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Abstract

3D single object tracking has been a crucial problem for
decades with numerous applications such as autonomous
driving. Despite its wide-ranging use, this task remains
challenging due to the significant appearance variation
caused by occlusion and size differences among tracked tar-
gets. To address these issues, we present MBPTrack, which
adopts a Memory mechanism to utilize past information and
formulates localization in a coarse-to-fine scheme using
Box Priors given in the first frame. Specifically, past frames
with targetness masks serve as an external memory, and a
transformer-based module propagates tracked target cues
from the memory to the current frame. To precisely localize
objects of all sizes, MBPTrack first predicts the target cen-
ter via Hough voting. By leveraging box priors given in the
first frame, we adaptively sample reference points around
the target center that roughly cover the target of different
sizes. Then, we obtain dense feature maps by aggregating
point features into the reference points, where localization
can be performed more effectively. Extensive experiments
demonstrate that MBPTrack achieves state-of-the-art per-
formance on KITTI, nuScenes and Waymo Open Dataset,
while running at 50 FPS on a single RTX3090 GPU.

1. Introduction
The ability to track objects in 3D space is essential

for numerous applications, including robotics [2, 12], au-
tonomous driving [33, 15], and surveillance systems [27].
Given the initial state of a specific object, the aim of 3D
single object tracking (SOT) is to estimate the pose and
position of the tracked target in each frame. Early ap-
proaches [25, 18, 21] rely heavily on RGB information,
which often struggle to handle changing lighting conditions.
Therefore, recent research works [8, 23, 10, 11, 35, 31] have
focused on using point clouds to solve 3D object tracking
for their unique advantages, such as accurate spatial infor-
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Figure 1: An illustration of our proposed MBPTrack for
3D SOT task. MBPTrack employs a memory mechanism
to propagate target cues from historical frames and then
utilizes a localization head, named BPLocNet, for coarse-
to-fine bounding box prediction. BPLocNet first samples
reference points around each predicted target center using
a bounding box prior, which adaptively covers the tracked
targets of all sizes. Then, BPLocNet aggregates local fea-
tures from reference points for further refinement.

mation and robustness to illumination changes.
Existing methods [23, 30, 34, 24, 5, 10, 36, 11] for the

3D SOT task predominantly follow the Siamese paradigm,
which takes the target template cropped from the previous
frame and search area in the current frame as input, and
then localizes the target in an end-to-end manner using a lo-
calization network such as Region Proposal Network [22]
(RPN). Different from previous methods, M2-Track [35]
explicitly models the target’s motion between two succes-
sive frames and CXTrack [31] proposes to exploit the spa-
tial contextual information across adjacent frames. Despite
achieving promising results on popular datasets, the afore-
mentioned methods propagate target cues solely from the



latest frame to the current frame, thereby neglecting rich in-
formation contained in other past frames. This limitation
renders 3D SOT a challenging task, especially in cases of
large appearance variation or target disappearance caused
by occlusion. To this end, TAT [16] exploits temporal in-
formation by sampling a set of high-quality target templates
cropped from historic frames for reliable target-specific fea-
ture propagation. However, neglecting information in the
latest frame could result in the network failing to capture
lasting appearance changes, such as the gradual sparsifi-
cation of point clouds as the tracked target moves further
away. TAT also ignores the contextual information around
the target, which is essential for 3D SOT [31], thereby lead-
ing to limited tracking performance.

In addition, the substantial differences in size and ge-
ometry across the various categories of tracked targets also
pose challenges for 3D SOT, which has been overlooked
by previous works. The localization networks adopted in
existing methods can be categorized into two paradigms,
namely point-based [36, 31, 23] and voxel-based [10]. For
voxel-based localization heads like V2B [10], tracked tar-
gets with simple shapes and large sizes such as vehicles,
can fit well in voxels, leading to more precise localization
than point-based heads such as X-RPN [31]. However, for
categories such as pedestrians, which have complex geome-
tries and small sizes, voxelization leads to considerable in-
formation loss, thereby degrading tracking performance. As
mentioned in V2B [10], the choice of different voxel sizes
can significantly impact tracking performance.

To address the above issues, we present MBPTrack, a
memory-based network for the 3D SOT task. Our approach
relies on a memory mechanism to leverage rich spatial and
temporal contextual information in historical frames and
utilizes bounding box priors to address the challenge of size
differences among tracked targets. Specifically, past frames
with targetness masks serve as an external memory, and
we draw inspiration from DeAOT [32], which has achieved
great success in video object segmentation, to design a
transformer-based module that propagates information from
this memory to the current frame. It further decouples ge-
ometric features and targetness features into two process-
ing branches with shared attention maps to enable effective
learning of geometric information. Unlike TAT [16], MBP-
Track fully utilizes both spatial and temporal contextual in-
formation around the target without cropping or sampling,
thereby handling appearance variation and target disappear-
ance/reappearance better than previous works. To achieve
accurate localization of targets of different sizes, we intro-
duce BPLocNet, a coarse-to-fine localization network that
captures size information by leveraging the bounding box
given in the first frame. BPLocNet first predicts the po-
tential target centers as well as the targetness mask used
to update the memory mechanism. We adopt a box-prior

