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Generating Animatable 3D Cartoon Faces from Single Portraits

Chuanyu Pan · Guowei Yang · Taijiang Mu · Yu-Kun Lai

Abstract With the booming of virtual reality (VR) tech-

nology, there is a growing need for customized 3D avatars.

However, traditional methods for 3D avatar modeling are ei-

ther time-consuming or fail to retain similarity to the per-

son being modeled. We present a novel framework to gen-

erate animatable 3D cartoon faces from a single portrait im-

age. We first transfer an input real-world portrait to a styl-

ized cartoon image with a StyleGAN. Then we propose a

two-stage reconstruction method to recover the 3D cartoon

face with detailed texture, which first makes a coarse estima-

tion based on template models, and then refines the model

by non-rigid deformation under landmark supervision. Fi-

nally, we propose a semantic preserving face rigging method

based on manually created templates and deformation trans-

fer. Compared with prior arts, qualitative and quantitative

results show that our method achieves better accuracy, aes-

thetics, and similarity criteria. Furthermore, we demonstrate

the capability of real-time facial animation of our 3D model.

Keywords 3D Reconstruction, Cartoon Face Recon-

struction, Face Rigging, Stylized Reconstruction, Virtual

Reality

1 Introduction

Virtual and augmented reality (VR/AR) has developed rapidly

in recent years. An essential and challenging task in this field

is to create virtual 3D faces for users and avatars. These

faces should achieve high performance on aesthetics and

recognizability, resembling the person being modeled. They
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should also be animatable for many downstream applica-

tions. However, traditional methods either require heavy man-

ual modeling, which is time consuming, or rely on exist-

ing general templates, and thus tend to lose recognizability.

With the development of deep learning techniques, a few

methods [12,10,14] have been proposed that automatically

reconstruct realistic 3D faces from images. However, due to

numerous facial details, realistic 3D reconstruction becomes

extremely hard to reach high similarity with the reference

face. In comparison, cartoon faces are easier to reach high

visual performance and can be represented with less mem-

ory. Therefore, many VR/AR applications choose 3D car-

toon faces as avatars for user images.

Our work focuses on automatically creating 3D animat-

able cartoon faces based on a single real-world portrait. As

Fig. 1 shows, we split our pipeline into the following steps:

we first generate a stylized cartoon image from the input im-

age with a StyleGAN [20]; then we reconstruct a static 3D

cartoon face from the stylized image; finally, we generate

semantic-preserving facial rigs to make the 3D face animat-

able.

Existing face reconstruction methods [12,10] perform

poorly in reconstructing cartoon faces because they intro-

duce strong real-world priors that are hard to generalize to

the cartoon domain. Some works [33] that reconstruct 3D

caricatures fail to perform well on real-world portrait images

due to domain gaps as well. However, to obtain accurate

texture mapping and natural facial animation, precise corre-

spondences between the reconstructed 3D face and seman-

tic labels on the 2D image are required. These correspon-

dences are usually acquired by projecting the model back

to the image. Therefore, wrong shapes would cause wrong

correspondences, highlighting the necessity for accurate re-

construction in this task.

To solve this problem, we propose a two-stage recon-

struction method. In the first stage, we utilize face templates

and a reconstruction network to make a coarse estimation.
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Fig. 1 The pipeline of our animatable 3D cartoon face generation method. We first transform an input portrait to a 2D cartoon image. Then we

conduct template-based coarse reconstruction and deformation-based fine reconstruction to build an elaborate 3D cartoon face. Finally, we generate

semantic face rigs for facial animation, making the static 3D model animatable.

In the second stage, our non-rigid deformation refinement

adjusts the 3D model under the supervision of accurate 2D

annotations. This refinement is not restricted to a specific

domain. Some works [14,7] introduced a similar idea of

adding a refinement network to adjust the 3D model. How-

ever, these works constrain the refinement on depth or nor-

mal directions. As a result, they are effective in reconstruct-

ing face details like wrinkles and moles. But for cartoon

faces, which usually contain larger eyes and exaggerated ex-

pressions, these refinements are insufficient to handle. Our

method conducts more general refinement, making accurate

alignment without unnatural distortions. We show that our

method performs well on both cartoon and real-world data.

Face rigging is the last part of our pipeline, which is

the basis for facial animation. Facial animation methods [3]

that use 3D morphable models (3DMM) [5] usually lack se-

mantics, making it hard to apply them to industrial applica-

tions. Some face rigging methods [26,43] can generate se-

mantic rigs but require user-specific training samples. Our

semantic-preserving rigging method conducts deformation

transfer from a set of hand-made expression models to the

target. The expression models are predefined and built by

professional modelers, and the rigging process is free from

any reference samples.

