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Abstract Visual simultaneous localisation and mapping
(vSLAM) finds applications for indoor and outdoor
navigation that routinely subjects it to visual
complexities, particularly mirror reflections. The effect
of mirror presence (time visible and its average size
in the frame) was hypothesised to impact localisation
and mapping performance, with systems using direct
techniques expected to perform worse. Thus, a dataset,
MirrEnv, of image sequences recorded in mirror
environments, was collected, and used to evaluate
the performance of existing representative methods.
RGBD ORB-SLAM3 and BundleFusion appear to
show moderate degradation of absolute trajectory error
with increasing mirror duration, whilst the remaining
results did not show significantly degraded localisation
performance. The mesh maps generated proved to
be very inaccurate, with real and virtual reflections
colliding in the reconstructions. A discussion is given
of the likely sources of error and robustness in mirror
environments, outlining future directions for validating
and improving vSLAM performance in the presence of
planar mirrors. The MirrEnv dataset is available at
https://doi.org/10.17035/d.2023.0292477898.
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1 Introduction

Simultaneous localisation and mapping (SLAM) is
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widely used in autonomous navigation tasks: it uses
sensors to build a map of an environment, whilst
also determining the sensor’s position within that
environment. SLAM algorithms can make use of
various sensors: for example, visual SLAM (vSLAM)
uses one or more cameras to provide image input [1].
Other SLAM algorithms may use different sensors,
such as LiDAR, sonar, and IMUs (inertial measurement
units), in combination with cameras, for, e.g., visual-
inertial SLAM [2–4] and visual-LiDAR SLAM [5, 6].
Since cameras are cheap and consume little power,
yet also provide high-quality information [7], visual
SLAM remains an active area of research. The
literature covers various camera arrangements
(monocular, stereo, RGB-depth) and processing
methods (e.g., dense versus sparse, direct versus
indirect, use of machine learning), as discussed in
Refs. [8, 9]. Estimation of camera pose from images can
be hindered by a range of environmental circumstances
[8, 10]. Many visual complexities have been considered
in the literature, and methods proposed to overcome
specific difficulties: motion blur [11–13], illumination
change [14, 15], dynamic scenes [16, 17], textures
[18–20], indoor/outdoor transitions, and specular
highlights [18, 21]. General approaches to tackle
complexities have recently been proposed [18, 22], but
do so indiscriminately of the source of errors.

One problem that has been largely overlooked
is the presence of mirror reflections in real-world
environments. One of the reasons that planar
mirrors cause difficulties in computer vision is
that reflections are typically indistinguishable from
their real counterparts without context. Mirrors
provide alternative viewpoints for an environment,
allowing light to be redirected around corners or
behind occlusions. Reflections are ubiquitous in
many domestic and industrial settings, and are
often utilised by the human visual system to help
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people understand their surroundings. On the other
hand, computer vision systems have struggled to
recognise reflective surfaces and correctly understand
the environment’s geometry—this has only recently
begun to be addressed [23, 24]. Filtering out
reflections means discarding information that has
the potential to extend a camera’s coverage of an
environment or object. Ideally, this information
should be extracted and utilised to improve the
reconstruction output of SLAM methods.

In some navigation tasks, collisions with mirrors
have been avoided by depending on additional sensors,
such as sonar or multi-echo LiDAR [25, 26]. However,
consider Fig. 1, which shows a map created by an
autonomous vacuum cleaner using camera and LiDAR
sensors, deployed in a room with a large domestic
mirror. The occupancy grid mistakenly presents
the view through the mirror as a real space to be
entered and cleaned. Whilst additional sensors may

Fig. 1 Screenshot of map produced by an autonomous cleaner with
combined camera and LiDAR sensors. Image used with permission from
https://twitter.com/qrs/status/1358450163216490498, c© Trammell
Hudson (https://trmm.net) 2021.

be an engineering solution, determining which types
of sensors, in what arrangement, and how their data
streams are fused to provide the needed robustness
requires further research. Meanwhile, using more
sensors does not address how computer vision
algorithms should interpret mirror environments in
camera data. Since this is the main focus of our
work, we concentrate on SLAM systems that only
use camera sensors. Improving the quality of data
extraction and understanding can then help with
downstream tasks such as sensor fusion.

A reflection aware vSLAM (RA-vSLAM) algorithm
that is aware of mirrors in environments, and can
even make use of the reflections, would thus be of
interest for both domestic and industrial applications.
A prerequisite to the development of such algorithms
is to understand the performance of different vSLAM
algorithms in environments with mirrors. However,
one of the main barriers to this is a lack of suitable
vSLAM datasets containing sufficient mirrors with
sharp specular reflections.

In this paper we present our initial attempt at RA-
vSLAM by systematically evaluating existing visual
SLAM algorithms in environments with mirrors. The
main idea is illustrated in Fig. 2. We collected an
RGBD dataset, MirrEnv, with 7 unique trajectories,
each recorded with one of 3 differently-sized mirrors,
as well as control sequences with no mirror and with
the mirrors covered. These sequences were then used
to evaluate the performance of several representative
vSLAM algorithms: monocular ORB-SLAM2 [27],
RGBD ORB-SLAM2 [28], and BundleFusion [29], in
order to determine the influence of planar mirror
reflections.

In summary, the contributions of our work include:
• The MirrEnv dataset, which contains image

sequences captured in environments with mirror
reflections. With ground-truth poses and ground-
truth mirror-label masks, this dataset provides a
benchmark to promote research into robustness of
vSLAM algorithms to visual complexities.

• Quantitative and qualitative evaluations of
vSLAM algorithms representative of the state-of-
the-art, in environments with mirror reflections.

• A discussion of the advantages and disadvantages
to vSLAM of mirrors in environments, with
potentials and directions for further research into
this visual complexity.

https://twitter.com/qrs/status/1358450163216490498
https://trmm.net
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Fig. 2 Image frames from trajectory OutLoop3, showing the sequences where (a) there is no mirror, (b) the medium mirror is visible, and
(c) the medium mirror is covered. Ground-truth (black) and estimated (red) trajectories from RGBD ORB-SLAM2 are shown for these sequences
in (d)–(f), respectively.

2 Related work

2.1 Visual SLAM methods

There are several ways to categorise visual SLAM
algorithms. As indicated in Ref. [9], a classical
categorisation is based on whether they utilise
information by extracting features from frames
(indirect) or using pixel intensities themselves (direct).
Semi-direct [30] methods try to balance the benefits
and costs of these approaches.

Indirect methods, often using monocular
commodity cameras [31, 32], were some of the
earliest visual SLAM methods. By focusing on
prominent features, the number of pixels processed,
across a whole image sequence, could be kept low,
reducing computational costs. Later, ORB-SLAM
[27] introduced a framework for real-time sparse
SLAM, using multithreading to extract ORB features,
track them, and maintain a global pose-graph. An
improved version, ORB-SLAM2 [28], became one of
the most established sparse indirect methods, with
high localisation accuracy; it has been extended to
RGBD and stereo input. ORB-SLAM2 is often used

as a basis upon which other methods are built or
compared, such as IV-SLAM [18] and GCNv2-SLAM
[33, 34]. Whilst feature extraction has been used
to make vSLAM robust to some types of visual
complexities, it was believed that mirrors might
impede the feature matching and tracking processes,
incorrectly positioning a feature of a real object at
the perceived location of the virtual object.

In comparison, direct methods calculate
photometric and geometric errors at every pixel
rather than extracted sparse feature points [35–37].
However, these methods tend to suffer when images
contain noise. They usually require more expensive
global shutter cameras and additional calibration
techniques that need to be carried out precisely. As
a consequence, there has been less development of
purely direct methods. Large-scale direct SLAM
(LSD) [38] was one of the first methods, using direct
image alignment before estimating depth values
for a filtered set of pixels. Direct sparse odometry
(DSO) [35] took this further to only calculate
photometric errors to reduce bias of geometric
constraints when the image input is well calibrated.
DSO was updated to include a loop-closure step to
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provide global consistency [39]. An RGBD method
called bundle adjusted direct SLAM (BAD-SLAM)
[37] addressed the problem of applying bundle
adjustment when every pixel of a frame represents
a feature that needs to be included as a parameter
in the optimisation. In the presence of mirrors,
direct methods might struggle with the moving
perspective of the virtual objects, illumination
changes caused by non-Lambertian surfaces, and
invalidated assumptions (such as those in Ref. [10])
used in correspondence search. These could all
contribute to additional accumulated error.

