
Ripple20 Vulnerabilities Detection using Featureless
Deep Learning Model

Sarah Binhulayyil∗†, Shancang Li∗
∗ School of Computer Science and Informatics

Cardiff University
Cardiff, UK

lis117@cardiff.ac.uk
† College of Applied Studies and Community Service

King Saud University
Riyadh, KSA

binhulayyilsh1@cardiff.ac.uk

Abstract—Inherent vulnerabilities create new security risks
and challenges that leave Internet of Things (IoT) systems open
to cyber attacks. Featureless deep learning shows great potential
in vulnerabilities detection without relying on explicit feature
engineering in the IoT. Featureless deep learning models provide
a low-cost and memory time-series analysis of network traffic.
This paper proposes a featureless deep learning procedure in a
1D CNN model to carry out Rippl20 detection. The experimental
results demonstrate the effectiveness of proposed solution with it
is beneficial for decreasing the time spent on feature engineering.
Specifically, this proposed featureless model achieved 99% of
accuracy and a F1 score as 0.9991 with less time than traditional
methods.

Index Terms—IoT, vulnerability detection, featureless model,
deep learning

I. INTRODUCTION

The Internet of Things (IoT) devices are associated with
many vulnerabilities that facilitate to exploitation these vul-
nerabilities to conduct attacks, which cause to steal sensitive
data or misuse these devices to achieve their purposes. The
common vulnerabilities in IoT devices lead to different types
of attacks such as the ”Top 10 vulnerability” that released by
NIST poor passwords, insecure services, insecure interfaces,
lack of update mechanisms, insecure/outdated components,
inadequate privacy protection, insecure data transfer/storage,
lack of device management, insecure default setting, and lack
of physical protection.1

The majority of the data being transferred and stored by
IoT devices should be secured while doing so, whether it is
done wirelessly or through wires. According to a survey by
Aruba, 84% of all recorded security incidents involving data
breaches in 2019 occurred on IoT devices, and these assaults
may discourage people from using IoT technologies [1]. In
addition, the most recent vulnerability in IoT devices that
discovered in 2020 by Joint Special Operations Forces (JSOF),
which consists of 19 zero-day vulnerabilities which lead to
multiple attacks such as remote code execution additionally

1https://www.cardinalpeak.com/blog/top-10-iot-security-vulnerabilities

the attacker can hide an embedded code within a device for
many years [2]. This vulnerability could be in IoT industrial
and daily uses and also in the Health care as NHS reported [3].

Ripple20 is a set of 19 zero-day vulnerabilities targeting
IoT devices, which could allow malicious attackers to launch
remote attacks, such as DDoS, take control of IoT devices,
steal sensitive information, etc. The report that issued by JSOF
shows that Ripple20 could cause many attacks such as remote
execution, DDoS attacks, remote controlling of a device,
MITM attack and DNS cache poisoning [2]. In addition, it
had been reported by [4] that Ripple20 is affected millions of
IoT devices from different fields. The majority of IoT network
devices are equipped with intrusion prevention systems (IPS)
or intrusion detection systems (IDS), which scan the traffic and
classify it as secured or unsecured based on their rule sets and
recognition algorithms. However, these networks need to have
more capability to detect the vulnerabilities before exploiting
them with faster rates, more processing power and memory.

This paper focuses on detecting Ripple20 vulnerability in
the IoT environment by using Deep Learning (DL) with
consideration of the limitations of IoT devices. Due to the
impacts of exploitation of this vulnerability, it is crucial
to develop techniques to detect this vulnerability to keep
these devices secure and ensure the confidentiality, integrity,
availability, authentication and authorisation are verified. The
main contribution of this work can be summarised as

• This work proposes an featureless IoT vulnerabilities
detection model without requiring explicitly defined fea-
tures as input but instead learns to extract vulnerability
features from the provided Ripple20 dataset.

• As a use case, the proposed featureless model was used to
detect the critical vulnerability Ripple20 in IoT devices
that are connected to a home network, which leads to
identifying home networks that pose a risk to other
connected devices.

• The experimental results show that the model can suc-
cessfully differentiate between IoT devices that are vul-

nerable to the Ripple20 vulnerability and those that are
secure and free of the causes of this issue.