Our work is industry-oriented, aiming to realize high-

quality customized cartoon face reconstruction with real-

time animation capability. Experiments show that our method

outperforms prior arts on both reconstruction accuracy and

user subjective evaluation. We show visualization results and

an application of real-time video driven animation. In sum-

mary, our main contributions are:

1. We develop a complete system that generates a user-

specific 3D cartoon face from a single portrait, which is

real-time animatable. It can be directly applied to VR/AR

applications such as virtual meetings and social network-

ing for avatar customization.

2. To achieve this, we propose a two-stage 3D face recon-

struction scheme that produces high-quality results on

both real-world portrait images and cartoon images. Our

deformation-based refinement in the second stage evi-

dently improves the performance of texture mapping and

facial animation.

3. We further provide a solution for semantic-preserving

face rigging without reference samples.

2 Related Work

Model-based Single Image 3D Face Reconstruction. 3D face

reconstruction has been studied extensively in 3D computer

vision, which is widely applied in face recognition, charac-

ter generation, facial data collection, etc. The reconstructed

3D faces are usually represented as 3D meshes with a large

number of vertices. To reduce the complexity of face rep-

resentation, 3D Morphable Models (3DMM) [5] have been

proposed for face modeling. 3DMM is a set of basis that

constructs a low-dimensional subspace of 3D faces. The ge-

ometry and texture of the faces that reside in the manifold

can be expressed by linear combinations of the basis. Some

works [4,46,17,2] align the reconstructed face model with

facial landmarks on the input image to regress 3DMM coef-

ficients. However, these methods have difficulties capturing

detailed geometry of the faces due to the landmark sparsity.

Other works use features like image intensities and edges [35]

to preserve facial fidelity. With the development of deep

learning and differentiable rendering, some recent works [22,

19,45] use Convolutional Neural Networks (CNNs) to learn

the 3DMM coefficients and pose parameters. To alleviate the

lack of training data, Deng et al. [10] utilize photometric in-

formation to train CNNs in a weakly-supervised manner. All

these 3DMM-based methods are facing the same problem:

exaggerated shapes and geometry details can hardly be pre-

served due to the lack of expressivity of the low-dimensional

linear models. To tackle this problem, Guo et al. [14] pro-

pose a finetuning network to recover geometry details, such

as wrinkles and moles, after 3DMM coarse reconstruction.

However, this method restricts the finetuning displacement

to the depth direction, so still not capable of reconstructing

exaggerated expressions and shapes, like large eyes and big

mouth, which are quite common in cartoon images. There

are also some model-free single-image reconstruction meth-

ods [16,21,15,12]. However, the results of these methods
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Fig. 2 Overview of our two-stage 3D cartoon face reconstruction. (a) Our coarse reconstruction method utilizes a CNN to predict 3DMM coeffi-

cients from an input image. The output coefficients contain a combination of parameters for identity αid, expression αid, texture αtex, lighting

δ, and pose p. (b) Our fine reconstruction method refines the coarse shape using landmark supervision with Laplacian deformation. The refined

model is then colored by diffused texture.

are hard to be aligned or animated due to the topological

inconsistency of the output meshes.

Stylized Face Reconstruction. Stylized faces usually come

with larger variation of shapes and expressions, making it

difficult to transfer realistic reconstruction methods to the

cartoon domain directly. Liu et al. [27] represent 3D cari-

catures with 3DMM. Since 3DMM is low-dimensional, the

reconstructed geometry varies little. Wu et al. [39] recon-

struct 3D stylized faces from 2D caricature images. To ad-

dress the limited deformation space of 3DMM for 3D cari-

catures, their approach deforms a 3D standard face by opti-

mizing deformation gradients under the constraints of facial

landmarks. The follow-up work [6] utilizes a CNN to learn

the deformation gradients. These methods suffer from poor

reconstruction accuracy due to the sparsity of supervision,

and the large gap between the standard face and the target.

Following [36], Qiu et al. [33] predict the surface of 3D cari-

catures with an implicit function, which is then aligned with

3DMM. However, this method requires a large amount of

3D training data, which is difficult to collect. Overall, re-

search on reconstructing 3D stylized faces is still quite lim-

ited, and cartoon reconstruction remains to be a challenging

task.

Face Rigging. Face rigging is a crucial step for 3D facial

animation. By introducing 3DMM, facial expressions can be

represented by linear combinations of PCA (Principal Com-

ponent Analysis) basis [5,3]. Vlasic et al. [38] propose a

multi-linear model to encode facial identity, expression and

viseme. Synthesizing from large quantity of real-world data,

these PCA models are generally built without semantics, in-

creasing difficulty of using them to drive facial animation.

