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Abstract— Soft optical tactile sensors allow robots to capture
important information, such as contact geometry, estimations
of object compliance, and slip detection. However, most optical
tactile sensors utilize gel-filled elastic membranes with non-
variable stiffness. To overcome this limitation, this paper
presents the development of a pneumatic tactile sensor with
tunable pressure (PnuTac). The sensor comprises a pneumatic
system, an elastic membrane, and a sealed chamber with a
camera inside. The inner side of the membrane layer has
dot markers on its surface that are used for slip detection.
Slippage is prevented by controlling a Robotiq 2-finger gripper
that closes according to the slip detection signal. Additionally,
objects held by the gripper appear as contours in sensor images.
A dataset of 10,000 such images from 10 tools was utilized
for training a VGG-19 convolutional neural network for tool
classification. Our results show that increasing the pressure of
the PnuTac sensor reduces the time it takes for the gripper
to stabilize a slipping object. The trained neural network, fed
from the PnuTac’s sensor live data, successfully classified 8 out
of the 10 tools.

I. INTRODUCTION

Tactile sensing allows robots to make informed decisions
about how to handle objects based on their shapes and tex-
tures [1], [2]. One of the most relevant applications of tactile
sensing is detecting whether a robot has securely grasped an
object [3], [4]. In this context, a common cause of grip failure
is slippage. Humans recognize slipping based on the subtle
vibrations of a sliding object and the skin-stretching feeling
of their fingertips. However, robots require the assistance of
tactile sensors to detect slippage effectively [5].

For a long time, researchers have worked towards develop-
ing tactile sensors that can detect slippage based on contact
forces, oscillations, accelerations, and surface strain. For
example, Su et al. [6] and Ajoudani et al. [7] proposed grasp-
ing control systems with slip-detection capabilities based
on vibration measurement. The systems enable robots to
adjust the grip force based on the detected slip conditions,
leading to a more stable grasp. However, these approaches
are based on biomimetic and force/torque sensors and lack
the classification capabilities that humans possess to identify
what they are touching.

Aiming to overcome this issue, vision-based tactile sensors
(VBTS) have been proposed as a low-cost alternative that,
from the point of view of image processing, the image
features can be used not only to analyze force and slip but
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Fig. 1: PnuTac: Vision-based pneumatic optical tactile sensor.
(a) Slip detection. (b) Object classification (c). Exploded
view of the PnuTac sensor.

also for object classification [8]. There are several works that
propose different designs of VBTS, such as GelSight [9],
DIGIT [10], Omnitact [11], DotView [12], and DelTact [13].
Notably, these sensors have shown robustness and proved to
be of low-cost manufacture. However, the use of pneumatic
systems and the potential improvements this characteristic
may bring to robotic manipulation have not been explored.
Additionally, the aforementioned works lack methodologies
for training neural networks from the VBTS images for
classification purposes.

This paper proposes a new design for a pneumatic-
based optical tactile sensor (PnuTac1), aiming to address the
knowledge gaps of previous works. The PnuTac comprises
a pneumatic system, an elastic membrane, and a sealed
chamber with a camera inside (Fig. 1c). The inner side of
the membrane layer has a grid of circular markers on its
surface that are used for slip detection. The experiments to
validate the PnuTac sensor include using its slip detection
capacity to control a gripper to prevent the slippage of
three different objects, two of which involve variable weight.
Objects held by the gripper appear as contours in sensor
images. A dataset of 10,000 such images from 10 tools was
utilized for training a VGG-19 convolutional neural network
for tool classification. The contributions of this work can
be summarized as follows: (i) the design of a vision-based
pneumatic optical tactile sensor with tunable pressure, (ii) the
development of a framework based on the PnuTac sensor for
slip detection (Fig. 1a) and object classification (Fig. 1b).

1https://youtu.be/HJ_ZX18Tw8Y



The rest of the paper is organized as follows. Section II
discusses related work in the context of VBTS sensors, fol-
lowed by section III that describes the design of the PnuTac
sensor. Then, in section IV, the slip detection and object
classification framework is presented. Section V introduces
the experimental setup and discusses the results. Finally,
section VII concludes this paper.

II. RELATED WORK

This section discusses recent advancements and applica-
tions of VBTS, with a particular focus on markerless (Gel-
Sight [14]) and marker-based (TacTip [15]) sensors, object
classification, and slip detection. GelSight sensors utilize a
camera to capture tactile images, providing information about
the geometry of the touched surface. Unlike traditional tactile
sensors, the main characteristic of GelSight is its resistance to
external light variations. In the literature, several works based
on GelSight sensors are available. For example, Donlon
et al. [16] presented an enhanced version of GelSight by
changing the optical path to use a waveguide to route light
through the fingertip and a mirror to view the sensor surface
from a distance. This modification allows for a more compact
wedge-shaped fingertip design suitable for cluttered picking
scenarios.