This paper is organized as follows: A review of related
works and background are described in Section 2. The method-
ology which contains the approach, the experiment details
and the proposed model architecture are presented in Section
3. The results and the evaluation of the proposed model are
shown in Section 4. Finally, conclusions and future works are
covered in Section 5.

II. BACKGROUND AND RELATED WORKS

More recent attention has focused on the provision of
securing IoT ecosystems. As known, IoT devices have many
vulnerabilities that have been detected in each layer. The most
critical one is Ripple 20 vulnerabilities which consist of 19
zero-day vulnerabilities, and it had been released by the JSOF
team in 2020. Of these vulnerabilities, four of them had been
ranked critical which have Common Vulnerability Scoring
System (CVSS) 9 and they lead to remote execution attacks,
whereas four of them have high severity 7 in CVSS rank and
the rest of them have been ranked low severity but they could
lead to execute DoS attacks and data leaks. These critical
vulnerabilities are located in Treck TCP/IP stack which has
been used since 20 years ago. It allows an attacker to execute
remote code and get gain on an IoT device, DoS attacks and
steal data [2].

There are few researches that focus on detecting a vulner-
ability in IoT devices so detecting IoT vulnerabilities still
required more research and proposed solutions [5]. Static
analyses are one of the most methods that has been used to
detect IoT vulnerabilities which are shown in [6] to detect
five of the ”Top 10 OWASP” by using an external industrial
analyzer (Julia). Other research aims to detect the MQTT
vulnerabilities in IoT environments by using IoT-Enabled IDS.
It proposed an IDS engine that could be incorporated with the
initial layer of the IDS to check extensively the validation for
the packets to detect IoT protocols vulnerabilities [7].

The latest study used DL to detect vulnerable IoT appli-
cations which focused to detect the flaws in the applications
code. They proposed a hybrid model that consist of Code-
BERT, Word2Vec, and FastText and used IoT open-source APIs
[8]. It could be noticed that there is no previous research that
aims to detect Ripple20 vulnerabilities in IoT devices either
using machine learning or IDS, so this paper is the first study
that focuses to detect Ripple20 by using DL and featureless
technique. As DL plays an important role in the maintenance
security of IoT devices, it indicates a need to understand the
various perceptions of using featureless that exist among IoT
environments due to the advantages of using it to be more
realistic with conducting DL models in real-time. There are
a few previous studies that used featureless technique in IoT
security but have only been carried out in a few areas.

The first study that proposed the featureless technique was
in 1997 which aims to conduct featureless to make the models
able to recognise the patterns in different types of classifier
models [9] and it got good results in most of the classifiers.

Then in 2004, a featureless model was used with Support
Vector Machine (SVM) in the healthcare section specifically
in digital mammograms to classify and detect lumps [5].

After that, it has been performed in many sectors in
healthcare and industry, however, in IoT security it has been
conducted a few series of studies recently to improve the
device’s security. The first study that proposed a featureless
model to detect attacks in IoT devices and it used the IoT-23
dataset with a 1D-CNN model. It resulted in about 100% in
accuracy whereas the F1 scores between 79% and 88% [10].
The latest study that using featureless to enhance the security
in IoT environments by detecting Botnet attacks. It used the
same dataset IoT-23 with GRU (Gated Recurrent Unit) models
and resulted with 99.87% accuracy [11].

In summary, the key challenges in deep learning based IoT
vulnerabilities detection including: limited labeled data, data
imbalance, feature extraction and representation, interpretabil-
ity and explainability, etc. This work proposes featureless
models in IoT vulnerabilities detection that can well address
the feature extraction and representation, limited labeled data
issues.

III. METHODOLOGY

A. The Approach

Unlike traditional machine learning techniques, where fea-
tures were identified as input of the machine learning model,
the featureless technique can learn features from the raw input
rather than expert manually engineered from the input. The
featureless techniques use multiple layers of deep learning
networks to learn complex representations (features) from the
input and show great potential in automatically learning fea-
tures from the raw input. The featureless learning techniques
can achieve better performance, such as higher accuracy, than
existing deep learning-based models [12], [13].

The RNN (Recurrent Neural Networks) is one of the pow-
erful featureless tools that can be used for anomaly detection
in IoT. Traditional machine learning-based anomaly detection
techniques require the manual extraction of features from
high-dimensional, time-series data, which usually are time-
consuming and may not be able to capture all key features.
The RNN can learn to represent the temporal dependencies
in the time-series data and can capture all information from
previous time steps. Using RNNs (e.g., the Long short-term
memory, LSTM), it is possible to detect cyber attacks or
abnormal behavior in real time without the need for manual
feature engineering. This can help implement accurate and
quick responses against cyber incidents.

