
NEURALSLICE: Neural 3D Triangle Mesh Reconstruction
via Slicing 4D Tetrahedral Meshes

Chenbo Jiang 1 2 Jie Yang 1 Shwai He 3 Yu-Kun Lai 4 Lin Gao 1 5

Abstract

Learning-based high-fidelity reconstruction of 3D
shapes with varying topology is a fundamen-
tal problem in computer vision and computer
graphics. Recent advances in learning 3D shapes
using explicit and implicit representations have
achieved impressive results in 3D modeling. How-
ever, the template-based explicit representation
is limited by fixed topology, and the implicit
representation, although flexible with arbitrary
topology, requires a large number of sampled
points to regress the surface, which is compu-
tationally expensive. In this work, we propose a
novel 3D shape representation named NEURAL-
SLICE, which represents a 3D shape as the inter-
section of a 4D tetrahedral mesh and a 4D hyper-
plane. A novel network is designed to incorpo-
rate the proposed representation flexibly, which
learns a deformable 4D template and a parame-
ter for slicing 4D hyperplane to reconstruct the
3D object. To learn the local deformation of
the 4D template, we further propose a spatial-
aware network to locate the 4D points within
the 3D feature volume of input shape via posi-
tional encoding, which leverages the local geo-
metrical feature to guide the 4D deformation. By
addressing the 3D problem in a higher 4D space,
our method supports flexible topology changes
while being highly efficient. Our method is guar-
anteed to produce manifold meshes. NEURAL-
SLICE outperforms the state-of-the-art explicit-
based approaches in terms of reconstruction qual-
ity. Compared with implicit approaches, by avoid-
ing point sampling, our method is 10 times faster

1Beijing Key Laboratory of Mobile Computing and Pervasive
Device, Institute of Computing Technology, Chinese Academy of
Sciences 2Nanjing University of Science and Technology Zijin
College 3University of Maryland, College Park 4Cardiff University
5University of Chinese Academy of Sciences. Correspondence to:
Lin Gao <gaolin@ict.ac.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

than the implicit approaches, and better preserves
thin structures. NEURALSLICE has the capabil-
ity of representing various shapes and topologies
using a single 4D tetrahedral mesh. The corre-
sponding code can be found on GitHub at https:
//github.com/IGLICT/NEURALSLICE.

1. Introduction
Learning-based high-fidelity reconstruction of 3D shapes
is a fundamental task for many applications in computer
vision and graphics, e.g., 3D scene modeling, virtual/aug-
mented reality, architecture, gaming, film, etc. To cope with
rich 3D shapes in the real world, 3D shape reconstruction
methods should ideally be able to represent and recover
detailed surface geometry and diverse topologies. The topol-
ogy describes the intrinsic properties of shapes (Berger &
Gostiaux, 2012; Lee, 2010). However, it is non-trivial to ef-
ficiently reconstruct meshes with correct, flexible topology,
while recovering fine geometry details.

Shape reconstruction methods are inherently related to the
underlying geometry representations. Existing methods
can be broadly categorized as implicit and explicit ap-
proaches. However, neither explicit representations (e.g.,
voxels (Wu et al., 2015; 2016; Choy et al., 2016), point
clouds (Fan et al., 2017; Qi et al., 2017; Prokudin et al.,
2019), meshes (Groueix et al., 2018; Yang et al., 2018; Bed-
narik et al., 2020; Deng et al., 2020b; Low & Lee, 2022))
nor implicit representations (e.g., signed distance functions
(SDF) (Park et al., 2019; Chen & Zhang, 2019; Mescheder
et al., 2019), unsigned distance functions (UDF) (Guillard
et al., 2022; Chibane et al., 2020)) can satisfy the above
two important properties simultaneously in an efficient fash-
ion. For explicit representations, voxel-based methods have
struggled between efficient computation/storage and high-
resolution surfaces, and point clouds are free of structure,
which are ambiguous for complex shape and structures. On
the contrary, a 3D mesh is capable of representing a 3D sur-
face efficiently and compactly with a collection of vertices,
edges and faces, but the predefined edges and faces limit its
representation capability of flexible topology change since
it is homeomorphic to the explicit template. On the other

1

https://github.com/IGLICT/NEURALSLICE
https://github.com/IGLICT/NEURALSLICE

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

(a) Conic Section

Deformation

Homeomorphic

(b) Sliced deformable template by different planes in 3D space

Figure 1. Our work is based on slicing a 4D tetrahedral mesh with a 4D hyperplane, which can be difficult to imagine. To help with
understanding, we illustrate a lower-dimensional situation, i.e., slicing a 3D surface with a 3D plane, which bears similar principles. (a)
slicing a cone surface to obtain different conic section curves (hyperbola, circle, ellipse, and parabola). Although the 3D surface is fixed,
the 2D intersection curves can have different topologies. (b) a more complex example that deforms a sphere homomorphically to a cow.
Although the 3D surface does not change topology, the 2D sliced curves have changed topology during deformation. We use different
colors to indicate slices with different planes.

hand, while implicit representations can successfully han-
dle diverse topology, they need a large number of sampling
points to regress the diverse topology and extract mesh-
based explicit representation by the Marching Cubes al-
gorithm (Lorensen & Cline, 1987). The computation is
expensive and it may not be possible to represent some thin
structures (e.g., slots of chairs, spokes) in an appropriate res-
olution. Recent advances have focused on finding a solution
for efficient and flexible 3D representation. The mesh-based
approaches pursue the goal to generalize to shapes with com-
plex and thin structures via changing the explicit topology,
e.g., patch-based (Yang et al., 2018; Groueix et al., 2018;
Low & Lee, 2022), part-based (Yang et al., 2022; Gao et al.,
2019), etc. The implicit approaches are mainly dedicated to
resolving the computationally expensive issues, e.g., (Gao
et al., 2020; Shen et al., 2021). However, their fundamental
limitations still remain.

To tackle these challenges, we propose a novel 3D shape
reconstruction method named NEURALSLICE, which rep-
resents and reconstructs each 3D shape as the intersection
of a 4D tetrahedral mesh T and a 4D hyperplane Π. The
interesting idea is inspired by level set theory (Lee, 2013).
As 4D space is hard to imagine, we illustrate the core idea
in Figure 1 using two 3D toy examples. The conic section
example (a) shows that intersecting the same 3D shape with
different planes can result in curves of different topologies.
In (b), the homeomorphic deformation from a sphere to a
cow demonstrates that topology-preserving deformation in
3D can lead to change of topology for intersection curves.
In our approach, by deforming a 4D tetrahedral mesh and
intersecting it with a 4D hyperplane, our method is able to
reconstruct meshes with flexible topology, while avoiding
expensive sampling needed for implicit approaches.

Furthermore, a novel architecture is designed to incorporate

the proposed representation, which learns a deformable 4D
tetrahedral mesh (3-manifold T ⊂R4) and a 4D hyperplane
that slices T to reconstruct the 3D shape. To learn the de-
formation of T , we propose a spatial-aware Embedding Net
that establishes a mapping from the 4D tetrahedral mesh to
3D space. The Embedding Net performs a positional pro-
jection from each vertex on the 4D tetrahedral mesh to 3D
space via integrating the global feature of the input shape,
which determines the local geometrical feature from the 3D
feature volume of the input shape via trilinear interpolation.
Under the guidance of the local geometric feature, we intro-
duce a Deformation Net with residual blocks to predict the
deformed 4D tetrahedral mesh. In addition, to preserve the
regular connection during deformation, we adopt Lipschitz
Normalization and Laplacian regularization on the learnable
weights and explicit meshes respectively. Finally, our whole
architecture also predicts a learnable parameter to determine
the hyperplane to slice the deformed 4D tetrahedral mesh to
reconstruct explicit meshes.

