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In this work, we deal with a one-dimensional stress-
rate type model for the response of viscoelastic
materials, in relation to the strain-limiting theory.
The model is based on a constitutive relation of
stress-rate type. Unlike classical models in elasticity,
the unknown of the model under consideration
is uniquely the stress, avoiding the use of the
deformation. Here, we treat the case of periodic
boundary conditions for a linearized model. We
determine an optimal function space that ensures
the local existence of solutions to the linearized
model around certain steady states. This optimal
space is known as the Gevrey-class 3/2, which
characterizes the regularity properties of the solutions.
The exponent 3/2 in the Gevrey-class reflects the
specific dispersion properties of the equation itself.

This article is part of the theme issue ‘Foundational
issues, analysis and geometry in continuum
mechanics’.

1. Introduction
Implicit constitutive theory, which has been of great
interest recently, provides useful tools to approach a
collection of models describing response of materials
[1,2]. Among other advantages, it leads to a different
small strain theory allowing for a nonlinear relationship
between the linearized strain and the stress. The main
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aim of this work is to investigate such a strain-limiting model for the response of vicoelastic
materials. More precisely, we are interested in studying a model where the linearized strain is
given as a function of the stress and the stress-rate.

Implicit constitutive theories certainly allow for a more general structure for material response
compared to explicit ones, which, in fact, can be seen as a subclass. Moreover, models with
limiting strain provided by implicit constitutive theories are able to capture experimental
observations providing theoretical justification for the response of materials such as Gum metal
and titanium alloys that were previously proposed in a rather ad hoc manner (see [3] and
references therein). Even though some implicit models for describing the elastic response of
solids existed for a considerable amount of time, the importance of the cause and the effect in
those descriptions was not realized until recently when constitutive models were introduced
to describe the response of elastic solids wherein the stress T and the deformation gradient are
related implicitly.

In the classical Cauchy elasticity, the stress is a function of the strain B. As a result of
linearization of the strain we obtain T = C : ε, where : stands for matrix product, C is the fourth
order elasticity tensor and ε denotes the linearized strain. In conclusion, one could only obtain a
linear relation between the stress and the strain, which, however, does not reflect reality in various
materials. Here we make use of a framework introduced by Rajagopal [2] in which the strain is
considered as a function of the stress, that is, B = f (T). Correspondingly, one considers a nonlinear
function for the linearized strain ε = f̃ (T). Hence implicit constitutive theory leads to a small strain
theory allowing for a nonlinear relationship between the linearized strain and the stress [4,5].

The notion strain-limiting refers to the response of materials which are characterized by the fact
that, once the strain reaches a certain limiting value, a further increase in stress will not cause any
changes in strain. Such models have recently attracted a considerable amount of attention due
to the fact that various phenomena, including cracks, are successfully described. In the classical
linear elasticity theory such nonlinear response cannot be explained. The advantage of implicit
theories is that they allow for the gradient of the displacement to stay small so that one could
treat the linearized strain, even for arbitrary large values of the stress, which has, in fact, been
observed in many experiments (see the references in [3]).

In this work, we are interested in the analysis of a one-dimensional viscoelastic model resulting
from a constitutive equation specifying the relation between the linearized strain, the stress and
the stress-rate. In §2, we introduce the model we study in this work which is derived using
the viscoelastic constitutive relation and the equation of motion. This yields an equation for the
dynamics of the stress T : Ω × [0, ∞) → R with Ω ⊂ R, cf. (2.5), and reads

h(T)tt − γ Tttt = Txx on Ω × [0, ∞). (1.1)

coupled with homogeneous Neumann or periodic boundary conditions for T. Here, γ > 0 and
the function h ∈ C2(R, R) is in general nonlinear and satisfies h(0) = 0; it reflects the correlation
between the strain and the stress of the material.

Duman & Şengül [6] proved the existence of travelling wave solutions for a related case of this
partial differential equation (PDE) on R × [0, ∞). They considered an equation with the second
term in (1.1) being equal to (γ (T)Tt)tt with γ (·) being a function of the stress satisfying certain
assumptions. To deal with more general solutions, we consider the case of γ (·) being a constant
function. We then address the question of classical solutions in the framework of Gevrey classes
in which the initial data is not assumed to be a travelling wave.

Next we briefly comment on a related PDE, which is derived for viscoelastic strain-limiting
strain-rate type models and reads

g(T)tt − νTxxt = Txx. (1.2)

The derivation of this equation starts from the equation of motion (2.2) below and uses the
constitutive relation ε + νεt = g(T) for some ν > 0 and some nonlinear function g ∈ C2(R, R)
satisfying g(0) = 0 (see [3,7] for a detailed derivation). For this model, defined on R × [0, ∞),
travelling wave solutions were studied in [8]. In [9], Şengül found travelling wave solutions
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analytically and numerically with g(T) = a arctan(bT) for some positive constants a, b ∈ R.
Moreover, local existence of strong solutions was proved for an initial value problem under
the assumption that the function g is strictly increasing [10]. Then Şengül [11] proved that these
solutions are actually global solutions. The most recent work on (1.2) is by Bachmann et al. [12]
where a variational framework is introduced for general nonlinearities g. As a result of variational
techniques and time-discretization, authors prove the existence of solutions in certain Sobolev
spaces when the nonlinearity takes the form g(T) = T.

