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A B S T R A C T

Deep learning has enabled image style transfer to make great strides forward. However, unlike many other
styles, transferring the watercolor style to portraits is significantly challenging in image synthesis and style
transfer. Pixel-correlation-based methods do not produce satisfactory watercolors. This is because portrait
watercolors exhibit the sophisticated fusion of various painting techniques in local areas, which poses a
problem for convolutional neural networks to accurately handle fine-grained features. Moreover, the common
but problematic way of coping with multiple scales greatly impedes the performance of existing style transfer
methods with fixed receptive fields. Although it is possible to develop an image processing pipeline mimicking
various watercolor effects, such algorithms are slow and fragile, especially for inputs of different scales. As
a remedy, this paper proposes WCGAN, a generative adversarial network (GAN) architecture dedicated to
watercolorization of portraits. Specifically, a novel localized style loss suitable for watercolorization is proposed
to deal with local details. To handle portraits of different scales and improve robustness, a novel discriminator
architecture with three parallel branches of varying sizes of receptive fields is introduced. In addition, the
application of WCGAN is expanded to video style transfer where a novel kind of video training data based
on random crops is developed to efficiently capture temporal consistency. Extensive experimental results
from qualitative and quantitative analyses demonstrate that WCGAN generates state-of-the-art, high quality

watercolors from portraits.
1. Introduction

Watercolor paintings with various distinctive effects are made by
delicately controlling the distribution of water and pigments. However,
due to its complexity, even artists with long-term professional training
need to spend enormous time and effort to complete high-quality
watercolor paintings, not to mention ordinary people.

Many works [1–3] in the field of non-photorealistic rendering (NPR)
have studied how to transfer images into different styles such as sketch,
paper-cut and oil painting. In particular, Rosin and Lai [4] developed a
specific image processing pipeline that tries to mimic different effects of
watercolor. The method achieved high-quality watercolor stylization of
portraits. However, its slow run-time seriously hinders its application,
and the method may fail to produce good results for challenging input.

Gatys et al. [5] discovered that the features extracted from con-
volutional neural networks (CNNs) can characterize visual styles. The
subsequent works have spent considerable effort to enhance the style
transfer performance from different perspectives, which can be roughly
divided into: generic and specific style transfer.

✩ This paper was recommended for publication by Guangtao Zhai.
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E-mail addresses: lyuh2@cardiff.ac.uk (H. Lyu), rosinpl@cardiff.ac.uk (P.L. Rosin), laiy4@cardiff.ac.uk (Y.-K. Lai).

Generic style transfer works [6–10] can be categorized into three
directions: minimizing specific measures for content and style dissim-
ilarities, aligning feature distributions between the content and style
images, and learning to transfer between different domains. While these
methods have made great progress, the trade-off between generaliza-
tion and quality limits their performance in portrait watercolorization.

A few works [11–14] center on simulating specific style character-
istics, where local fusion and multi-scale inputs are general problems.
These components play a particularly important role in the portrait
watercolorization task. The fluidity of water and the transparency of
pigment allow watercolors to display extraordinary beauty, which is the
result of sophisticated fusion of multiple effects (wobbling, diffusion,
edge darkening, etc.). This makes the quality of local multi-effect
fusion directly affect the aesthetic feeling of watercolor. Moreover,
faces may be of varying sizes in the image, e.g. depending on the
distance to the camera, which requires the watercolor portrait to pay
extra attention to multi-scale input processing. These high requirements
make portrait watercolorization challenging for existing neural style
transfer methods.
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Fig. 1. Style variation comparison.

Fig. 2. Comparison with self-portrait by Enrique Campo Sobrino (1890–1911).

To demonstrate the challenges of watercolorization, we quantify
the style variation (SV ) of style datasets (StyleD), where a larger SV
indicates a more inconsistent style. Seven different real style datasets
are collected from [11,15]. To accurately measure the style inconsis-
tencies, the Gram matrix of pre-trained VGG-19’s feature maps, widely
employed in the field of image style transfer [5], is utilized to represent
style features. Then, the SV within StyleD is characterized by the trace
of the covariance matrix of all style features. As shown in Fig. 1, blue,
orange, and gray represent the SV results corresponding to the r21,
r31, and r41 layers, respectively. The SV values of watercolor rank
2nd, 2nd, and 3rd in the r21, r31 and r41 layers, respectively, which
indicates that watercolor paintings exhibit a high degree of stylistic
variation. Note that the only style with noticeably higher SV is comics.
However, this is understandable as comics in the database are highly
varied, from black-and-white line drawings to color comics.

To the best of our knowledge, there are no neural style transfer
works specifically for portrait watercolorization. Although generic style
transfer methods can perform portrait watercolorization, due to the
complexity of the watercolor effects, existing general purpose methods
cannot achieve satisfactory performance. This is particularly crucial for
portraits where even minor defects can be detrimental.

Considering the aforementioned problems, this paper proposes WC-
GAN, a novel GAN-based [16] approach, to transform portraits to
watercolor while preserving the original content and performing wa-
tercolor effects. As shown in Fig. 2, the generated results of WCGAN
and a professional watercolor painting both exhibit typical watercolor
characteristics, namely edge-darkening, wobbling, diffusion and the
unique texture, which effectively demonstrates the effectiveness of
WCGAN. Our main contributions are summarized below:
2

• We propose a novel block-based loss term named localized Gram
Matrix loss (LGML), which provides an extra fine-grained con-
straint in local areas, significantly boosting local stylization per-
formance.

• We develop a new Adaptive Discriminator architecture (ADA_dis),
which better preserves original image information at different
scales. Thanks to this architecture and a multi-scale training
dataset, we can adequately handle portraits of different sizes.

• This paper expands WCGAN to video style transfer tasks, where
a novel method for generating video training data based on
still images can help our network effectively achieve temporal
consistency.

