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KEYWORDS Abstract Aim: To detail the extent and prevalence of post-exercise and nocturnal hypoglycemia

Type 1 diabetes; following peri-exercise bolus insulin dose adjustments in individuals with type 1 diabetes (T1D)

Exercise; using multiple daily injections of insulins aspart (IAsp) and degludec (IDeg).

Insulin aspart; Methods and results: Sixteen individuals with T1D, completed a single-centred, randomised, four-

Insulin degludec; period crossover trial consisting of 23-h inpatient phases. Participants administered either a reg-

Hypoglycemia ular (100%) or reduced (50%) dose (100%; 5.1 &+ 2.4, 50%; 2.6 & 1.2 IU, p < 0.001) of individualised
IAsp 1 h before and after 45-min of evening exercise at 60 + 6% VOnax. An unaltered dose of
IDeg was administered in the morning. Metabolic, physiological and hormonal responses during
exercise, recovery and nocturnal periods were characterised. The primary outcome was the num-
ber of trial day occurrences of hypoglycemia (venous blood glucose < 3.9 mmol L ~!). Inclusion of
a 50% IAsp dose reduction strategy prior to evening exercise reduced the occurrence of in-
exercise hypoglycemia (p = 0.023). Mimicking this reductive strategy in the post-exercise period
decreased risk of nocturnal hypoglycemia (p = 0.045). Combining this strategy to reflect reduc-
tions either side of exercise resulted in higher glucose concentrations in the acute post-exercise
(p = 0.034), nocturnal (p = 0.001), and overall (p < 0.001) periods. Depth of hypoglycemia
(p = 0.302), as well as ketonic and counter-regulatory hormonal profiles were similar.
Conclusions: These findings demonstrate the glycemic safety of peri-exercise bolus dose reduc-
tion strategies in minimising the prevalence of acute and nocturnal hypoglycemia following eve-
ning exercise in people with T1D on MDI. Use of newer background insulins with current bolus
insulins demonstrates efficacy and advances current recommendations for safe performance of
exercise.
Clinical trials register: DRKS00013509.
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Introduction

Individuals with type 1 diabetes (T1D) on multiple daily
injection (MDI) regimens are reliant on insulin replace-
ment therapy for managing blood glucose. However,
exogenously administered insulin is not subject to autor-
egulation, thus hyperinsulinemia [1,2], and therefore hy-
poglycemia [3,4], remain major limitations in the current
therapeutic management of diabetes. This becomes
particularly relevant around physical exercise, which can
rapidly increase intramuscular glucose uptake through
mechanisms mediated by, but also independent of, insulin
[5—10]. Thus, the additive effects of peripheral hyper-
insulinemia and exercise in promoting tissue permeability
and uptake of glucose [11—14], accentuate the risk of
exercise-related hypoglycemia in people with T1D. Beyond
these acute effects, exercise-induced increases in tissue
sensitisation to insulin may persist for many hours
following cessation [15—20], with evidence of a second
peak occurring several hours later [21]. In the case of
evening exercise, this may bring an already chronically
hyperinsulinemic individual with T1D into a nocturnal
period in a supra-insulin-sensitised state. As such, the
window of hypoglycaemic risk is often expanded to
include the nocturnal hours [21—24], at a time when self-
blood glucose monitoring is inherently difficult [25]. In
appreciation of these factors, careful adjustments in bolus
insulin therapy around physical exercise are advised for
individuals with T1D, and general recommendations
across many diabetes associations and peer-reviewed
outlets are available [26—28]. However, intra-individual
variation in blood glucose responses to the same exercise
is large [29], which only adds to the complexity of devel-
oping an effective glycemic management strategy around
physical activity in those with T1D. Furthermore, despite
the endorsed integration of insulin dose reduction strate-
gies, research continues to demonstrate that individuals
with T1D frequently begin exercise hyperinsulinemic
[24,30—32], a situation worsened by the apparent rise in
systemic insulin concentrations during aerobic activities
[12,24,32], likely due to the associated subcutaneous in-
sulin washout, hyperaemia and blood/interstitial volume
redistribution [33]. A key source of variance in research
pertaining to recommended MDI alterations around exer-
cise is the diversity of bolus and basal insulins employed
within and between studies [30,32,34—37], most of which
have relied on home-based interstitial glucose monitoring
for confirmation of hypoglycemia leading into and
throughout the nocturnal hours, a method with recog-
nised limitations due to device inaccuracy when glucose
deviates from the physiologic range [38]. Given the distinct
pharmacokinetic profiles of different insulins, the range
used in existing research makes for difficulty in inter-
preting findings, particularly when now outdated ana-
logues have previously been used and overnight sampling
is scarce. Modern insulin analogues are in clinical practice,
and the incorporation of ultra-long acting insulin ana-
logues as conventional basal therapies with established

bolus insulins is common within primary and secondary
healthcare. Therefore, there remains a need to explore
combinations of current generation insulins as part of a
basal-bolus glycemic management strategy that, not only
strengthens the efficacy of current exercise strategy rec-
ommendations pertinent to those with T1D, but also en-
courages safe exercise performance by limiting the
potential for post-exercise and nocturnal hypoglycemia.