A featureless model can be used in prediction, classification,
etc., which does not have specific input features. A featureless
model involves internal mechanisms fI (such as algorithms,
decision-making mechanisms, etc.), external factors fE , dy-
namic factors like time t and environment factors E, and data
X , as shown in Eq.(1)

Y = G(fI , fE , t, E,X) (1)

in which the G could be unsupervised learning techniques that
can be used to discover patterns or structures within the data.

In cyber security scenarios, to detect vulnerabilities from
a given input data xi from a collection of data X , output
v ∈ V (x) gives the potential vulnerabilities of xi. In this end,
V (x) is the set of detected vulnerabilities |V (x)| = n. For a
labelled data to learn a function f : V (x) → {0, 1},

f(x) =

{
1, if v /∈ ∅
0, otherwise (2)

To learn function f , we can use Ripple20 which includes
both benign and malicious data. Let M ∈ V (x) denote true
vulnerabilities in V (x). In the packets stream, since there
are many more benign packets than malicious packets, which
makes it difficult for the machine learning model to detect a
real vulnerability.

In this work, we use a convolutional neural network (CNN)
as a classifier to learn which vulnerability can be identified.
A candidate x ∈ X is converted to a 1D representation and
then fed through a one-dimensional convolution layer. The
outputs are then fed through a max-pooling layer. After a
one-dimensional max-pool layer, the results are then passed
through a dense layer (Hidden layer), which is a fully con-
nected layer and outputs a single number that represents the
probability of the input is a vulnerable or non-vulnerable
candidate. Figure .1 presents the overall architecture of the
featureless model.

Featureless instance-based DL model for detecting Ripple20
vulnerability in IoT environment to protect the network from
any outside or inside attacks. Featureless means dealing with
data as it is in order to be more realistic and save time whereas
the steps involved in feature engineering include defining the
features, extracting them from the raw data, cleaning, scaling,
and consolidating. It is a complex, lengthy, and instantaneous
procedure.

Featureless modeling recently is crucial in the IoT ecosys-
tem due to the benefits that it has. The main point of featureless
is converting the data to bytes and then passing these data
to the model without needing for modifications on the raw
traffic data. As a result, the procedure for extracting features
has been removed from the machine learning steps [10]. Using
featureless would be beneficial and effective especially in IoT
environments due to the limitations of the IoT devices in
memory and time consuming.

B. Experiments design

1) Collecting Data: The experiment has been implemented
by collecting data from the Cardiff University Smart Home lab.
The data is a traffic network that is collected from an isolated
smart home network. The smart home network contains of 12
smart home devices 6 of them have Ripple20 vulnerabilities
and others have not. To train and imply the model, we used
NVIDIA GeForce RTX 3080 on a 32 GB, Ubuntu 22.04.1
LTS server and the CPU Model is 12th Intel i7-12700.

In the begging, we selected six devices that are associated
with the Ripple20 vulnerability and six devices that are free

and secure from the vulnerability, by scanning the devices
using the Nessus platform to determine and confirm which
devices have Ripple20 vulnerability and which have not. Then,
start to collect the network packets from these devices by using
Wireshark for four hours period due to as known Ripple20
vulnerability associated with Treck TCP/IP which could be
shown at the beginning of the connection when the used
protocols start with the authentication process. It resulted in
the total of all packets being around 253914 in a Pcap file.

2) Analyse and label the data: This step aims to separate
the network traffics that are contained Ripple20 vulnerability
and the network traffics that are free from this vulnerability.
Then, label these data with the appropriate label which will be
clear for the model to train and learn the pattern from these
traffics.

3) Pre-processing the data: As using featureless, in this
step there was just one point that aims to convert the network
packets to bytes to pass them to the model by using Python
scripts.