sampling method to sample reference points around the pre-
dicted target centers, adaptively covering the tracked target.
Then, we aggregate point-wise features into the reference
points, to obtain a dense feature map with spatial informa-
tion, which is fed into a 3D CNN to predict precise bound-
ing boxes. Extensive experiments demonstrate that MBP-
Track outperforms existing methods by a large margin on
three benchmark datasets, while running at 50 FPS on a
single NVIDIA RTX3090 GPU. Furthermore, we demon-
strate that using our proposed localization network in exist-
ing frameworks can consistently improve tracking accuracy.

In summary, our main contributions are as follows:

• To the best of our knowledge, we are the first to exploit
both spatial and temporal contextual information in the
3D SOT task using a memory mechanism.

• We propose a localization network that utilizes box pri-
ors to localize targets of different sizes in a coarse-to-
fine manner, which is shown to be effective in various
3D SOT frameworks.

• Experimental results demonstrate that MBPTrack out-
performs existing methods, achieving state-of-the-art
online tracking performance.

2. Related Work
As the pioneering work for point cloud-based 3D SOT,

SC3D [8] computes feature similarity between the target
template and a potentially large number of candidate pro-
posals, which are sampled by Kalman filter in the search
area. However, the heuristic sampling is time-consuming,
and the pipeline cannot be end-to-end trained. To balance
performance and efficiency, P2B [23] adopts a Region Pro-
posal Network [22] to generate high-quality 3D proposals.
The proposal with the highest score is selected as the final
output. Many follow-up works adopt the same paradigm.
MLVSNet [30] enhances P2B by performing multi-level
Hough voting for effectively aggregating information at dif-
ferent levels. BAT [34] designs a box-aware feature fu-
sion module to capture the explicit part-aware structure in-
formation. V2B [10] proposes to transform point features
into a dense bird’s eye view feature map to tackle the spar-
sity of point clouds. LTTR [5], PTTR [36], CMT [9] and
STNet [11] introduce various attention mechanisms into
the 3D SOT task for better target-specific feature propa-
gation. PTTR [36] also proposes a light-weight Prediction
Refinement Module for coarse-to-fine localization. How-
ever, these methods rely wholly on the appearance of the
target, so tend to drift towards distractors in dense traf-
fic scenes [35]. To this end, M2-Track [35] introduces a
motion-centric paradigm that explicitly models the target’s
motion between two adjacent frames. CXTrack [31] ex-
ploits contextual information across adjacent frames to im-



prove tracking results. Although achieving promising re-
sults, these methods only exploit the target cues in the latest
frame. The overlook of rich information in historical frames
may hinder precise localization in the case of large appear-
ance variation or target disappearance caused by occlusion.

TAT [16] is the first work to exploit the rich temporal
information. It samples high-quality target templates from
historical frames and adopts an RNN-based module [4] to
aggregation target cues from multiple templates. However,
the overlook of low-quality target templates in the latest
frame makes the network fail to capture lasting appearance
variation caused by long-term partial occlusion. It also ig-
nores the spatial contextual information in the historical
frames, which is essential for 3D SOT, as mentioned in CX-
Track [31]. Besides, none of the aforementioned methods
consider the size differences of tracked objects. For exam-
ple, compared with pedestrian, vehicles have simple shapes
and large sizes, which fit well in voxels. Thus voxel-based
networks such as STNet [11] achieve better performance
on the Car category than point-based networks like CX-
Track [31], but face great challenges on the Pedestrian cate-
gory. We argue that object occlusion and size difference are
two main factors that pose great challenges for 3D SOT.

3. Method

3.1. Problem Definition

Given the 3D bounding box (BBox) of a specific target
in the first frame, 3D SOT aims to localize the target by pre-
dicting its bounding box in subsequent frames. The frame
at timestamp t is represented as a point cloud Pt ∈ RṄt×3,
where Ṅt is the number of points. The 3D BBox Bt ∈ R7

at timestamp t is parameterized by its center (xyz coor-
dinates), orientation (heading angle θ around the up-axis)
and size (width w, length l and height h). Even for non-
rigid objects like pedestrians, the size of the tracked tar-
get remains approximately unchanged in 3D SOT. Thus,
for each frame Pt, we only regress the translation offset
(∆xt,∆yt,∆zt) and the rotation angle (∆θt) from Pt−1 to
Pt to simplify the tracking task, with access to historical
frames {Pi}ti=1. The 3D BBox Bt can be easily obtained
by applying a rigid body transformation to Bt−1 from the
previous frame. Additionally, to indicate a more precise
location of the tracked target at timestamp t, we predict a
targetness mask Ṁt = (m1

t ,m
2
t , · · · ,m

Ṅt
t ) ∈ RṄt frame

by frame, where the mask mi
t represents the possibility of

the i-th point pit ∈ Pt being within Bt (Ṁ1 is computed
using the given B1). Hence, we can formulate 3D SOT at
timestamp t(t > 1) as learning the following mapping