A notable application of VBTS is the one proposed by Li
et al. [17], in which a GelSight-style sensor is used to train
a robot to perform insertion tasks. Additionally, the paper
highlights the application of deep tactile model predictive
control and the use of palm-shaped GelSlim sensors for
robust manipulation. Following a similar approach, She et
al. [18] conducted research on flexible cable manipulation
by combining grip and pose controllers based on the cable
dynamics extracted from the feedback of a GelSight sensor.
Further research has been conducted to extract the dynamics
of materials or objects to be manipulated. For example,
Huang et al. [19] investigated dynamic tactile sensing by
addressing the task of estimating liquid properties. They
trained a Gaussian Process Regression model using a small
amount of actual data to estimate the liquid properties.
However, the solutions presented in these approaches are
task-specific because they still require a mathematical model
of the object or material to be manipulated. This requirement
can be complex to calculate when dealing with various
objects or materials instead of just one.

A solution to this problem is the implementation of
deep learning techniques, where VBTS has been shown to
be compatible with the latter. Consequently, many sensor
designs rely on these methods. For instance, tactile material
and object classification is an interesting use case for tactile
sensors, as demonstrated in [20]. The ResNet18 architecture
image classifier has been also utilized to simultaneously
train and infer concatenated images that combine depth and
infrared images from two VBTS in [21]. Padmanabha et
al. [11] performed tactile state estimation for a representative
insertion task using OmniTact, a thumb-shaped tactile sensor
paired with a ResNet-based neural network. A modified
VBTS with a robust sensing surface capable of manipulating

hard and sharp objects, as well as performing object classifi-
cation, was proposed in [22]. Sferrazza et al. [23] propose a
system based on green fluorescent particles that are randomly
distributed within a soft elastic opaque coating, and deep
learning is employed to extract information related to the
force applied to the sensor’s surface.

In addition, many VBTS are marker-based, designed to
track the movement of markers. Since its initial proposal
in 2009 based on a dome-shaped version [24], TacTip
sensors have evolved into more advanced morphologies. For
instance, the Tac-M2 [25] sensor was utilized for in-hand
manipulation experiments. One year later, a miniaturized and
adapted design [26] was successfully employed as a robotic
finger. Despite introducing manufacturing improvements and
new surface geometries, these sensors share the same work-
ing principle: white pins are printed onto a black membrane,
which can then be tracked using computer vision methods.
In an effort to extract information from beyond the black
membrane, Yamaguchi et al. [27] proposed a VBTS called
FingerVision that uses a transparent membrane. However,
this membrane allows external illumination variance, result-
ing in reduced robustness and sensing capabilities. Other
approaches utilize markers with multiple colors. As a way
of illustration, Lin et al. [28] utilize semi-opaque grids of
magenta and yellow markers painted on the top and bottom
surfaces of a transparent membrane. The mixture of the two
colors is used to detect the 3D displacement of the markers.

An important application of VBTS is slip detection,
which plays a vital role in achieving reliable grasping or
manipulation. Recent reviews of slip detection technologies
and methodologies are provided in [5] and [29]. VBTS for
slip detection has primarily been applied in robotics, where
researchers have long been exploring the use of VBTS for
secure object grasping through the detection of physical
signals such as vibration and acceleration. For instance, Su
et al. [6] utilized a silicone-made pressure sensor to detect
slip by observing abrupt changes in tangential force and
vibration in response to normal pressure. Similarly, Ajoudani
et al. [7] developed a grasp control system equipped with a
slip detection feature, where the ratio of shear force to normal
force served as an indicator of the probability of slip. Despite
the growing number of VBTS designs, Lambeta et al. [10]
highlight several drawbacks related to low resolution, ease
of use, and compactness in VBTS technology.

Overall, significant progress has been made in terms of
design and the applications of VBTS. However, existing
sensors are predominantly gel-based, resulting in fixed stiff-
ness. Consequently, the potential advantages of utilizing
tunable pressure for secure grasping applications have not
been extensively explored. The novelty of this paper lies
in the investigation of a pneumatic system that enables not
only measurement but also adjustable control of pressure.
Furthermore, the white surface and internal lighting of the
sensor facilitate the highlighting of object contours held by
the gripper, thereby enabling object classification based on
these contours.



III. HARDWARE DESIGN

In this section, three goals are suggested as the guidelines
for the PnuTac sensor design.

