
The Journal of Geometric Analysis           (2024) 34:13 
https://doi.org/10.1007/s12220-023-01453-0

Stability of the Quermassintegral Inequalities in Hyperbolic
Space

Prachi Sahjwani1 · Julian Scheuer2

Received: 3 July 2023 / Accepted: 25 September 2023
© The Author(s) 2023

Abstract
For the quermassintegral inequalities of horospherically convex hypersurfaces in the
(n + 1)-dimensional hyperbolic space, where n ≥ 2, we prove a stability estimate
relating the Hausdorff distance to a geodesic sphere by the deficit in the quermassin-
tegral inequality. The exponent of the deficit is explicitly given and does not depend
on the dimension. The estimate is valid in the class of domains with upper and lower
bound on the inradius and an upper bound on a curvature quotient. This is achieved by
some new initial value-independent curvature estimates for locally constrained flows
of inverse type.
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1 Introduction

The isoperimetric inequality is a fundamental result in geometry that relates the volume
of a region in the Euclidean, or also in some non-flat spaces, to the surface area of its
boundary. In the Euclidean setting, among all bounded domains � ⊂ R

n+1, n ≥ 1,
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there holds

( |�|
ωn+1

) n
n+1 ≤ |∂�|

(n + 1)ωn+1
(1.1)

with equality only when � is a geodesic ball. Here ωn+1 is the volume of the (n + 1)-
dimensional unit ball and |·| stands for the Hausdorff measure of the appropriate
dimension. Equality in this inequality is attained if and only if � is a ball. Hence it is
natural to investigate the stability question, namely how close is � to a geodesic ball,
provided the deviation in (1.1) from the equality case is small. For the isoperimetric
inequality, this question has been addressed to great extent, e.g. [3, 4, 11] and we are
not attempting a more detailed overview here.

The quermassintegral inequalities are a generalization of the isoperimetric inequal-
ity. They are a collection of geometric inequalities that interrelate the coefficients in
the Steiner formula, which is the Taylor expansion of the volume of outer parallel
bodies of a convex body K ⊂ R

n+1,

vol(K + ρB) =
n+1∑
m=0

(
n + 1

m

)
Wm(K )ρm,

see [14, p. 208].
In the Euclidean space, the Wm can be expressed as curvature integrals and the

corresponding inequalities are written as follows:

(∫
∂�

Em−1

) n−m
n+1−m ≤ C

∫
∂�

Em,

where� ⊂ R
n+1 is a convex bounded domain and Em is the (normalized) elementary

degree m symmetric polynomial of principal curvatures of ∂� as an embedding in
R
n+1. The convexity assumption was relaxed to m-convex and starshaped in [7]. In

the convex class, the stability for the inequalities has been thoroughly investigated,
for example, in [6, 13], while in the non-convex case, the only available result seems
to be that of the second author [12]. The purpose of this paper is the transfer of such
investigations into the (n + 1)-dimensional hyperbolic space, where the quermass-
integral inequalities were proved by Wang/Xia for horospherically convex domains
[15, Thm. 1.1], by using a suitable curvature flow. They proved that if � is a bounded
smooth h-convex (i.e. all principal curvatures are greater than 1) domain inHn+1, then
there holds

Wm(�) ≥ fm ◦ f −1
l (Wl(�)), 0 ≤ l < m ≤ n. (1.2)

Equality holds if and only if� is a geodesic ball. HereWm is themth quermassintegral
in H

n+1 (see section 2 for the definition), fm(r) = Wm(Br ), and f −1
l is the inverse

function of fl . Hu/Li/Wei gave an alternative proof by using a different flow [10]. We
will review their method later, as we are going to use the same flow for our result.
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In this paper, we study the stability of these inequalities in the hyperbolic space. In
particular, we prove the following result, which controls the Hausdorff distance of an
h-convex hypersurface inHn+1 to a geodesic sphere by the deviation of the inequality
(1.2) from the equality case:

Theorem 1.1 Let n ≥ 2,� ⊂ H
n+1 be an h-convex domain, and 1 ≤ m ≤ n−1. Then

there exists a constant C = C (n, ρ−(�),max∂� Em/Em−1) and a geodesic sphere
SH such that

dist(∂�, SH) ≤ C
(
Wm+1(�) − fm+1 ◦ f −1

m (Wm(�))
) 1

m+2
. (1.3)

Here ρ−(�) is the inradius of the domain�. The dependence ofC on ρ−(�)means
that we neither control C when ρ−(�) tends to zero, nor when it tends to infinity.