F({Pi}t−1
i=1, {Ṁi}t−1

i=1,Pt,B1) 7→
(∆xt,∆yt,∆zt,∆θt,Ṁt) (1)

3.2. Overview

Following Eq. 1, we design a memory-based framework,
MBPTrack, to capture the spatial and temporal informa-
tion in the historical frames and tackle the size difference
across various categories of tracked targets. As illustrated
in Fig. 2, given an input sequence {Pi}ti=1 of a dynamic
3D scene, we first employ a shared backbone to embed the
local geometric information in each frame into point fea-
tures, denoted by Xi ∈ RN×C for the i-th frame. Here N
is the number of point features and C denotes the number
of feature channels. The corresponding targetness masks
Mi ∈ RN×1(i < t) are obtained from Ṁi (either from
the first frame or estimated from past frames) to identify
the tracked target in past frames. The targetness mask Mt

for the current frame is initialized with 0.5 as it is un-
known. Then, we design a transformer-based decoupling
feature propagation module (DeFPM, Sec. 3.3) to leverage
both temporal and spatial context present in the dynamic
3D scene. Finally, we develop a simple yet efficient local-
ization network, BPLocNet, which formulates the localiza-
tion of targets as coarse-to-fine prediction using box priors
to tackle size differences among tracked targets.

3.3. Decoupling Feature Propagation Module

Inspired by DeAOT [32] in video object segmentation,
we introduce a decoupling feature propagation module
(DeFPM) into the 3D SOT task, which relies on a mem-
ory mechanism to explore both spatial and temporal infor-
mation from the past frames while propagating target cues
into the current frame. DeAOT [32] indicates that integrat-
ing targetness information will inevitably cause the loss of
object-agnostic geometric information. Hence, DeFPM de-
couples the propagation of geometric features and mask fea-
tures to learn more distinct geometric embeddings, which is
essential for handling sparse point clouds. DeFPM consists
of NL = 2 identical layers with two parallel branches, as il-
lustrated in Fig. 3. Each layer includes three main parts, i.e.,
a cross-attention module that propagates both target cues
and temporal context from past frames to the current frame,
a self-attention module that captures long-range contextual
information in the current frame, and a feed-forward net-
work for feature refinement.

To formulate the feature propagation from the memory
to the current frame, we first define the input of the l-th
layer. Let X(l−1) ∈ RN×C and X

(l−1)
m ∈ RTN×C denote

the geometric features in the current frame and from the
memory, where T represents the memory size (the number
of memory frames). We adopt a “pre-norm” transformer
design [19], which employs a layer normalization [1] oper-
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Figure 2: An overview of our proposed MBPTrack architecture. We employ a backbone to extract geometric features.
Then, the past frames with their targetness mask serve as an external memory and the decoupling feature propagation module
is used to propagate rich target cues from historical frames. We also propose a box-prior localization network, which leverages
box priors to sample reference points that adaptively cover the target of different sizes for precise localization.

Self Attention

Cross Attention

𝑋𝑋(𝑙𝑙−1) 𝑋𝑋𝑚𝑚
(𝑙𝑙−1)

LN

Cross Attention

LN

Q K V

LN

Self Attention

LN + FFN

𝑋𝑋(𝑙𝑙)

Q K V

FFN

Update
Memory

𝑌𝑌(𝑙𝑙−1) 𝑀𝑀𝑚𝑚

Linear + LN

Q K V

LN

LN + FFN

𝑌𝑌(𝑙𝑙)

Q K V

Shared Attention Map

Shared Attention Map
𝑋𝑋𝑚𝑚

(𝑙𝑙−1)

Figure 3: Decoupling Feature Propagation Module
(DeFPM). DeFPM decouples the propagation of geometric
information and targetness information into two branches
to avoid the loss of geometric information into deep prop-
agation layers. Both branches have the same hierarchical
structure with shared attention maps.

ation LN(·) before the attention mechanism, written as

X = LN(X(l−1)) (2)

XM = LN(X
(l−1)
M ) (3)

The attention mechanism [28] is the basic block of our
proposed DeFPM, which takes the query Q ∈ Rn×d, key
K ∈ Rn×d and value V ∈ Rn×d as input, and then com-
putes the similarity matrix between the query and the key to

obtain a weighted sum of V

Attn(Q,K, V ) = softmax(
QKT

√
d

)V. (4)

Notably, we add positional embeddings of the coordinates
to the query and key, which is omitted from the formula of
attention for brevity. Hence, the cross attention operation of
the geometric branch can be formulated as

X̃ = X(l−1) + Attn(XW c
Q, XMW c

K , XMW c
V,G), (5)

where W c
Q ∈ RC×d, W c

K ∈ RC×d and W c
V,G ∈ RC×d are

learnable parameter matrices and d is the channel dimen-
sion. To update the memory bank, we adopt a lightweight
feed-forward network on the input X(l−1) to obtain the ref-
erence features of the current frame, which ensures the ef-
fectiveness and efficiency of the memory mechanism.

