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Abstract
It is well known that propagation of waves in homogeneous linearized elastic materials of infinite extent is not dispersive.
Motivated by the work of Rubin, Rosenau, and Gottlieb, we develop a generalized continuum model for the response of
strain-limiting materials that are dispersive. Our approach is based on both a direct inclusion of Rivlin–Ericksen tensors
in the constitutive relations and writing the linearized strain in terms of the stress. As a result, we derive two coupled
generalized improved Boussinesq-type equations in the stress components for the propagation of pure transverse waves.
We investigate the traveling wave solutions of the generalized Boussinesq-type equations and show that the resulting
ordinary differential equations form a Hamiltonian system. Linearly and circularly polarized cases are also investigated. In
the case of unidirectional propagation, we show that the propagation of small-but-finite amplitude long waves is governed
by the complex Korteweg–de Vries (KdV) equation.

Keywords
Implicit constitutive theory, strain-limiting model, improved Boussinesq equations, traveling wave solutions, dispersive
transverse waves

1. Introduction
As Rajagopal [1] mentions, nonlinear relationships between the Cauchy stress and the linearized strain appear
in continuum mechanics, especially in the studies of inelastic materials. However, classical Cauchy elasticity
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is unable to give a complete reasoning to such situations since the linearized strain is not an objective quan-
tity. On the contrary, the implicit constitutive theoretical approach introduced by Rajagopal [2, 3] allows these
unexplained phenomena to be clearly understood.

The idea behind Rajagopal’s pioneering work is that starting with an implicit constitutive relation, one is
able to express the strain as a function of the stress rather than vice versa without contradicting the principle of
causality. As a result, after linearization, it is possible to maintain nonlinear relationship between the linearized
strain and the stress which is not possible in Cauchy elasticity when a constitutive relation giving the stress
explicitly as a function of the strain is adopted. This gives rise to strain-limiting theories which are introduced
and studied extensively by Rajagopal [1, 4, 5] and Rajagopal and Saccomandi [6].

In the absence of dissipative and dispersive effects, the propagation of transverse waves in various materials
was investigated from the point of view of hyperbolic nonlinear systems in the literature. For transverse waves
propagating in homogeneous isotropic elastic solids, Carroll [7] found a class of exact solutions which are global
in space and time, proving that not all solutions blow-up (see also Saccomandi and Vitolo [8]). On the contrary,
the propagation of transverse waves in an infinite elastic medium involving dispersive effects still remains to be
investigated.

Rubin et al. [9] introduced the idea of modifying the free energy and the stress so that dispersive effects are
modeled without altering the usual restrictions on the unmodified constitutive relations obeying the first and
second laws of thermodynamics. The interesting feature of this theory is that the constitutive equation proposed
in Rubin et al. [9] is a simple material à la Noll [10], and no additional boundary conditions with respect to the
classical elastic theory are needed. This is a major advantage with respect to dispersive theories based on the
second gradient or microstructure where additional boundary conditions are necessary.

Following this approach, Destrade and Saccomandi [11, 12] considered the problem of wave propagation in
an isotropic elastic solid by taking the dispersive effects into account and determined a class of global in time
and space solutions, the structure of the traveling waves in the incompressible and unconstrained case, and some
asymptotic model equations. We note that the strain-limiting approach is not considered in these works. It is
also worth remarking that in constitutive relations wherein the strain is expressed as a nonlinear function of the
stress, it is possible to generate “stress waves” (see Kannan et al. [13]).

In this paper, we incorporate analysis of transverse wave propagation in an isotropic homogeneous medium
with dispersion within the context of the strain-limiting theory for incompressible material response. In sec-
tion 2, we first propose an model including dispersive effects and investigate the corresponding strain-limiting
approximation. This results in a constitutive relation including the linearized strain, its second-order time deriva-
tive, and the Cauchy stress. In the same section, using this constitutive equation, we also derive the coupled
system of nonlinear wave equations governing the propagation of pure transverse waves. Also, in section 5, we
look at the exact solutions of this partial differential equations system, including the Carroll solutions. Section 3
is devoted to the traveling wave solutions of this coupled system where the resulting ordinary differential equa-
tion system is a Hamiltonian system. Linearly and circularly polarized cases are also studied in this section.
Finally, in section 4, we derive the equations governing the propagation of unidirectional long waves and obtain
the complex modified KdV equation.