Materials
Study design

This study involved a primary analysis of a single-centre,
randomised, open-label, four-period cross over clinical trial
(German Clinical Trials Register; DRKS00013509). The study
was performed in accordance with good clinical practice and
the Declaration of Helsinki (1996). Approval was granted by
both the national research ethics committee (16/WA/0394)
and the local health authority (EudraCT number: 2017-
004774-34; UTN: U1111-1174-6676).

Screening visit

Ahead of trial inclusion, participants were screened for
anthropometric, cardiovascular and T1D specific markers
prior to the performance of a cardio-pulmonary exercise
test on a semi-recumbent cycle ergometer (Corival
Recumbent, Lode, NL) [39]. After successful completion
against the reference inclusion criteria, participants were
switched from their usual basal/bolus insulin therapies
(n = 8; glargineU100/aspart, n = 1; glargineU300/aspart,
n = 1; degludec/aspart, n = 6; detemir/aspart) to ultra-
long-acting insulin degludec ([IDeg], Tresiba®, Novo-
Nordisk, Denmark) in 3 mL pre-filled investigational pens
(PDS290) and rapid-acting insulin aspart ([IAsp],
NovoRapid® NovoNordisk, Denmark) in 3 mL pre-filled
investigational pens (FlexPen®). Once titrated, the total
daily basal insulin dose (TDBD) was 20% less for the once-
daily-morning dosing for IDeg than detemir, glargineU100
and glargineU300. Participants were required to achieve a
mean overnight-fasted morning capillary blood glucose
(cBG) value of 4.4—7.2 mmol L~! over 3 consecutive days
within 4 weeks after first trial basal insulin dose. If gly-
cemic instability persisted for >3 days following titration,
a dose adjustment alteration was made until criteria was
met. A run-in period of >7 days was required to assure
optimal adaptation to IDeg prior to the experimental
period. All participants were using IAsp ahead of trial in-
clusion, thus were instructed to maintain their usual bolus
insulin regime in accordance with their individualised
meal-time insulin dose requirements (Mean insulin: car-
bohydrate [CHO] ratio = 1 1U:10 & 4 g).

Experimental trial visits
A schematic overview of experimental trial visits is illus-

trated in Fig. 1. Between 08:00 and 16:00, participants
undertook a standardised period during which they
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received set breakfast, brunch and lunch meals that were
matched in macronutrient content to their habitual dietary
preferences. Low glycaemic index (G1) meals were pro-
vided at each feeding timepoint to control the influence of
high GI foods on blood glucose over the 23-h in patient
stays. With each of these meals, participants injected their
routine dose of IAsp based on their individualised carbo-
hydrate factor (CarbF) calculated by means of an algorithm
(CarbF = 5.7"kg/TDD) [40]. One hour before and after
exercise (Ex), participants administered either a full (100%)
or reduced (50%) dose (100%; 5.1 & 2.4 vs 50%; 2.6 + 1.2 IU,
p < 0.001) of individualised IAsp alongside the consump-
tion of an identical low glycemic index (brown rice based
vegetable dish), carbohydrate rich meal equating
1 g CHO kg bm ™! (Total energy; 496 + 62 kcals, Fat; 9+ 5¢
[20%], Protein; 19 & 11 g [15%], CHO 80 =+ 10 [65%]). If pre-
exercise fingertip cBG was <6 mmol L™, the exercise test
was delayed, and participants consumed a standardised
10 g CHO gel (Glucogel®, BBI healthcare Ltd, UK) with
subsequent 10-minutely monitoring until cBG was above a
target threshold.

On the basis of block randomisation, trials were allo-
cated the following identifiable codes; PreEx Full — PostEx
Full (FF), PreEx Full — PostEx Reduced (FR), PreEx Reduced
— PostEx Full (RF) and PreEx Reduced — PostEx Reduced
dose (RR). The evening (17:00) exercise test consisted of
45 min (3-min warm up @ 20 W, 42-min @ target work-
load) of continuous cycling on a semi-recumbent ergom-
eter at 60 + 6% VO,max. The workload intensity was
computed as the mid-point between the first and second
lactate turn points as previously described [39]. During

