
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 2 7 4 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Yue, Gu a n g h ui, Xiao, H o ulu,  Xie, H ai, Zhou,  Tian w ei, Zhou,  Wei, Yan, Weiqing, Zh ao,

Baoq u a n,  Wang,  Tianfu  a n d  Jiang,  Qiuping  2 0 2 3.  Du al-cons t r ain t  co a r s e-to-fine

n e t wo rk  for  c a mo uflag e d  objec t  d e t e c tion.  IEEE Tra n s a c tions  on  Circui t s  a n d

Sys t e m s  for  Video Technology 1 0.1 10 9/TCSVT.202 3.33 1 8 6 7 2  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.11 0 9/TCSVT.2023.3 31 8 6 7 2  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1
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Abstract—Camouflaged object detection (COD) is an im-
portant yet challenging task, with great application values in
industrial defect detection, medical care, etc. The challenges
mainly come from the high intrinsic similarities between target
objects and background. In this paper, inspired by the biological
studies that object detection consists of two steps, i.e., search
and identification, we propose a novel framework, named DCNet,
for accurate COD. DCNet explores candidate objects and extra
object-related edges through two constraints (object area and
boundary) and detects camouflaged objects in a coarse-to-fine
manner. Specifically, we first exploit an area-boundary decoder
(ABD) to obtain initial region cues and boundary cues simul-
taneously by fusing multi-level features of the backbone. Then,
an area search module (ASM) is embedded into each level of
the backbone to adaptively search coarse regions of objects with
the assistance of region cues from the ABD. After the ASM, an
area refinement module (ARM) is utilized to identify fine regions
of objects by fusing adjacent-level features with the guidance of
boundary cues. Through the deep supervision strategy, DCNet
can finally localize the camouflaged objects precisely. Extensive
experiments on three benchmark COD datasets demonstrate that
our DCNet is superior to 12 state-of-the-art COD methods. In
addition, DCNet shows promising results on two COD-related
tasks, i.e., industrial defect detection and polyp segmentation.

Index Terms—Camouflaged object detection, dual-constraint,
coarse-to-fine, industrial defect detection, polyp segmentation.

I. INTRODUCTION

RECENTLY, camouflaged object detection (COD) [1]–

[4] has become a popular research topic due to its

potential applications in various fields, such as industrial defect
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detection [5], [6], polyp segmentation [7]–[9], etc. Unlike

traditional generic object detection [10], [11] and salient object

detection [12]–[14], where the objects are easily distinguished

from the background, COD aims at detecting objects that

have high intrinsic similarities to their surroundings [1]. As an

emerging yet challenging topic, COD has attracted increasing

attentions from academia and industry in the past few years

[15].

In early research, due to the lack of large-scale datasets,

researchers mainly utilized handcrafted features to detect cam-

ouflaged objects via analysis of texture and color informa-

tion [16]. However, the representation ability of handcrafted

features is limited, and the performance of such methods is

usually unsatisfactory. In 2020, Fan et al. [15] constructed a

large-scale COD dataset and proposed a deep learning (DL)

based COD method, termed SINet, which has a coarse-to-fine

structure that first employs a search module to roughly localize

the candidate regions and then utilizes an identification module

to accurately localize the camouflaged objects. The coarse-

to-fine strategy and global-local representation strategy have

been widely adopted and achieved remarkable success in

multiple applications, such as medical image segmentation

[17], video instance segmentation [18], [19], and video cap-

tioning [20]. Integrating the design concept of SINet and

these two strategies is conducive to designing effective COD

networks. Recently, DL-based COD has achieved a booming

development. One widely adopted idea is to upgrade the

coarse-to-fine structure of SINet from different perspectives.

Representative works were reported from enhancing the initial

region cues during the stage of coarse region detection via

multi-level information integration [1], refining features during

the stage of accurate object detection via cross-scale feature

fusion [2], and magnifying candidate regions via object area

amplification [21].

Broadly speaking, the emerging COD task parallels tradi-

tional object detection [22] and instance segmentation [18]. A

direct way for designing specific COD networks is drawing

inspiration from popular networks of these two related tasks.

In the literature, the feature pyramid network (FPN) and its

variants [19], [23]–[26] have been validated effectively in

these tasks due to their powerful ability in multi-scale feature

representation and fusion, which helps to understand objects

with different sizes. Inspired by this, many FPN-based COD

methods have been proposed [27]. However, existing methods

usually have poor performance when coping with challenging

camouflaged objects. Compared to object detection and in-

stance segmentation, COD is more difficult due to ambiguous
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boundaries caused by the high similarities between the objects

and background. To address such a problem, one popular idea

is to take the boundary prediction as an auxiliary task with

the assumption that boundary constraint helps the network

learn more discriminative feature representations. Remarkable

works were proposed to generate the boundary map first, and

then use the boundary map as the guidance of the encoder

[28], [29] and the decoder [30], [31], or use both the coarse

region map and boundary map as the guidance of the follow-

up decoder [32] for better COD performance. In addition, to

help the network focus more on boundary details, a recent

attempt also predicted the object regions and boundary cues

progressively at multiple stages of the decoder [33].

Although the aforementioned methods have made signifi-

cant progress in the COD field, there is still much room for

performance improvement. There are two possible reasons for

this. On the one hand, most existing methods mainly adopt

the coarse-to-fine structure from top to down, while ignore the

discriminative feature exploration at each level of the network.

As a result, the network has limited ability to complete object

detection at each level. On the other hand, most boundary-

constraint methods usually treat the predictions of object

regions and boundary details as two separate tasks, while

ignore their special roles in object search and identification.

Therefore, the extracted features have limited representation

ability, and most methods expose their weakness when dealing

with challenging cases.

In this paper, inspired by the biological studies [34] that

object detection consists of two steps, i.e., search and identifi-

cation, we propose a Dual-constraint Coarse-to-fine Network

(DCNet) for COD, which simultaneously uses boundary and

region information as constraints. Specifically, DCNet takes

Pyramid Vision Transformer (PVTv2) [35] as the backbone

to extract contextual information at multiple levels effectively.