2. Basic equations
In this section, we introduce the dispersive model we want to study by modifying the general implicit constitutive
modeling approach with the addition of Rivlin–Ericksen tensors. Following Rajagopal’s approach, we look at
the strain-limiting behavior by linearizing the strain.

2.1. Kinematics and implicit modeling

Let x = χ (X , t) be the current position of a particle X in the reference configuration that is assumed to be
stress-free, and χ is the one-to-one mapping parametrized in time t which gives the motion. The displacement u
and the deformation gradient F are defined through u = x − X and F = ∂χ/∂X . The left Cauchy–Green strain
tensor is defined as B = FFT . Moreover, D is the symmetric part of the velocity gradient given by L = ḞF−1,
where the superimposed dot denotes the material time derivative, and A1 and A2 are the Rivlin–Ericksen tensors
(Rivlin and Ericksen [14]) given by:

A1 = 2D, A2 = Ȧ1 + A1L + LT A1.
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A body is said to be Cauchy elastic, if the Cauchy stress is given explicitly as a function of the deforma-
tion gradient. Here, we generalize this idea and start with an implicit constitutive relation between the stress
and the kinematic variables as proposed by Rajagopal [12]. We consider a special class of implicit models
F(T , B, A1, A2) = 0, where T is the Cauchy stress tensor. To be more precise, we consider relations of the form:

B + α[A2 − A2
1] = β0I + β1T + β2T2, (1)

where α is a non-negative constant, and βi = βi(I1, I2, I3), i = 0, 1, 2, are the functions of the invariants:

I1 = tr T, I2 = 1

2
tr T2, I3 = 1

3
tr T3.

When T = 0, we require that the body be undeformed, i.e., F = B = I and A1 = A2 = 0. This forces the
condition:

β0(0, 0, 0) = 1. (2)

2.2. Strain-limiting approximation

Within the context of the new generalized elasticity introduced by Rajagopal [3, 4], an approximation based on
linearization under the assumption that the displacement gradient is small leads to constitutive relations wherein
the strains are bounded. Following this approach, the first simplification of equation (1) is obtained using the
approximations:

B ≈ I + 2ε, A1 ≈ 2ε t, A2 ≈ 2ε tt,

where the linearized strain is given by:

ε = 1

2

[
∂u

∂x
+

(
∂u

∂x

)T
]

.

Such approximations are possible if there exists a number δ << 1 such that maximum of the norms of the
gradients of u, ut, and utt is of order δ for any X and any t in B × R, where B is the region of the Euclidean
space occupied by the body in the reference configuration.

The second simplification is to consider β2 ≡ 0, and the last one is to consider incompressible materials so
that the only admissible motions are isochoric, i.e., tr ε ≡ 0. This gives 3(β0 − 1) +β1tr T = 0. Noting also that
A2

1 is of order δ2, from equation (1), we obtain:

2ε + 2αεtt = β1(I1, I2, I3)

[
T − 1

3
(tr T) I

]
. (3)

Finally, we assume that the only constitutive function remaining is:

β1 = β1(trS2) where S = T − 1

3
(tr T) I .

This is just for the simplicity of expressions since by the above definition of S, we have:

tr S2 = 2I2 − 1

3
I2
1 = tr T2 − 1

3
(tr T)2.

2.3. Propagation of nonlinear transverse waves

We consider the deformation given by:

x1 = X1 + u(X3, t), x2 = X2 + v(X3, t), x3 = X3, (4)

where u and v are the transverse displacement components. In this case, the stress distribution becomes:

T =
[
−p

3∑
i=1

ei ⊗ ei

]
+ T13(e1 ⊗ e3 + e3 ⊗ e1) + T23(e2 ⊗ e3 + e3 ⊗ e2), (5)
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where T13 = T13(x3, t) and T23 = T23(x3, t) are the transverse stress components and p = −tr T/3 is the
mechanical pressure (in general, the Lagrange multiplier that enforces the constraint of incompressibility need
not be the mechanical pressure (see Rajagopal [15])). In the absence of body forces, the balance equations
ρutt = div T reduce to:

ρutt = ∂T13

∂x3
− px1 , ρvtt = ∂T23

∂x3
− px2 ,

∂T33

∂x3
= 0, (6)

where ρ is the constant density function. The constitutive equation (3) now reads:

uz + αuttz = β(�2)T13, vz + αvttz = β(�2)T23,

where �2 = T2
13 + T2

23, z = x3 and β = β1. Assuming:

p(x1, x2, z, t) = f1(t)x1 + f2(t)x2 + q(z, t),

where f1(t) and f2(t) are the arbitrary functions and the function q(z, t) is determined by the last equation in
equation (6), we obtain:

ρuttz = ∂2T13

∂z2
, ρvttz = ∂2T23

∂z2
.