In §3 of this article, we deal with some well-posedness issues of the equation in the stress-
rate case, specifically focusing on the stability of certain steady-state solutions of (1.1) when the
domain Ω = T is periodic. To analyse this, we linearize equation (1.1) around constant solutions
T(x, t) = T̄ ∈ R, leading to

h′(T̄)Ttt − γ Tttt = Txx on T × [0, tmax). (1.3)

Our main result establishes an optimal function space for the existence of local-in-time smooth
solutions of (1.3), i.e. up to a maximal time 0 < tmax < ∞. In the variable x ∈ T, this relates to the
so-called Gevrey-class 3/2 regularity. Gevrey classes are function spaces that allow control over
an infinite number of derivatives of the functions and have proven to be widely applicable in
various contexts, especially in the theory of boundary layers (cf. [13–17]). Our main result asserts
the following:

Theorem 1.1. Assume that the initial data of T, Tt and Ttt have regularity Gevrey-class 3/2 (cf.
definition 3.1 and theorem 3.2). Then there exists a lifespan tmax > 0 depending on the initial data and
there exists a smooth solution T ∈ C∞(T × [0, tmax)) of equation (1.3).

We refer to §3 for details about Gevrey regularities, as well as more insights about the
behaviour of the constructed solutions. We emphasize, however, that our analysis determines
that the Gevrey-class 3/2 is optimal for equation (1.3) (without any structural assumptions on the
initial data). Interestingly, our analysis suggests that the well-posedness in Sobolev spaces is likely
to be unattainable for the linearized equation (1.3). This conclusion is drawn from a significant
Fourier analysis of the solution frequencies, which highlights that the solutions precisely exhibit
a dispersion relation of Gevrey-class 3/2 type. These findings underscore the importance of the
Gevrey-class 3/2 regularity in capturing the behaviour of solutions and suggest its optimality for
the studied equation. Section 3 provides further elaboration on these insights. Additionally, we
refer to §4 for a comprehensive overview on the ill-posedness of (1.3) in Sobolev spaces.

2. Introduction to the model
We consider a homogeneous, viscoelastic medium in one space dimension. Let Ω ⊂ R be a
bounded open set. Moreover, let ρ : Ω × [0, ∞) → R denote the mass density in space and time,
u : Ω × [0, ∞) → R the deformation/flow map and T : Ω × [0, ∞) → R the (one-dimensional)
stress-tensor. The equation of motion then reads

ρutt = Tx on Ω × [0, ∞) (2.1)

with homogeneous Dirichlet or periodic boundary conditions for u.
Based on this, we derive an evolution equation for the stress-tensor T = T(x, t) following [7].

By making use of the homogeneity of the material, differentiating (2.1) with respect to the space
variable x and assuming suitable regularity of the deformation u, we obtain ρuxtt = Txx. Next we
replace uxtt by εtt, where ε denotes the (one-dimensional) strain. Hence we obtain

ρεtt = Txx on Ω × [0, ∞). (2.2)

To write the left-hand side in terms of the stress, we make use of a constitutive equation. We
suppose that we have an implicit constitutive equation of the viscoelastic strain-limiting material



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220374

...............................................................

given by
ε = h(T) − γ Tt on Ω × [0, ∞) (2.3)

for some γ > 0 and some nonlinear function h ∈ C2(R, R) satisfying h(0) = 0. Note that we use the
shorthand h(T) for h(T(·, ·)). A detailed derivation of this model can be found in [6,7]. Since the
constitutive relation also depends on the stress-rate Tt, the model is also referred to as a stress-
rate type model. In [7], Erbay and Şengül showed that this model is consistent with the first and
second law of thermodynamics if γ > 0. For γ = 0, the constitutive relation reduces to the elastic
setting. To get an equation of motion only in terms of the stress T and its derivatives, we plug the
second time derivative of (2.3) into (2.2) and obtain

ρ(h(T)tt − γ Tttt) = Txx on Ω × [0, ∞) (2.4)

with homogeneous Neumann or periodic boundary conditions for T. Using the dimensionless
quantities introduced in [7], we finally get the PDE

h(T)tt − γ Tttt = Txx on Ω × [0, ∞). (2.5)

Note that, by an abuse of standard notation, the time derivatives of h(T) are total derivatives.
However, for ε and T there is no difference between total and partial derivatives since the spatial
variable x is independent of t.

3. Gevrey-type solutions of the linearized model
In this section, we focus on addressing the issue of well-posedness associated with a proper
linearization of equation (2.5). We here consider a simplified geometry, where the domain Ω = T =
[−π , π ] represents a one-dimensional periodic torus. This choice allows us to circumvent certain
complications arising from boundary conditions. However, even in this simplified geometry, we
provide evidence of the presence of certain instability mechanisms in the solutions.

We linearize (2.5) around meaningful steady-state solutions, which in this case are represented
by constant functions T(x, t) = T̄ ∈ R, for any (x, t) ∈ T × [0, ∞). An important question arises as
to whether these constant solutions remain stable under small perturbations. In other words, we
investigate whether the following linearized equation is well-posed, at least within a local time
frame:

h′(T̄)Ttt − γ Tttt = Txx (x, t) ∈ T × [0, tmax). (3.1)

The analysis of (3.1) can indeed offer valuable insights on its nonlinear counterpart (2.5). For
now, let us consider the lifespan tmax > 0 as an arbitrary positive time. However, we determine an
explicit formula for tmax based on appropriate initial data (as indicated in (3.4)).

We demonstrate that certain inherent instability mechanisms complicate and limit the function
settings for which (3.1) has a local-in-time solution. This requires the control of an infinite number
of derivatives of the initial data.