Our method NEURALSLICE reconstructs plausible and ac-
curate 3D meshes with flexible topology efficiently via a
geometrically meaningful operation – a learned hyperplane
slices a deformable 4D tetrahedron mesh. Experiments
demonstrate that our method seeks a new solution to de-
scribing the diverse topology in an explicit fashion and
outperforms existing explicit approaches with high accuracy
and robustness for 3D shape reconstruction. Our method is
superior to implicit approaches with 10 times faster speed
for shape reconstruction and improved robustness to thin
structures. To summarize, our major contributions are
three-fold:

• We propose NEURALSLICE, a novel approach to repre-
senting 3D shapes with flexible topology in the explicit
fashion, which represents a 3D shape as the intersection

2

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

of a 4D deformable tetrahedral mesh and a learnable
4D hyperplane;

• A novel network architecture that incorporates NEU-
RALSLICE to learn the deformable 4D tetrahedral mesh
and 4D hyperplane for 3D shape reconstruction, which
ensures the high fidelity of the obtained meshes with
regular triangulation by introducing Lipschitz normal-
ization and Laplacian regularization;

• Experiments demonstrate that our 3D reconstruction
method accurately reconstructs 3D shapes of diverse
topology, outperforming existing explicit methods in
accuracy, and much faster than implicit methods. Fur-
thermore, NEURALSLICE can represent different 3D
shapes and topologies in one 4D tetrahedral mesh.

2. Related Work
As 3D shape reconstruction is closely related to the un-
derlying 3D shape representation, we review methods on
learning-based 3D representations (Xiao et al., 2020). Gen-
erally, learning-based 3D representations can be classified
as explicit representation (e.g., voxels, point clouds and
meshes) and implicit representation (e.g., SDF, UDF).

Explicit 3D Representations. Explicit representations
mainly include voxels, point clouds and meshes. Voxel-
based representation is one of the earliest learning-based
representations for 3D reconstruction (Wu et al., 2015; 2016;
Choy et al., 2016; Gkioxari et al., 2019). However, the capa-
bility of such methods in representing accurate 3D shapes
is limited by high memory and computational costs, espe-
cially when the resolution of the voxel grid becomes higher.
In contrast, point clouds (Fan et al., 2017; Qi et al., 2017;
Prokudin et al., 2019) are a very efficient representation
for 3D deep learning, but they cannot represent topological
relations.

Meshes are a widely used representation for 3D deep learn-
ing. Some learning-based methods directly deform a mesh
with fixed topology for shape reconstruction and/or gener-
ation. Pixel2Mesh (Wang et al., 2020; Wen et al., 2019)
and NFM (Gupta & Chandraker, 2020) fit different objects
by deforming a sphere mesh via graph neural network or
neural ODE (Ricky et al., 2018). Instead of deforming a
sphere, other works such as 3DN (Wang et al., 2019) and
ShapeFlow (Jiang et al., 2020) deform source templates to
target shapes. Nevertheless, the deformation process does
not change the mesh connectivity, and such methods cannot
reconstruct meshes with flexible topology.

To address the fixed-topology problem, patch-based meth-
ods (Groueix et al., 2018; Yang et al., 2018) learn to deform
a set of mesh patches (known as an atlas) to represent target
shapes. Some methods try to regularize patch distortion

and overlap (Bednarik et al., 2020; Deng et al., 2020b) and
some patch-based reconstruction methods achieve good re-
sults (Badki et al., 2020; Williams et al., 2019; Morreale
et al., 2021). Although patch-based representation allows
flexible topological changes, there is no connection between
patches, and it is difficult to fully constrain patches to avoid
visual cracks when produced shapes are rendered. Another
approach to addressing fixed topology is to use part-based
representations where each part is a mesh of fixed topology.
GRASS (Li et al., 2017) and StructureNet (Mo et al., 2019)
use recursive neural networks (RvNN), which can represent
complicated topology. However, each part is represented
as an oriented bounding box (Li et al., 2017) or a point
cloud (Mo et al., 2019), which has limited accuracy. SDM-
Net (Gao et al., 2019) and DSG-Net (Yang et al., 2022)
instead use deformed meshes to represent parts, which can
achieve high-quality representation. However, part-based
methods require part-level semantic segmentation for train-
ing.

Some methods try to explicitly modify the topology through
pruning. Low & Lee (2022) and Pan et al. (2019) modify
topology by removing faces. TearingNet (Pang et al., 2021)
introduces a “tearing” operation to split meshes. However,
their modification leads to non-watertight and low-quality
reconstruction, and their method still has limited capability
for changing topology. None of these explicit methods pro-
duce watertight meshes with flexible topology. Our method
is an explicit method that can reconstruct watertight meshes
with arbitrary topology.

Implicit 3D Representations. Recently, implicit surface
representations are becoming increasingly popular for 3D
deep learning (Park et al., 2019; Chen & Zhang, 2019;
Mescheder et al., 2019). Implicit signed distance field (SDF)
is an excellent 3D representation, which can represent and
generate smooth, continuous, and arbitrary topology models.
Liu et al. (2021) and Peng et al. (2020) employ local features
to improve reconstruction performance. Other works (Atz-
mon & Lipman, 2020a;b; Boulch et al., 2021; Ma et al.,
2021) proposed methods to learn an SDF from unoriented
point clouds. But SDF cannot represent open surfaces. To
address this, Unsigned distance functions (UDF) (Guillard
et al., 2022; Chibane et al., 2020) are used to cope with
open surfaces. Some works accelerate implicit methods
using the hierarchical octree structure (Wang et al., 2022;
Tang et al., 2021), but the speedup is limited to 2-3 times.
However, such implicit methods cannot directly generate
meshes. To extract a mesh from implicit fields, the march-
ing cubes (Lorensen & Cline, 1987) algorithm is needed
for iso-surface extraction. It also requires dense sampling
of points around the target surface to extract an accurate
surface mesh, so its generation efficiency is low.

BSP-Net (Chen et al., 2020) and CvxNet (Deng et al., 2020a)

3

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

+

-

+
-

+

+

+
-

slicing plane slicing plane

-

p0 = (x0, y0, z0, w0)

p1 = (x1, y1, z1, w1)

+

Figure 2. Left: Two possible cross sections when slicing a tetrahe-
dron with a plane: a triangle or a quadrilateral; Right: Computing
an intersection point. Note although this illustration is in 3D, the
same principle also works in 4D.

approximate an implicit field by many convex parts. But
these approximations are not suitable for reconstructing
shapes with fine details and thin structures. DMTet and
DefTet (Shen et al., 2021; Gao et al., 2020) learn implicit
fields via deformable 3D tetrahedral meshes. Although
deforming 3D tetrahedral meshes may appear similar to
our work, we have different motivations to solve this prob-
lem with 4D deformation. Moreover, NEURALSLICE is
more general than DMTet: we can encode multiple 3D
meshes into a single 4D tetrahedral mesh by slicing with
different hyper-planes which DMTet cannot handle. Hyper-
NeRF (Park et al., 2021) improves topological flexibility
of traditional Neural Radiance Fields (NeRF) (Mildenhall
et al., 2020), by “slicing” a low-dimensional object from a
high-dimensional space, which is conceptually similar to
our idea. However, they use an MLP (Multi-Layer Percep-
tron) to output the “sliced” dimension, rather than explicitly
constructing and slicing a high dimensional geometry itself.

3. Methodology
Our method aims to reconstruct a 3D mesh for a given (po-
tentially noisy) point cloud. We formulate this as a problem
of deforming a 4D tetrahedral mesh as a template, which
is then sliced by a 4D hyperplane to produce a 3D mesh,
with flexible topological change. In the following, we first
present the preliminary for 4D tetrahedral meshes (Sec. 3.1)
and how to obtain 3D meshes from them through slicing
(Sec. 3.2). After that, we present our neural network to
learn to deform a 4D template and slice it to produce a
3D mesh given an input point cloud (Sec. 3.3). In the end,
we describe our refinement step to produce finer meshes
(Sec. 3.4).

3.1. Preliminary: 4D Tetrahedral Meshes

Previous works such as Atlas-O (Groueix et al., 2018),
Pix2mesh (Wang et al., 2020), NFM (Gupta & Chandraker,
2020), SDM-Net (Gao et al., 2019) all use neural networks
to predict the deformation of a 3D template with fixed topol-
ogy, and the deformation process for each vertex can be
written as: FΘ : R3 → R3, where Θ represents the network
parameters. As a result, the final obtained shape is home-

omorphic to the template mesh. As illustrated in Figure 1,
which shows a 3D toy example, slicing 3D shapes with
homeomorphic deformation allows generating 2D curves
with changing topology. We therefore uplift the deformable
mesh to 4D, leading to a 4D tetrahedral mesh.