Equivalently, introducing the notation U = uz and V = vz, we have:

ρUtt = ∂2T13

∂z2
, ρVtt = ∂2T23

∂z2
, (7)

U + αUtt = β(�2)T13, V + αVtt = β(�2)T23. (8)

Systems (7) and (8) are equivalent to the two coupled nonlinear wave equations:

T13,zz + αT13,zztt = ρ
[
β(�2)T13

]
tt

, T23,zz + αT23,zztt = ρ
[
β(�2)T23

]
tt

, (9)

or introducing the complex unknown T = T13 + iT23 to a single complex equation:

Tzz + αTzztt = ρ[β(�2)T ]tt, (10)

where we have used the complex representation T = � exp(iθ) to rewrite the dependence of the constitutive
function β.

If we linearize equation (9) about the stress-free state, we get two decoupled linear dispersive wave equations.
In such a case, the linear dispersion relation is given by:

ω2 = k2

ρβ(0) + αk2
, (11)

where ω and k represent the frequency and the wave number, respectively. Equation (11) shows that α character-
izes the dispersive nature of the transverse waves. Henceforth, we assume that β(0) > 0 to avoid singularities in
equation (11). Moreover, it is clear from equation (11) that for large values of k, the frequency remains bounded.
Relation (11) is the same as the linear dispersion relation of the improved Boussinesq equations (see, for exam-
ple, Makhankov [16]). So, we can think of equations (9) as a generalized form of the two coupled improved
Boussinesq equations.

3. Traveling wave solutions
In this section, we look for traveling wave solutions for equation (9) in the form T13 = f (ξ ), T23 = g(ξ ), where
ξ = 1√

αc2
(z − ct) is the traveling wave coordinate. In this case, T 2

13 + T2
23 = f 2 + g2 = �2, and the equations in

equation (9) become two coupled ordinary differential equations given by:

f ′′ + f (iv) = ρc2
(
β(�2)f

)′′

g′′ + g(iv) = ρc2
(
β(�2)g

)′′
.
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Integrating twice, while assuming f , f ′, . . . and g, g′, . . . are all converging to 0 as ξ → ±∞, we obtain the
system:

f ′′ + [
1 − ρc2β(�2)

]
f = 0,

g′′ + [
1 − ρc2β(�2)

]
g = 0.

(12)

Multiplying the first equation by f ′ gives:

d

dξ
(f ′)2 + d

dξ
f 2 − ρc2β(�2)

d

dξ
f 2 = 0. (13)

A similar equation also holds for g, namely:

d

dξ
(g′)2 + d

dξ
g2 − ρc2β(�2)

d

dξ
g2 = 0. (14)

Assume existence of a potential function ψ(�2) = ∫ �2

0 β(s)ds such that ψ ′ = β and ψ(0) = 0. Therefore,
adding equations (13) and (14) gives:

d

dξ

[
(f ′)2 + (g′)2 + f 2 + g2 − ρc2ψ(�2)

]
= 0.

Now, integrating, we obtain:

(f ′)2 + (g′)2 + f 2 + g2 − ρc2ψ(�2) = C, (15)

where C is a constant. Since ψ(0) = 0 and f , g, f ′, g′ → 0 as ξ → ∞, we find C = 0. Defining the vector
γ = (f , g), we can rewrite equation (15) as:

|γ ′| + |γ | − ρc2ψ(|γ |) = 0. (16)

We define the following Hamiltonian:

H = 1

2

(
p2

1 + p2
2

) + 1

2

(
q2

1 + q2
2

) − 1

2
ρc2ψ(�2). (17)

It is easy to see that the Hamiltonian system:

q′
j = ∂H

∂pj
, p′

j = −∂H

∂qj
, j = 1, 2, (18)

is equivalent to equation (12) for (q1, q2, p1, p2) = (f , g, f ′, g′). One can immediately see that the equilibrium
points of this Hamiltonian system are given as the point (0, 0, 0, 0) and the points in the set:

S = {(q1∗, q2∗, 0, 0) : ρc2β(�2
∗) = 1 and (q1∗, q2∗) 
= (0, 0)},

for �2
∗ = q2

1∗ +q2
2∗. As a special case, if we take β(�2) = 1

μ
(1−κ�2), where μ and κ are the positive constants,

q1∗ and q2∗ satisfy the following equation:

q2
1∗ + q2

2∗ = 1

κρc2

(
ρc2 − μ

)
.