exercise, heart rate (HR [s410, Polar®, Finland]) respiratory
exchange ratios (METAMAX® 3B; Cortex Biophysik GmbH,
GER) and power metrics were collected continuously.
Respiratory exchange ratios were used to calculate the
rates of carbohydrate and lipid oxidation via the principles
of indirect calorimetry as described previously [41]. Prior
to retiring to bed, participants consumed a small CHO-rich
snack (0.4 g CHO kg bm~!) with omission of IAsp (21:45).
Glycemia was determined via capillary (08:00—15:59) and
venous (16:00—07:00) BG monitoring over the 23-h
inpatient stays. Venous derived samples were taken
hourly leading into (16:00) and acutely post-exercise
(17:45—21:45), then obtained two-hourly leading into,
and throughout the nocturnal period (00:00—05:59).
During exercise, 20 ul capillary samples were collected
every 6 min from the right earlobe and used for within-
exercise metabolic analysis. Following obtention, BG was
analysed immediately via an enzymatic-amperometric
method (Biosen C-Line, EKF Diagnostic, GER). Hypoglyce-
mia was identified as a venous BG (vBG) value of
<3.9 mmol L. Hypoglycemia was treated via the oral
administration of a standardised 10 g containing CHO gel
(Glucogel®, BBI healthcare Ltd, UK). cBG was subsequently
monitored every 10 min, and if necessary, the treatment
procedure was repeated until cBG was restored to eugly-
cemic concentrations.

Metabolic and counter-regulatory hormonal biomarkers

The Randox Daytona Plus RX series analyser (Randox
Laboratories, Ltd, UK) was used for determination of B-
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Figure 1 Experimental visit flow chart for each 23-h in patient trial. Dashed black arrows indicate capillary blood glucose sampling. With the
breakfast, brunch and lunch feedings, blood glucose was collected from the fingertip and assessed via the inbuilt glucometer (Freestyle libre, Abbott
Laboratories Limited, UK). During exercise, capillary blood glucose sampling was collected from the right earlobe and analysed via the fully
enzymatic-amperometric method ([FEA] Biosen C-Line, EKF Diagnostic, GER). Solid black lines represent venous sampling from which blood glucose
was assessed via FEA. Solid black arrows with a gap indicate the provision of a meal and an accompanied insulin dose. Cycling icon indicates the 45-
min moderate intensity (@ 60% VO,max) continuous exercise period. Bed icon indicates the night-time period during which venous blood glucose was

sampled every 2 h 100%; Unaltered bolus dose. 50%; reduced bolus dose.
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hydroxybutyrate ([3-OHB] RB4067). ELISA assays were
used for the quantification of plasma glucagon (DGCGO,
R&D Systems, Inc. Minneapolis, USA) and catecholamines
(epinephrine [EPI] and norepinephrine [NE] ECT31-K02,
Eagle biosciences, Inc. New Hampshire, USA]). Venous
derived blood lactate (vBLa) concentrations were
measured via the fully enzymatic-amperometric method
(Biosen C-Line, EKF Diagnostic, GER).

Data analysis

All statistical analyses were carried out using SPSS 26.0
statistical software (SPSS, Chicago, Illinois, USA) and
p < 0.05 (two sided) was considered statistically signifi-
cant. Data were treated via repeated measures ANOVA and
uni-or multi-variate analysis techniques with bonferroni-
corrected pairwise comparisons used in post-hoc analysis
to determine time and treatment effects. The total daily
dose (TDD) [inclusive of basal and bolus amounts] of in-
sulin taken during the control period and exercise duration
were accounted for as covariates in the model where
appropriate. Cross tabulation analysis was used to identify
estimated risk ratios (ERR) between nominal variables,
with fishers exact testing and chi-square values used to
report significance. Data were stratified into distinct pha-
ses i.e. the day-time control period (08:00—15:59), the
pre-exercise period (16:00—16:59), the exercise period
(17:00—17:45), the post-exercise period (17:46—23:59), the
nocturnal period (00:00—05:59) and the fasted morning
period (06:00—07:00).

Results

Participant characteristics and pre-intervention study
standardisation

Baseline physiological and diabetes characteristics are
displayed in Table 1. During the day-time control period
(08:00—15:59), carbohydrate (CHO) intake ([inclusive of
standardised and treatment amounts] FF 169.3 + 46.7, FR

Table 1 Baseline characteristics of study participants.

Characteristic n=16
Gender M vs F (n) 13 vs 3
Age (years) 345 + 139
BMI (kg m?) 26.0 + 3.4
Lean mass (%) 234+ 33
HbA (%) 72+13
HbA;. (mmol/mol) 56 + 15
Diabetes duration (years) 144 +11.1
Pre study TDD (IU kg bm™!) 0.6 +0.3
Pre study TDBD (IU kg bm™1) 04 +0.2
VOsmax (Ml kg=! min.~ 1) 40.3 + 10.3

Data are presented as mean =+ SD.

n, number of participants; M, Male; F, Female; BMI, body mass
index; kg, kilograms; m, meters; TDD, total daily insulin dose (in-
clusive of basal and bolus amounts) ; TDBD, total daily basal insulin
dose; bm, body mass; ml, millimetres; min, minutes; VOsmax,
maximum volume of inhaled Oxygen; HbA;(, giycated haemoglobin.

