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Abstract 

In this paper, we present a set of impr ov ed algorithms for r ecov ering computer aided design (CAD-type) surface models from three- 
dimensional (3D) images. The goal of the proposed fr amew ork is to gener ate B-spline or non-uniform rational B-spline (NURBS) sur- 
faces, which are standard mathematical representations of solid objects in digital engineering. To create a NURBS surface , w e first 
compute a control network (a quadrilateral mesh) from a triangular mesh using the Mar c hing Cubes algorithm and Discrete Morse 
theor y. To cr eate a NURBS surface , w e first compute a triangular mesh using the Mar c hing Cubes algorithm, then the control netw ork 
(a quadrilateral mesh) is determined from the triangular mesh by using Discrete Morse theor y. Discr ete Morse theor y uses the critical 
points of a specific scalar field defined over the triangulation to generate a quad mesh. Such a scalar field is obtained by solving a 
graph Laplacian eigenpr ob lem ov er the triangulation. Howev er, the r esulting surface is not optimal. We ther efor e intr oduce an opti- 
mization algorithm to better approximate the geometry of the object. In addition, we propose a statistical method for selecting the 
most appropriate eigenfunction of the graph Laplacian to generate a control network that is neither too coarse nor too fine, gi v en 

the precision of the 3D image. To do this, we set up a r egr ession model and use an information criterion to choose the best surface. 
F inally, w e extend our approach by taking into account both model and data uncertainty using pr oba bilistic r egr ession and sampling 
the posterior distribution with Hamiltonian Markov Chain Monte Carlo. 

Ke yw or ds: par ametric curve and surface models, NURBS surface, sampling 
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. Introduction 

URBS surfaces are widely used in CAD software due to their con-
inuity and the ease with which one can interact and adjust them.
n practice, people tend to use CAD softw ares; ho w ever, they do
ot have efficient capabilities to process triangulation. In addi-
ion, NURBS surfaces are also used for numerical simulation us-
ng isometric analysis (Hughes et al., 2005 ; Nguyen et al., 2015 ).

ethods for drawing a three-dimensional (3D) object with NURBS
urfaces in CAD software are relatively well established; howe v er,
ometimes it is necessary to obtain a NURBS surface r epr esen-
ation of a real object such as an organ or a bone, for example.
ence, we expect to reconstruct a NURBS surface from images

uch as computed tomography (CT) or magnetic resonance imag-
ng (MRI) scans. A naiv e a ppr oac h determining suc h a surface
ould be to start from an arbitrary surface . T hen, an optimization
rocess is emplo y ed to gradually minimize the distance between
he surface and the data points. Ho w e v er, suc h a method assumes
 priori knowledge of the topology of the object, i.e., whether it
esembles a sphere, a torus, a double torus or not, to initialize
he process with the correct topology. For example, in Anderson
nd Crawford-Hines ( 2000 ), some organs can be reconstructed but
ust be homeomorphic to a sphere. Indeed, the method uses a

ylinder and then solves a mean squared error problem to fit the
urface to the point cloud. In Boujraf et al. ( 2012 ), they also recon-
truct objects with spher e-equiv alent topology. 
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By studying the NURBS surface definition, we observe that the
 equir ement of a control net leads to the requirement of build-
ng a quadrangular mesh. T hus , an alternative approach would
e to first determine a quadrangulation and then use it to draw
URBS surface. In this paper, we will use this method. To calculate
 NURBS surface, a semi-regular quadrangular mesh is required
see Bommes et al., 2013 for the definitions of mesh types). In order
o establish a NURBS surface, it is necessary to employ a regular
uad mesh, as the NURBS surface is defined by a matrix of con-
rol points. Ho w ever, when generating a CAD surface for a com-
lex object, multiple NURBS surfaces are often required. There-
ore, it becomes necessary to compute a coarse (irregular) quad

esh. Subsequentl y, eac h quad within this mesh can be subdi-
ided and utilized as the control net for a NURBS surface. Addi-
ionally, by ensuring that the new vertices introduced during the
ivision process at the boundary of each quad are identical, we
nsure that the distinct NURBS surfaces share the same control
oint at the boundary. This ensures that the resulting surface is
ontinuous C 0 . Methods that produce irregular quad meshes, such
s the Dual Marching Cubes , ma y not be the best option. This is
ue to the large number of quads they generate. Subdividing these

rregular quad meshes to fit a NURBS surface on each introduces
 significant number of patches and subsequently a large num-
er of parameters . T his can make it more difficult to manipulate
hem within C AD software . Various techniques have been devel-
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Figure 1: B-spline basis functions. 
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oped to address this issue by utilizing a triangular mesh as in- 
put (see e.g., Bommes et al., 2009 ; Dong et al., 2006 ; Eck & Hoppe,
1996 ; F ang et al. , 2018 ; Hormann & Gr einer, 2000 ; Kälber er et al.,
2007 ; Owen et al., 1999 ; Ray et al., 2006 ; Tarini et al., 2011 ). One no- 
table method is the a ppr oac h pr oposed by Dong et al. ( 2006 ); this 
method demonstr ates r obustness, as it can handle different types 
of topologies, and offers parameter adjustments to control the 
density of quads and subsequently the number of control points 
in the resulting NURBS surface . Moreo ver, Tierny et al. ( 2018 ) pro- 
vide an open source implementation of this method. 