C. The model architecture

This study creates a featureless, small, and simple one-
dimensional Convolutions Neural Network (1D-CNN) model
that could be embedded within small devices such as IoT and
routers to detect the critical threat of Ripple20 vulnerability
throughout the network. Fig. 1 shows featureless model de-
tails which could be summarized as a 1D-CNN with fully
connected layers, two CNN layers, and hidden layer(s). This
case could be considered a time series issue due to the network
packets coming into the device could be presented as cases of
dispersed over time. There are many previous studies that used
1D-CNNs to classify data of time series [14] [15] [16].

For the input layer it has been used Embedding layer to con-
vert the bytes into continuous vectors which are represented
have common contexts and relationships between them. Then
pass it into CNN layers which are used two types layers to
learn from the instances from higher level features [17].

The input layer is followed by the Conv1D layer, then the
output will be passed to the MaxPooling1D layer process
to decrease the output size. Then, we used in this step two
(Dense) hidden layers and also tried one hidden layer which is
implemented to make the model weights are taught a nonlinear
connection. Finally, the output layer which is also Denes
with ’sigmoid’ activation that is the appropriate function for
using a prediction model which has a probability that only
occurs between 0 and 1 [18]. Due to our model working
with binary classification, during the model compiler, we used
binary cross-entropy as a loss function and Adam function for
optimiser with a learning rate of 0.0001 to avoid the model
over-fitting.

IV. EVALUATION AND RESULTS

The evaluation of this experiment is conducted by calcu-
lating the metrics accuracy, loss, precision, recall, and F1

score. Table I presents the general result and some of the
main characteristics of the experiment for both using of the

Fig. 1. The featureless instance-based DL model

model -with one hidden layer and two hidden layers. Table II
compares more details of training and testing results.

TABLE I
SUMMARY OF THE RESULTS

Acc Prec Recall F1 CPU Memory
0.9996 99994 0.99912 0.99953 128 32

Turning to the details, accuracy is described as the propor-
tion of correctly classified data among all classifications made
by the model, and it is used for both training and validation
data. To get the F1 score, it needs to calculate Precision and
recall. Precision is a classification model’s capacity to isolate
and highlight the most important data items. It can be defined
mathematically, as the ratio of the number of true positives
and the sum of the true positives and false positives. In
addition, the Recall refers to the model’s capacity to locate all
relevant cases within a data collection, and as a mathematical
expression, it is defined as the ratio between the total number
of true positives and the total number for true positives along
with the number of false negatives.

Another indicator of the performance of the model is
the F1 score. It represents the weighted average of the
validation data’s precision and recall levels. In our case, we
used 80% of the data for training and 20% for evaluation [19].

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

in which TP denotes true positive, TN denotes true negative,
FP denotes flase positive, and FN denotes false Nngative,
respectively. Then we have

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(6)

It is apparent from the table II that the results from this
experiment are interesting by comparing the accuracy, recall,
precision, and F1 score for both using one or two hidden
layers are almost 99% which does not affect the result of

any evaluation matrices, whereas the differences appear in the
training time and Loss matrix which consumes about 2, 379s
to train the model for two hidden layers, and about 837.57s
for using the model within one hidden layer. The differences
in Loss for training and testing data by using one or two
hidden layers are shown in Table. II, it is slightly different
in Loss, however, the comparison of both models is shown
clearly significant difference in the time consumption and less
complexity which indicates the suitability for using it in IoT
devices.

To ensure the efficiency of the model, we calculated the
Accuracy and Loss for training and validation data as can be
seen in figure 2 and 3 for both using one hidden layer and
two hidden layers, which indicate a slight difference for both
due to the modifying for the learning rate for the optimiser
into 0.0001 to avoid the over-fitting for the model. In addition,
figures 4 show the number of TP and TN are the same whereas
the number of FN and FP are slightly different, which ensures
the success of the featureless model to identify the IoT devices
within Ripple20 vulnerability. As a result, using the featureless
model with one or two hidden layers does not affect the result
of any evaluation matrices.

Fig. 2. Accuracy and loss values for training and evaluation using two hidden
layers

V. CONCLUSION

This work proposed a featureless model for IoT device vul-
nerabilities detection that does not require handcrafted features
but be able extract Ripple 20 vulnerabilities features from the
dataset. The experimental result show that the proposed model
can effectively detect this vulnerability with 99% accuracy,
precision, recall, and F1 score.

REFERENCES

[1] K. Ashton, “Making sense of iot. how the internet of things became
humanity’s nervous system,” Hewlett Packard Enterprise, 2017.