To generate user-specific blendshapes for each neutral face,

hand-crafted or 3D-scanned blendshape models are required

[1,25]. Li et al. [26] generate facial blendshape rigs from

sparse exemplars. However, it still relies on existing well-

crafted face models, and preparing examplars for each sub-

ject is impractical. Pawaskar et al. [31] transfer a set of facial

blendshapes from one identity to another; however, the topo-

logical difference between the two models could have nega-

tive impact on its performance. Some other works [13,18,8]

automatically generate personalized blendshapes from video

sequences or RGBD frames. Although these works achieve

impressive performance, they require temporally continuous

data, so are not applicable to single image reconstruction.

3 Method

As shown in Fig. 1, our pipeline can be split into three parts:

stylization, reconstruction, and rigging. For stylization, ex-

isting methods like StyleGAN [20] have achieved impres-

sive performance. Therefore, we directly apply a StyleGAN-

based style transfer method [32] to generate cartoon images

from real-world portraits. In this section, we will focus on

our reconstruction and rigging methods.

To recover accurate geometry and detailed texture from

a single cartoon image, we split the reconstruction into two

stages. The first stage is to make a coarse estimation of the

face geometry with CNN-based 3DMM coefficients regres-

sion. The second stage is to align the face geometry to the

input image with fine-grained Laplacian deformation. The

two-stage reconstruction is designed for cartoon faces with

exaggerated shapes by extending the representation space of

the low-dimensional 3DMM. Finally, to animate the recon-

structed model, we transfer the pre-defined expression basis

from the standard face to the user-specific face for semantic-

preserving facial rig generation.
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3.1 Model-based Coarse Reconstruction

3.1.1 Template Models: 3DMM

Expressed by 3D meshes, human faces generally consist of

a large quantity of vertices and faces to show facial details.

During reconstruction, directly predicting each vertex’s po-

sition is a daunting and time-consuming task. However, hu-

man faces share some common geometrical features, such

as the eyes and nose, making it possible to reduce the repre-

sentation complexity. 3DMM [5] was then proposed to en-

code 3D faces into low-dimensional subspace through linear

combinations of shape and texture bases:

S = S + αidAid + αexpAexp (1)

T = T + αtexAtex (2)

where S and T represent the shape and texture of the stan-

dard face. Aid, Aexp, and Atex are 3DMM bases for iden-

tity, expression, and texture respectively. These bases are ex-

tracted and synthesized from a large amount of real facial

scans. αid, αexp, and αtex are combination coefficients of

the bases. S and T are the shape and texture of a 3D face.

Our model-based reconstruction utilizes 3DMM to make a

coarse estimation of the face geometry due to its expressive-

ness and simplicity.

3.1.2 Coarse 3D Cartoon Face Reconstruction

Based on previous CNN-based methods [14,10], we utilize

a CNN to predict 3DMM coefficients. As Fig. 2(a) shows,

the network takes a 2D cartoon image as input, and predicts

a vector of coefficients x = (αid, αexp, αtex, δ, p). The 3D

face pose p in the world coordinate system is defined as a

rigid body transformation with rotation R ∈ SO(3) and

translation t ∈ R
3. δ is the Sphere Harmonic (SH) coeffi-

cients to estimate the global illumination of a Lambertian

surface on each vertex as Φ(ni, bi|δ) = bi ·
∑B2

k=1 δkϕk(ni),
where human faces are assumed to be Lambertian surfaces [14,

34], ϕk : R3 → R represents SH basis functions (1 ≤ k ≤
B2), and Φ(ni, bi|δ) computes the irradiation of a vertex

with normal ni and scalar albedo bi. Applying these coef-

ficients to 3DMM gives the reconstructed 3D face.

To train the network, we first render the face image from

the predicted 3D face model at pose p and lighting approx-

imation δ using differential rendering [24] techniques. The

rendered image Irender is then compared with the input im-

age Iin to calculate the loss.

Specifically, the loss function consists of three parts:

L(x) = ωlLlan(x) + ωpLphoto(x) + ωrLreg(x) (3)

The first part is landmark loss:

Llan(x) =
1

N

N
∑

n=1

ωn∥qn −Π(Rpn + t)∥2 (4)

where qn ∈ R
2 is the true position of the nth 2D facial land-

mark on the original image, pn ∈ R
3 is the nth 3D facial

landmark on the face mesh, which is pre-defined by 3DMM.

Note that 3DMM base models share identical topology, and

the related vertices on each base model have the same se-

mantics. Therefore, the 3D landmarks could be defined as

certain vertices on the mesh. N is the number of landmarks,

ωn is the loss weight for each landmark, R and t denote the

rotation and the transformation of the pose p respectively.