This structure allows us to calculate a NURBS surface on each 

of the patches . T he calculation of such a mesh is based on the 
Discrete Morse theory, (see Forman, 2002 for a complete introduc- 
tion). The main idea of this theory is to obtain information about 
the topology of a manifold by considering a well-chosen function 

defined on this v ariety. Mor e pr ecisel y, in our case, a scalar field is 
computed on the triangulation by solving a gr a ph La placian eigen- 
pr oblem. This giv es us the ‘well-c hosen’ function and then by cal- 
culating the critical points and integral lines, a topological data 
structure called the Morse-Smale complex is determined, as de- 
scribed in Tierny ( 2017 ). This structure reveals a representation in 

the form of patches . T hus , by subdividing each patch, a quadran- 
gulation is obtained. Then, on each of these patches a NURBS sur- 
face can be calculated and finally, by juxtaposing all the NURBS 
surface a complete r epr esentation of the object is obtained. 

To generate the Morse-Smale complex and the quadrangular 
mesh, we use the Topology ToolKit (TTK) library (Tierny et al.,
2018 ). When calculating the quadrangular mesh, the quadrilat- 
er als ar e adjusted to fit the triangulation; ho w e v er, the patc hed- 
NURBS surface is not interpolated into its control net. We there- 
for e intr oduced an optimization step using a quasi-Ne wton 

method to reduce the distance between the patched-NURBS sur- 
face and the triangulation (see Byrd et al., 1995 ; Nocedal & Wright,
2006 ). Mor eov er, the scalar field being determined in an eigenvalue 
pr oblem, we hav e at our disposal different scalar fields and thus 
differ ent quadr angular meshes . T hus , we can ask ourselves how 

to choose the scalar field. As we want to use the NURBS surface 
r epr esentation in C AD software , the number of control points has 
to be as small as possible while k ee ping a surface that accur atel y 
r epr esents the data. 

Since the triangulation may be inaccurate or too dense com- 
pared to the real data, we will compare the patched-NURBS sur- 
faces dir ectl y with the images. To do this, we suggest building a 
r egr ession model generating new images from a given patched- 
NURBS surface . T his r egr ession model allows us to consider the 
real noise into account, i.e., the noise in the data. Then, using 
a maximum likelihood technique and an information criterion 

(Akaike, 1998 ), a model with a minimal number of control points 
and r epr esenting accur atel y the data is c hosen in the set of all 
possible quad meshes generated with Dong et al. ( 2006 ), i.e., the 
set of models generated from a given Laplacian eigenproblem.
Once the statistical model generation is established we are going 
one step further, by not only taking into account the noise in the 
data but also by encoding our lack of knowledge in the patched- 
NURBS surface itself via a prior probability density distribution.
Hence, we will seek to obtain a surface probability distribution.
To do this, the control points will be considered as random vari- 
ables, as some parameters of the regression model. We therefore 
will estimate a probability distribution of these r egr ession par am- 
eters. Mor e pr ecisel y, we seek to determine P (θ | Y ) where Y is the 
data and θ the parameters. Using the Bayes theorem, this is equiv- 
alent to sampling P (Y| θ ) P (θ ) . T hus , with a sampling method, here 
Hamiltonian Markov Chain Monte Carlo (HMCMC), we will obtain 
he probability distribution of the control points which is effec-
iv el y a probability distribution of patched-NURBS surfaces. 

This paper is organized as follows. In the first section of this pa-
er, we will provide an introduction on using Discrete Morse the-
ry to construct patched-NURBS surfaces. In the second part, we
ill carry out a model selection based on images. And finally, we
ill adopt a Bayesian point of view in order to obtain a probability
istribution of surfaces. 

. NURBS Surface Gener a tion 

s parametric surfaces, NURBS surfaces can be expressed in a 3D
pace as 

S (u, v ) = (x (u, v ) , y (u, v ) , z (u, v )) 

or u and v in a parametric space, generally [0, 1] 2 . 
Mor eov er, they ar e constructed ov er surface basis functions de-

ned by a tensor product of two curve basis functions. 
In this section, we give a brief overview of the traditional

ethod for constructing NURBS surfaces. We start by giving the
efinition of B-spline basis functions and then construct the ten-
or product basis in order to define NURBS surfaces. 

By looking at the definition of NURBS surfaces, we will fig-
re out that control points define a quad mesh. This will lead us
o explore Morse theory to construct a quad mesh and then to use
his mesh to compute NURBS surfaces. 

.1. A short introduction to NURBS surfaces 

e define B-spline basis functions as follows (Piegl & Tiller, 1996 ):

efinition 1 (Carl De Boor formula) Let m + 1 nodes (t i ) m 

i =0 in [0, 1]
uch that 0 ≤ t 0 ≤ t 1 ≤ … ≤ t m 

≤ 1. The B-spline basis functions of
egree n are defined by the recursive formula: 

N i, 0 (u ) := 

⎧ ⎨ 

⎩ 

1 if t i ≤ u < t i +1 

0 otherwise 

nd for n ≥ 1 

N i,n ( u ) := 

u − t i 
t i + n − t i 

N i,n −1 ( u ) + 

t i + n +1 − u 
t i + n +1 − t i +1 

N i +1 ,n −1 (u ) . 

The ( t i ) i sequence will be called the knot vector in the NURBS
urface definition. 

The Fig. 1 shows an example of B-spline basis functions of de-
ree 2. 

From an implementation point of view, the recursive aspect of
his formula is quite convenient. 

Mor eov er, the (N 

p 
i ) i basis is used to expr ess NURBS curv e: C(u ) =

 n 
i =0 w i P i N 

p 
i (u ) . 
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Figure 2: Tensor product surface. 

Figure 3: P ar ametric space. 
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Figure 4: NURBS surface with control net (Piegl & Tiller, 1996 ). 

