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Abstract: Background With the development of virtual reality (VR) technology, there is a growing need for 

customized 3D avatars. However, traditional methods for 3D avatar modeling are either time-consuming or fail to 

retain the similarity to the person being modeled. This study presents a novel framework for generating animatable 

3D cartoon faces from a single portrait image. Methods First, we transferred an input real-world portrait to a 

stylized cartoon image using StyleGAN. We then proposed a two-stage reconstruction method to recover a 3D 

cartoon face with detailed texture. Our two-stage strategy initially performs coarse estimation based on template 

models and subsequently refines the model by nonrigid deformation under landmark supervision. Finally, we 

proposed a semantic-preserving face-rigging method based on manually created templates and deformation 

transfer. Conclusions Compared with prior arts, the qualitative and quantitative results show that our method 

achieves better accuracy, aesthetics, and similarity criteria. Furthermore, we demonstrated the capability of the 

proposed 3D model for real-time facial animation. 
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1 Introduction

Virtual and augmented reality (VR/AR) has rapidly developed in recent years, in which creating virtual 3D 

faces and avatars for users is an essential and challenging task. These faces should achieve high 

performance in terms of aesthetics and recognizability, resembling the person being modeled. They should 

also be animatable for numerous downstream applications. However, traditional methods either require time-

consuming heavy manual modeling or rely on existing general templates, which can result in losing 

recognizability. With the development of deep learning techniques, a few methods[1-3] that automatically 

reconstruct realistic 3D faces from images have been proposed. However, owing to numerous facial details, 
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high similarity to the reference face is considerably hard to achieve in realistic 3D reconstruction. In 

comparison, cartoon faces can easily achieve high visual performance and can be represented with less 

memory. Therefore, many VR/AR applications use 3D cartoon faces as avatars for user images.

Our study focused on automatically creating 3D animatable cartoon faces based on a single real-world 

portrait. As shown in Figure 1, we split our pipeline into the following steps. First, we generated a stylized 

cartoon image from the input image using StyleGAN[4]. Subsequently, we reconstructed a static 3D cartoon 

face from the stylized image. Finally, we generated semantic-preserving facial rigs to animate the 3D face.

Existing face reconstruction methods[1,2] perform poorly at reconstructing cartoon faces because they 

introduce strong real-world priors that are difficult to generalize to the cartoon domain. Some 

studies[5] that reconstructed 3D caricatures also failed to perform well on real-world portrait images 

owing to domain gaps. However, to obtain accurate texture mapping and natural facial animation, 

precise correspondences between the reconstructed 3D face and the semantic labels on the 2D image 

are required. These correspondences are typically acquired by projecting the model back to the image. 

Therefore, incorrect shapes would cause incorrect correspondences, highlighting the necessity for 

accurate reconstruction in this task.

To address this problem, we proposed a two-stage reconstruction method. In the first stage, we utilized 

face templates and a reconstruction network to perform coarse estimation. In the second stage, our nonrigid 

deformation refinement adjusted the 3D model under the supervision of accurate 2D annotations. This 

refinement was not restricted to a specific domain. Some studies[3,6] introduced a similar idea of adding a 

refinement network to adjust the 3D model. However, these studies constrained the refinement on depth or 

normal directions. As a result, they are only effective in reconstructing facial details, such as wrinkles and 

moles. However, these refinements are insufficient for handling cartoon faces, which usually contain larger 

eyes and exaggerated expressions. Our method conducts an all-direction refinement, creating an accurate 

alignment without unnatural distortions. We demonstrate that our method performs well on both cartoon and 

real-world data.

Face rigging, the basis of facial animation, is the final part of our pipeline. Facial animation methods[7] that 

use 3D morphable models (3DMM)[8] usually lack semantics, making their application to industrial 

applications challenging. Some face-rigging methods[9,10] can generate semantic rigs but require user-specific 

training samples. Our semantic-preserving rigging method conducts deformation transfer from a set of 

handmade expression models to the target. The expression models are predefined and built by professional 

modelers, and the rigging process is free from any reference sample.

Our work is industry-oriented, aiming to achieve high-quality customized cartoon face reconstruction with 

real-time animation capabilities. Experiments show that our method outperforms prior methods in terms of 

both reconstruction accuracy and user subjective evaluation. In this study, we showed visualization results 

and an application of real-time "face-to-face" animation. In summary, our main contributions are as follows:

Cartoon Stylization Coarse Reconstruction Fine Reconstruction Face Rigging

Figure 1　Pipeline of the proposed animatable 3D cartoon face generation method. We first transform an input portrait to a 2D 

cartoon image and subsequently conduct template-based coarse reconstruction and deformation-based fine reconstruction to build an 

elaborate 3D cartoon face. Finally, we generate semantic face rigs for facial animation, making the static 3D model animatable.
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(1) We developed a complete system that generates a user-specific 3D cartoon face from a single portrait 

that is animatable in real time. It can be directly applied to VR/AR applications, such as virtual meetings and 

social networking for avatar customization.

(2) To achieve this, we proposed a two-stage 3D face reconstruction scheme that produces high-quality 

results for both real-world portraits and cartoon images. Our deformation-based refinement in the second 

stage improves the performance of texture mapping and facial animation.

(3) A solution for semantic-preserving face rigging without reference samples was also provided.

2 Related work

2.1 Model-based single image 3D face reconstruction

Three-dimensional face reconstruction has been studied extensively in 3D computer vision, which is widely 

applied in face recognition, character generation, facial data collection, etc. Reconstructed 3D faces are 

typically represented by 3D meshes with numerous vertices. To reduce the complexity of facial 

representations, 3D morphable models (3DMM)[8] have been proposed for face modeling. 3DMM is a set of 

bases that constructs a low-dimensional subspace of 3D faces. The geometry and texture of faces in the 

manifold can be expressed using linear combinations of the bases. Some works[11-14] aligned the reconstructed 

face model with facial landmarks on the input image to regress 3DMM coefficients. However, these 

methods have difficulties capturing the detailed geometry of faces owing to landmark sparsity. Other studies 

used features such as image intensity and edges[15] to preserve facial fidelity. With the development of deep 

learning and differentiable rendering, some recent studies[16-18] have used convolutional neural networks 

(CNNs) to learn the 3DMM coefficients and pose parameters. To address the lack of training data, Deng et al. 

utilized photometric information to train CNNs in a weakly supervised manner[1]. All of these 3DMM-based 

methods face the same problem of hardly preserving exaggerated shapes and geometry details owing to the 

lack of expressivity of the low-dimensional models. To address this, Guo et al. proposed a fine-tuning 

network to recover geometry details, such as wrinkles and moles, after 3DMM coarse reconstruction[3]. 