Due to the periodic nature of T, we can employ the Fourier series decomposition to represent
a suitable solution T = T(x, t) (including also its initial data):

T(x, t) =
∑
k∈Z

Tk(t)eikx, T(x, 0) = Tin(x) =
∑
k∈Z

Tin,keikx,

Tt(x, 0) = Tt,in(x) =
∑
k∈Z

Tt,in,keikx, Ttt(x, 0) = Ttt,in(x) =
∑
k∈Z

Ttt,in,keikx.

For a general function f ∈ L1(T) with f (x) =∑
k∈Z

fkeikx, x ∈ T (integrability is a minimal
assumption to define at least a weak solutions), the Fourier coefficients satisfy fk :=
(1/2π )

∫
T

f (x)e−ikx dx. (Certainly the Fourier series is well defined also for more general
distributions, but this is beyond the interest of this paper.)

A common approach to control an infinite amount of derivatives of the initial data Tin, Tt,in,
Ttt,in is to impose a suitable decay on the corresponding Fourier coefficients, as the frequencies
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k → ±∞. When these coefficients decay exponentially as e−σ |k|, for a fixed σ > 0, the functions
involved are analytic and can be locally represented as power series. However, we are interested
in more refined initial data, that exhibit regularities between analytic and Sobolev spaces.

Specifically, we consider initial data with Gevrey-class 3/2 regularity. Gevrey spaces have
recently attracted attention in the mathematical community, particularly in relation to well-
posedness issues in models involving boundary layers (cf. [13–19]). Roughly speaking, the initial
data belongs to the Gevrey-class 3/2 if the corresponding Fourier coefficients decay as e−σ |k|2/3

,
when the frequencies diverge. More generally, we have the following definition :

Definition 3.1. A function f ∈ L1(T) belongs to the Gevrey-class Gm
σ = Gm

σ (T), for fixed σ > 0 and
m > 1, if the following norm is bounded:

||f ||Gm
σ

:= sup
k∈Z

{
eσ |k|1/m |fk|

}
< ∞, where f (x) =

∑
k∈Z

fkeikx with fk = 1
2π

∫
T

f (x)e−ikx dx.

For comprehensive explanations on Gevrey classes by means of Fourier Analysis, we refer to
Rodino [20].

Before stating our main result, some remarks are here in order. Because of the exponential
decay on the modes, functions in the class Gm

σ are also C∞(T). We aim therefore to generate smooth
solutions of (3.1) in C∞(T) × [0, tmax), for a suitable lifespan tmax > 0 depending upon the initial
data. The exponent m = 3/2 is critical and was already observed by the last author in [7] (cf.
Section 5.3).

Given that γ > 0, we introduce a formal time rescaling of the stress variable T(x, t) using
T̃(x, t) := T(x, γ 1/3t) and define

α := h′(T̄)γ −(2/3).

Additionally, we rescale the lifespan by means of t̃max := γ −(1/3)tmax and, with an abuse of
notation, we omit the symbols ∼ denoting the rescaled quantities. Consequently, the resulting
PDE is as follows: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αTtt − Tttt = Txx, (x, t) ∈ T × [0, tmax),

T
∣∣
t=0 = Tin, x ∈ T,

Tt
∣∣
t=0 = Tt,in, x ∈ T,

Ttt
∣∣
t=0 = Ttt,in, x ∈ T.

(3.2)

Theorem 3.2. Assume that Tin, Tt,in and Ttt,in belong to the Gevrey-class G3/2
σ , for a suitable radius

σ > 0, as described by definition 3.1. Then there exists a local-in-time smooth solution T = T(x, t) of (3.2),
such that

T ∈ L∞(0, tmax;G3/2
β(t)

)
, ∂m

t T ∈ L∞(0, tmax;G3/2
Γ (t)

)
for any m ∈ N, (3.3)

where the lifespan tmax and the radii of Gevrey regularity β(t), Γ (t) are defined by

tmax := 2−(4/3)σ , β(t) := σ − 21/3t > 0, Γ (t) := σ

2
− 21/3t > 0 for any t ∈ [0, tmax). (3.4)

Remark 3.3. Before addressing the proof of theorem 3.2, some remarks about the statement are
here in order. The radii β, Γ of Gevrey regularity in (3.4) are decreasing functions in time, which
indicates a specific ‘loss of regularity’ as time progresses. This reflects a mechanism of instability
inherent in the solutions. In essence, without structural assumptions on the initial data, we will
determine a dispersion relation on the frequencies of order k2/3 (cf. λ1,k in remark 3.7, as well as
lemma 3.4), that can only be counteracted (locally in time) by initial data belonging to the Gevrey-
class 3/2 or higher. Discussions regarding lower regularities and insights into the ill-posedness in
Sobolev spaces will be addressed in §4.

The function spaces in (3.3) define a function T = T(x, t), which is indeed smooth both in time
and space (thus T is a classical solution). For any radii of regularity 0 < η < σ and any s > 1, the
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following Gevrey embedding holds true: Gs
σ ↪→ Gs

η ↪→ C∞(T). If we set 0 < t′ < tmax and η := Γ (t′),
we gather that

G3/2
β(t) ↪→ G3/2

Γ (t) ↪→ G3/2
η for any t ∈ [0, t′].

This embedding together with (3.3) implies in particular that T belongs to Wm,∞(0, t′;G3/2
η ), for

any m ∈ N, and therefore also to C∞(T × [0, t′]). The arbitrariness of t′ ∈ (0, tmax) leads therefore to
T ∈ C∞(T × [0, tmax)), hence T is a smooth solution of (3.2).

