
ORIGINAL RESEARCH
published: 22 April 2021

doi: 10.3389/fams.2021.651467

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2021 | Volume 7 | Article 651467

Edited by:

Umberto Lupo,

École Polytechnique Fédérale de

Lausanne, Switzerland

Reviewed by:

Bastian Rieck,

ETH Zürich, Switzerland

Primoz Skraba,

Queen Mary University of London,

United Kingdom

*Correspondence:

Ka Man Yim

yim@maths.ox.ac.uk

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 09 January 2021

Accepted: 24 February 2021

Published: 22 April 2021

Citation:

Yim KM and Leygonie J (2021)

Optimization of Spectral Wavelets for

Persistence-Based Graph

Classification.

Front. Appl. Math. Stat. 7:651467.

doi: 10.3389/fams.2021.651467

Optimization of Spectral Wavelets for
Persistence-Based Graph
Classification
Ka Man Yim* and Jacob Leygonie

Mathematical Institute, University of Oxford, Oxford, United Kingdom

A graph’s spectral wavelet signature determines a filtration, and consequently an

associated set of extended persistence diagrams. We propose a framework that

optimizes the choice of wavelet for a dataset of graphs, such that their associated

persistence diagrams capture features of the graphs that are best suited to a given

data science problem. Since the spectral wavelet signature of a graph is derived from

its Laplacian, our framework encodes geometric properties of graphs in their associated

persistence diagrams and can be applied to graphs without a priori node attributes.

We apply our framework to graph classification problems and obtain performances

competitive with other persistence-based architectures. To provide the underlying

theoretical foundations, we extend the differentiability result for ordinary persistent

homology to extended persistent homology.

Keywords: topological data analysis, graph classification, graph Laplacian, extended persistent homology,

spectral wavelet signatures, radial basis neural network

1. INTRODUCTION

1.1. Background
Graph classification is a challenging problem in machine learning. Unlike data represented in
Euclidean space, there is no easily computable notion of distance or similarity between graphs.
As such, graph classification requires techniques that lie beyond mainstream machine learning
techniques focused on Euclidean data. Much research has been conducted on methods such as
graph neural networks (GNNs) [1] and graph kernels [2, 3] that embed graphs in Euclidean space
in a consistent manner.

Recently, persistent homology [4, 5] has been applied as a feature map that explicitly represents
topological and geometric features of a graph as a set of persistence diagrams (a.k.a. barcodes).
In the context of our discussion, the persistent homology of a graph G = (V ,E) depends on a
vertex function f :V → R. In the case where a vertex function is not given with the data, several
schemes have been proposed in the literature to assign vertex functions to graphs in a consistent
way. For example, vertex functions can be constructed using local geometric descriptions of vertex
neighborhoods, such as discrete curvature [6], heat kernel signatures [7] and Weisfeiler–Lehman
graph kernels [8].

However, it is often difficult to know a priori whether a heuristic vertex assignment scheme will
perform well in addressing different data science problems. For a single graph, we can optimize the
vertex function over |V| many degrees of freedom in R

V . In recent years, there have been many
other examples of persistence optimization in data science applications. The first two examples
of persistence optimization are the computation of Fréchet mean of barcodes using gradients on
Alexandrov spaces [9], and that of point cloud inference [10], where a point cloud is optimized so
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that its barcode fits a target fixed barcode. The latter is an instance
of topological inverse problems (see Oudot and Solomon [11]
for a recent overview of such). Another inverse problem is that
of surface reconstruction [12]. Besides, in the context of shape
matching [13], persistence optimization is used in order to learn
an adequate function between shapes. Finally, there are also
many recent applications of persistence optimization in Machine
Learning, such as the incorporation of topological information in
Generative Modeling [14–16] or in Image Segmentation [17, 18],
the design of topological losses for Regularization in supervised
learning [19] or for dimension reduction [20].

Each of these applications can be thought of as minimizing a
certain loss function over a manifoldM of parameters:

minθ∈M L(θ),

where L :M → BarN → R factors through the space BarN

of N-tuples of barcodes. The aim is to find the parameter θ

that best fits the application at hand. Gradient descent is a
very popular approach in minimization, but it requires the
ability to differentiate the loss function. In fact, Leygonie
et al. [21] provide notions of differentiability for maps in
and out Bar that are compatible with smooth calculus, and
show that the loss functions L corresponding the applications
cited in the above paragraph are generically differentiable.
The use of (stochastic) gradient descent is further legitimated
by Carriere et al. [22], where convergence guarantees on
persistence optimization problems are devised, using a recent
study of stratified non-smooth optimization problems [23]. In
practice, the minimization of L can be unstable due to its
non-convexity and partial non-differentiability. Some research
has been conducted in order to smooth and regularize the
optimization procedure [24, 25].