The structure of the paper is described as follows: Section 2 intro-
duces the current status of existing style transfer research, especially
highlighting research closely related to ours. Section 3 provides cor-
responding implementation details of WCGAN. Section 4 validates our
design by comparison with state-of-the-art networks. The conclusions
and future work are in Section 5.

2. Related work

2.1. Non-photorealistic rendering

Non-photorealistic rendering (NPR) focuses on the computer gener-
ation of various styles, where a wide variety of stylizations have been
applied to portraits in NPR. For example, [1–4] focus on sketch, paper-
cut, watercolor and oil painting, respectively. Traditional NPR methods
can produce high-quality stylized results based on accurate feature
simulation, but they are often slow. In particular, such simulation of
real-world process often leads to a complex pipeline, which can be less
robust. Neural Style Transfer (NST), especially the methods based on
feedforward networks, is faster but the quality is largely dependent on
the training data. In this paper, we propose a GAN based method that
combines the strengths of NPR and NST where the NPR method [4]
is applied to produce a high quality training dataset. This enables
the complicated watercolor appearance to be properly and quickly
depicted.

2.2. Neural style transfer

The pioneering work [5] formulated the NST task as generating an
image that optimizes both a style and a content loss. There are many
follow-up works that improve NST both in quality and efficiency, which
can be divided into generic and specific style transfer.

Generic Style Transfer aims to transfer multiple arbitrary artistic
styles using the same architecture, which can be divided into three
strategies:

(1) Perceptual Loss Optimization: These methods aim to produce
an output image that minimizes the content loss w.r.t. the content
image and style loss w.r.t. to the style image. Follow-up works have
further improved this strategy, including using a feedforward network
for real-time generation and better handling multiple styles [6,8,9].
Taking a holistic view for the style loss handles lack of correspondence
between the output and style image. However, it cannot well capture
spatial variation of styles, which limits their application in portrait
watercolorization. As a remedy, we propose localized Gram Matrix loss
(LGML) specifically focusing on the fine-grained style pattern.

(2) Feature Distribution Alignment: This category conducts the
alignment process between the feature distributions of content and style
images. The works [17–20] generate stylized images by matching the
mean/variance, whitening/coloring feature transforms, relaxed cross-
correlation and manifold alignment, respectively. But the pre-trained
networks in [19] are trained by normal (non-stylized) images, which
cannot achieve satisfactory results in style transfer tasks. Moreover,
scale-adaptivity in [20] is achieved through their hourglass network,

https://commons.wikimedia.org/wiki/Category:Enrique_Campo_Sobrino#/media/File:Enrique_Campo,_Autorretrato_(s.d.).jpg
https://commons.wikimedia.org/wiki/Category:Enrique_Campo_Sobrino#/media/File:Enrique_Campo,_Autorretrato_(s.d.).jpg
https://commons.wikimedia.org/wiki/Category:Enrique_Campo_Sobrino#/media/File:Enrique_Campo,_Autorretrato_(s.d.).jpg
https://commons.wikimedia.org/wiki/Category:Enrique_Campo_Sobrino#/media/File:Enrique_Campo,_Autorretrato_(s.d.).jpg
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which may not be easily generalized to other style transfer studies. In
this paper, the proposed ADA_dis enables WCGAN to be scale-adaptive.

(3) Domain Transfer: Other research like GAN-based methods
addresses the style problem as transferring between two (or more) do-
mains. Among the numerous applications of GANs [21–25], Pix2Pix [7]
develops a generic framework for achieving paired image translation
tasks. CycleGAN [10] introduces the cycle consistency losses to deal
with unpaired image translation tasks. However, neither have sufficient
flexibility to learn spatially varying style features due to the lack of
a specific learning mechanism for regional features. Facing the above
problems, additional masks and discriminators for corresponding areas
have been added in WCGAN which enhance the flexibility of style
feature learning. Recently, methods [26,27] based on probabilistic
diffusion models have become increasing popular for style transfer.
Although such methods show excellent performance when there are
a large number of training examples, the performance may drop with
limited training data.

In addition, generic style transfer papers show some impressive
stylization results, and then make an implicit assumption that their
methods can also achieve good performance on any other styles. How-
ever, in practice these methods cannot achieve acceptable performance
for all styles, so some research considers developing dedicated methods
for certain styles.

Specific Style Transfer: A few works have been designed for
specific style transfer tasks. PairedCycleGAN [11] and Beauty-GAN [13]
focus on transferring the makeup style by two asymmetric networks.
CartoonGAN [12] proposes two specific losses for cartoon style: high-
level semantic loss and edge loss, respectively. APDrawingGAN [14]
applies an extra distance transform loss which focuses on stroke lines.
The work [28] further extends it to learn from unpaired training data,
by introducing an asymmetric cycle consistency loss to cope with the
substantial information gap between photos and line drawings. Sim-
ilarly, portrait watercolor contains unique effects that are challenging
for existing NST works, as discussed in Section 1. Considering the above
limitations, WCGAN is proposed specifically for the portrait watercol-
orization task, although key ideas developed can also be generalized to
other challenging style transfer tasks.

2.3. Video style transfer

Video style transfer differs from image style transfer in temporal
consistency. Ruder et al. [29] attempt to capture this by applying
temporal losses guided by optical flow, but their optimization-based
method is time-consuming. Chen et al. [30] achieve long-range consis-
tency via a recurrent neural network architecture, which requires slow
optical flow calculation in the inference stage. The stylization process
of [31] is faster than [29,30] which require optical flow calculation,
but [31] only calculates content loss based on one layer (relu4-2),
which cannot capture subtle textures and strokes. Gao et al. [32]
improve the temporal stability by adding an extra luminance constraint.
However, fine-grained texture features are not captured due to the lack
of local style constraints.

Moreover, there are no existing video training datasets available
for portrait watercolorization. This paper proposes a new method to
generate video training data using still images in a self-supervised
manner, which can meet the requirements for availability and accuracy
of the video training dataset.