4D Tetrahedron Mesh. A manifold triangle mesh is a
discrete 2-manifold embedded in 3D Euclidean space and
the basic unit of a 3D mesh is a 2-simplex (i.e., triangle).
Our 4D tetrahedral mesh is a discrete 3-manifold embedded
in 4D Euclidean space. We use 3-simplexes (i.e., tetrahedra)
as the basic unit of 4D tetrahedron mesh.

In detail, our 4D tetrahedral mesh is made up of a set of
tetrahedra including vertices V and tetrahedra T , denoted
as T = {V, T}. Every vertex in the vertex set vi ∈ V has
4 dimensions vi = (xi, yi, zi, wi), and every tetrahedron in
the tetrahedron set ti ∈ T has 4 points ti = (v1i , v

2
i , v

3
i , v

4
i).

To construct the 4D tetrahedral mesh template, as it is a
3-manifold embedded in R4, we first build a 3D tetrahedral
mesh T 3 by splitting a 3D grid into tetrahedra. We then map
each vertex v ∈ R3 to R4 using a mapping f : R3 → R4.
This is conceptually similar to mapping from the UV texture
space to a 3D mesh for texturing. Details are provided in
Appendix B.1.

3.2. Slicing 4D Tetrahedral Meshes to 3D Meshes

Visualizing 4D objects is a fascinating and challenging prob-
lem with a long history (Abbott, 1884; Chu et al., 2009;
Hilbert & Cohn-Vossen, 1932; Emmer & Banchoff, 1990;
Liu & Zhang, 2022). These visualization techniques in-
spired many methods on 4D objects, such as manipulation
(Yan et al., 2012; Hui & Hanson, 2006), dynamic simula-
tion (Bosch, 2020) and iso-surface extraction (Bhaniramka
et al., 2000). None of the existing work addresses shape
reconstruction. In this work, we use the Slice operation that
cuts through a 4D tetrahedral mesh with a 4D hyperplane to
obtain a 3D mesh.

We now present how to generate a 3D mesh M = {E ,V}
with a given 4D tetrahedral mesh T = {P, T} and the
slice dimension w = α. E means edges of a 3D mesh,
V means vertices of a 3D mesh. This is the intersection
between our 4D tetrahedral mesh and a hyper-plane P̃ :
ãx+ b̃y + c̃z + d̃w + ẽ = f̃(x, y, z, w) = 0 in the implicit
form. Then, M = Slice(T , P̃). Our method is similar to
(Chu et al., 2009).

A tetrahedron in the 4D tetrahedral mesh has 4 faces, each
of which is a subset of a hyperplane. Let P0 : a0x+ b0y +
c0z+ d0w+ e0 = 0 be such a hyperplane. This hyperplane
may intersect with the slicing hyperplane P̃ . For simplicity,
we assume that none of the vertices of the tetrahedral mesh
is on the hyperplane P̃ , i.e., f̃(v) ̸= 0, ∀v ∈ V . We will
discuss how degenerative cases are handled later. There

4

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

3D Feature Volume

Trilinear Interpolation

4D Template

Input Point Clouds

!in = Vin
T

xl
yl
zl

Global
Encoder fg

Skip

Local
Encoder

Embed

fl
xout
yout
zout
wout

T

Slice

fg

Deformed 4D Tetrahedron

!out

w = α
Learnable hyper-plane

xin
yin
zin
win

Deform
xin
yin
zin
win

Figure 3. The pipeline of 3D mesh reconstruction via slicing a deformed 4D template tetrahedral mesh. To better predict suitable
deformations, we employ both global and local features extracted from the input point cloud. To achieve this, based on PointNet, we
build a Global Encoder that extracts the global feature fg that characterizes the input point cloud as a whole. We also construct a Local
Encoder to extract features at each grid point of a 3D Feature Volume. To extract local feature at each vertex of the 4D template mesh,
we develop Embedding Net Embed to map 4D coordinates along with global feature fg to 3D coordinates [xl, yl, zl] and use them for
trilinear interpolation on the 3D Feature Volume to obtain the local feature fl. These are then used to deform 4D template Tin = (Vin, T)
through Deformation Net Deform, to obtain deformed 4D tetrahedral mesh Tout = (Vout, T). The global feature fg passes through a
fully connected network to predict a hyperplane parameter α that determines the hyperplane w = α to slice our deformed 4D tetrahedral
mesh, producing the output 3D mesh.

are only two possible situations where we need to compute
points on P̃ : Two vertices of the tetrahedron are on one side
of P̃ and the other two on the other side, or one vertex of
the tetrahedron is on one side of P̃ and the remaining three
on the other side, as illustrated in Figure 2(left).

All intersection points between the tetrahedral mesh T and
the hyperplane P̃ by intersecting an edge of T with P̃ . For
this to happen, the two end vertices of the edge, denoted
as p0 = (x0, y0, z0, w0), p1 = (x1, y1, z1, w1) need to be
on opposite sides of P̃ , i.e., f̃(p0) > 0, f̃(p1) < 0 (or vice
versa), as illustrated in Figure 2(right).

In practice, we only need to consider hyperplanes orthog-
onal to w-axis, i.e., w = α. The intersection point
p̂ = (x̂, ŷ, ẑ, ŵ) can be calculated as

x̂ =
(α− w0)m

q
+ x0,

ŷ =
(α− w0)n

q
+ y0,

ẑ =
(α− w0)p

q
+ z0,

ŵ = α,

m = x0 − x1,
n = y0 − y1,
p = z0 − z1,
q = w0 − w1,

(1)

After computing the intersection points, we join then up to
form the triangle mesh M. Details and pseudocode are in
Appendix B.2 and B.3.

Constant-Rank Level Set Theorem (Theorem 5.12 in(Lee,
2013)) proves situations when a general level set is a sub-
manifold of another manifold. As a specific case, for a
3-manifold M and a function Φ : R4 → R that projects
4D points to a scalar value. The theorem states that if the
Jacobian matrix of Φ is of rank 1 for all points, then the level
set of the scalar value forms a 2-manifold. The mapping
may degenerate if the rank of the Jacobian matrix is 0 for

certain points. In the discrete situation, we can guarantee
no vertices of our 4D tetrahedral mesh are on the slicing
hyperplane to avoid degeneration. This can be easily imple-
mented by a very small offset to each vertex on the slicing
hyperplane. In this case, we prove that the slice of a 4D
tetrahedral mesh is guaranteed to be a manifold triangle
mesh; see Appendix B.4 for the detailed proof.

3.3. NEURALSLICE Architecture

Given an input point cloud, our NEURALSLICE network
needs to predict suitable deformation to the 4D template
tetrahedral mesh Tin = (Vin, T) where Vin is the 4D tem-
plate vertex positions, and T is a set of tetrahedra that de-
termines the topology of the 4D template Tin. The aim of
our network is to predict a suitable deformed 4D tetrahedral
mesh Tout = (Vout, T) with the same topology as the 4D
template, but with vertex positions changed. We also need
to predict a parameter α, which determines the slicing hy-
perplane w = α. Finally, the reconstructed mesh is directly
obtained M = Slice(Tout, w = α).

For better prediction, we extract both global and local
geometric features from the input point cloud. Similar
to (Groueix et al., 2018; Gupta & Chandraker, 2020), we use
a PointNet (Qi et al., 2017) as the Global Encoder to extract
the global feature fg ∈ R256, which captures the holistic
characteristic of the input point cloud. However, using the
global feature alone is not sufficient to accurately predict
deformations of individual vertices. So we also utilize a
Local Encoder as in (Peng et al., 2020), which outputs a 3D
Feature Volume from the input point cloud. This encoder
divides the input into 323 grids and uses PointNet (Qi et al.,
2017) to encode feature at each grid point.