Semi-direct methods use a mixture of direct and
indirect techniques, balancing their advantages and
disadvantages to try and improve overall performance.
Semi-direct visual odometry (VO) [30] only used
indirect feature extraction from monocular input
when keyframes were created, and otherwise used the
direct approach over small patches. A later attempt
at semi-direct VO improved real-time performance
by using direct frame alignment only on areas
of an image with high intensity gradients (edges
and corners) [40]. Pose estimation from indirect
features and refined by downsampled-direct matching
was used in BundleFusion [29], providing sufficient
information to integrate frames into dense mesh
maps. BundleFusion was considered representative
of these semi-direct methods, which also provided
dense mesh maps for qualitative analysis. Since it
was expected that both direct and indirect methods
would experience worse localisation performance, such
a semi-direct method was also expected to suffer
from reduced accuracy, although it was unclear if the
combination of techniques would marginally improve
or worsen this compared to pure direct or indirect
methods. Additionally, it was expected that the
dense meshes output by BundleFusion would show
physically unrealisable representations, e.g., visible
objects behind solid opaque walls, and real and virtual
objects simultaneously occupying the same space.

RGBD sensors have been popular in visual SLAM,
requiring less setup, calibration, and processing
to accurately calculate a depth image compared
to typical stereo arrangements [8]. A number of
methods [30, 38, 41, 42] specifically take advantage
of RGB and depth images as input. These methods
offer high accuracy with dense mappings for use in
applications. Hardware improvements allowed some

methods, including Kintinuous [43], ElasticFusion,
and BundleFusion to use GPU processing to generate
dense maps. Some components of vSLAM have
been replaced by machine learning components.
Hybrid methods like CNN-SLAM [44] and D3VO
[22] use convolutional neural networks (CNNs) to
replace significant front-end parts of the system,
whilst codeSLAM [45] and DeepFactors [46] use auto-
encoders.

Background on the development of these areas in
visual SLAM can be found in several detailed reviews
including Refs. [8, 47, 48]. Specific attention is given
to recent machine learning methods in Refs. [49–51].

2.2 Visual SLAM datasets
Most vSLAM methods are evaluated against data
collected from real-world environments. These
datasets are usually made up of image sequences
from either a stereo or RGBD camera, with one set
of the RGB/monochrome images usable as input for
monocular systems too.

Such datasets include the TUM RGBD dataset
[52], which initially contained 5 handheld sequences
in an office, as well as 10 sequences in a warehouse
(6 handheld, 4 mounted on a mobile ground robot),
many containing loop closures. Additional sequences
have since been added to provide particular challenges
like low texture environments. These sequences
were recorded using a rolling shutter depth camera
(640 × 480, 30 Hz) with ground truth calculated
from motion capture equipment. The ground robot
sequences keep the camera at a fixed pose relative
to the robot, and at the same height, limiting the
motion to panning left and right. The ETH3D
dataset [37] uses the same dataset format and contains
61 training and 35 test sequences (with monocular,
stereo, RGBD, and IMU sensors on a calibrated rig in
a motion capture environment) for optimising model
parameters, originally used to improve the scene
representation to reduce artefacts and distortions.

The KITTI dataset [53] of stereo images (1392 ×
512, 10 Hz) was recorded from a car driving in a
suburban area. The dataset contains 22 sequences,
covering approximately 40 km of outdoor environments.
Ground truth positions and environment point clouds
were collected using GPS, IMU, and a LiDAR scanner.
As well as loop closures, these sequences contain
dynamic objects (pedestrians and cars), illumination
changes, and shadows.
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EuRoC [54] is another prominent dataset collected
with monochrome stereo global-shutter cameras
(752× 480, 20 Hz) attached to a micro aerial vehicle
(MAV). Of the 11 sequences collected, 5 were from
a large room with industrial equipment, and 6 from
an office environment. In the industrial setting,
ground truth was collected using a laser tracking
system, whilst the office utilised a motion capture
arrangement. Difficulty of sequences was determined
by the illumination, sharpness of motion, and amount
of texture in the environment.

Other datasets for visual SLAM exist, such as
the photometrically calibrated monocular dataset
TUM monoVO described in Ref. [36]; it is more
suitable for direct methods such as DSO. Some
datasets are accompanied by information for other
computer vision tasks. For example, ScanNet [55]
and NYU-Dv2 [56] have RGBD images with semantic
segmentation labels, and are commonly used to
train deep-learning systems to integrate semantic
information into navigation. Whilst NYU-Dv2 lacks
the ground-truth camera poses needed for vSLAM
benchmarking, ScanNet does have this ground-truth
data and has started seeing usage for evaluation
purposes, especially for neural implicit SLAM [57, 58].

Synthetic datasets and simulation environments
have also grown in popularity for testing visual
SLAM systems. These include ICL-NUIM [59],
Replica [60], and TartanAir [61]. They allow 3D
reconstructions to be compared to an accurate ground
truth, with ray-tracing and photogrammetry being
used to make them look more realistic. However, they
are limited by the degree of physical realism, in terms
of ambient lighting, modelling of non-Lambertian
surfaces, camera artefacts, and the scales at which
photo-realism can be maintained.

However, none of these datasets have specifically
included real-world specular reflections from planar
mirrors, and many of them avoid or minimise time
where mirrors may be present. As a result, this visual
complexity is insufficiently represented in existing
vSLAM datasets to be able to analyse the effect it
might have on a system’s performance.

2.3 Mirror detection

Removal of specularities, appearing as bright spots on
glass, metal, or glossy surfaces has been well studied
in the literature [62–64]. These ideas have appeared
in a limited number of visual SLAM methods,

such as ElasticFusion and Introspective Vision (IV)
SLAM [18]. ElasticFusion tries to identify bright
illumination spots (specular highlights) on surfaces, as
a means of finding light sources and improving model
construction. IV SLAM uses a machine learning
component to create a mask that identifies regions
of a frame likely to introduce context-dependent
noise. The mask is then used to exclude these
regions from pose estimation. From the examples
shown in their paper, the method seems capable of
filtering out specular highlights, shadows, and lens
flare. However, it is unclear if IV-SLAM can isolate
mirror reflections, meaning that there are no known
visual SLAM methods capable of explicitly taking
mirror environments into account.

Removing mirror reflections is less common,
especially for a planar mirror. In recent years,
machine learning approaches have been used to
detect mirrors in single images, such as MirrorNet
[65], progressive mirror detection (PMD) [66], and
systems described in Refs. [23, 24, 67]. Datasets
containing ground-truth mirror masks have also been
provided in Refs. [23, 65–67] for training these mirror
segmentation networks. However, these datasets
consist of individual images without ground truth
poses, so are unsuitable for evaluating visual SLAM
systems.

Another use of mirror reflections in robotics is for
autonomous self-recognition. A system might have
a fiducial marker on itself [68], or need to identify
the reflection of its own dynamic movements using
techniques such as those from ClusterSLAM [16].
Other literature discusses how a robot can identify
itself from its own movements [69, 70].

3 Data collection

3.1 Equipment and calibration

Our MirrEnv (mirror environments) dataset was
collected using an Intel RealSense D435i RGBD
camera connected to an HP EliteBook 840 G3 laptop
running Ubuntu 18.04. The camera was attached
to the end effector of a KUKA iiwa 14R820 robotic
manipulator arm, controlled using MATLAB and the
KUKA Sunrise Toolbox (KST) [71, 72] to provide
ground truth Euclidean pose for the end-effector
(EEF), as shown in Fig. 3.

The RGBD camera has its own proprietary
calibration software and checkerboard pattern for
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Fig. 3 RealSense camera (red box) attached to a KUKA robot arm
end-effector (blue box), viewing a mirror (green box) and objects in
an environment (pink box) during initial testing.

determining intrinsic parameters. The joints of the
manipulator arm are determined using a method
internal to the KUKA control box, which counteracts
drift from physically calibrated positions.

Obtaining the transformation X between the
manipulator arm’s end-effector (EEF) and the
RGBD camera requires a process known as hand-eye
calibration. This involves recording a collection of
end-effector poses {A1, · · · , An} relative to the robot
arm base, and checkerboard poses {B1, · · · , Bn}
relative to the camera, as explained in Ref. [73] and
depicted in Fig. 4. Here, Ai and Bi are obtained
by querying the KUKA control box and using the
camera intrinsic parameters mentioned previously.
Hand–eye calibration can then be used to obtain X

by solving
AijX = XBij , ∀ 1 6 i < j 6 n (1)

where Aij = A−1
i Aj and Bij = BiB

−1
j are the

relative transformations between the ith and jth pair
of poses.