1) Robustness: The sensor should provide reliable infor-
mation about slippage and object classification.

2) Easy to fabricate: The sensor’s parts should be easy
to replicate, and the electronic components should be
easy to acquire.

3) Easy to use: The sensor should be easy to install,
operate and maintain.

By following the design goals, the PnuTac vision-based
optical tactile sensor comprises three subsystems: tactile,
imaging, and pressurization, as shown in Fig. 1c. The details
about the three subsystems are elaborated as follows:

1) Tactile subsystem: This subsystem is comprised of an
elastic sensing membrane with markers on its internal
surface. Since the markers are printed using stencils,
a thin layer of permanent black ink is spread over
the stencils. Then, the stencils are removed, leaving
the markers printed over the membrane surface. The
inflated sensing membrane forms a spherical shape.
The membrane is made from a 0.5 mm thick latex
sheet (Fig. 2b).

2) Pressurization subsystem: This subsystem comprises
the body of the sensor (made of 3D-printed PLA), an
acrylic plate to seal the chamber, a Festo SPTE-P10R-
Q4-B-2.5K pressure sensor, an Arduino Uno (con-
troller board), and an Arduino-air module (pump). The
PnuTac is connected to the pump through the push-in
connector (Fig. 2a). The controller board implements a
proportional controller that modulates the airflow from
the pump into the sealed chamber. In other words, the
controller calculates the current pressure in the sealed
chamber based on the pressure sensor and increases or
decreases it by using pulse width modulation (PWM).

3) Imaging subsystem: This subsystem is comprised of
a USB RGB camera with a 180-degree fisheye lens
attached to the camera and adjusted to focus on the
markers. The camera is held at the bottom of the
sealed chamber and positioned 25 mm away from the
membrane. Fig. 2b and Fig. 2a show the assembly and
cross-sectional view of the sensor prototype, where the
position of the camera can be observed.

(a) (b)

Fig. 2: PnuTac sensor. (a) Sensor assembly. (b) Cross-
sectional view of sensor prototype.

Slip Detection 
Module 

Pump Control 
Module

Gripper Control 
Module 

Object 
Classification 

Module 
INPUT

OUTPUT

Fig. 3: Slip detection and object classification framework.
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Fig. 4: PnuTac sensor’s camera view.

IV. FRAMEWORK

This section presents the PnuTac framework for slip
detection and object classification (Fig. 3). This comprises
the following modules: slip detection, gripper control, pump
control and object classification.

The slip detection module is responsible for capturing and
analyzing images from the pneumatic sensor. As mentioned
previously, the sensor consists of a latex membrane with a
grid of circular dots imprinted on its internal surface. A
fisheye camera captures these dots, and image processing
techniques are utilized to track their movement between con-
secutive frames. The camera is calibrated using the OpenCV
library to remove lens distortion.

The undistorted images adhere to the projective pinhole
model, indicating that as the dots move away from the
camera’s image plane perpendicular to it, they generally
move outward in the image plane towards a vanishing point.
This phenomenon is particularly pronounced due to the
camera’s short focal length, which influences the perceived
movement of the markers. Fig. 7c demonstrates this effect
by displaying the optical flow trajectories of the markers as
the sensor’s elastic membrane is pressurized and inflated.
Additionally, the figure illustrates that the center of inflation
(CoI), represented by the position vector c, can be estimated
through a least squares solution of intersecting lines corre-
sponding to these trajectories. As a result, the CoI serves
as a vanishing point for the motion of the dot markers. By
knowing the position vector (in the image plane) of the ith

marker at both the unpressurized state (denoted as ni) and
the full operating pressure state (denoted as fi), the cross-
ratio identity can be used to calculate the relative height of
markers when in a depressed position.



Fig. 5: Objects used for creating the dataset.

cross ratio =
|fi − ni||c− ki|
|fi − ki||c− ni|

=
|f̃i − ñi|
|f̃i − k̃i|

, (1)

where ki represents the position vector of the ith marker (in
the image plane of a given frame), possibly in a depressed
position; and position vectors f̃i, k̃i, ñi represent the marker
position in 3D Euclidean space under the same conditions
as the corresponding image plane vectors fi,ki,ni, as shown
in Fig. 4. In practice, the force applied to the sensor surface
cannot be perfectly perpendicular, resulting in some lateral
movement that is tangential to the sensor surface. Conse-
quently, the marker position k̃i may not be collinear with
fi, ni, and c. Therefore, only the component of k̃i in the
direction of the inflation line (defined by fi and ni) is utilized
to calculate the cross-ratio.