However, this method restricts the fine-tuning displacement to the depth direction and is incapable of 

reconstructing exaggerated expressions and shapes, such as large eyes and mouths, which are fairly common 

in cartoon images. There are also model-free single-image reconstruction methods[2,19-21]; however, it is 

difficult to align or animate the results of these methods because of topological inconsistencies in the output 

meshes.

2.2 Stylized face reconstruction

Stylized faces usually have larger variations in shape and expression, making it difficult to directly transfer 

realistic reconstruction methods to the cartoon domain. Liu et al. presented 3D caricatures using 3DMM. 

Because 3DMM is low-dimensional, the reconstructed geometry varies slightly[22]. Wu et al. reconstructed 3D 

stylized faces from 2D caricature images, in which they deformed a 3D standard face to address the limited 

deformation space of 3DMM for 3D caricatures by optimizing deformation gradients under the constraints 

of facial landmarks[23]. A follow-up study[24] utilized a CNN to learn the deformation gradients. These 

methods suffer from poor reconstruction accuracy owing to the sparsity of supervision and the large gap 

between the standard face and target. Based on a previous study[25], Qiu et al. predicted the surface of 3D 

caricatures using an implicit function, which was then aligned with 3DMM[5]. However, this method requires 

a large amount of 3D training data, which is difficult to collect. Overall, research on reconstructing 3D 

stylized faces is still fairly limited, and cartoon reconstruction remains a challenging task.
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2.3 Face rigging

Face rigging is a crucial step in 3D facial animation. By introducing 3DMM, facial expressions can be 

represented by linear combinations of principal component analysis (PCA) bases[7,8]. Vlasic et al. proposed a 

multilinear model to encode facial identity, expression, and viseme[26]. Synthesizing from a large amount of 

real-world data, PCA models are generally built without semantics, making facial animation challenging to 

achieve. To generate user-specific blend shapes for each neutral face, hand-crafted or 3D-scanned blend-

shape models are required[27,28]. Li et al. generated facial blend-shape rigs from sparse exemplars[9]. However, 

it still relies on existing well-crafted face models, and preparing exemplars for each subject is impractical. 

Pawaskar et al. transferred a set of facial blend shapes from one identity to another, but the topological 

difference between the two models could have a negative impact on its performance[29]. Some other 

work[30-32] automatically generated personalized blend shapes from video sequences or RGBD frames. 

Although these studies have achieved impressive performance, they require temporally continuous data; 

therefore, they are not applicable to single-image reconstruction.

3 Method

As shown in Figure 1, our pipeline is divided into three parts: stylization, reconstruction, and rigging. For 

stylization, existing methods such as StyleGAN[4] have achieved impressive performances. Therefore, we 

directly applied a StyleGAN-based transfer method[33] to generate cartoon images from real-world portraits. 

In this section, we focus on reconstruction and rigging methods.

To recover accurate geometry and detailed texture from a single cartoon image, we split the reconstruction 

into two stages. The first stage performs coarse estimation of the face geometry using a CNN-based 3DMM 

coefficient regression. The second stage aligns the face geometry to the input image via fine-grained 

Laplacian deformation. The two-stage reconstruction was designed for cartoon faces with exaggerated 

shapes by extending the representation space of the low-dimensional 3DMM. Finally, to animate the 

reconstructed model, we transferred the predefined expression basis from the standard face to the user-

specific face for semantic-preserving facial rig generation.

3.1 Model-based coarse reconstruction

3.1.1 Template models: 3DMM

When expressed using 3D meshes, human faces generally consist of numerous vertices and faces to show 

facial details. Directly predicting the position of each vertex during reconstruction is a daunting and time-

consuming task. However, human faces share some common geometrical features, such as eyes and nose, 

making it possible to reduce the representation complexity. Thus, 3DMM[8] was proposed to encode 3D faces 

into a low-dimensional subspace through linear combinations of shape and texture bases:

S = S̄ + α id Aid + αexp Aexp (1)
T = T̄ + α tex Atex (2)

where S̄ and T̄ represent the shape and texture of a standard face, respectively, whereas S and T represent 

those of the 3D face. Aid, Aexp, and Atex are the 3DMM bases for identity, expression, and texture, respectively. 

These bases were extracted and synthesized from numerous real facial scans. α id, αexp, and α tex are 

combination coefficients of the bases. The proposed model-based reconstruction utilizes 3DMM to make a 

coarse estimation of the face geometry owing to its expressiveness and simplicity.

3.1.2 Coarse 3D cartoon face reconstruction

Based on previous CNN-based methods[1,3], we utilized a CNN to predict 3DMM coefficients. As shown in 
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Figure 2a, the network takes a 2D cartoon image as input and predicts a vector of coefficients x =

(α id αexp α tex δp). The 3D face pose p in the world coordinate system is defined as an affine transformation 

with rotation RÎ SO (3)  and translation tÎ 3. δ is the sphere harmonics (SH) coefficient that estimates the 

global illumination of a Lambertian surface on each vertex as Φ (ni bi|δ) = bi ×∑k = 1

B2

δkϕk (ni ), where human 

faces are assumed to be Lambertian surfaces[3,34]. ϕk:  3® represents SH basis functions, and 

Φ (ni  bi|δ)  computes the irradiation of a vertex with normal ni and scalar albedo bi. Applying these 

coefficients to 3DMM provides the reconstructed 3D face.

To train the network, we first rendered the face image from the predicted 3D face model at pose p and 

lighting approximation δ using differential rendering[35] techniques. The rendered image Irender was then 

compared with the input image Iin to calculate the loss.