Π =

[

1 0 0

0 1 0

]

is the orthogonal projection matrix from 3D

to 2D. The second part is photometric loss:

Lphoto(x) =
1

|Am|
∥Am · (Irender − Iin)∥

2 (5)

which calculates the color difference between Irender and

Iin per pixel. Am, acquired by face parsing [40], is the con-

fidence map that evaluates whether an image pixel belongs

to a human face. This strategy helps improve robustness in

low-confidence areas, like glasses or beards. Compared to

the landmark loss, the photometric loss constrains the recon-

structed texture and geometry at a fine-grained level. The fi-

nal part is regularization loss on 3DMM coefficients to avoid

getting far from the standard face:

Lreg(x) = ωid∥αid∥
2 + ωexp∥αexp∥

2 + ωtex∥αtex∥
2 (6)

3.1.3 Training with Cartoon Data

Most CNN-based methods train their reconstruction network

with normal face images. However, domain gaps exist be-

tween real and cartoon faces. To solve this problem, we pro-

pose a cartoon face dataset with landmark labels for network

training.

Cartoon face images are not as common as real-world

images. To gather a large amount of cartoon data, we uti-

lize a pre-trained StyleGAN [20] for cartoon face genera-

tion. Specifically, a StyleGAN is trained on a set of cartoon

face images collected from the internet. Then we randomly

sample latent codes from the input latent space Z , forward

them to the StyleGAN and get the cartoon face images. To

ensure a clear face appears on each image, we filter out im-

ages where face detection confidence is lower than a thresh-

old ϵ using a face detector [41].

Fig. 3 shows some examples of our cartoon dataset, which

contains 73852 images at the resolution of 1024 × 1024.

The faces of different colors and ages are uniformly dis-

tributed in the dataset to minimize the bias caused by the

data distribution. For each image, to calculate the landmark

loss (Eq. 4), 68 landmarks are labeled by a landmark detec-

tor [23]; see section 3.2.1 for more details.

In addition, we use the same StyleGAN structure with a

“layer swapping” interpolation scheme [32] to stylize users’

real-world portraits. These images then become the input
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Fig. 3 Examples of our cartoon training dataset. For each sample, we

ensure that a clear face exists through a face detector and apply anno-

tations of 68 facial landmarks through a landmark detector.

of the coarse reconstruction process in our complete ap-

plication pipeline. The size of the stylized image is cur-

rently fixed in this work. However, works of image enhance-

ment [42,29] have shown the potential to increase the size

and resolution of the image. Thus the image size won’t be a

limitation of this work.

3.2 Deformation-based Fine Reconstruction

Although using 3DMM for coarse reconstruction yields ac-

curate results on the overall shape of the face, we find it fails

to recover some fine face structures, especially the eyes. The

low-dimensional parametric face model lacks expressivity

for exaggerated facial parts, which are common in cartoon

portraits. These reconstruction errors cannot be ignored be-

cause even a tiny misalignment would significantly affect

the model appearance and facial animation.

To tackle this issue, we introduce deformation-based fine

reconstruction. As Fig. 2(b) shows, we align the 3D recon-

structed face to the 2D landmarks on the input image with

non-rigid deformation. We minimize the misalignment with

accurate landmark supervision and a local deformation method.

We show that our facial alignment strategy significantly im-

proves texture mapping performance.

3.2.1 Cartoon Face 2D Landmark Annotation

Accurate 2D landmark annotation is crucial to the align-

ment. We observe that significant misalignment appears in

the eye areas after projecting the predicted 3D face to the

image space. Some mainstream 68-landmark detectors [23],

which are trained on ordinary face images, could provide

landmark annotations on the image. However, the annota-

tion is not accurate on cartoon images, especially in the eye

areas, because of the domain gap. To solve this problem, we

combine landmark detection with a state-of-the-art pixel-

level face parsing method [40]. We first obtain the predic-

tion of 68 facial landmarks from the detectors and acquire

the face parsing result, which contains eye segmentation.

Then, for each eye landmark, we snap its position to the

nearest point on the boundary of the segmented eye area if

the boundary exists. Utilizing color clues, we set the eye

landmarks to lie on the border of the eye.

