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ABSTRACT
Polycystic ovary syndrome is characterised by 
excessive levels of androgens and ovulatory 
dysfunction, and is a common endocrine 
disorder in women of reproductive age. Polycystic 
ovary syndrome arises as a result of polygenic 
susceptibility in combination with environmental 
influences that might include epigenetic 
alterations and in utero programming. In addition 
to the well recognised clinical manifestations of 
hyperandrogenism and ovulatory dysfunction, 
women with polycystic ovary syndrome have an 
increased risk of adverse mental health outcomes, 
pregnancy complications, and cardiometabolic 
disease. Unlicensed treatments have limited 
efficacy, mostly because drug development has 
been hampered by an incomplete understanding 
of the underlying pathophysiological processes. 
Advances in genetics, metabolomics, and adipocyte 
biology have improved our understanding of key 
changes in neuroendocrine, enteroendocrine, 
and steroidogenic pathways, including increased 
gonadotrophin releasing hormone pulsatility, 
androgen excess, insulin resistance, and changes in 
the gut microbiome. Many patients with polycystic 
ovary syndrome have high levels of 11- oxygenated 
androgens, with high androgenic potency, that 
might mediate metabolic risk. These advances have 
prompted the development of new treatments, 
including those that target the neurokinin- 
kisspeptin axis upstream of gonadotrophin releasing 
hormone, with the potential to lessen adverse 
clinical sequelae and improve patient outcomes.

Introduction
Polycystic ovary syndrome is a common metabolic 
and reproductive disorder characterised variably 
by high levels of androgens, insulin resistance, and 
ovulatory dysfunction, with not all patients affected 
by these three parameters. These changes manifest 
as hyperandrogenism (hirsutism, acne, or scalp hair 
loss, or a combination of these), oligomenorrhoea or 
amenorrhoea, and morphological features of poly-
cystic ovaries on ultrasound. Long recognised as a 
reproductive disorder, polycystic ovary syndrome is 
now also established as a metabolic condition asso-
ciated with long term health risks, including type 
2 diabetes and cardiovascular disease.1 Adverse 
mental health outcomes and reduced quality of life 
have also been reported.1 Polycystic ovary syndrome 
is therefore associated with substantial healthcare 

costs and resource utilisation. International surveys 
report a high level of dissatisfaction with care,2 
not least because current treatments are often only 
modestly effective in alleviating symptoms and 
minimising long term risks. International guidelines 
recognise the low quality of evidence and the critical 
need for better research.3

An improved understanding of the pathogenesis 
of the disease might result in the development of 
new treatments and better patient outcomes. Recent 
studies have advanced our understanding of these 
pathophysiological processes. Neuroendocrine 
dysregulation leads to abnormal high frequency 
pulsatile secretion of gonadotrophin releasing 
hormone, and hypothalamic kisspeptin, neurok-
inin B, and dynorphin A neurons (so- called KNDy 
neurons) are integral regulators of this process.4 
Although increased production of ovarian and 
adrenal androgens contribute to hyperandrogenism, 
peripherally generated 11- oxygenated androgens 
are emerging as important predictors of metabolic 
risk.5 6 Together with advances in our understanding 
of adipocyte biology, insulin resistance, the gut 
microbiome, and insights from genome- wide associ-
ation studies, these studies could improve our under-
standing of the pathogenesis of this disease. New 
treatments based on these observations are now in 
various stages of preclinical or clinical development.

This review outlines our current understanding of 
the key pathophysiological processes in polycystic 
ovary syndrome. We discuss the significance of new 
research into neuroendocrine dysfunction, disrupted 
steroidogenesis, and changes in adipocyte biology, 
and the potential implications for the diagnosis and 
management of polycystic ovary syndrome. Finally, 
we consider the benefits and limitations of current 
drug treatments, along with a review of the evidence 
for emerging drug treatments.

Epidemiology
Polycystic ovary syndrome is a common endocrine 
disorder in women of reproductive age,7 with a 
prevalence of 4- 21% depending on the diagnostic 
criteria used.8 A systematic review of 13 studies 
found a slightly higher estimate of the prevalence in 
black and Middle- Eastern than in Chinese and white 
populations,9 although inconsistencies in diagnostic 
criteria and recruitment methods make comparisons 
between ethnic groups challenging.10 The global 
disease burden seems to be increasing at a high rate. 
In 2019, an age standardised point prevalence of 
1677.8 per 100 000 and an annual incidence of 59.8 
per 100 000 population were reported based on data 
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from 204 countries, representing increases of 30.4% 
and 29.5%, respectively, since 1990.11 The rising 
incidence, and accompanying morbidity,11 empha-
sises the importance of recognising polycystic ovary 
syndrome as an international public health priority.

Sources and selection criteria
We searched PubMed, Medline, and Embase from 1 
January 2010 to 28 February 2023 for articles in the 
English language, with the search terms: "polycystic 
ovary syndrome," "polycystic ovarian syndrome," 
"PCOS," "aetiology," "etiology," "cause," "patho-
genesis," and "pathophysiology." We excluded 
articles on endocrine conditions that might lead to 
secondary polycystic ovary syndrome, including 
acromegaly, androgen secreting tumours, congen-
ital adrenal hyperplasia, and Cushing's syndrome. 
To identify registered clinical trials, we searched  
ClinicalTrials. gov, the Cochrane Central Register of 
Controlled Trials (CENTRAL), and the International 
Standard Randomised Controlled Trial Number 
(ISRCTN) registry with the search terms "PCOS," 
"polycystic ovary syndrome," and "polycystic ovarian 
syndrome." We prioritised large scale, randomised 
controlled trials and systematic reviews. We also 
included relevant articles identified from reference 
lists of retrieved articles.

Pathogenesis
Neuroendocrine disruption
Polycystic ovary syndrome is characterised by 
increased pulse frequency of gonadotrophin 
releasing hormone and reduced negative feedback 
from sex steroids at the level of the hypothalamus.4 12 
Gonadotrophin releasing hormone is released from 
neurons in the hypothalamic infundibular nucleus 
in a pulsatile manner, resulting in increased 
secretion of luteinising hormone and follicle 
stimulating hormone. The pulse frequency of gonad-
otrophin releasing hormone is controlled by multiple 
upstream endocrine and neural factors, with a higher 
frequency favouring secretion of luteinising hormone 
and a lower frequency favouring secretion of follicle 
stimulating hormone. In women with polycystic 
ovary syndrome, raised levels of luteinising hormone 
cause excess production of ovarian thecal androgens, 
whereas relative deficiency of follicle stimulating 
hormone causes follicular arrest, polycystic ovarian 
morphology, and oligo- ovulation.4 The reduction in 
sex steroid feedback on release of gonadotrophin 
releasing hormone is thought to occur upstream of 
the hormone itself because gonadotrophin releasing 
hormone neurons do not have receptors for oestro-
gens or progesterone13 (figure 1). KNDy neurons have 
an important role in this regard (figure 1).