168.6 + 43.6, RF 168.5 + 37.8, RR 1653 £ 343 g,
p = 0.993) and total daily insulin dosages (FF 0.50 + 0.22,
FR 0.48 + 0.20, RF 0.50 + 0.20, RR 0.49 + 0.22 IU kg bm ™',
p = 0.995) were identical between trials.

23-h hypoglycemia

Trial day vBG concentrations were highest in the RR trial,
which differed from all other arms (FF 8.0 + 3.6, FR
8.0+ 3.3,RF78 +33,RR9.2 + 3.8 mmol L, p <0.001).
Of a possible 832 sample draws, there were 66 (8%)
confirmed vBG hypoglycemic events during the entire
experimental period (FF = 21 events in 14 people,
FR = 16 events in 14 people, FR = 15 events in 9 people,
RR = 14 events in 10 people, p = 0.593). During their
study involvement, every participant experienced at least
1 hypoglycemic event, whilst 15/16 people experienced
recurrent hypoglycemia (>1 event). There was no differ-
ence between trials in the probability of experiencing
recurrent hypoglycemia (x*> = 1.834, DF = 3, p = 0.608).
The average depth of hypoglycemia during the experi-
mental period was similar between trials (p = 0.302, Table
4), with a mean concentration of 3.3 + 0.4 mmol L™!
(range 2.2—3.9 mmol L 1).

Hypoglycemia during exercise

Baseline (FF 71 + 19, FR 6.7 + 1.3, RF 6.1 + 15, RR
6.3 + 2.0 mmol L', p = 0.670) and immediate pre-
exercise (Table 2, p = 0.448) vBG concentrations were
identical between experimental arms. In all trials, vBG
decreased during exercise (p < 0.001). However, both the
magnitude of the drop (FF A —-345 + 294, FR A
-441 + 229, RF A -337 4+ 14, RR A
—3.59 + 2.13 mmol L}, p = 0.444) and the rate of change
in vBG were similar between trials (FF -0.10 & 0.08, FR
-0.13 + 006, RF -009 4+ 0.04, RR
-0.08 + 0.05 mmol L-".min~, p = 0.278). Of 64 exercise
sessions, 39 (61%) were terminated prematurely due to
hypoglycemia (FF 11, FR 14, RF 8, RR 6 events, p = 0.021
[Table 3]) with proportionality more hypoglycemia
observed in the FR vs RR dosing arm (p = 0.023). The risk
of hypoglycemia during cycling was 2-fold higher in trials
that incorporated a full dose of IAsp with the pre-exercise
meal (ERR 2.00 [95% CI 1.234—3.259], p = 0.005). The
mean hypoglycemic value at the end of exercise was
3.3 + 0.4 mmol L! (ranging from 2.2 to 3.9 mmol L~!) and
reached severe hypoglycemia (<3.00 mmol L) in all
except the FR dose-trial, in which the lowest vBG mea-
surement was 3.0 mmol L™! (Table 4). There was no dif-
ference between trials in the end hypoglycemic (p = 0.659
[Table 4]) or overall (p = 0.711 [Table 2]) vBG concentra-
tions. Exercise duration did not differ between trials (FF
37.0 £ 10.2, FR36.1 +£6.2,RF 39.3 + 8.7, RR 42.0 + 6.3 min,
p = 0.175). As a result of a greater incidence of hypogly-
cemia, more rescue CHO were needed in the pre-exercise
unaltered insulin dosing trials (FF 6.9 & 4.8, FR 8.8 & 3.4,
RF 5.0 £ 5.2, RR4.4 + 5.1 g, p = 0.048).



Exercise-related hypoglycemia in T1D 231
Table 2 Metabolic, physiologic, and counter-regulatory hormonal responses to exercise.
Parameter Physiologic, metabolic, and respiratory responses