Specifically, the loss function consists of three parts:

L(x)=ω lL lan (x)+ωpLphoto (x)+ωrLreg (x) (3)
The first part is landmark loss, which is expressed as:

L lan (x)=
1
N∑n = 1

N ωn || qn -Π ( )Rpn + t
2 (4)

where qnÎ 2 is the true position of the nth 2D facial landmark on the original image, and pnÎ  3 is the nth 

3D facial landmark on the face mesh, which is predefined by 3DMM. Note that 3DMM base models share 

identical topologies, and the related vertices in each base model have the same semantics. Therefore, the 3D 

landmarks can be defined as certain vertices on the mesh. N is the number of landmarks, ωn is the weight 

loss for each landmark, and R and t denote the rotation and transformation of pose p, respectively. 

Π = ( )1 0 0
0 1 0

 is the orthogonal projection matrix from 3D to 2D. The second part is photometric loss, 

which is expressed as

Lphoto (x)=
1

||Am

||Am × ( )Irender - I in

2

 (5)
The above equation calculates the color difference between Irender and Iin per pixel. Am, acquired through 

face parsing[36], is a confidence map that evaluates whether an image pixel belongs to a human face. This 

strategy helps improve robustness in low-confidence areas, such as glasses or beards. Compared to 

landmark loss, photometric loss constrains the reconstructed texture and geometry at a fine-grained level. 

The final part is the regularization loss on 3DMM coefficients, whose purpose is to avoid getting far from 

the standard face.

input

CNN

3DMMcoefficients result

rendering
αid

αexp

αtex

δ
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LOSS Function: lan (x) photo (x)
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result
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Figure 2　Overview of the proposed two-stage 3D cartoon face reconstruction. (a) The coarse reconstruction method utilizes a CNN 

to predict 3DMM coefficients from an input image. The output coefficients contain a combination of parameters for identity αid, 

expression αid, texture αexp, lighting δ, and pose p. (b) The fine reconstruction method refines the coarse shape using landmark 

supervision with Laplacian deformation. The refined model is then colored by diffused texture.
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Lreg (x)=ω id|α id|
2 +ωexp|αexp|

2 +ω tex|α tex|
2 (6)

3.1.3 Training with cartoon data

Most CNN-based methods train reconstruction networks by using normal face images. However, domain 

gaps exist between real and cartoon faces. To solve this problem, we propose a cartoon face dataset with 

landmark labels for network training.

Because cartoon face images are not as common as real-world images, we utilized a pretrained 

StyleGAN[4] to gather a large amount of cartoon data for cartoon face generation. Specifically, StyleGAN 

was trained on a set of cartoon face images collected from the Internet. We then randomly sampled latent 

codes from the input latent space Z, forwarded them to StyleGAN, and obtained the cartoon face image. To 

ensure that a clear face appears on each image, we filtered out images where face detection confidence is 

lower than a threshold ϵ using a face detector[37].

Figure 3 shows some examples of our cartoon dataset, which contains 73852 images at a resolution of 

1024×1024. Faces of different colors and ages were uniformly distributed in the dataset to minimize the bias 

caused by the data distribution. For each image, 68 landmarks were labeled using a landmark detector[38] to 

calculate the landmark loss in Eq. (4); this process is further explained in Section 3.2.1.

In addition, we used the same StyleGAN structure with a "layer swapping" interpolation scheme[33] to 

stylize users' real-world portraits. These images were then used as input for the coarse reconstruction 

process in the proposed application pipeline. The size of the stylized image was fixed for this study. 

However, studies on image enhancement[39,40] have shown the potential to increase the size and resolution of 

images. Thus, the image size will not be a limitation of this study.

3.2 Deformation-based fine reconstruction

Although using 3DMM for coarse reconstruction yields accurate results for the overall shape of the face, we 

found that it fails to recover some fine face structures, particularly the eyes. The low-dimensional parametric 

face model lacks expressivity for exaggerated facial parts, which is common in cartoon portraits. These 

reconstruction errors cannot be ignored because even a slight misalignment would significantly affect the 

model appearance and facial animation.

To address this issue, we introduced a deformation-based fine reconstruction process. As shown in Figure 

2b, we aligned the 3D reconstructed face to the 2D landmarks on the input image via nonrigid deformation. 

We minimized the misalignment via accurate landmark supervision and a local deformation method. We 

Figure 3　Examples of the cartoon training dataset. For each sample, we ensure that a clear face exists using a face detector and 

apply annotations of 68 facial landmarks using a landmark detector.
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demonstrate that the proposed facial alignment strategy significantly improves texture mapping performance.

3.2.1 Cartoon face 2D landmark annotation

Accurate 2D landmark annotation is crucial for the alignment. We observed a significant misalignment in 

the eye areas after projecting the predicted 3D face onto the image space. Some mainstream 68-landmark 

detectors[38] trained on ordinary face images can provide landmark annotations on the image. However, the 

annotation is not accurate for cartoon images, particularly in the eye areas, because of the domain gap. To 

solve this problem, we combined landmark detection with a state-of-the-art pixel-level face-parsing 

method[36]. We first obtained the prediction of 68 facial landmarks from the detectors and acquired the face-

parsing result, which contained eye segmentation. Subsequently, we snap the position of each eye landmark 

to the nearest point on the boundary of the segmented eye area if the boundary exists. Using color clues, we 

set the eye landmarks at the border of the eye.

3.2.2 Face alignment with Laplacian deformation

An intuitive way to align a 3D face with 2D landmark labels is to optimize the 3DMM coefficients by 

minimizing the distance between the projected 3D landmarks and 2D labels as follows:

α*
id α*

exp = argmin
αid αexp

 ∑n = 1

N ωn|qn -Π(Rpn + t)| (7)
pn =K (S̄ + α id Aid + αexp Aexp ; n)  (8)

where qn, pn, Π , and (R  t) have the same definitions as in Eq. (4). The parameter K(S ; n)Î 3 is used to get 

the nth 3D landmark position on shape S. However, adjusting 3DMM coefficients in this manner will cause 

distortion and unnatural folds on the face due to the global nature and geometric restrictions of the template 

models, which will be demonstrated in Section 4.2.2.