Kisspeptins are a family of peptides encoded 
by the KISS1 gene which act on the neuronal G 
protein coupled receptor KISS1R. KISS1 encodes 

prepro- kisspeptin, which is cleaved to produce the 
biologically active peptides KP54, KP14, KP13, and 
KP10.14 Two discrete neuronal populations exist: 
KNDy neurons in the infundibular nucleus func-
tion as the gonadotrophin releasing hormone pulse 
generator15 and mediate negative feedback from 
oestradiol,16 whereas a separate kisspeptin popula-
tion located in the preoptic area mediates oestradiol 
positive feedback to produce the mid- cycle surge in 
luteinising hormone.16 17 Kisspeptin neurons express 
sex steroid receptors (progesterone and oestrogen 
receptors) required for negative feedback on gonad-
otrophin releasing hormone pulsatility.17 18 KISS1 is 
also expressed in adipose tissue where it is regulated 
independently of hypothalamic KISS1.19 Circulating 
levels of kisspeptin are higher in patients with 
polycystic ovary syndrome than in controls20 and 
although the origin of this excess is not entirely clear, 
a raised pulse frequency of kisspeptin in women with 
oligomenorrhoea and polycystic ovary syndrome 
suggests a hypothalamic source.21 Moreover, phys-
iological coupling of kisspeptin and luteinising 
hormone pulsatility is lost in these women.21 The 
exact mechanisms for these effects are unclear, 
with inconsistent data from preclinical models on 
the existence and direction of dysregulated gonad-
otrophin releasing hormone pulsatility mediated by 
kisspeptin.22

Neurokinin B and dynorphin are expressed by 
KNDy neurons and act in an autocrine and parac-
rine way to control release of kisspeptin (figure  1). 
Neurokinin B preferentially binds to the neurokinin 
3 receptor (encoded by TACR3) to stimulate gonad-
otrophin releasing hormone pulsatility.4 23 Unlike 
KISS1 null mice, mice deficient in components of 
neurokinin B signalling can still generate surges in 
luteinising hormone and conceive, suggesting that 
compensatory pathways exist which contribute to 
the generation of kisspeptin and gonadotrophin 
releasing hormone pulses.17 24 25 This milder effect of 
neurokinin B blockade might avoid excessive reduc-
tion in gonadotrophin releasing hormone pulsa-
tility, making it an attractive target for treatment.4 
Dynorphin, which activates kappa opioid receptors 
on KNDy neurons to inhibit secretion of gonado-
trophin releasing hormone,22 26 has been shown to 
mediate progesterone negative feedback on gonad-
otrophin releasing hormone neurons in sheep27 and 
humans.22 28

Neuronal activity of gonadotrophin releasing 
hormone is also regulated by other substances, 
including γ-aminobutyric acid (GABA) and anti- 
müllerian hormone, both of which stimulate 
gonadotrophin releasing hormone neurons directly. 
GABA exerts an excitatory effect on gonadotrophin 
releasing hormone neurons through GABAA recep-
tors, and GABA levels in cerebrospinal fluid can be 
raised in patients with polycystic ovary syndrome.29 
Anti- müllerian hormone is secreted by ovarian 
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granulosa cells, where raised levels in women with 
polycystic ovary syndrome disrupt folliculogenesis 
and ovulation.30 Anti- müllerian hormone might also 
have neuroendocrine effects: 50% of gonadotrophin 
releasing hormone neurons in mice and humans 
express anti- müllerian hormone receptor type 2,31 
with studies implicating anti- müllerian hormone 
in neuronal migration of gonadotrophin releasing 
hormone,32 gonadotrophin releasing hormone 
pulsatility, and secretion of luteinising hormone.30

Classical pathway of androgen synthesis
High levels of androgens is a primary defect in poly-
cystic ovary syndrome. Cholesterol is converted to 
androgens by a cascade of enzymes common to 
all steroid producing organs, with tissue specific 

variations resulting in different steroid hormone 
profiles.33 In polycystic ovary syndrome, increased 
production of ovarian androgens by the classical 
pathway is driven by increased secretion of pitui-
tary luteinising hormone, the action of insulin as a 
co- gonadotrophin, and increased thecal cell hyper-
sensitivity to luteinising hormone.34–36 Figure  2 
summarises the classical pathway of steroidogen-
esis. Through a sequence of reactions, cholesterol 
is converted to dehydroepiandrosterone, which is 
then converted to androstenedione by 3β-hydrox-
ysteroid dehydrogenase type II and subsequently 
to testosterone by aldo- keto reductase type 1C3 
(AKR1C3).35