Given that both low-level and high-level features are important

for object detection, an area-boundary decoder (ABD) is

introduced to mine the initial region cues and boundary cues

of objects by aggregating multi-level features of the backbone.

Then, an area search module (ASM) is used to adaptively

search the coarse regions of objects at each level with the

assistance of region cues from the ABD. After the ASM, an

area refinement module (ARM) is utilized to identify the fine

regions of objects by fusing adjacent-level features with the

guidance of boundary cues from the ABD. Finally, DCNet

can localize the camouflaged objects precisely in a coarse-to-

fine manner by mimicking the search-to-identify mechanism

at each level and aggregating multi-level features from top to

down through the deep supervision strategy.

Compared to recent works, the proposed DCNet has the

following differences. 1) Unlike most FPN-based methods

that design specific modules to aggregate complementary

information from adjacent features [25] or to calibrate the up-

sampled features to be spatially aligned [26] during feature

fusion, we propose an effective module that helps the network

focus more on boundary information during feature fusion.

2) Contrary to existing coarse-to-fine work [18] that builds

specific distributions to first locate instance pixels coarsely

and then promote the instance boundary, we utilize the initial

region and boundary cues to guide the object detection proce-

dure at each level of the network in a coarse-to-fine manner,

inspired by the search-to-identify mechanism. 3) Different

from the work [19] that dynamically divides a target instance

into subregions, we consider the target object as a whole.

4) Unlike the methods [20], [36] that use a global-local

encoder to produce rich semantic vocabulary, we utilize the

Transformer-based encoder to model long-range relations of

the image for effective object detection. 5) Different from the

methods [28], [37] that generate the region and boundary cues

by two independent modules, we only use one module (i.e.,

the ABD) to output these two types of cues.

Our contributions can be summarized as follows:

• We propose a novel dual-constraint coarse-to-fine frame-

work for COD, named DCNet. Different from existing

coarse-to-fine COD frameworks that only predict object

regions from top to down, DCNet also localizes object

regions progressively at each level with the assistance of

region and boundary cues.

• To imitate the search-to-identify mechanism, we propose

a new feature exploration strategy, in which the ASM and

ARM are applied to adaptively search the coarse regions

with the assistance of initial region cues and identify the

fine regions by integrating coarse regions with boundary

cues, respectively. To obtain the initial region cues and

edge cues, we propose an ABD that aggregates multi-

level features from the backbone.

• Experimental results on three benchmark datasets demon-

strate that the proposed DCNet obtains superior perfor-

mance over 12 state-of-the-art COD methods. In addition,

it also performs well on two COD-related tasks, i.e.,

industrial defect detection and polyp segmentation.

The rest of this paper is organized as follows. In Section

II, we briefly review existing COD methods. In Section III,

we detail the proposed method. Experimental settings, results,

and analysis are presented in Section IV. Section V concludes

this paper.

II. RELATED WORKS

A. Coarse-to-fine Camouflaged Object Detection

Humans have a two-step mechanism to find the camouflaged

object [34], i.e., search and identification. In the past few years,

increasing works have been reported for COD by mimicking

such a mechanism. One common feature of these works is

the use of a coarse-to-fine structure, in which they first search

for coarse regions and then identify precise regions of the

camouflaged object. For instance, Wang et al. [1] proposed

a two-stage COD network, where a rough prediction is first

obtained by fusing high-level information, based on which

the accurate prediction is subsequently generated by using the

self-attention and cross-refine unit. Later, they continued the

coarse-to-fine structure and made further improvements in the

field of COD.

Mei et al. [38] employed the rough prediction feature gener-

ated by a positioning module, which was designed to locate the

potential target objects, to help the feature refinement of target

region. Jia et al. [39] proposed a network to identify the rough
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position of the target object and iteratively magnify and crop

the image accordingly. However, their multi-stage strategy suf-

fers from the drawback of significantly prolonging the model’s

inference time. He et al. [40] introduced a ranking COD

network to locate, segment, and rank camouflaged objects

concurrently. Liu et al. [2] introduced a coarse map guided

COD network. Different from [1], they utilized a cross-scale

feature fusion module to integrate multi-scale information

during the stage of accurate prediction generation. Bi et al.

[41] introduced an in-layer information enhancement module

and a cross-layer information aggregation module to simulate

the search and identify of human visual observation mecha-

nism, respectively. Considering that magnifying the candidate

regions helps to recognize targets more clearly, Xing et al.

[21] utilized an object area amplification module to amplify

operations on feature maps for better performance.

In summary, existing works have shown that the coarse-

to-fine structure contributes to accurate COD by considering

the human visual observation characteristic. Most existing

methods mainly simulate the search-to-identify mechanism

from top to down of the network in a progressive manner,

while ignore the discriminative feature exploration at each

layer of the network. Therefore, most methods do not perform

well on challenging cases of COD, and there is still much room

for performance improvement.

B. Boundary-guided Camouflaged Object Detection

Both texture and boundary cues are important for humans

to find the camouflaged object in an image [42]. The texture

cues reflect the object’s internal detail information and help us

quickly and roughly discover the object. The boundary cues

help us distinguish the object from the background. These

two kind of cues are complementary and their combination

can improve the detection accuracy for challenging samples,

especially those with ambiguous boundaries.

Recently, several boundary-guided COD methods have been

proposed. For example, Zhai et al. [37] transformed feature

maps into sample-dependent semantic graphs and incorporated

edge guide features to improve camouflage detection accuracy

and robustness. This approach captures visual dependencies

for enhanced camouflage detection. Chen et al. [32] proposed

a boundary-guided fusion module to explore the relationship

between the camouflaged regions and their boundaries. With

this module, the network was able to simultaneously refine the

boundary and region features. Sun et al. [28] excavated object-

related edge semantics by integrating high-level global loca-

tion information and low-level local edge information under

explicit boundary supervision. Specifically, they incorporated

the edge semantics with the extracted features at various

levels to guide the representation learning of COD as well

as enforce the network to focus on the object structure and

details. Likewise, Zhou et al. [43] extracted object-related edge

information from two low-level features. Different from [28],

they directly adapted edge feature concatenate with feature

representation from fusion module to acquire edge-related

feature.