The mask branch is designed to propagate targetness in-
formation into the current frame to indicate the tracked tar-
get, which shares the attention maps with the geometric
branch. Suppose Y (l−1) ∈ RN×C denotes the mask fea-
tures output by the (l − 1)-th layer (Y (0) = ϕ(Mt), where
ϕ is a linear projection layer) and Mm ∈ RTN×1 denotes
the targetness masks of all the frames saved in memory. We
project the input masks Mm to mask embeddings using a
shared linear transformation φ(·) with a layer normalization

Ym = LN(φ(Mm)) (6)

The output of the cross-attention operation is given by

Ỹ = Y (l−1) + Attn(XW c
Q, XMW c

K , Y MW c
V,M ), (7)

To explore the contextual information within the current
frame and enhance the point features, DeFPM subsequently



employs a global self-attention operation, which can be for-
mulated similarly to the cross-attention operation

X̂ = X̃ + Attn(ẊW s
Q, ẊW s

K , ẊW s
V,G) (8)

Ŷ = Ỹ + Attn(ẊW s
Q, ẊW s

K , Ẏ W s
V,G) (9)

where Ẋ = LN(X̃), Ẏ = LN(Ỹ ) (10)

Finally, two fully connected feed-forward networks are
used to separately refine the point features and mask fea-
tures, which can be written as

X(l) = X̂ + FFN(LN(X̂)) (11)

Y (l) = Ŷ + FFN(LN(Ŷ )) (12)
where FFN(x) = ReLU(xW1 + b1)W2 + b2 (13)

3.4. Box-Prior Localization Network

The difference in size and geometry among the tracked
targets poses great challenges to existing localization net-
works. To address the above concern, we design a novel
localization network, named BPLocNet, that formulates the
localization of the target in a coarse-to-fine manner using
box priors given in the first frame, as illustrated in Fig. 2.
Previous works [23, 36, 10, 11] mainly use the bounding
box to crop the target template from previous frames while
ignoring the size information about the target. Hence, we
propose to adaptively sample reference points that roughly
cover the targets of different sizes using the given bounding
box, and then refine the prediction for precise localization.
Box-prior sampling. We apply a shared MLP on the fused
point features F = X(NL)+Y (NL) ∈ RN×C to predict the
potential target center C ∈ RN×3 via Hough voting, as well
as a point-wise targetness mask Mt for memory update.
Each target center prediction can be viewed as a proposal
center, while we use further point sampling to sample a sub-
set Cp in C to be of size Np for efficiency. Suppose w, l, h
denote the width, length and height of the 3D bounding box
B1 given in the first frame along each axis. Leveraging the
proposal centers Cp and the size information w, l, h, we can
sample a set of reference points Rc for each center c ∈ Cp
(as shown in Fig. 4), which can be formulated as follows

Rc =

{
c+ si,j,k

∣∣∣∣si,j,k =

(
2i− nx − 1

2nx
w,

2j − ny − 1

2ny
l,

2k − nz − 1

2nz
h

)
∀i ∈ [1, nx], j ∈ [1, ny], k ∈ [1, nz]

}
(14)

where nx, ny, nz denote the numbers of samples along
axes. All reference points form a point set R =

⋃
c∈Cp

Rc.
Despite the simplicity, reference points have the following
properties, which can benefit the localization task:

• Coarse prediction. We observe the rotation angles
∆θ of tracked targets between two consecutive frames

Figure 4: Box-Prior Sampling. Red indicates the reference
points that roughly cover the tracked targets. We sample 3
points along each axis for visualization.

are small in most cases, especially for vehicle tracking.
Hence, reference points can serve as a coarse predic-
tion of the localization of targets.

• Adaptive to different sizes. By leveraging size infor-
mation, reference points are uniformly distributed in
the bounding box of tracked targets, making the net-
work adaptive to targets of different sizes.

• Shape prior. For targets such as vehicles that have
simple shapes, reference points provide a strong shape
prior, which roughly cover the targets in 3D space.