Increased activity of ovarian 11β-hydroxysteroid 
dehydrogenase type 1 (11β-HSD1), which converts 
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Figure 1 | Pathophysiology and neuroendocrine disruption of the hypothalamo- pituitary- gonadal axis in polycystic 
ovary syndrome. (Left) Increased pulsatility of gonadotrophin releasing hormone (GnRH) causes increased secretion 
of luteinising hormone, consequent disrupted folliculogenesis, and increased production of ovarian androgens. 
Adrenal androgens are also increased, including 11- oxygenated androgens which are activated peripherally by 
renal 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) and aldo- keto reductase 1C3 (AKR1C3) in adipocytes. 
Steroid- 5α-reductase (SRD5A) converts 11- ketotestosterone to 11- ketodihydrotestosterone. Excess levels of 
androgens stimulate deposition of abdominal adipose tissue which subsequently increases insulin resistance and 
hyperinsulinism. Hyperinsulinism stimulates AKR1C3 activity, increases androgen production from the ovaries (by its 
action as a co- gonadotrophin) and adrenal cortex, reduces production of hepatic sex hormone binding globulin, and 
inhibits progesterone mediated negative feedback onto GnRH neurons, worsening androgen excess in a vicious cycle. 
(Right) Kisspeptin, neurokinin B, and dynorphin A neurons (KNDy neurons) act in a paracrine and autocrine way to 
regulate release of kisspeptin onto GnRH neurons and consequent GnRH pulsatility. Neurokinin B binds to neurokinin 
3 receptors (NK3R) to stimulate release of kisspeptin whereas dynorphin binds to kappa opioid receptors to inhibit 
kisspeptin release. γ-aminobutyric acid (GABA) and anti- müllerian hormone (AMH) bind to GABAA receptors (GABAAR) 
and AMH receptor type 2 (AMHR2), respectively, to stimulate GnRH pulsatility. Impaired negative feedback from 
oestradiol and progesterone is seen at the level of the hypothalamus. Neuroendocrine abnormalities in the control of 
these components are shown in red. OR=oestrogen receptor; PR=progesterone receptor  on O
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inactive cortisone to active cortisol, might also 
have a role in the pathogenesis of polycystic ovary 
syndrome.37 Overexpression of ovarian 11β-HSD1 
in rats caused polycystic ovarian morphology, 
oestrous cycle, and reproductive hormone abnor-
malities.37 Although 11β-HSD1 is widely expressed, 
dysregulation seems to be tissue specific, because 
hepatic 11β-HSD1 activity is impaired and expres-
sion of 11β-HSD1 in subcutaneous adipose tissue 
is increased in patients with polycystic ovary 
syndrome.38 Raised circulating levels and ovarian 
expression of vascular endothelial growth factor 
also contribute to the hypervascular, hyperplastic 
appearance of the ovarian stroma and theca interna 
in polycystic ovary syndrome, and might contribute 
to increased ovarian androgen synthesis.39

Androgen synthesis in adrenal glands and 
peripheral tissues
Polycystic ovary syndrome was previously thought 
to be primarily a disease of excess production of 
androgens in the ovaries, but the adrenal glands 
and peripheral tissues are now considered important 
sources of androgens in patients with polycystic ovary 
syndrome. Increased concentrations of dehydroepi-
androsterone sulphate, an almost exclusive product 
of the adrenal cortex,40 are apparent in 20- 30% of 
patients with polycystic ovary syndrome.41 This 
finding seems to be the result of increased secretory 
activity of the adrenal cortex because no change in 
pituitary responsiveness to corticotrophin releasing 
hormone or reduction in the minimal stimulatory 
dose of adrenocorticotropic hormone required for 
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Figure 2 | Classical pathway of androgen synthesis. Luteinising hormone stimulates the classical pathway of androgen 
synthesis in ovarian theca cells. Cholesterol is transported to the inner mitochrondrial membrane by steroidogenic 
acute regulatory protein (StAR). A cleavage system of the cytochrome P450 enzyme, CYP11A1, ferrodoxin, and 
ferrodoxin reductase converts cholesterol to pregnenolone. Expression of CYP11A1 is stimulated by activation of the 
luteinising hormone receptor. Pregnenolone is transported to smooth endoplasmic reticulum where it is converted 
to 17- hydroxypregnenolone and subsequently to dehydroepiandrosterone by the 17- hydroxylase and 17,20- lyase 
subunit of the CYP17A1 enzyme, respectively. Dehydroepiandrosterone is then converted to androstenedione or 
androstenediol and subsequently to testosterone by a combination of 3β-hydroxysteroid dehydrogenase type 
II (HSD3B2) and aldo- keto reductase type 1C3 (AKR1C3). 17β-hydroxysteroid dehydrogenase 1 (HSD17B1) also 
catalyses the conversion of dehydroepiandrosterone to androstenediol. HSD3B2 converts pregnenolone and 
17- hydroxypregnenolone to progesterone and 17- hydroxyprogesterone, respectively, which are substrates for a 
back door alternative pathway of androgen synthesis. Androstenedione and testosterone diffuse into granulosa cells 
where they are converted to oestrogens by the action of aromatase (CYP19A1), under the control of follicle stimulating 
hormone receptor activation. Testosterone can be converted to dihydrotestosterone by steroid 5α-reductase (SRD5A) 
in peripheral tissues
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adrenal hormone production is seen.42 Changes in 
steroidogenesis, such as increased enzymatic activity 
of the 17- hydroxylase subunit of the cytochrome 
P450 enzyme, CYP17A1, might account for this 
hyper- responsiveness.43

Other adrenal androgens are also secreted in 
excess, including 11β-hydroxyandrostenedione 
and 11β-hydroxytestosterone.5 44 The adrenal 
androgen 11β-hydroxyandrostenedione is abun-
dant and was previously thought to have little 
physiological importance because of its weak 
androgenic activity. Recent studies, however, have 
shown that 11β-hydroxyandrostenedione can 
be metabolised to 11- ketotestosterone and 
11- ketodihydrotestosterone, termed 11- oxygenated 
androgens, because of the presence of an oxygen 
atom on carbon 11.45 Both 11- ketotestosterone and 
11- ketodihydrotestosterone bind to androgen recep-
tors with similar affinity and potency to testosterone 

and dihydrotestosterone.46 47 Mass spectrometry 
analyses have shown that 11- oxygenated andro-
gens are the dominant circulating androgens in 
women with polycystic ovary syndrome and corre-
late substantially with markers of metabolic risk.5 
The synthesis of 11- oxygenated androgens is reliant 
on the peripheral activation of adrenal derived 
androgens (figure  3). 11β-hydroxysteroid dehy-
drogenase type 2 is an enzyme expressed by the 
kidney that converts 11β-hydroxyandrostenedione 
to 11- ketoandrostenedione, and 11β-hydroxytestos-
terone to 11- ketotestosterone.45 Adipose tissue also 
has enzymes responsible for potent androgen forma-
tion, however, and might represent the dominant 
source of circulating 11- oxygenated androgens.45 48