Zhu et al. [44] designed a texture label with multiple cues

to facilitate accurate COD. Besides, an interactive guidance

framework was proposed to capture the indefinable bound-

aries and the texture differences via progressive interactive

guidance. Tu et al. [14] proposed to extract hierarchical infor-

mation to integrate non-local features. They also incorporated

boundary prior information into the extracted hierarchical

features to detect the objects with more precise boundaries.

Lee et al. [30] aggregated local boundary information and

global information at various levels to generate the boundary

cues, which were used to refine the feature in the decoder for

better COD performance.

In summary, boundary-guided methods have been favoured

to tackle the COD problem. However, most methods either

take the object region prediction and boundary prediction as

separate tasks yet without any interaction, or merely use the

boundary information to guide the feature encoding stage or

decoding stage without considering the positive role of object

regions in feature extraction. More efforts are needed for per-

formance improvement. In this paper, inspired by the search-

to-identify mechanism, we propose a novel COD framework

that aggregates multi-level features from top to down and

integrates features progressively at each level of the network

with the region and boundary constraints.

III. METHODOLOGY

A. Motivation and Architecture Overview

Accurately localizing the camouflaged object regions is very

challenging due to the high intrinsic similarities between target

objects and background. In this study, we propose a novel

deep neural network, named DCNet, for COD, which simul-

taneously uses region and boundary information as constraints.

The motivations behind DCNet are two-fold. First, inspired by

the biological studies [34] that object detection consists of two

steps, i.e., search and identification, we propose to integrate

these two steps into the network design concept. Specifically,

an ASM is proposed to search the coarse regions of objects

with the assistance of the initial region cues, and an ARM

is introduced to identify the fine regions of objects with the

help of the boundary cues. These two modules can localize the

object regions at each level of the network in a coarse-to-fine

manner, imitating the search-to-identify mechanism. To obtain

both the initial region cues and boundary cues, we propose

an ABD, which is constrained by two supervision signals

during network training, i.e., the region ground truth and

the boundary ground truth. Second, considering the different

prediction accuracies of ARMs at different levels, we also

progressively refine the prediction in a coarse-to-fine manner

through top-to-down connections of ARMs. Each ARM is

constrained by a region ground truth. Benefiting from two

types of coarse-to-fine predictions, our DCNet can produce

more accurate prediction in the COD task.

Fig. 1 presents the architecture of our proposed DCNet,

which consists of four key components, i.e., the backbone

(PVTv2), the ABD, the ASM, and the ARM. First, PVTv2

is leveraged to encode the input image to acquire multi-level

features (Fi, i ∈ {1, 2, 3, 4}), which contain rich spatial details

and semantic information from the shallow to high levels,

respectively. Then, we utilize an ABD to simultaneously
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extract the initial region cues Po and boundary cues Pb by

aggregating F1, F2, F3, and F4. Next, the feature Fi and

region cues Po are fed into an ASM to adaptively search the

coarse regions Fi of the camouflaged object at the i-th level

of the network. After that, an ARM is utilized to identify

the fine regions of the camouflaged object by fusing adjacent-

level features F̃i+1 and Fi with the guidance of boundary

cues Pb. Finally, the output F̃i of the ARM is processed by a

1×1 convolution operation to generate the prediction mask Pi

at each level. Through the deep supervision strategy, we can

aggregate multi-level features from top to down and localize

the camouflaged object in a coarse-to-fine manner. For better

performance, the prediction mask P1 of the first ARM is

selected as the final output.

B. Area-Boundary Decoder

Inspired by the fact that both texture and boundary cues are

important for object detection in an image [42], we propose

an ABD to generate the initial region cues Po and boundary

cues Pb simultaneously. Fig. 2 shows the architecture of the

proposed ABD, which takes F1, F2, F3, and F4 as the input

and outputs Po and Pb. To generate the region cues Po, we

adopt a pyramid structure that integrates F1, F2, F3, and F4

in a step-wise manner. Specifically, we first adjust the channel

size of F4 to the same size as that of F3 by a 1×1 convolution

operation, resulting in F ′
4. Then, we up-sample F ′

4 in the

spatial domain and add the up-sampled feature map to F3.

Next, the addition F ′
43 is processed by a 1 × 1 convolution

operation to adjust its channel size to that of F2, followed

by an operation of up-sampling 2 times in the spatial domain

to match its spatial size to that of F2 for the sum operation.

Through the above operations, we can finally get F ′
21, which

is further processed by a 1×1 convolution operation, followed

by a Sigmoid function, to output Po.

As shown in Fig. 2, to generate the boundary cues Pb,

we up-sample F2, F3, and F4 to the spatial size of F1 via

bilinear interpolation and concatenate the resulting feature

maps with F1 along the channel direction. After that, the

concatenated feature map is processed by a sequence of a

3×3 convolution operation, a batch normalization operation,

and a ReLU function (abbreviated as CBR for convenient

expression) twice, followed by a 1×1 convolution and a

Sigmoid function, to output Pb. The above operations can be

formulated as

Pb = σ(Conv1(C
2(F1 C F

↑×2

2
C F

↑×4

3
C F

↑×8

4 ))), (1)

where σ(·) is the Sigmoid function, Conv1 denotes the 1×1

convolution, C2 means conducting the CBR operation twice.

C is the concatenation operation, and F
↑×n
i stands for the

operation of up-sampling feature map n times.