If we consider the constant μ as the shear modulus in the linear case, then μ/ρ = c2
T gives the speed of the

transverse waves in a linearized elastic medium. Therefore, when c2 > c2
T , there are infinitely many equilibrium
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points in S . Another special case can be given as β(�2) = 1/
(
μ

√
1 + κ�2

)
, where μ and κ are the positive

constants. In this case, we obtain:

q2
1∗ + q2

2∗ = 1

κ

[(
ρc2

μ

)2

− 1

]
= 1

κ

(
c4

c4
T

− 1

)
.

When c2 > c2
T , there are infinitely many equilibrium points in S . It is worth noting that there is an important

difference between the physical implications of these two special cases of β. Namely, in the latter case, the strain
stays bounded as the stress becomes arbitrarily large, while in the former case, this is not true.

We now study the nature of the equilibrium points (q1e, q2e, 0, 0) (henceforth (q1e, q2e) = (0, 0) for the first
equilibrium point, and (q1e, q2e) = (q1∗, q2∗) for the equilibrium points in S). We first rewrite the Hamiltonian
system (18) as:

q′
1 = p1, q′

2 = p2, p′
1 = ϕq1, p′

2 = ϕq2, (19)

where ϕ = ρc2ψ ′(�2) − 1. Considering linearization around the equilibrium points, we study the behavior
of linear perturbations (q̃1, q̃2, p̃1, p̃2). As a result of linearization, the first two equations in equation (19) keep
their forms for the perturbations. For the latter two, we first consider the expansion of the function ϕ about the
equilibrium points and obtain:

ϕ = ϕe + 2ρc2ψ ′′(�2
e)q1eq̃1 + 2ρc2ψ ′′(�2

e)q2eq̃2 + . . . ,

where ϕe represents the value of ϕ at an equilibrium point and is given by ϕe = ρc2ψ ′(�2
e) − 1 with �2

e =
q2

1e + q2
2e. Note that ϕeq1e = 0 and ϕeq2e = 0. So, neglecting the higher-order terms, the linearized form of the

last two equations of equation (19) becomes:

p̃′
1 = (

ϕe + 2ρc2ψ ′′(�2
e)q2

1e

)
q̃1 + (

2ρc2ψ ′′(�2
e)q1eq2e

)
q̃2

p̃′
2 = (

2ρc2ψ ′′(�2
e)q1eq2e

)
q̃1 + (

ϕe + 2ρc2ψ ′′(�2
e)q2

2e

)
q̃2.

We can write the linearized form of the Hamiltonian system (19) as:

⎡
⎢⎣

q̃1
q̃2
p̃1
p̃2

⎤
⎥⎦

′

=

⎡
⎢⎣

0 0 1 0
0 0 0 1
a1 a3 0 0
a3 a2 0 0

⎤
⎥⎦

⎡
⎢⎣

q̃1
q̃2
p̃1
p̃2

⎤
⎥⎦ .

where:

a1 = ϕe + 2ρc2ψ ′′(�2
e)q2

1e,

a2 = ϕe + 2ρc2ψ ′′(�2
e)q2

2e,

a3 = 2ρc2ψ ′′(�2
e)q1eq2e.

Denoting the coefficient matrix on the right-hand side by M , we have:

det M = det

[
a1 a3
a3 a2

]
= a1a2 − a2

3

= (
ϕe + 2ρc2ψ ′′(�2

e)q2
1e

)(
ϕe + 2ρc2ψ ′′(�2

e)q2
2e

) − (
2ρc2ψ ′′(�2

e)q1eq2e

)2

= ϕ2
e + 2ρc2ϕeψ

′′(�2
e)

(
q2

1e + q2
2e

) = ϕ2
e ,

where we used the fact that ϕeq1e = 0 and ϕeq2e = 0. Now, let us consider each equilibrium point:
(1) when (q1e, q2e) = (0, 0), then det M = ϕ2

e > 0 if ϕe 
= 0, i.e., ρc2ψ ′(0) − 1 
= 0. Therefore, the equilib-
rium point (0, 0, 0, 0) is a center point.
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If ρc2ψ ′(0) = 1, on the contrary, then det M = 0, and hence, the equilibrium point (0, 0, 0, 0) is a cusp.
(2) when (q1e, q2e) = (q1∗, q2∗), then we have ρc2ψ ′(�2

∗) = 1, and hence, det M = 0 and the equilibrium
points (q1∗, q2∗, 0, 0) are cusps.