3.2.2 Face Alignment with Laplacian Deformation

An intuitive way to align a 3D face with 2D landmark la-

bels is to optimize the 3DMM coefficients by minimizing

the distance between the projected 3D landmarks and the

2D labels:

α∗
id, α

∗
exp = argmin

αid,αexp

N
∑

n=1

ωn∥qn −Π(Rpn + t)∥ (7)

pn = K(S + αidAid + αexpAexp;n) (8)

where qn, pn, Π , and (R, t) share the same definition as

Eq. 4. K(S;n) ∈ R
3 is to get the nth 3D landmark po-

sition on shape S . However, adjusting 3DMM coefficients

in this way will cause distortion and unnatural folds on the

face due to the global nature and geometric restrictions of

the template models, which will be demonstrated in the ex-

periments (section 4.2.2).

We instead exploit Laplacian deformation [44] to align

the landmarks accurately and locally without affecting the

overall shape. The deformation is driven by anchors, which

are landmarks in this context. The goal is to preserve the lo-

cal normal of each vertex on the mesh as much as possible

while moving the anchors. Specifically, the Laplacian coor-

dinates of vertex vi are defined as:

L(vi) =
1

|N (vi)|

∑

vj∈N (vi)

(vi − vj) (9)

where N (vi) is the set of vertices that share common edges

with vi (i.e., 1-ring neighboring vertices). Preserving L(vi)

during deformation imposes a constraint on local geometry

that prevents unnatural distortions. Meanwhile, to be driven

by anchors, corresponding vertices should follow the an-

chors and stay close. Therefore, the objective function to be

minimized is:

min
v∈V

(

|V |
∑

i=1

∥L(vi)− L′
i∥

2 + λ
∑

k∈M

∥vk − pk∥
2) (10)

where L′
i is the initial value of L(vi), M is the set of ver-

tex indices for 3D landmarks on the mesh, and vk ∈ R
3 is

a 3D landmark position, and pk ∈ R
3 is the corresponding

ground truth 3D position. Transforming 2D landmark super-

vision qn to 3D anchors pk requires depth information. We

use the depth value of the initial 3D landmark vertex vk as

an approximation of pk’s:

dcam − (Rpk + t)
∣

∣

z
= dcam − (Rvk + t)

∣

∣

z
(11)

where dcam is the depth of the camera center, (R, t) is a

rigid body transformation to the camera coordinate system.
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Fig. 4 Texture diffusion (left 2). Comparison of the results without

(Origin) and with (Diffused) diffused texture (right 2).

3.2.3 Texture Mapping

Texture plays a decisive role in improving the visual quality

of the reconstructed model. The texture we acquired from

coarse reconstruction is a combination of 3DMM texture ba-

sis, which is too rough to express an elaborate cartoon face.

Therefore, to maximize the similarity of the model with the

input cartoon image, we project each vertex to the image

with the transformation (R, t) predicted in the coarse re-

construction stage. The normalized 2D projected position is

then used as the texture coordinates of the vertex:

tex coord(v) = Norm(Π(Rv + t)) (12)

Diffused Texture. Due to tiny reconstruction inaccuracy, some

background pixels might be mistakenly mapped as part of

the face texture. This error will be amplified on the 3D model,

as Fig. 4 (Origin) shows. To tackle this problem, we first seg-

ment the cartoon face from the background with face pars-

ing [40], and then replace the background with diffusion of

the face color, as Fig. 4 (Diffusion) shows. Each background

pixel is traversed by a Breadth-First-Search, and its color is

replaced with the average color of the surrounding visited

pixels. The processed image is then used for texture map-

ping.

3.3 Semantic-preserving Facial Rig Generation

Animating a static 3D cartoon face requires additional action

guidance. Motivated by 3DMM, we utilize a template-based

method for facial animation:

S∗ = S0 +Bexpβ (13)

where S0 is the neutral 3D face, and Bexp is the expres-

sion basis. Controlled by coefficients β, the output face S∗

changes expression accordingly. Normally, the expression

components of 3DMM basis lack semantics and are mu-

tually coupled, making it difficult to control each part of

the face independently. Inspired by FACS [11], we manually

construct a set of standard face models {Si}, i = 1, 2, 3...,m,

each of which represents a specific movement of a single

face part, such as ‘left eye close’ and ‘mouth open.’ Then

Fig. 5 Expression Transfer. The deformation from S0 to Si (Qj for

face fj ) is transferred to the deformation from S′

0
to S′

i (Q′

j for

face fj ). By generating new expression models S′

i using the subject-

specific expression models, S′

0
can be animated.

we have Bexp = (S1 − S0, S2 − S0, ..., Sm − S0), β =

(β1, β2, ..., βm). Generally, βi ranges from 0 to 1.

However, directly applying the standard expression mod-

els {Si} to an arbitrary neutral face will cause unnatural ex-

pressions, due to differences of facial shapes. So we utilize

deformation transfer [37] to generate user-specific face rig.