C. Area Search Module

Inspired by the search-to-identify mechanism [15], we pro-

pose an ASM to search the coarse region of the camouflaged

object. Fig. 3 presents the architecture of the proposed ASM,

which has a dual-branch structure. In the upper branch, Fi is

first multiplied by the initial region cues Po in an element-

wise manner. Such an operation helps the network focus on

the candidate region of the camouflaged object. Since Po has

different spatial size as compared to Fi, we adjust its size

to that of Fi using the down-sampling operation (↓) before

the multiplication operation. Then, the obtained feature map

Fu
i is processed by a CBR operation, resulting in Fu

i . After

that, inspired by [45], we process Fu
i by a spatial attention

(SA) block to further adaptively explore representative regions.

Concretely, as shown by the orange dashed rectangular box in

the upper branch of Fig. 3, the SA block consists of a CBR

operation, a channel-wise operation (including the channel-

wise mean algorithm and the channel-wise maximum algo-

rithm in parallel), a Sigmoid function, and a 1×1 convolution

operation, based on which the network can get the important

degree ws of pixels in the spatial domain. To help the network

explore representative regions, the input feature map Fu
i of the

SA block is multiplied by ws:

F s
i = Fu

i ⊗ σ(Conv1(Ce(C(Fu
i )) C Ca(C(Fu

i )))︸ ︷︷ ︸
ws

), (2)

where F s
i is the output of the SA block, and Fu

i = Fi ⊗ P ↓
o ,

where P ↓
o is the down-sampling operation to make Po the same

spatial size as Fi. ⊗ denotes the element-wise multiplication.

Ce(·) and Ca(·) mean the channel-wise mean algorithm and

channel-wise maximum algorithm, respectively.

The lower branch of ASM is with the similar architecture

as the upper branch and only has two differences. One is the

input. Instead of using the initial region cues Po, the lower

branch utilizes (1 − Po) to process the feature map Fi. One

reason for this is that the reverse operation helps the network

distinguish the foreground and background in another view

as compared to the traditional view in the upper branch. By

processing Fi from two views simultaneously, the network can

understand the candidate region better and finds the boundary

cues more easily [46]. Another difference is that we utilize a

channel attention (CA) block, instead of a SA block, in the

lower branch. As shown in the green dashed rectangular box in

the lower right corner of Fig. 3, the CA block has the similar

structure as the SA block. The only difference is replacing the

channel-wise operation by the spatial operation (including the

global average pooling GAP and the global maximum pooling

GMP). The output F l
i of the lower branch can be obtained by

F c
i = F l

i ⊗Conv1(σ(GAP (C(F l
i )) +GMP (C(F l

i )))︸ ︷︷ ︸
wc

), (3)

where F l
i = Fi ⊗ (1−P ↓

o ), wc means the weight obtained by

the CA block in the channel domain.

After processing Fi with two branches in different views,

the coarse region Fi of the camouflaged object can be obtained

by

Fi = Conv1(F
s
i ⊕ F c

i ), (4)

where ⊕ denotes the sum operation.

D. Area Refinement Module

Benefiting from the ASM, the network can coarsely localize

the object regions. To further refine boundary regions, we set
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Fig. 1. Overall architecture of our proposed DCNet. An input image is first processed by the backbone. Then, the features (Fi, i ∈ {1, 2, 3, 4}) extracted
from the backbone are fed into an ABD to generate the initial region cues Po and boundary cues Pb simultaneously. With the assistance of Po and Pb, we
can localize the object region Pi at each level of the network by processing Fi with the ASM and ARM sequentially. Finally, the prediction mask P1 of the
first ARM is selected as the final output. Gr and Gb are the ground truth of object region and boundary, respectively.

Fig. 2. Illustration of the proposed area-boundary decoder.

Fig. 3. Illustration of the proposed area search module.

an ARM after the ASM at each level of the network. As show

in Fig. 4, the ARM has a dual-branch architecture with three

inputs, i.e., Fi, F̃i+1, and Pb. Specifically, in the lower branch,

Pb is first processed by a down-sampling operation to adjust its

spatial size to that of Fi. Then, Fi is multiplied by Pb, and the

product is added by Fi. Such an operation helps the network

refine the boundary regions. After that, the resulting feature

maps is processed by a 3×3 convolution, a global average

pooling, and a 1×1 convolution sequentially. Next, a Sigmoid

function is used to obtain the channel weight wl. The above

operations can be expressed as

wl = σ(Conv1(GAP (Conv3(Fi ⊗ P
↓

b + Fi)))), (5)

where P
↓

b is the down-sampling operation to make Pb the same

spatial size as Fi. The upper branch has the similar operations

as the lower branch but takes F̃i+1 as the input and outputs

the channel weight wu. Finally, we concatenate Fi and F̃i+1,

wu and wl, along the channel direction, respectively. These

two concatenated maps are multiplied to output F̃i. The above

operations can be expressed as

F̃i = (F̃ ↑×2

i+1
C Fi)⊗ (wu C wl). (6)

The region prediction mask Pi can be obtained by processing

F̃i with a 1×1 convolution operation. Since there is no high-

level information for the ARM at the third level, we use F4

as the input of ARM’s upper branch.

Fig. 4. Illustration of the proposed area refinement module.
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E. Feature Visualization

Feature visualization, as a popular manner to improve the

interpretability of the network, has been widely adopted in

the COD task [47]–[49]. Meanwhile, appropriate discussions

about the outcomes of the network will further promote

understanding [50]. To intuitively comprehend the working

mechanism of our proposed DCNet, we visualize some feature

maps at critical positions of the network. Two common scenes

are selected for illustration. As shown in the first row of Fig.

5, the side-outputs Fi are heterogeneous, and it is hard to

distinguish the object from background in Fi. After processed

by the ASM, the object regions are identified and the noise

from the background is suppressed to some extent, as shown

in the second row. This is because the initial cues Po from

the ABD help the ASM focus more on the candidate regions.