Thus, we exploited Laplacian deformation[41] to align the landmarks accurately and locally without 

affecting the overall shape. The deformation is driven by anchors, which are landmarks in this context. The 

goal is to preserve the local normal of each vertex on the mesh as much as possible while moving the 

anchors. Specifically, the Laplacian coordinates of vertex vi are defined as:

L(vi )=
1

||N (vi )
∑vjÎN (vi )

(vi - vj ) (9)
where N (vi ) is the set of vertices that share common edges with vi (i. e., 1-ring neighboring vertices). 

Preserving L(vi ) during deformation imposes a constraint on local geometry, thereby preventing unnatural 

distortions. To be driven by the anchors, the corresponding vertices should follow the anchors and remain 

close. Therefore, the objective function to be minimized is:

min
vÎV

 (∑i = 1

||V
|L(vi )-L′i|

2 + λ∑kÎM
|vk - pk|

2 )  (10)
where L′i is the initial value of L(vi ), M is the set of vertex indices for 3D landmarks on the mesh as 

deformation anchors, vkÎ 3 is the kth 3D landmark position, and pkÎ 3 is the corresponding ground truth 

3D position. Transforming the 2D landmark supervision qn to 3D anchors pk requires depth information. We 

used the depth value of the initial 3D landmark vertex vk as an approximation of pk's.

dcam - ( )Rpk + t |
z
= dcam - ( )Rvk + t |

z
 (11)

where dcam is the depth of the camera center, and (Rt ) is a transformation to the camera coordinate system.

3.2.3 Texture mapping

Texture plays a decisive role in improving the visual quality of the reconstructed model. The texture 

acquired from coarse reconstruction is a combination of the 3DMM texture basis, which is significantly 
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rough to create an elaborate cartoon face. Therefore, to maximize the similarity of the model with the input 

cartoon image, we projected each vertex onto the image with the transformation (Rt ) predicted in the 

coarse reconstruction stage. The normalized 2D projected position was then used as the texture coordinates 

of the vertex.

tex_coord(v)=Norm(Π(Rv + t)) (12)
Diffused texture. Because of the small reconstruction inaccuracy, some background pixels may be 

mistakenly mapped as a part of the face texture. This error is amplified in the 3D model, as shown in Figure 

4 (Origin). To tackle this problem, we first segmented the cartoon face from the background with face 

parsing[36] and subsequently replaced the background with the diffusion of the face color, as shown in Figure 

4 (Diffusion). Each background pixel was traversed using a breadth-first search algorithm, and its color was 

replaced with the average color of the surrounding visited pixels. The processed images were then used for 

texture mapping.

3.3 Semantic-preserving facial rig generation

Animating a static 3D cartoon face requires additional action guidance. Motivated by 3DMM, we utilized a 

template-based method for facial animation.

S* = S0 +Bexp β (13)
where S0 is the neutral 3D face, and Bexp is the expression basis. Controlled by coefficients β, the output 

face S* changes expression accordingly. Typically, the expression components of the 3DMM basis lack 

semantics and are mutually coupled, making it difficult to control each part of the face independently. 

Inspired by FACS[42], we manually constructed a set of standard face models {Si } i = 123m, each 

of which represents a specific movement of a single face part, such as "left eye close" and "mouth 

open". Subsequently, we have Bexp = (S1 - S0   S2 - S0   Sm - S0 )  β = ( β1   β 2   βm ), where β i ranges 

from 0 to 1.

However, directly applying standard expression models {Si } to an arbitrary neutral face results in 

unnatural expressions because of the shape variance between different identities. Therefore, we utilized 

deformation transfer [43] to robustly generate a user-specific face rig. As Figure 5 shows, the deformation 

from S0 to Si is transferred to adapt to the newly reconstructed S ′0 and generate S ′i. The expression transfer is 

based on the geometric relations between the standard neutral face S0, standard expression Si, and target 

neutral face S ′0.

For the deformation from S0 to Si, vertices and faces between them correspond to each other because they 

are topologically consistent. For a triangular face fj in the mesh, suppose vk and 
~
vk (k = 1, 2, and 3) are the 

undeformed and deformed vertices of fj, respectively. To include normal information, [43] introduced the 

fourth vertex v4 in the direction perpendicular to fj with a unit distance as:

DiffusedInput Diffusion Origin

Figure 4　Examples of the cartoon training dataset. For each sample, we ensure that a clear face exists using a face detector and 

apply annotations of 68 facial landmarks using a landmark detector.

299



Virtual Reality & Intelligent Hardware August (2024) Vol. 6 No. 4 

v4 = v1 +
(v2 - v1 )´(v3 - v1 )

|| (v2 - v1 )´(v3 - v1 )
(14)

The deformation of fj can then be described by a 3×3 

matrix Qj and translation vector tj as
~
vk =Qjvk + tj k = 1234 (15)

For the transformation from Si to S ′i, the goal is to 

preserve Qj. Thus,

min
~
v′1 

~
v′n

 ∑
j = 1

m

|Qj -Q′j| (16)
where Qj is the transformation matrix of the jth triangular 

face on the mesh from S0 to Si, and Q′j is that from S ′0 to 

S ′i; m is the number of faces, and {
~
v′1 

~
v′n } are the 

vertices of S ′i. tj remains unchanged when transferred 

to S ′0.

We can now obtain the expression models {S ′i } for the 

newly reconstructed model by applying the above 

expression transfer to each {Si }. Subsequently, the 3D 

face can be animated in real time driven by the input coefficients β.