In a supervised learning setting, we want to optimize our
vertex function assignment scheme over many individual graphs
in a dataset. Since graphs may not share the same vertex set
and come in different sizes, optimizing over the |V| degrees
of freedom of any one graph is not conducive to learning a
vertex function assignment scheme that can generalize to another
graph. The degrees of freedom in any practical vertex assignment
scheme should be independent of the number of vertices of a
graph. However, a framework for parameterizing and optimizing
the vertex functions of many graphs over a common parameter
spaceM is not immediately apparent.

The first instance of a graph persistence optimization
framework (GFL) [26] uses a one layer graph isomorphism
network (GIN) [1] to parameterize vertex functions. The GIN
learns a vertex function by exploiting the local topology around
each vertex. In this paper, we propose a different framework for
assigning and parameterizing vertex functions, based on a graph’s
Laplacian operator. Using the Laplacian, we can explicitly take
both local and global structures of the graph into consideration
in an interpretable and transparent manner.

1.2. Outline and Contributions
We address the issue of vertex function parameterization and
optimization using wavelet signatures. Wavelet signatures are

vertex functions derived from the eigenvalues and eigenvectors
of the graph Laplacian and encode multiscale geometric
information about the graph [27]. The wavelet signature of a
graph is dependent on a choice of wavelet g :R → R, a
function on the eigenvalues of the graph’s Laplacian matrix.
We can thus obtain a parameterization of vertex functions for
any graph F :M → R

V by parameterizing g. Consequently,
the extended persistence of a graph—which has only four non-
trivial persistence diagrams—can be varied over the parameter
space M. If we have a function Out :Bar4 → R on persistence
diagrams that we wish to minimize, we can optimize over M to
minimize the loss function

(1)

If L is generically differentiable, we can optimize the wavelet
signature parameters θ ∈ M using gradient descent methods.
We illustrate an application of this framework to a graph
classification problem in Figure 1, where the loss function L is
the classification error of a graph classification prediction model
based on the graph’s extended persistence diagrams.

In section 2, we describe the assignment of vertex functions
F :M → R

V by reviewing the definition of wavelet signatures.
While spectral wavelets have been used in graph neural network
architectures that predict vertex features [1] and compress
vertex functions [28], they have not been considered in a
persistent homology framework for graph classification. We
describe several ways to parameterize wavelets. We also show
in Proposition 2.2 that wavelet signatures are independent of
the choice of eigenbasis of the graph Laplacian from which it
is derived, ensuring that it is well-defined. We prove this result
in Appendix B in Supplementary Material.

In section 3, we describe the theoretical basis for optimizing
the extended persistent homology of a vertex function
EPH :R

V → Bar4 and elucidate what it means for L

to be differentiable. In Proposition 3.3, we generalize the
differentiability formalism of ordinary persistence [21] to
extended persistence. We prove this result in Appendix A in
Supplementary Material.

Finally, in section 4, we apply our framework to graph
classification problems on several benchmark datasets. We show
that our model is competitive with state-of-the-art persistence-
based models. In particular, optimizing the vertex function
appreciably improves the prediction accuracy on some datasets.

2. FILTER FUNCTION PARAMETERIZATION

We describe our recipe for assigning vertex functions to any
simplicial graph G = (V ,E) based on a parameterized spectral
wavelet, the first part F of the loss function

(Equation 1 recalled)

Our recipe is based on a graph’s wavelet signature, a vertex
function derived from the graph’s Laplacian. The wavelet
signature also depends on a so-called ‘wavelet function’ in
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FIGURE 1 | Given a wavelet g :R → R, we can equip any graph with a non-trivial vertex function. This allows us to compute the extended persistence diagrams of a

graph and use the diagrams as features of the graph to predict a graph’s classification in some real world setting. The wavelet g can be optimized to improve the

classification accuracy of a graph classification pipeline based on the extended persistence diagrams of a graph’s vertex function.

g :R → R, which is independent of the graph. By modulating
the wavelet, we can jointly vary the wavelet signature across
many graphs. We parameterize the wavelet using a finite linear
combination of basis functions, such that the wavelet signature
can be manipulated in a computationally tractable way. In the
following section, we define the wavelet signature and describe
our linear approach to wavelet parameterization.

2.1. Wavelet Signatures
The wavelet signature is a vertex function initially derived
from wavelet transforms of vertex functions on graphs [29],
a generalization of wavelet transforms for square integrable
functions on Euclidean space [30, 31] for signal analysis [32].
Wavelet signatures for graphs have been applied to encode
geometric information about meshes of 3D shapes [27, 32].
Special cases of wavelets signatures, such as the heat kernel
signature [33] and wave kernel signature [34], have also been
applied to describe graphs and 3D shapes [35, 36].

The wavelet signature of a graph is constructed from the
graph’s Laplacian operator. A graph’s normalized Laplacian L ∈
R
V×V is a symmetric positive semi-definite matrix, whose entries

are given by

Luv =









1 u = v

− 1√
kukv

(u, v) ∈ E

0 otherwise

(2)

where ku is the degree of vertex u. The Laplacian’s eigenvalues
λ and eigenvectors φ are known to encode various topological
and geometric information about the graph [37, 38]; for example,
the number of zero eigenvalues corresponds to the number
of connected components of the graph. The spectrum of the
normalized Laplacian have real eigenvalues in [0, 2] [37]. As such,
any function g :R → R evaluated on the eigenvalues need only

be defined on [0, 2]. Moreover, functions on a compact domain
are easily parameterized using convenient bases.