Expression of the androgen activating enzyme, 
AKR1C3, in subcutaneous adipose tissue is increased 
in women with polycystic ovary syndrome compared 
with matched controls.6 49 Thus concentrations of 
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Figure 3 | Pathway for 11- oxygenated androgen synthesis, which begins in the adrenal cortex. Androstenedione and 
testosterone are produced by the classical pathway (figure 2). Dehydroepiandrosterone is diverted to downstream 
androgens or sulphonated to dehydroepiandrosterone sulphate by the sulphotransferase, SULT2A1. Androstenedione 
and testosterone are hydroxylated by 11β-hydroxylase (CYP11B) to produce abundant 11β-hydroxyandrostenedione 
(11OHA4) and smaller amounts of 11β-hydroxytestosterone (11OHT). Renal 11β-hydroxysteroid dehydrogenase 
type 2 (HSD11B2) converts 11OHT to 11- ketotestosterone (11KT) and 11OHA4 to 11- ketoandrostenedione 
(11KA4). In adipose tissue, 11KA4 is metabolised to 11KT and 11- ketodihydrotestosterone (11DHKT) by aldo- keto 
reductase type 1C3 (AKR1C3) and steroid- 5α-reductase (SRD5A), respectively. 11OHA4 is metabolised to 11OHT 
and 11β-hydroxydihydrotestosterone (11OHDHT) by 17β-hydroxysteroid dehydrogenase 2 (HSD17B2) and SRD5A, 
respectively. 11KT and 11KDHT are potent agonists of the androgen receptor whereas 11OHT and 11OHDHT have 
milder potency. StAR=steroidogenic acute regulatory protein; HSD3B2=3β-hydroxysteroid dehydrogenase type II; 
CYP11A1, CYP17A1, CYP11B1=cytochrome P450 enzymes
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androgens in adipose tissue are increased in women 
with polycystic ovary syndrome, accompanied by 
inhibition of lipolysis and increased de novo lipo-
genesis.6 These observations suggest that inhibition 
of AKR1C3 might be an attractive therapeutic target 
in patients with polycystic ovary syndrome.

Hyperinsulinism
Insulin resistance, and the consequent hyperinsu-
linism, have an important role in driving androgen 
synthesis in many endocrine tissues. Insulin acts as 
a co- gonadotrophin in the ovaries,36 impairs proges-
terone mediated inhibition of the gonadotrophin 
releasing hormone pulse generator,50 and facilitates 
synthesis of androgens in the adrenal glands by 
increasing adrenocorticotropic hormone stimulated 
steroidogenesis.51 AKR1C3 expression and activity 
in adipocytes is increased by insulin, contributing 
to increased synthesis of androgens in adipocytes 
in polycystic ovary syndrome.52 Insulin also inhibits 
sex hormone binding globulin, facilitating hyper-
androgenism by increasing the percentage of free 
biologically active androgens.53 Excess production of 
androgens then stimulates hyperinsulinism, leading 
to a vicious cycle between androgen and insulin 
excess.7 54 Several studies have also implicated 
hyperandrogenism in the accumulation of abdom-
inal and visceral adipose tissue in polycystic ovary 
syndrome55 56; this hyperandrogenism further drives 
insulin resistance and consequent production of 
androgens (figure 1).

In common with hyperandrogenism, insulin 
resistance is not a universal feature of polycystic 
ovary syndrome, although a systematic review of 
hyperinsulinaemic- euglycaemic clamp studies of 
1224 women with polycystic ovary syndrome and 
741 controls showed that insulin sensitivity was 
lower in women with polycystic ovary syndrome 
than in controls (mean effect size −27%, 99% confi-
dence interval −21 to −33).57 Studies exploring 
steroid metabolomics in patients with polycystic 
ovary syndrome might give more information. One 
such cross sectional study (n=488) combining 
machine learning with mass spectrometry multis-
teroid profiling has identified three distinct groups 
of patients based on the predominant source of 
androgens.58 These subgroups have distinct steroid 
metabolomes and risk of metabolic complica-
tions: a gonadal derived classical androgen excess 
group, an adrenal derived androgen excess group 
(comprising 11- oxygenated androgens), and a 
group with comparably mild androgen excess.58 
The adrenal derived androgen group had the 
highest rates of hirsutism, insulin resistance, 
and type 2 diabetes. These insights challenge our 
understanding of polycystic ovary syndrome as one 
entity and might prompt a reconsideration of the 
classification of the disease based on the metabo-
lomic signature.

Changes in adipocyte structure and function
Changes in white adipose tissue morphology and 
function is seen in women with polycystic ovary 
syndrome, including enlarged adipocytes, reduced 
lipoprotein lipase activity,59 and increased secre-
tion of proinflammatory cytokines.60 The function of 
brown adipose tissue might also be disrupted because 
women with polycystic ovary syndrome showed 
reduced postprandial thermogenesis compared with 
controls matched for body mass index.61 This defect 
could be driven by androgen excess, because prena-
tally androgenised sheep have reduced postpran-
dial thermogenesis in adulthood,62 accompanied by 
reduced adipose expression of thermogenic uncou-
pling proteins and sympathetic activity. Adolescent 
prenatally androgenised sheep also showed reduced 
hepatic expression and circulating levels of fibro-
blast growth factor 21,63 a hormone that regulates 
adipocyte function, insulin sensitivity, and energy 
balance. Targeting expression of fibroblast growth 
factor 21 during an appropriate period in develop-
ment might be a therapeutic option.

Gut microbiota and bile acid metabolism
Recent studies have implicated changes in the gut 
microbiome in the pathogenesis of polycystic ovary 
syndrome. Women with polycystic ovary syndrome 
have higher intestinal levels of Bacteroides vulgatus 
and lower levels of glycodeoxycholic acid and taur-
oursodeoxycholic acid.64 Oral gavage of wild- type 
mice with faecal microbiota from individuals with 
polycystic ovary syndrome or pure B vulgatus caused 
insulin resistance, changes in bile acid metab-
olism, reduced secretion of interleukin 22, and 
disrupted oestrous cycle and ovarian morphology.64 
Administration of interleukin 22 or glycodeoxycholic 
acid to mice treated with B vulgatus improved insulin 
sensitivity, testosterone levels, and oestrous cycles. 
Hence modifying the gut microbiota or bile acid 
metabolism, increasing levels of interleukin 22, or 
a combination of these actions, might be therapeuti-
cally valuable in polycystic ovary syndrome.64

Insights from genome-wide association studies
Genome- wide association studies have identified 
numerous susceptibility loci for polycystic ovary 
syndrome, including 11 in Han Chinese popula-
tions,65 66 eight in European populations,67 68 and 
eight in a Korean population.69 Robust candidate 
susceptibility loci are near genes belonging to meta-
bolic (insulin receptor (INSR), insulin gene- variable 
number of tandem repeats (INS- VNTR), and DENN 
domain containing protein 1A (DENND1A))70 and 
neuroendocrine (follicle stimulating hormone 
receptor, luteinising hormone receptor, and thyroid 
adenoma associated (THADA)) pathways.70 Meta- 
analyses of genome- wide association studies have 
shown that the genetic architecture of polycystic 
ovary syndrome is consistent across different 
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diagnostic criteria and ethnic groups.71 72 These 
observations indicate a shared ancestry for poly-
cystic ovary syndrome and reinforce the importance 
of neuroendocrine and metabolic pathways in the 
pathogenesis of the disease.