Figure 5: Triangulation (left-hand panel), scalar field (middle panel), and 
Morse-Smale complex (right-hand panel). 
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To construct the surface basis functions, we will use a tensor
roduct of two B-spline basis functions, as in Fig. 2 : 

Then we can define NURBS surface with other definition. 

efinition 2 Let p , q , r , s , n , and m integers such that r = n + p + 1
nd s = m + q + 1. 

A NURBS surface of degree p in the u direction and degree q
n the v direction is a bivariate vector-valued piecewise rational
unction, Fig. 3 : 

S (u, v ) = 

n ∑ 

i =0 

m ∑ 

j=0 

w i, j P i, j R 

p,q 
i, j (u, v ) 

(i) P i, j ∈ R 

3 are the control points. 
(ii) R 

p,q 
i, j are the tensor product NURBS basis functions defined

on the knot vectors: 

U = { 0 , . . . , 0 ︸ ︷︷ ︸ 
p+1 

, u p+1 , . . . , u r−p−1 , 1 , . . . , 1 ︸ ︷︷ ︸ 
p+1 

} 

V = { 0 , . . . , 0 ︸ ︷︷ ︸ 
q +1 

, u q +1 , . . . , u s −p−1 , 1 , . . . , 1 ︸ ︷︷ ︸ 
q +1 

} 

R 

p,q 
i, j (u, v ) = 

N p i ( u ) N 
q 
j ( v ) ∑ n 

i =0 
∑ m 

j=0 w i, j N 
p 
i ( u ) N 

q 
j ( v ) 

with w i, j ∈ R . 

As we can see in Fig. 4 , a quad mesh is r equir ed (the dashed line
 epr esenting the contr ol net forms a quad mesh). To have an al-
orithm that works on arbitr ary sha pes, we ar e using the method
escribed in Dong et al. ( 2006 ) and the algorithm fr om TTK (Tiern y
t al., 2018 ). This method computes a quad mesh over a triangula-
ion by using a topological data structure named the Morse-Smale
omplex related to Morse theory. 
.2. Morse theory and Morse-Smale complex 

he definition of NURBS surface shows that the control net is de-
ned by a quad mesh. To generate such a quad mesh, we will use a
opological data structure, the Morse-Smale complex which gives
 mesh topologically equivalent to a quad mesh. The Morse-Smale
omplex is derived from Discrete Morse theory, introduced by For-
an ( 2002 ), which involves a function f defined from a triangula-

ion T to R that encodes enough information about T to analyse
ts topology. More precisely, Discrete Morse theory studies the rela-
ionships between the topology of a shape represented by the tri-
ngulation and the critical points of a Discrete Morse function de-
ned on it. To generate the Morse-Smale complex in practice, we
ill use the method of Dong et al. ( 2006 ) implemented in the TTK

Tierny et al., 2018 ). Ho w ever, the generated Morse-Smale complex
r ovides lar ge quads that corr espond to an inaccur ate quadr an-
ulation, and ther efor e, eac h patc h is subdivided to form a finer
uad mesh. The different steps are represented in Fig. 5 . 

To obtain a Morse-Smale complex with the most e v enl y spaced
 egions ov er the surface, we can use an eigenfunction of a gr a ph
a placian ov er the input mesh. The critical points of suc h an
igenfunction are indeed well spaced over the mesh. Then, we
olve the Laplacian eigenproblem with cotangent weight as sug-
ested in Dong et al. ( 2006 ): 

( � f ) i = 

∑ 

j∈N (i ) 

(
cot ( αi, j ) + cot (βi, j ) 

) (
f j − f i 

)

here N (i ) is the set of neighbours of the vertex i . 
Ho w e v er, the eigenfunctions obtained by solving this problem

r e not Discr ete Morse functions, but we can a ppr oximate an y
calar field with a Discrete Morse function (see Shivashankar et al.,
012 for details). Mor eov er, the computation of the discrete gradi-
nt, hence of the V -path is done with the method described in
yulassy et al. ( 2008 ). 
Let us remark that the La placian pr oblem giv es differ ent scalar

elds and hence different Morse-Smale complexes (see Fig. 6 ). If
e select a Discrete Morse function, the ascending and descend-
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Figure 6: Different Morse-Smale complexes. 

Figure 7: Quad patch (left-hand panel) and NURBS patch (right-hand 
panel). 

Figure 8: P atc hed-NURBS surface . T he partitions on the patched-NURBS 
surface correspond to the Mores-Smale complex cell, i.e., NURBS surface 
patches. 
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ing manifolds will intersect in a tr ansv ersal manner, r esulting in 

the Morse-Smale complex. In Section 4 , we are going to present a 
method to choose one of them. 

In the next section, we will explain how we can compute a quad 

mesh from the Morse-Smale complex. 

2.3. Quadr angula tion and NURBS surface 

The patc h structur e of the Morse-Smale complex is used to gen- 
erate a quadrangulation. To do so each critical point of the Morse- 
Smale complex is considered as a vertex of the quadrangulation.
Ther efor e, they ar e linked by a ppr oximating the V -path by a line.
This gives a coarse-quad mesh. To impr ov e the quadrangulation,
a subdivision step is r equir ed. To do so, the authors in the code 
of Tierny et al. ( 2018 ) suggest three steps which are subdivision,
r elaxation, and pr ojection. 

We can extract each quad patch and compute a NURBS surface 
on each one (Fig. 7 ). 

Then by juxtaposing all patches together we obtain a NURBS 
surface r epr esentation of the object (Fig. 8 ). 

In the rest of the paper, the following definitions will be em- 
plo y ed: 

(i) The term ‘NURBS surface’ will denote a NURBS surface as 
defined in Definition 2. 

(ii) ‘NURBS patch’ will denote a NURBS surface that shares 
boundary control points with another NURBS surface. 