Definition 2.1. (Wavelet Signature [27]) Let L ∈ R
V×V be

the normalized Laplacian of a simplical graph G = (V ,E).
Let φ1, . . . , φ|V| be an orthonormal eigenbasis for L and
λ1, . . . , λ|V| be their corresponding eigenvalues. The wavelet
signatureW :R

[0,2] → R
V maps a function g :[0, 2] → R, which

we refer to as a wavelet, to a vertex functionW(g) ∈ R
V linearly,

where the value ofW(g) on vertex v is given by

W(g)v =
|V|
∑

i=1

g(λi)(φi)
2
v , (3)

and (φi)v denotes the component of eigenvector φi

corresponding to vertex v.

If the eigenvalues of L have geometric multiplicity one (i.e.,
their eigenspaces are one dimensional), then the orthonormal
eigenvectors are uniquely defined up to a choice of sign. It
is then apparent from Equation (3) that the wavelet signature
is independent of the choice of sign. However, if some
eigenvalues have geometric multiplicity greater than one, then
the orthonormal eigenvectors of L are uniquely defined up
to orthonormal transformations in the individual eigenspaces.
However, the wavelet signature is well-defined even when the
multiplicities of eigenvalues are greater than one. This is the
content of the next Proposition, whose proof is deferred to
Appendix B in Supplementary Material.

PROPOSITION 2.2. The wavelet signature of a graph is
independent of the choice of orthonormal eigenbasis for
the Laplacian.

Remark 2.3. In addition to the traditional view of wavelets from
a spectral signal processing perspective [29], we can also relate the
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wavelet signature of a vertex v to the degrees of vertices in some
neighborhood of v prescribed by g. Consider a wavelet g :[0, 2] →
R. On a finite graph G, the normalized Laplacian L has at most
|V|many distinct eigenvalues. As such, there exists a polynomial
ĝ(x) =

∑p
n=0 anx

n of finite order that interpolates g at the
eigenvalues g(λi) = ĝ(λi). Therefore, W

(

g
)

= W
(

ĝ
)

. Moreover,
the vertex values assigned byW

(

ĝ
)

are the diagonal entries of the
matrix polynomial ĝ(L):

ĝ(L)vv =
p
∑

n=0

an
(

Ln
)

vv
=

|V|
∑

i=1

ĝ(λi)(φi)
2
v =

|V|
∑

i=1

g(λi)(φi)
2
v

= W(g)vv. (4)

Furthermore, we can also write the matrix polynomial ĝ(L) as
a matrix polynomial in A = I − L, the normalized adjacency
matrix. From the definition of L, we can compute the diagonal
entry of a monomial Ar corresponding to vertex v as an inverse
degree weighted count of paths1 [v0, v1, . . . , vr] on the graph
which begin and end on vertex v = v0 = vr [39]:

(

Ar
)

vv
= 1

kv

∑

[v,v1 ,...,vr−1 ,v]

(
r−1
∏

l=1

1

kvl

)

. (5)

By expressing the wavelet signature as a matrix polynomial in A,
we see that g controls how information at different length scales
of the graph contribute to the wavelet signature. For instance, if g
were an order p polynomial, thenW(g)v only takes the degrees of
vertices that are ⌊p/2⌋ away from v into account. As a corollary,
since W(g) can be specified by replacing g with a polynomial ĝ
of order at most |V| − 1, the wavelet signature at a vertex is only
dependent on the subgraph of G that is within ⌊|V| − 1⌋/2 steps
away from v.

2.2. Parameterizing the Wavelet
We see from Remark 2.3 that the choice of wavelet g
determines how the topology and geometry of the graph is
reflected in the vertex function. Though the space of wavelets
is potentially infinite dimensional, here we only consider
wavelets gθ (x) that are parameterized by parameters θ in a
finite dimensional manifold, so that we can easily optimize
them using computational methods. In particular, we focus on
wavelets written as a linear combination of m basis functions
h1, . . . , hm :[0, 2] → R

gθ (x) : =
m
∑

j=1

θjhj(x) (6)

This parameterization of wavelets in turn defines a
parameterization of vertex functions F :Rm → R

V for our
optimization pipeline in Equation (1)

F : θ ∈ R
m 7−→ F(θ) : = W

(

gθ
)

∈ R
V . (7)

1Here a path refers to a sequences of vertices that are connected to the next vertex

in the sequence by an edge.

Since W(g) is a linear function of the wavelet g, F is a
linear transformation:

F(θ) = W





m
∑

j=1

θjhj(x)



 =
m
∑

j=1

θjW
(

hj
)

. (8)

We can write F as a |V| × m matrix acting on a vector

[θ1, . . . θm]
⊺ ∈ R

m, whose columns are the vertex
functionsW

(

hj
)

.