5

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

To predict the deformed position vout =
(xout,yout, zout, wout) for each vertex on the deformed
4D template, we design an MLP network (Deformation
Net) that takes both the position of the template 4D mesh
vin = (xin, yin, zin, win) and the local feature fl related
to it, i.e. FDeform : (vin, fl) → vout. The former is
independent of the input point cloud, so it is essential to
augment it with local feature related to the input. However,
vin ∈ R4, while the Feature Volume is in the 3D space. To
address this, we design another MLP network (Embedding
Net) that takes the 4D vertex coordinates along with the
global feature fg and predicts the 3D embedding (xl, yl, zl),
i.e., FEmbed : (vin, fg) → (xl, yl, zl). Again, vin is
independent of the input point cloud, so it is essential
to incorporate the global feature for more informative
embedding. Once the 3D embedding (xl, yl, zl) is obtained,
we use this to obtain fl from the 3D Feature Volume through
trilinear interpolation. To predict the slicing hyperplane, we
simply pass the global feature fg through a fully connected
network to obtain α.

Without further constraints, when the 4D mesh is deformed,
it is only constrained along the slicing hyperplane, so the
Deformation Net can be under-constrained. So we further in-
troduce Lipschitz normalization to constrain the movement
of 4D vertices, and Laplacian regularization to encourage
more regular triangulation.

Lipschitz normalization. Our Deformation Net can be
seen as F : R4 → R4, i.e., deforming a 4D template to its
new position. To avoid excessive deformations, we bound
the deformation by a Lipschitz constant L:

∥F(v1)−F(v2)∥ ≤ L∥v1 − v2∥ (2)

where v1, v2 ∈ R4 are two 4D points. Intuitively, this
inequality constrains the ratio of output change and input
change, so that the deformation is bounded by some range.
The upper bound of the Lipschitz constant L in an MLP
with 1-Lipschitz activation function (e.g., ReLU) can be
estimated by

L =
∏
i

∥Wi∥p (3)

where ∥Wi∥p is the p-norm of i-th layer MLP weight matrix,
and the i-th layer MLP can be formulated as y = σ(Wix+
bi), where x and y are the input and output of the layer, and
bi is the i-layer bias. In practice, we use p = ∞, ∥Wi∥∞ =
maxi

∑
j |wij | because it is efficient and easy to scale (Liu

et al., 2022). To constrain the amount of deformation, we
enforce the Lipschitz constant of the i-layer to be Li (a
hyper-parameter) and the upper bound of Lipschitz constant
in the whole MLP is L =

∏
i Li. To achieve this, we scale

the weights of the i-th layer to Ŵi:

Ŵi = LipNorm(Wi, Li) = Wi ×min (1,
Li

∥Wi∥∞
) (4)

Loss Functions. During training, we use Chamfer dis-
tance Lcd to penalize the difference between the input point

cloud SI and the output point cloud SO sampled from the
output mesh M. Following previous work, this loss is self-
supervised, and does not require ground truth meshes:

Lcd =
∑
x∈SI

min
y∈SO

∥x− y∥22 +
∑

y∈SO

min
x∈SI

∥x− y∥22 (5)

To promote more regular triangulation, we further incorpo-
rate a Laplacian regularization (Alexa & Wardetzky, 2011):

Llap =
∑

vi∈M

∥
∑

vj∈N(vi)

1

d(vi)
(vi − vj)∥2 (6)

where N(vi) is the 1-ring neighborhood of vi, d(vi) is
the degree of vi. We train the overall 3D Reconstruction
network with Lipschitz normalization and loss function
L = Lcd + λlapLlap. With Lipschitz normalization and
Laplacian regularization, the deformation network can out-
put coarse but regular triangle meshes.

Subdivision × 3

Coarse Mesh

Refine

Skip

Local
Encoder

Local
Encoder

xc
yc
zc

f

xr
yr
zr

3D Feature Volume Refined Mesh

Input Point Clouds

Figure 4. Pipeline of the subdivision-based refinement. We em-
ploy subdivision and a refine deformation. (xc, yc, zc) are vertices
on the coarse mesh after subdivision. frefine is the sum of coarse
mesh features and input point cloud features. The refinement then
predicts the refined output mesh with vertices (xr, yr, zr) as the
output vertices in the final mesh.

3.4. Subdivision-based Refinement

With LipNorm and Llap, the sliced meshes tend to be
simpler and coarser. To obtain more detailed meshes, we
first employ 1-to-4 subdivision three times (with vertices
added directly at the edge midpoints), and then put them into
a refinement network to refine coarse meshes. In refinement,
we employ two encoders. One is to encode features from
the coarse mesh, and the other is to encode features from the
input point cloud, both of them are the same as the Local
Encoder in the reconstruction network. Then we add the
two feature volumes together as the final feature volume
frefine for the Refinement Net. The input to Refinement Net
is the feature volume frefine and vertices from the coarse
mesh after 3 times subdivision (xc, yc, zc). The output of
Refinement Net is the refined vertices in the subdivided
mesh FRefine : frefine × R3 → R3. It can deform the
subdivided coarse mesh to a fine mesh. We also employ loss
function as L = Lcd + λlapLlap to train the Refinement
Net.

6

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

(a) Input PC (b) NMF-3 (c) NMF-6 (d) Atlas-O (e) Atlas-25 (f) MNA-25 (g) Ours

Figure 5. 3D reconstruction results of our method compared with explicit methods. Our method has advantages in both topology and
accuracy. Patch-based methods (MNA-25, Atlas-25) may cause cracks. Sphere-based methods cannot represent different topologies.

4. Experiments
After describing the experiment settings, we first evaluate
our method on reconstructing 3D meshes from point clouds,
and compare it to state-of-the-art methods. We then conduct
ablation studies to verify the effectiveness of each design
choice. Finally, we analyze the limitations and failure cases
of our method.

Our method is implemented using PyTorch (Paszke et al.,
2019). We use the Adam optimizer (Kingma & Ba, 2015) to
train our NEURALSLICE without the refinement net for 150
epochs with batch size of 32 and learning rate of 10−3. We
then train NEURALSLICE with the refinement net for 150
epochs with batch size of 16 and learning rate of 10−4. For
hyper-parameters, we set λlap = 0.1, Li = 1.12 (∀i) em-
pirically. Our experiments were carried out on a computer
with an Intel 10700 CPU and an RTX 3090 GPU. We use
the ShapeNet (Chang et al., 2015) dataset for training and
evaluation, utilizing the 13 categories and the same dataset
split as in (Gupta & Chandraker, 2020).

4.1. Surface Reconstruction from Point Clouds

In this experiment, we conduct surface reconstruction from
point clouds. The input to this experiment is a point cloud
with 2500 points, and the output is a 3D mesh. We com-
pared NEURALSLICE with explicit methods and implicit
methods separately. We compare with the following explicit
baselines: NFM-3D, NFM-6D (Gupta & Chandraker, 2020),
Atlas-O, Atlas-25(Groueix et al., 2018), TearingNet (Pang

et al., 2021), DSP-3, DSP-25(Bednarik et al., 2020), MNA-
3, MNA-25 (Low & Lee, 2022); and implicit baselines:
Occ(Mescheder et al., 2019), ConvOcc (Peng et al., 2020).
All meshes and input point clouds are scaled into [−1, 1]3.
To evaluate the quality of reconstructed meshes, we sample
25, 000 points on the output mesh and calculate the Chamfer
distance between it and the ground truth point cloud with
the same number of points.

Comparison with explicit methods. Our method outper-
forms state-of-the-art explicit methods in both topology and
accuracy. Specifically, NFM and Atlas-O only deform one
template, which causes the generated 3D meshes to be home-
omorphism to a sphere. Although patch-based methods such
as AtlasNet (Groueix et al., 2018) and MNA (Low & Lee,
2022) can represent different topologies, there is no connec-
tion between the 25 patches, making the final mesh contain
many cracks. MNA uses an occupancy network to modify
the topology according to the occupancy values, which may
result in irregular patches. Moreover, the meshes generated
by patch-based methods contain many patches and are not
watertight.

Comparison with implicit methods. We compare with im-
plicit methods ConvOcc (Peng et al., 2020) and Occ (Park
et al., 2019). Following the existing protocol, we add a
Gaussian noise with zero mean and 0.005 standard devia-
tion for points in all input clouds, which tests the robustness
of methods w.r.t. noise. As shown in Figure 6 and Table 2,
NEURALSLICE outperforms ConvOcc (Peng et al., 2020)
and Occ (Park et al., 2019) both qualitatively and quantita-

7

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

Table 1. 3D reconstruction results comparing our method with explicit methods. The performance of our method on Chamfer distance is
better than others. ‘#P/T’ represents the number of patches (for patch-based methods) or templates. ‘Top.’ means whether the method can
represent different topologies. NEURALSLICE outperforms other explicit methods on Chamfer distance by using only 1 template.