Proof. We begin with by projecting the main equation (3.2) to the eigenspace generated by the
oscillating function eikx for some k fixed. For each frequency k ∈ Z, the Fourier coefficient Tk(t)
depends only on time and is a priori a solution of the following ordinary differential equation:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T′′′
k (t) − αT′′

k (t) − k2Tk(t) = 0, t ∈ R,

Tk|t=0 = Tin,k ∈ R,

Tk,t|t=0 = Tt,in,k ∈ R,

Tk,tt|t=0 = Ttt,in,k ∈ R.

(3.5)

For a fixed k ∈ Z, equation (3.5) is linear, and of order three. It admits therefore a global-in-time
solution Tk ∈ C∞(R), which can be determined by making use of the characteristic equation (3.7).
The lifespan tmax > 0 will be discussed later in the context of ensuring the convergence of the
Fourier series in a specific manner. The solution Tk(t) is explicitly determined by

Tk(t) = c1,k eλ1,kt + c2,k eλ2,kt + c3,k eλ3,kt, (3.6)

where λ = λ1,k, λ2,k, λ3,k are the three distinct complex roots of the following characteristic
polynomial of degree three:

p(λ) := λ3 − αλ2 − k2 = 0. (3.7)

While it is indeed possible to explicitly determine the values of λ = λ1,k, λ2,k, λ3,k (cf. remark 3.7),
our primary interest lies in understanding their behaviour as the frequencies become increasingly
higher. This aspect provides valuable insights into the convergence properties of the Fourier series
and, consequently, the function spaces in which a solution exists. By examining the behaviour
of λ with respect to high frequencies, we can gain a deeper understanding of the convergence
behaviour and the appropriate function spaces for the solution. The constants c1,k, c2,k and c3,k in
(3.6) depend uniquely upon the initial data Tin, k, Tt,in,k, Ttt,in,k and satisfy

c1,k + c2,k + c3,k = Tin, k,

λ1,kc1,k + λ2,kc2,k + λ3,kc3,k = Tt,in,k

and λ2
1,kc1,k + λ2

2,kc2,k + λ2
3,kc3,k = Ttt,in,k.

Consequently, we can derive the following expression:

c1,k = Ttt,in,k − (λ3,k + λ2,k)Tt,in,k + λ2,kλ3,kTin,k

(λ1,k − λ2,k)(λ1,k − λ3,k)
,

c2,k = Ttt,in,k − (λ3,k + λ1,k)Tt,in,k + λ1,kλ3,kTin,k

(λ2,k − λ3,k)(λ2,k − λ1,k)
,

c3,k = −Ttt,in,k − (λ2,k + λ1,k)Tt,in,k + λ1,kλ2,kTin,k

(λ1,k − λ3,k)(λ3,k − λ2,k)
.

(3.8)

Note here that λi,k �= λj,k holds whenever i �= j (we will guarantee this fact later on, with the result
of lemma 3.4), hence the above expressions are well defined. The roots λ1,k, λ2,k and λ3,k are indeed
distinct for each value of the frequency k.

To estimate the Fourier coefficient Tk(t) in terms of the frequencies k ∈ Z, we need to establish
some related estimates for the roots λ1,k, λ2,k and λ3,k. This will allow us to gain insights into their
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behaviour as the frequencies increase. We assert in particular that the following estimates hold
true: for any k ∈ Z with |k| > 2(1 + |α|)3/2

2−(1/3)|k|2/3 ≤ λ1,k ≤ 21/3|k|2/3, |λ2,k| = |λ3,k| ≤ 2|k|2/3. (3.9)

For clarity of the proof of theorem 3.2, we postpone the proof of these estimates to lemma 3.4
and remark 3.5 below.

By (3.9) we obtain that the first term on the r.h.s. in (3.6) satisfies

|c1,keλ1,kt| ≤ |c1,k|e21/3|k|2/3t, (3.10)

for any k ∈ Z, with |k| > 2(1 + |α|)3/2. Similarly, the second and third terms on the r.h.s. in (3.6)
fulfil

|c2,keλ2,kt| = |c2,k|e
(λ2,k)t = |c2,k|e(−(λ1,k−α)/2)t ≤ |c2,k|e−2−(4/3)|k|2/3t+ α
2 t,

|c3,keλ3,kt| = |c3,k|e
(λ3,k)t = |c3,k|e(−(λ1,k−α)/2)t ≤ |c3,k|e−2−(4/3)|k|2/3t+(α/2)t,
(3.11)

for any k ∈ Z, with |k| > 2(1 + |α|)3/2. In particular, we obtain that each mode Tk(t) satisfies

|Tk(t)| ≤ 3 max
{
|c1,k|, |c2,k|, |c3,k|

}
e21/3|k|2/3t, (3.12)

at any time t > 0. The obtained estimates (3.10), (3.11) and (3.12) already contain significant
information regarding the potential regularity of the solution T = T(x, t). Notably, the root λ1,k
serves as a primary indicator of the solution’s instability. It leads to an exponential upper bound
in the modes of order |k|2/3t in the frequencies k � 1 (which can be counteracted locally in time
by a regularity Gevrey 3/2 on the initial data, at best).

Contrarily, the second and third roots λ2,k and λ3,k behave roughly as ∼ e−|k|2/3t at high
frequencies, which further supports the decay of the modes of the initial data (hence producing
a sort of smoothing effect, cf. also §4). To explore this expected behaviour in more detail, we
establish a relationship between the growth of the constants c1,k, c2,k, c3,k ∈ C and the modes
Tin,k, Tt,in,k, Ttt,in,k. Once again, our focus will be on understanding the behaviour of these
constants at high frequencies. We assert that for any k ∈ Z with |k| > 2(1 + |α|)3/2 there exists a
constant C > 0 such that

max
{|c1,k|, |c2,k|, |c3,k|

}≤ C max
{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
e−σ |k|2/3

. (3.13)

The proof of this estimate is deferred to lemma 3.6, and we now shift our attention to concluding
the proof of theorem 3.2. From now on, we allow the constant C to eventually change from line to
line.