3. Watercolor transfer of portrait photography

This paper proposes a GAN framework specifically for portrait
watercolorization which contains a generator 𝐺 and a discriminator 𝐷.

e regard the process of transferring a portrait photograph in domain
into a watercolor painting in domain  , whilst preserving the

ontent of the original portrait photograph, as a mapping function. This
atercolorization mapping function is learned from the paired training
3

dataset 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =
{(

𝑝𝑖, 𝑤𝑖
)

|𝑝𝑖 ∈  , 𝑤𝑖 ∈  , 𝑖 = 1, 2,… , 𝑁}, where 𝑁
is the total number of portrait-watercolor pairs and 𝑖 is the index
number. Denote 𝐿 as the overall loss function, which contains three
terms: 𝐿𝐿1, 𝐿𝐿𝐺𝑀 and 𝐿𝑎𝑑𝑣, corresponding to pixel-wise 𝐿1 loss for
content preservation, local Gram matrix loss for style preservation, and
adversarial loss. WCGAN is trained by solving the following min–max
problem:

min
𝐺

max
𝐷

𝐿(𝜆1𝐿𝐿1(𝐺) + 𝜆2𝐿𝐿𝐺𝑀 (𝐺) + 𝜆3𝐿𝑎𝑑𝑣(𝐺,𝐷)), (1)

where 𝜆1, 𝜆2 and 𝜆3 are weights that balance the importance of the
loss terms.

In the following sections, this paper introduces the detailed archi-
tecture of the Generator and Discriminator in Sections 3.1 and 3.2
respectively. As shown in Fig. 3, both of the Generator and Discrimina-
tor are fully convolutional, which means the same network can learn to
handle input images of different resolutions. The hybrid loss function
𝐿 is described in Section 3.3. Moreover, a new way of generating video
training data using still images for temporal consistency is introduced
in Section 3.4.

3.1. Generator

The aim of 𝐺 is to render a portrait photograph in a watercolor style,
while keeping the content structure of the original portraits. To capture
multiple abstraction degrees meaningful for watercolor portraits, we
generate 7 semantic masks (𝑀∗, where * refers to individual regions)
in advance and directly add them to the input of 𝐺, which enables
𝐺 to learn multiple independent features. The seven corresponding
areas are: eyebrows, eyes, nose, inner-mouth, outer-mouth, face, skin as
shown in Fig. 4. Based on OpenFace [33], the first five masks accurately
indicate specific facial regions. The face mask refers to the entire face
region in the OpenFace results. Additionally, the Skin mask serves
as a supplement to the OpenFace results, providing additional skin
information such as the neck and ears. Fig. 3(a) shows the structure
of the Generator, which is a traditional Encoder-Decoder structure. The
encoder part consists of 8 down-sampling convolution layers with stride
2 and 4 × 4 kernels. The desired watercolor paintings are reconstructed
after 8 up-sampling convolution layers with the same stride 2 and 4 × 4
kernels. Eight skip connections between the encoder and decoder can
effectively recover fine-grained details.

3.2. Discriminator

3.2.1. Hierarchical discriminator architecture
A hierarchical Discriminator structure 𝐷 is proposed in WCGAN,

following [14]. 𝐷 returns multiple scores corresponding to the different
regions used in 𝐺, which provides a more comprehensive judgment
compared with returning only one score. This method is also in line
with artists who adopt different drawing techniques for different parts.
𝐷 = {𝐷𝑔𝑙𝑜𝑏𝑎𝑙 , 𝐷}, where 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 judges whether the input is real or fake
based on the whole image. 𝐷 consists of 7 separate discriminators
which focus on the performance of the local facial regions listed in
Section 3.1.

3.2.2. Adaptive discriminator architecture
The multi-scale problem in image processing is common as faces

may vary in size depending on the distance to the camera. Obviously,
a neural network with only one fixed receptive field cannot accurately
recognize features at different scales. Dilated convolution [34], can
change the receptive field while still keeping the total number of
parameters unchanged. Based on these observations, we propose a
novel adaptive discriminator architecture with three parallel branches
as shown in Fig. 5, which have different dilation rates enabling different
receptive fields. In addition, different regions of the same image may
require different receptive fields in real-life scenarios. For example, an
image may contain background objects at a distance (so would benefit
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Fig. 3. Overview of the WCGAN architecture.
Fig. 4. Seven masks corresponding to semantic regions important for portrait stylization.
Fig. 5. Adaptive discriminator architecture.

from small receptive fields) along with faces which are much closer
(requiring larger receptive fields). Thus, the max-pooling result of the
three branches’ outputs is regarded as the final output to preserve
the strongest responses from different branches, which flexibly enables
suitable receptive fields to different regions.

Some existing works [35,36] also proposed multi-scale discrimina-
tors that apply three identical discriminators but operate at different
image scales, where simple down-sampling operations are used, which
lose a lot of important information. Moreover, assigning weights man-
ually to different branches’ outputs often requires manual tuning. Al-
though the weights are adjusted using a predetermined formula during
training in [35], fixed weights are still used in each training iteration to
fuse multi-scale features [35,36], lacking flexibility to handle different
image scenarios. Our proposed ADA_dis processes images of the same
scale with branches of different scales, and merges features with max-
pooling, flexibly assigning suitable receptive fields for different regions
and bypassing the issue of weight assignment.

3.3. Loss function

The hybrid loss function 𝐿 consists of three parts: 𝐿𝐿1, 𝐿𝑎𝑑𝑣 and
𝐿𝐿𝐺𝑀 as shown in Eq. (1). With the help of 𝐿, the hierarchical adaptive
structure of 𝐷 can drive 𝐺 to produce watercolor paintings with a
variety of subtle effects and more detailed local area performance.

3.3.1. 𝐿1 loss
Least Absolute Deviations (𝐿1) is widely used as a loss term in

machine learning, which compares the similarity of two pictures from a
pixel-wise perspective. According to the following Eq. (2), we calculate
the sum of all absolute differences to judge the quality of the generated
watercolor painting at the pixel level.