Point-to-reference feature transformation. Due to the
fixed relative position of reference points, we can obtain a
3D dense feature map from unordered point features, where
the localization can be performed more effectively. We first
integrate the targetness mask score mj ∈ Mt into the point
features fj ∈ F using a shared MLP h(·)

f̂j = h([fj ;mj ]) (15)

where [·; ·] is the concatenation operation. Then, we adopt a
modified EdgeConv [29] operator to aggregate information
from the neighborhood points j ∈ N (r) with features f̂j ∈
F to the reference point r ∈ R, written as follows

fr = max
j:j∈N (r)

e([f̂j ;xj − r; r]) (16)

where e(·) denotes a shared MLP. We arrange the features
fr in a predefined order with respect to the coordinates of
reference points to generate the 3D dense feature map Z ∈
Rnx×ny×nz×C for each proposal c ∈ C. Finally, the 3D
feature maps Z are fed into a shared 3D CNN to obtain
proposal-wise features.
Coarse-to-fine score prediction. As mentioned in M2-
Track [35], distractors are widespread in dense traffic
scenes. 3D CNN mainly captures the appearance of the tar-
get, while failing to distinguish the target from distractors
in dense traffic scenes. Thus, we also use the point features



output by DeFPM to predict a quality score Q ∈ RN×1, re-
sponsible for measuring the distance between the predicted
target center C and the ground truth. We project the quality
score Q to quality embeddings using a shared linear trans-
formation, and then add them to the proposal-wise features
to obtain the proposal box parameters BNp×4 with refined
targetness scores S ∈ RNp×1.

3.5. Implementation Details

Loss functions. The predicted targetness mask Mt is su-
pervised by a standard cross-entropy loss, denoted as Lm.
For the target center prediction, we use an MSE (Mean
Squared Error) loss Lc. Following P2B [23], we con-
sider predicted centers near the ground truth target center
(<0.3m) as positive and others as negative to obtain the
ground truth of quality score Q and targetness score S,
which are supervised by cross-entropy loss Lq and Ls, re-
spectively. Only the bounding box parameters of positive
proposals are supervised via a smooth-L1 loss Lbbox. The
final loss of each frame can be written as

L = λmLm + λcLc + λqLq + λsLs + Lbbox (17)

where λm(=0.2), λc(=10.0), λq(=1.0) and λs(=1.0) hyperpa-
rameters are used to balance the component losses.
Positive sampling. We observe that for objects with com-
plex shapes such as pedestrians, it is difficult to regress pre-
cise target centers for all point features. Hence, positive
proposals (<0.3m) for box parameter prediction are much
fewer than negative proposals. To balance positive and neg-
ative proposals, we replace part of the predicted proposal
centers with positive centers generated by applying a small
perturbation to the ground truth center for nonrigid objects
such as pedestrians and cyclists during training.
Training & Testing. We sample clips from the whole se-
quence to form training samples. The length of a clip is set
to 8. We sum the losses of frames to obtain the loss of each
clip. To balance efficiency and effectiveness, the memory
size of MBPTrack is set to 2 for training and 3 for testing
(Sec. 4.3). MBPTrack reuses the previous prediction if the
tracked target is lost (max(Mt) < 0.2). More details can
be seen in the supplementary material.

4. Experiments
4.1. Settings

Datasets. We adopt three popular large-scale datasets,
namely KITTI [7], NuScenes [3] and Waymo Open
Dataset [26] (WOD), to validate the effectiveness of our
model. KITTI contains 21 video sequences for training
and 29 video sequences for testing. Due to the inacessi-
bility of the test labels, we follow previous work [23] and
split the training dataset into three subsets, sequences 0-
16 for training, 17-18 for validation, and 19-20 for test-

Table 1: Comparisons with the state-of-the-art methods
on KITTI dataset. “Mean” is the average result weighted
by frame numbers. “Underline” and “Bold” denote pre-
vious and current best performance, respectively. Suc-
cess/Precision are used for evaluation.

Method Car Pedestrian Van Cyclist Mean
(6424) (6088) (1248) (308) (14068)

SC3D 41.3/57.9 18.2/37.8 40.4/47.0 41.5/70.4 31.2/48.5
P2B 56.2/72.8 28.7/49.6 40.8/48.4 32.1/44.7 42.4/60.0

3DSiamRPN 58.2/76.2 35.2/56.2 45.7/52.9 36.2/49.0 46.7/64.9
LTTR 65.0/77.1 33.2/56.8 35.8/45.6 66.2/89.9 48.7/65.8

MLVSNet 56.0/74.0 34.1/61.1 52.0/61.4 34.3/44.5 45.7/66.7
BAT 60.5/77.7 42.1/70.1 52.4/67.0 33.7/45.4 51.2/72.8
PTT 67.8/81.8 44.9/72.0 43.6/52.5 37.2/47.3 55.1/74.2
V2B 70.5/81.3 48.3/73.5 50.1/58.0 40.8/49.7 58.4/75.2
CMT 70.5/81.9 49.1/75.5 54.1/64.1 55.1/82.4 59.4/77.6
PTTR 65.2/77.4 50.9/81.6 52.5/61.8 65.1/90.5 57.9/78.1
STNet 72.1/84.0 49.9/77.2 58.0/70.6 73.5/93.7 61.3/80.1
TAT 72.2/83.3 57.4/84.4 58.9/69.2 74.2/93.9 64.7/82.8