Invoking the definition of the lifespan tmax = 2−(4/3)σ > 0 and the radius β(t) = σ − 21/3t in
(3.4), as well as the coefficients Tk(t) in (3.6), we assert first that the Fourier series

T(t, x) :=
∑
k∈Z

Tk(t)eikx =
∑

|k|≤2(1+|α|)3/2

Tk(t)eikx +
∑

|k|>2(1+|α|)3/2

Tk(t)eikx,

converges in the space G3/2
β(t) for any t ∈ [0, tmax). To this end, we split the Gevrey norm into the

contribution of low and high frequencies:

sup
k∈Z

{
eβ(t)|k|2/3 |Tk(t)|

}
≤ sup

|k|≤2(1+|α|)3/2

{
eβ(t)|k|2/3 |Tk(t)|

}
+ sup

|k|>2(1+|α|)3/2

{
eβ(t)|k|2/3 |Tk(t)|

}
.

The first supremum is between a finite amount of frequencies (hence it is finite, being indeed a
maximum), while the second supremum determines whether the Gevrey-3/2 norm is bounded or
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not. By invoking (3.12), we gather that

sup
|k|>2(1+|α|)3/2

{
eβ(t)|k|2/3 |Tk(t)|

}

≤ sup
|k|>2(1+|α|)3/2

{
eβ(t)|k|2/3+21/3|k|2/3t3 max

{
|c1,k|, |c2,k|, |c3,k|

}}
. (3.14)

Hence, recalling from (3.4) that β(t) = σ − 21/3t and thanks to the estimate in (3.13), we obtain that

sup
|k|>2(1+|α|)3/2

{
eβ(t)|k|2/3 |Tk(t)|

}

≤ sup
|k|>2(1+|α|)3/2

{
eσ |k|2/3

C max
{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
e−σ |k|2/3

}

≤ C max
{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
< +∞.

This finally implies that T(x, t) =∑
k∈Z

Tk(t)eikx converges in L∞(0, tmax;G3/2
β(t)).

We infer also that all time derivatives ∂m
t T, with m ∈ N, converge in L∞(0, tmax;G3/2

Γ (t)), where
Γ (t) = β(t) − σ/2 < β(t). In essence, by decreasing the Gevrey radius of regularity from β(t) to Γ (t)
(while ensuring with the lifespan tmax that both radii are positive), we can localize an exponential
decay e−σ |k|2/3/2 that counteracts any polynomial growth in the frequencies that arises during
the derivation of the Fourier series in time. When taking the derivative with respect to time, we
essentially multiply each component of the modes Tk(t) with the roots λ1,k, λ2,k and λ3,k, which
grow at most polynomially as |k| � 1. (It is worth noting that higher derivatives ∂m

t T also involve
multiplications with λm

1,k, λm
2,k and λm

3,k, which still exhibit polynomial growth.)
To estimate ∂tT, we decompose once more the associated Fourier series into high and low

frequencies: ∑
k∈Z

T′
k(t)eikx =

∑
|k|≤2(1+|α|)3/2

T′
k(t)eikx +

∑
|k|>2(1+|α|)3/2

T′
k(t)eikx (3.15)

and we show that the series converges in the Gevrey class G3/2
Γ (t), for any time t ∈ [0, tmax). The low

frequencies in (3.15) generate a finite sum, which is indeed an analytic function (thus also in any
Gevrey class). We need therefore to address the high frequencies k ∈ Z, with |k| > 2(1 + |α|)3/2.

We proceed with a similar argument as the one used to tackle the function T = T(x, t) and we
show that the Gevrey norm of the Fourier series defined by ∂tT is indeed bounded. First, from the
definition of Tk(t) in (3.6), we obtain that

T′
k(t) = c1,kλ1,keλ1,kt + c2,kλ2,keλ2,kt + c3,kλ3,keλ3,kt,

which implies in particular that

|T′
k(t)| ≤ 3 max

{|c1,k|, |c2,k|, |c3,k|
}

max
{|λ1,k|, |λ2,k|, |λ3,k|

}
e21/3|k|2/3t.

The exponential growth depends on time and is derived similarly as in (3.12) from the terms eλj,kt,
j = 1, 2, 3. We invoke hence (3.13) together with the estimates in (3.9) to obtain that

|T′
k(t)| ≤ C max

{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
e−σ |k|2/3

2|k|2/3e21/3|k|2/3t.

Remark that contrarily to (3.12), we here have some polynomial-type growth in the frequencies
that has to be controlled by the exponential decay (hence the need for a lower radius of Gevrey
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regularity). Recalling that Γ (t) = (σ/2) − 21/3t we have that

sup
|k|>2(1+|α|)3/2

{
eΓ (t)|k|2/3 |T′

k(t)|
}

≤ C sup
|k|>2(1+|α|)3/2

{
e((σ/2)−21/3t)|k|2/3

max
{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
e(−σ+21/3)|k|2/3 |k|2/3

}

≤ C sup
|k|>2(1+|α|)3/2

{
|k|2/3e−(σ/2)|k|2/3

}
max

{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
.

Finally, we remark that ae−a ≤ 1 holds for any real number a ∈ R, hence setting a = σ/2|k|2/3, we
gather

sup
|k|>2(1+|α|)3/2

{
eΓ (t)|k|2/3 |T′

k(t)|
}

≤ C
σ

max
{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
.