𝐿 (𝐺,𝐷) = E
[

‖

‖𝐺
(

𝑝
)

−𝑤 ‖

‖

]

(2)
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𝐿1 (𝑝𝑖 ,𝑤𝑖)∼𝑇training
‖

𝑖 𝑖
‖1
Table 1
Time consumption for [4], Updated [4] and WCGAN in Section 4.1.

Resolution [4] Updated [4] WCGAN
(s) (s) (s)

2562 50.37 119.60 0.04
5122 82.10 120.21 0.15
10242 213.03 119.73 0.62

3.3.2. 𝐿𝑎𝑑𝑣 adversarial loss
𝐿𝑎𝑑𝑣 applied in this paper contains 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 and 𝐿𝑙𝑜𝑐𝑎𝑙 for global and

local discrimination.
𝐿𝑔𝑙𝑜𝑏𝑎𝑙: helps 𝐺 approximate the optimal result through a neural

network (𝐷𝑔𝑙𝑜𝑏𝑎𝑙), thereby avoiding the difficult probability calculation
problem for generative models. 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 is defined as:

𝐿𝑔𝑙𝑜𝑏𝑎𝑙(𝐺,𝐷𝑔𝑙𝑜𝑏𝑎𝑙) = E(𝑝𝑖 ,𝑤𝑖)∼𝑇training

[

log
(

𝐷𝑔𝑙𝑜𝑏𝑎𝑙
(

𝑝𝑖, 𝑤𝑖
)

+ log
(

1 −𝐷𝑔𝑙𝑜𝑏𝑎𝑙
(

𝑝𝑖, 𝐺
(

𝑤𝑖
)))]

(3)

𝐷𝑔𝑙𝑜𝑏𝑎𝑙, as the global discriminator, determines the authenticity
based on the entire input image at coarse granularity. In real portrait
watercolors, certain facial features are much more important, and
artists tend to draw them differently. However, only using semantic
masks and one global discriminator cannot guarantee multiple abstract
degrees to be properly captured, due to the absence of necessary
constraints on key areas. Thus, parallel local discriminators 𝐷 are
proposed which contains 7 local discriminators each corresponding to
a mask region.

𝐿𝑙𝑜𝑐𝑎𝑙: as a supplement of 𝐷𝑔𝑙𝑜𝑏𝑎𝑙, 𝐷 focuses on the style transfer
quality in the regions specified by 𝑀∗, and 𝐷m is an individual local
discriminator. 𝑀∗ refers to all the 7 masks. These have the same
resolution as the input image. Local discriminators transform the input
image into a high-dimensional feature map, denoted as FM_img, which
is of lower resolution than the input image. 𝑀∗

𝑑𝑠 is the down-sampled
version of 𝑀∗ to match the resolution of FM_img. We can then perform
element wise multiplication to only retain part of the feature map that
is within the masks. 𝐿𝑙𝑜𝑐𝑎𝑙 is defined as:

𝐿𝑙𝑜𝑐𝑎𝑙(𝐺,𝐷) =
∑

𝐷m∈𝐷

E(𝑝𝑖 ,𝑤𝑖)∼𝑇training

[

log
(

𝐷m
(

𝑝𝑖, 𝑤𝑖
)

+ log
(

1 −𝐷m
(

𝑝𝑖, 𝐺
(

𝑤𝑖
)))]

. (4)
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Fig. 6. Comparison with the NPR method for watercolor portrait stylization [4] and
its updated version to cope with different scales.

3.3.3. 𝐿𝐿𝐺𝑀 loss
The sophisticated fusion of local effects creates the distinctive

beauty of watercolors. However, it is particularly problematic for
watercolor stylization where different painting techniques are often
applied to individual regions. To address this, we propose a novel loss
term 𝐿𝐿𝐺𝑀 based on a localized Gram matrix to improve the style
transform quality in local regions.

Given an input image pair  and , to calculate 𝐿𝐿𝐺𝑀 , we first split
them into 𝑍 same-sized blocks respectively:

{(

𝑖,𝑖
)

|𝑖 ∈ ,𝑖 ∈ ,
𝑖 = 1, 2,… , 𝑍}. Secondly, the style loss of each pair of correspond-
ing blocks is calculated by the Styleloss() function. Finally, the aver-
age value of style losses for all corresponding blocks is used as the
corresponding 𝐿𝐿𝐺𝑀 between  and . The definition is as follows:

𝐿LGM (,) = 1
𝑍

𝑍
∑

𝑖=1
𝑆𝑡𝑦𝑙𝑒𝑙𝑜𝑠𝑠

(

𝑖,𝑖
)

(5)

𝑆𝑡𝑦𝑙𝑒𝑙𝑜𝑠𝑠
(

𝑖,𝑖
)

=
∑

𝑙∈{𝑙𝑠}

‖

‖

‖

𝐺𝑟𝑎𝑚
(

𝐹 𝑙 (𝑖
))

−

𝐺𝑟𝑎𝑚
(

𝐹 𝑙 (𝑖
))

‖

‖

‖

2
(6)

𝐺𝑟𝑎𝑚(𝐹 𝑙)𝑖𝑗 =
∑

𝑘
𝐹 𝑙
𝑖𝑘𝐹

𝑙
𝑗𝑘 (7)

where 𝐹 𝑙 is the feature map from layer 𝑙 of VGG network [37]. 𝐺𝑟𝑎𝑚()
is the Gram matrix calculated based on the corresponding input, where
its (𝑖, 𝑗) element is essentially the inner product between the vectorized
𝑖th and 𝑗th feature maps.

Although Gram matrices are commonly applied to entire images
as a way to extract texture features, recent works also applied Gram
matrices to reflect the texture quality of the region of interest, where
the feature maps of region-based methods [38,39] come from the
local discriminator, and those of mask-based methods [40] come from
semantic masks. However, the above region/mask-based methods just
deliver the overall texture quality on the region of interest, which are
not fine-grained enough to handle the sophisticated multi-effect fusion.
The block-based LGML in this paper provides fine-grained texture qual-
ity assessment that can accurately evaluate the quality of multi-effect
fusion.