Example 2.4 (Chebyshev Polynomials). Any Lipschitz
continuous function on an interval can be well-approximated
by truncating its Chebyshev series at some finite order [40]. The
Chebyshev polynomials Tn :[−1, 1] → R

Tn(x) = cos(n arccos(x)) n ∈ N≥0. (9)

form an orthonormal set of functions. We can thus consider
hj(λ) = Tj(λ−1), j = 0, 2, . . . ,m as a naïve basis for wavelets.We
exclude T1(x) = x in the linear combination asW(T1(1−x)) = 0
for graphs without self loops.

Example 2.5 (Radial Basis Functions). In the machine
learning community, a radial function refers loosely to a
continuous monotonically decreasing function ρ :R≥0 → R≥0.
There are many possible choices for ρ, for example, the
inverse multiquadric

ρ(r) =
(
( r

ǫ

)2
+ 1

)− 1
2

(10)

where ǫ 6= 0 is a width parameter. We can obtain a naïve
wavelet basis hj(x) = ρ

(∥
∥x− xj

∥
∥
)

using copies of ρ offset
by a collection of centroids xj ∈ R along R. In general, the
centroids are parameters that could be optimized, but we fix
them in this study. This parameterization can be considered as
a radial basis function neural network. RBNNs are well-studied in
function approximation and subsequently machine learning; we
refer readers to [41, 42] for further details.

2.3. The Choice of Wavelet Basis
The choice of basis functions determines the space of wavelet
signatures and also the numerical stability of the basis function
coefficients which serve as the wavelet signature parameters.
The stability of the parameterization depends on the graphs
as much as the choice of wavelet basis h1, . . . , hm. We can
analyse the stability of a parameterization F by its the singular
value decomposition

F =
r
∑

k=1

σkukv
⊺

k
(11)

where σ1, . . . , σr are the non-zero singular values of the matrix,
and uk ∈ R

|V| and vk ∈ R
m are orthonormal sets of

vectors, respectively. If the distribution of singular values span
many orders of magnitude, we say the parameterization is ill-
conditioned. An ill-conditioned parameterization interferes with

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2021 | Volume 7 | Article 651467

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Yim and Leygonie Optimizing Graph Wavelet Persistence

the convergence of gradient descent algorithms on a loss function
evaluated on wavelet signatures. We discuss the relationship
between the conditioning of F and the stability of gradient
descent in detail in Remark 2.7.

We empirically observe that the coefficients of a naïve
choice of basis functions, such as Chebyshev polynomials
or radial basis functions, are numerically ill-conditioned.
In Figure A2 (Appendix in Supplementary Material.), we
can see that the singular values of radial basis function
and Chebyshev polynomial parameterizations, respectively, are
distributed across a large range on the logarithmic scale for some
datasets of graphs in machine learning. We address this problem
by picking out a new wavelet basis

h′k(x) =
1

σk

m
∑

j=1

(vk)jhj(x), k = 1, . . . , r, (12)

where σk are the singular values of F and vk are the associated
vectors in R

m from the singular value decomposition of matrix F
in Equation (11). Then the parameterization F′ :Rr → R

V

F′(θ ′) =
r
∑

k=1

θ ′kW(h′k). (13)

have singular values equal to one, since this is a linear
combination of orthonormal vectors uk ∈ R

V :

W(h′k) =
m
∑

j=1

1

σk
(vk)jW(hj) =

1

σk
Fvk = uk. (14)

As an example, we plot the newwavelet basis h′
k
derived from a 12

parameter radial basis function parameterization for the MUTAG
dataset in Figure A3 inAppendix B in Supplementary Material.

Remark 2.6 (Learning a Wavelet Basis for Wavelet Signatures
on Multiple Graphs). In the case where the wavelet coefficients
parameterize the wavelet signatures over graphs G1, . . . ,GN , we
can view the maps F1, . . . , FN that map wavelet basis coefficients
to vertex functions of graphs G1, . . . ,GN , respectively, as a
parameterization for the disjoint union

⊔

i Gi:

f =






f1
...
fN




 =






F1
...
FN




 θ = : Fθ . (15)

We can then perform a singular value decomposition of
the parameterization F on

⊔

i Gi and derive a new, well-
conditioned basis.

Remark 2.7 (Why the Conditioning of F Matters). Let us
optimize a loss function L on the parameter space of wavelet
coefficients θ using a gradient descent algorithm. In a gradient
descent step of step size s, the wavelet coefficients are updated
to θ 7→ θ − s∇θL. Using the singular value decomposition of F
(Equation 11), we can write

∇θL = ∇θ f
⊺
∇fL = F⊺∇fL =

r
∑

k=1

σk
〈

∇fL, uk
〉

vk. (16)

The change in the vertex function is simply the matrix F applied
to the change in wavelet parameters. Hence, the vertex function
is updated to f 7→ f − sF∇θL, where

F∇θL =
r
∑

k=1

σk
〈

∇fL, uk
〉

Fvk =
r
∑

k=1

σ 2
k

〈

∇fL, uk
〉

uk. (17)