(iii) ‘P atc hed-NURBS surface’ will refer to the 3D surface rep- 
resentation of an object composed of multiple NURBS 
patches. 
In our experiments, we hav e consider ed a uniform knot vector
nd control point weights equal to 1, ther efor e, the NURBS sur-
aces are in fact B-spline. 

. F itting Optimiza tion Accor ding to the 

riangle Mesh 

.1. Problem settings 

he methodology described in the pr e vious section is limited as
he quads are fitted to the triangulation in the projection step pro-
osed in TTK code . T her efor e, the NURBS surface will not fit the
riangles as they pass under or over the quad mesh. We suggest

inimizing the sum of squared distances between the surface S
nd the set of vertices V according to the control points. 

Let P k = (P k i, j ) i, j∈ � 0 ,n �� 0 ,m � be the control net of the NURBS patch

umber k . Each P k can be rewritten as a 1D vector (P l ) l∈ � 0 ,nm � . Then,
et us consider the vector P = (P k ) k ∈ � 0 , N� , N being the number of
atc hes, ensuring that eac h element of P is distinct. A table with
he corresponding position of each control point in the different
atc hes is cr eated at the same time. P is ther efor e the set of con-
rol points of the patched-NURBS surface S . With each element of
 being distinct, we ensure that the optimized surface will be C 0 .
he dependency of P is written S ( P ), i.e., the surface S is seen as a
unction of the control points P . Then we are considering V the set
f triangle vertices, and we are going to adjust the surface accord-
ng to V. We are trying to minimize the sum of squared distances
etween the surface S and V, which is equivalent to find P � such
hat 

P � = arg min 

P 

∑ 

v ∈V 
|| S (P) − v || 2 2 . 

To compute || S ( P ) − v || 2 for a given vertex v , first we determine a
et of potential closest NURBS patches by computing the distance
rom v to each control point P i , j for i, j ∈ � 0 , n � × ∈ � 0 , m � as a vec-
or (P k ) k ∈ � 0 ,nm � . Then, for each of these potential closest patches,
he distance between these NURBS patches and the vertex v is
omputed with the algorithm provided by Li et al. ( 2019 ) and the
ne with the minimum distance is considered as the closest one. 

Let us write F (P) = 

∑ 

v ∈V 
|| S (P) − v || 2 . To minimize this function, we

ill use a quasi-Newton method, limited-broyden fletcher gold- 
arb shanno (L-BFGS), (Liu & Nocedal, 1989 ), defined by the itera-
ion: 

P n +1 = P n + γn 

here γ n is the direction of the steepest descent and verify 

B n γn = −∇F (P n ) 

here B n is an approximation of the Hessian matrix of F at P n . 

.2. Examples 

ere, the example we are considering is the vertebra. A triangula-
ion of the v ertebr a is shown in Fig. 9 . 

To demonstrate the effect of the optimization according to the
ertices, let us take the scalar field shown in Fig. 10 . The generated
atched-NURBS surface without optimization is shown in Fig. 11 .

Then by using our optimization algorithm, we obtain the 
atched-NURBS surface in Fig. 12 . 

The evolution of the distance between the triangle mesh and
he patched-NURBS surface is shown in Fig. 13 . Figure 14 shows



1860 | Spectral NURBS surface generation from 3D images 

Figure 9: Triangle mesh of a v ertebr a. 

Figure 10: Triangle mesh of a v ertebr a. 

Figure 11: Non-optimized patched-NURBS surface. The non-optimized 
patched-NURBS surface is in gold and the vertices of the triangulation 
ar e r epr esented by the blac k dots. 

Figure 12: Optimized surface with initial surface shown in Fig. 11 . 
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F igure 13: Ev olution of the distance with r espect to BFGS iter ation count. 

F igure 14: Ev olution of the distance with respect to BFGS iteration count 
(log-scale). 

Figure 15: Non-optimized (left-hand panel) and optimized (right-hand 
panel). 
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he evolution of the distance with respect to the iteration with a
og-scale. 

Now, let us consider a very fine Morse-Smale complex. Figure 15
hows that the L-BFGS does have little effect on the patched-
URBS surface . T his is not surprising since the more control
oints a NURBS surface has, the more it approximates the quad
esh defined by the control points (Piegl & Tiller, 1996 ). 
We are now able to generate a patched-NURBS surface that

orresponds to a specific eigenfunction of the gr a ph La placian
igenproblem and optimize the fitting of the patched-NURBS sur-
ace according to the triangle mesh. Ne v ertheless, the selection
f the eigenfunction is not based on any specific criteria. Conse-
uently, we will be presenting a model selection algorithm in the
ext section that will determine the most accurate model for the
ata, i.e ., images , with a minimal number of parameters , i.e ., con-
rol points . T he model selection process is carried out indepen-
ently of the triangle mesh. The surface triangulation using the
arching Cubes algorithm is performed using the raw 3D image.

t produces a deterministic estimate of the ‘true’ surface. Ho w ever,
hen fitting the NURBS surface, one should e v aluate the quality of

he a ppr oximation with r espect to the r aw data, not with r espect
o a prior reconstruction that is not equipped with a measure of
ncertainty. Seeing from a different perce pti ve, how could one se-
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lect an a ppr opriate thr eshold for an acceptable le v el of discrep- 
anc y betw een tw o reconstructed surfaces? As our statistical gen- 
er ativ e model is natur all y equipped with uncertainty measures,
model selection with respect to the raw data may be performed 

using the Occam’s razor: we wish for the simplest surface model 
that can explain the raw data. 

4. Model Selection According to the Images 

In this section, we introduce a methodology to determine the sur- 
face with the fewest control points that still represents the data 
(gr eyscale ima ges) accur atel y independentl y of the triangulation.