Since the quality of Po is limited, the ASM can only coarsely

localize the object regions. This prompts us to further refine

the object regions of Fi via the ARM. As illustrated by the

last row, benefiting from the ARM, the complete object regions

are highlighted, especially in the high-resolution output F̃1. A

possible reason for this is that the ARM utilizes the boundary

cues Pb from the ABD to highlight the boundary information,

providing strong clue to distinguish the object and background.

Through the collaboration of ASM and ARM, our DCNet can

localize the object regions at each level of the network in a

coarse-to-fine manner, corresponding to the search-to-identify

mechanism. This is the reason why our DCNet yields accurate

predictions, with complete regions and clear boundaries, as

shown later in Section IV-B2.

F. Loss Function

The proposed DCNet consists of two kinds of supervision,

i.e., the region constraint Lr and the boundary constraint Lb.

Lr highlights harder pixels by assigning more weight. It is

composed of a weighted binary cross-entropy loss Lw
BCE and

a weighted IoU loss Lw
IoU [51]:

Lr (P,G) = Lw
BCE(P,G) + Lw

IoU (P,G), (7)

where P and G are the prediction mask and the ground truth,

respectively. Lb is used to help the network recognize the

boundary cues of the camouflaged object. In this study, we

use the popular Dice loss [52] as Lb. To improve performance,

we adopt a deep supervision strategy. Specifically, four region

prediction masks, including one Po from the ABD and three

Pi from the ARM at three levels, are supervised by the region

ground truth Gr. In addition, one boundary prediction mask

Pb from the ABD is supervised by the boundary ground truth

Gb. Overall, the loss function Lt of the proposed DCNet is

described as follow:

Lt = αLr(Po, Gr) + λ

3∑

i=1

Lr(Pi, Gr) + γLb(Pb, Gb), (8)

where α, λ, and γ are weighting parameters. In this study, we

set them to 2, 1, and 3, respectively, according to the ablation

experiments in Section IV-C3.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Protocols

1) Datasets: Three benchmark COD datasets, including

CHAMELEON [53], COD10K [15], and CAMO [54], are

selected to evaluate and compare the proposed DCNet with

competing COD methods. The CHAMELEON has 76 images.

The CAMO contains 1,250 images, including 1,000 images in

the training set and 250 images in the testing set. The COD10K

has 10,000 images, where 3,040 and 2,026 images are used for

training and testing, respectively. Following previous works

[2], [15], [28], [32], [55], [56], we use the training sets of

CAMO and COD10K for training, and use the remaining

images in three datasets for testing in our experiments.

2) Evaluation Metrics: To comprehensively compare our

DCNet with competing COD methods, we choose four widely-

used evaluation metrics for performance comparisons, in-

cluding Structure-measure (Sα) [57], E-measure (Eϕ) [58],

weighted F-measure (Fω
β ) [59], and mean absolute error

(MAE) [60]. Generally, a superior COD method has a larger

value of Sα, Eϕ, and Fω
β , while a smaller value of MAE.

3) Implementation Details: We implement our DCNet in

PyTorch and train the model on a workstation equipped with

an Nvidia GeForce RTX3090 GPU and two Intel Xeon Silver

4210R CPUs @2.40 GHz. The backbone (i.e., PVTv2) of

DCNet is initialized by the parameters pre-trained on Ima-

geNet, while other layers are randomly initialized. During the

training stage, all the input images are resized into 480×480

and augmented by randomly horizontal flipping. The Adam

optimization algorithm is utilized to optimize the network. The

learning rate is first initialized to 1e-4 and then adjusted by

a poly strategy with the power setting of 0.9. The training

process is stopped at the 30-th epoch, and the batch size is set

to 16.

B. Comparisons with State-of-the-Arts

We compare our proposed DCNet with 12 state-of-the-

art COD methods, including SINet [15], TINet [44], PraNet

[61], PFNet [38], R-MGL [37], Joint-COD [62], D2C-Net

[1], BgNet [32], CANet [56], BGNet [28], SegMaR [39], and

MSCAF-Net [2]. For fair comparisons, all the experimental

results of these methods are either provided by the original

works or obtained by retraining models from the officially

released source codes.

1) Quantitative Analysis: Table I shows the quantitative

comparisons between our DCNet and competing methods. As

can be seen, the proposed DCNet outperforms the state-of-

the-art COD methods 9 times and delivers the second best

performance 3 times in a total of 12 comparisons. Additionally,

compared with the recently reported method (i.e., MSCAF-

Net), our DCNet has a leading edge of 0.4% and 2.1% in

Sα and Fω
β on average. This may attribute to the usage

of the novel dual-constraint coarse-to-fine framework, which

helps the network mine region and boundary cues of the

camouflaged object sequentially at each level and localize ac-

curate object regions progressively along different levels from

top to down. We also investigate and compare the proposed

DCNet with competing methods in terms of the floating point
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Fig. 5. Features maps obtained at different positions in the proposed DCNet. The first to third rows include the side-outputs Fi of the backbone, the outputs

Fi of the ASM, and the outputs F̃i of the ARM, respectively. The color image and its ground truth (GT) are presented at the lower right side of (a) and (b).
For display, each feature is averaged along the channel dimension.