As Fig. 5 shows, the deformation from S0 to Si is transferred

to adapt to the newly reconstructed S′
0 and generate S′

i. The

expression transfer is based on the geometric relations be-

tween the standard neutral face S0, Si and S′
0.

As to the deformation from S0 to Si, since they are topo-

logically consistent, vertices and faces between them corre-

spond to each other. For a triangular face fj , suppose vi and

ṽi, i = 1, 2, 3, are undeformed and deformed vertices of fj
respectively. To include normal information, [37] introduces

the fourth vertex v4 in the direction perpendicular to fj with

a unit distance as:

v4 = v1 +
(v2 − v1)× (v3 − v1)

√

|(v2 − v1)× (v3 − v1)|
(14)

Then the deformation of fj can be described with a 3 × 3
matrix Qj and a translation vector tj as:

ṽi = Qjvi + tj , i = 1, 2, 3, 4 (15)

As to the transformation from Si to S′
i, the goal is to pre-

serve Qj’s:

min
ṽ′

1
,...,ṽ′

n

m
∑

j=1

∥Qj −Q′
j∥ (16)

where Qj is the transformation matrix of the jth triangular

face on mesh from S0 to Si, Q
′
j is for S′

0 to S′
i; m is the num-

ber of faces and {ṽ′
1, ..., ṽ

′
n} are vertices of S′

i. tj remains

unchanged when transferred to S0′.
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We now can obtain the expression models {S′
i} for the

newly reconstructed model by applying the above expres-

sion transfer to each {Si}. Then the 3D face can be animated

in real-time driven by the input coefficients β.

4 Experiments

4.1 Setup

Implementation Details. We implement the coarse recon-

struction network using the PyTorch framework [30]. The

network takes a stylized face image with size 224× 224× 3

as input, and outputs a coefficient vector x ∈ R
239, with

αid ∈ R
80, αexp ∈ R

64, αtex ∈ R
9, δ ∈ R

6 respec-

tively. In our experiment, we set the weights to ωid = 1.2,

ωexp = 1.0, ωtex = 1.2e − 3, ωl = 2e − 3, ωp = 2.0,

ωr = 3e − 4. Similar to [10], we use a ResNet-50 net-

work as the backbone followed by a fully-connected layer

to regress the coefficients. For the fine reconstruction stage,

the optimization problem in Eq. 10 can be transformed into

a linear equation by the least squares method. We solve the

linear equation with sparse matrices and Cholesky decom-

position. The same processing is applied to the expression

transfer optimization problem in Eq. 16 in facial rig genera-

tion. Our manually constructed standard expression models

are built on blender [9] by professional modelers, containing

46 different expressions defined by FACS [11].

Data Collection. As introduced in section 3.1.3, we built a

training dataset with 73852 cartoon face images for coarse

reconstruction training. For testing data, we collect real-world

portraits and stylize them using a pretrained StyleGAN [20].

We then annotate 68 facial landmarks for each stylized car-

toon image with the landmark detector[23] and manually

adjust their positions. The test set contains 50 images with

various lighting conditions and shapes.

4.2 Results on Cartoon Face Reconstruction

4.2.1 Comparison with Prior Art

We compare our method with PRN [12], a template-free

method that predicts face shapes with a CNN, and Deep3D [10],

a baseline that predicts 3DMM coefficients in an unsuper-

vised manner. Both works have been proposed recently, show-

ing impressive performance on 3D face reconstruction. We

also report the results of our two stages: coarse reconstruc-

tion and fine reconstruction, to validate the effectiveness of

the two-stage design. We measure the reconstruction qual-

ity by computing the 2D landmark and photometric errors

on the test set. Specifically, for each test image, we project

input PRN Deep3D FineRecon (Ours)

Fig. 6 Comparison of our results with PRN and Deep3D.

the result to the image plane after reconstruction. The land-

mark error measures the Euclidean distances between the

projected landmarks and the annotations, evaluating the cor-

respondence and shape accuracy. We evaluate the error of

different face parts separately. We also use the photometric

error, which is the average Manhattan distance of the pixel

colors between the rendered image and the input image, to

evaluate the appearance similarity. We show the average re-

sults over the test data.