We will explain how to construct a r egr ession model by assum- 
ing that the greyscale data is noisy. Then, by using a maximum- 
likelihood process we will be able to estimate the r egr ession pa- 
r ameters. Finall y, we will show how to perform a statistical model 
selection using an information criterion. 

4.1. Gener a ti v e model 
The basic idea of our model is to assume how far away we are from 

the patched-NURBS surface utilizing the voxel colour. The voxels 
ar e blac k and as w e get close to the surface the v oxels become 
white. 

This allows establishing the following r egr ession model, by ex- 
plaining the greyscale behaviour of a voxel, r epr esented by a ran- 
dom variable Y in R , as a certain function of the voxel position in 

the space, r epr esented by a r andom v ector X in R 

3 . 
We have at our disposal: 

(i) A giv en patc hed-NURBS surface S (contr ol points ar e fixed).
(ii) Observations ( x i , y i ) of the r andom v ariables pair ( X , Y ),

wher e x i ∈ R 

3 r epr esents the position of the voxel i and 

y i ∈ R the greyscale value (i.e., the colour of the voxel) of 
the voxel i . 

Then we construct the r egr ession model: 

Y = 

−
g θ (X) + ε σ (1) 

where 
−
g θ is a given function depending on the distance between X 

and the surface S , and on r egr ession par ameters θ . ε σ is the noise 
of the r egr ession model, and we have ε σ ∼ N (0 , σ ) . Then we have 
to estimate the r egr ession par ameters θ = ( θ i ) i and σ . To do so 
we are going to use a maximum-likelihood method. This method 

seeks to find the r egr ession par ameters with the highest proba- 
bility of r epr oducing the r eal v alue fr om the observ ed sample. In 

our case, find the most probable θ and σ such that the model de- 
fined by ( 1 ) r epr oduces at best the observed data, i.e., the greyscale 
value. 

4.2. Maxim um-lik elihood and information 

criterion 

To determine the parameters of the regression abo ve , a maximum 

likelihood method is used. We wish ther efor e to maximize the log- 
likelihood. Let y = ( y 1 , …, y n ) and x = ( x 1 , …, x n ) where n is the
number of observation and x i , y i the i th observation and let L M 

= 

P (y | x, θ, σ ) be the likelihood of the model. 
T hus , by maximizing ln ( L M 

) or equiv alentl y by minimizing 
− ln (L M 

) according to θ , we obtain θML and σML which are the pa- 
rameters maximizing L M 

. T herefore , for a gi ven vo xel position x 
we can determine the associate distribution of greyscale value by 

sampling Y dir ectl y fr om N ( 
−
g θML 

, σ 2 
ML ) . 
No w, w e aim to find the model with the fewest number of pa-
ameters , i.e ., with the fewest number of control points, but which
till r epr esents accur atel y the data. To do this an information cri-
erion can be used. An information criterion is a measure of the
uality of the statistical model. It is based on the fit of the model
o the data and the complexity of the model. Here the complex-
ty is the number of control points of the patched-NURBS surface
ith the parameters of the regression function. 
For each model, M , we define the information: 

IC M 

= α − ln (L M 

) 

here α is a penalty term that usually depends on the number of
 egr ession par ameters, and L M 

is the maxim um-likelihood of the
odel M . 
Then, an information criterion tells us to choose the model with

he least information. 

.3. Examples 

.3.1. MRI: vertebrae 
ince the MRI does not give a uniform greyscale representation for
 given object, considering noise becomes problematic, we will use
 gradient filter in order to use a simple model for the noise. Usu-
ll y, the gr adient filter will show the contour of the object. Here,
he Sobel operator in 3D is used with three filters of size 3 × 3 × 3
see Sobel, 2014 for the definition). 

This operator produces the following results: 
As we wish to colour the voxels in function of the distance be-

ween their positions and the patched-NURBS surface, we com- 
ute all the distances between the patched-NURBS surface and 

he voxels. To do so we are considering the patched-NURBS sur-
ace inside the voxel grid. 

Then to compute the distance to each v oxel, w e are using the
tkDistancePolyDataFilter method in VTK (Schroeder et al., 2006 ).
n order to use the VTK filter, we first tessellate the patched-
URBS surface. 

lgorithm 1 Compute signed distance from the patched-NURBS 
urface to the voxel grid 

1: procedure signedDistanceGrid ( N URBS, voxelGrid ) 
2: t essel l at ion = tessellate( NURBS ) 
3: distance = computeSignedDistance( t essel l at io n, vo xelGrid) 
4: end procedure 

The details on the signed distance computation can be found
n Bærentzen and Aanæs ( 2005 ). 

As the filter highlights the contour of the objects, we are con-
idering a Gaussian noise around the contours . T his allows us to
onstruct the following r egr ession model. 

(i) X voxel position 

(ii) Y greyscale value 

Y = 

−
g g max ,l (X) + ε σ

ith: ε ∼ N (0 , σ 2 ) and 

−
g g max ,l (x ) = g max e 

− d(x ) 2 

2 l 2 where d ( x ) is the dis-
ance of x to the patched-NURBS surface S , where g max is the
r eyscale maxim um v alue of the contour, l determines how
spread’ the contour will be, and σ is the image noise. 

In our analysis, we are addressing the presence of noise in the
ma ge whic h can be modelled as a random variable with a vari-
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Figure 16: Original (left-hand panel) and filtered (right-hand panel). 
Images courtesy of Synopsys. 

Figure 17: In red the generated images and the original image in the 
bac kgr ound. The r egr ession par ameters : g max , l , and σ are the ones 
obtained with the maximum likelihood method for a given 
patched-NURBS surface. 
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F igure 18: Likelihood accor ding the number of contr ol points. Incr easing 
the number of parameters is done by increasing both the eigen-number 
and subdivision step. 