If the loss function L has large second derivatives– for example,
due to non-linearities in the function on persistence diagrams
Out :Bar4 → R—the projections

〈

∇fL, uk
〉

in Equations (16)
and (17) may change dramatically from one gradient descent
update to another. If the smallest singular value is much smaller
than the largest, then updates to the wavelet signature can
be especially unstable throughout the optimization process.
This source of instability can be removed if we choose a
parameterization with uniform singular values σk = 1. In this
case, the update to f is simply the projection of ∇fL onto the
space of wavelet signatures spanned by u1, . . . , ur , without any
distortion introduced by non-uniform singular values:

f 7→ f − s

r
∑

k=1

〈

uk,∇fL
〉

uk. (18)

3. EXTENDED PERSISTENT HOMOLOGY

The homology of a given graph is a computable vector space
whose dimension counts the number of connected components
or cycles in the graph. Finer information can be retained by
filtering the graph and analyzing the evolution of the homology
throughout the filtration. This evolution is described by a set
of extended persistence diagrams (a.k.a. extended barcodes), a
multiset of points

〈

b, d
〉

that record the birth b and death
of homological features in the filtration. In this section, we
begin by summarizing these constructions. We refer the reader
to Zomorodian and Carlsson [4], Edelsbrunner and Harer [5],
and Cohen-Steiner et al. [43] for full treatments of the theory
of Persistence.

Compared to ordinary persistence, extended persistence is
a more informative and convenient feature map for graphs.
Extended persistence encodes strictly more information than
ordinary persistence. For instance, the cycles of a graph are
represented as points with d = ∞ in ordinary persistence.
Thus, only the birth coordinate b of such points contain useful
information about the cycles. In contrast, the corresponding
points in extended persistence are each endowed with a finite
death time d, thus associating extra information to the cycles. The
points at infinity in ordinary persistence also introduce obstacles
to vectorization procedures, as often arbitrary finite cutoffs are
needed to ‘tame’ the persistence diagrams before vectorization.

3.1. Extended Persistent Homology
Let G = (V ,E) be a finite graph without double edges and self-
loops. For the purposes of this paper, the associated extended
persistent homology is a map

EPH :R
V → Bar4

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 April 2021 | Volume 7 | Article 651467

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Yim and Leygonie Optimizing Graph Wavelet Persistence

from functions f ∈ R
V on its vertices to the space of four

persistence diagrams or barcodes, which we define below. Themap
arises from a filtration of the graph, a sequential attachment of
vertices and edges in ascending or descending order of f . We
extend f on each edge e = (v, v′) by the maximal value of f over
the vertices v and v′, and we then let Gt ⊂ G be the sub graph
induced by vertices taking value less than t. Then we have the
following sequence of inclusions:

(19)

Similarly, the sub graphsGt ⊂ G induced by vertices taking value
greater than t assemble into a sequence of inclusions:

(20)

The changes in the topology of the graph along the filtration
in ascending and descending order of f can be detected
by its extended persistence module, indexed over the poset
R ∪ {∞} ∪ R

op:

(21)
where Hp is the singular (relative) homology functor in
degree p ∈ 0, 1 with coefficients in a fixed field, chosen to be
Z/2Z in practice. In general terms, the modules V0(f ) and V1(f )
together capture the evolution of the connected components and
loops in the sub graphs of G induced by the function f .

Each module Vp(f ) is completely characterized by a finite
multi-set EPHp

(

f
)

of pairs of real numbers
〈

b, d
〉

called intervals
representing the birth and death of homological features.
Following Cohen-Steiner et al. [44], the intervals in EPHp

(

f
)

are
further partitioned according to the type of homological feature
they represent:

EPHp

(

f
)

=
{〈

b, d
〉

| b < d < ∞
}

︸ ︷︷ ︸

=EPHord
p (f )

⊔
{〈

b, d
〉

| b < ∞ < d
}

︸ ︷︷ ︸

=EPHext
p (f )

⊔
{〈

b, d
〉

| ∞ < b < d
}

︸ ︷︷ ︸

=EPHrel
p (f )

. (22)

Each of the three finite multiset EPHk
p

(

f
)

, for k ∈ {ord, ext, rel},
is an element in the space Bar of so-called barcodes or

persistence diagrams. However, EPHrel
0

(

f
)

and EPHord
1

(

f
)

being
trivial for graphs, we refer to the collection of four remaining
persistence diagrams

EPH
(

f
)

=
[

EPHord
0

(

f
)

,EPHext
0

(

f
)

,EPHext
1

(

f
)

,EPHrel
1

(

f
)
]

∈ Bar4 (23)

as the extended barcode or extended persistence diagram of f . We
have thus defined the extended persistence map

EPH :R
V → Bar4.

Remark 3.1. If we only apply homology to the filtration
of Equation (19), we get an ordinary persistence module
indexed over the real line, which is essentially the first row
in Equation (21). This module is characterized by a unique
barcode PHp(f ) ∈ Bar. We refer to the map

PH : f ∈ R
V 7−→

[

PH0(f ),PH1(f )
]

∈ Bar2 (24)

as the ordinary persistence map.