4 Experiments

4.1 Setup

Implementation details. We implemented the coarse reconstruction network using the PyTorch 

framework[44]. The network takes a stylized face image with size 224×224×3 as input and outputs a 

coefficient vector xÎ 239, with α idÎ 80, αexpÎ 64, α texÎ 9, and δÎ 6, respectively. In our experiment, 

we set the weights to ω id = 1.2, ωexp = 1.0, ω tex = 1.2e - 3, ω l = 2e - 3, ωp = 2.0, and ωr = 3e - 4. Similar to [1], 

we used a ResNet-50 network as the backbone, followed by a fully connected layer to regress the 

coefficients. For the fine reconstruction stage, the optimization problem in Eq. (10) can be transformed into 

a linear equation using the least squares method. We solved the linear equation using sparse matrices and 

Cholesky decomposition. The same process was applied to the expression transfer optimization problem in 

Eq. (16) for facial rig generation. Our manually constructed standard expression models were built on a 

blender[45] by professional modelers and contained 46 different expressions defined by FACS[42].

Data Collection. As introduced in Section 3.1.3, we built a training dataset with 73852 cartoon face 

images for the coarse reconstruction training. For the testing data, we collected real-world portraits and 

stylized them using a pretrained StyleGAN[4]. We then annotated using the landmark detector 68 facial 

landmarks for each stylized cartoon image[38] and manually adjusted their positions. The test set contained 50 

images with various lighting conditions and shapes.

4.2 Results of cartoon face reconstruction

4.2.1 Comparison with prior art

We compared our method with PRN[2] and Deep3D[1], which is a template-free method that predicts face 

shapes using a CNN and a baseline method that predicts 3DMM coefficients in an unsupervised manner, 

respectively. Both methods have been proposed recently, showing impressive performances in 3D face 

S0 S′0

Qj Q′j

Si S′iinput output

Deformation
Transfer

Figure 5　Expression transfer. The deformation from S0 

to Si (Qj for face fj) is transferred to the deformation from 

S′0 to S′i (Q′j for face fj) by generating new expression 

models S′i. S′0 can be animated using the subject-specific 

expression models.
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reconstruction. We also reported the results of our two stages, coarse and fine reconstructions, to validate the 

effectiveness of the two-stage design. We measured the reconstruction quality by computing the 2D 

landmarks and photometric errors of the test set. Specifically, for each test image, we projected the results 

onto the image plane after reconstruction. The landmark error measures the Euclidean distances between the 

projected landmarks and annotations and evaluates the correspondence and shape accuracy. We separately 

evaluated the errors for different facial parts. We also used the photometric error, which is the average 

Manhattan distance of the pixel colors between the rendered and input images, to evaluate the appearance 

similarity. The average results of the test data are presented.

As shown in Table 1, our method achieves a significantly lower landmark error than PRN and Deep3D. 

Although they have a similar network structure, our coarse reconstruction method slightly outperforms 

Deep3D owing to the cartoon data training. Compared with coarse reconstruction, our fine reconstruction 

method significantly improves the alignment accuracy of the eyes. The accuracy of other facial parts, such 

as the nose, eyebrows, and mouth, was also improved, thereby validating the effectiveness of the proposed 

deformation-based alignment strategy. To map the 

texture from the input image, alignment with the 

image should be accurate. Otherwise, it would 

produce unnatural facial colors. Moreover, our fine 

reconstruction method achieves the lowest 

photometric error owing to accurate reconstruction, 

alignment, and texture mapping. Although PRN 

utilizes the input image for texture mapping, 

similar to the proposed method, which is the reason 

PRN result looks similar to the input image, it has a 

larger photometric error because the inaccuracy of 

the shape and alignment causes background pixels 

to be mistakenly mapped to the texture. 

Visualization comparisons are shown in Figure 6.

4.2.2 Evaluation of face alignment

Comparison with the template-based method. Eq. (7) shows an intuitive way of adjusting 3DMM 

coefficients α id and αexp to align with the 2D landmark labels. There are two schemes for optimizing the 

coefficients based on templates, that is, adjusting αexp only (Adjust Exp) and adjusting both α id and αexp 

simultaneously (Adjust Id+Exp).

Table 2 presents a comparison of the proposed deformation-based method with the two template-based 

methods. We used landmark errors as the criteria, with the same definition as in Table 1. Our method has 

lower landmark errors than the baselines. Interestingly, "Adjust Id+Exp" has a lower landmark error than 

"Adjust Exp" owing to its higher degree of freedom (DoF) and larger representation space. In this regard, 

Table 1　Comparison with prior art

Method

PRN[2]

Deep3D[1]

CoarseRecon (Ours)

FineRecon (Ours)

Landmark Error↓
eyes

269.45

100.23

98.33

8.27

nose

200.41

0.51

0.55 

0.23

brow

156.34

11.60

11.40

11.33

mouth

397.67

1.57

1.54

1.50

contour

435.86

16.17

16.14

16.11

total

1459.73

130.08

127.96

37.44

Photometric Error↓
1.06

3.31

3.27

0.83

FineRecon (Ours)input PRN Deep3D

Figure 6　Comparison of our results with PRN and Deep3D.
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the proposed method exhibits the highest DoF and 

lowest error. The visualization results are shown 

in Figure 7. Although "Adjust Id+Exp" has a 

lower landmark error than "Adjust Exp", the 

visualization shows unnatural wrinkles and 

distortion owing to the restrictions of the 

templates. This suggests that the refinement 

exceeds the representation capability of the 

templates. Meanwhile, the proposed method can 

retain high-quality visual performance while 

simultaneously making accurate adjustments.

Figure 8 shows a comparison of the results for 

the eye areas with and without face alignment. 

Before alignment, a part of the eye texture was 

mistakenly mapped to the facial skin because the 

coarsely reconstructed eyes were extremely small. 

During animation, such as when the eyes are 

closing, the wrongly mapped texture was 

amplified.

4.2.3 User subjective evaluation

For a more comprehensive evaluation of our 

reconstruction results, we conducted a user study 

to collect subjective evaluations of the 

reconstruction. Each participant was sent a 

questionnaire containing six independent 

questions. For each question, we randomly 

selected a cartoon face image from the testing set and reconstructed its 3D model using PRN, Deep3D, and 

the proposed method. We demonstrated the results of these methods in random order and asked participants to 

rate the aesthetics, accuracy, and similarity. Aesthetics determines whether the 3D model is aesthetically 

pleasing. Accuracy assesses the correctness of the overall shape and position of each facial part. Similarity 

evaluates whether the 3D model appears similar to the input image. Participants were asked to rate each aspect 

from 1 to 5, where 1 = very poor and 5 = very good.