This can be interpreted in terms of the equivalence

Fig. 4 Transformations involved in the hand–eye calibration process.

of different orders of changing the frame of reference:
AijX represents transforming from the ith to the jth
EEF pose, then transforming from EEF to camera;
XBij represents transforming between the ith EEF
and camera poses, then transforming from ith to jth
camera poses. A total of 46 pairs of images and
ground truth poses were captured, from which these
transformations were determined.

A hand–eye calibration survey [73] notes that
there are several ways to solve for X: separately,
simultaneously, or iteratively, depending on how
the rotational component and the translational
component of X are determined. We evaluated four
hand–eye calibration methods [74–77] utilising code
from Ref. [73]. The EEF to camera transformation X

was finally calculated using a separable method [75],
which had the lowest translational and rotational
error. However, without bespoke and expensive
calibration equipment, such as that used for motion
capture arrangements, systematic errors may still
occur.

3.2 Data capture

By manually controlling the manipulator arm, specific
poses were found that allowed the camera to have
a particular view of the surrounding environment
from a desired location. These poses were then used
as waypoints when planning the motion path of the
manipulator through joint space in MATLAB. The
planned path was then relayed to the manipulator
arm in real time for smooth motion between
waypoints. During movement of the robot arm, the
camera provided a 3× 8 bit RGB image and a 16 bit
depth image, both at 640 × 480 resolution, aligned
using the internal registration process on the camera.
Following the dataset structure used in the TUM
RGBD benchmark, Python and FFMPEG were used
to compress and store the RGB and depth images
into video frames in real time, using lossy MJPG for
RGB images and lossless HEVC for depth. FFMPEG
was later used to extract the individual frames after
recording had finished. RGB and depth images were
paired using the association script from the TUM
RGBD benchmark.

Since the manipulator returned poses at
approximately 333 Hz, and the camera only
returned frames at 30 Hz, the association script was
used again to pair them. The camera would begin
recording shortly before and after the manipulator
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was moving, so the OpenCV implementation of
feature-based optical flow was used to identify the
first image with significant motion and determine
the temporal offset between frame and manipulator
timestamps.

3.3 Image sequences

The image sequences collected are summarized in
Table 1. Three sizes of planar mirror (13 cm ×

18 cm, 21 cm× 30 cm, and a rounded mirror within
40 cm × 50 cm) (see Fig. 5) were combined with 7
unique trajectories, giving a total of 49 sequences
recorded, including sequences with no mirror at all,
and sequences with the mirror covered by a plain
green card. Removing the mirror allows features
behind the mirror plane to be visible; covering the
mirror hides the features behind it, but introduces
features at the occlusion boundary.

Fig. 5 Mirrors used, shown from trajectory InLoop2.

Table 1 Image sequences captured for the MirrEnv dataset. Values in brackets indicate sequences with a covered mirror. durMirr estimates
the proportion of frames in that trajectory showing at least part of the mirror. avgMirr estimates the overall proportion of pixels belonging to
the mirror, averaged over the whole trajectory

Trajectory Mirror Frames Trajectory length (m) durMirr (%) avgMirr (%)

InLoop1

None 1878 4.989 — —
Small 1892 (1881) 4.988 (4.989) 77.895 2.753
Medium 1883 (1887) 4.990 (4.989) 80.423 6.306
Large 1886 (1866) 4.989 (4.989) 80.952 9.797

InLoop2

None 1915 2.719 — —
Small 1892 (1903) 2.718 (2.718) 91.579 3.653
Medium 1937 (1893) 2.718 (2.719) 91.753 9.752
Large 1915 (1862) 2.719 (2.717) 91.667 20.367

InLoop3

None 1937 3.659 — —
Small 1879 (1885) 3.658 (3.659) 100 3.944
Medium 1875 (1865) 3.657 (3.657) 100 11.130
Large 1912 (1877) 3.658 (3.657) 100 30.126

OutLoop1

None 2375 4.099 — —
Small 2362 (2353) 4.099 (4.100) 64.979 5.257
Medium 2384 (2365) 4.101 (4.100) 68.201 13.026
Large 2394 (2352) 4.101 (4.100) 68.333 23.324

OutLoop2

None 2378 2.915 — —
Small 2366 (2368) 2.916 (2.916) 46.414 1.920
Medium 2368 (2362) 2.916 (2.916) 51.899 5.529
Large 2363 (2362) 2.916 (2.916) 63.713 14.727

OutLoop3

None 2362 3.013 — —
Small 2368 (2356) 3.014 (3.015) 30.380 1.732
Medium 2368 (2351) 3.014 (3.013) 39.662 4.854
Large 2383 (2353) 3.014 (3.014) 44.770 11.651

InfBehind

None 2347 2.786 — —
Small 2336 (2352) 2.788 (2.788) 71.368 2.716
Medium 2332 (2344) 2.788 (2.787) 71.795 8.531
Large 2357 (2345) 2.787 (2.787) 71.186 22.692
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Each image sequence was given a formatted label
“Trj X1 X2 X3 X4”, where X1 is a numerical index
across all sequences from 1 to 49, X2 is one of the 7
trajectories, X3 indicates the size of the mirror (small,
medium, large), and X4 indicates whether the mirror
was visible (W) or covered (C). If the sequence had no
mirror, then X3 and X4 are replaced by “No Mirror”.

For each sequence with a mirror, every 10th frame
was manually annotated to create a binary mask
identifying the mirror region in that frame. These
masks were used to estimate the proportion of
annotated frames in the sequence that contained at
least some mirror: the mirror duration (durMirr).
They were also used to estimate the average
proportion of each frame by covered by the mirror:
the mirror coverage (avgMirr). Graphs illustrating
the amount of mirror visible over each sequence,
grouped by unique trajectory, are given in Fig. 15 in
the Appendix.

The trajectories are grouped as InLoop, OutLoop,
and InfBehind; example video clips are provided
in the Electronic Supplementary Material (ESM).
The InLoop trajectories follow a looping trajectory
with the camera looking inward on the loop with
fixed attention on the environment. Conversely, the
OutLoop sequences follow a loop with the camera
looking somewhat outward from the looped path,
thereby lacking fixed attention. These sequences
are intended to evaluate the effect that the presence
of mirrors has on long term data association, i.e.,
loop closure, as well as on short term tracking.
Trajectories with the same numerical suffix have
the mirror positioned in the same part of the table
(1: right, 2: left, 3: centre). Finally, InfBehind
sequences have objects both in front of and behind
a mirror, and the camera moves from in front of the
mirror to behind it, then back again. Virtual objects
present in reflections are often represented as existing
in the space behind the mirror plane or conflicting
with objects actually behind the mirror plane.

The trajectory path, size of mirror, and whether
the mirror was covered were controlled as categorical,
independent variables top determine the recorded
image sequences. These choices influenced the
extracted continuous quantities durMirr and avgMirr,
calculated from the mirror region masks of every
10th frame. As Fig. 6 shows, the trajectory taken
significantly affected the quantity durMirr, whilst

Fig. 6 Boxplots showing relationships between the calculated values
durMirr and avgMirr, and the trajectory/mirror categories.

only having a limited influence on avgMirr, which
was more dependent on the size of mirror used.

In keeping with the analysis of the mirror
segmentation dataset (MSD) done in MirrorNet, the
mirror region masks from all sequences were combined
into a heatmap (Fig. 7). This demonstrates the
variety of mirror locations within the frames across
all sequences. Due to the real-world position of the
mirror and the limited reach of the manipulator arm,
the mirror occupied the lower left corner of frames
less frequently than other parts of frames. This is
also fairly consistent with the results in MirrorNet.
The minimum value of the heatmap is 15, so every
pixel is at some point within the mirror region. Due
to the fixed attention sequences, and positions chosen

Fig. 7 Heatmap of mirror region masks.
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for the mirror crossing from side-to-side, the centre
of the frames is the most frequent location for the
mirror.

One of the main advantages of the MirrEnv dataset
over other vSLAM datasets is the availability of
control sequences for the presence of mirrors. This
allows for a comparative analysis of how vSLAM
systems work in environments with mirrors versus
environments without reflections.