The gripper control module detects slip events as well
as the release and grip actions of the gripper. Inspired by
the notion of slip ratio from [30], and given the resolution
of the dot grid markers beyond a threshold radius rperi from
the CoI were noted as peripheral markers. For experiments,
the radius was taken as rperi =

1√
2
×max(|pi−c|). Optical

flow vectors vi for each marker in a frame were calculated,
and a slip ratio value can be calculated by:

R =
max∀i({vi

∣∣ |pi − c| ≥ rperi})
max∀i({vi})

(2)

To reduce the influence of noise when stationary, the slip
ratio is detected only when the magnitude of the optical
flow vectors exceeds a predetermined threshold (0.1 in the
experiments).

The decision module can decide if closing the gripper is
necessary based on the following:

Gripperaction =

{
Grip, R > gthresh

No action, otherwise
(3)

where R is the slip ratio, and threshold gthresh determines
when the robot gripper should grip the object (gthresh = 0.3
in the experiments).

The pump control module is responsible for controlling
the pressure in the sealed chamber. This module includes
functions, such as activating the pump to begin generating
pressure, maintaining a near-constant pressure, and adjusting
the pressure level based on the feedback from the slip detec-
tion module. This module is controlled by the pressurization
subsystem introduced in the previous section.

The object classification module utilizes a VGG-19
neural network. The images are resized to 224× 224 for the
network. The image dataset includes 10,000 images of 10 dif-
ferent objects (Fig. 5) and is split into three sets for training,
validation, and testing with proportions of 70%, 10%, and
20%, respectively. Training accuracy reached 97.1%, whilst
the validation and test accuracy were 92.1% and 92.6%,
respectively. Keras 2.4.0 was used with an Intel Core i5-
8400 CPU @ 2.8Ghz with an Nvidia RTX 2080 GPU.

Fig. 6: The learning progress of the object classification
module.

V. EXPERIMENTAL SETUP

This section describes the experimental setup utilized to
validate the proposed framework. Two series of experiments
are performed to evaluate the capabilities of the sensor to
detect slippage and its object classification performance in
the real world. In the first series of experiments, a KUKA®

LBR IIWA 14 robot arm and a Robotiq® 2-finger gripper
are utilized. The PnuTac sensor is attached to the gripper’s
fingers, as shown in Fig. 7. Aiming to investigate whether
the slip detection characteristics of the PnuTac sensor lead to
a better grip while varying the pressure, the experiments are
performed on three different objects: a thermos flask being
filled with water (Fig. 7a), an aluminum bar (Fig. 7b) and a
cup being filled with granular material (Fig. 7c).

To conduct the experiments, the PnuTac sensor was uti-
lized and tested by setting ten pressure values, as detailed in
Table I. For each object, ten trials were attempted for each
pressure level, resulting in a total of 100 trials per object for
the ten different pressure settings. In total, 300 samples were
obtained. Here, every time the system identifies slippage and
prevents the object from falling, it is counted as a success and
as a failure otherwise, which we refer to as the slip detection
success rate. Additionally, the main goal is to investigate
the effectiveness of varying the pressure for improving grasp
control. Thus, a two-tailed test is performed while taking as
a reference P1, which is the lowest pressure in Table I. The
null hypothesis is formulated as follows: despite the change
in pressure, the time that it takes for the gripper to stabilize
the object will neither reduce nor increase.

For the second series of experiments, the objects from the
dataset are held by the gripper, and the classification module
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Fig. 7: Experimental setup. In (a), the robot, using a Robotiq
2-finger gripper with a pneumatic sensor, grips a thermos
flask while the user fills water in it. In (b), the robot stabilizes
an aluminum bar. In (c), the robot stabilizes a cup. In
(d), a graph plotted during a slip detection and prevention
experiment is displayed.

is used to predict which object the gripper is holding. If
the classification module identifies the object correctly, it is
considered a success and a failure otherwise.

ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
kPa 3.4 4.1 4.8 5.5 6.2 6.8 7.5 8.2 8.9 9.6

TABLE I: Pressure values used in the experiments.

VI. RESULTS AND DISCUSSION

For the first series of experiments, the slip detection results
are analyzed by performing a two-tailed test by comparing
all the outcomes against the time it takes for the gripper to
stabilize the object while holding, and the PnuTac pressure is
equal to P1. For each object-pressure pair, the average time
it takes for the gripper to stabilize the object is measured.
Fig. 7b shows a graph, where the purple line converges to
zero after a few seconds, which represent how much the
object is slipping. When the purple line crosses the threshold
line, the time is stored. The same process was repeated for
each pressure-object combination.