As Table 1 shows, our method achieves a much lower

landmark error than PRN and Deep3D. Although sharing a

similar network structure, our coarse reconstruction slightly

outperforms Deep3D due to the cartoon data training. Com-

pared with coarse reconstruction, our fine reconstruction sig-

nificantly improves the eyes’ alignment accuracy. The accu-

racy of other facial parts like the nose, eyebrow, and mouth

are also improved. It validates the effectiveness of our deformation-

based alignment strategy. To map texture from the input im-

age, alignment with the image should be accurate. Other-

wise, it would cause evident unnatural facial colors. Our

fine reconstruction also achieves the lowest photometric er-

ror due to accurate reconstruction, alignment, and texture

mapping. Although PRN utilizes the input image for texture

mapping like our method, which is the reason why PRN’s

result looks similar to the input image, it has a larger photo-

metric error because the inaccuracy of the shape and align-

ment causes background pixels to be mistakenly mapped to

the texture. We show visualization comparisons in Fig. 6.

4.2.2 Evaluation on Face Alignment

Comparison with the template-based method. Eq. 7 shows

an intuitive way of adjusting 3DMM coefficients αid and

αexp to align with 2D landmark labels. There are two schemes

to optimize the coefficients based on templates: adjusting
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Method
Landmark Error↓

Photometric Error↓

eyes nose brow mouth contour total

PRN [12] 269.45 200.41 156.34 397.67 435.86 1459.73 1.06

Deep3D [10] 100.23 0.51 11.60 1.57 16.17 130.08 3.31

CoarseRecon (Ours) 98.33 0.55 11.40 1.54 16.14 127.96 3.27

FineRecon (Ours) 8.27 0.23 11.33 1.50 16.11 37.44 0.83

Table 1 Comparison with prior arts.

Adjust Exp Adjust Id+Exp Ours

Landmark Error↓ 143.38 110.70 37.44

Table 2 Comparison with template-based method.

input Adjust Id+Exp Adjust Exp Ours

Fig. 7 Comparison of the results using different face alignment

strategies: template-based method (Adjust Id+Exp/Adjust Exp) and

deformation-based method (ours).

αexp only (Adjust Exp), and adjusting both αid and αexp

at the same time (Adjust Id+Exp). Table 2 shows a com-

parison of our deformation-based method with these two

template-based methods. We use landmark errors as the cri-

teria with the same definition in Table 1. Our method has

lower landmark errors than these baselines. Interestingly,

‘Adjust Id+Exp’ gains lower landmark error than ‘Adjust

Exp’, due to a higher degree of freedom (DoF) and larger

representation space. In this regard, our method has the high-

est DoF and shows the lowest error. We also demonstrate

with visualization results in Fig. 7. Although ‘Adjust Id+Exp’

gains lower landmark error than ‘Adjust Exp’, the visualiza-

tion shows unnatural wrinkles and distortion due to the re-

strictions of templates. This suggests that the refinement ex-

ceeds the template’s representation capability. On the other

hand, our method can retain high-quality visual performance,

while making accurate adjustments simultaneously.

Fig. 8 shows the comparison of the results on eye areas

with or without face alignment. It is clear that before the

alignment, part of the eye texture is mistakenly mapped to

the face skin, because the coarse reconstructed eyes are too

small. During animation, the wrongly mapped texture will

be amplified, for example, when the eyes are closing.

(a) without alignment (b) with alignment

Fig. 8 Comparison of the results on eye areas without (a) and with (b)

face alignment.

Aesthetics Accuracy Similarity

PRN [12] 2.63/1.07 2.99/1.04 3.12/1.17

Deep3D [10] 2.66/1.22 2.62/1.01 2.46/1.02

Ours 3.75/0.92 3.88/0.81 3.95/0.87

Table 3 User subjective evaluations. The table shows mean and stan-

dard deviation (mean/std. dev.) of users’ evaluation scores. Our method

achieves the highest ratings on all three subjective criteria (aesthetics,

accuracy and similarity).

4.2.3 User Subjective Evaluation

To make a more comprehensive evaluation of our recon-

struction results, we conduct a user study to collect subjec-

tive evaluations of the reconstruction. For each participant,

we send out a questionnaire with six independent questions.

For each question, we randomly select a cartoon face image

from the test set, and reconstruct its 3D model with PRN,

Deep3D and our method. We show the results of these meth-

ods in a random order and ask participants to rate for aesthet-

ics, accuracy and similarity. Aesthetics evaluates whether

the 3D model is aesthetically pleasing. Accuracy evaluates

the correctness of the overall shape and the position of each

face part. Similarity evaluates whether the 3D model appears

similar to the input image. Participants are asked to rate in

the range of 1-5 for each aspect, where 1 for very poor, and

5 for very good.

We invited 55 participants in total, 30 males and 25 fe-

males distributed from diverse backgrounds. Table 3 shows
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Fig. 9 Template-based facial animation.