We invited 55 participants (30 males and 25 females) from diverse backgrounds. Table 3 shows the 

average score and standard deviation of all participants for each question and method. The proposed method 

outperforms the other two methods in terms of 

subjective criteria, including aesthetics, accuracy, 

and similarity. Based on our observation, the face 

shape and texture play important roles in 

improving the performance of these subjective 

criteria. The results suggest that our method does 

not overfit the landmark constraints but rather 

uses the appropriate constraints to achieve an 

overall high visual quality.

Oursinput Adjust Id+Exp Adjust Exp

Figure 7　 Comparison of the results using different face 

alignment strategies: template-based method (Adjust Id+Exp/

Adjust Exp) and deformation-based method (ours).

Table 2　Comparison with the template-based method

Landmark Error↓
Adjust Exp

143.38

Adjust Id+Exp

110.70

Ours

37.44

Table 3　User subjective evaluations

PRN[2]

Deep3D[1]

Ours

Aesthetics

2.63/1.07

2.66/1.22

3.75/0.92

Accuracy

2.99/1.04

2.62/1.01

3.88/0.81

Similarity

3.12/1.17

2.46/1.02

3.95/0.87

Note: The table shows the mean and standard deviation (mean/std. 

dev.) of users' evaluation scores. Our method achieves the highest 

ratings on all three subjective criteria (aesthetics, accuracy, and 

similarity).

(b) with alignment(a) without alignment

Figure 8　Comparison of the results on eye areas (a) without and 

(b) with face alignment.
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4.3 Results of cartoon face reconstruction

Visualizations on template-based facial animation. Figure 9 shows the linear combination of the neutral 

face S0 and an expression template model Si with coefficient β, according to Eq. (13). The semantic of Si is 

"right eye close", which allows us to control the right eye independently. A total of 46 template models with 

different semantics, such as mouth opening, left brows up, and lips funnel, were developed in this study.

Results on expression transfer. The effectiveness of our expression transfer method is demonstrated in 

Figure 10. We hid the texture to clearly show the face geometry and demonstrate the transfer of two typical 

expressions: "right eye close" and "mouth open". The results show that the transferred expression can adapt 

well despite the varying shape of the target model S'0. This is because we transferred the transformation of 

the triangular faces onto the mesh instead of simply applying the vertex shift to the target model.

Eye-ball modeling. To animate the eyes without eyeball distortion, we modeled the eyeballs 

independently during face rigging. A sphere was fitted in the eyeball area and then moved inside the head 

for a small distance ∆ to avoid collision with the eyelids. The texture was correspondingly mapped to the 

sphere, and the invisible parts were set to white by default.

β=0 β=0.2 β=0.4 β=0.6 β=0.8 β=1.0

Figure 9　Template-based facial animation.

standard face S0

expression models Si

target face S′0

transferred face S′i

Figure 10　Visualization results of expression transfer on part of the test data. Two expressions are demonstrated: "mouth open" and 

"close right eye".
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4.4 Application results

Efficiency evaluation. Generally, applications require high-efficiency reconstruction and animation. Our 

experiment was performed on a computer with an Intel(R) Xeon(R) E5-2678 v3 @ 2.50GHz CPU and a 

TITAN RTX GPU. We repeated the experiment on each test sample ten times and calculated the average 

time consumption. As shown in Table 4, the proposed method requires an average of 24s for reconstruction 

and face rigging, which is an acceptable waiting 

time for a user. Currently, the fine reconstruction 

algorithm is implemented on a CPU; however, we 

believe that its efficiency will be significantly 

improved if this step is accelerated by a GPU. For 

the runtime, the results show that our 

reconstructed model can change its expression 

with real-time performance of more than 280 FPS.

Real-time face-to-face animation. Using a fast expression animation driver[46], we demonstrated the 

potential of real-time face-to-face facial animation in Figure 11. The upstream driver predicted expression 

coefficients β from a real human face. A reconstructed 3D cartoon face was then animated by β. The driving 

process can be implemented online with a separate frontend and backend, in which the driver and 

animatable 3D model serve as the backend and frontend, respectively. Intuitively, this functionality allows 

users to drive their own avatars to follow their facial actions in VR applications.

Results on ordinary portrait images. Although we focused on cartoon face reconstruction, our method 

can also be used to reconstruct high-quality realistic faces. Figure 12 shows examples of single-view 3D 

face reconstructions from ordinary portraits using the proposed method.

4.5 Additional results

Figure 13 shows additional visualization results on cartoon images with different styles. Our method is 

robust to exaggerated facial parts, such as large eyes and unnatural face shapes.

5 Conclusion

In this study, we introduced a novel pipeline for generating animatable 3D cartoon faces from a single real-

world portrait. To achieve high-quality 3D cartoon faces, we proposed a two-stage face reconstruction 

scheme. We generated semantic-preserving face rigs using manually created models and expression transfer. 

Quantitative and qualitative results show that our reconstruction method achieves high performance in terms 

Figure 11　Visualizations of real-time face-to-face animation. Our reconstructed model can be driven by a real-world reference face, 

utilizing an upstream expression driver.

Table 4　Efficiency evaluation

Reconstruction

CoarseRecon

1.46 s

FineRecon

20.02 s

FaceRigging

1.84 s

Run-time

Deformation

3.56 ms

Note: We show that our pipeline can reconstruct an arbitrary face 

model within 30s and perform real-time facial animation over 280 FPS.
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of accuracy, aesthetics, and similarity criteria. Furthermore, we demonstrated the real-time animation 

capability of our model. The proposed pipeline can be used in creating user 3D avatars for VR/AR 

applications. Generating high-quality animatable 3D faces of various styles is a difficult task, and we aim to 

generalize our method to a larger range of styles in future studies.

Declaration of competing interest

We declare that we have no conflict of interest.