TABLE II
THE RESULTS FOR TRAINING AND TESTING BY USING A DIFFERENT NUMBER OF HIDDEN LAYERS

Training Testing
Accuracy Loss Time Accuracy Loss

Two hidden layers 0.999 0.0037-00.32 2317.39s ∼38.5m 0.999 0.0024-0.0020
One hidden layer 0.999 0.0200-0.0175 837.57s ∼13.5m 0.999 0.132-0.0084

Fig. 3. Accuracy and loss values for training and evaluation using one hidden
layer

Fig. 4. Confusion matrix for one and two hidden layers

[2] JSOF, “Overview- ripple20,” 2020.
[3] NHS, “Ripple20 network vulnerabilities,” 2020.
[4] T. Seals, “‘ripple20’bugs impact hundreds of millions of connected

devices,” Threatpost, June, vol. 16, 2020.
[5] R. Campanini, D. Dongiovanni, E. Iampieri, N. Lanconelli, M. Masotti,

G. Palermo, A. Riccardi, and M. Roffilli, “A novel featureless approach
to mass detection in digital mammograms based on support vector
machines,” Physics in Medicine & Biology, vol. 49, no. 6, p. 961, 2004.

[6] P. Ferrara, A. K. Mandal, A. Cortesi, and F. Spoto, “Static analysis for
discovering iot vulnerabilities,” International Journal on Software Tools
for Technology Transfer, vol. 23, pp. 71–88, 2021.

[7] M. Husnain, K. Hayat, E. Cambiaso, U. U. Fayyaz, M. Mongelli,
H. Akram, S. Ghazanfar Abbas, and G. A. Shah, “Preventing mqtt
vulnerabilities using iot-enabled intrusion detection system,” Sensors,
vol. 22, no. 2, p. 567, 2022.

[8] H. Mei, G. Lin, D. Fang, and J. Zhang, “Detecting vulnerabilities in iot
software: New hybrid model and comprehensive data analysis,” Journal
of Information Security and Applications, vol. 74, p. 103467, 2023.

[9] R. P. Duin, D. de Ridder, and D. M. Tax, “Experiments with a featureless
approach to pattern recognition,” Pattern Recognition Letters, vol. 18,
no. 11-13, pp. 1159–1166, 1997.

[10] A. Khan and C. Cotton, “Detecting attacks on iot devices using feature-
less 1d-cnn,” in 2021 IEEE International Conference on Cyber Security
and Resilience (CSR), pp. 461–466, IEEE, 2021.

[11] W. RA, S. UK, et al., “Detection of iot botnet using machine learning
and deep learning techniques,” 2023.

[12] K. Khosla, R. Jones, and N. Bowman, “Featureless deep learning
methods for automated key-term extraction,” 2019.

[13] S. L. Pintea, P. S. Mettes, J. C. van Gemert, and A. W. Smeulders,
“Featureless: Bypassing feature extraction in action categorization,”

in 2016 IEEE International Conference on Image Processing (ICIP),
pp. 196–200, IEEE, 2016.

[14] S. M. H. Rizvi, “Time series deep learning for robust steady-state load
parameter estimation using 1d-cnn,” Arabian Journal for Science and
Engineering, vol. 47, no. 3, pp. 2731–2744, 2022.

[15] L. Liu and Y.-W. Si, “1d convolutional neural networks for chart pattern
classification in financial time series,” The Journal of Supercomputing,
vol. 78, no. 12, pp. 14191–14214, 2022.

[16] S. M. Shahid, S. Ko, and S. Kwon, “Performance comparison of 1d
and 2d convolutional neural networks for real-time classification of time
series sensor data,” in 2022 International Conference on Information
Networking (ICOIN), pp. 507–511, IEEE, 2022.

[17] B. Jang, M. Kim, G. Harerimana, S.-u. Kang, and J. W. Kim, “Bi-lstm
model to increase accuracy in text classification: Combining word2vec
cnn and attention mechanism,” Applied Sciences, vol. 10, no. 17, p. 5841,
2020.

[18] T. Szandała, “Review and comparison of commonly used activation
functions for deep neural networks,” Bio-inspired neurocomputing,
pp. 203–224, 2021.

[19] T. M. Mitchell, The discipline of machine learning, vol. 9. Carnegie
Mellon University, School of Computer Science, Machine Learning . . . ,
2006.