For the aluminum profile bar case, the p-values vary from
0.44 to 0.02, which follows a trend where the slip time
generally decreases as pressure increases, except for P5 and
P9, as shown in the table II. For the cup filled with granular
material, there is a decrease in time, followed by an increase,
and then another decrease as pressure increases, highlighting
the non-linear nature of the pressure-slip time relationship.
For the case of the thermos filled with water, no consistent
decrease or increase in the slip time is observed as the
pressure increases.

The aluminum bar, which can be considered a constant
load, resulted in easier stabilization. The overall success rate
of slip detection for the bar was 91%. In contrast, in the

variable load slip detection experiment using a cup filled
with granular material, a non-linear behavior was observed
due to the variability in the rate of granular fill. Furthermore,
when considering the thermos filled with water, it was found
that the slip behavior was inconsistent. This inconsistency
is attributed to the response of the system trying to close
the gripper every time the load changes in order to avoid
slippage. The overall success rates for slip detection in the
cup filled with granular material and the thermos filled with
water were 88% and 82%, respectively.

Fig. 8: Predicted classes.

In the second series of experiments, the sensor’s per-
formance to identify objects while utilizing the VGG-19
neural network reached 92.6% accuracy on the test dataset,
and 8 of the 10 objects were successfully identified from
live sensor data. While the sensor successfully identified
the spanner, u-joint, extension, nut, washer, star screwdriver,
cross screwdriver, and Allen key, as shown in Fig. 8, the
sensor, despite trying different positions, could not identify
the pliers and the bolt.

VII. CONCLUSIONS

This work presented the design of the PnuTac sensor,
which incorporates a pneumatic system to achieve variable
pressure. Two experiments were conducted to evaluate the
sensor’s performance in slip detection with variable pressure
inputs. The overall success rate of slip detection was found to
be 87%. Additionally, the sensor’s performance was validated
in terms of object classification by training a neural network
on a dataset of 10,000 images representing ten different
tools. The results showed that the sensor could classify
objects with an accuracy of 80% after training. Overall, the
proposed PnuTac sensor demonstrated the potential to detect
slippage and, in this way, prevent objects from falling from
the gripper. During the experiments, limitations related to
objects with variable loads were identified, which proved to
be the most challenging scenarios using the PnuTac sensor.
However, the reliability of the framework and sensor’s slip
detection capabilities for both static and variable load objects
was demonstrated. Therefore, the implementation of this new
sensor has the potential to contribute to safe manipulation
tasks.

REFERENCES

[1] Ravinder S Dahiya, Giorgio Metta, Maurizio Valle, and Giulio Sandini.
Tactile sensing—from humans to humanoids. IEEE transactions on
robotics, 26(1):1–20, 2009.



Case-1 Aluminum Bar Case-2 Cup Case-3 Thermos Flask

Pressure Mean
(µ)

Standard
Deviation

(σ)

t-value
(10) p-value Mean

(µ)

Standard
Deviation

(σ)

t-value
(10) p-value Mean

(µ)

Standard
Deviation

(σ)

t-value
(10) p-value

P1 3.84 0.80 3.18 1.01 2.58 1.03
P2 3.56 0.71 0.79 0.44 3.05 0.78 0.25 0.81 2.51 0.90 0.15 0.88
P3 3.36 0.78 1.29 0.22 2.64 0.70 1.45 0.17 2.38 1.03 -0.17 0.87
P4 3.42 0.87 1.07 0.30 2.67 1.12 1.12 0.29 2.60 0.08 -0.66 0.52
P5 3.79 1.08 0.11 0.91 2.83 0.85 0.95 0.36 2.39 0.83 -0.11 0.92
P6 3.35 0.73 1.36 0.19 2.83 0.85 0.94 0.36 2.43 1.02 0.24 0.81
P7 3.04 0.44 2.62 0.02 2.87 0.62 1.39 0.20 2.42 1.02 -0.94 0.37
P8 3.06 0.33 2.72 0.02 2.77 0.84 1.06 0.31 2.42 0.81 -0.18 0.86
P9 3.46 0.88 0.96 0.95 2.62 0.71 1.07 0.31 2.43 0.52 0.79 0.45

P10 3.07 0.48 2.49 0.02 2.56 0.92 1.05 0.32 2.66 1.00 0.00 1.00

TABLE II: Statistical results from the first series of experiments.

[2] Hanna Yousef, Mehdi Boukallel, and Kaspar Althoefer. Tactile sensing
for dexterous in-hand manipulation in robotics—a review. Sensors and
Actuators A: physical, 167(2):171–187, 2011.

[3] Zhanat Kappassov, Juan-Antonio Corrales, and Véronique Perdereau.
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