Since this last term is bounded, the series of ∂tT defined in (3.15) converges indeed in
L∞(0, tmax;G3/2

Γ (t)).
We infer that a similar argument implies also that the series generated by ∂m

t T, with m ∈ N,
converge always in L∞(0, tmax;G3/2

Γ (t)). This in particular implies that the function T belongs also
to C∞(T × [0, tmax)), hence it is smooth.

In conclusion, we note that the constructed function T = T(x, t) in the function spaces specified
in (3.3) is indeed a weak solution of the main system (3.2), as it satisfies the equation in each
eigenspace generated by eikx. Moreover, since the function T is smooth, we obtain that T is, in
fact, a smooth solution of (3.2). This completes the proof of theorem 3.2. �

To conclude this section, we shall now devote our attention to the proof of the estimates in (3.9)
and (3.13). Throughout the forthcoming estimates, we will repeatedly consider high frequencies
satisfying |k| > 2(1 + |α|)3/2. We begin with the following lemma for (3.9).

Lemma 3.4. For every k ∈ Z satisfying |k| > 2(1 + |α|)3/2, the three distinct roots given by λ =
λ1,k, λ2,k, λ3,k ∈ C of the polynomial p(λ) := λ3 − αλ2 − k2 satisfy the following properties (in case,
commuting the order of the roots):

(i) The first root λ1,k is a real positive number, which increases as |k|2/3, as the frequencies diverge.
In particular, λ1,k is uniformly bounded from above and below through the following inequalities:

2− 1
3 |k|2/3 ≤ λ1,k ≤ 21/3|k|2/3. (3.16)

(ii) The complex roots λ2,k and λ3,k have non-trivial imaginary parts and they are conjugated. They
can be explicitly written in terms of the first root λ1,k by means of

λ2,k = −λ1,k − α

2
+ i

2

√
(λ1,k − α)(3λ1,k + α),

λ3,k = −λ1,k − α

2
− i

2

√
(λ1,k − α)(3λ1,k + α).

(3.17)

Proof. We aim to determine an appropriate behaviour of the roots of the polynomial

p(λ) = λ3 − αλ2 − k2.

Since p has a degree of 3, it will have three complex roots, and at least one of them will be real.
Indeed, since p has real coefficients, for any complex root λ, its conjugate λ will also be a root of p.

To determine the behaviour of the real root of p (which we denote λ = λ1,k ∈ R) we make use of
the intermediate value theorem, stating that if a continuous function changes sign between two
values, then it must have a root in between those values. To apply the intermediate value theorem,
we consider three separate cases: when α = 0, when α > 0 and when α < 0.

In the case of α = 0, the analysis is straightforward. The real root λ1,k coincides with |k|2/3,
which indeed satisfies the estimate (3.16).
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For α > 0, we set two distinct values λ = |k|2/3 and λ = 21/3|k|2/3. Recalling that |k| > 2(1 +
|α|)3/2, we get that |k|2/3 > 22/3(1 + |α|) and furthermore

p(|k|2/3) = (|k|2/3)3 − α(|k|2/3)2 − k2 = −α|k|4/3 < 0

and
p(21/3|k|2/3) = (21/3|k|2/3)3 − α(21/3|k|2/3)2 − k2 = |k|4/3(|k|2/3 − 22/3α) > 0.

From this we can conclude that there is a real root of the polynomial in the interval
[|k|2/3, 21/3|k|2/3] (thus also in [2−(1/3)|k|2/3, 21/3|k|2/3]), thanks to the intermediate value theorem.

Next we address the case of a negative α < 0, always under the restriction |k| > 2(1 + |α|)3/2.
We first consider λ = |k|2/3 and then λ = 2−(1/3)|k|2/3:

p(|k|2/3) = −α|k|4/3 > 0

and

p(2−(1/3)|k|2/3) = (2−(1/3)|k|2/3)3 − α(2−(1/3)|k|2/3)2 − k2 = −1
2
|k|4/3(|k|2/3 + 21/3α) < 0.

From this we can conclude that there is a real root of the polynomial in the interval
[2−(1/3)|k|2/3, |k|2/3] (thus also in [2−(1/3)|k|2/3, 21/3|k|2/3]).

Summarising, it follows that for every α ∈ R and for |k| > 2(1 + α)3/2 the polynomial has a real
root satisfying

2−(1/3)|k|2/3 ≤ λ1,k ≤ 21/3|k|2/3,

which proves statement (i).
We next address the statement (ii) in lemma 3.4. We recast the polynomial p by means of the

following factorization:

p(λ) = (λ − λ1,k)(λ2 + (λ1,k − α)λ + (λ1,k − α)λ1,k).

To determine the complex values of λ2,k and λ3,k, we look for the roots of the quadratic polynomial
λ2 + (λ1,k − α)λ + (λ1,k − α)λ1,k. These roots can be expressed explicitly in terms of the real root
λ1,k as follows:

λ2/3,k = −λ1,k − α

2
±
√

λ1,k − α

2

√
−3λ1,k − α.

We can hence rewrite λ2/3,k as

λ2/3,k = −λ1,k − α

2
± i

2

√
λ1,k − α

√
3λ1,k + α.