FF FR RF RR p value

a) Cardiorespiratory responses
HRjean (bpm) 133 + 11+ 135 + 12+ 134 + 11+ 133 + 12+ 0.904
VO3mean (I min~1) 1.9 + 03¢ 1.9 + 0.4+ 1.9 + 03¢ 1.9 + 0.3} 0.632
VCO5mean (1 min~1) 1.8 + 0.3t 1.8 + 0.4+ 1.8 4+ 0.3 1.8 + 0.3+ 0.723
CHO oxidatione,, (g min~!) 1.9 + 0.5¢ 1.9 + 0.5} 1.9 + 0.4+ 1.9 + 0.4+ 0.915
Lipid oxidationmean (g min~1) 0.2 £ 0.17 0.2 +£ 0.1 0.2 £ 0.27 0.2 +£ 0.1 0.455
TEEmean (kcals min~1) 9.3 £ 1.6¢ 9.1 + 1.8 92 + 1.7¢% 9.3 + 1.5¢ 0.668
b) Metabolic responses
VBGpre_ex (mmol L") 8.04 + 3.29 8.26 + 2.02 7.87 +2.49 9.40 + 2.60 0.448
VBGeng (mmol L) 4.59 + 3.091 3.69 + 1.19¢ 4.69 + 1.8671 498 + 2.18+ 0.711
VBLapre ex (mmol L) 0.97 +0.28 0.98 + 0.25 0.96 + 0.23 0.95 + 0.24 0.975
vBLagng (mmol L 1) 2.71 +1.48 2.63 + 0.987 2.61 + 1.23% 2.74 +£1.57 0.980
VB-OHBpre_ex (mmol L) 0.04 + 0.01 0.04 + 0.00 0.04 + 0.00 0.04 + 0.01 0.185
VB-OHBcpg (mmol L~1) 0.05 + 0.01 0.05 + 0.01 0.05 + 0.02 0.04 + 0.01 0.408
c) Counter-regulatory hormonal responses
EPlpre-ex (nmol L~1) 0.03 + 0.03 0.06 + 0.10 0.06 + 0.12 0.05 + 0.05 0.773
EPleng (nmol L~1) 0.09 + 0.11 0.09 + 0.12 0.05 + 0.78 0.08 + 0.11 0.887
NEpre ex (nmol L) 0.65 + 0.85 0.63 + 1.01 0.79 + 0.90 1.01 £+ 1.09 0.605
NEcng (nmol L) 1.08 + 1.04 1.36 + 1.29 1.62 +1.38 1.21 £+ 1.00 0.367
Glucagonpe_ex (pg mL™?) 149 + 34.8 21.1 + 335 50.5 + 834 15.6 + 26.8 0.191
Glucagonepq (pg mL™1) 16.4 + 24.8 18.6 + 21.7 45.5 + 76.9 21.0 £ 54.7 0.361

Data are reported as mean + SD (metabolic and counter-regulatory hormonal data n = 16. Cardiorespiratory data n = 14).
HR, heart rate; bpm, beats per minute; VO,, volume of inhaled oxygen; VCO,, volume of inhaled carbon dioxide; | min~!, liters per minute;
¢ min~!, grams per min; TEE, Total energy expenditure; kcals, kilocalories; vBLa, venous blood lactate; vB-OHB, venous beta-hydroxybutyrate;

End, end of exercise; Pre-exe, pre-exercise.
ip < 0.05 compared with the corresponding pre-exercise value.

Post-exercise and nocturnal hypoglycemia

The second largest incidence of trial-related hypoglycemia
(13 of 66 events = 20% of trial total) occurred in the im-
mediate post-exercise period (17:46—23:59). The 13 events
happened in 12/16 people across all 4 trials (FF; 6 events in
6 people [38%], FR; 2 events in 2 people [13%], RF; 2 events
in 2 people [13%], RR; 3 events in 2 people [13%]). During
the post-exercise period, there were no differences be-
tween trials in either the occurrence (p = 0.348, Table 3),
nor depth (p = 0.527, Table 4), of hypoglycemia, neither
was there any difference in the risk of recurrent hypogly-
cemia (x> = 3.048, DF = 3, p = 0.384). Overall post-
exercise (17:45—23:59) vBG concentrations were highest
in the RR trial (FF 749 + 3.76, FR 735 + 2.76, RF
745 + 2.78, RR 8.67 + 3.52, p = 0.034). There was a
greater need for post-exercise treatment CHO in the FF
trial (FF9.7 + 8.7, FR2.5+ 7.7, RF5.6 + 9.6,RR19+ 54 g,
p = 0.030).

Mean nocturnal (00:00—05:59) vBG concentrations
were highest during the RR trial (FF 9.5 + 3.2, FR
101 + 32, RF 92 + 3.7 RR 115 + 3.6 mmol L,
p = 0.001), which differed from the two opposing unal-
tered post-exercise dosing other arms. Nocturnal hypo-
glycemia occurred on 7 occasions (11% of trial total) with a
mean hypoglycemic vBG value of 3.03 + 0.36 mmol L~
The occurrence of nocturnal hypoglycemia was propor-
tionately low between conditions (FF 3, FR O, RF 3, RR 1
events, p = 0.558, Table 3) as was the likelihood of
experiencing  recurrent  nocturnal  hypoglycemia

(x*> = 3.048, DF = 3, p = 0.384). The extent of hypogly-
cemia was also equivalent (p = 0.238, Table 4) Of the 7
incidences of nocturnal hypoglycemia, 6 (86%) occurred in
the trials that included a full dose of IAsp in the post-
exercise period, which was associated with a near 4-fold
increase in the risk of hypoglycemia during the night
(ERR 3.81 [95% CI 0.611—-23.734], p = 0.045).