Methods NMF-3D NMF-6D Atlas-O TearingNet MNA-3 DSP-3 DSP-25 Atlas-25 MNA-25 NEURALSLICE

#P/T 1 1 1 1 3 3 25 25 25 1
Top. % % % " " " " " " "
CD 4.253 2.443 1.483 2.001 0.665 1.198 0.861 0.743 0.671 0.537

Table 2. 3D reconstruction results comparing our method with implicit methods in Chamfer distance ×103. Input point clouds are with
added Gaussian noise, where each vertex coordinate is added with an offset randomly chosen from a Gaussian with zero mean and 0.005
standard deviations. Our method outperforms Occ and ConvOcc in Chamfer distance for certain categories and overall on average. Our
method is more efficient than implicit methods as our method does not require dense signed distance prediction and iso-surface extraction.

Method plane bench cabinet car chair display lamp speaker rifle sofa table phone vessel mean Time↓
ConvOcc 0.233 0.270 0.824 1.968 0.435 0.323 6.263 0.984 0.172 0.433 0.411 0.188 0.459 0.891 0.261

Occ 0.736 0.710 1.370 2.599 1.329 1.011 5.246 3.032 0.760 1.037 1.310 0.452 1.571 1.630 0.316
NEURALSLICE 0.288 0.500 0.522 0.684 0.653 0.453 0.906 0.848 0.230 0.481 0.510 0.270 0.518 0.538 0.025

tively in Chamfer distance. As can be seen, implicit methods
have difficulties handling very thin structures and may pro-
duce thicker or even broken outputs, whereas our method
effectively reconstructs the proper shapes. Such topological
incorrectness is picked up in the Chamfer distance measure,
as a missing structure can add a large Chamfer distance to
relevant points. Another significant advantage of our method
compared with implicit methods is efficiency because im-
plicit methods need to sample dense points and extract the
iso-surface. Both stages are time-consuming. In Table 2,
With a similar network parameter size, NEURALSLICE is
about 10× faster than implicit method ConvOcc.

Compared with the performance of NEURALSLICE without
added noise, as reported in Table 1 to be consistent with
the testing protocol as used in existing explicit methods,
the performance of our method is stable, demonstrating its
robustness to noisy inputs.

Overall, our method can explicitly adapt to the topology
with manifold meshes using a single template. The re-
construction of NEURALSLICE outperforms state-of-the-art
template-based methods and implicit methods in Chamfer
distance. NEURALSLICE can also handle thin structures that
implicit methods fail and are more efficient than implicit
surface representations.

4.2. Ablation Study

We conduct an ablation study of our design choices. Specif-
ically, we evaluate the necessity of Llap, LipNorm, and
subdivision-based refinement. We use Chamfer distance
and normal consistency (Guillard et al., 2022) for measur-
ing accuracy and smoothness respectively. The normal con-
sistency from (Guillard et al., 2022) uses unsigned cosine-
similarity between the normals of pairs of the closest point
to evaluate NC for a mesh.

(a) Input PC (b) Occ (c) ConvOcc (d) Ours

Figure 6. 3D reconstruction results comparing our method with
implicit methods. Implicit methods need occupancy or signed
distance values to train the networks, and it is hard for them to fit
very thin surfaces: thin structures may be reconstructed too thick
(Occ method) or lost entirely (ConvOcc method).

Necessity of Llap. We first verify the usefulness of Llap

for mesh quality. Llap is a regularization loss acting on
output meshes which guides the deformation to learn to
produce smooth meshes. As shown in Figure 7 and Table
3. Without Llap, NEURALSLICE is difficult to reconstruct
regular triangulation, with poor normal consistency. As
shown in Figure 7, although without Llap, the reconstructed
meshes have lower CD, and the visual quality is much worse
with irregular triangles and visual artifacts.

Necessity of LipNorm. LipNorm is a normalization af-
fecting network parameters to force the deformation to be
limited within some range. It makes the optimizer more
easily learn a proper deformation to reconstruction meshes
and achieve higher performance. Meanwhile, it can avoid
visual artifacts on meshes due to extreme deformations as
shown in Figure 7.

8

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

w/o LipNormw/o Llap w/o Refine Full

Figure 7. Ablation of NEURALSLICE. From left to right: without
Laplacian regularization, without Lipschitz normalization, without
refinement and our full model.

Necessity of Refine. Subdivision-based refinement is a very
important block. With only Llap and LipNorm. The final
meshes are very coarse and simple. This is because Llap

and LipNorm guide the deformation net to learn to have
small, constrained deformations. The refinement step is
effective to obtain high-quality, smooth meshes.

Table 3. Ablation study regarding regularization and refinement.
Although adding these may lead to a somewhat higher Chamfer
distance, the reconstructed mesh becomes smoother with better
Normal Consistency (NC), and more regular triangles. Llap is
necessary for regular triangulation and LipNorm improves the
performance. Without refinement, both CD and NC become much
worse.

Variant w/o Refine w/o Llap w/o LipNorm Full

CD×103 ↓ 1.819 0.449 0.784 0.538
NC ↑ 0.206 0.193 0.451 0.602

Regular Surf " % " "

4.3. Representation Power

NEURALSLICE can represent different 3D shapes and
topologies in one 4D tetrahedral mesh. We can learn a De-
formation Net and learnable hyper-planes with fixed feature
volume. It means we have a fixed deformed 4D tetrahe-
dral mesh and different 3D meshes from different slices.
In DMTet (Shen et al., 2021), one tetrahedron grid only
represents a single 3D mesh, as shown in Figure 8.

Another intriguing feature of our method is its ability to uti-
lize the same 4D tetrahedral mesh with varying hyperplanes
to represent a deformable shape sequence—a capability
that is not possible with DMTet (Shen et al., 2021). To
showcase this ability, we conduct an experiment on sphere
deformation, as depicted in Figure 9. The experiment in-
puts a starting shape and an ending shape, and we employ
NEURALSLICE to construct a deformation sequence. Ad-
ditionally, we perform a more realistic deformation on an
animal, as illustrated in Figure 9. For this experiment, we
input three shapes representing the start, middle and end
positions, and fit the entire deformation using a single 4D
tetrahedral mesh.

4.4. Limitations and Future Work
One limitation of NEURALSLICE is that for some challeng-
ing input point clouds, it may not be able to recover all the

Figure 8. 3D meshes in each row are sliced from the same 4D
tetrahedral mesh, they have different shapes and topologies.

Figure 9. NEURALSLICE is capable of fitting sphere deformation
sequences and animal deformation sequences.

detailed structures. This is because it is difficult to learn
details in a pure explicit method without the supervision
signal of SDF. We show one failure case in Appendix C.

The 4D tetrahedral mesh is consistent with recent 4D
games (Bosch, 2023a;b). However, in these games, the
shapes are built by hand, which are quite simple. As a fu-
ture work, we would like to extend our method to generate
4D shapes for 4D games.

5. Conclusion
This paper presents a novel representation called NEURAL-
SLICE for 3D mesh reconstruction. The central concept
revolves around deforming a 4D tetrahedral mesh and sub-
sequently slicing it to obtain a 3D mesh. In comparison
to existing explicit representations, NEURALSLICE demon-
strates superior reconstruction accuracy and offers flexible
topology. Moreover, our method exhibits higher efficiency
compared to implicit methods and greater robustness for
thin structures. Notably, NEURALSLICE has the capability
to represent various shapes and topologies within a single
tetrahedral mesh.

Acknowledgement This work was supported by grants
from the National Natural Science Foundation of China (No.
62061136007), the Beijing Municipal Natural Science Foun-
dation for Distinguished Young Scholars (No. JQ21013),
and the Royal Society Newton Advanced Fellowship (No.
NAF\R2\192151). We thank Tong Wu for his valuable
assistance with illustration. Additionally, we extend our
appreciation to Bo Yang and Tianyi Sang for their valuable
advice on this project.

9

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

References
Abbott, E. Flatland: a romance of many dimensions. Do-

maine public, 1884.