In order to write the Hamiltonian in polar coordinates, we define:

f = � cos θ and g = � sin θ . (20)

Since f , g → 0 when ξ → ±∞ holds, we observe that the circularly polarized transverse waves (for which
� = �0 = constant 
= 0) do not propagate in the strain-limiting medium that we consider. In this case, equation
(20) leads to q2

1 + q2
2 = f 2 + g2 = �2 and p2

1 + p2
2 = (�′)2 +�2(θ ′)2. The Hamiltonian (17), thus, becomes:

H = 1

2

(
(�′)2 + (�θ ′)2

) + 1

2
�2 − 1

2
ρc2ψ(�2). (21)

We define the new variables:

q� = �, qθ = θ , p� = �′, pθ = �2θ ′.

Then, equation (21) can be expressed as:

H = 1

2

(
p2
� + p2

θ

q2
�

)
+ 1

2
q2
� − 1

2
ρc2ψ(q2

�).

In this case, the Hamiltonian system (18) can be written as:

q′
� = ∂H

∂p�
= p�,

q′
θ = ∂H

∂pθ
= pθ

q2
�

,

p′
� = − ∂H

∂q�
= − p2

θ

q3
�

− q�
[
1 − ρc2ψ ′(q2

�)
]

p′
θ = − ∂H

∂qθ
= 0.

The third equation is equivalent to:

�′′ +�
[
(θ ′)2 + 1 − ρc2ψ ′(�2)

]
= 0, (22)

and the fourth one is: (
�2θ ′)′ = 0. (23)

In the linearly polarized case, i.e., when θ = θ0 is a constant, we have equation (23) is trivially satisfied and
equation (22) leads to:

�′′ +�
[
1 − ρc2ψ ′(�2)

] = 0. (24)

The existence of a pulse-like traveling wave solution of equation (24) depends on the nature and the number
of zeros of the antiderivative of the second term. In the following, we discuss the existence of solitary wave
solutions for two special forms of ψ ′(�2).

We first consider β(�2) = ψ ′(�2) = 1
μ

(1 − κ�2), where μ and κ are the positive constants. The phase
portrait of equation (24) corresponding to this form of β with ρ = c = 1, μ = 0.5, and κ = 0.06 is shown in
Figure 1(a). In this case, the antiderivative �(�) of the second term is:

�(�) = 1

2
�2 − ρc2

2μ

(
�2 − 1

2
κ�4

)
,
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(a) (b)

Figure 1. Phase portraits of equation (24) for two different forms of β(�2), where ρ = c = 1 and μ = 0.5. (a) β(�2) = 1
μ (1−κ�2)

and κ = 0.06. (b) β(�2) = 1/
(
μ

√
1 + κ�2

)
and κ = 0.5.

which satisfies �(0) = 0. It is clear that � = 0 is a double root, and the two other roots are:

±
√

2

κ

(
1 − μ

ρc2

)
,

with ρc2 > μ. This implies that a pulse-like traveling wave exists if c2 > c2
T , i.e., for supersonic waves. In this

case, the exact solution of equation (24) can be found explicitly as the solitary wave given by:

�(ξ ) = A sech(Bξ ), A =
√

2

κ

(
1 − μ

ρc2

)
, B =

√
ρc2

μ
− 1.

The graph of the solitary wave solution can be seen in Figure 2(a), where only half of the profile is shown
due to symmetry with respect to the origin. Recall that f (ξ ) = �(ξ ) cos θ0 and g(ξ ) = �(ξ ) sin θ0.