4 Experimental setting

4.1 General questions

Prior to evaluating the representative methods on the
collected data, there were some questions of particular
interest to be answered. The initial hypotheses to be
tested included:
• Does the amount of time that the mirror is

visible affect vSLAM performance? A longer
duration was expected to cause individual errors
to accumulate, thereby increasing overall error.

• Does the coverage of the mirror affect vSLAM
performance? An increase in the size of the mirror
region was expected to increase error.

• How are different types of methods affected by
the presence of mirrors? It was considered that
performance might degrade if there was confusion
matching real objects and virtual objects across
frames, with direct methods possibly suffering
more, as feature-based methods are more resilient
to photometric and geometric errors in raw data.

To test these hypotheses, we carefully selected
representative methods and evaluation metrics,
and carried out experiments to quantitatively and
qualitatively evaluate the results.

4.2 Representative methods

Of the methods described in Section 2.1, it was
necessary to select some representative of different
techniques and approaches. Particular focus was
given to methods previously evaluated on the
similarly structured TUM RGBD dataset, as these
methods were more likely to produce reasonable pose
and map estimates on this type of data. Another
hurdle to overcome was finding methods that were
open-source and readily deployable, an issue raised in
Ref. [78]. The methods chosen were implemented on
a Ubuntu 18.04 computer with an NVIDIA GeForce
RTX 3070 GPU and CUDA 11.4.

When choosing a feature-based method, both
ORB-SLAM2 and ORB-SLAM3 [79] were considered.
ORB-SLAM2 is often used as the basis upon which
other methods have been built, and as such forms
a very meaningful baseline for comparison. ORB-
SLAM3 has additional functionality over ORB-
SLAM2 including adapted map initialisation and
merging strategies, an improved loop closure process,
and integration of sensors with other modalities. For
these reasons, both ORB-SLAM2 and ORB-SLAM3
were used, each operating in the monocular and
RGBD modalities.

A direct method was also sought. LDSO was
initially considered as it was the version of DSO
including a loop-closure mechanism, and DSO had
been evaluated on the commodity camera data of
TUM RGBD dataset. However, the poor performance
of direct methods on data collected by rolling shutter
cameras became clear, as all mirror environment
sequences terminated almost immediately due to
tracking problems.

Despite this setback, semi-direct methods show
some greater robustness given data from commodity
cameras, and provide a dense map as output.
BundleFusion uses SIFT features for initial alignment
and long-term data association, thereby being
more resilient to data from rolling shutter
cameras. However, it improves on the inter-frame
alignment using dense correspondences determined
by minimising photometric and geometric error terms:
the technique used in direct methods. BundleFusion
additionally produces a 3D mesh of the surfaces being
mapped, which could then be qualitatively assessed
for accuracy, and for sources of visual confusion.
An implementation of BundleFusion [80] ported to
Ubuntu was used.

To summarise, the representative methods chosen
were the feature-based methods ORB-SLAM2
and ORB-SLAM3 (both monocular and RGBD
modalities), as well as the semi-direct method
BundleFusion.

4.3 Evaluation metrics

Across the various datasets discussed in Section
2.2, and by authors of different methods, several
performance metrics have been proposed. Alignment
error was proposed in TUM monoVO to capture
errors in translation, rotation, and scale. A similar,
proprietary metric is also defined in KITTI, which
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separates the translational and rotational errors to
better characterise the sources of error in the system.

In the TUM RGBD benchmark, two trajectory
error metrics for a sequence of pose estimates Pi ∈
SE(3) and ground truth poses Qi ∈ SE(3) were
introduced. The absolute trajectory error (ATE) is
given by

Fi = Q−1
i SPi (2)

where S is a rigid transformation aligning the two
trajectories. The performance for a whole sequence
is reported as the root mean square error (RMSE) of
all Fi. ATE measures the difference between ground
truth and estimated poses at a particular time, and
used by the TUM RGBD benchmark specifically
for SLAM systems to be able to measure overall
consistency of the estimated poses.

The second metric is the relative pose error (RPE)
which measures the drift of pose estimates away from
the ground truth over different size time-steps. It is
calculated as

Ei = (Q−1
i Qi+∆)−1(P −1

i Pi+∆) (3)
where ∆ can be adjusted to compare changes in pose
over a certain time span, and Ei can be split into
translational and rotational components, denoted
here as RPEt and RPEr respectively.

ATE has seen widespread use as the primary
and often sole performance metric for visual SLAM
throughout the literature, with RPE being used
with visual odometry systems like DSO. Moreover,
it is recognised that ATE and RPE can be heavily
correlated [52, 81]. For clarity and conciseness, ATE
has been chosen as the primary metric for reporting
our results in Table 6 in the Appendix, with RPEt
values being provided for completeness in Table 7.

5 Results: visual SLAM with mirror
presence

5.1 Overview

In monocular operation, ORB-SLAM2 and ORB-
SLAM3 produce a sparse collection of pose estimates
for keyframes. In RGBD operation, these ORB-based
methods and BundleFusion provide pose estimates for
almost every frame in a sequence. From these pose
estimates, we quantitatively analyse the localisation
performance of these methods. BundleFusion also
reconstructs a 3D mesh as a map of the environment,
which we also qualitatively analyse.

5.2 Pose estimation failures

5.2.1 Need
In some instances, pose estimation may fail, skewing
the resulting error calculations and misrepresenting
localisation quality. It was therefore necessary to
identify and remove such results before analysing
localisation performance.
5.2.2 Loss of tracking
Whilst a loss of tracking did not stop these methods
(unlike LDSO), large gaps in pose estimations could
skew trajectory error calculations. Re-localisation
only occurred once enough previously seen features
had been recognised (typically from a similar camera
pose). Loss of tracking could be inferred by the
number of keyframes associated with ground truth
poses and seen more explicitly by visualising the
per-frame error to identify significant gaps. In this
way, it was found that RGBD ORB-SLAM3, did not
lose tracking on any sequence, while RGBD ORB-
SLAM2 maintained tracking for all but 1 sequence.
Monocular ORB-SLAM2 had significant gaps for 6
sequences, while monocular ORB-SLAM3 had such
gaps for 3 sequences. BundleFusion failed to track
adequately in 18 sequences, many occurring within
specific trajectories. The specific sequences affected
are given in Table 2, and are represented by missing
values in Table 6 in the Appendix.

Several details within the MirrEnv dataset
sequences were recognised as particularly challenging,
with the potential to cause vSLAM systems
to deteriorate in performance. Covered mirror
sequences frequently caused prolonged tracking
problems, probably because the green covering was
almost featureless. Monocular ORB-SLAM2 lost
tracking for OutLoop2 Large C, OutLoop3 Large C,
and InfBehind Large C. In each of these cases,
the tracking problems appear to be due to the
large mirror covered by the textureless green card,
leading to a discontinuity in tracked features. Other
than the large covered mirror sequence from the
OutLoop1 trajectory, RGBD ORB-SLAM2 did not
lose tracking for a significant period, probably because
it utilises depth information to detect and track
features. In fact, all vSLAM systems lost tracking
when panning across the covered area of the large
mirror of OutLoop1, but only RGBD ORB-SLAM3
was able to recover, probably because it created a new
map and merged the maps upon identifying a similar
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Table 2 Image sequences for each representative method in which tracking was substantially lost, resulting in missing values in Table 6 in the
Appendix

Monocular ORB-SLAM2 RGBD ORB-SLAM2 Monocular ORB-SLAM3 BundleFusion

OutLoop3 Large C
OutLoop2 Large C
OutLoop1 No Mirror
OutLoop1 Large W
OutLoop1 Large C
InfBehind Large C