TABLE I
QUANTITATIVE EVALUATION RESULTS OF OUR METHOD WITH OTHER SOTAS COMPARISON ON BENCHMARK DATASETS. ↑ \ ↓ REPRESENT THE LARGER

OR SMALLER IS BETTER. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method Year
CHAMELEON COD10K-Test CAMO-Test

FLOPs #Params
Sα ↑ Eϕ ↑ Fω

β
↑ MAE ↓ Sα ↑ Eϕ ↑ Fω

β
↑ MAE ↓ Sα ↑ Eϕ ↑ Fω

β
↑ MAE ↓

SINet [15] 2020 0.869 0.891 0.740 0.044 0.771 0.806 0.551 0.051 0.751 0.771 0.606 0.100 19.55G 48.95M
TINet [44] 2021 0.874 0.916 0.783 0.038 0.793 0.861 0.635 0.042 0.781 0.848 0.678 0.087 - -

PraNet [61] 2021 0.882 0.931 0.810 0.033 0.800 0.877 0.660 0.040 0.782 0.842 0.695 0.085 13.15G 30.50M
Joint-COD [62] 2021 0.894 0.943 0.848 0.030 0.817 0.892 0.684 0.035 0.803 0.853 0.728 0.076 89.89G 121.63M

PFNet [38] 2021 0.882 0.942 0.810 0.033 0.800 0.868 0.660 0.040 0.782 0.852 0.695 0.085 26.60G 46.498M
R-MGL [37] 2021 0.893 0.923 0.813 0.030 0.814 0.865 0.666 0.035 0.775 0.847 0.673 0.088 431.87G 78.47M
D2C-Net [1] 2022 0.889 0.939 0.848 0.030 0.807 0.876 0.720 0.037 0.774 0.818 0.735 0.087 - -

BgNet [32] 2022 0.894 0.943 0.823 0.029 0.804 0.881 0.663 0.039 0.804 0.859 0.719 0.075 27.74G 60.47M
CANet [56] 2022 0.901 0.940 0.843 0.028 0.832 0.890 0.745 0.033 0.807 0.866 0.767 0.075 72.65G 57.13M
BGNet [28] 2022 0.901 0.943 0.851 0.027 0.831 0.901 0.722 0.033 0.812 0.870 0.749 0.073 58.50G 77.80M

SegMaR [39] 2022 0.906 0.954 0.860 0.025 0.831 0.901 0.722 0.033 0.815 0.872 0.742 0.071 33.65G 55.62M
MSCAF-Net [2] 2023 0.912 0.958 0.865 0.022 0.865 0.927 0.775 0.024 0.873 0.929 0.828 0.046 30.04G 29.70M

DCNet (Ours) - 0.920 0.958 0.890 0.019 0.873 0.934 0.810 0.022 0.870 0.922 0.831 0.050 94.74G 54.43M

operations (FLOPs) and the number of parameters (#Params).

As shown in the last two columns of Table I, DCNet has the

FLOPs of 94.74G and #Params of 54.43M, ranking tenth and

fifth among eleven competing methods, respectively. In other

words, compared to competitors, our DCNet has no obvious

competitive advantage in these two aspects. Despite this,

DCNet has better detection accuracy, which is evident from

quantitative comparisons shown in the left part of Table I and

qualitative comparisons shown later in Fig. 6. It is worth noting

that, the focus of our current study is not designing lightweight

COD networks, but proposing an effective COD network with

high detection accuracy. Generally, a COD method with higher

accuracy is highly desired in practice as it contributes to

more precise object detection. In the future, we will optimize

the structure of DCNet to reduce its computational cost and

parameter number while keeping high accuracy.

2) Qualitative Analysis: Fig. 6 provides some qualitative

comparisons of our DCNet and state-of-the-art COD methods.

Here, we only present the results of methods that provide

the prediction masks and that release the source codes for

reproduction. These images are selected from the COD10K

dataset and include typically challenging cases, such as multi-

objects (rows 1 and 6), small object (rows 2 and 9), occlusion

(row 3), out-of-view (rows 4, 5, 8), and indefinable boundary

(rows 5, 6, 8). From Fig. 6, we can observe that the pro-

posed DCNet achieves more accurate prediction results than

competing methods. Specifically, it is robust across different

scenes. Although in extremely difficult samples (as shown in

the second row) where almost all methods cannot localize

the camouflaged object accurately, our DCNet still delivers

better prediction masks compared with competing methods.

Furthermore, due to the cooperative usage of region and

boundary constraints, our DCNet can identify the object with

the forecast boundary closer to ground truth than competing

methods, as shown in the sixth and eighth rows.

C. Ablation Study

In this subsection, we further conduct ablation experiments

to investigate the effectiveness of the proposed ASM and

ARM. During the ablation study of each module, the other

parts of our framework remain unchanged.

1) Effectiveness of ASM: To test the effectiveness of ASM,

we remove it and directly multiply the side-output Fi of

the backbone by the initial region cues Po. The product is

processed by a 1×1 convolution operation to generate the

coarse regions Fi. By comparing the results in the first and

last rows of Table II, we can observe that the removal of ASM

can cause obvious performance drop on three datasets. This
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Fig. 6. Visual comparisons of our proposed DCNet with state-of-art COD methods. The ground truth (GT) of each image is presented at the last column.

TABLE II
QUANTITATIVE EVALUATION OF ABLATION STUDIES ON THREE DATASETS. WE HIGHLIGHTED THE BEST RESULTS IN BOLD.

Method
CHAMELEON COD10K-Test CAMO-Test

Sα ↑ Eϕ ↑ Fω
β

↑ MAE ↓ Sα ↑ Eϕ ↑ Fω
β

↑ MAE ↓ Sα ↑ Eϕ ↑ Fω
β

↑ MAE ↓

baseline 0.895 0.927 0.858 0.025 0.849 0.904 0.779 0.025 0.852 0.907 0.808 0.054
DCNet + w/o ASM 0.915 0.944 0.874 0.023 0.870 0.927 0.803 0.023 0.869 0.916 0.825 0.050

DCNet + w/o ARM 0.917 0.948 0.879 0.021 0.870 0.929 0.806 0.022 0.866 0.914 0.828 0.050

DCNet (Ours) 0.920 0.958 0.890 0.019 0.873 0.934 0.810 0.022 0.870 0.922 0.831 0.050

indicates that ASM plays a positive role in the COD task.