3.4. Video style transfer

To achieve video style transfer, three extra techniques are applied:
a novel method for generating video training data called Multi-Crop
Video Training data, a temporal loss term and a consecutive-frame-pair
training mechanism. The latter two techniques are widely applied in
other works, and are explained in detail in the supplementary material.

This paper proposes a novel method for generating video training
data by cropping still images. Given a still image, the cropped areas
after multiple random cropping operations can be regarded as consecu-
tive video frames. Consequently, the ground truth optical flow between
any two cropped areas can be calculated based on the known cropping
positions. Based on the above method, a video training dataset con-
taining ground truth optical flow can be established based on only still
images, which greatly reduces the difficulty of obtaining video training
data. As we will later show by experiments, Multi-Crop video training
5

data can help the network capture temporal consistency. Furthermore,
this novel kind of training data does not conflict with the existing
training data (based on real video frames). Related experiments verify
that the optimal dataset is a collection of video training data generated
by both methods.

4. Evaluation

The comparison with traditional NPR work is shown in Section 4.1.
The datasets and implementation details are shown in Section 4.2.
The comparison with representative paired works is displayed in Sec-
tion 4.3. Extra analyses about ADA_dis and LGML are shown in Sec-
tions 4.4 and 4.5, respectively. The analysis of the contribution of
every component is shown in Section 4.6. The evaluation of video style
transfer is presented in Section 4.7. Our method can also be extended
to other styles with similar characteristics. The experimental results of
artistic portrait drawing (APDrawing) style transfer tasks are displayed
in the supplementary material.

4.1. Compared with traditional NPR method [4]

The NPR method [4] proposed an image processing pipeline specifi-
cally for portrait watercolorization, which struggles with low resolution
images. Thus, this paper proposes an updated version of [4] where
images are initially resized to make the face a fixed size, and then [4]
is applied to generate watercolor results, before resizing them back to
the original resolution.

Directly applying [4] or Updated [4] to portrait watercolorization
task has clear drawbacks. Firstly, both [4] and Updated [4] require
a long processing time. The average time consumption on the test
dataset is shown in Table 1, where WCGAN greatly improves the
processing speed by more than two orders of magnitude. Secondly,
Fig. 6 shows the results of [4], Updated [4] and WCGAN at 2562. [4]
produces an over-stylized effect especially for eyes under low resolu-
tion. Updated [4] cannot handle images with multiple faces of varying
sizes due to difficulties in achieving different rescalings for each face
simultaneously. In contrast, WCGAN can stably generate proper results
even for challenging inputs (multiple faces, multiple scales).

4.2. Dataset and implementation details

It is challenging to obtain a valid watercolor training dataset due to
the wide variation of style in the real watercolors as shown in Fig. 1.
To obtain a watercolor training dataset with consistent style features,
[4] is applied to generate watercolor style in portraits. To enhance
scale-adaptivity, an adaptive training dataset 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , which expands
each original training image to three different sizes, is created based
on Updated [4].

2000 portrait images with various skin colors and backgrounds are
collected from the internet. Each portrait is firstly resized to three reso-
lutions: 2562, 5122, and 10242. Then, we partition all images into 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
of size 1600 × 3 and 𝑇𝑡𝑒𝑠𝑡 of 400 × 3. In addition, 100 photos containing
faces of different sizes are collected as a multi-face test dataset 𝑇𝑚𝑢𝑙𝑡𝑖𝑓𝑎𝑐𝑒,
which can better test different methods when handling faces of different
sizes. The Adam optimizer is used, where the learning rate = 0.0002,
𝛽1 = 0.5, 𝛽2 = 0.999.

4.3. Comparison with state of the art

WCGAN is compared with five of the latest paired data based works:
Gatys et al. [5], Pix2Pix [7], I2ICDAE [42], pSp [41] and BBDM [27].
The following content is conducted from three aspects: qualitative
analysis (Figs. 7 and 9), quantitative analysis (Tables 2 to 4) and results
of user studies (Fig. 10).
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Fig. 7. Comparison with five representative works in Section 4.3.1. 1st–2nd rows: resolution 2562; 3rd–4th rows: resolution 5122; 5th–7th rows: resolution 10242.
Fig. 8. Comparison with pSp [41] trained and tested on the aligned version of 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
and 𝑇𝑡𝑒𝑠𝑡.

4.3.1. Qualitative analysis
Fig. 7 shows the test results of three portraits at different reso-

lutions, where the corresponding close-ups are shown below the full
images.

Gatys et al. [5] require as input both a content image and a
style image. In our implementation of Original Gatys, for one content
image, the watercolor picture in 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 with the smallest perceptual
loss with this content image is regarded as the corresponding style
image. Furthermore, a variant of [5] called Collection Gatys uses the
average Gram matrix of all watercolor paintings in 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 to measure
watercolor style features. The 2nd and 3rd columns of Fig. 7 show the
results of Original Gatys and Collection Gatys, respectively. Original
Gatys exhibits serious color mismatching at all scales due to its reliance
on similar structures between the style and content images, even if the
ones with minimum structure difference are picked. Compared with
Original Gatys, Collection Gatys improves the performance for details
to a certain extent. However, under the same transfer mechanism,
Collection Gatys still cannot cope with the color mismatching problem.

I2ICDAE achieves domain transfer by embedding a fully connected
layer (FCL) between a pre-trained encoder and decoder, which cannot
6

Fig. 9. Comparison with other works on 𝑇𝑚𝑢𝑙𝑡𝑖𝑓𝑎𝑐𝑒.

handle multi-scale inputs. Thus, three independent I2ICDAE models
for different input sizes are trained, respectively. The test results of
I2ICDAE are shown in the 4th column of Fig. 7. The unacceptable
quality of multiple effects fusion affects the overall aesthetics due to
the lack of specific loss term or mechanism focusing on local features.