OutLoop1 Large C
OutLoop2 Large W
OutLoop1 Large C
InfBehind Large W

InLoop2 No Mirror, InLoop2 Small W
InLoop2 Small C, InLoop2 Medium C
OutLoop3 No Mirror, OutLoop3 Small W
OutLoop3 Small C, OutLoop3 Medium W
OutLoop3 Medium C, OutLoop3 Large W
OutLoop3 Large C, OutLoop1 No Mirror
OutLoop1 Small W, OutLoop1 Small C
OutLoop1 Medium W, OutLoop1 Medium C
OutLoop1 Large W, OutLoop1 Large C

pose before and after the interruption in tracking.
However, mirror sequences may also create features

for the vSLAM systems to detect. Figure 8 shows
the example of OutLoop1, where BundleFusion and
monocular ORB-SLAM2 lost tracking in the no
mirror sequence. Figure 8(a) shows the ATE for
BundleFusion during the OutLoop1 medium covered
and uncovered mirror sequences, as well as the no
mirror sequence. Tracking is lost in the no mirror
sequence at frame 370, seemingly because a rapid
rotation causes the few remaining tracked features
from a few frames before (Fig. 8(b)) to move out of
view, and it is unable to replace these features from
a less feature rich background (Fig. 8(c)). In the
mirror sequence, frame 390 (Fig. 8(d)) shows that
before losing tracking at frame 420, there were still
sufficient foreground features visible, in the mirror
region. Once tracking was lost (Fig. 8(e)), few of the
previously tracked foreground features would have
been left, and the background was featureless and
would not have provided new points stable enough to
track.
5.2.3 Inverted motion and coincident pose estimation
Another cause of pose estimation failure is when
the calculated pose contradicts the camera motion
observable from the image sequences. This was
first noticed when evaluating ORB-SLAM3, and
confirmed to occur to a lesser degree in ORB-SLAM2
too. In particular, it was observed that (i) the
estimated camera motion could be inverted compared
to the image sequence, and (ii) the scale of the
translation component in a pose transformation could
change significantly, with pose estimates appearing
to coincide at a single point in space. These
issues were considered to be systematic, possibly
due to poor initialisation, handling complex rotation
movements, and monocular depth estimation. Such

sequences were identified by watching the mapping
visualisation of each run, and could be inferred by
plotting the estimated poses to see if poses coincided
for a significant proportion of their evaluation. In
this way, it was found that only monocular ORB-
SLAM2 and ORB-SLAM3 appeared to be affected by
these failures. Monocular ORB-SLAM2 repeatedly
gave inverted motion estimates for 1 sequence, while
Monocular ORB-SLAM3 did so for 3 sequences.
Monocular ORB-SLAM3 also had coincident pose
estimates (coinciding at a single point in space) for
another 3 sequences. All sequences resulting in such
pose estimation failures are given in Table 3 and
result in missing values in Table 6 in the Appendix.

Some of the trajectories involved panning across
featureless regions of the surrounding environment
(walls, floors, tables), and the use of a 7-axis robot
arm meant that these movements could involve
such tight rotations that vSLAM feature tracking
sometimes struggles. These factors appeared to
cause inverted motion estimation and coincident pose
estimation for the monocular methods.

In summary, it was noted that the RGBD
modality of ORB-SLAM2 and ORB-SLAM3 showed
general robustness across the different trajectories,
usually only struggling when there were extremely
few features available to track. The monocular
modality of both ORB-based methods encountered
additional situations which prevented adequate pose
estimates to be calculated. BundleFusion encountered
tracking problems whenever the complexities of the
environment or trajectory motion became too difficult,
resulting in many unusable results. If loss of tracking
affected more than half of an image sequence, then
the sequence was omitted from Table 6. Similarly,
if inverted motion and coincident pose estimation
affected the majority of a sequence, it was omitted.
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Fig. 8 Example showing loss of tracking: OutLoop1, medium-sized mirror. (a) Per-frame ATE for BundleFusion. (b, c) Sample frames before
and after loss of tracking, without mirror. (d, e) Sample frames before and after loss of tracking, with mirror.

Table 3 Image sequences for which representative methods suffered pose estimation failures, resulting in missing values in Table 6 in the
Appendix. Rows indicate the primary cause of failure

Monocular ORB-SLAM2 Monocular ORB-SLAM3

Inverted motion estimation InLoop3 No Mirror
InLoop2 Small C
InLoop2 Medium C
InLoop2 Large W

Coincident pose estimation —
InLoop3 Small C,
InLoop3 Medium W,
InLoop3 Medium C
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Table 4 RMSE ATE for each vSLAM system, taken over sequences
with a given kind of mirror presence

Method Mirror Covered No mirror
Monocular ORB-SLAM2 0.102 0.106 0.113
RGBD ORB-SLAM2 0.097 0.080 0.077
Monocular ORB-SLAM3 0.117 0.132 0.150
RGBD ORB-SLAM3 0.086 0.080 0.078
BundleFusion 0.132 0.143 0.122

5.3 Localisation

5.3.1 Approach
Our analysis of localisation errors used the control
sequences that either had no mirror or a covered
mirror to establish baseline results along the
trajectories. The robustness of vSLAM systems on
the sequences with uncovered mirrors could then
be compared to these baselines. Since all chosen
representative vSLAM methods use multi-threading
and random sample consensus (RANSAC), there will
be variations when running the methods multiple
times. Therefore we follow the protocol used for
ORB-SLAM2: run each vSLAM method on the same
sequence 5 times, and compute the median ATE of
the 5 runs. By considering (i) localisation error by
sequence type, (ii) localisation error versus mirror
duration/coverage, and (iii) per-frame localisation
error, we analyze that the results are at increasing
levels of granularity whilst exploring their relationship
to the presence of the mirror.
5.3.2 Localisation error by sequence type
The differences between the poses estimated by the
three vSLAM methods and the associated ground
truth poses was calculated to give the overall
localisation error, primarily measured using ATE.
Sequences with significant loss of tracking and
other pose estimation problems (more than half
of trajectory lacking an appropriate estimate) were
discounted as erroneous. The results are summarised,
grouped by mirror presence, in Table 4, whilst
complete results are provided in Table 6 in the
Appendix. For completeness, accompanying RPEt

results are provided separately in Table 7 in the
Appendix.

Table 4 shows that, as expected, both RGBD ORB-
SLAM2 and ORB-SLAM3 have noticeably higher
average error on the mirror sequences, with the
lowest average error being on the no mirror sequences.
However, the opposite appears to be true for both
the monocular ORB-SLAM methods. Table 6 in the
Appendix, shows this opposite trend to be especially
significant for OutLoop sequences. This may be
because the OutLoop sequences have longer distances,
and the depth maps can become noisy and less reliable
over the unbroken views of the background over longer
distances; this may be made worse by some tight
rotational motion at the same time. BundleFusion
saw increased ATE on sequences with mirrors and
with covered mirrors, the latter having the highest
error. From Table 6 in the Appendix, this appears
to be due to higher errors on sequences with a large
covered mirror. In these sequences, the large covered
mirror renders a significant portion of the frame
featureless. In cases where BundleFusion was able
to extract sufficient SIFT features to retain tracking,
these may have been too sparse or unreliable when
used to calculate pose estimates. Additionally, the
direct techniques used might not have adjusted the
localisation enough given a large area of seemingly
uniform intensity.
5.3.3 Localisation error and mirror duration/

coverage
It is of interest to determine if a correlation
exists between ATE, and durMirr and avgMirr
determined from mask images for mirror sequences.
Since these values for the control sequences were
imputed, it was reasonable to stratify the analysis
and focus on sequences with mirror. Spearman’s
rank correlation coefficients were calculated, along
with their associated p-values; these are shown
in Table 5. For both RGBD ORB-SLAM3 and
BundleFusion, the correlation between ATE and
the mirror duration durMirr fall within the 95%

Table 5 Spearman’s rank correlation coefficients between mirror quantities and error metrics for sequences with a mirror, and associated
p-values. Statistically significant results (within a 95% confidence interval) are highlighted in bold

Mono. ORB. 2 RGBD ORB. 2 Mono. ORB. 3 RGBD ORB. 3 BundleFusion

avgMirr
Correlation coefficient 0.079 0.251 0.422 0.295 −0.015

p-value 0.748 0.273 0.092 0.195 0.958

durMirr
Correlation coefficient −0.155 0.278 0.07 0.458 0.567

p-value 0.527 0.222 0.79 0.037 0.034
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confidence interval of statistical significance, with
correlation coefficients of 0.458 and 0.567 respectively.
These are moderate positive correlations, indicating
that increased duration of mirror presence added to
the accumulated errors.

This correlation can be seen in Fig. 9, which
shows the ATE for both RGBD ORB-SLAM3 and
BundleFusion as durMirr and avgMirr vary for
different sequences (scatter graphs for the other
representative methods can be found in Fig. 16). In
Figs. 9(b) and 9(d), the dispersed clusters of red
markers correspond to weak correlation with mirror
coverage avgMirr, but that the markers in Figs. 9(a)
and 9(c) do show a moderately positive correlation.
It can be further seen that the range of ATE values
for the sequences with mirrors significantly overlaps
the ATE range for the control sequences without
mirrors (blue) or covered mirrors (green), suggesting
that mirror duration and coverage do not significantly
impact the ATE values overall.