In the ASM, we multiply the side-output Fi by the initial

region cues Po to help the network focus on the candidate

region of the camouflaged object, and also multiply the side-

output Fi by the reverse initial region cues (1−Po) to help the

network distinguish the foreground and background in another

view. Here, we further investigate the effectiveness of such

operations. For this purpose, we remove Po and only take

Fi as the input of ASM. As shown in the first row of Table

III, the performance of our DCNet is slightly decreased if we

remove Po. Additionally, we utilize two attention blocks, i.e.,

SA and CA, in the ASM to help the network enhance feature

representation. Here, we also explore their effectiveness by

removing each of them separately from ASM. By comparing

the results in Table III, we can observe that the removal of

SA or CA can cause performance drop on three datasets. This

indicates that both SA and CA play a positive role in the COD

task.

2) Effectiveness of ARM: To test the effectiveness of ARM,

we remove it and directly concatenate Fi and the adjacent-

level feature F̃i+1. As shown in the last two rows of Table

II, there is performance drop when removing ARM from the

proposed DCNet. For instance, there is an Eϕ drop of 1.0%,

0.5%, and 0.8% on three datasets, respectively. This indicates

that the proposed ARM contributes to improving the detection

performance. In the ARM, Pb provides the boundary cues

to help the network refine boundary information. Here, we

further investigate the efficacy of Pb. For this purpose, we

directly remove it from the ARM and keep the remaining part

unchanged. As shown in the penultimate row of Table III,
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the removal of Pb has resulted in slight performance drop.

This indicates that Pb plays a positive role in the ARM and

contributes to improving detection performance.

3) Effect of the Weights in Eq. (8): In Eq. (8), there are

three parameters, i.e., α, λ, and γ, to balance the contributions

of each loss function. Here, we adopt the grid search to

investigate the sensitivity of parameter setting. Specifically, we

fix λ=1 and configure both α and γ with 5 conditions (α ∈ [1,

3] and γ ∈ [2, 4] in the step of 0.5). For each combination of

α, λ, and γ, a COD model is learned. Fig. 7 shows the results.

Clearly, the results change with the parameter combination. In

this study, we set α=2 and γ=3 due to the superior performance

achieved.

Fig. 7. Effect of the weights in Eq. (8) on the performance of the proposed
DCNet: (a) the mean Sα value and (b) the mean Fω

β
value on three datasets.

D. Failure Cases

Generally, the camouflaged object is similar in pattern to

its surroundings. To better distinguish the object from back-

ground, we utilize an ARM that helps the proposed DCNet

focus more on boundary information, achieving considerable

performance, as shown in Table I and Fig. 6. Despite this,

our DCNet also produces biased predictions in some very

challenging cases. As illustrated in Fig. 8, DCNet may fail

to accurately localize the proper object when the object has

no clear boundaries with its surroundings (see the 1st row) and

when the object shares a high pattern similarity with its sur-

roundings (see the 2nd and 3rd rows). Similarly, the boundary-

constraint competitors, e.g., R-MGL, BgNet, and BGNet, also

yield erroneous predictions in these cases. This indicates that,

for more accurate predictions in such challenging cases, more

advanced techniques apart from the boundary constraint are

required. We leave the design of such techniques as a future

work.

Fig. 8. Illustration of failure cases.

E. COD-related Applications

In this study, we further validate the effectiveness of our

proposed DCNet on two COD-related tasks.

1) Application to Polyp Segmentation: Following the previ-

ous work [61], we select five public datasets, including Kvasir

[63], CVC-ClinicDB [64], ETIS [65], CVC-300 [66], and

CVC-ColonDB [67], to test the effectiveness of our method

on polyp segmentation. As suggested by [61], we take 900

images from Kvasir and 550 images from CVC-ClinicDB as

the training set and take the remaining images in these five

datasets as the testing set. Apart from Fω
β , Sα, Eϕ, and MAE,

two widely used evaluation metrics (mDice and mIoU ) in

the polyp segmentation field are also selected to evaluate the

performance.

Quantitative Results. Due to space limitation, we compare

our DCNet with three methods, which have been validated ef-

fectively in polyp segmentation, including PraNet [61], PFNet

[38], and BGNet [28]. The quantitative results are listed in

Table IV. As can be seen, our proposed DCNet achieves an

mDice score of 0.864, an mIou score of 0.803, an Fω
β score

of 0.846, an Sα score of 0.906, an Eϕ score of 0.933, and an

MAE score of 0.091 on average for five datasets. It is superior

to these competing methods in terms of six evaluation metrics

on Kvasir, CVC-ClinicDB, ETIS, and CVC-ColonDB, while

performs the second best in terms of mIoU , Fω
β , and Sα on

CVC-300. Overall, our DCNet achieves elegant performance

and is competent for the polyp segmentation task.

Qualitative Results. Fig. 9 illustrates the qualitative results

of PraNet, PFNet, BGNet, and our DCNet on four repre-

sentative scenes, including large polyps (rows 1 and 2), low

light environment (row 3), multiple tiny polyps (row 3), and

single tiny polyp (row 4). Moreover, these polyps vary in

texture, shape and size, which brings a tough challenge for the

segmentation task. As shown by Fig. 8, our proposed DCNet

can identify polyps well and perform better than competing

methods in these challenging cases.

Fig. 9. Visual comparison of the proposed DCNet with three methods.

2) Application to Industrial Defect Detection: In this study,

we choose the popular industrial defect detection dataset

MVTEC AD [68] to further validate the superiority of our

proposed DCNet in COD-related tasks. Since MVTEC AD is

mainly used for testing unsupervised methods and its training

set has no ground truth, we only choose its testing set (1,258
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TABLE III
FURTHER ABLATION STUDIES OF THE ATTENTION BLOCKS IN THE ASM AND THE BOUNDARY GUIDANCE Pb IN THE ARM. WE HIGHLIGHTED THE BEST

RESULTS IN BOLD.