CRediT authorship contributions statement

Chuanyu Pan: Conceptualization, Data curation, Formal analysis, Methodology, Validation，Writing-original draft, 

Visualization; Guowei Yang: Writing-original draft, Supervision, Conceptualization, Project administration; Taijiang Mu: 

Writing-review & editing, Supervision, Project administration; Yu-Kun Lai: Writing-review & editing, Supervision.

References
1 Deng Y, Yang J L, Xu S C, Chen D, Jia Y D, Tong X. Accurate 3D face reconstruction with weakly-supervised learning: from single 

image to image set. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, 

CA, USA, IEEE, 2020, 285–295 

DOI: 10.1109/cvprw.2019.00038

2 Feng Y, Wu F, Shao X H, Wang Y F, Zhou X. Joint 3D face reconstruction and dense alignment with position map regression network. In: 

Computer Vision-ECCV 2018. Springer International Publishing, 2018, 557–574 

DOI: 10.1007/978-3-030-01264-9_33

3 Guo Y D , Zhang J Y, Jianfei C, Jiang BY, Zheng J M. CNN-based real-time dense face reconstruction with inverse-rendered photo-

realistic face images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(6): 1294–1307 

Figure 12　Realistic 3D face reconstruction results from ordinary portraits. The upper row is the input image, and the middle and 

bottom rows are the reconstructed models with and without texture, respectively.

Figure 13　Additional visualization results. We conduct reconstruction on images with different styles. For every three rows, the first 

row shows the input cartoon images, and the second and third rows show the 3D models with and without texture, respectively.

305



Virtual Reality & Intelligent Hardware August (2024) Vol. 6 No. 4 

DOI: 10.1109/tpami.2018.2837742

4 Karras T, Laine S, Aila T M. A style-based generator architecture for generative adversarial networks. In: 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, IEEE, 2020, 4396–4405 

DOI: 10.1109/cvpr.2019.00453

5 Qiu Y D, Xu X J, Qiu L T, Pan Y, Wu Y S, Chen W K, Han X G. 3DCaricShop: a dataset and a baseline method for single-view 3D 

caricature face reconstruction. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, 

USA, IEEE, 2021, 10231–10240 

DOI: 10.1109/cvpr46437.2021.01010

6 Cao C, Bradley D, Zhou K, Beeler T. Real-time high-fidelity facial performance capture. ACM Transactions on Graphics, 2015, 34(4): 1–9 

DOI: 10.1145/2766943

7 Blanz V, Basso C, Poggio T, Vetter T. Reanimating faces in images and video. Computer Graphics Forum, 2003, 22(3): 641–650 

DOI: 10.1111/1467-8659.t01-1-00712

8 Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. Proceedings of the 26th Annual Conference on Computer Graphics 

and Interactive Techniques. New York, ACM, 1999, 187–194 

DOI: 10.1145/311535.311556

9 Li H, Weise T, Pauly M. Example-based facial rigging. ACM Transactions on Graphics, 2010, 29(4): 1–6 

DOI: 10.1145/1778765.1778769

10 Zhou J Y, Wu H T, Liu Z C, Tong X, Guo B N. 3D cartoon face rigging from sparse examples. The Visual Computer, 2018, 34(9): 1177–

1187 

DOI: 10.1007/s00371-018-1553-3

11 Blanz V, Mehl A, Vetter T, Seidel H P. A statistical method for robust 3D surface reconstruction from sparse data. In: Proceedings of 2nd 

International Symposium on 3D Data Processing, Visualization and Transmission, 2004.3DPVT. Thessaloniki, Greece, IEEE, 2004, 293–

300 

DOI: 10.1109/tdpvt.2004.1335212

12 Zhu X Y, Zhen L, Yan J J, Dong Y, Li S Z. High-fidelity pose and expression normalization for face recognition in the wild. In: 2015 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015, 787–796 

DOI: 10.1109/cvpr.2015.7298679

13 Hassner T, Harel S, Paz E, Enbar R. Effective face frontalization in unconstrained images. In: 2015 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR). Boston, MA, USA, IEEE, 2015, 4295–4304 

DOI: 10.1109/cvpr.2015.7299058

14 Bas A, Smith W A P, Bolkart T, Wuhrer S. Fitting a 3D morphable model to edges: a comparison between hard and soft correspondences. 

In: Computer Vision-ACCV 2016 Workshops. Springer International Publishing, 2017, 377–391 

DOI: 10.1007/978-3-319-54427-4_28

15 Romdhani S, Vetter T. Estimating 3D shape and texture using pixel intensity, edges, specular highlights, texture constraints and a prior. 

In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR'05. DiegoSan, CA, USA, IEEE, 

2005, 986–993 

DOI: 10.1109/cvpr.2005.145

16 Kim H, Zollhöfer M, Tewari A, Thies J, Richardt C, Theobalt C. InverseFaceNet: deep monocular inverse face rendering. 2018

17 Jourabloo A, Liu X M. Large-pose face alignment via CNN-based dense 3D model fitting. In: 2016 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016, 4188–4196 

DOI: 10.1109/cvpr.2016.454

18 Zhu X Y, Lei Z, Liu X M, Shi H L, Li S Z. Face alignment across large poses: a 3D solution. In: 2016 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, IEEE, 2016, 146–155 

DOI: 10.1109/cvpr.2016.23

19 Hassner T, Basri R. Example based 3D reconstruction from single 2D images. In: 2006 Conference on Computer Vision and Pattern 

Recognition Workshop CVPRW'06. YorkNew, NY, USA, IEEE, 2006, 15 

DOI: 10.1109/cvprw.2006.76

20 Kemelmacher-Shlizerman I, Seitz S M. Face reconstruction in the wild. In: 2011 International Conference on Computer Vision. 