Physiologic, metabolic, and counter-regulatory hormonal
respornses to exercise

The cardiorespiratory, metabolic, and counter-regulatory
hormonal responses to exercise are presented in Table 2.
There were no differences between trials in any parameter
at immediately prior to exercise, as an exercising mean, or
at the end of exercise. The exercising energy expenditure
from CHO (FF 83.8 - 10.7, FR 84.6 + 9.8, RF 79.4 + 13.1, RR
81.6 + 74%, p = 0.752) and lipids (FF 16.2 + 10.7, FR
15.4 + 9.8, RF 20.6 + 13.1, RR 18.5 + 7.4%, p = 0.752) was
similar between trials. Cycling induced a significant in-
crease in all cardio-respiratory variables (Table 27). Cate-
cholamines and glucagon remained unchanged by exercise
in all conditions. There were no differences between trials
in the magnitude of change (g4eita) in response to exercise
in any counter-regulatory hormonal or metabolic bio-
markers (EPlgejra, p = 0.142, NEgea, p = 0.443, Gluca-
g0Ndeltas P = 0.842, VB'OHBdeltav p = 0.758, vBLagelta,
p = 0.919). There were no recorded incidences of any trial
related hyperketonemia or lactic acidosis at any timepoint
throughout the entire experimental period.
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Table 3 Prevalence of trial-day hypoglycemia.

Prevalence of trial-day hypoglycaemia

Time FF FR RR # hypos as % total (n = 66)
Pre-exercise (16:00—16:59) 1/1 (6%) 0/0 (0%) (6%) 4/3 (19%) 6/5 (9% of total hypos) p = 0.197
Exercise (17:00—17:45) 11/11 (69%) 14/14 (88%)* (50%) 6/6 (38%)* 39/16 (59% of total hypos) p = 0.021*
Post-exercise (17:46—23:59) 6/6 (38%) 2/2 (13%) (13%) 3/2 (13%) 13/12 (20% of total hypos) p = 0.348
Nocturnal (00:00—05:59) 3/1 (6%) 0/0 (0%) 3/3 (19%) 1/1 (6%) 7/5 (11% of total hypos) p = 0.558
Fasted a.m. (06:00—07:00) 0/0 (0%) 0/0 (0%) 1/1 (6%) 0/0 (0%) 1/1 (2% of total hypos) p = 0.406

Overall (16:00—07:00) 21/14 (88%)  16/14 (88%)

15/9 (56%)

14/10 (63%) Total = 66 in 16 people p = 0.593

Data are reported as X/Y (Z%), where X = number of hypoglycemic episodes, Y = number of people in which hypoglycemia occurred and
Z = number of people in which hypoglycemia occurred as a percentage of total number of participants (n = 16). *p < 0.05 between the FR and RR

trial (p = 0.009) trial.

Discussion

This study is the first to detail the extent and prevalence of
post-exercise and nocturnal hypoglycemia, following peri-
evening exercise bolus insulin dose alterations using spe-
cific multiple daily injections of insulins aspart (IAsp) and
degludec (IDeg) in individuals with T1D over a 23-hour in-
patient monitoring period. Our findings demonstrated that
a 50% dose reduction in IAsp prior to evening exercise
reduced the occurrence of wihtin-exercise hypoglycemia,
and mimicking this strategy in the post-exercise period
decreased the risk of nocturnal hypoglycemia. Combining
this approach by reducing IAsp either side of exercise
resulted in higher glucose concentrations in acute post-
exercise, nocturnal and overall periods.

The significant reduction in IAsp units injected before
exercise (PreEx50% 2.6 &+ 1.2 vs PreEx100% 5.1 &+ 2.4 IU,
p < 0.001), resulted in a greater meal-induced rise in
glucose compared to the unaltered dose (PreEx50% A
+21 + 21 vs PreEx100% A +12 + 2.0 mmol L7},
p = 0.031). However, despite the small amount of insulin
taken before exercise and the consequent increase in
post-prandial blood glucose, this acute relative reduction
represented only ~6% of injected insulin up to this point.
Hence, similar to previous studies [12,24,30,32], partici-
pants were likely supra-hyperinsulinemic ahead of exer-
cise commencement, which potentially evoked an