3.2. Differentiability of Extended
Persistence
The extended persistence map can be shown to be locally
Lipschitz by the Stability theorem [44]. The Rademacher theorem
states that any real-valued function that is locally Lipschitz is
differentiable on a full measure set. Thus, so is our loss function

(Equation 1 recalled)

as long as Out and F are smooth or locally Lipschitz2. If a loss
function L is locally Lipschitz, we can use stochastic gradient
descent as a paradigm for optimization. Nonetheless, the theorem
above does not rule out dense sets of non differentiability
in general.

In this section, we show that the set where EPH is not
differentiable is not pathological. Namely, we show that EPH
is generically differentiable, i.e., differentiable on an open dense
subset. This property guarantees that local gradients yield reliable
descent directions in a neighborhood of the current iterate. We
recall from Leygonie et al. [21] the definition of differentiability
for maps to barcodes.

We call a map F :M → R
V a parameterization, as

it corresponds to a selection of filter functions over G
parameterized by the manifold M. Then B : = EPH ◦ F is
the barcode valued map whose differentiability properties are of
interest in applications.

Definition 3.2. A map B :M → Bar on a smooth manifold M

is said to be differentiable at θ ∈ M if for some neighborhood
U of θ , there exists a finite collection of differentiable maps3

bi, di :U → R ∪ {∞}, called a local coordinate system for B at θ ,
such that

∀θ ′ ∈ U, B(θ ′) =
{〈

bi(θ
′), di(θ

′)
〉

| bi(θ ′) 6= di(θ
′)
}

.

For N ∈ N, we say that a map B :M → BarN is differentiable at
θ if all its components are so.

In Leygonie et al. [21], it is proven that the composition
PH ◦ F is generically differentiable as long as F is so. It is possible
to show that EPH ◦ F is generically differentiable along the

2In practice, a locally Lipschitz Out can be constructed out of Lipschitz stable

vectorizationmethods, such as Persistence Landscapes [45] and Persistence Images

[46].
3By convention, a differentiable map that takes the value∞ is constant.
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same lines, but we rather provide an alternative argument in
the Appendix. Namely, we rely on the fact that the extended
persistence of G can be decoded from the ordinary persistence
of the cone complex C(G), a connection first noted in Cohen-
Steiner et al. [44] for computational purposes.

PROPOSITION 3.3. Let F :M → R
V be a generically

differentiable parameterization. Then the composition EPH ◦ F is
generically differentiable.

For completeness, the proof provided in the Appendix
treats the general case of a finite simplicial complex K of
arbitrary dimension.

4. BINARY GRAPH CLASSIFICATION

We investigate whether optimizing the extended persistence of
wavelet signatures can be usefully applied to graph classification
problems, where persistence diagrams are used as features to
predict discrete, real life attributes of networks. In this setting,
we aim to learn θ ∈ M that minimize the classification error of
graphs over a training dataset.

We apply our wavelet optimization framework to
classification problems on the graph datasets MUTAG [47, 48],
COX2 [49], DHFR [49], NCI1 [50, 51], PROTEINS [52, 53],
and IMDB-B [54]. The former five datasets are biochemical
molecules and IMDB-B is a collection of social ego networks.
In our models, we use persistence images [46] as a fixed
vectorization method and use a feed forward neural network
to map the persistence images to classification labels. We also
include the eigenvalues of the graph Laplacian as additional
features; model particulars are described in the sections below.

To illustrate the effect of wavelet optimization on different
classification problems, we also perform a set of control
experiments where for the same model architecture, we fix the
wavelet and only optimize the parameters of the neural network.
The control experiment functions as a baseline against which we
assess the efficacy of wavelet optimization.

We benchmark our results with two existing persistence based
architectures, PersLay [7] and GFL [26]. Perslay optimizes
the vectorization parameters and use two heat kernel signatures
as fixed rather than optimizable vertex functions for computing
extended persistence. GFL optimizes and parameterizes vertex
functions using a graph isomorphism network [1], and computes
ordinary sublevel and superlevel set persistence instead of
extended persistence.

4.1. Model Architecture
We give a high level description of our model and relegate
details and hyperparameter choices of the vectorization
method and neural network architecture to Appendix C
in Supplementary Material. In our setting, the extended
persistence diagrams of the optimizable wavelet signatures
for each graph are vectorized as persistence images. We also
include the static persistence images of a fixed heat kernel
signature, W(e−0.1x), as an additional set of features, alongside
some non-persistence features. Both the optimized and static
persistence diagrams are transformed into the persistence images
using identical hyperparameters. We feed the optimizable and

TABLE 1 | Binary classification accuracy of our model where we vary whether

non-Persistence features are included and whether the wavelet is optimized.

Persistence only Non-persistence features incl.

Control Wavelet Opt. Control Wavelet Opt.