Barcelona, Spain, IEEE, 2012, 1746–1753 

DOI: 10.1109/iccv.2011.6126439

21 Hassner T. Viewing real-world faces in 3D. In: 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, IEEE, 

2014, 3607–3614 

DOI: 10.1109/iccv.2013.448

22 Liu J F, Chen Y Q, Miao C Y, Xie J J, Ling C X, Gao X Y, Gao W. Semi-supervised learning in reconstructed manifold space for 3D 

caricature generation. Computer Graphics Forum, 2009, 28(8): 2104–2116 

DOI: 10.1111/j.1467-8659.2009.01418.x

23 Wu Q Y, Zhang J Y, Lai Y K, Zheng J M, Cai J F. Alive caricature from 2D to 3D. In: 2018 IEEE/CVF Conference on Computer Vision 

and Pattern Recognition. Salt Lake City, UT, USA, IEEE, 2018, 7336–7345 

DOI: 10.1109/cvpr.2018.00766

306



Chuanyu PAN, et al. Generating animatable 3D cartoon faces from single portraits

24 Cai H, Guo Y, Peng Z, Zhang J. Landmark detection and 3D face reconstruction for caricature using a nonlinear parametric model. 

Graphical Models, 2021, 115: 101103 

DOI: 10.1016/j.gmod.2021.101103

25 Saito S, Huang Z, Natsume R, Morishima S, Li H, Kanazawa A. PIFu: pixel-aligned implicit function for high-resolution clothed human 

digitization. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), IEEE, 2020, 2304–2314 

DOI: 10.1109/iccv.2019.00239

26 Vlasic D, Brand M, Pfister H, Popovic J. Face transfer with multilinear models. SIGGRAPH '06: ACM SIGGRAPH 2006 Courses. 

Boston, Massachusetts. New York, ACM, 2006 

DOI: 10.1145/1185657.1185864

27 Alexander O, Rogers M, Lambeth W, Chiang J Y, Ma W C, Wang C C, Debevec P. The digital emily project: achieving a photorealistic 

digital actor. IEEE Computer Graphics and Applications, 2010, 30(4): 20–31 

DOI: 10.1109/mcg.2010.65

28 Lewis J P, Anjyo K, Rhee T, Zhang M, Pighin F H, Deng Z. Practice and theory of blendshape facial models. Eurographics(State of the 

Art Reports), 2014, 1(8): 2

29 Pawaskar C, Ma W C, Carnegie K, Lewis J P, Rhee T. Expression transfer: a system to build 3D blend shapes for facial animation. In: 

2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ 2013. Wellington, ZealandNew, IEEE, 2014, 

154–159 

DOI: 10.1109/ivcnz.2013.6727008

30 Garrido P, Zollhöfer M, Casas D, Valgaerts L, Varanasi K, Pérez P, Theobalt C. Reconstruction of personalized 3D face rigs from 

monocular video. ACM Transactions on Graphics, 2016, 35(3): 1–15 

DOI: 10.1145/2890493

31 Ichim A E, Bouaziz S, Pauly M. Dynamic 3D avatar creation from hand-held video input. ACM Transactions on Graphics, 2015, 34(4): 1–14 

DOI: 10.1145/2766974

32 Casas D, Feng A, Alexander O, Fyffe G, Debevec P, Ichikari R, Li H, Olszewski K, Suma E, Shapiro A. Rapid photorealistic blendshape 

modeling from RGB-D sensors. Proceedings of the 29th International Conference on Computer Animation and Social Agents. Geneva, 

Switzerland. New York, ACM, 2016, 121–129 

DOI: 10.1145/2915926.2915936

33 Pinkney J N M, Adler D. Resolution dependent GAN interpolation for controllable image synthesis between domains. 2020: arXiv: 2010.

05334

34 Ramamoorthi R, Hanrahan P. An efficient representation for irradiance environment maps. Proceedings of the 28th Annual Conference on 

Computer Graphics and Interactive Techniques. New York, ACM, 2001, 497–500 

DOI: 10.1145/383259.383317

35 Laine S, Hellsten J, Karras T, Seol Y, Lehtinen J, Aila T M. Modular primitives for high-performance differentiable rendering. ACM 

Transactions on Graphics, 2020, 39(6): 1–14 

DOI: 10.1145/3414685.3417861

36 Yu C Q, Gao C X, Wang J B, Yu G, Shen C H, Sang N. BiSeNet V2: bilateral network with guided aggregation for real-time semantic 

segmentation.International Journal of Computer Vision, 2021, 129(11): 3051–3068 

DOI: 10.1007/s11263-021-01515-2

37 Zhang K P, Zhang Z P, Li Z F, Qiao Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal 

Processing Letters, 2016, 23(10): 1499–1503 

DOI: 10.1109/lsp.2016.2603342

38 King D E. Dlib-ml: a machine learning toolkit. Journal of Machine Learning Research, 2009, 10: 1755–1758

39 Zhang Y, Di X, Zhang B, Li Q, Yan S, Wang C. Self-supervised low light image enhancement and denoising. 2021: arXiv: 2103.00832

40 Muslim H S M, Ali Khan S, Hussain S, Jamal A, Qasim H S A. A knowledge-based image enhancement and denoising approach.

Computational and Mathematical Organization Theory, 2019, 25(2): 108–121 

DOI: 10.1007/s10588-018-9274-8

41 Zhou K, Huang J, Snyder J, Liu X G, Bao H J, Guo B N, Shum H Y. Large mesh deformation using the volumetric graph Laplacian. 

SIGGRAPH '05: ACM SIGGRAPH 2005 Papers. Los Angeles, California. New York, ACM, 2005, 496–503 

DOI: 10.1145/1186822.1073219

42 Ekman P, Friesen W V. Facial action coding system. Environmental Psychology & Nonverbal Behavior,1978

43 Sumner R W, Popović J. Deformation transfer for triangle meshes. ACM Transactions on Graphics, 2004, 23(3): 399–405 

DOI: 10.1145/1015706.1015736

44 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, 

DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. PyTorch: an imperative style, high-performance 

deep learning library. 2019: arXiv: 1912.01703

45 Community B O. Blender-a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam,2018

46 Lugaresi C, Tang J, Nash H, McClanahan C, Uboweja E, Hays M, Zhang F, Chang C, Yong M, Lee J, Chang W T, Hua W, Georg M, 

Grundmann M. MediaPipe: a framework for building perception pipelines. 2019: arXiv: 1906.08172

307


	Generating Animatable 3D Cartoon Faces from Single Portraits