Alexa, M. and Wardetzky, M. Discrete Laplacians on gen-
eral polygonal meshes. ACM Transactions on Graphics
(TOG), pp. 1–10, 2011.

Atzmon, M. and Lipman, Y. SAL: Sign agnostic learning of
shapes from raw data. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2565–2574,
2020a.

Atzmon, M. and Lipman, Y. SALD: Sign agnostic learning
with derivatives. In International Conference on Learning
Representations (ICLR), 2020b.

Badki, A., Gallo, O., Kautz, J., and Sen, P. Meshlet priors
for 3D mesh reconstruction. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
2849–2858, 2020.

Bednarik, J., Parashar, S., Gundogdu, E., Salzmann, M.,
and Fua, P. Shape reconstruction by learning differen-
tiable surface representations. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
4716–4725, 2020.

Berger, M. and Gostiaux, B. Differential Geometry: Man-
ifolds, Curves, and Surfaces: Manifolds, Curves, and
Surfaces, volume 115. Springer Science & Business Me-
dia, 2012.

Bhaniramka, P., Wenger, R., and Crawfis, R. Isosurfacing
in higher dimensions. Proceedings of the IEEE Visualiza-
tion Conference, 05 2000. doi: 10.1109/VISUAL.2000.
885704.

Bosch, M. T. N-dimensional rigid body dynamics. ACM
Transactions on Graphics (TOG), 39(4):55:1–55:6, jul
2020. doi: 10.1145/3386569.3392483. URL http:
//dx.doi.org/10.1145/3386569.3392483.

Bosch, M. T. 4D Toys. An interactive toy for 4D chil-
dren. [WWW Document]. URL https://4dtoys.
com, 2023a.

Bosch, M. T. Miegakure. A Puzzle-Platformer in
Four Dimensions. [WWW Document]. URL https:
//miegakure.com, 2023b.

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B.
Polygon mesh processing. CRC press, 2010.

Boulch, A., Langlois, P.-A., Puy, G., and Marlet, R. Nee-
Drop: Self-supervised shape representation from sparse
point clouds using needle dropping. In 2021 International
Conference on 3D Vision (3DV), pp. 940–950. IEEE,
2021.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex opti-
mization. Cambridge university press, 2004.

Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., S. Song, H. S.,
Xiao, J., Yi, L., and Yu., F. ShapeNet: An information-
rich 3D model repository. arXiv.org, 1512.03012, 2015.

Chen, Z. and Zhang, H. Learning implicit fields for gen-
erative shape modeling. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Chen, Z., Tagliasacchi, A., and Zhang, H. BSP-Net: Gener-
ating compact meshes via binary space partitioning. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Chibane, J., Pons-Moll, G., et al. Neural unsigned distance
fields for implicit function learning. Advances in Neural
Information Processing Systems (NeurIPS), 33:21638–
21652, 2020.

Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S.
3D-R2N2: A unified approach for single and multi-view
3D object reconstruction. In European Conference on
Computer Vision (ECCV), 2016.

Chu, A., Fu, C.-W., Hanson, A., and Heng, P.-A. GL4D:
A GPU-based architecture for interactive 4D visualiza-
tion. IEEE Transactions on Visualization and Computer
Graphics, 15(6):1587–1594, 2009. doi: 10.1109/TVCG.
2009.147.

Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton,
G., and Tagliasacchi, A. CvxNet: Learnable convex
decomposition. June 2020a.

Deng, Z., Bednařı́k, J., Salzmann, M., and Fua, P. Better
patch stitching for parametric surface reconstruction. In
2020 International Conference on 3D Vision (3DV), pp.
593–602. IEEE, 2020b.

Emmer, M. and Banchoff, T. F. Beyond the third dimension:
Geometry, computer graphics, and higher dimensions.
Computers & Graphics, 25(3):385, 1990.

Fan, H., Hao, S., and Guibas, L. A point set generation
network for 3D object reconstruction from a single im-
age. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Gao, J., Chen, W., Xiang, T., Tsang, C. F., Jacobson, A.,
McGuire, M., and Fidler, S. Learning deformable tetrahe-
dral meshes for 3D reconstruction. In Advances In Neural
Information Processing Systems (NeurIPS), 2020.

Gao, L., Yang, J., Wu, T., Yuan, Y.-J., Fu, H., Lai, Y.-K.,
and Zhang, H. SDM-NET: Deep generative network

10

http://dx.doi.org/10.1145/3386569.3392483
http://dx.doi.org/10.1145/3386569.3392483
https://4dtoys.com
https://4dtoys.com
https://miegakure.com
https://miegakure.com

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

for structured deformable mesh. ACM Transactions on
Graphics (TOG), 38(6):243:1–243:15, 2019.

Gkioxari, G., Malik, J., and Johnson, J. Mesh R-CNN.
In IEEE International Conference on Computer Vision
(ICCV), pp. 9785–9795, 2019.

Groueix, T., Fisher, M., Kim, V. G., Russell, B., and Aubry,
M. AtlasNet: A papier-mâché approach to learning 3D
surface generation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

Guillard, B., Stella, F., and Fua, P. MeshUDF: Fast and dif-
ferentiable meshing of unsigned distance field networks.
In European Conference on Computer Vision (ECCV),
2022.

Gupta, K. and Chandraker, M. Neural mesh flow: 3D
manifold mesh generation via diffeomorphic flows. In
Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Hilbert, D. and Cohn-Vossen, S. Anschauliche geometrie.
Mathematical Gazette, 36(317), 1932.

Hui, Z. and Hanson, A. J. Physically interacting with four
dimensions. In Advances in Visual Computing, Second
International Symposium, ISVC 2006, Lake Tahoe, NV,
USA, November 6-8, 2006 Proceedings, Part I, 2006.

Jiang, C., Huang, J., Tagliasacchi, A., and Guibas, L. J.
ShapeFlow: Learnable deformation flows among 3D
shapes. Advances in Neural Information Processing Sys-
tems (NeurIPS), 33:9745–9757, 2020.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. Proceedings of International Conference
on Machine Learning (Proceedings of International Con-
ference on Machine Learning (ICML)), 2015.

Lee, J. Introduction to topological manifolds, volume 202.
Springer Science & Business Media, 2010.

Lee, J. M. Submanifolds. In Introduction to smooth mani-
folds, pp. 98–124. Springer, 2013.

Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., and
Guibas, L. GRASS: Generative recursive autoencoders
for shape structures. ACM Transactions on Graphics
(TOG), 36(4):1–14, 2017.

Liu, H. and Zhang, H. A flip-book of knot diagrams for
visualizing surfaces in 4-space. In Computer Graphics
Forum, volume 41, pp. 345–354. Wiley Online Library,
2022.

Liu, H.-T. D., Williams, F., Jacobson, A., Fidler, S., and
Litany, O. Learning smooth neural functions via Lips-
chitz regularization. Special Interest Group for Computer
Graphics (SIGGRAPH), 2022.

Liu, S.-L., Guo, H.-X., Pan, H., Wang, P.-S., Tong, X., and
Liu, Y. Deep implicit moving least-squares functions
for 3d reconstruction. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), May 2021.

Lorensen, W. E. and Cline, H. E. Marching cubes: A high
resolution 3D surface construction algorithm. ACM Trans-
actions on Graphics (TOG), pp. 163–169, 1987.

Low, W. F. and Lee, G. H. Minimal neural atlas: Parameter-
izing complex surfaces with minimal charts and distortion.
In European Conference on Computer Vision (ECCV),
2022.

Ma, B., Han, Z., Liu, Y.-S., and Zwicker, M. Neural-pull:
Learning signed distance functions from point clouds by
learning to pull space onto surfaces. In Proceedings of
the 38th International Conference on Machine Learning
(ICML), volume 139, 2021.

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,
and Geiger, A. Occupancy networks: Learning 3D re-
construction in function space. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Mildenhall, B., Srinivasan, P., Tancik, M., Barron, J., Ra-
mamoorthi, R., and Ng, R. NeRF: Representing scenes
as neural radiance fields for view synthesis. In European
conference on computer vision (ECCV), 2020.

Mo, K., Guerrero, P., Yi, L., Su, H., Wonka, P., Mitra,
N. J., and Guibas, L. J. StructureNet: hierarchical graph
networks for 3D shape generation. ACM Transactions on
Graphics (TOG), 38(6):1–19, 2019.