Remark 1.2 (i) Note that the curvature dependence of C does allow for curvature
blowup in a certain sense. Namely, the quantity Em/Em−1 may remain bounded,
even if |A|2 becomesunbounded, as canbe seen from the examplen−1 = m = 2,
for which

E2

E1
= cn

κ1κ2 + κ1κ3 + κ2κ3

κ1 + κ2 + κ3

remains bounded, unless merely κ2 goes to infinity.
(ii) Also note that we do not assume ∂� to be nearly spherical, as it is done, for

example, in the recent paper [16], where the authors a priori assume W 2,∞
closeness to a sphere and obtain stability of the Fraenkel asymmetry.

In particular, from the previous theorem, we get an estimate in terms ofW2 andW1
with exponent 1/3, if we choose m = 1 and impose a bound on the mean curvature
H = nE1. It turns out that under the same assumption, we can extend this to arbitrary
m with the same exponent.

Theorem 1.3 Let n ≥ 2, � ⊂ H
n+1 be an h-convex domain, and 1 ≤ m ≤ n − 1.

Then there exists a constant C = C (n, ρ−(�),max∂� H) and a geodesic sphere SH
such that

dist(∂�, SH) ≤ C
(
Wm+1(�) − fm+1 ◦ f −1

m (Wm(�))
) 1

3
.

The idea of the proof combines two major inputs drawn from different directions.
The first one, which is also deeply involved in the actual proof of the quermassintegral
inequalities (1.2), is the use of a suitable curvature flow to be defined later, which
preservesWm(�) and decreasesWm+1(�). The flow exists for all times and converges
to a geodesic sphere. This proves the inequality. To characterize the equality case,
it is observed that Wm+1(�) is only strictly decreasing, when the traceless second
fundamental form is not zero. For the proof of (1.2), thiswas sufficient, but for the proof
of (1.3), we will make this quantitative and obtain an estimate on the traceless second
fundamental form. The second input is an estimate relating the Hausdorff distance to
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a geodesic sphere with the traceless second fundamental form. Such an estimate, in
the form in which we need it, is due to De-Rosa/Gioffré [2]. The combination of these
two ingredients will complete the proof.

After reviewing preliminaries in Sect. 2, we prove new a priori estimates for the
locally constrainedflowof h-convex hypersurfaces in Sect. 3,which are of independent
interest. In Sect. 4, we complete the proof.

2 Preliminaries

To study the curvature flowwhich is used to prove the quermassintegral inequality and
their stability, it is useful to view the pointed hyperbolic space H

n+1 as the warped
product manifold, coming from polar coordinates around a given origin o,

H
n+1\{o} = (0,∞) × S

n,

equipped with the metric

ḡ = dr2 + λ2(r)gSn ,

where λ(r) = sinh(r) and gSn is the standard round metric on the n-dimensional unit
sphere. We will also occasionally write 〈·, ·〉 for ḡ. In this paper, dHn+1 will always
denote the geodesic distance of two points in hyperbolic space, while

dist(K , L) = inf{δ > 0 : K ⊂ Bδ(L) ∧ L ⊂ Bδ(K )}

denotes the Hausdorff distance of two compact sets.
The vector field λ∂r on H

n+1 is a conformal Killing field, i.e.

∇(λ∂r ) = λ′ḡ,

where ∇ is the Levi-Civita connection of ḡ.
Let M be a smooth closed hypersurface in Hn+1 with outward unit normal ν, then

we define the support function of the hypersurface by

u = 〈λ(r)∂r , ν〉.

Writing (gi j ) for the metric induced on M with inverse (gi j ) and Levi-Civita connec-
tion ∇, hi j the second fundamental form and A = (hij ) = (gikhk j ) the Weingarten
operator, we have the following equation, which follows from the conformal Killing
property and the Weingarten equation:

∇i u = 〈λ∂r , ek〉hki , (2.1)

where e1, . . . , en is a basis of the tangent space of M .
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Using the change of variables,

r = log(2 + ρ) − log(2 − ρ), ρ ∈ (−2, 2),

we obtain

ḡ = e2φ
(
dρ2 + ρ2gSn

)
≡ e2φ g̃, (2.2)

where

e2φ = 16

(4 − ρ2)2
.