In the case of RGBD ORB-SLAM3, one particular
result with mirror duration of approximately 70%
has a very high ATE, which probably increases
the overall correlation. Similarly, it is worth

highlighting that BundleFusion failed to produce
meaningful results on the OutLoop1 and OutLoop3
trajectories, sequences with low mirror duration, and
this may have weakened the observed correlation:
BundleFusion may have performed poorly and yielded
high ATE for those sequences. As mentioned in
Section 3.3, the durMirr metric is closely related to
specific trajectories, leading to the stratified nature
of the control sequences plotted in Figs. 9(c) and
9(d). Therefore, the trajectories taken represent a
confounding variable, so causation is not guaranteed,
and should be explored further through the per-frame
analysis.
5.3.4 Per-frame localisation error
As well as considering performance over the entire
image sequence, an analysis of per-frame error versus
mirror quantities was performed to seek fine-grained
patterns in vSLAM performance, and to understand
the sources of errors that affected the correlation
coefficients and scatter graphs. We thus look at per-
frame graphs for ORB-SLAM3 and BundleFusion
on those trajectories for which they performed
worst: OutLoop1 for ORB-SLAM3, and InLoop1 for
BundleFusion.

Fig. 9 Scatter graphs visualising the correlation between (a) RGBD ORB-SLAM3 ATE and durMirr; (b) RGBD ORB-SLAM3 ATE and
avgMirr; (c) BundleFusion ATE and durMirr; (d) BundleFusion ATE and avgMirr. ATE of sequences without a mirror (removed or covered)
are included to provide a baseline distribution for the sequences with a mirror.
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Figure 10 shows that on InLoop1, BundleFusion
performed almost uniformly on all covered mirror
sequences and the medium mirror sequence, with only
small variation around a brief period of lost tracking
and re-localisation. This agrees with the very close
ATE values in Table 6. However, the small and large
mirror sequences begin with low errors similar to
those for the no mirror sequences, and then spike after
re-localisation occurs. While the ATE for the large
mirror sequences appears to be correlated with the
amount of mirror in each frame (red curve), similar
results are also obtained when there is less mirror
visible (in the small mirror case). Also, the peaks in
ATE at the beginning of most covered and uncovered
sequences could indicate that BundleFusion has difficulty
in initialising for this trajectory. Overall, this appears
to indicate that the high ATE values for BundleFusion
on InLoop1 were largely due to trajectory specific
issues, such as difficulty of initialisation and the
particular camera motions experienced, rather than
the presence of the mirrors.

Figure 11 shows that for the small and medium
mirror sequences for OutLoop1, the performances of
RGBD ORB-SLAM3 were fairly consistent with each

other and the control sequences. However, the large
mirror sequence appears to result in periods of higher
ATE compared to its control sequence, with the
final peaks in error seeming to match the rise in the
amount of mirror occurring at the same time. Indeed,
the large mirror sequence is the one that caused
RGBD ORB-SLAM3 to significantly influence the
correlation coefficient in Table 6. However, without
similar patterns noticeable in the small and medium
mirror results, it is not possible to conclude that the
amount of mirror is itself influencing the behaviour
of RGBD ORB-SLAM3.

In summary, most comparisons did not show
significant effects due to the presence of mirrors. In
the case of RGBD ORB-SLAM3 and BundleFusion,
the ATE did not overall appear to increase with the
amount of mirror. The most frequent conclusion for
the different situations examined was that trajectory-
specific factors had a large influence on the ATE.
Although quantitative analysis indicates that mirror
presence could be a subtle contributing factor to
vSLAM localisation error, it remains difficult to
reliably identify the effect of mirrors on visual SLAM
localisation accuracy without more sequences from

Fig. 10 BundleFusion per-frame ATE versus proportion of frame within the mirror region, for the InLoop1 trajectory, for varying mirror sizes.
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Fig. 11 RGBD ORB-SLAM3 per-frame ATE versus proportion of frame that is within the mirror region, for the OutLoop1 trajectory, for
varying mirror sizes.

trajectories with overlapping amounts of mirror
and a variety of difficulties of motion. For the
representative methods where no correlation between
ATE and either of the mirror metrics was statistically
significant, the overall evidence does not support the
proposed hypotheses, rather than the null hypothesis.
Many of the same reasons why vSLAM systems can
continue tracking in the presence of mirrors could also
explain why the localisation error did not degrade
under the same conditions (tracking features reflected
from the mirror region, or formed at the intersection
of the mirror boundary with the background).

5.4 Mapping

Monocular and RGBD ORB-SLAM2 and ORB-
SLAM3 produced feature maps, but their sparsity
makes static visualisations difficult to interpret. It
is notable that RGBD modalities generally produced
denser feature maps than monocular modalities.
Conversely, BundleFusion produced dense surface
meshes, with colour inferred from the RGB input.

The quality of the meshes produced by
BundleFusion can be reviewed to determine
the map reconstruction abilities of the dense method

in mirror environments. In some cases, reflections
of objects are rendered as real objects, conflicting
with actual real objects located behind the mirror:
see Fig. 12.

For other cases, the virtual environment is
projected through an opaque wall in the real world,
creating inaccurate geometry where the mirror is
treated like a window or open doorway: see Fig. 13.
As more images in a sequence are processed, vSLAM
methods perform map updates. In the presence
of mirrors, map updates can remove and correct
inaccuracies, or they can embed and affix mistakes
in the map that are later difficult to recover from.

Overall, when mirrors are visible, the maps
generated may include visibly identifiable
reconstruction failures. Ideally, a planar mirror
would be represented as a flat surface with reflective
properties, whilst information from the mirror region
would be projected back to aid reconstruction of the
real parts of the environment. However, existing
vSLAM methods do not identify reflections, and the
virtual features are merged with the real features,
leading to a geometrically inaccurate representation
of the environment.
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Fig. 12 BundleFusion meshes for InfBehind sequences.

Fig. 13 BundleFusion meshes for InLoop3 sequences.

6 Discussion

6.1 Localisation

From the analysis of the experimental results, it
appears that mirror reflections provide benefits, as
well as potential problems, for the performance of
vSLAM systems. It was anticipated that mirrors
would challenge the different component processes
in a visual SLAM system and cause performance to
deteriorate. One of the main ways that vSLAM
systems were expected to fail was due to the
effect reflection might have on feature extraction
and tracking. Situations such as real objects and
their reflections being visible simultaneously (an
example can be see in Fig. 14(a)) could have caused
uniqueness assumptions used in feature detection
and description to be invalid; if a real object and
its reflection were visible at different time in a
sequence, place recognition could have mistakenly
matched real objects with their mirror counterparts.
It was also observed during experiments that the
mirrors extended the camera’s field of view in such a
way that the camera and connected apparatus were
present as dynamic objects in an otherwise stationary
environment (again see Fig. 14(b)). However,
these mirror specific issues did not appear to cause
significant or obvious problems for tracking or pose
estimation. Any effects on performance from these
concerns would require further analysis to uncover.

Early analysis of localisation errors appeared to
suggest a correlation between ATE for RGBD ORB-
SLAM3 and BundleFusion, and mirror duration.
However, the per-frame analysis of the localisation
appeared to indicate that the most significant factors
influencing the ATE of these methods were trajectory
specific factors such as camera motions and the
availability of trackable features or textures. It is
still possible that mirror presence may have a direct
effect on the localisation error of vSLAM systems,
e.g., by adding errors to the localisation of features
and exacerbating error accumulation. But ultimately,
separating the direct influence of mirrors from other
factors requires further work, as discussed further in
Section 6.3.

Contrary to expectation, it was observed that under
some circumstances, mirrors may have improved the
localisation performance of vSLAM systems. With
the mirror extending the camera’s field of view, it was
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Fig. 14 Frames from the OutLoop1 large mirror sequence.

possible for features to be detectable in the mirror
region that might otherwise have been a featureless,
untrackable surface. Similarly, the mirror is an object
in the environment that can occlude or be occluded,
thereby creating intersections at discontinuities of
boundaries that a camera can perceive as reliable
features to track. Rather than simply mitigating or
filtering out mirror reflections, it may benefit vSLAM
localisation for the system to be aware of the presence
of mirrors, and to utilise that knowledge accordingly.