As the second special form, we take β(�2) = ψ ′(�2) = 1/
(
μ

√
1 + κ�2

)
, where μ and κ are the positive

constants. In this case, the phase portrait of equation (24) corresponding to ρ = c = 1, μ = 0.5, and κ = 0.5 is
shown in Figure 1(b). The antiderivative �(�) of the second term is:

�(�) = 1

2
�2 − ρc2

μκ

(√
1 + κ�2 − 1

)
,

which satisfies �(0) = 0. This function has � = 0 as a double root, and the two other roots are:

±2

√
ρc2

μκ

(
ρc2

μ
− 1

)
,

with ρc2 > μ. Clearly, a pulse-like traveling wave exists if c2 > c2
T . However, since it cannot be calculated

explicitly, we solve equation (24) numerically using the ode45 package of MATLAB. In Figure 2(b), we present
again the half of the profile corresponding to the numerical solution.

4. Unidirectional waves
In this section, we derive the equations governing the propagation of unidirectional long waves. In order
to get the appropriate scaling, we consider the Taylor series expansion of the linear dispersion relation
ω = ±k/

√
ρβ(0) + αk2 obtained in equation (11) in terms of wavenumber k. Taking the + sign and using

the notation c0 = 1/
√
ρβ(0), we obtain:

ω = c0k − 1

2
αc3

0k3 + ..., (25)
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(a) (b)

Figure 2. Solitary wave solutions of equation (24) for two different forms of β(�2), where ρ = c = 1 and μ = 0.5. Due to symmetry
only, half of the profile is shown. (a) β(�2) = 1

μ (1 − κ�2) and κ = 0.06. (b) β(�2) = 1/
(
μ

√
1 + κ�2

)
and κ = 0.5.

for which the phase kx − ωt becomes:

kx − ωt = k
(
x − c0t

) + 1

2
αc3

0k3t + .... (26)

Assuming that k is of order ε1/2, we introduce the slow variables ξ and τ in the form:

ξ = ε1/2
(
x − c0t

)
, τ = ε3/2t. (27)

Equation (9) takes the following form in terms of ξ , t:

T13,ξξ + α
[
εc2

0T13,ξξξξ − 2ε2c0T13,τξξξ + ε3T13,ττξξ

]
= c2

0ρ
[
β(�2)T13

]
ξξ

− 2εc0ρ
[
β(�2)T13

]
τξ

+ ε2c0ρ
[
β(�2)T13

]
ττ

. (28)

T23,ξξ + α
[
εc2

0T23,ξξξξ − 2ε2c0T23,τξξξ + ε3T23,ττξξ

]
= c2

0ρ
[
β(�2)T23

]
ξξ

− 2εc0ρ
[
β(�2)T23

]
τξ

+ ε2c0ρ
[
β(�2)T23

]
ττ

. (29)

We now consider the following series expansion about the stress-free state:

T13 = ε1/2
[
P + εP1 + ε2P2 + · · ·

]
.

T23 = ε1/2
[
Q + εQ1 + ε2P2 + · · ·

]
,

from which we have:

�2 = ε
[
P2 + Q2 + 2ε(PP1 + QQ1) + · · ·

]
.

β(�2) = β(0) + εβ ′(0)(P2 + Q2) + · · · .

When we substitute the above series expansions into equations (28) and (29), we get a hierarchy of equations.
The zeroth-order equations are:

[1 − c2
0ρβ(0)]Pξξ = 0, [1 − c2

0ρβ(0)]Qξξ = 0. (30)

Since c2
0ρ = 1/β(0), the zeroth-order equations are identically satisfied and P, Q remain arbitrary. If we use

again that c2
0ρ = 1/β(0), the first-order equations of the hierarchy become the two coupled MKdV (Modified

Korteweg–de Vries) equations:

Pτ + aPξξξ + b
[
(P2 + Q2)P

]
ξ

= 0, (31)

Qτ + aQξξξ + b
[
(P2 + Q2)Q

]
ξ

= 0, (32)
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where the constants a and b are defined by:

a = αc0

2ρβ(0)
, b = −c0β

′(0)

2β(0)
. (33)

We now consider waves that travel to the right for which c0 > 0. Since α and β(0) are positive, we have
a > 0. For both of the special cases of β we considered in the previous section, we obtain β ′(0) < 0 implying
b > 0 (β ′(0) = −κ/μ and β ′(0) = −κ/2μ, respectively).