Figure 19: Information criterion for v ertebr ae model selection. 
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nce of σ . This is particularly relevant due to the non-uniform
ature of the vertebrae contour depicted in Fig. 16 . By considering
he stochastic nature of the noise, we establish a suitable frame-
ork that enables us to employ maximum likelihood techniques
nd the Akaike Information Criterion (AIC) for further analysis
nd inference. 

Then, the greyscale can be expressed as a random variable Y of

robability N ( 
−
g (X) , σ 2 ) where X is a given position in the 3D space.

T hus , with the data ( x i , y i ) where x i is the position of the voxel i
nd y i the greyscale value of the voxel i , the log-likelihood is given
y 

L (g max , l, σ | y i , x i ) = 

( 

− 1 
2 σ 2 

n ∑ 

i =1 

(
−
g (x i , g max , l) − y i 

)2 

− n 
2 

log (σ 2 ) 

) 

. 

By minimizing the log-likelihood according to g max , l , and σ ,
ith a quasi-Newton method, L-BFGS, we can generate new im-
ges, see Fig. 17 , in order to compare them with the original im-
ges to run a model selection. 

We will now use the log-likelihood to determine the model that
ccur atel y r epr esents the ima ges with the fe west possible par am-
ters. 

For each model, we compute this log-likelihood, and we will
hoose the one with the lo w est v alue, the maxim um likelihood
stimation. T hus , we ha v e the following gr a ph: 

Ho w e v er, the gr a ph in Fig. 18 does not allow us to make a clear
ecision. The minimum is non-obvious . T his is why we are using
n information criterion, which will help us to make a clear deci-
ion for the model selection. 

Let us remark that the different peaks in the gr a ph corr espond
o poor Morse-Smale complexes , i.e .,: low eigen value , but with a
arger subdivision step. T hus , the number of control points in-
reases but the Morse-Smale complex fails to ca ptur e the geom-
try of the object corr ectl y. 
Her e, we ar e using the Akaik e criterion (Akaik e, 1998 ), defined
s follows: 

(i) For a model M , compute the information: 

AIC M 

= 2 k − 2 ln ( ̂  L M 

) = 2 k + 2 ̂ l M 

where k is the number of parameters of the model, ˆ L M 

the maximum likelihood value for the model M , and 

ˆ l M 

=
− ln ( ̂  L M 

) . 
(ii) We choose the model with the minimum information value.

The AIC criterion is based on the likelihood function of a sta-
istical model and considers both the model’s goodness of fit and
he number of parameters used in the model. Because it balances
he trade-off between model complexity and goodness of fit, it is
 useful tool for model selection. In our case, models with more
arameters tend to fit the data better, but they also tend to be
v er par ametrized, whic h can lead to poor performance in terms
f stor a ge and manoeuvr ability in CAD softwar e. Since the AIC
riterion penalizes models with mor e par ameters, it is a useful
ool for selecting a model that provides a good balance of model
omplexity and goodness of fit. 

Here, the best model in the set of models generated from
 giv en La placian eigenpr oblem is the one with a ppr oximatel y
1 850 r egr ession par ameters, marked by the r ed cr oss in Fig. 19 . 

The best model and extreme cases are shown in Fig. 20 . 
Let us remark, that if the fitting optimization is not used we

ave the following result, Fig. 21 . 
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Figure 20: Sub-par ametrization, minim um AIC, and 
ov er par ametrization. 

Figure 21: Sub-par ametrization, minim um AIC, and 
ov er par ametrization. 

 

 

 

Figure 22: In red the generated images and in the background the 
original image (the CT scan). 

Figure 23: Likelihood femur. 

Figure 24: Information criterion for femur model selection. 
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Mor eov er, we can compute the r elativ e likelihood of a model 
thanks to the AIC information (Wagenmakers & Farrell, 2004 ): 

RL M i = exp 

(
AI C i − AI C min 

2 

)
. 

Then we can normalize this value to obtain the Akaike weights: 

w i = 

exp 

(
AI C i −AI C min 

2 

)
∑ n 

k =0 exp 

(
AI C k −AI C min 

2 

)
where n is the total number of models . T hese Akaike weights can 

be inter pr eted as the probability that the model M i is the best 
model. For example, the probability that the best model is the one 
with 10 800 r egr ession par ameters is w i = 0. In fact, due to the 
difference between the AIC value, the only acceptable model is 
the minimal one with probability 1. 

4.3.2. CT: femur 
In the case of the CT, the use of a gradient filter is not r ele v ant.
Indeed, the interior part of the femur is por ous, and ther efor e the 
gradient filter does not take into account the porous area. This 
is why we are using the original images without a pr e-pr ocessing 
step. We have at our disposal: 

(i) x i = position of the voxel i 
(ii) y i = greyscale value in voxel i 

Then, we can construct the following model: 

y i = 

−
g (x i ) + ε 

with: ε ∼ N ( 0 , σ 2 ) , 
−
g ( x ) = g max 

1 
1+ exp ( ad( x i )+ b) , and d ( x i ) r epr esenting 

the distance between the voxel i and the patched-NURBS surface.
With a maximization according to the likelihood, we can gen- 

er ate ne w ima ges, as illustr ated in Fig. 22 . The evolution of ˆ l M 

= 

− ln ( ̂ L M 

) according to the number of parameters is shown in 

Fig. 23 . 
As for the v ertebr ae, it is difficult to make a clear decision on 

which model to choose. Let us try the AIC criterion as before to 
determine which model represents accurately the data with the 
least number of parameters. 