6.2 Reconstruction

In contrast, the qualitative analysis of scene
reconstruction by the representative methods
demonstrated an inability to compensate for
reflections when mapping the 3D environment.
In particular, the dense meshes generated by
BundleFusion merged real and virtual objects and

created inaccurate geometries with reflected spaces
being observed as through an opening.

Since visual SLAM is a process that leverages
localisation and mapping simultaneously to
improve accuracy, it is conceivable that inaccurate
reconstruction may also hinder localisation
performance, if only through accumulating additional
error. As with localisation, it would be useful for
visual SLAM systems to identify mirror surfaces,
reconstruct the environment accurately, and even
take advantage of the extra perspective and extended
field of view. The first step in this process would
require detection of mirrors using visual SLAM
sensors.

6.3 Future investigations

The collection of image sequences to specifically
investigate mirror environments is an important
initial step to building visual SLAM algorithms that
are robust in the presence of, and can potentially
make use of, mirror reflections. It is possible that in
a complex, multi-component system for vSLAM, some
parts may filter or compensate for errors introduced
by other parts. Evaluating vSLAM systems was
also complicated by the multi-faceted needs of
the combined components, including acceptable
movements, speeds, lighting conditions, and hardware
requirements. Under even more controlled conditions,
it might be possible to identify whether component
processes (such as feature extraction, tracking, place
recognition, and map reconstruction) experience
specific problems in mirror environments. This might
also help to find the best places in vSLAM systems
to make reflection-aware improvements with minimal
impact on efficiency.

Additional data collection for the MirrEnv dataset
could help to overcome trajectory specific confounding
factors, as well as provide sequences for testing
specific components and capturing data suitable
for direct and stereo methods. Eventually this
could also include sequences suitable for sensor-fusion
based methods. Such future investigations could
help to determine the types of sensors and their
arrangements that best provide a desired level of
robustness in mirror environments, thereby improving
on the situation previously raised in Section 1.

As Section 2.3 noted, the future development
of machine learning models that can accurately
and reliably detect mirrors could allow these tools
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to be incorporated into visual SLAM methods.
In doing so, visual SLAM would be capable of
detecting each mirror region and utilising the
virtual perspective to extend the camera’s field of
view. Some of the difficulties highlighted, such
as mirrors making dynamic objects visible, might
even help the mirror detection process [82]. Better
environment reconstructions might also aid systems
that use vSLAM for additional tasks such as
collision avoidance, path planning, and virtual reality
applications.

7 Conclusions

This paper has evaluated the performance of three
visual SLAM methods (representative of monocular,
RGBD, indirect and semi-direct techniques) in a
number of mirror- and control-environments. This
was accomplished by collecting the MirrEnv dataset
of RGBD images and ground truth camera poses, and
calculating the trajectory error of the camera poses
estimated by the vSLAM algorithms. The results
were then used to analyse the influence of mirrors
on the localisation errors and quality of the mapping
output of vSLAM methods.

The results indicate that RGBD ORB-SLAM3
and BundleFusion might be moderately influenced
by the mirror duration, although the influence of
mirror reflections was difficult to separate from other
confounding factors. In general, RGBD methods
had slightly higher localisation errors on mirror
sequences compared to their control sequences. From
the meshes generated by BundleFusion, it could
be seen that the mapping output would integrate
reflected objects, even when they conflicted with
other real objects behind the mirror. Whilst the
effect of mirrors on the localisation error might be
marginal, the mapping processes were clearly greatly
effected. The leveraged approach of SLAM means
that inaccurate reconstructions or dense tracking
of the RGBD methods could have contributed to
accumulated localisation error.

An extensive discussion was provided on the
expected difficulties that visual SLAM methods
might encounter in mirror environments, why these
expectations did not appear to have significant
influence on the localisation error, and how mirrors
might even be helping visual SLAM methods in some

circumstances. Directions for future investigations
were also discussed. Developments in mirror detection
could yield opportunities to consider how the
presence of mirrors could be utilised to improve map
reconstruction, and whether this would consequently
improve localisation too. These ideas will be explored
in our future work on reflection-aware vSLAM
algorithms.

Appendix

This appendix contains further experimental results.
Figure 15 shows how the amount of mirror changes

for each of the sequences, assessed using mirror region
masks created for every 10th frame in each sequence.

Table 6 shows absolute trajectory error (ATE) for
each image sequence, for the 5 vSLAM methods.
When methods failed to estimate poses (see Section
5.2), localisation results were not considered reliable,
and so were removed.

Table 7 shows the translational components of the
relative pose error (RPEt) for each image sequence,
for the 5 vSLAM methods. When methods failed to
estimate poses, again the results were removed.

Figure 16 shows those scatter graphs for
the representative methods which did not have
statistically significant correlation (see Section 5.3).
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Fig. 15 Proportion of frame covered by mirror, for all sequences, grouped by trajectory. The label format is explained in Section 3.3.
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Table 6 ATE (m) for each sequence. Results with significant pose estimation problems were omitted as unreliable. W = with mirror; C =
covered mirror

Trajectory Mirror Mono. ORB. 2 RGBD ORB. 2 Mono. ORB. 3 RGBD ORB. 3 BundleFusion

InLoop1

None 0.068 0.064 0.071 0.090 0.145
Small W 0.062 0.092 0.065 0.088 0.184
Small C 0.070 0.092 0.073 0.089 0.214
Medium W 0.064 0.101 0.081 0.094 0.218
Medium C 0.062 0.093 0.066 0.062 0.217
Large W 0.067 0.102 0.067 0.096 0.190
Large C 0.068 0.064 0.066 0.093 0.221

InLoop2

None 0.156 0.091 0.157 0.090 —
Small W 0.154 0.092 0.161 0.087 —
Small C 0.155 0.092 — 0.093 —
Medium W 0.155 0.088 0.162 0.087 0.145
Medium C 0.154 0.094 — 0.087 —
Large W 0.159 0.082 — 0.082 0.076
Large C 0.162 0.090 0.157 0.086 0.158

InLoop3

None — 0.056 0.256 0.056 0.137
Small W 0.073 0.081 0.071 0.080 0.141
Small C 0.046 0.056 — 0.056 0.140
Medium W 0.071 0.081 — 0.081 0.148
Medium C 0.072 0.075 — 0.074 0.143
Large W 0.072 0.081 0.070 0.081 0.142
Large C 0.065 0.067 0.066 0.066 0.151

OutLoop3

None 0.146 0.050 0.077 0.054 —
Small W 0.066 0.068 0.066 0.069 —
Small C 0.129 0.072 0.062 0.073 —
Medium W 0.095 0.049 0.086 0.055 —
Medium C 0.099 0.067 0.094 0.068 —
Large W 0.091 0.062 0.115 0.061 —
Large C — 0.067 0.229 0.062 —

OutLoop2

None 0.121 0.056 0.064 0.052 0.063
Small W 0.121 0.066 0.059 0.061 0.059
Small C 0.112 0.052 0.065 0.047 0.065
Medium W 0.096 0.054 0.052 0.060 0.063
Medium C 0.113 0.057 0.118 0.066 0.062
Large W 0.088 0.054 — 0.074 0.066
Large C — 0.065 0.121 0.057 0.067

OutLoop1

None — 0.138 0.333 0.144 —
Small W 0.261 0.189 0.328 0.127 —
Small C 0.146 0.115 0.346 0.130 —
Medium W — 0.196 0.231 0.118 —
Medium C 0.172 0.102 0.357 0.123 —
Large W — 0.205 0.186 0.190 —
Large C — — — 0.166 —

InfBehind

None 0.075 0.085 0.095 0.062 0.143
Small W 0.082 0.093 0.091 0.065 0.144
Small C 0.079 0.087 0.086 0.063 0.143
Medium W 0.076 0.098 0.092 0.078 0.139
Medium C 0.091 0.107 0.093 0.065 0.142
Large W 0.083 0.107 — 0.071 0.138
Large C — 0.091 0.118 0.061 0.136
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Table 7 RPEt (m) for each sequence. Results with significant pose estimation problems were omitted as unreliable. W = with mirror; C =
covered mirror