Developmental programming
Genetic loci identified by genome- wide associa-
tion studies currently account for only 10% of the 
known heritability (about 70%) of polycystic ovary 
syndrome,73 74 suggesting other influences on the 
pathogenesis of the disease. Emerging evidence 
indicates that polycystic ovary syndrome might 
have its origins in utero, and thus could be subject 
to developmental programming and epigenetic 
modifications. Prenatal exposure to androgens in 
several preclinical models caused a permanent 
polycystic ovary syndrome- like phenotype postna-
tally.75–77 A programming effect might also persist 
transgenerationally, because pregnant mice treated 
with dihydrotestosterone produced female offspring 
with polycystic ovary syndrome- like phenotypes 
from the first to the third generations of offspring.78 
Cautious interpretation is needed, however, because 
these models might not accurately reflect the 
human phenotype. Anti- müllerian hormone might 
also be involved in in utero programming: levels of 
anti- müllerian hormone increased significantly in 
pregnant women with polycystic ovary syndrome 
(P<0.001), and use of this hormone caused gonad-
otrophin releasing hormone neuronal hyperactivity 
and androgen excess in pregnant mice.79 Epigenetic 
mechanisms might also be involved in mediating 
susceptibility to polycystic ovary syndrome, with 
differential methylation patterns and microRNA 
expression detected in adipose tissue and ovarian 
tissue of patients with polycystic ovary syndrome 
compared with controls.80

Health risks
Polycystic ovary syndrome is well established as a 
reproductive disorder associated with hyperandro-
genism, and is the leading cause of oligomenor-
rhoea and amenorrhoea.81 Patients with polycystic 
ovary syndrome are at increased risk of mental 
health disorders,82 83 endometrial cancer,84 and 
ovarian hyperstimulation syndrome after induc-
tion of ovulation.85 Consistent with our under-
standing of the pathogenesis, however, polycystic 
ovary syndrome is also recognised as a metabolic 
disorder, with long term health risks, including 
hypertension, type 2 diabetes, dyslipidaemia, 
insulin resistance, and obesity.1 These health risks 
could be associated with an increased risk of cardi-
ovascular events86 and several adverse pregnancy 
outcomes.87 Although the reproductive aspects 
might diminish with age, metabolic features typi-
cally persist or can worsen.88

Therapeutic goals
Difficulty in losing weight, irregular menses, infer-
tility, and excessive hair growth were the most 
important health problems reported by patients 
with polycystic ovary syndrome in an international 
survey.2 These problems should therefore repre-
sent the main targets for therapeutic intervention, 
although priority setting partnerships are still 
needed to help focus research priorities. Existing 
drug treatments have not been licensed specifically 
for polycystic ovary syndrome and are used off- label 
to target symptoms. Also, previous studies have not 
emphasised health related quality of life measures 
when evaluating response to treatment. An ideal 
treatment for polycystic ovary syndrome should 
look at the health risks, reduce key processes in 
the pathogenesis of the disease, and be responsive 
to the symptom profile and needs of the individual. 
Where relevant, treatments should reduce clinical 
and biochemical hyperandrogenism, restore ovula-
tory cycles and fertility, normalise the length of the 
menstrual cycle, improve insulin sensitivity, reduce 
weight and cardiometabolic risk, and improve condi-
tion specific quality of life.

Existing treatments
Non-pharmacological interventions
International guidelines highlight the importance 
of modifications to lifestyle in the management 
of the disease.3 Changes in lifestyle can improve 
fasting insulin levels and anthropometric outcomes, 
although benefits on hyperandrogenism are modest89 
and adherence is often difficult to sustain in clinical 
practice. Data on reproductive benefits are limited,90 
although a recent small randomised controlled 
trial of 68 women with polycystic ovary syndrome 
showed that a behavioural modification programme 
improved menstrual regularity compared with a 
minimal intervention group.91 Laser treatment might 
have a role in the treatment of facial hirsutism, 
although further trials are needed to confirm the 
benefits on quality of life and cost effectiveness.3

Contraceptive pill
In women not attempting to conceive, combined 
contraceptive pills are first line treatments for 
menstrual irregularity and hyperandrogenism.3 
The oestrogen component increases sex hormone 
binding globulin, thus reducing free testosterone 
and improving hyperandrogenism. Because this 
stimulatory effect on hepatic production of proteins 
also causes hypercoagulability, ethinyloestradiol 
based contraceptive pills containing the lowest effec-
tive dose of oestrogen (eg, 20- 30 μg of ethinyloestra-
diol) are recommended.3 Combined contraceptive 
pills containing newer, more physiological, oest-
rogenic compounds have recently been developed, 
and might have a lower risk of venous thromboem-
bolism than ethinyloestradiol.92 The progestogen 

 on O
ctober 24, 2023 by guest. P

rotected by copyright.
http://bm

jm
edicine.bm

j.com
/

bm
jm

ed: first published as 10.1136/bm
jm

ed-2023-000548 on 12 O
ctober 2023. D

ow
nloaded from

 

http://bmjmedicine.bmj.com/


Dong J, Rees DA. BMJMED 2023;2:e000548. doi:10.1136/bmjmed-2023-0005488

OPEN ACCESSOPEN ACCESS

component reduces ovarian androgen production 
by inhibiting secretion of luteinising hormone 
and protects the endometrium from hyperplasia.93 
Combined contraceptive pills containing andro-
genic progestogens, such as norethisterone, should 
be avoided because of the potential to aggravate 
hyperandrogenic symptoms. Furthermore, ethiny-
loestradiol based contraceptive pills containing 
cyproterone acetate, the most potent anti- androgenic 
progestogen, are not currently recommended as 
first line treatment because of the increased risk of 
venous thromboembolism.3 A recent systematic 
review of 19 randomised controlled trials, however, 
concluded that the ethinyloestradiol- cyproterone 
acetate combination improved serum testosterone 
(mean difference 0.38 nmol/L, 95% confidence 
interval 0.33 to 0.43) and hirsutism compared with 
conventional combined contraceptive pills.94 Thus 
combinations of cyproterone acetate and newer 
oestrogenic compounds might have the potential to 
improve hyperandrogenism in patients with poly-
cystic ovary syndrome without the added risk of 
venous thromboembolism.