MUTAG 89.2 ± 0.6 89.8 ± 0.8 89.0 ± 0.6 90.4 ± 0.4

COX2 79.6 ± 1.0 79.4 ± 0.7 80.8 ± 1.0 80.8 ± 1.0

DHFR 79.9 ± 0.4 80.4 ± 0.4 80.3 ± 0.9 81.0 ± 0.9

NCI1 73.7 ± 0.2 74.3 ± 0.5 74.3 ± 0.3 74.4 ± 0.3

PROTEINS 72.9 ± 0.3 73.0 ± 0.4 74.5 ± 0.4 74.6 ± 0.6

IMDB-B 68.3 ± 0.5 68.6 ± 0.7 71.6 ± 0.9 72.0 ± 0.7

The reported accuracies are the mean over 10 ten-folds, recorded at epochs reported
in Table C1. We also provide standard deviations of the 10 mean accuracies of each
ten-fold. See section 4.1.2 for the particulars about the non-persistence features.

static persistence images into two separate convolutional neural
networks (CNNs) with the same architecture. Similarly, we feed
the non-persistence features as a vector into a separate multilayer
perceptron. The outputs of the CNNs are concatenated with
the outputs of the multi-layer perceptron. Finally, an affine
transformation sends the concatenated vector to a real number
whose sign determines the binary classification.

4.1.1. Wavelet Parametserization

We choose a space of wavelets spanned by 12 inverse
multiquadric radial basis functions

hj(x) =
(
(
x− xj

ǫ

)2

+ 1

)− 1
2

(25)

whose centroids xj are located at xj = 2(j − 1)/9, j =
0, . . . , 11. The width parameter is chosen to be the distance
between the centroids, ǫ = 2/9. On each dataset, we derive
a numerically stable parameterization using the procedure
described in section 2.2; the parameters we optimize are the
coefficients of the new basis given by Equation (12). We initialize
the parameters by fitting them via least squares to the heat kernel
signatureW(e−10x) on the whole dataset of graphs.

4.1.2. Non-Persistence Features

We also incorporate the eigenvalues of the normalized Laplacian
as additional, fixed features of the graph. Since the number of
eigenvalues for a given graph is equal to the number of vertices,
it differs between graphs in the same dataset. To encode the
information represented in the eigenvalues as a fixed length
vector, we first sort the eigenvalues into a time-series; we then
compute the log path signature of the time series up to level
four, which is a fixed length vector in R

8. The log-signature
captures the geometric features of the path; we refer readers to
Chevyrev and Kormilitzin [55] for details about path signatures.
For IMDB-B in particular, we also include the maxima and
minima of the heat kernel signatures W(e−10x) and W(e−0.1x),
respectively, of each graph.

4.2. Experimental Set Up
We employ a 10 ten-fold test-train split scheme on each dataset to
measure the accuracy of our model. Each ten-fold is a set of ten
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TABLE 2 | Binary classification accuracy on datasets of graphs.

Non-persistence state-of-the-art Persistence based

P-SAN RetGK GIN FGSD PWL GFL Perslay Control Wavelet Opt.

[57] [58] [1] [59] [8] [26] [7] This paper

Node attr. Yes No Yes No

MUTAG 92.6 90.3 ± 1.1 89.4 92.1 90.5 ± 1.3 – – 89.8 ± 0.9 89.0±0.6 90.4±1.3

COX2 – 81.4 ± 0.6 – – – – – 80.9 ± 1.0 80.8±0.4 80.8±1.0

DHFR – 82.5 ± 0.8 – – – – – 80.3 ± 0.8 80.0±0.4 81.0±0.9

NCI1 78.6 84.5 ± 0.2 82.7 79.8 85.6 ± 0.3 77.2 71.2 73.5 ± 0.3 74.3±0.3 74.4±0.3

PROTEINS 75.9 78.0 ± 0.3 76.2 73.4 75.9 ± 0.8 73.4 74.1 74.8 ± 0.3 74.5±0.4 74.6±0.6

IMDB-B 71.0 72.3 ± 0.6 75.1 73.6 73.0 ± 1.0 – 74.5 71.2 ± 0.7 71.6±0.9 72.0±0.7

# Ten-folds 10 10 1 1 10 1 1 10 10 10

The best accuracy of persistence-based models without using node attributes is made bold for each dataset. The performance of our model is reported in the column Wavelet Opt. on
the right hand side. The accuracies of the control model, where the wavelet parameters are fixed to the initial values, are shown in the column Control. Both these models use additional
features (see section 4.1.2). The accuracies of our model are the means over 10 ten-folds, recorded at epochs reported in Table C1. We also provide the standard deviations of the 10
mean accuracies of each ten-fold. For other architectures, we indicate whether their accuracies were reported as averages over 1 ten-fold or 10 ten-fold in the bottom row of the table.
To avoid confusion, we leave out the errors reported for P-SAN, GIN and GFL and refer the reader to the original sources, as they were calculated using a different formula. Errors were
not reported in [59] for FGSD.

experiments, corresponding to a random partition of the dataset
into ten portions. In each experiment, a different portion is
selected as the test set while themodel is trained on the remaining
nine portions. We perform 10 ten-folds to obtain a total of 10 ×
10 experiments, and report the accuracy of the classifier as the
average accuracy over 100 such experiments. The epochs at which
the accuracies were measured are specified in Table C1.