Trajectory Mirror Mono. ORB. 2 RGBD ORB. 2 Mono. ORB. 3 RGBD ORB. 3 BundleFusion

InLoop1

None 0.973 0.416 0.774 0.448 0.468
Small W 1.149 0.442 0.940 0.439 0.466
Small C 0.964 0.445 0.805 0.444 0.558
Medium W 1.043 0.453 0.358 0.447 0.573
Medium C 0.738 0.439 0.829 0.421 0.566
Large W 0.943 0.446 0.905 0.449 0.526
Large C 1.084 0.415 0.903 0.442 0.574

InLoop2

None 0.309 0.381 0.554 0.380 —
Small W 0.539 0.370 0.463 0.372 —
Small C 0.519 0.388 — 0.386 —
Medium W 0.421 0.385 0.304 0.377 0.478
Medium C 0.394 0.376 — 0.384 —
Large W 0.442 0.372 — 0.381 0.371
Large C 0.347 0.385 0.392 0.391 0.513

InLoop3

None — 0.426 0.391 0.421 0.463
Small W 0.333 0.388 0.328 0.393 0.450
Small C 0.448 0.424 — 0.418 0.468
Medium W 0.330 0.399 — 0.385 0.443
Medium C 0.331 0.379 — 0.377 0.444
Large W 0.346 0.404 0.339 0.402 0.446
Large C 0.350 0.362 0.343 0.361 0.438

OutLoop3

None 0.322 0.441 0.340 0.445 —
Small W 0.326 0.452 0.329 0.451 —
Small C 0.337 0.456 0.330 0.460 —
Medium W 0.335 0.428 0.317 0.441 —
Medium C 0.335 0.449 0.328 0.448 —
Large W 0.348 0.452 0.340 0.387 —
Large C — 0.438 0.986 0.429 —

OutLoop2

None 0.706 0.528 0.536 0.533 0.602
Small W 0.947 0.522 0.456 0.517 0.593
Small C 0.662 0.521 0.876 0.523 0.600
Medium W 0.793 0.545 0.720 0.522 0.605
Medium C 0.814 0.528 0.660 0.519 0.599
Large W 0.878 0.547 — 0.518 0.613
Large C — 0.506 0.698 0.526 0.595

OutLoop1

None — 0.468 1.996 0.377 —
Small W 5.439 0.430 33.013 0.328 —
Small C 0.365 0.323 1.075 0.331 —
Medium W — 0.443 3.027 0.320 —
Medium C 0.516 0.300 2.585 0.368 —
Large W — 0.502 0.346 0.488 —
Large C — — — 0.486 —

InfBehind

None 0.221 0.268 0.222 0.267 0.508
Small W 0.225 0.276 0.219 0.271 0.502
Small C 0.221 0.268 0.227 0.253 0.505
Medium W 0.220 0.298 0.237 0.284 0.526
Medium C 0.288 0.286 0.263 0.250 0.517
Large W 0.296 0.318 — 0.300 0.531
Large C — 0.310 0.482 0.281 0.525
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Fig. 16 Scatter plots showing ATE for the three representative methods against mirror quantities. ATE for sequences without a mirror
(removed or covered) were included to provide a baseline distribution for comparison to the sequences with a mirror.
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[14] Park, S.; Schöps, T.; Pollefeys, M. Illumination change
robustness in direct visual SLAM. In: Proceedings of
the IEEE International Conference on Robotics and
Automation, 4523–4530, 2017.

[15] Huang, J. W.; Liu, S. G. Robust simultaneous
localization and mapping in low-light environment.
Computer Animation and Virtual Worlds Vol. 30, Nos.
3–4, e1895, 2019.

[16] Huang, J. H.; Yang, S.; Zhao, Z. S.; Lai, Y. K.; Hu, S. M.
ClusterSLAM: A SLAM backend for simultaneous rigid
body clustering and motion estimation. Computational
Visual Media Vol. 7, No. 1, 87–101, 2021.

[17] Ma, P.; Bai, Y.; Zhu, J. N.; Wang, C. J.; Peng, C.
DSOD: DSO in dynamic environments. IEEE Access
Vol. 7, 178300–178309, 2019.

[18] Rabiee, S.; Biswas, J. IV-SLAM: Introspective
vision for simultaneous localization and mapping. In:
Proceedings of the 4th Conference on Robot Learning,
1100–1109, 2020.

[19] Zhou, H. Z.; Zou, D. P.; Pei, L.; Ying, R. D.;
Liu, P. L.; Yu, W. X. StructSLAM: Visual SLAM

with building structure lines. IEEE Transactions on
Vehicular Technology Vol. 64, No. 4, 1364–1375, 2015.

[20] Yousif, K.; Bab-Hadiashar, A.; Hoseinnezhad, R. 3D
SLAM in texture-less environments using rank order
statistics. Robotica Vol. 35, No. 4, 809–831, 2017.

[21] Whelan, T.; Salas-Moreno, R. F.; Glocker, B.; Davison,
A. J.; Leutenegger, S. ElasticFusion: Real-time dense
SLAM and light source estimation. The International
Journal of Robotics Research Vol. 35, No. 14, 1697–1716,
2016.

[22] Yang, N.; von Stumberg, L.; Wang, R.; Cremers, D.
D3VO: Deep depth, deep pose and deep uncertainty
for monocular visual odometry. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1278–1289, 2020.

[23] Tan, J. Q.; Lin, W. J.; Chang, A. X.; Savva,
M. Mirror3D: Depth refinement for mirror surfaces.
In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 15985–
15994, 2021.

[24] Park, D.; Park, Y. H. Identifying reflected images from
object detector in indoor environment utilizing depth
information. IEEE Robotics and Automation Letters
Vol. 6, No. 2, 635–642, 2020.

[25] Koch, R.; May, S.; Koch, P.; Kühn, M.; Nüchter, A.
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J. M.; D Tardós, J. ORB-SLAM3: An accurate open-
source library for visual, visual–inertial, and multimap
SLAM. IEEE Transactions on Robotics Vol. 37, No. 6,
1874–1890, 2021.

[80] Zhao, F. FangGet/bundlefusion ubuntu pangolin:
Aporting for bundlefusion working on ubuntu, with
Pangolin as Visualizer. 2020. Available at https://github.com/
FangGet/BundleFusion Ubuntu Pangolin.

[81] Zhang, Z. C.; Scaramuzza, D. A tutorial on quantitative
trajectory evaluation for visual (-inertial) odometry. In:
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 7244–7251, 2018.

[82] Havasi, L.; Szlavik, Z.; Sziranyi, T. The use of
vanishing point for the classification of reflections from
foreground mask in videos. IEEE Transactions on
Image Processing Vol. 18, No. 6, 1366–1372, 2009.

Peter Herbert has his B.Sc. degree
in mathematics from the University of
Manchester, UK, and his M.Sc. degree
in data science and analytics from
Cardiff University, UK. His current
research interests include computer
vision, machine learning, and robot
navigation.

Jing Wu is a lecturer in the School
of Computer Science and Informatics
at Cardiff University. Her research
interests are in computer vision and
visual analytics. She received her
B.Sc. and M.Sc. degrees from Nanjing
University, China, and her Ph.D. degree
from the University of York, UK. She

serves on the editorial board of Displays, and as a Programme
Committee member of CGVC, BMVC, etc.

Ze Ji received his B.Eng. degree from
Jilin University, China, M.Sc. degree
from the University of Birmingham, UK,
and Ph.D. degree from Cardiff University.
He is currently a senior lecturer in
the School of Engineering at Cardiff
University. Prior to his current position,
he worked in industry (Dyson, Lenovo,

etc.) on autonomous robotics. His research interests include
autonomous navigation, robot manipulation, robot learning,
simultaneous localization and mapping, and tactile sensing.

Yu-Kun Lai is a professor in the School
of Computer Science and Informatics,
Cardiff University. He received his
bachelor and Ph.D. degrees in computer
science from Tsinghua University, China,
in 2003 and 2008 respectively. His
research interests include computer
graphics, computer vision, geometric

modelling, and image processing.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	Visual SLAM methods
	Visual SLAM datasets
	Mirror detection

	Data collection
	Equipment and calibration
	Data capture
	Image sequences

	Experimental setting
	General questions
	Representative methods
	Evaluation metrics

	Results: visual SLAM with mirror presence
	Overview
	Pose estimation failures
	Need
	Loss of tracking
	Inverted motion and coincident pose estimation

	Localisation
	Approach
	Localisation error by sequence type
	Localisation error and mirror duration/ coverage
	Per-frame localisation error

	Mapping

	Discussion
	Localisation
	Reconstruction
	Future investigations

	Conclusions