Anti-androgen agents
Currently available anti- androgen agents act by 
blocking androgen receptors (cyproterone acetate, 
spironolactone, and flutamide) or reducing produc-
tion of androgens (finasteride and dutasteride). 
Guidance on specific preparations or doses in poly-
cystic ovary syndrome is necessarily vague, because 
studies on these agents are few in number and small 
scale.3 Furthermore, although targeting excess 
production of androgens might be crucial to improved 
patient outcomes, the use of currently available anti- 
androgen drugs is limited by side effects. All anti- 
androgen drugs carry a risk of feminisation of a male 
fetus and therefore use must be restricted to patients 
with adequate contraception in place.3

Insulin sensitisers
Metformin modulates hepatic insulin sensitivity 
and glucose production by activating AMP activated 
protein kinase and AMP activated protein kinase 
independent pathways. More recently, metformin 
has also been shown to mediate its antiglycaemic 
effects by actions on the gastrointestinal tract and 
the gut microbiome.95 Metformin is used to manage 
weight and metabolic outcomes in adult women with 
polycystic ovary syndrome with a body mass index 
≥25.3 Metformin might also improve ovulation and 
live birth rates but is less effective than clomifene 
citrate or letrozole.3 96 Nevertheless, because of its 
wide availability and low cost, metformin could still 
be valuable in improving reproductive outcomes in 
women with polycystic ovary syndrome, especially in 
healthcare economies where access to assisted repro-
duction is limited.

Thiazolidinediones improve insulin sensitivity by 
activating nuclear peroxisome proliferator activated 
receptor γ. A meta- analysis of eight randomised 
controled trials concluded that thiazolidinediones 
reduce insulin and fasting glucose levels in polycystic 
ovary syndrome, but do not seem to affect hirsutism 
scores or serum levels of androgens.97 Existing data 
on thiazolidinediones in polycystic ovary syndrome 
are limited. Thiazolidinediones are associated with 
intrauterine growth restriction in animal studies and 
weight gain in humans.98 Thiazolidinediones are 
thus not recommended for use in polycystic ovary 
syndrome outside of the licensed indication in type 
2 diabetes. Preliminary studies suggest that the 
insulin sensitiser inositol might improve glycaemic 
control99 and new international guidelines recom-
mend shared decision making on using inositol for 
its potential metabolic benefits in polycystic ovary 
syndrome. Specific doses, forms, or combinations 
of the substance, however, cannot be recommended 
because of a lack of high quality evidence.3

New therapeutic targets
Kisspeptin based treatment
Kisspeptin has a major role as a regulator of the 
hypothalamic- pituitary- gonadal axis, and therefore 
extensive efforts have been made in investigating the 
effects of kisspeptin based treatment in women with 
polycystic ovary syndrome and in other disorders of 
reproduction. KP54 and KP10 are the most studied 
native kisspeptins in humans and have been inves-
tigated for their potential role in optimising oocyte 
maturation in patients undergoing in vitro fertil-
isation.100 101 Although the two compounds bind 
to KISS1R with similar affinity, KP54 has a longer 
serum half- life than KP10 and a more profound effect 
on secretion of luteinising hormone.102 A bolus dose 
of KP54 induces oocyte maturation in patients with 
polycystic ovary syndrome without causing clinically 
significant ovarian hyperstimulation syndrome.100 101 
Administration of a subcutaneous bolus injection of 
native kisspeptin is safe and well tolerated103 and 
also results in higher expression of gonadotrophin 
receptors (follicle stimulating hormone receptor and 
luteinising hormone receptor) and steroidogenic 
enzymes (including aromatase CYP19A1, steroi-
dogenic acute regulatory protein, and 3β-hydrox-
ysteroid dehydrogenase type II) in ovarian granulosa 
cells, potentially promoting an ovarian environ-
ment favouring progesterone synthesis and ovarian 
implantation.104

Use of KP54 as an ovulation induction agent, 
however, might be limited by tachyphylaxis.105 
Because KP54 preferentially stimulates secretion 
of luteinising hormone over follicle stimulating 
hormone,106 concerns also exist that long term 
administration of kisspeptin might exacerbate pre- 
existing deficiency of follicle stimulating hormone 
in polycystic ovary syndrome.4 Nevertheless, KP54 
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effectively induced ovulation in neonatally androge-
nised rats but not in prenatal androgenisation or post- 
weaning androgenisation models.107 Simultaneous 
increases in luteinising hormone and follicle stim-
ulating hormone were seen after KP54 use in the 
neonatal androgenisation model, suggesting that 
ovulation induced by kisspeptin is linked to its 
ability to stimulate increases in both luteinising 
hormone and follicle stimulating hormone.107 In a 
first- in- woman pilot study of 12 patients with poly-
cystic ovary syndrome, twice daily use of KP54 over 
three weeks significantly increased levels of lutein-
ising hormone (P=0.04) and oestradiol (P=0.03) but 
not follicle stimulating hormone or inhibin B.107 Two 
of the 12 women developed a dominant follicle with 
subsequent ovulation. Hence long term administra-
tion of KP54 might be suitable for follicular matu-
ration in a subset of patients with polycystic ovary 
syndrome, but more studies are needed to identify 
the patient characteristics that predict response to 
treatment.

KISS1R agonists are currently in development 
with modifications that increase potency and are 
resistant to proteolytic degradation. KISS1R agonists 
might have a lower risk of tachyphylaxis because 
of their longer duration of action, allowing less 
frequent dosing. The KISS1R agonist, MVT- 602, 
showed greater potency than KP54, increasing 
release of luteinising hormone in healthy women 
with a longer duration of gonadotrophin releasing 
hormone neuronal activation in vitro.108 When tested 
in patients with polycystic ovary syndrome, MVT- 
602 increased luteinising hormone with a similar 
amplitude but greater duration than KP54 in healthy 
women (area under the curve of luteinising hormone 
exposure 171.30 v 38.5 IU×h/L), similar to the 
natural mid- cycle surge in luteinising hormone.108 
These findings warrant further investigation in poly-
cystic ovary syndrome and in other female reproduc-
tive disorders.