As a result, the hyperbolic space can now be viewed as a conformally flat space. We
will need a simple lemma about the surface area of a submanifold of Hn+1, when
viewed as a Euclidean submanifold.

Lemma 2.1 Let (M, g) be the embedding of a compact smooth manifold M intoHn+1

with

max
M

r ≤ �0.

Then the Euclidean conformal image M̃ in B2(0) as in (2.2) satisfies

1

C
|M̃| ≤ |M | ≤ C |M̃|,

with C = C(�0).

Proof We have with some local parametrization X : U → M ,

|M | =
∫
U

√
det gi j =

∫
U
enφ

√
det g̃i j =

∫
M̃
enφ

��
The notion of convexity by horospheres or short h-convexity is crucial for our result:

Definition 2.2 A smooth bounded domain � ⊆ H
n+1 is said to be h-convex, if the

principal curvatures of the boundary ∂� satisfy κi ≥ 1 for all i = 1, · · · , n. Then we
also call ∂� h-convex.

Such h-convex domains already enjoy a quite rigid geometry, and several of their
geometric quantities are already controlled by the inradius: Let ρ−(�) be the inradius
of �, i.e. the largest number, such that a ball of radius equal to that number fits into
�. Let o be the centre of that ball. In [1, Thm. 1], it is shown that

max
∂�

r = max
x∈∂�

dHn+1(o, x) ≤ ρ−(�) + log 2. (2.3)
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Furthermore, one can extract an estimate on the support function. Due to (2.1), where u
attains aminimum,∇r must be zero, since A is invertible. However,min∂� r = ρ−(�)

and hence

min
∂�

u = min
∂�

λ(r) = λ(ρ−(�)).

The h-convexity of a hypersurface ofHn+1 translates into convexity of the conformal
image:

Lemma 2.3 Let (M, g) be an h-convex hypersurface of Hn+1. Then its conformal
Euclidean image M̃ in B2(0) as in (2.2) is convex.

Proof We have

eφhij = h̃ij + dφ(ν̃)δij ,

see [5, Equ. (1.1.51)]. There holds

φ = log eφ = log 4 − log(4 − ρ2)

and hence

dφ = 2ρ

4 − ρ2 dρ,

which implies

h̃ij ≥ 4

4 − ρ2 h
i
j − 2ρ

4 − ρ2 δij ≥ 4 − 2ρ

4 − ρ2 δij = 2

2 + ρ
δij .

Hence the second fundamental form is positive definite. ��
Now we define the hyperbolic quermassintegrals. For any smooth body � in the

hyperbolic space H
n+1 with boundary M = ∂�, the kth quermassintegral Wk is

defined inductively as follows:

Wk+1(�) = 1

n + 1

∫
M
Ek(κ)dμ − k

n + 2 − k
Wk−1(�), k = 1, . . . , n − 1,

where

W0(�) = |�|, W1(�) = 1

n + 1
|M |.

Here Ek is the normalized elementary symmetric polynomial in n-variables κ =
(κ1, . . . , κn),

Ek(κ) = 1(n
k

) ∑
1≤i1≤···≤ik≤n

κi1 · · · κik .
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In this paper, we use the curvature functions

F(κi ) = Em

Em−1
, 1 ≤ m ≤ n − 1.

For us, only the properties on the positive cone�+ ⊂ R
n matter, where these functions

are monotone, i.e.

∂F

∂κi
> 0

and concave. We may also understand these functions as being defined on the
Weingarten operator, or on the second fundamental form and the metric,

F = F(κ) = F(hij ) = F(g, h).

Then we write

Fi j = ∂F

∂hi j

and there holds

Fi
j = ∂F

∂h j
i

= gkj F
ik .

We refer to [5, Ch. 2] for a thorough treatment.

3 New a Priori Estimates for the Locally Constrained Flow

Wang/Xia [15] proved the quermassintegral inequalities (1.2) in the hyperbolic space
by using the following flow: Let M0 = ∂� be a smooth, h-convex hypersurface in
H

n+1 with

X0 : Sn → M0 ↪→ H
n+1.