Ho w e v er, we ar e facing a pr oblem because the AIC gr a ph Fig. 24
looks like the likelihood gr a ph. This is due to the fact that the 
value of ˆ l M 

is of the order of 10 11 and the number of r egr ession 

parameters is of the order of 10 5 . T herefore , penalizing ̂  l M 

with the 
umber of r egr ession par ameters does not affect its v alue . T here-
ore, we will use a slightly different information for this model. In-
tead of using the log-likelihood, we will use the residual squared
um, RSS, as described in (Miao et al., 2009 ): 

RSS = 

n ∑ 

i =0 

( y i −
−
g ( x i )) 

2 

her e y 0 , …y n ar e the data, i.e., gr eyscale v alue, 
−
g is the function

efined abo ve , and x 0 , …, x n the position of the voxels. 
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Figure 25: Information criterion with RSS for femur model. 

Figure 26: 450 Control points (left-hand panel), 19 600 control points –
AIC minimum (middle panel), and 61 965 control points (right-hand 
panel). 
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Then the AIC information for a given model M can be r eform u-
ated as follows: 

AIC M 

= n log 
(

RSS M 

n 

)
+ 2 k 

here n is the number of data points and k the number of param-
ters of the model M . 

The gr a ph of the AIC information with RSS is shown in Fig. 25 .
he minimum of information is shown with the red cross. 

Different examples of the femur are shown in Fig. 26 . The AIC
inimum is the one in the middle. 
We have been able to obtain the best model in the sense of the

efinition abo ve , no w w e will try to obtain a surface probability
istribution around these fixed optimal control points . T hus , we
ill use the gener ativ e model defined above and then a sampling
ethod based on Markov chains, the HMCMC. 

. Hamiltonian Markov Chain Monte Carlo 

robabilistic modelling is of general interest to computational en-
ineering. It first simplifies model selection, which is largely dis-
ussed in c ha pter 1 of Bishop and Nasrabadi ( 2006 ). Secondly, it al-
ows for uncertainties to be pr opa gated when doing inference. For
nstance, if shape biomarkers are to be extracted from the recon-
tructed surfaces, confidence intervals can be calculated for these
iomarkers, whic h full y encode the effect of data uncertainty and
hat of the surface reconstruction process. Confidence intervals
ould also be obtained if partial differential equations , (e .g., hyper-
lasticity) are to be solved to compute physics-based quantities of
nterest. 

In our case, the statistical model generation has been estab-
ished, and further advances have been made by incor por ating
 prior probability density distribution that encodes the lack of
nowledge about the patched-NURBS surface. Utilizing a Bayesian
 ppr oac h, a pr obability distribution of surfaces will be deter-
ined, with the aim of creating an interval of confidence based

n both the noise present in the image and the prior knowledge
f the r egr ession model weights (Bishop & Nasrabadi, 2006 ). This
nterval will provide a measure of certainty in the estimates de-
iv ed fr om the scan data. Additionall y, an automatic r egulariza-
ion method of the ridge type will be incor por ated to address the
alibr ation pr oblem; the weight associated with this regulariza-
ion being determined basing ourselves on the ratio of knowledge
o noise in the data. This will ensure that the model does not
v er par ametrize the data. Ther efor e, we ar e using the HMCMC,
or e pr ecisel y the Lange vin Monte Carlo. We will briefly present

he method and then a ppl y it to the v ertebr ae example. Mor e de-
ails about HMCMC and Langevin Monte Carlo can be found in
irolami and Calderhead (2011 ), Neal et al. ( 2011 ), and Betancourt
 2018 ). 

.1. Vertebrae example 

he model we built in Section 4 for the v ertebr ae, was used in a
tatistical a ppr oac h. Now to use the HMCMC method, this model
s considered in the Bayesian setting. Ther efor e, let us consider the
ontrol points and the regression parameters as random variables,
nd let θ = ( g max , l , σ , P 1 , …, P n ) be the associated random vector.
 hus , we wish to determine the probability destruction P (θ | X, Y ) .
et us write Z = ( X , Y ). By using the Bayes theorem we have 

P (θ | Z ) ︸ ︷︷ ︸ 
posterior 

∝ P (Z | θ ) ︸ ︷︷ ︸ 
likelihood 

P (θ ) ︸ ︷︷ ︸ 
prior 

. 

In order to sample P (θ | Z ) , we will draw a sample from
 ( Z | θ ) P ( θ ) by using the HMCMC sampling method. 
Let us recall the vertebrae generative model: 

(i) X random vector in R 

3 representing the position of a voxel. 
(ii) Y r andom v ariable r epr esenting the gr eyscale v alue of the

voxel in position X . 

Y = 

−
g (X) + ε σ

ith: ε ∼ N (0 , σ 2 ) and 

−
g (x ) = g max e 

− d(x ) 2 

2 l 2 . 
In this model the only parameters are the parameters of the

 egr ession; ho w e v er, w e w ould also lik e to tak e into account the
arameters of the patched-NURBS surface . T hus , let us write the
ependency of the optimal patched-NURBS surface S in the way S P 
her e P = (P i ) i ∈ � 0 ,N� r epr esents the contr ol points of the patc hed-
URBS surface without redundancy as in Section 2.3 . Hence, we
an r e write the model as follows: 

Y = 

−
g (X) + ε σ

ith: ε ∼ N (0 , σ 2 ) and 

−
g (x ) = g max exp ( − || x −S P || 2 

2 l 2 ) . 
T hus , with x = ( x i ) i and y = ( y i ) i , the log-likelihood is given by 

L (g max , l, σ, P| x, y ) = − 1 
2 σ 2 

n ∑ 

i =1 

(
−
g (x i , g max , l, P) − y i 

)2 

− n 
2 

log ( σ 2 ) . 
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Figur e 27: T hr ee patc hed-NURBS surface samples obtained with the 
Hessian matrix. 