Morreale, L., Aigerman, N., Kim, V. G., and Mitra, N. J.
Neural surface maps. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4639–4648,
2021.

Mount, D. M. Cmsc 754 computational geometry. Lecture
Notes, University of Maryland, pp. 1–122, 2002.

Oliver, N. Calculus in Hyperspace. Lecture Notes, Harvard
University, MATH 22A, Unit 40, 2018 Fall.

Pan, J., Han, X., Chen, W., Tang, J., and Jia, K. Deep mesh
reconstruction from single RGB images via topology
modification networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9964–
9973, 2019.

Pang, J., Li, D., and Tian, D. TearingNet: Point cloud
autoencoder to learn topology-friendly representations.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7453–7462, 2021.

11

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

Park, J. J., Florence, P., Straub, J., Newcombe, R., and
Lovegrove, S. Deepsdf: Learning continuous signed
distance functions for shape representation. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Park, K., Sinha, U., Hedman, P., Barron, J. T., Bouaziz, S.,
Goldman, D. B., Martin-Brualla, R., and Seitz, S. M. Hy-
perNeRF: A higher-dimensional representation for topo-
logically varying neural radiance fields. ACM Transac-
tions on Graphics (TOG), 40(6), dec 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., and Chintala,
S. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and
Geiger, A. Convolutional occupancy networks. In Euro-
pean Conference on Computer Vision (ECCV), 2020.

Prokudin, S., Lassner, C., and Romero, J. Efficient learning
on point clouds with basis point sets. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2019.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. PointNet:
Deep learning on point sets for 3D classification and
segmentation. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

Ricky, T. Q. C., Yulia, R., Jesse, B., and David, D. Neural
ordinary differential equations. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Shen, T., Gao, J., Yin, K., Liu, M.-Y., and Fidler, S. Deep
marching tetrahedra: a hybrid representation for high-
resolution 3D shape synthesis. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Tang, J.-H., Chen, W., Yang, J., Wang, B., Liu, S., Yang,
B., and Gao, L. OctField: Hierarchical implicit functions
for 3D modeling. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Wang, N., Zhang, Y., Li, Z., Fu, Y., and Jiang, Y. G.
Pixel2Mesh: 3D mesh model generation via image guided
deformation. IEEE Transactions on Pattern Analysis and
Machine Intelligence (IEEE TAPMI), PP(99):1–1, 2020.

Wang, P.-S., Liu, Y., and Tong, X. Dual octree graph net-
works for learning adaptive volumetric shape represen-
tations. ACM Transactions on Graphics (TOG), 41(4),
2022.

Wang, W., Ceylan, D., Mech, R., and Neumann, U. 3DN: 3D
deformation network. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1038–1046,
2019.

Wen, C., Zhang, Y., Li, Z., and Fu, Y. Pixel2Mesh++:
Multi-view 3d mesh generation via deformation. In IEEE
International Conference on Computer Vision (ICCV),
2019.

Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J.,
and Panozzo, D. Deep geometric prior for surface recon-
struction. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10130–10139, 2019.

Wu, J., Zhang, C., Xue, T., Freeman, W. T., and Tenenbaum,
J. B. Learning a probabilistic latent space of object shapes
via 3D generative-adversarial modeling. In Advances in
Neural Information Processing Systems (NeurIPS), 2016.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. 3D ShapeNets: A deep representation for
volumetric shapes. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

Xiao, Y., Lai, Y., Zhang, F., Li, C., and Gao, L. A
survey on deep geometry learning: From a represen-
tation perspective. Comput. Vis. Media, 6(2):113–133,
2020. doi: 10.1007/s41095-020-0174-8. URL https:
//doi.org/10.1007/s41095-020-0174-8.

Yan, X., Fu, C. W., and Hanson, A. J. Multitouching the
fourth dimension. Computer, 45(9):80–88, 2012.

Yang, J., Mo, K., Lai, Y.-K., Guibas, L. J., and Gao, L.
DSG-Net: Learning disentangled structure and geometry
for 3D shape generation. ACM Transactions on Graphics
(TOG), 2022.

Yang, Y., Feng, C., Shen, Y., and Tian, D. FoldingNet: Point
cloud auto-encoder via deep grid deformation. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 206–215, 2018.

12

https://doi.org/10.1007/s41095-020-0174-8
https://doi.org/10.1007/s41095-020-0174-8

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

Appendix

A. Overview
We first introduce methods to construct the 4D tetrahedral
template mesh and perform analysis for different templates.
Then we provide details for the “slice” operation in 4D,
including the formulae and code. After that, we prove our
sliced mesh is guaranteed to be a manifold in 3D. Finally,
we show more results for surface reconstruction using our
method.

B. 4D Tetrahedral Mesh
This section will introduce constructing 4D templates, de-
sign choices of different 4D templates, details about slicing
a 4D object, and proves our sliced mesh is guaranteed to be
a manifold in 3D.

B.1. Analysis of Different 4D Templates

Figure 10. Method to construct 4D tetrahedral mesh.

Constructing 4D Tetrahedral Mesh. Similar to construct-
ing 3D meshes with parametric equations, we can also gen-
erate 4D templates with parametric equations. The process
of constructing 3D meshes can be seen as mapping a 2D
grid to a 3D space through parametric equations. Simi-
larly, constructing a 4D template can be seen as mapping a
3D tetrahedral grid to a 4D space through parametric equa-
tions. As shown in Figure 10. We analyze 3 different 4D
tetrahedral meshes (T1, T2, T3) as the template for surface
reconstruction.

Here are the parametric equations of T1, T2 and T3 from
(Oliver, 2018 Fall). All of these map 3D space u× v × t to
4D space x× y × z × w. f : R3 → R4.

T1:

x = cos(u) cos(v) cos(t),
y = cos(u) cos(v) sin(t),
z = cos(u) sin(v),
w = sin(u),

(7)

T2:
x = (5 + (2 + 2 cos(t)) cos(v)) cos(u),
y = (5 + (2 + 2 cos(t)) cos(v)) sin(u),
z = (2 + 2 cos(t)) sin(v),
w = 5 sin(t),

(8)

T3:
x = (3 + cos(u)) cos(v),
y = (3 + cos(u)) sin(v),
z = (3 + sin(u)) cos(t),
w = (3 + sin(u)) sin(t),

(9)

T1

T2

T3

Figure 11. Different slices for 3 different 4D templates. We visu-
alize these 4D templates by using different hyper-planes to slice
them to obtain different 3D meshes. As can be seen, this may
result in different topologies in different slices.

As 4D templates can be hard to imagine, we visualize these three
templates by slicing these templates by different hyper-planes. As
shown in Figure 11. T1 has the same topology in different slices
and T2, T3 have different topologies in different slices.

We employ these three templates for surface reconstruction. Vi-
sually, there is little difference in the results of the three template
reconstructions. Quantitatively, T2 has a better (smaller) Chamfer
distance and T1 is smoother. As shown in Figure 12 and Table 4.
In the main paper, we use T2 as our 4D template.

T1

T2

T3

Figure 12. NEURALSLICE reconstruction results with different
4D templates. The accuracy of T3 is slightly worse, and the overall
difference is minor.

CD×103 ↓ NC ↑ Variant

0.578 0.723 NEURALSLICE-T1
0.593 0.614 NEURALSLICE-T3
0.538 0.602 NEURALSLICE-T2

Table 4. Analysis of different templates. T1, T2, and T3 are differ-
ent 3-manifolds embedded in R4. T2 is better in Chamfer distance
and T1 can reconstruct smoother meshes.