Furthermore, since |k| > 2(1 + |α|)3/2, both λ1,k − α > 0 and 3λ1,k + α > 0 (cf. remark (3.5)), hence
the imaginary parts of λ2,k and λ3,k are not trivial. This concludes the proof of the lemma. �

Remark 3.5. From lemma 3.4 we may further derive an upper bound for |λ2,k|, |λ3,k|. Thanks to
(3.16) and by considering frequencies k ∈ Z with |k| > 2(1 + |α|)3/2, we remark that the expressions
in (3.17) of λ2,k and λ3,k have non-trivial imaginary parts, since λ1,k ∈ R from lemma 3.4 and also

λ1,k − α ≥ 2−(1/3)|k|2/3 − α ≥ 2−(1/3)22/3(1 + |α|) − α ≥ 1 > 0

and
3λ1,k + α ≥ 3 · 2−(1/3)|k|2/3 + α ≥ 3 · 21/3(1 + |α|) + α ≥ 3 > 0,

implying that −(1/2)(λ1,k − α) ∈ R and (1/2)
√

(λ1,k − α)(3λ1,k + α) ∈ R \ {0}. Hence, a direct
calculation together with the upper bound of |λ1,k| in (3.16) imply that

|λ2,k|2 = |λ3,k|2 = (λ1,k − α)2

4
+ 1

4
(λ1,k − α)(3λ1,k + α)

= λ1,k(λ1,k − α) ≤ 21/3|k|2/3(21/3|k|2/3 + 2−(1/3)|k|2/3) = (1 + 22/3)|k|4/3 ≤ 4|k|4/3.

This yields in particular
|λ2,k| = |λ3,k| ≤ 2|k|2/3. (3.18)
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To conclude this section, we now provide the proof of the estimate in (3.13), which is the last
necessary result to support the statements made in theorem 3.2. We proceed with the following
lemma.

Lemma 3.6. There exists a constant C > 0 such that the coefficients c1,k, c2,k, c3,k defined in (3.8) satisfy

max
{|c1,k|, |c2,k|, |c3,k|

}≤ C max
{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
e−σ |k|2/3

,

for any frequencies k ∈ Z satisfying |k| > 2(1 + |α|)3/2 (hence also at high frequencies |k| � 1).

Proof. We aim to find suitable bounds for the constants c1,k, c2,k, c3,k given in (3.8) depending on
the roots of the polynomial of the characteristic problem and the initial data. To this end we will
frequently use the bounds for λ1,k from lemma 3.4, the bound for λ2,k, λ3,k from remark 3.5 and
the assumption

|k| > 2(1 + |α|)3/2 > 2|α|3/2. (3.19)

We begin with by estimating the denominators of the constants c1,k, c2,k, c3,k. We get

|λ1,k − λ2,k|2 = 9
4
λ2

1,k − 3
2
λ1,kα + α2

4
+ 1

4
(λ1,k − α)(3λ1,k + α) (3.1)

= 3λ2
1,k − 2λ1,kα (3.2)

≥ 1
4
|k|4/3, (3.3)

|λ2,k − λ3,k|2 = (λ1,k − α)(3λ1,k + α) (3.4)

≥ (λ1,k − |α|)(3λ1,k − |α|) (3.5)

≥
(

2−(1/3) −
(

1
2

)2/3
)(

3 · 2−(1/3) −
(

1
2

)2/3
)

|k|4/3 (3.6)

≥ 1
4
|k|4/3. (3.20)

Since λ3,k is the complex conjugate of λ2,k we also get

|λ1,k − λ3,k|2 ≥ 1
2
|k|4/3.

Then, for i, j, l ∈ {1, 2, 3} with i �= j �= l it follows that
∣∣∣∣∣ 1
(λi,k − λj,k)(λi,k − λl,k)

∣∣∣∣∣≤ 4
|k|4/3 . (3.21)

We will now proceed to estimate the coefficients of the initial data appearing in the numerators of
c1,k, c2,k, c3,k. By (3.16) we get |λ1,k| ≤ 21/3|k|2/3 ≤ 2|k|2/3. Hence, together with (3.18) we obtain for
i, j ∈ {1, 2, 3} with i �= j for the coefficient in front of Tin, k in (3.8)

|λi,kλj,k| ≤ 4|k|4/3, (3.22)

and for the coefficients in front of Tt,in,k in (3.8) we get with the help of the triangle inequality

|λi,k + λj,k| ≤ 4|k|2/3. (3.23)

With the previous estimates we are now in the position to conclude the proof of the lemma. For
this purpose we will determine the lower bound for c1,k. From the definition of c1,k given in (3.8)
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and the estimates (3.21)–(3.23) with i = 1, j = 2, l = 3 we get

|c1,k| =
∣∣∣∣Ttt,in,k − (λ3,k + λ2,k)Tt,in,k + λ2,kλ3,kTin,k

(λ1,k − λ2,k)(λ1,k − λ3,k)

∣∣∣∣
≤ max{1, |λ2,kλ3,k|, |λ2,k + λ3,k|}

|(λ1,k − λ2,k)(λ1,k − λ3,k)| max
{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
e−σ |k|2/3

≤ C max
{
||Tin||G3/2

σ
, ||Tt,in||G3/2

σ
, ||Ttt,in||G3/2

σ

}
e−σ |k|2/3

.

Using the symmetric structure of the estimates (3.21)–(3.23) for i, j, l ∈ {1, 2, 3} we obtain the same
estimates for |c2,k| and |c3,k| and hence the assertion. �

Remark 3.7. In the proof of theorem 3.2 we have determined an exact form for the Fourier
coefficients Tk(t) of the solution by solving the ordinary differential equation (3.5). More precisely,
we solve the ordinary differential equation with the support of the characteristic equation, i.e.
with the roots λ1,k, λ2,k, λ3,k of the polynomial p(λ) = λ3 − αλ2 − k2. Lemma 3.4 exploits specifically
the behaviour of these roots with increasing frequencies (eventually translating this behaviour as
regularities of our solutions). A natural question is whether we might obtain an explicit form of
the roots λ1,k, λ2,k, λ3,k.