The 5th column in Fig. 7 displays the results of Pix2Pix. The com-
plicated fusion of local effects and independent degrees of abstraction
of different regions are not learned properly, which greatly affects the
aesthetic feeling, and indicates that Pix2Pix does not have sufficient
flexibility to simulate watercolor style.

The 6th column in Fig. 7 displays the results of pSp [41]. Three
separate pSp networks are trained for different scales: 2562, 5122, and
10242. For the 2562 and 5122 pSp models, input and output were
maintained at the same scale, similar to WCGAN’s setup. The 1024-
scale pSp model is implemented with the recommended settings by
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Fig. 10. Stylization preferences captured by the user study in Section 4.3.3.

Table 2
Quantitative comparison with state-of-the-art methods at resolution 2562 in
Section 4.3.2.

Resolution MSE PSNR SSIM LPIPS FID
256 × 256 ×10−2 dB ×10−2 ×10−2

Original Gatys [5] 13.32 15.88 42.76 40.21 129.15
Collect. Gatys [5] 7.39 17.83 48.37 34.57 140.33
Pix2Pix [7] 1.37 25.12 74.34 13.78 46.45
I2ICDAE [42] 1.34 25.22 75.65 13.31 44.58
pSp [41] 10.00 16.29 35.52 45.05 150.45
BBDM [27] 3.12 21.33 61.89 31.87 86.76
WCGAN 1.07 26.28 81.23 11.37 40.62

Table 3
Quantitative comparison with state-of-the-art methods at resolution 5122 in
Section 4.3.2.

Resolution MSE PSNR SSIM LPIPS FID
512 × 512 ×10−2 dB ×10−2 ×10−2

Original Gatys [5] 9.21 17.15 49.27 41.32 87.81
Collect. Gatys [5] 5.82 18.89 52.30 37.76 84.62
Pix2Pix [7] 1.11 26.00 73.21 18.33 38.60
I2ICDAE [42] 1.09 26.12 75.55 17.34 36.83
pSp [41] 9.27 16.66 45.98 48.45 223.53
BBDM [27] 2.99 21.52 63.58 40.95 82.43
WCGAN 0.90 26.96 78.59 15.55 33.18

Table 4
Quantitative comparison with state-of-the-art methods at resolution 10242 in
Section 4.3.2.

Resolution MSE PSNR SSIM LPIPS FID
1024 × 1024 ×10−2 dB ×10−2 ×10−2

Original Gatys [5] 6.36 18.67 52.21 40.55 76.27
Collect. Gatys [5] 5.66 19.04 52.83 40.43 80.92
Pix2Pix [7] 1.07 26.00 69.85 21.13 35.79
I2ICDAE [42] 0.98 26.44 74.29 18.02 37.27
pSp [41] 9.81 16.44 49.78 61.84 126.36
BBDM [27] 2.94 21.55 65.42 57.21 97.89
WCGAN 0.97 26.55 75.69 19.47 33.75

authors to achieve the proper performance of pSp and alleviate the
computational burden of training with 10242 input and output (by
scaling the input to lower-resolution 2562 size, and generating output
stylized images to 10242). The results at 2562 and 5122 show that pSp’s
output cannot present reasonable faces with watercolor style. The re-
sults at 10242 demonstrates that, despite adhering to the recommended
default settings, pSp consistently exhibits undesirable inconsistencies
in facial regions compared to the input portraits. The underlying cause
is that the pSp model is limited by the pre-trained StyleGAN2 model
which is trained on aligned inputs (i.e. the portraits are rotated and
cropped to normalize the face orientation and scale), and fails to cope
with unaligned inputs present in our watercolor dataset.

Moreover, we further create an aligned version of both 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and
𝑇 . By eliminating the confounding factors introduced by unaligned
7

𝑡𝑒𝑠𝑡
images, we comprehensively validate the performance of pSp. As shown
in Fig. 8, the pSp model trained and tested on aligned images still
fails to produce results with stable facial consistency compared to
the input portraits. Furthermore, it also struggles to accurately sim-
ulate watercolor painting textures and complex multi-effect fusion.
These findings further corroborate the limitations of the pSp model in
achieving high-quality watercolor style transfer.

The 7th column in Fig. 7 displays the results of BBDM (Brownian
Bridge Diffusion Model) [27]. To ensure fairness, the official imple-
mentation is used, where BBDM can only handle images of 2562. Thus,
each image is initially resized to 2562 before further processing. For
images of 5122 and 10242, the generated images are up-sampled to its
original scale. This process may lead to some loss of details. One of
the advantages of BBDM is its ability to generate multiple plausible
outputs given a single input due to the inherent ambiguity of domain
transfer. BBDM generates five slightly different outputs, and the one
with the best performance is selected as the final result. BBDM fails
to produce results with acceptable quality, in terms of fusion of local
effects, locally varying facial abstraction levels, and watercolor texture.
The underlying reason is that BBDM as a diffusion based method has the
advantage of learning more effectively from a large amount of training
samples, but the performance may not be satisfactory when training
data is limited.

Since I2ICDAE and Pix2Pix have relatively similar performance to
WCGAN, to prove the superiority of WCGAN more convincingly, the
generated results of I2ICDAE, Pix2Pix and WCGAN on 𝑇𝑚𝑢𝑙𝑡𝑖𝑓𝑎𝑐𝑒 are
shown in Fig. 9. The first photo contains faces of different sizes. Al-
though the trained I2ICDAE and Pix2Pix can generate tolerable results
for simple photos, both methods cannot achieve the desired facial
results in complex situations that include multiple faces of different
scales. The second photo contains complicated local areas, i.e., con-
tinuous small areas with different colors. Due to the lack of a specific
mechanism to thoroughly learn the feature of local areas, both I2ICDAE
and Pix2Pix cannot present proper effect simulation for the above
situation.