Paradoxically, kisspeptin receptor antagonists 
have also been suggested as therapeutic agents in 
polycystic ovary syndrome based on their potential 
to normalise hypersecretion of luteinising hormone, 
restore folliculogenesis and ovulation, and improve 
ovarian hyperandrogenism.109 Existing KISS1R 
antagonists, such as P234 and P271, have incon-
sistent effects on kisspeptin induced stimulation 
of gonadotrophin releasing hormone- luteinising 
hormone across species.110 111 Compound 15 a is a 
small molecular KISS1R antagonist with antago-
nistic activity at the receptor and good permeability 
of the blood- brain barrier in rats.112 KISS1R antag-
onists have yet to be tested in humans, however, 
and concerns exist that these agents will overly 
suppress secretion of luteinising hormone and stop 
ovulation.4

Neurokinin 3 receptor antagonists
Inhibition of the neurokinin 3 receptor is believed 
to cause a tempered inhibition of gonadotrophin 
releasing hormone pulsatility without excessive 
reduction because of the presence of compensatory 
pathways.4 25 MLE4901 (also named AZD4901) had 
promising effects on levels of reproductive hormones 
in 65 women with polycystic ovary syndrome in a 
phase 2 randomised controlled trial.113 After seven 
days of treatment with MLE4901 80 mg/day, the area 
under the luteinising hormone curve was reduced by 
52.0% (95% confidence interval 29.6% to 67.3%), 
total testosterone concentration was reduced by 
28.7% (13.9% to 40.9%), and luteinising hormone 
pulses were reduced by 3.55 pulses/8 hours (2.0 
to 5.1).113 MLE4901 was discontinued, however, 
because of increased levels of transaminases in 
some patients.114 115 Hepatotoxicity is believed to be 
specific to MLE4901 and has not been reported with 
other neurokinin 3 receptor antagonists.115

In a phase 2 randomised controlled trial in 
64 women with polycystic ovary syndrome, treatment 
with the neurokinin 3 receptor antagonist, fezoline-
tant, for 12 weeks at 60 mg or 180 mg, reduced levels 
of testosterone by 17% (95% confidence interval 
−28.7% to −4.6%) and 33% (−45.91% to −20.4%), 
respectively, compared with 1% (−8.8% to 11.7%) 
with placebo.116 Levels of luteinising hormone but 
not follicle stimulating hormone were significantly 
reduced (P<0.001) in a dose dependent manner, 
reducing the ratio of luteinising hormone to follicle 
stimulating hormone.

Preclinical studies have also highlighted the 
potential metabolic benefits of neurokinin 3 receptor 
antagonists. In a dihydrotestosterone induced mouse 
model of polycystic ovary syndrome, treatment with 
neurokinin 3 receptor antagonists decreased body 
weight and adiposity.117 No changes in food intake or 
energy expenditure were seen, although an increased 
respiratory exchange ratio suggested that neurokinin 
3 receptor antagonists cause a shift to a carbohydrate 
predominant utilisation of fuel.117 These promising 
observations suggest that neurokinin 3 receptor 
antagonists fulfil many of the properties of an ideal 
treatment for polycystic ovary syndrome, and further 
clinical trials are awaited with interest.

Dynorphin, γ-aminobutyric acid, and anti-müllerian 
hormone based treatment
When dynorphin binds to kappa opioid receptors, 
release of kisspeptin onto gonadotrophin releasing 
hormone neurons is inhibited, and therefore selec-
tive kappa receptor agonists with a central action 
might reduce gonadotrophin releasing hormone 
pulsatility.4 A new generation of peripherally selec-
tive kappa receptor agonists have been developed 
that might access brain regions, including the infun-
dibular nucleus, by fenestrated capillaries in the 
median eminence.118 The kappa receptor agonist, 
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difelikefalin, does not seem to cause the centrally 
mediated side effects of dysphoria and sedation of 
previous kappa receptor agonists, and has recently 
been approved in the US for the treatment of 
moderate- to- severe pruritus in adults undergoing 
haemodialysis.119 120 In a prenatally androgenised 
mouse model of polycystic ovary syndrome, difelike-
falin reduced serum levels of luteinising hormone 
and testosterone, restored oestrous cyclicity and 
ovulation, and reduced overexpression of KISS1 
mRNA in the hypothalamic preoptic area.121

Centrally acting GABAA antagonists might also 
benefit patients with polycystic ovary syndrome. 
Although weight gain could in part explain the 
increased incidence of polycystic ovary syndrome 
in women receiving sodium valproate, this drug 
also increases levels of GABAA in the central 
nervous system.122 In contrast, peripheral levels of 
GABA are reduced in patients with polycystic ovary 
syndrome,123 and enteral administration of GABAA 
reduced body mass index and levels of testosterone 
in a letrozole induced polycystic ovary syndrome 
model.124 Antagonism of the anti- müllerian hormone 
pathway might also be therapeutically useful; recent 
insights into the structural basis for binding of 
anti- müllerian hormone to anti- müllerian hormone 
receptor type 2 could facilitate the rational design of 
anti- müllerian hormone antagonists.125

Targeting key enzymes in steroidogenesis
AKR1C3 functions as the gatekeeper in classical 
and 11- oxygenated androgen synthesis by medi-
ating enzymatic conversion of androstenedione 
to testosterone and 11- ketoandrostenedione to 
11- ketotestosterone.6 Various AKR1C3 inhibitors 
have been developed, with mixed results for their 
antineoplastic effects and ability to inhibit prosta-
glandin F synthase activity in castration resistant 
prostate cancer, acute myeloid leukaemia, and 
oestrogen receptor positive breast cancers.126–128 
Although steroidal based inhibitors of AKR1C3 are 
in development, the therapeutic potential in preclin-
ical models of polycystic ovary syndrome has not 
been examined.129 Selective inhibition of 11β-HSD1 
with BVT.2733 in a rodent model of polycystic ovary 
syndrome improved insulin resistance, reproduc-
tive hormone dysfunction, and polycystic ovarian 
morphology.37 These observations are encour-
aging but further preclinical work is needed before 
the potential therapeutic benefits of AKR1C3 and 
11β-HSD1 inhibitors can be tested in patients.

