expansion of arterial tissue as aneurysmatic formation without obvious neck. Its natural history is poorly known, usually patients are admitted with thromboembolic complications and/or mass effects. There have not been international collective data and correct timing for highly risky treatments has been under discussion.

To define natural history of VBADA by long-term follow-up in international VBADA population.

Method: We collected 370 VBADAs patients from ten centers from Europe, USA, and Japan. The patients were followed until development of new ischemic or hemorrhagic stroke, brainstem or cranial nerve compression, or drop of modified Rankin scale. 183 patients were treated conservatively in first phase of treatment. The needed data for natural history calculations were available for 174 patients with cumulative follow-up of 582,8 patient-years. Multiple statistical analysis were performed to identify annual risk of disease progression.

Results: The annual mortality or morbidity was 19.8%. Majority of VBADA patients were male (109) where disease progression was most malignant. Basilar artery location was associated with severe disease progression with annual adverse event of 24.3%. VBADA maximum diameter was directly proportional to the adverse events. Age above 55,5 years predicted mortality.

Conclusions: This study verifies malignancy of VBADA and encourage invasive treatment in early phase of disease progression based on radiological characteristics, age and sex of the patients when treatment option is seen suitable.

644 BRAIN AND SPINE 3 (2023) 101794 101813
NOVEL DATA ON THE TOLERANCE OF CEREBELLAR VESSELS FOR TEMPORARY OCCLUSION USING AWARE TESTING

Jack Wellington 1, Yana Al-Inaya 2, Jasneet Dhaliwal 2, Natalia Lehman 3, Chiara Spezzani 5, Ketevan Paposhvili 6, Ana-Maria Zidaru 7, Delia Cannizzaro 1,2, Elena Rosellini 1, Alice Jacqueline Mariangela Jelmoni 1, Simone Olei 1, Feng Xu 3, Carlo Bortolotti 4, Bin Xu 3, 1 Humanitas University, Pieve Emanuele, Italy; 2 IRCCS Humanitas Research Hospital, Rozzano, Italy; 3 Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; 4 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy

Background: Currently, there is no data available regarding the temporary occlusion of cerebellar vessels during surgery. We seek to ascertain if there is a concomitant change in motor evoked potentials. No patient developed EEG or ABFs changes.

Conclusions: This novel data suggests that certain cerebellar vessels may tolerate lengthy occlusion without permanent neurological deficits. Vessels that do not tolerate temporary occlusion result in neurological deficits within 190 seconds. Electrophysiological testing failed to detect ischaemic changes in the majority of the subjects.

Optional Image

683 BRAIN AND SPINE 3 (2023) 101794 101814
THE ROLE OF FLOW-AUGMENTATION BYPASS IN MOYAMOYA DISEASE AND HEMODYNAMIC ISCHEMIC STROKE

Delia Cannizzaro 1,2, Elena Rosellini 1, Alice Jacqueline Mariangela Jelmoni 1, Simone Olei 1, Feng Xu 3, Carlo Bortolotti 4, Bin Xu 3, 1 Humanitas University, Pieve Emanuele, Italy; 2 IRCCS Humanitas Research Hospital, Rozzano, Italy; 3 Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; 4 IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy

Background: Flow-augmentation bypass surgical techniques aim to restore cerebral blood flow in hypoperfused brain territories in patients with moyamoya disease (MMD) and in patients with hemodynamic ischemic stroke. This study aims to present the results of a large retrospective clinical series of patients treated with flow-augmentation bypass for MMD and to provide a systematic review of the literature on flow-augmentation bypass for hemodynamic ischemic stroke patients.

Methods: We have retrospectively analyzed adult patients with a diagnosis of MMD who underwent a surgical procedure of direct revascularization at the Department of Neurosurgery, Huashan Hospital, Fudan University (Shanghai, China) from March to June 2020. All participants were assessed at discharge, at 30 days, 6-months, and 1-year post-surgery. Meanwhile, the systematic literature review was performed according to the PRISMA guidelines 2020. Search terms included specific keywords such as “STA-MCA bypass,” “chronic ischemic stroke,” “hemodynamic ischemic stroke” and “flow augmentation.”

Results: A total of 176 adult patients underwent direct microsurgical revascularization. A slight improvement of the National Institutes of Health Stroke Scale (NIHSS) grade was observed. An occlusion in the bypass happened in 11.36% of cases. In 6.25% of the patients, an ischemic stroke was observed within three months. None of the strokes were fatal. The mean clinical and radiological follow-up was 11.9 months (11.4±5.4). The literature review included 3573 patients for analysis. The rate of perioperative complications was: stroke occurrence (20.8%), bypass occlusion (4.3%), and perioperative intracranial hemorrhage (0.9%). A rate of 7.2% of fatal stroke events was observed in the analysis.

Conclusions: Flow-augmentation techniques are key elements in restoring normal cerebral perfusion in MMD patients. Patients with hemodynamic ischemic stroke could benefit from the revascularization technique after careful selection. In fact, high-volume, extremely specialized centers have shown how STA-MCA bypass grafting can be performed with acceptable perioperative risks.

1052 BRAIN AND SPINE 3 (2023) 101794 101815
THE QUEST FOR THE ‘OPTIMAL’ CLIP SELECTION AND MICROSURGICAL EDUCATION THROUGH PATIENT-SPECIFIC PHYSICAL AND AUGMENTED SIMULATIONS: A RANDOMIZED CONTROLLED STUDY

Philippe Dodier 1, Lorenzo Civilla 1,2, Maria Chiara Palumbo 1, Josa Frischer 1, Ammar Mallouhi 1, Lukas Haider 1, Christian Dorfer 1, Karl Rossler 1, Alberto Redaelli 1, Francesca Moscato 1,2, 1 Medical University of Vienna, Vienna, Austria; 2 Polytechnic University of Milan, Milan, Italy; 3 Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria; 4 Austrian Cluster for Tissue Regeneration, Vienna, Austria

Background: Currently, there is no data available regarding the temporary occlusion in this study. Of the 16 patients who developed RND (in the cerebellar cohort), only 3 also had a concomitant change in motor evoked potentials. No patient developed EEG or ABFs changes.

Conclusions: This novel data suggests that certain cerebellar vessels may tolerate lengthy occlusion without permanent neurological deficits. Vessels that do not tolerate temporary occlusion result in neurological deficits within 190 seconds. Electrophysiological testing failed to detect ischaemic changes in the majority of the subjects.