4.3.2. Quantitative analysis
Five common metrics (mean squared error (MSE), peak signal-to-

noise ratio (PSNR), structural similarity index measure (SSIM), Fréchet
inception distance (FID score) and perceptual metric (LPIPS)) are ap-
plied to quantitatively measure all methods on 𝑇𝑡𝑒𝑠𝑡. Tables 2–4 respec-
tively show the results of all methods for portraits of different sizes,
and the following conclusions can be made:

• Due to the severe color mismatching appearing in both variants
of the Gatys method, WCGAN greatly outperforms both Gatys
methods under all evaluation criteria.

• Pix2Pix still has a certain gap compared with WCGAN. In partic-
ular, the performance of Pix2Pix under the three scales is worse
than that of WCGAN 15.91% in LPIPS and 12.24% on FID on
average.

• WCGAN achieves an overall improvement under all scales com-
pared with I2ICDAE. The LPIPS score of I2ICDAE at resolution
1024 is slightly better than that of WCGAN. However, it is un-
doubtedly clear that WCGAN can more precisely simulate water-
color style, whereas each I2ICDAE model only needs to deal with
the style transfer task of a single scale.

• Due to the unacceptable issue of facial inconsistency and poor
simulation of watercolor painting features in pSp’s generated
results, the quantitative analysis of pSp experiment results are
worse than other methods.

• WCGAN outperforms BBDM by a significant margin in all evalua-
tion metrics, which is consistent with the conclusions drawn from
the qualitative analysis.

Overall, WCGAN achieves the best portrait watercolorization on
different scales. This is consistent with the aforementioned qualitative
analysis results.
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Table 5
Quantitative comparison with [35,36].

2562 5122 10242

LPIPS FID LPIPS FID LPIPS FID

[36] 20.20 61.38 20.09 47.04 26.11 41.78
[35] 13.41 43.59 18.67 37.47 21.26 37.35
WCGAN 11.37 40.62 15.55 33.18 19.47 33.75

Fig. 11. Qualitative comparison with [35,36].

4.3.3. User study
A user study is performed for a more convincing evaluation. Due

to the most recent publication of BBDM, there was insufficient time
to incorporate its results into the user study. However, the above
qualitative and quantitative analysis have proved WCGAN outperforms
BBDM in portrait watercolorization. Fig. 10 presents the statistical
results of the comparison with the state of the art methods. In Fig. 10,
blue, orange and gray represent three resolutions of 256, 512 and 1024
respectively. The sum of bars with the same color is 100%, where the
larger the value, the more competitive this method is at this resolution.

Under three resolutions, we compare WCGAN to four competing
methods: Original Gatys, Collection Gatys, Pix2Pix, and I2ICDAE. For
each resolution, 10 randomly selected portraits from 𝑇𝑡𝑒𝑠𝑡 and 𝑇𝑚𝑢𝑙𝑡𝑖𝑓𝑎𝑐𝑒
are applied to show the performance of all five methods. In each
question, we simultaneously display five randomly ordered watercolor
pictures generated by different methods, and ask the participants to
tick the best watercolor picture based on their subjective feeling. We
finally received 1530 votes (51 participants) from two platforms: PC
and mobile phone, and more detailed analysis is provided in the
supplementary material. The results plotted in Fig. 10 indicate that
the WCGAN method, receiving 58.46% votes on average, achieves the
best performance among all evaluated methods. Due to their color-
mismatching, Original Gatys and Collection Gatys receive the least
votes, 6.41% and 8.95% respectively.

4.4. Compared with other multi-scale discriminators

To demonstrate the superiority of the proposed ADA_dis, we con-
ducted comparative experiments by replacing the proposed discrimina-
tor architecture in WCGAN with the multi-scale discriminator in [35,
36]. Table 5 shows that our proposed ADA_dis quantitatively outper-
forms the multi-scale discriminators from [35,36] in all evaluation
scenarios. The second column of Fig. 11 shows that applying the multi-
scale discriminator from [36] results in visible blurring effects due to
different branches having the same impact, leading to a compromise
among three scales. Applying the multi-scale discriminator from [35]
brings about over-stylization in the eye area due to overemphasis on
fine-grained features in the latter part of training and reliance on
feature feedback by fixed-weight fusion during the whole training. In
contrast, our proposed ADA_dis flexibly merges different scale features
by activating the strongest responses in different branches through
max-pooling.
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Fig. 12. Ablation studies in Section 4.6.1. Close-ups are provided for the regions in
the red boxes.

4.5. Analysis of Local Gram Matrix Loss (LGML)

To prove the necessity of the local Gram matrix loss (LGML), we
conduct and compare four experiments: 𝑅_𝐿𝐺𝑀𝐿, Traditional_GML,
𝐿𝐺𝑀𝐿_𝑤ℎ𝑜𝑙𝑒 and WCGAN. WCGAN is the full version of WCGAN;
𝑅_𝐿𝐺𝑀𝐿 removes LGML from WCGAN; Traditional_GML replaces
LGML applied in WCGAN with traditional Gram matrix loss;
𝐿𝐺𝑀𝐿_𝑤ℎ𝑜𝑙𝑒 extends the application range of LGML in WCGAN from
only the background to the entire picture (including the face). As shown
in Fig. 13, compared with the full version WCGAN, 𝑅_𝐿𝐺𝑀𝐿 and
Traditional_GML lack sufficient capability to fine-tune the stylization
quality of local areas, resulting in severe blur in the background.
𝐿𝐺𝑀𝐿_𝑤ℎ𝑜𝑙𝑒 has a clear drop in the performance of the facial area,
especially the eyes.

4.6. Ablation study

The following abbreviations are used to separately represent three
ablation study experiments: 𝑅_𝐴𝑑𝑎_𝑑𝑎𝑡𝑎 for removing 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ;
𝑅_𝐴𝑑𝑎_𝑑𝑖𝑠 for removing ADA_dis; 𝑅_𝐿𝐺𝑀𝐿 for removing Localized
Gram Matrix Loss term. Qualitative analysis is shown in Fig. 12. LPIPS
and FID provide quantitative analysis (Table 6).