Glucagon-like peptide 1 inhibitors
Glucagon- like peptide 1 (GLP- 1) receptor agonists 
increase glucose dependent insulin secretion, 
suppress secretion of glucagon, and increase periph-
eral insulin sensitivity by weight loss (by stimula-
tion of satiety) and suppression of inflammation in 
adipose tissue.130 Although these properties might be 

therapeutically attractive in patients with polycystic 
ovary syndrome, previous randomised controlled 
trials were largely small, single centre, and of limited 
duration.131 Nevertheless, in a network meta- analysis 
of 941 women with polycystic ovary syndrome and 
overweight or obesity, liraglutide was superior to 
metformin (mean difference −3.82, 95% confidence 
interval −4.44 to −3.20) and orlistat (−1.95, −3.74 
to −0.16) in reducing body weight.132 Some studies 
showed that GLP- 1 receptor agonists improved 
menstrual regularity or frequency, and that these 
improvements in menstrual frequency correlated 
with reduction in body weight.133 134 GLP- 1 receptor 
agonists have also been shown to lower levels of 
androgens133 135 and improve markers of cardiovas-
cular risk.136 137 A meta- analysis of eight randomised 
controlled trials concluded that GLP- 1 agonists were 
more effective than metformin in improving homeo-
stasis model assessment- insulin resistance (standard 
mean difference −0.40, 95% confidence interval 
−0.74 to −0.06), abdominal circumference (−0.45, 
−0.89 to −0.00), and body mass index (−1.02, −1.85 
to −0.19), but not in improving menstrual frequency 
(0.15, –0.24 to 0.54) or serum levels of testos-
terone (0.64, –0.08 to 1.35).138 Newer longer acting 
GLP- 1 analogues, such as semaglutide or dulaglu-
tide,139 140 or dual GLP- 1- glucose dependent insuli-
notropic polypeptide agonists, such as tirzepatide,141 
could provide more therapeutic opportunities, with 
the potential benefits of greater effects on weight 
loss, longer duration of action, and improved adher-
ence. Semaglutide, the only GLP- 1 agonist currently 
available in an oral formulation, is being investigated 
in a clinical trial in adolescent girls with polycystic 
ovary syndrome and obesity (Treating PCOS With 
Semaglutide vs Active Lifestyle Intervention (TEAL), 
NCT03919929). More adequately powered trials 
with a focus on core outcomes of polycystic ovary 
syndrome142 are needed to establish whether these 
new drugs have a role in clinical management.

Sodium-glucose co-transporter inhibitors
Sodium- glucose co- transporter 2 inhibitors reduce 
reabsorption of glucose in the proximal convoluted 
tubules of the kidney, promoting excretion of urinary 
glucose, and also reduce weight and cardiovas-
cular events in other populations.143 Current data in 
patients with polycystic ovary syndrome are limited 
to four small randomised controlled trials.144–148 
Canagliflozin showed greater improvements in body 
mass index (P=0.006), basal metabolic rate (P=0.02), 
and fat mass (P=0.02) than metformin in women 
with polycystic ovary syndrome, but not in hormonal 
or metabolic parameters.144 In overweight and obese 
patients with polycystic ovary syndrome, combined 
canagliflozin- metformin treatment for three months 
produced greater reductions than metformin mono-
therapy in total testosterone (−0.33 v −0.18 ng/mL, 
P=0.02), area under the curve for glucose (−158.00 v 
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2.63 mmol/L×min, P=0.02), and the ratio of the area 
under the curve for insulin and glucose (−2.86 v 
0.51, P=0.02),146 but no significant differences were 
found in menstrual frequency, body mass index, or 
homeostasis model assessment- insulin resistance 
between the treatment groups.146

Licogliflozin is a dual inhibitor of sodium- 
glucose co- transporter 1 (SGLT1) and 2 (SGLT2). 
Simultaneous SGLT1 and SGLT2 inhibition could 
provide more effective weight loss because SGLT1 
inhibition alone stimulates intestinal secretion of 
GLP- 1.131 In a phase 2 randomised controlled trial of 
29 patients, licogliflozin reduced levels of androsten-
edione by 19%, dehydroepiandrosterone sulphate 
by 24%, and hyperinsulinaemia by 70% in women 
with polycystic ovary syndrome.148 The outcome of 
a recently completed randomised controlled trial 
of dapagliflozin on insulin resistance and serum 
levels of androgens in patients with polycystic ovary 
syndrome (Dapagliflozin Efficacy and Action in PCOS 
(DEAP), NCT04213677) is awaited with interest. 
Table  1 summarises the emerging treatments for 
polycystic ovary syndrome described in this review.

Guidelines
Guidelines on polycystic ovary syndrome vary in 
their methodological quality, approach to diagnosis, 
approach to screening for health risks, and recom-
mendations for the use of drug treatments.149 The 
2023 update to the international polycystic ovary 
syndrome guidelines, which uses consensus meth-
odology and clear grading systems for clinical recom-
mendations, has now been released.3 These evidence 
based guidelines were developed after consultation 
with international multidisciplinary and consumer 
bodies to support clinicians and patients in the diag-
nosis and management of polycystic ovary syndrome 
and reduce variation in care.

Conclusions
Polycystic ovary syndrome is a common reproductive 
and metabolic disorder resulting from polygenic and 
environmental influences. Key pathological changes 
include neuroendocrine dysregulation, excess 
production of androgens, insulin resistance, and 
changes in adipose tissue biology, with variation in 
dysfunction of these pathways contributing to differ-
ences in phenotypic expression and severity of the 
disease. Advances in genetic understanding, together 
with new techniques to assess the steroid metabo-
lome, have identified new biological targets, chal-
lenged the perception of polycystic ovary syndrome 
as one entity, and could facilitate an individualised 
approach to long term cardiometabolic surveillance 
based on the metabolomic signature. These advances 
could, for the first time, enable the development of 
specific drug treatments for the disorder based on an 
improved understanding of the underlying patho-
physiology. Well designed, multicentre, patient Th
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centred clinical trials of neurokinin receptor antag-
onists, kisspeptin based treatments, and repurposed 
antidiabetic drugs are now needed to investigate new 
therapeutic options for polycystic ovary syndrome.

QUESTIONS FOR FUTURE RESEARCH
 ⇒ Should polycystic ovary syndrome be 

classified based on the steroid metabolomic 
signature, and specific treatments developed 
accordingly?

 ⇒ Does the steroid metabolome predict which 
patients are at increased risk of cardiometabolic 
disease?

 ⇒ Can reduction of 11- oxygenated androgens (eg, 
by inhibition of aldo- keto reductase type 1C3 
(AKR1C3)) improve metabolic risk in patients 
with polycystic ovary syndrome?

 ⇒ Can later phase clinical trials of neurokinin 3 
receptor antagonists show improvements in 
clinical hyperandrogenism and reproductive 
outcomes?
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