Fig. 10 Visualization results of expression transfer on part of the test

data. We demonstrate two expressions: ‘mouth open’ and ‘close right

eye’.

the average score and standard deviation on all participants

for each question and method. Our method evidently outper-

forms the other two methods on subjective criteria, including

aesthetics, accuracy and similarity. To our observation, face

shape and texture play important roles in improving perfor-

mance on these subjective criteria. The results suggest that

our method does not overfit the landmark constraints, but

rather it uses the appropriate constraints to achieve overall

high visual quality.

4.3 Results on Face Rigging and Animation

Visualizations on Template-based Facial Animation. Fig. 9

shows the linear combination of the neutral face S0 and an

expression template model Si with coefficient β, according

to Eq. 13. The semantic of Si is ‘right eye close’, which

allows us to control the right eye independently. We have

46 template models with different semantics such as mouth

open, left brows up, lip funnel, etc.

Results on Expression Transfer. We demonstrate the effec-

tiveness of our expression transfer method in Fig. 10. We

hide the texture to show the geometry of the faces clearly.

Reconstruction Run-time

CoarseRecon FineRecon FaceRigging Deformation

1.46s 20.02s 1.84s 3.56ms

Table 4 Efficiency Evaluation. We show that our pipeline can recon-

struct an arbitrary face model within 30s, and perform real-time facial

animation over 280 FPS.

We demonstrate the transfer of two typical expressions: ‘right

eye close’ and ‘mouth open’. The results show that, although

the target model S′
0 varies in shape, the transferred expres-

sion can adapt pretty well. This is because, instead of simply

applying the vertex shift to the target model, we transfer the

transformation of the triangular faces on the mesh.

Eye-ball Modeling. To animate the eyes without eyeball dis-

tortion, we model the eyeballs independently during face

rigging. A sphere fits the eyeball area, and then we move

the sphere inside the head for a small distance ∆ to avoid

collision with the eyelids. The texture is correspondingly

mapped to the sphere, and the invisible parts are set to white

by default.

4.4 Application Results

Efficiency Evaluation. Generally, applications require high

efficiency of reconstruction and animation. Our experiment

is carried out on an computer with an Intel(R) Xeon(R) E5-

2678 v3 @ 2.50GHz CPU and a TITAN RTX GPU. We re-

peat ten times on each test sample and show the average time

consumption. As Table 4 shows, our method takes 24 sec-

onds on average for reconstruction and face rigging, which

is acceptable for a user to wait. Currently, the fine recon-

struction algorithm is implemented on CPU, and we believe

that the efficiency will be largely improved if this step is

sped up by GPU. For the run-time, results show that our re-

constructed model can change its expression with a real-time

performance of over 280 FPS.

Real-time Video Driven Face Animation. Utilizing a fast ex-

pression animation driver [28], we show the potential of

real-time video driven facial animation in Fig. 11. The up-

stream driver predicts expression coefficients β from a real

human face. A reconstructed 3D cartoon face is then ani-

mated by β. The driving process can be implemented on-

line with a separate frontend and backend, where the driver

serves as the backend, and the animatable 3D model serves

as the frontend. Intuitively, with this functionality, users can

drive their own avatars to follow their facial actions in a VR

application.
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Fig. 11 Visualizations of real-time face-to-face animation. Our recon-

structed model can be driven by a real-world reference face, utilizing

an upstream expression driver.

Fig. 12 Realistic 3D face reconstruction results from ordinary por-

traits. The upper row is the input image. The middle row and the bottom

row are reconstructed models with and without texture respectively.

Results on ordinary portrait images. Although we focus on

cartoon face reconstruction, our method can also reconstruct

high-quality realistic faces. Fig. 12 shows examples of single-

view 3D face reconstruction from ordinary portraits with our

method.

4.5 More results

Fig. 13 shows more visualization results on cartoon images

with different styles. Our method is robust to exaggerated

face parts like large eyes and unnatural face shapes.

5 Conclusion

In this paper, we introduce a novel pipeline to generate ani-

matable 3D cartoon faces from a single real-world portrait.

To achieve high-quality 3D cartoon faces, we propose a two-

stage face reconstruction scheme. We generate semantic-

preserving face rigs with manually-created models and ex-

pression transfer. Quantitative and Qualitative results show

that our reconstruction achieves high performance on accu-

racy, aesthetics and similarity. Furthermore, we show the ca-

Fig. 13 More visualization results. We conduct reconstruction on im-

ages with different styles. For every three rows, the first row shows the

input cartoon images, the second and third row show 3D models with

and without texture.

pability of real-time animation of our model. Our pipeline

can be applied to creating user 3D avatars in VR/AR appli-

cations. Generating high-quality animatable 3D faces with

various styles is a difficult task, and we would like to gen-

eralize our method to a larger range of styles in our future

research agenda.
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