13

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

B.2. Slicing 4D Objects

All intersection points between the tetrahedral mesh T and the
hyperplane P̃ can be obtained by intersecting an edge of T with
P̃ . For this to happen, the two end vertices of the edge, denoted
as p0 = (x0, y0, z0, w0), p1 = (x1, y1, z1, w1) need to be on
opposite sides of P̃ , i.e., f̃(p0) > 0, f̃(p1) < 0 (or vice versa),
as illustrated in Figure 2 in the main paper (right). The line that
passes through p0 and p1 is:

x = x0 +mt,
y = y0 + nt,
z = z0 + pt,
w = w0 + qt,

m = x0 − x1,
n = y0 − y1,
p = z0 − z1,
q = w0 − w1,

(10)

Eliminate t:

x− x0

m
=

y − y0
n

=
z − z0

p
=

w − w0

q
(11)

Simultaneous equations:
x− x0

m
=

y − y0
n

=
z − z0

p
=

w − w0

q

ax+ by + cz + dw + e = 0,

(12)

Let w = α, the solution is :

x̂ =
(α− w0)m

q
+ x0,

ŷ =
(α− w0)n

q
+ y0,

ẑ =
(α− w0)p

q
+ z0,

ŵ = α,

(13)

B.3. Code

Below is the code written in PyTorch(Paszke et al., 2019) style.

def slice(vertices, alpha):
#input vertices’s shape is [N,6,2,4]
#N represents there are N tetrahedra
#in this tetrahedral mesh.
#Each tetrahedron has 6 edges,
#each edge has 2 endpoints,
#each endpoints are in Rˆ4.
#It has some redundancy,
#but easy to implement.
#alpha represents slice hyper-plane
#w=alpha.

#for each edge, if edge<0,
#this edge intersect hyper-plane
edge = (vertices[:,:,0,3]-alpha)*

(vertices[:,:,1,3]-alpha)

#the index of the tetrahedron
#intersecting the hyperplane
idx = torch.nonzero(edge<0)

x0,y0,z0,w0,m,n,p,q in equation 10
m = vertices[idx[:,0],idx[:,1],0,0]-

vertices[idx[:,0],idx[:,1],1,0]
n = vertices[idx[:,0],idx[:,1],0,1]-

vertices[idx[:,0],idx[:,1],1,1]
p = vertices[idx[:,0],idx[:,1],0,2]-

vertices[idx[:,0],idx[:,1],1,2]
q = vertices[idx[:,0],idx[:,1],0,3]-

vertices[idx[:,0],idx[:,1],1,3]

x0 = vertices[idx[:,0],idx[:,1],0,0]
y0 = vertices[idx[:,0],idx[:,1],0,1]
z0 = vertices[idx[:,0],idx[:,1],0,2]
w0 = vertices[idx[:,0],idx[:,1],0,3]

Sliced 3d points x,y,z in equation 13
x = (alpha-w0)*m/q + x0
y = (alpha-w0)*n/q + y0
z = (alpha-w0)*p/q + z0

x = x.view(-1,1)
y = y.view(-1,1)
z = z.view(-1,1)

point_3d = torch.cat(
(x,y,z),dim=1
) .view(-1,3)

#for each sliced edges,
#give a serial number
ll = torch.arange(len(idx))+1
edge0 = torch.zeros(

tetra.size()[1],6
).to(device).long()

edge0[idx[:,0],idx[:,1]] = ll

#How many edges are sliced
#for each tetrahedron
zero = torch.zeros_like(edge).to(device)
one = torch.ones_like(edge).to(device)
edgenum = torch.where(

edge0 > 0, one, zero)
edgenum = torch.sum(edgenum,dim = 1)

#idx_edge3 represents the
#index of the triangle that intersects
#the tetrahedron and hyperplane
idx_edge3 = torch.nonzero(edgenum==3)

#idx_edge4 represents the index of the
#quadrilateral that intersects
#the tetrahedron and hyperplane
idx_edge4 = torch.nonzero(edgenum==4)

#compute edge index for
#tetrahedron sliced 3 edges
edge3 = edge0[idx_edge3,:].view(-1,6)
idx_3 = torch.nonzero(edge3!=0)

#compute edge index for
#tetrahedron sliced 3 edges
edge4 = edge0[idx_edge4,:].view(-1,6)
idx_4 = torch.nonzero(edge4!=0)

#face3 represents
#the triangle that intersects
the tetrahedron and hyperplane
face3 = edge3[idx_3[:,0],idx_3[:,1]]

.view(idx_edge3.size()[0],3)

14

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

#face4 represents
#the quadrilateral that intersects
#the tetrahedron and hyperplane
face4 = edge4[idx_4[:,0],idx_4[:,1]]

.view(idx_edge4.size()[0],4)
we need to triangulate
#quadrilateral faces
face4 = triangulation(face4, vertices)

face = torch.cat((face3,face4),dim=0)

return point_3d, face

B.4. Manifold Mesh

We also prove that the slice of a 4D tetrahedral mesh is guaranteed
to be a manifold mesh (based on the way the 4D template is
constructed) and we can control whether the 3D triangle mesh is
watertight or not via choosing different 4D tetrahedral meshes. We
first follow (Botsch et al., 2010)’s definition of manifold triangle
meshes. Then we make two reasonable assumptions and prove our
theorem.

Definition B.1. A 3D triangle mesh is a manifold if:
• Each edge is adjacent to only one or two triangles.
• Each point is only adjacent to one connected area (i.e, se-

quence of adjacent triangles).

Assumption B.2. Our 4D tetrahedral mesh satisfies:
• Each face is adjacent to only one or two tetrahedra.
• Each edge is only adjacent to one connected area.
• Each point is only adjacent to one connected area.

Assumption B.3. If the slice hyper-plane is w = α, vertices in
the 4D tetrahedral mesh is V = {xi, yi, zi, wi}, then ∀i, wi ̸= α.

Through our construction method and slicing method, these as-
sumptions are guaranteed.
Theorem 1. We have a 4D tetrahedral mesh T and a hyper-plane
P (constructed as described in the paper). The slice of the 4D
tetrahedral mesh by hyper-plane P is guaranteed to be a manifold
mesh.

Fq
fj

Tm
Ei

Ei

fj
fk

fl

Figure 13. Non-manifold edge: One edge adjacent to more than
two faces.

Proof. We make the proof by contradiction.

• Each triangle edge Ei in a sliced mesh is a subset of a tetra-
hedron’s face. Assume that this edge has three adjacent faces
fj , fk, and fl. A tetrahedron in 4D space is a 3-simplex and
an n-simplex is a convex set(Mount, 2002). A hyper-plane
is also a convex set. The intersection between two convex
sets is guaranteed to be convex (Boyd et al., 2004). So, for

each tetrahedron, there is only one face sliced at most. So
fj , fk and fl must be sliced from different tetrahedra. So
Ei ⊂ fj ⊂ Tm, Ei ⊂ fk ⊂ Tn , Ei ⊂ fl ⊂ Tp. Tm, Tn,
Tp are three different tetrahedra. Meanwhile, this edge is in
the tetrahedron’s face Ei ⊂ Fq ⊂ Tm. fj , fk, fl share the
same edge Ei. So we have Ei ⊂ Fq = adj(Tm, Tn, Tp).
As shown in Figure 13, this violates that each face is adja-
cent to only one or two tetrahedra. So each edge is adjacent
to only one or two triangles in the sliced mesh. adj(a, b)
represents the adjacent part between a and b.

Ei

a

A
Pi

b

B

a

Pi

b

Figure 14. Non-manifold vertex: One vertex adjacent to more than
one connected area.

• If there is a point Pi in a sliced mesh that is adjacent to more
than one area, i.e., at least two areas a and b. Then Pi is
sliced from an edge Ej in 4D tetrahedra. a, b are sliced from
A,B. A and B are different one or more tetrahedra. In
A and B, these tetrahedra are face-to-face adjacent to each
other. And the edge Ei must be adjacent to two areas A and
B. So A and B are two connected areas adjacent by one
edge Ei = adj(A,B). As shown in Figure 14, this violates
that each edge is only adjacent to one connected area. So
each point in a sliced mesh is only adjacent to one connected
area.

The same method can be used to prove that when all the faces in a
4D tetrahedral mesh are each adjacent to two tetrahedra, the sliced
mesh is guaranteed to be watertight.

C. More Results
An example of NEURALSLICE’s failure case is shown in Figure 15.
This is because the input point cloud is discrete and noisy. The
supervision of our method during training is only on the input
point cloud, and it is difficult for the encoder to discern the correct
structure of this point cloud.

Figure 15. Failure case of NEURALSLICE. As our method takes
the discrete point cloud with noise as input, it is hard to discern
the correct topology in such a challenging case.

We demonstrated more surface reconstruction results in Figure 16.

15

Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes

Input PC Input PCOurs Ours

Figure 16. More results of NEURALSLICE.

16