M2-Track 65.5/80.8 61.5/88.2 53.8/70.7 73.2/93.5 62.9/83.4
CXTrack 69.1/81.6 67.0/91.5 60.0/71.8 74.2/94.3 67.5/85.3

MBPTrack 73.4/84.8 68.6/93.9 61.3/72.7 76.7/94.3 70.3/87.9
Improvement ↑1.2/↑0.8 ↑1.6/↑2.4 ↑1.3/↑0.9 ↑2.5/0.0 ↑2.8/↑2.6

ing. NuScenes is more challenging than KITTI for its
larger data volumes, containing 700/150/150 scenes for
training/validation/testing. For WOD, we follow LiDAR-
SOT [20] to evaluate our method on 1121 tracklets, which
are divided into easy, medium and hard subsets based on the
sparsity of point clouds.
Evaluation metrics. We follow One Pass Evaluation [14].
For the predicted and ground truth bounding boxes, Success
is defined as the Area Under Curve (AUC) for the plot show-
ing the ratio of frames where the Intersection Over Union
(IOU) is greater than a threshold, ranging from 0 to 1, while
Precision denotes the AUC for the plot showing the ratio of
frames where the distance between their centers is within a
threshold, ranging from 0 to 2 meters.

4.2. Results

We present a comprehensive comparison of our method
with the previous state-of-the-art approaches, namely
SC3D [8], P2B [23], 3DSiamRPN [6], LTTR [5], MLVS-
Net [30], BAT [34], PTT [24], V2B [10], CMT [9],
PTTR [36], STNet [11], TAT [16], M2-Track [35] and CX-
Track [31] on the KITTI dataset. The published results from
corresponding papers are reported. As illustrated in Tab. 1,
MBPTrack surpasses other methods on all categories, with
an obvious improvement in average Success and Precision.
Notably, compared with point-based methods such as CX-
Track or M2Track, methods using voxel-based localization
heads like STNet and V2B achieve satisfying results on the
Car category. We presume that the improvement stems from
the simple shape and large size of cars, which fit well in
voxels. However, STNet and V2B perform poorly on the



Table 2: Comparison with state of the arts on Waymo Open Dataset.

Method Vehicle(185731) Pedestrian(241752) Mean(427483)Easy Medium Hard Mean Easy Medium Hard Mean
P2B 57.1/65.4 52.0/60.7 47.9/58.5 52.6/61.7 18.1/30.8 17.8/30.0 17.7/29.3 17.9/30.1 33.0/43.8
BAT 61.0/68.3 53.3/60.9 48.9/57.8 54.7/62.7 19.3/32.6 17.8/29.8 17.2/28.3 18.2/30.3 34.1/44.4
V2B 64.5/71.5 55.1/63.2 52.0/62.0 57.6/65.9 27.9/43.9 22.5/36.2 20.1/33.1 23.7/37.9 38.4/50.1

STNet 65.9/72.7 57.5/66.0 54.6/64.7 59.7/68.0 29.2/45.3 24.7/38.2 22.2/35.8 25.5/39.9 40.4/52.1
TAT 66.0/72.6 56.6/64.2 52.9/62.5 58.9/66.7 32.1/49.5 25.6/40.3 21.8/35.9 26.7/42.2 40.7/52.8

CXTrack 63.9/71.1 54.2/62.7 52.1/63.7 57.1/66.1 35.4/55.3 29.7/47.9 26.3/44.4 30.7/49.4 42.2/56.7
M2Track 68.1/75.3 58.6/66.6 55.4/64.9 61.1/69.3 35.5/54.2 30.7/48.4 29.3/45.9 32.0/49.7 44.6/58.2

MBPTrack 68.5/77.1 58.4/68.1 57.6/69.7 61.9/71.9 37.5/57.0 33.0/51.9 30.0/48.8 33.7/52.7 46.0/61.0
Improvement ↑0.4/↑1.8 ↓0.2/↑1.5 ↑2.2/↑4.8 ↑0.8/↑2.6 ↑2.0/↑1.7 ↑2.3/↑3.5 ↑0.7/↑2.9 ↑1.7/↑3.0 ↑1.4/↑2.8

Table 3: Comparisons with the state-of-the-art methods on NuScenes dataset.