If we define the complex quantity w as w = P + iQ, equations (31) and (32) can be rewritten as a single
equation:

wτ + awξξξ + b
(|w|2w

)
ξ

= 0. (34)

This equation is known as the CMKdV (Complex Modified Korteweg–de Vries) equation, and it has been
derived to model the propagation of small-but-finite amplitude transverse waves in many different areas of
continuum mechanics [11, 17–19]. The above equation has the following solitary wave solution:

w(ξ , τ ) =
√

2cs

b
sech

[√
cs

a
(ξ − csτ − ξ0)

]
eiθ0 ,

which represents a traveling wave with speed cs and initially at ξ0, where cs, ξ0, and θ0 are the constants.

5. Special cases
Equation (9) is symmetric, and we can use this property to determine some remarkable class of exact solutions.

5.1. Carroll’s solutions

A simple but general and remarkable set of exact solutions is provided considering the ansatz:

T13 = A cos(kz − ωt), T23 = ±A sin(kz − ωt), (35)

where A,ω , and k are the constants. Introducing equation (35) into the equations (9), we obtain the relationship:

c2 = 1

ρβ(A2) + αk2
, (36)

where c = ω/k is the speed of propagation.

5.2. Separable solutions

Let us consider the case where the amplitude and the phase in the complex representation T = � exp(iθ) are
the separable solutions, i.e., �(z, t) = �1(z) +�2(t) and θ = θ1(z) + θ2(t). Special and remarkable cases of this
decomposition are the generalized oscillatory stress waves:

T13 = φ(z) cos(ωt) + ζ (z) sin(ωt), T23 = φ(z) sin(ωt) − ζ (z) cos(ωt). (37)

In this case, we have indeed �2(z) = φ2 +ζ 2. Introducing equation (37) in equation (9), we got the reduction
of these partial differential equations to a set of two ordinary differential equations:

(1 − αω2)
d2φ

dz2
+ ρω2β(�2)φ = 0,

(38)

(1 − αω2)
d2ζ

dz2
+ ρω2β(�2)ζ = 0.
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This set of equations may be reduced to the problem of motion of a particle in a central force field as in
Carroll [20] but in a more direct way since the first integral:

ζ
dφ

dz
− φ

dζ

dz
= constant,

of the angular momentum is in our case immediate. Therefore, the usual transformation:

φ = � cos θ , ζ = � sin θ ,

allows the transformation of equation (38) to:

d2�

dz2
−�

(
dθ

dz

)2

= − ρω2

1 − αω2
β(�2)�,

(39)

�
d2θ

dz2
+ 2

d�

dz

dθ

dz
= 0.

The role of the dispersive term in equation (39) is fundamental. Indeed, if 1 − αω2 > 0, the potential is
attractive but clearly at high frequency, it is repulsive.

Another possibility are the generalized oscillatory shear stress waves where, unlike the previous case, � =
�(t) is a function of t instead of z, and:

T13 = �(t) cos(kz), T23 = �(t) sin(kz), (40)

so that β = β(�2). Introducing equation (40) in equation (9), we got the reduction:

α
d2�

dt2
+�+ ρ

k2

d2

dt2

(
�β(�2)

) = 0. (41)

Introducing the notation �(�) = ρ

k2�β(�2), we rewrite the last equation as:

(
α + �′(�)

)d2�

dt2
+ �′′(�)

(
d�

dt

)2

+� = 0.

This is an autonomous equation, and the usual transformations d�/dt = π (�) and q(�) = π 2 reduce it to
the linear equation for q given as:

1

2

(
α + �′(�)

) dq

d�
+ �′′(�)q +� = 0.

The general solution of the linear equation is the energy integral of equation (41):

1

2

(
α + �′(�)

) (
d�

dt

)2

= E − α�2 − 1

2
U(�2),

where �β = dU/d� and E is an integration constant.

6. Concluding remarks
In this short note, we have shown that it is possible to generalize to strain-limiting materials a number of classical
solutions in the field of nonlinear elastic theory. Although the mathematical structure of the solutions that have
been found is similar to their counterparts in the classical field from a physical point of view, it must be noted
that there are fundamental differences. Indeed, in our case, the unknown components are the stress components
and the corresponding strain is infinitesimal.

In this way, we were able to generalize the strain-limiting models proposed by Rajagopal and co-workers in
elasticity to the dispersive case, determining classes of explicit solutions of direct physical interest and some
general model equations in the long wave approximation.

Our results show that even in the case where there are similarities with the classical theory of Cauchy
elasticity, the strain-limiting models introduce mathematical subtleties and modified physical interpretation that
make the new theory particularly interesting on both levels.
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