Across all experiments, we use binary cross entropy as the
loss function. We use the Adam optimizer [56] with learning rate
lr = 1e-3 to optimize the parameters of the neural network.
The wavelet parameters are updated using stochastic gradient
descent with learning rate lr = 1e-2, for all datasets except
for IMDB-B, where the learning rate is set to lr = 1e-1.
The batch sizes for each experiment are shown in Table C2. In
all experiments, we stop the optimization of wavelet parameters
at epoch 50 while the neural network parameters continue to
be optimized.

We use the GUDHI library to compute persistence, and make
use of the optimization and machine learning library PyTorch
for the construction of the graph classifications models.

4.3. Results and Discussion
In Table 1, we present the classification accuracies of our model.

For each dataset, we perform four experiments using our model,

varying whether the wavelet parameter is optimized and whether

additional features are included. In Table 2, we show the test

accuracy of our model alongside two persistence-based graph
classification architectures, Perslay and GFL, as well as other
state-of-the-art graph classification architectures.

We first compare the performances of our model between
cases where we optimize and fix the wavelets. In Table 1,
we see that on MUTAG and DHFR, optimizing the wavelet
improves the classification accuracy regardless of whether
extra features are included. On NCI1, wavelet optimization

improves the classification accuracy only persistence features
are included. When we include non-persistence features in
the model, the performances of the optimized and control
models are statistically indistinguishable for NCI1, suggesting
that the non-persistence features play a more significant
role in the classification. As for COX2, PROTEINS, and
IMDB-B, optimizing the wavelet coefficients do not bring
about statistically significant improvements. This indicates
that the initial wavelet signature—the heat kernel signature
W(e−10x)—is a locally optimal choice of wavelet for our neural
network classifier.

We now compare our architecture to other persistence
based architectures, Perslay and GFL, where node attributes
are excluded from their vertex function models. Except on
PROTEINS, our wavelet optimized model matches or exceeds
Perslay. While our model architecture and choice of wavelet
initialization is similar to that of Perslay, we differ in two
important respects. Perslay fixes the vertex functions but
optimizes the weights assigned to points on the persistence
diagrams, as well as the parameters of the persistence images. Our
improvements on Perslay for MUTAG, DHFR, and IMDB-B
indicate that vertex function optimization yields improvements
that cannot be obtained through vectorization optimization alone
on some datasets of graphs.

Compared to GFL (without node attributes), both Perslay
and our architecture achieves similar or higher classification
accuracies on PROTEINS and NCI1. This supports wavelet
signatures being viable models for vertex functions on those
datasets. On the other hand, both Perslay and our model
lag behind GFL on IMDB-B. We attribute this to the fact that
IMDB-B, unlike the other bioinformatics datasets, consists of
densely connected graphs. The graphs in IMDB-B have diameter
at most two and 14% of the graphs are cliques. This fact has two
consequences. First, we expect the one-layer GIN used in GFL—a
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local topology summary—to be highly effective in optimizing for
the salient features of a graph with small diameter. Second, the
extended persistence modules for cliques have zero persistence,
since all vertices are assigned the same function value due to
symmetry. In contrast, ordinary persistence used in GFL is
able to capture the cycles in a complete graph as points with
infinite persistence.

Compared to non-persistence state-of-the-art architectures in
Table 1, our model achieves competitive accuracies on MUTAG,
COX2, and DHFR. For NCI1 and PROTEINS, all persistence
architectures listed that exclude additional node attributes
perform poorly in comparison, though PWL was able to achieve
leading results with node attributes.

All in all, we observe that wavelet signatures can
be an effective parameterization of vertex functions
when we use extended persistence as features for graph
classification. In particular, on some bioinformatics datasets,
we show that optimizing the wavelet signature can lead
to improvements in classification accuracy. The wavelet
signature approach is complementary to the GFL approach to
vertex function parameterization as they show strengths on
different datasets.

5. CONCLUSION

We have presented a framework for equipping any graph G
with a set of extended persistence diagrams EPH ◦ F :M →
Bar4 parameterized over a manifold M, a parameter space
for the graph’s wavelet signature. We described how wavelet
signatures can be parameterized and interpreted. Given a
function on extended persistence diagrams Out :Bar4 → R

that is differentiable, we have shown how a loss function L =
Out ◦ EPH ◦ F can be generically differentiable with respect to
θ ∈ M as L. Thus, we can apply gradient descent methods
to optimize the extended persistence diagrams of a graph to
minimize L.

We applied this framework to a graph classification
architecture where the wavelet signature is optimized
for classification accuracy. We are able to demonstrate
an increase in accuracy on several benchmark
datasets where the wavelet is optimized, and perform
competitively with state-of-the-art persistence based graph
classification architectures.
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