Method Car(64159) Pedestrian(33227) Truck(13587) Trailer(3352) Bus(2953) Mean(117278)
SC3D 22.31/21.93 11.29/12.65 30.67/27.73 35.28/28.12 29.35/24.08 20.70/20.20
P2B 38.81/43.18 28.39/52.24 42.95/41.59 48.96/40.05 32.95/27.41 36.48/45.08
BAT 40.73/43.29 28.83/53.32 45.34/42.58 52.59/44.89 35.44/28.01 38.10/45.71

M2-Track 55.85/65.09 32.10/60.92 57.36/59.54 57.61/58.26 51.39/51.44 49.23/62.73
MBPTrack 62.47/70.41 45.32/74.03 62.18/63.31 65.14/61.33 55.41/51.76 57.48/69.88

Improvement ↑6.62/↑5.32 ↑13.22/↑13.11 ↑4.82/↑3.77 ↑7.53/↑3.07 ↑4.02/↑0.32 ↑8.25/↑7.15

Pedestrian category, which has small size and complex ge-
ometry. Voxelization results in inevitable information loss,
causing the network to fail to distinguish the target from
distractors. Leveraging box priors and a memory mecha-
nism, our method achieves state-of-the-art performance on
both categories. Compared with TAT, which samples high-
quality target templates from historical frames, our method
obtains consistent performance gains across all categories.
It indicates that our method benefits a lot from spatial and
temporal information that TAT discards during sampling.

For further explanation, we present a visual analysis of
the tracking results on KITTI. As shown in Fig. 5, CX-
Track [31], which adopts a point-based head, fails to pre-
dict the orientation accurately on the Car category, while
the predicted bounding boxes by our method hold tight to
the ground truths. For pedestrians, all methods tend to drift
towards intra-class distractors due to the large appearance
variation caused by heavy occlusion. However, only MBP-
Track can accurately track the target after the occlusion dis-
appears, owing to the sufficient use of temporal information.

We also evaluate the KITTI pretrained models on
WOD [26], following previous work [11]. The corre-
sponding categories between KITTI and WOD datasets are
Car→Vehicle and Pedestrian→Pedestrian. The experimen-
tal results, as presented in Tab. 2, indicate that MBPTrack
yields competitive or better tracking results than other meth-
ods under different levels of sparsity. In conclusion, our
proposed method not only precisely tracks targets of all
sizes but also generalizes well to unseen scenarios.

Table 4: Model complexity and inference time.

Component FLOPs #Params Inference Speed
backbone 1.59G 1.19M 4.6ms
DeFPM 0.22G 2.67M 7.9ms

BPLocNet 1.07G 3.52M 3.6ms
pre/post-process - - 3.9ms

MBPTrack 2.88G 7.38M 20.0ms (50FPS)

NuScenes [3] presents a greater challenge for 3D SOT
task than KITTI due to its larger data volumes and lower fre-
quency for annotated frames (2Hz for NuScenes v.s. 10Hz
for KITTI and WOD). We conduct a comparison of our ap-
proach with previous methods on the NuScenes dataset fol-
lowing M2-Track [35]. As shown in Tab. 3, our method
achieves a consistent and large performance gain com-
pared with the previous state-of-the-art method, M2-Track.
Leveraging the rich temporal and spatial information con-
tained in the historical frames, MBPTrack exhibits superior
performance over methods that only consider two frames
when large appearance variation occurs between them.

Fig. 4 shows the model complexity and average infer-
ence time of different components in the Car category on
KITTI. Our experiments are conducted on a single NVIDIA
RTX 3090. MBPTrack achieves 50 FPS, with 4.6ms for fea-
ture extraction, 7.9ms for feature propagation, 3.6ms for lo-
calization and 3.9ms for pre/post-processing. Using a more
light-weight attention mechanism (e.g. [17, 13]) in DeFPM
may further increase the running speed.
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Figure 5: Visualization of tracking results compared with state-of-the-art methods.

Table 5: Ablation study of the memory size.

#Frames Car Pedestrian Van Cyclist Mean
1 72.5/83.7 63.2/88.9 62.8/74.3 74.6/93.7 67.7/85.3
2 72.5/82.8 66.8/91.9 62.0/73.4 76.6/94.4 69.2/86.2

3 (Ours) 73.4/84.8 68.6/93.9 61.3/72.7 76.7/94.3 70.3/87.9
4 74.9/86.7 66.4/92.1 60.7/72.0 76.7/94.4 70.0/87.9
5 74.1/85.5 66.7/92.2 61.2/72.4 76.7/94.4 69.8/87.4
6 72.2/83.5 65.6/91.0 60.1/71.5 77.4/94.6 68.4/85.9

4.3. Ablation Studies

Memory Size. Memory size is defined as the number of
historical frames with their corresponding targetness masks
saved in the memory. To explore the impact of memory size,
we conduct experiments on KITTI and report the results in
Tab. 5. Notably, we train and test our model using only one
previous frame when the memory size is set as 1. In this
case, MBPTrack is degraded to a Siamese-based network,
same as previous work [11, 31, 35]. Otherwise, we adopt
the default training settings. Compared with Siamese-based
version, our method benefits a lot from exploiting tempo-
ral information, leading to a significant improvement on the
average metrics. This demonstrates the importance of his-
torical information. We also observe that performance be-
gins to decline when using more than 4 frames for track-
ing. Larger memory size can provide more reference in-
formation to handle sudden appearance variation caused by
occlusion, but may fail to tackle lasting appearance varia-
tion, such as the gradual sparsification of point clouds as
the tracking target moves further away. Besides, the mem-
ory size at which the model’s performance reaches its peak
varies across different categories. We believe that the peak
point is determined by the quality of point clouds. For ex-
ample, on the Car category, the tracked target may suffer
from heavy occlusion and data missing, and thus it requires
a large memory size to capture much shape information.

