DDoS in
IoT devices. It proposed a private network that is connected to a certain network which
is connected to the internet via a border router that works based on resource exhaustion.
The border router works in two phases, the first one for analyses and the second one for
mentoring. In the first stage, it examines the network traffic and then determines if it is
suspicious or not. In the next stage, it works by monitoring the suspicious follow and then
classifies if it is DoS or DDoS. Another study that focuses on detecting and mitigating DDoS
proposed a detection and mitigation framework based on the software-defined Internet of
Things (SD-IoT).

Among the components of the framework are controller pools that involve SD-IoT
controllers, SD-IoT switches, and IoT devices. This framework contains an algorithm In
the switches, a cosine similarity value is calculated by taking the vectors of packet arrivals
and multiplying by their cosine similarities, then using the value to decide if a DDoS
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attack has happened, and then blocking the source of the attack [106]. In addition, the
latest study focuses on mitigating DDoS attacks in IIoT [107], which releases a multi-level
DDoS mitigation framework (MLDMF) to mitigate the DDoS attack at the edge computing
stage, fog computing stage, and cloud computing stage. It works by collaboration between
different nodes in different locations on the whole of the system and prevents software-
defined networking (SDN) controllers from being overwhelmed by massive flow; network
functions are split between edge and fog computing levels. IoT gateways based on SDN are
the main component of the edge computing level. Also, the SDN controllers are the main
component along with SDN application servers. Additionally, the cloud is the primary
location for storing and analyzing big data. All these procedures require powerful devices
to process and store.

In contrast, Ref. [108] defined an intrusion detection and mitigation framework (IoT-
IDM) that works by using ML in smart home networks for devices that use OpenFlow
software. It starts with monitoring the IoT device’s traffic and then checking if there is any
suspicious activity, and then if there is malicious activity, it will block the source of these
traffic. The ML model in this framework works by learning the signature patterns of the
exciting attacks.

Most of the previous frameworks focused on detecting and mitigating specific vul-
nerabilities. In addition, most of those frameworks need a specifically designed appliance,
which is costly for using one device to protect the devices from one specific attack.

6.3. The Proposed Vulnerability Mitigation Framework

This framework aims to use ML to identify and mitigate IoT vulnerabilities. Figure 5
details the vulnerability mitigation framework in IoT systems, in which ML techniques can
help with the identification and classification to detect the existing vulnerabilities by using
CVEs and CWEs datasets and identify unknown vulnerabilities by learning the patterns
of the existing vulnerabilities such as learning the patterns from previous scenarios. The
three strategies: avoid, reduce, management can help deploy IoT end security devices, and a
continuous monitoring strategy can help detect and monitor new threats in real time.

Figure 5. Vulnerability mitigation framework in IoT devices.

Turning to more details:

(1) Identify vulnerabilities. Scanning the network to identify the vulnerabilities in the
whole IoT ecosystem using the developed ML and DL-based model to detect the
vulnerable points such as the proposed model in [90] based on LGBM algorithm
which produced an excellent detection model. Then, using an ML-based model to
classify these vulnerabilities to determine the threats level and layer(place) of them
such as feed-forward neural network (FNN), which is a combined model used for
classification and achieves great classification results [109].

(2) Assess potential risks. Assess the risk level of the detected vulnerabilities to choose the
mitigation strategies depending on the risk rate and move the output to the next stage.
The risk rate could be predicted by a training-based learning model depending on the
previous dataset attacks, such as IoT23.
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(3) Deploy the security defense. Deploy the defense by determining the type of incident re-
sponse, such as performing security controls—access control, procedure controls, technical
controls, compliance controls, etc.

• If the mitigation strategy is ’Avoid’, implement the security defense and the
incident response immediately, such as isolating the device and then patching
the system or implementing encryption protocol.

• If the strategy is ’Reduce’, reduce the risk by performing the security control,
such as updating the system and re-configuring the security control.

• If the strategy is ’Manage’, accept the incident and then make updates for the
security control and security configuration.

All of these procedures could be implemented using multi-classification in DL algo-
rithms, such as deep neural networks and deep decision trees.

(4) Continuous Monitoring. Monitoring the traffic in the whole system by using certain
techniques and procedures to prevent security issues and reduce the risk in IoT
environments.

One of the most effective algorithms for this framework is DL due to its characteristics
which provide capabilities for learning more abstract features, reducing the complexity of
training for the model, providing high accuracy, handling huge datasets, and providing
support for transfer of learning [110]. For more specialties, Bayesian neural networks
(BNN) are recommended due to their effectiveness for use in systems that have time and
memory limitations such as IoT devices.

6.4. Mitigating Exploitation of Vulnerability in IoT

In an IoT ecosystem, most vulnerabilities can be categorized into three groups: memory
management vulnerability, API vulnerability, and side-channel vulnerability [111–113]. For
different vulnerabilities, there are different ways to mitigate the potential exploitation.

• Memory management vulnerability. Managing the memory and controlling the
followed traffic and allocation present the critical resources in the IoT environment,
so any vulnerabilities in memory management could significantly affect the entire
system. These vulnerabilities could be exploited to evade security controls in order to
inject malicious code and smash an IoT system.
As exploiting these vulnerabilities could cause critical potential risks for the IoT ecosys-
tem, the potential threats must be avoided by immediately patching and updating
the system. However, patching IoT devices may be complex, so if the device cannot
be patched, it could be worthwhile applying a different strategy, such as reducing
the exploitation impacts by keeping vulnerable devices off of the internet in order
to reduce attack sides and then monitor the system to reveal any behavioral signs of
compromise. Moreover, it is necessary to ensure that critical assets are protected by
network segmentation. Another study that proposed a framework to detect memory
corruption, named FIoT, which works using code execution and fuzzing, resulted in
defining 35 IoT devices that have a zero-day vulnerability [114,115].