inhibitory effect on endogenous glucose production by
inactivating phosphorylase, whilst simultaneously
accentuating peripheral glucose uptake [12]. Further-
more, exercise induced increases in skeletal muscle blood
flow, capillary perfusion and membrane permeability
enhance the rate of delivery and absorption of blood
borne substrates and hormones to working muscles
during exercise [42,43]. In the context of T1D, these
physiological adaptations may result in an increased
mobilisation of exogenous insulin from the subcutaneous
depot into the bloodstream, further exacerbating the
problem. The macronutrient composition of a pre-
exercise meal also considerably influences patterns of
fuel metabolism and utilisation during exercise, with
shifts towards higher muscle glycogenolysis and carbo-
hydrate oxidation observed following ingestion of a
glucose load [44], particularly when superimposed with
hyperinsulinemia [12]. Thus, that participants not only
exercised within the peak effect of IAsp (time until peak
onset of action = ~31—70 min [45]), but were also acutely
post-prandial, having just consumed a high carbohydrate
meal (~65% carbohydrate content), likely primed tissues
to use glucose as the predominate energy source during
exercise [46,47]. Indeed, irrespective of the pre-exercise
insulin dose used, exercising rates of carbohydrate
oxidation were high compared to lipid combustion
(contribution of carbohydrates ~83 + 9%), and probably

Table 4 Extent of trial-day hypoglycemia (<3.9 mmol L~') with reference to the range in values in distinct time phases.

Extent of trial-day hypoglycaemia

Time Value FF FR RF RR Overall p value

Pre-exercise (16:00—16:59) Mean 3.2+ 0.0 = 3.9+ 00 3.1+04 32+05 0.511
Range 32-32 3.9-3.9 2.6—-3.5 2.6—3.9

Exercise (17:00—17:45) Mean 33+04 33+03 34+03 3.2+ 06 33+04 0.659
Range 2.5-3.9 3.0-3.8 2.9-3.8 2.2-3.8 2.2-3.9

Post-exercise (17:46—23:59) Mean 34 +03 3.5 +0.1 3.0+ 1.1 33+03 33+04 0.527
Range 32-39 34-36 2.2-38 2.9-34 22-39

Nocturnal (00:00—05:59) Mean 32+02 — 33+ 05 2.6 + 0.0 32+04 0.238
Range 2.9-33 2.8-3.7 2.6—2.6 2.6-3.7

Fasted a.m. (06:00—07:00) Mean — — 2.7+ 0.0 — 2.7+ 0.0 —
Range 2.7-2.7 2.7-2.7

Overall (16:00—07:00) Mean 33+04 34 +03 33+05 3.1 +£05 33+04 0.302
Range 2.5-39 3.0-3.8 2.2-39 2.2-38 2.2-39

Data are reported as mean + SD (n = 16).
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accounted for the significant drop in blood glucose con-
centrations during exercise (~A vBG 3.7 + 2.2 mmol L™1).
Notably, 61% of all exercise tests were terminated pre-
maturely due to hypoglycemia. As such, as an indepen-
dent time phase, the 45-min exercise period accounted
for 59% of all hypoglycemic events recorded over 23 h.
This was most obvious when exercising with an unaltered
dose of IAsp, which led to a two-fold increase in the risk
of hypoglycemia relative to when a 50% dose reduction
was incorporated.

Hypoglycemia defence mechanisms were challenged by
our model of cycling, with pronounced drops in arterial
blood glucose concentrations observed across all trial
arms. However, glucagon and catecholamine concentra-
tions remained unchanged from pre-exercise values in all
conditions. Both glucagon and the catecholamines posi-
tivity regulate net hepatic endogenous glucose production
via stimulating glycogenolysis and gluconeogenesis
[48,49]. However, in addition to abnormalities in hepatic
glucose production during exercise [50], individuals with
T1D demonstrate attenuated counter-regulatory responses
to hypoglycemia [51], a situation worsened by hyper-
insulinemia [52]. Thus, the small, and possibly blunted,
counter-regulatory hormonal responses observed in our
data, may be an additional factor owing to the high prev-
alence of within-exercise hypoglycemia.

The effects of exercise on enhancing tissue sensitivity
to insulin and peripheral glucose uptake persist for
several hours following exercise cessation, a situation
intensified in the presence of hyperinsulinemia
[15—18,53]. Our data reveal that overall acute post-
exercise (~6 h) glycemia was most supported in the
peri-exercise dose reduction arm, whilst in direct
contrast, the incorporation of an unaltered dosing strat-
egy either side of exercise independently accounted for
~50% of all acute post-exercise hypoglycemic events.
These data support and advance research work by
Campbell et al. [54], who also demonstrated the glycemic
preservation benefits associated with a 50% dose reduc-
tion to the post-exercise bolus insulin (IAsp or lispro used
with background insulins glargineU100 and detemir)
dose in the acute (~4 h) but not extended (~8 h) period
after exercise [54]. The authors hypothesised that the
observed similarity in the prevalence of hypoglycemia in
the extended post-exercise window may have been due
to the administration of additional, and indeed unaltered,
bolus insulin doses in the post-laboratory home-phase. In
heed of these discoveries, later work highlighted the
protective effect of consuming a small carbohydrate
based snack (0.4 g CHO kg bm™!) ahead of the night-time
period in minimising rates of nocturnal hypoglycemia
subsequent to evening exercise in patients treated with
insulins aspart and glargineU100 [25]. However, due to
relatively short post-exercise in-patient monitoring pha-
ses (~3 h), hypoglycemia was determined via interstitial
glucose monitoring in both of these studies, and given the
inherent flaws in device accuracy during hypoglycemia
[38], may have misidentified events. Thus, using venous