Table 6: Ablation studies of different model compo-
nents. “De”, “Q” and “PS” denote the decoupling design in
DeFPM, coarse-to-fine score prediction and positive sam-
pling strategy for non-rigid objects, respectively.

De Q PS Car Pedestrian Van Cyclist Mean
✓ ✓ 70.0/81.3 64.1/88.5 58.7/70.4 72.5/93.4 66.5/83.7

✓ ✓ 71.8/82.9 64.2/89.5 59.0/69.5 74.9/93.9 67.4/84.8
✓ ✓ 73.4/84.8 65.6/91.6 61.3/72.7 75.1/94.0 69.0/86.9
✓ ✓ ✓ 73.4/84.8 68.6/93.9 61.3/72.7 76.7/94.3 70.3/87.9

Table 7: Ablation studies of different localization heads.

Loc Car Pedestrian Van Cyclist Mean
RPN 67.2/81.1 53.5/85.5 52.0/62.4 61.3/90.2 59.8/81.5
PRM 69.0/81.4 59.0/88.4 54.0/64.5 71.6/92.6 63.4/83.2
V2B 72.6/84.2 61.1/87.9 55.6/64.7 71.2/93.8 66.1/84.3

X-RPN 70.4/81.9 64.9/91.3 55.1/64.6 72.1/93.2 64.7/84.7
BPLoc 73.4/84.8 68.6/93.9 61.3/72.7 76.7/94.3 70.3/87.9

Table 8: Integration with Siamese-based network.

Method Car Pedestrian Van Cyclist Mean
CXTrack 69.1/81.6 67.0/91.5 60.0/71.8 74.2/94.3 67.5/85.3
CXTrack† 72.8/84.5 67.7/92.1 61.3/72.7 74.1/94.1 69.6/87.0

Improvement ↑3.7/↑2.9 ↑0.7/↑0.6 ↑1.3/↑0.9 ↓0.1/↓0.2 ↑2.1/↑1.6
†: integrated with BPLocNet

Model components. Tab. 6 presents ablation studies of
MBPTrack on KITTI to gain a better understanding of its
model designs. We investigate the impact of the decoupling
design in DeFPM, the coarse-to-fine score prediction and
the positve sampling training strategy via separate ablation
experiments. Notably, we add targetness mask embedding
to X(l−1) and X

(l−1)
m before cross-attention to ablate the

decoupling design, in which DeFPM is degraded to a one-
branch transformer. Although the effectiveness of different
components varies across categories, removing any of them
leads to an obvious decline in terms of average metrics.



Localization head. We compare our proposed BPLocNet
and other commonly-adopted localization heads on KITTI,
including point-based (RPN [22], PRM [36], X-RPN [31])
and voxel-based (V2B [10]) methods. The results are shown
in Tab. 7. BPLocNet consistently outperforms the alterna-
tive designs on all categories. We further integrate BPLoc-
Net with a previous Siamese-based method CXTrack [31]
to explore its generalization ability. Tab. 8 shows obvious
performance gain by using BPLocNet, especially on the Car
category (72.8/84.5 v.s. 69.1/81.6). For cars that have sim-
ple shapes and suffer from self-occlusions, box-prior sam-
pling provides a strong shape prior to the localization task,
thereby leading to better performance than the point-based
X-RPN adopted in CXTrack [31]

5. Conclusion
We propose a memory-based tracker, named MBPTrack,

to address the appearance variation and size difference
problems in 3D single object tracking. MBPTrack employs
a decoupling feature propagation module to exploit rich in-
formation lying in historical frames, which is overlooked by
previous Siamese-based methods. We also design a novel
localization network, named BPLocNet, that leverages box
priors to more accurately localize the tracked targets of dif-
ferent sizes. Extensive experiments on three large-scale
datasets show our method surpasses previous state-of-the-
art on tracked targets of varying sizes while maintaining
high efficiency. The major limitation of our work is the
inaccurate orientation prediction caused by inaccurate past
predictions (Fig. 5, bottom right). Besides, our method
achieves limited performance when the point cloud is ex-
tremely sparse. In the future, we would like to explicitly
model the target motion to address these issues.
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