4.6.1. Qualitative analysis
Fig. 12 separately shows the results of 𝑅_𝐴𝑑𝑎_𝑑𝑎𝑡𝑎, 𝑅_𝐴𝑑𝑎_𝑑𝑖𝑠,

𝑅_𝐿𝐺𝑀𝐿 and WCGAN in the 2nd to 5th rows. For 𝑅_𝐴𝑑𝑎_𝑑𝑎𝑡𝑎, the
rendering quality of facial parts and detailed areas is significantly
reduced. For complicated local areas in the background, 𝑅_𝐴𝑑𝑎_𝑑𝑖𝑠
and 𝑅_𝐿𝐺𝑀𝐿 present a visible drop in the multi-effect fusion and
boundary processing compared with WCGAN. The above qualitative
analysis demonstrates that each component is essential for the best per-
formance. More examples can be found in the supplementary material.
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Fig. 13. Ablation study of 𝐿𝐿𝐺𝑀 loss. (a) content images, (b) removing Gram matrix loss entirely (R_GML), (c) replacing local Gram matrix loss with traditional (global) Gram
matrix loss, (d) expanding local Gram matrix loss to the whole image, (e) our model where local Gram matrix loss is applied to non-face regions.
Table 6
Quantitative analysis of ablation study in Section 4.6.2.
Quantitative analysis of ablation study LPIPS FID

256 512 1024 256 512 1024

WCGAN 11.37 15.55 19.47 40.62 33.18 33.75

Removing Adaptive Discriminator Architecture 13.50 17.56 20.46 46.93 37.56 36.54
Removing Adaptive Training Dataset 33.68 25.89 20.68 128.84 63.15 36.84
Removing Localized Gram Matrix Loss 12.83 17.34 20.66 44.04 36.62 36.75
4.6.2. Quantitative analysis
Quantitative analysis in the ablation study is conducted through

LPIPS and FID. As shown in the first row of Table 6, the full model
(WCGAN) containing all techniques reaches the lowest values (i.e., best
performance) at any scale, which illustrates the necessity of each
component. In the remaining part of this subsection, ablated versions
are compared with the full model shown in the first row of the table,
and the following conclusions can be made:

• Disabling 𝑇𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 has caused a noticeable quality degradation,
especially at 2562 resolution compared to the full model, an
increase of 196.30% under LPIPS and 217.17% under FID.

• 𝑅_𝐴𝑑𝑎_𝑑𝑖𝑠 performs significantly worse than the full model at all
comparisons, with an average increase of 12.28% in LPIPS and
12.33% in FID.

• Although its performance outperforms 𝑅_𝐴𝑑𝑎_𝑑𝑎𝑡𝑎, 𝑅_𝐿𝐺𝑀𝐿 is
worse than the full version WCGAN at any scale on both evalua-
tion criteria.

4.7. Video style transfer

We collected 10 videos from videvo.net as the training data set.
Flow2 [43] is applied to calculate the bidirectional optical flow be-
tween consecutive video frames. The ground truth with watercolor style
are generated by our WCGAN trained by still images. Furthermore, a
temporal error measure is defined to reflect the coherence, which is
calculated as:

𝐸temporal =
1

𝑇 ⋅ 𝐼

𝑇
∑

𝑡=1

𝐼
∑

𝑘=1
𝐶𝑘

(

𝑆𝑘
𝑡 − 𝑆𝑑𝑘

𝑡
)2 (8)

where 𝑇 denotes the total number of consecutive frame pairs. 𝐼 means
the total number of all pixels in the trackable area, which is marked
as value 1 in 𝐶. 𝐶 (confidence mask) sets all motion boundaries and
occluded regions to value 0 and other regions to value 1. The stylized
results 𝑆𝑡 and 𝑆𝑡−1 corresponding to frame 𝐹𝑡 at time 𝑡 and frame
𝐹 at time 𝑡 − 1 are separately generated by 𝐺. The desired stylized
9

𝑡−1
Table 7
Comparison of temporal errors under changing training strategies.

Temporal error 256 512 1024

Without temporal consistency 0.1849 0.2542 0.3771
Real video frames 0.1408 0.2216 0.3602
Multi-crop training data 0.1391 0.2432 0.3554
Both real frames and multi-crop 0.1339 0.2028 0.3418

result 𝑆𝑑
𝑡 with temporal consistency at time 𝑡 is generated by warping

𝑆𝑡−1 based on pre-calculated optical flow. 𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 takes the average
temporal error of all consecutive video frame pairs as the performance
of the temporal consistency. Lower 𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 indicates smoother results.

The temporal errors of four methods under three different scales are
shown in Table 7. The first row shows the temporal error of WCGAN
aiming for image style transfer, where the biggest errors are achieved
under all scales since this version does not take temporal consistency
into consideration. WCGAN trained by real video frames or Multi-Crop
video training data can both reduce temporal errors as shown in the
second and third rows. The versions of WCGAN jointly trained with
both real video frames and Multi-Crop video training data achieves
the smallest temporal errors under all scales as shown in the fourth
row. This demonstrates that real video frames and our created Multi-
Crop video training data can both enhance the temporal consistency.
Furthermore, these two kinds of video training data provide comple-
mentary information and work together effectively to further improve
temporal consistency.

5. Conclusion

In this paper, we propose WCGAN, a GAN-based model to transfer
portrait images to high-quality watercolor paintings. Local Gram matrix
loss enables detailed style characteristics to be properly captured.
Moreover, the novel adaptive architecture and adaptive training dataset
enable WCGAN to cope with portraits of different sizes. The Multi-Crop
video training data further enhances the temporal consistency in video
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style transfer tasks. Our experimental results show that WCGAN can
faithfully transfer watercolor style to portraits and achieve better tem-
poral performance in video style transfer tasks, outperforming existing
state-of-the-art methods. In the future work, facing inconsistent styles
in real watercolor datasets, we will explore new methods to deal with
mixed watercolor style transfer.
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