F igure 28: Tw o patched-NURBS surface samples obtained with the 
in verse co variance matrix. 

F igure 29: Tw o gr eyscale r econstructions fr om two differ ent samples, 
the white voxels r epr esenting the surfaces. 

Figure 30: Left-hand panel: Pr e-pr ocessed ima ge data. Right-hand panel: 
Gener ated gr eyscale ima ge, the white voxels r epr esenting the surface. 
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Now, let us write the random vector θ = ( g max , l , σ , P 1 , …, P n ) 
since we let all the parameters be random variables. We aim to 
sample the distribution P (θ | Z ) where Z = ( X , Y ), by using the Bayes 
theorem as in the previous section, we have 

P (θ | Z ) ∝ P (Z | θ ) P (θ ) . 

P (Z | θ ) is given by L (g max , l, σ, P| Z ) . Ho w e v er, since we do not
kno w P (θ ) , w e can make the assumption that the prior probability 
is Gaussian, ther efor e θ ∼ N (m θ , 
θ ) . m θ is taken as the value min- 
imizing the r egr ession model and 
θ as a multiple of the identity 
matrix. 

T hus , by introducing the auxiliary variable, ν for the HMCMC 

method and by denoting the data z = ( x i , y i ) i , we can e v aluate the
kinetic energy K and the potential energy E : 

(i) K(v ) = 

1 
2 ν
−1 νT and 

(ii) E(θ ) = L (g max , l, σ, P| z ) + 

1 
2 (θ − m θ )
−1 

θ (θ − m θ ) T . 

To gener ate tr ansitions, we dr aw a sample of ν from the multi- 
variate Gaussian distribution. Then, we wish to use the Hamilton 

equation to generate a possible new value for θ . To do so, we will 
use the lea pfr og integr ator. These two steps can be summarized 

as follows: 

(i) Dr aw ν i fr om N (0 , 
) 
(ii) Lea pfr og integr ation: 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

νi −1 / 2 = νi − ε 
2 ∇E(θi ) 

θi +1 = θi + ε
νi −1 / 2 

νi −3 / 2 = νi −1 / 2 − ε 
2 ∇E(θi +1 ) 

where ε is a given time step. We drop the dependency in Z because 
Z r epr esents the data, ther efor e Z can be replaced by the observed 

value to evaluate K and E . 
No w, w e have a new state ( θ i + 1 , ν i − 3/2 ). We will k ee p with the 

sample as a sample of the posterior according to the probability 
defined by the Metropolis acceptance rate: 

min ( 0 , H( θi , νi ) − H(θi +1 , νi −3 / 2 )) . 

If the ne wl y pr oposed state is r ejected, the pr e vious v alue is 
used again for the next iteration. By repeating this process nu- 
merous times, the all-probability distribution is explored, there- 
fore the distribution P (θ | Y ) is determined. 

We tried to run the HMCMC with a mass matrix equal the iden- 
tity matrix. Ho w e v er, the size of the gr adient in the r egr ession pa- 
rameters was larger than the one for the control points, there- 
fore the effect of the HMCMC on the control points was negligible.
Hence, we tried with the Hessian matrix at the maximum a poste- 
riori, �E ( θMAP ) and the inverse of the prior covariance matrix, 
−1 

θ .
This leads us to a better r epr esentation of the probability distri- 
bution. 

We plot se v er al samples of patched-NURBS surfaces in Figs. 27 
and 28 . In fact, the results are close to each other, therefore choos- 
ing the Hessian matrix or the inverse of the covariance does not 
make a difference. 

Figur e 29 illustr ates two differ ent samples for one slice of 
gr eyscale ima ges and Figur e 30 shows the pr e-pr ocessed ima ge 
and a generated greyscale image. 

6. Conclusions 

We have proposed an automatic method for the generation of 
patc hed-NURBS surfaces fr om ima ges, with a stoc hastic model 
election. First, our method is based on the Discrete Morse theory
nd more precisely on the generation of the Morse-Smale com-
lex. The generation of such a structure is done using the critical
oints and integral lines of a scalar field. In practice , we ha ve used
he eigenfunctions of the gr a ph La placian to obtain suc h a scalar
eld. The adv anta ge of using such functions is that their critical
oints are uniformly spaced on the object, thus allowing to cap-
ure the general shape of the object and to preserve its topology.
o w e v er, the quad mesh obtained with TTK is optimal with re-

pect to the triangulation, ther efor e it leads to a patched-NURBS
urface that is not faithful to the triangulation. Hence, we intro-
uced an optimization process using a quasi-Newton method, L- 
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FGS. This optimization step allows us to consider valid surfaces
ith a smaller number of control points . T hen, to allow a choice
mong the models generated using the eigenvalue problem, we
sed a method comparing the patched-NURBS surface obtained
ir ectl y to the images, by introducing a regression model to gen-
r ate ne w gr eyscale ima ges . T hen, by maximizing the likelihood
nd using the AIC criterion which penalizes the likelihood with
he number of parameters, we can choose the model with the
mallest number of parameters but which still accurately rep-
esents the data. Furthermore, we used the generative model by
etting the control points become random variables in order to
btain a surface probability distribution. T hus , we used a sam-
ling method based on the dynamic Hamiltonian and Metropo-

is algorithm, HMCMC. Hence, we have access now, not only to
ne patched-NURBS surface but to a complete probability distri-
ution. 

Future work is needed to adapt the patch density according to
he local complexity of the 3D object, either by taking into account
he density of the triangulation or the curv atur e of the surface. 
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