Since the polynomial p(λ) is of degree 3, we can indeed determine explicitly the values of λ1,k,
λ2,k, λ3,k. For the sake of completeness, we state here the exact values of the roots, that can be
determined making use of the Cardano’s formula: for any α, k ∈ Z satisfying k2 > −(1/27)α3 (a
relation which is fulfilled by frequencies |k| > 2(1 + |α|)3/2), we have the following expressions:

λ1,k = α

3
+ t1/3

1 + t1/3
2 ,

λ2,k = α

3
− t1/3

1 + t1/3
2

2
+ i

t1/3
1 − t1/3

2
2

√
3

and λ3,k = α

3
− t1/3

1 + t1/3
2

2
− i

t1/3
1 − t1/3

2
2

√
3,

where t1,k and t2,k are given by

t1/2,k = −q
2

±
√

q2

4
+ p3

27
,

with

p = −α2

3
, q = −2α3

27
− k2.

Despite this explicit formula, the obtained information is the same as in lemma 3.4: at high
frequencies the leading terms of the above roots have dispersion of order ±|k|2/3, as |k| � 1.

4. Sobolev regularities and conclusion
We conclude our analysis with some final remarks about the well and ill-posedness of the
linearized model (3.1) within lower regularities than the Gevrey-class 3/2 (such as Sobolev).

In theorem 3.2, we showed that any initial data with regularity Gevrey-class 3/2 generates a
local-in-time classical solution of the linearized equation (3.1). It is natural to question whether
this choice of function space and the exponent 3/2 are simply mathematical artefacts resulting
from our analysis techniques, or if they actually represent an optimal framework for the well-
posedness of the model. Our analysis suggests that Gevrey-class 3/2 is indeed an optimal choice,
when we do not impose additional structural assumptions on the initial data. Although detailed
calculations are omitted here, we can provide some heuristics to support this argument.

In (3.6), we determined an explicit formula for each mode Tk(t) of the solution T(x, t) =∑
k∈Z

Tk(t)eikx. Notably, Tk(t) contains a factor of the form c1,keλ1,kt, which represents the leading
term contributing to the regularity of T. The root λ1,k is real and behaves as λ1,k ∼ |k|2/3 at high
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frequencies |k| � 1. This insight is particularly relevant when considering initial data with Sobolev
regularity or more generally, any Gevrey class m with m > 3/2.

For Sobolev regularities, the modes Tk(0) = Tin, k of the initial data and the coefficients c1,k, c2,k,
c3,k decay polynomially as k → ±∞. Consequently, the leading term c1,keλ1,kt experiences rapid
exponential growth in time of the form e|k|2/3t. As a result, the modes lose their polynomial decay
property in k ∈ Z, which is characteristic of Sobolev regularity, and exhibit an exponential inflation
in frequencies.

Due to the exponential growth of the modes Tk(t), a solution T with initial data in Sobolev
spaces (or in Gevrey classes m with m > 3/2) would quickly escape these function spaces and
enter the regime of so-called ultradistributions, namely the dual space of analytic functions.
Specifically, the exponential inflation of frequencies in the Fourier series of T leads to a loss of
an ‘infinite amount’ of derivatives, as the smoothness of the solution rapidly deteriorates. This
strong instability prevents the well-posedness of (3.1) in the Sobolev setting or any Gevrey class
m with m > 3/2.

These aspects hold true when we do not impose any structural assumption on the initial data.
On the other hand, we remark that the factor c1,keλ1,kt generating the instabilities vanishes when
the coefficient c1,k is identically null. In this setting, the remaining terms c2,keλ2,kt and c3,keλ3,kt

in (3.6) are somehow harmless for the Sobolev regularity, since they decay exponentially in the
frequencies (as the real parts of λ2,k and λ3,k are negative), producing a smoothing effect on the
solution T. Imposing c1,k = 0 seems nevertheless a sort of technical assumption, since from (3.8) it
would imply that

Ttt,in,k = (λ3,k + λ2,k)Tt,in,k − λ2,kλ3,kTin,k.

Furthermore, from lemma 3.4 we may write this relation just in terms of λ1,k and α, by means of

λ3,k + λ2,k = −λ1,k − α

and

λ2,kλ3,k =
(

λ1,k − α

2

)2
+ (λ1,k − α)(3λ1,k + α) = 13

4
λ2

1,k − 5
2
αλ1,k − 3

4
α2,

which together with remark 3.7 imply

Ttt,in,k + (λ1,k + α)Tt,in,k +
(

13
4

λ2
1,k − 5

2
αλ1,k − 3

4
α2
)

Tin,k = 0

and

λ1,k = 4
3
α +

(
α3

27
+ k2

2
+
√

α3k2

27
+ k4

4

)1/3
+
(

α3

27
+ k2

2
−
√

α3k2

27
+ k4

4

)1/3
.

Unfortunately, this relation seems to be too technical to have a meaningful physical interpretation.
In the absence of this restriction, however, the considered linearized equation is ill-posed in
Sobolev spaces and it is rather improbable that its nonlinear counterpart (2.5) presents better
properties with the nonlinear terms stabilizing the overall solutions.

However, as we showed in theorem 3.2, local-in-time smooth solutions of the linearized model
exist if the initial conditions belong to regular enough Gevrey spaces.
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