derived glucose values collated in laboratory-controlled
conditions, our data confirm the effectiveness of these
strategies in people with T1D using MDI consisting of
insulins aspart and degludec.

A 50% dose reduction to mealtime insulin in the post-
exercise period provided a near 4-fold decrease in the
risk of nocturnal hypoglycemia compared to a full bolus
insulin dose. Interestingly, in addition to the provision of
a small carbohydrate based snack with bolus insulin
omission 2 h ahead of the night time hours, the
nocturnal period in this study commenced ~5 h following
the last bolus insulin injection, hence, given its phar-
macokinetic characteristics (time of duration of action;
3—5 h [45]), it was unlikely that IAsp represented much
of the total pool within the circulation. The enhanced
sensitivity to insulin following exercise has been shown
to follow a biphasic trend, during which in addition to an
initial increase immediately after exercise, a second peak
occurs 7—11 h later [21].Thus, in addition to the direct
effects of acute hyperinsulinemia in accelerating risk of
in-exercise hypoglycemia, these data affirm the long-
standing metabolic effects of antecedent exercise in
increasing the risk of delayed onset of hypoglycemia in
people with T1D [24]. Irrespective of hypoglycemia per
se, employing 50% dose reductions either side of exercise
led to the highest preservation in glucose throughout the
night-time hours, thus reinforces the glycemic safety of
prudent dose alterations alongside carbohydrate rich
meals before and after exercise for this cohort. Though
considerably higher following the administration of an
unaltered insulin dose post-exercise, rates of nocturnal
hypoglycemia in this study were minimal, and align with
previous reports of a low prevalence of severe
(<31 mmol L™ ') nocturnal hypoglycemia following
moderate intensity cycle exercise (~60% VOymax for
30 min) in participants with T1D treated with insulins
aspart and degludec [55]. However, in this study the pre-
exercise mealtime bolus insulin manipulation was taken
well in advance of exercise commencement (~3 h), with
an equivalent reduction in the carbohydrate amount.
Critically this meant that the individualised carbohy-
drate:insulin ratio remained unaltered, which may
explain the complete avoidance of hypoglycemia during
exercise. Interestingly, when we re-examined our data
against the threshold for severe hypoglycemia, the
occurrence dropped to 3 events which happened simi-
larly across trials (FF, 1 FR 0, RF 1, RR 1 events,
x?> = 1.049, DF = 3, p = 0.789) and provide some
assurance for glycemic stability whilst using IDeg. In light
of the potential obesogenic implications associated with
an over reliance on additional carbohydrate intake and
exogenous insulin administration [56], the increase in
energy expenditure as a result of longer duration exer-
cise, combined with a lesser need for treatment carbo-
hydrates with insulin dose reductions, has important
clinical undertones that stretch beyond those relating to
dysglycemia. Finally, trial day p-OHB concentrations were
below levels deemed hyper-ketonemic (>1.0 mmol L)
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[57], thus support previous work in displaying no
adverse metabolic implications associated with bolus
insulin reduction (or omission) concomitant with high
carbohydrate intakes in individuals with TI1D [36].
Therefore, from a clinical viewpoint, the integration of
peri-exercise IAsp dose reductions with IDeg can be
implemented safely with no risk of ketone body
formation.

Study strengths, limitations, and future
recommendations

The study design enabled intensive 23-h monitoring
including an overnight stay in a medically-supervised
clinical research facility with frequent venous sample
draws, standardised mealtime feedings and monitored
insulin dose administrations. Collectively, these factors
helped overcome the identified limitations of previous
research whilst providing up-to-date information on the
extent and prevalence of exercise-related hypoglycemia,
using specific modern insulin analogue combinations in
people with T1D. With mixed gender design of the study
and a wide age range for trial inclusion, our participant
cohort findings are applicable to the wider population and
advance out understanding of insulin dose adjustments in
T1D individuals treated with MDI.

Conclusion

These findings demonstrate improved glycemia with peri-
exercise bolus dose reduction strategies which reduce the
prevalence of acute and nocturnal hypoglycemia following
evening exercise. Incorporation of newer background in-
sulins with current bolus insulins demonstrates efficacy
and advances current recommendations for safe perfor-
mance of exercise in people with T1D using MDI.
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