Method
CHAMELEON COD10K-Test CAMO-Test

Sα ↑ Eϕ ↑ Fω
β

↑ MAE ↓ Sα ↑ Eϕ ↑ Fω
β

↑ MAE ↓ Sα ↑ Eϕ ↑ Fω
β

↑ MAE ↓

DCNet + w/o Po 0.919 0.955 0.886 0.021 0.869 0.930 0.802 0.023 0.871 0.918 0.832 0.050

DCNet + w/o Po + w/o SA 0.916 0.944 0.881 0.021 0.868 0.929 0.802 0.023 0.869 0.922 0.830 0.050

DCNet + w/o Po + w/o CA 0.916 0.947 0.880 0.022 0.869 0.928 0.801 0.023 0.869 0.921 0.830 0.050

DCNet + w/o Pb 0.918 0.955 0.889 0.020 0.872 0.934 0.810 0.022 0.864 0.914 0.827 0.052
DCNet (Ours) 0.920 0.958 0.890 0.019 0.873 0.934 0.810 0.022 0.870 0.922 0.831 0.050

TABLE IV
QUANTITATIVE RESULTS ON FIVE POLYP SEGMENTATION DATASETS.

Method
Kvasir

mDice ↑ mIoU ↑ Fω
β

↑ Sα ↑ Eϕ ↑ MAE ↓

PraNet [61] 0.899 0.847 0.886 0.913 0.944 0.028
PFNet [38] 0.902 0.848 0.891 0.911 0.928 0.028
BGNet [28] 0.842 0.850 0.788 0.904 0.929 0.034

DCNet (Ours) 0.917 0.874 0.909 0.926 0.946 0.023

Method
CVC-ClinicDB

mDice ↑ mIoU ↑ Fω
β

↑ Sα ↑ Eϕ ↑ MAE ↓

PraNet [61] 0.906 0.861 0.894 0.933 0.963 0.009
PFNet [38] 0.921 0.872 0.914 0.931 0.971 0.013
BGNet [28] 0.840 0.866 0.772 0.920 0.967 0.019

DCNet (Ours) 0.929 0.884 0.919 0.944 0.974 0.007

Method
ETIS

mDice ↑ mIoU ↑ Fω
β

↑ Sα ↑ Eϕ ↑ MAE ↓

PraNet [61] 0.660 0.601 0.644 0.809 0.834 0.014
PFNet [38] 0.707 0.620 0.663 0.819 0.846 0.019
BGNet [28] 0.526 0.554 0.460 0.759 0.817 0.023

DCNet (Ours) 0.782 0.713 0.751 0.867 0.885 0.019

Method
CVC-300

mDice ↑ mIoU ↑ Fω
β

↑ Sα ↑ Eϕ ↑ MAE ↓

PraNet [61] 0.897 0.839 0.878 0.940 0.960 0.006

PFNet [38] 0.892 0.823 0.867 0.929 0.957 0.008
BGNet [28] 0.795 0.833 0.711 0.914 0.973 0.013

DCNet (Ours) 0.897 0.832 0.876 0.935 0.960 0.009

Method
CVC-ColonDB

mDice ↑ mIoU ↑ Fω
β

↑ Sα ↑ Eϕ ↑ MAE ↓

PraNet [61] 0.708 0.634 0.692 0.818 0.858 0.039
PFNet [38] 0.730 0.656 0.716 0.826 0.886 0.038
BGNet [28] 0.599 0.604 0.543 0.784 0.818 0.048

DCNet (Ours) 0.794 0.712 0.774 0.856 0.899 0.033

images) in our experiments. Specifically, we randomly divide

1,258 images into the training set and testing set by a ratio

of 4:1. Similar to the polyp segmentation task, six evaluation

metrics are used here.

Quantitative Results. As shown in Table V, our proposed

DCNet surpasses three competing methods by a large margin

in terms of six evaluation metrics. To be specific, compared

with the second best method PraNet, our DCNet has a perfor-

mance gain of 10.4% in mDice, 12.4% in mIoU , 11.5% in

Fω
β , 4.5% in Sα, 9.7% in Eϕ, and 0.3% in MAE.

Qualitative Results. Fig. 10 presents the visual results of

three competing methods as well as our proposed DCNet on

four challenging cases, including the allochroic carpet, bent

metal nut, combined cable, and contaminated bottle. As can be

seen, DCNet can accurately distinguish the target defect from

the background and performs better than PraNet, PFNet, and

BGNet. This indicates that our proposed DCNet has greater

potential for the industrial defect detection task than these

three competing methods.

TABLE V
QUANTITATIVE RESULTS ON MVTEC AD.

Method
MVTEC AD

mDice ↑ mIoU ↑ Fω
β

↑ Sα ↑ Eϕ ↑ MAE ↓

PraNet [61] 0.496 0.435 0.467 0.692 0.851 0.024
PFNet [38] 0.467 0.428 0.450 0.669 0.899 0.026
BGNet [28] 0.267 0.452 0.199 0.605 0.887 0.067

DCNet (Ours) 0.600 0.559 0.582 0.737 0.948 0.021

Fig. 10. Visual comparison of the proposed DCNet with three methods on
representative images of MVTEC AD. Zoom in for more details.

V. CONCLUSION

In this paper, we propose a novel framework, named DCNet,

for COD by considering both region and boundary constraints.

Specifically, the proposed DCNet is inspired by the search-to-

identify mechanism and applies a coarse-to-fine manner, with

three key modules. First, an ABD module is introduced to

explicitly predict the initial region cues and boundary cues

by integrating both low-level and high-level features from the

backbone. Then, at each level of the network, we embed an

ASM and an ARM. The ASM is used to search the coarse

region maps with the guidance of the initial region cues

from the ABD, and the ARM is utilized to identify the fine

regions with the guidance of the boundary cues from the ABD.

Through the deep supervision strategy, we can fuse multi-

level features from top to down and finally accurately localize

the regions of the camouflaged object. Extensive experiments

on three benchmark COD datasets indicate that our proposed

DCNet surpasses 12 state-of-the-art COD methods in terms

of four evaluation metrics. In addition, our proposed DCNet

is also competent for polyp segmentation and defect detection

tasks with good performance.
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