• API vulnerability. The Application Programming Interface (API) is a set of functions
and procedures which are used to build and integrate by other software applications
usually based on web service applications, with roles for the important platform that
collects input from users and connects with the backend services. The security of
IoT applications is compromised by several security vulnerabilities, including weak
or hardcoded passwords, such as using guessable passwords or using the default
manufacturing passwords. Therefore, the most important procedure in IoT security is
confirming that only the authorized users can communicate with APIs [116,117].
Mitigating the exploitation of API vulnerability could be resolved by using many
procedures that could be implemented to ensure the security of APIs. Mitigating the
insecure backend API requires strong authentication and authorization methods. ML
and DL could be used to detect and determine potential threats in API along with a
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strong encryption infrastructure and access controls such as using a robust primary
key on the IoT infrastructure [118].

• Side channel vulnerability. This is a type of security attack which targets the indirect
effects of a system’s hardware or software rather than directly targeting the code to
gather sensitive data such as cryptography keys. It could be exploited by computing
or investigating several parameters from a chip or a system, such as execution time
and electromagnetic radiation, which are commonly used in IoT environments. It
can be categorized into three types: memory cache attacks, which use a shared phys-
ical system to monitor the cache accesses.; timing attacks aim to establish patterns
by observing the computing time; and power-monitoring attacks aim to track the
hardware’s power consumption during computation [119,120].

Mitigating the exploitation from the channel side is difficult because these types of
attacks are difficult to detect in action owing to the fact they do not leave any impact
or any changes on the systems. However, it could be reduced by implementing certain
countermeasures. Due to the side channel attacks in IoT usually occurring based on
the data leaked over the side channel, countermeasures can be applied such as saving
the implementation details of the system, restricting the physical access, and controlling
the logged permissions [121]. In some cases, using ML against these attacks could be
useful; for example, designing an algorithm that works to confuse the monitoring, such as
running random needless processes and running some components in order to generate
additional power and computing which are not actually used in the realrandomization,
as [122] proposed a framework that aims to produce a continuous stack of randomization.
However, these schemes could be insufficient in IoT systems because they have a limitation
in terms of memory and computing consumption, so these methods could be used in some
cases from an external source within the IoT system, and these sources work by generating
electromagnetic radiation in order to hide the actual signals.

7. Research Trends and Directions

The incidence of cyber crime is rising and automated vulnerability management has
become a critical lifeline for IoT security against cyber threats. ML-empowered smarter
vulnerability management has become a trend that is expected to manage both known
and unknown vulnerabilities facing IoT ecosystems. The key research trends fall into the
following aspects:

• Making IoT systems more intelligent to detect their vulnerabilities by using ML and
DL techniques could be more efficient to enhance security. Many studies focused
on detecting attacks and malicious data, but detecting the vulnerabilities would be
more efficient. Making the IoT device detect known and unknown vulnerabilities in
their environment and sending alerts to the consumer would improve the whole IoT
ecosystem’s security.

• Time consumption and memory capacity in IoT devices pose the biggest challenge
as has been noticed from the previous sections; most of the proposed solutions take
time to process these huge data starting with analysis the incoming traffic then de-
cide whether a malicious or not. However, they could be addressed by utilizing
compression ML and DL models and reducing the use of cache memory by sharing
the data with other devices such as external tools or resources, as well as avoiding
unnecessary computations.

• Standardization of the IoT structure, infrastructure, and scale of the data used is
a significant issue regarding developing techniques for improving security in IoT
environments due to the diversity of the IoT and its data. However, it could be
addressed by using algorithms in IoT devices to transform and standardize the data
before processing them. However, it leads to the challenges associated with IoT
ecosystems which are memory and time consumption.

• Creating cyber resilience in IoT involves not only preventing cyber attacks, but also
managing adaptability, recovery, and preserving critical functions even in the face of
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difficulty. Although the best efforts are made, breaches may occur, so the key is to
ensure that the IoT ecosystem can recover and remain to deliver essential functions
while saving its critical assets.

8. Conclusions

Unlike traditional security computer systems, ML techniques have become a criti-
cal aspect of securing the IoT. This work focused on ML-empowered IoT vulnerability
detection and identification solutions which are expected to automatically manage both
known and unknown vulnerabilities in IoT ecosystems based on recent research using
ML and DL in a comprehensive manner. It investigates potential IoT vulnerabilities at
each layer in the architecture and summarizes how machine learning can be employed
to detect vulnerabilities in IoT devices. In addition, recent research trends on machine
learning-based vulnerability detection are summarized and analyzed in each IoT layer
in order to detect and mitigate vulnerabilities in IoT environments. It also analyzed the
available strategies to mitigate these vulnerabilities. The vulnerability mitigation strategies
framework was proposed to enhance IoT security from potential threats. The result from
this study indicated that due to the advantages of ML and DL, it is crucially needed for
using ML and DL techniques to detect and mitigate IoT vulnerabilities in all fields in
order to enhance the security and ensure the integrity, availability, authentication, and
authorization are applied for these devices.
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