Then the flow is defined as

X : Sn × [0,∞) → H
n+1

∂

∂t
X(ξ, t) =

(
c(t) −

(
Ek

El

) 1
k−l

(x, t)

)
ν(ξ, t)

X(·, 0) = X0,

where ν is the outward normal to the hypersurface, and c(t) is chosen such that the
lth quermassintegral is preserved under this flow.
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The same inequality (1.2)was proved byHu/Li/Wei [10]where they used a different
flow:

∂

∂t
X(ξ, t) =

(
λ′(r)
F

− u

)
ν(ξ, t)

X(·, 0) = X0,

(3.1)

with the notation from Sect. 2. This flow preserves the mth quermassintegral Wm(�t )

and decreases Wm+1(�t ) monotonically.
We will quantify the proofs from [9] and [10] and employ the flow (3.1) to extract

information on the size of the traceless second fundamental form. To exploit this fur-
ther, we will use the result from De Rosa/Gioffrè’s paper [2]. The closeness of the
hypersurface to a geodesic sphere can be controlled by the L p norm of the trace-
less second fundamental form Å, whenever Å is small. Their result is only for the
Euclidean space; however, we note that up to a term coming from the conformal fac-
tor, the traceless second fundamental form is conformally invariant, and hence, the
umbilicity in the Euclidean and the hyperbolic space is comparable. We will point out
the necessary details whenever appropriate. We will also need some refined curvature
estimates, which do not depend on their initial values. Therefore, we require some
evolution equations and additional a priori estimates, which we develop in the sequel.

It is known that the flow (3.1) has arbitrary spheres as barriers, i.e. for all (t, ξ) ∈
[0,∞) × S

n there holds due to (2.3),

ρ−(�) = min
∂�

r ≤ r(ξ, t) ≤ max
∂�

r ≤ ρ−(�) + log 2. (3.2)

Since the flow preserves the h-convexity, we also obtain a uniform C1-bound via

λ(ρ−(�)) ≤ u(ξ, t) ≤ λ(r(ξ, t)) ≤ λ(ρ−(�) + log 2) ≤ eρ−(�).

Let us define the operator

L = ∂t − λ′

F2 F
i j∇2

i j − 〈λ∂r ,∇(·)〉.

Lemma 3.1 Along the flow (3.1), the inducedmetric g = (gi j )and second fundamental
form (hi j ) satisfy the following equations, see [10, Lemma 3.1]

∂t gi j = 2

(
λ′(r)
F

− u

)
hi j ;

Lhi j = λ′

F2 F
kl,pq∇i hkl∇ j h pq −

(
λ′

F
+ u

)
gi j − 2u(h2)i j

+ 1

F

(
∇ j F∇i (

λ′

F
) + ∇i F∇ j (

λ′

F
)

)

+
(
u

F
+ λ′ + λ′

F2 F
kl(hrkh

r
l + gkl)

)
hi j .
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Lemma 3.2 The curvature function F satisfies

LF = (1 − Fi j gi j )u + λ′
F (F2 − Fi j (h2)i j ) + 2

F Fi j∇i F∇ j

(
λ′
F

)
.

Proof We use F = F(hi j , gi j ), Lemma 3.1 and [5, Equ. (2.1.150)] to compute

LF = Fi j∂t hi j + ∂F

∂gi j
∂t gi j − λ′

F2 F
i j∇i j F − 〈λ∂r ,∇F〉

= Fi j∂t hi j − 2Fikh j
k hi j

(
λ′

F
− u

)
− λ′

F2 F
i j Fkl∇klhi j

− λ′

F2 F
i j Fkl,rs∇i hkl∇ j hrs − 〈λ∂r ,∇F〉

= Fi jLhi j − 2Fikh j
k hi j

(
λ′

F
− u

)
− λ′

F2 F
i j Fkl,rs∇i hkl∇ j hrs

= −Fi j
(

λ′

F
+ u

)
gi j + 2

F
Fi j∇i F∇ j

(
λ′

F

)

+
(
u + λ′F + λ′

F
Fkl(hrkh

r
l + gkl)

)
− 2

λ′

F
Fikh j

k hi j

= (1 − Fi j gi j )u + λ′

F
(F2 − Fi j (h2)i j ) + 2

F
Fi j∇i F∇ j

(
λ′

F

)
.

��
Corollary 3.3 Along the flow (3.1), the curvature function satisfies the estimate

1 ≤ F ≤ max
t=0

F .

Proof The lower bound follows immediately from the h-convexity and the mono-
tonicity of F . For the upper bound, we use the estimates from [10, Cor. 2.3], which
give

F2 ≤ Fi j hikh
k
j ≤ (n + 1 − m)F2, 1 ≤ Fi j gi j ≤ m.

We conclude that at maximal points of F , we have LF ≤ 0 and the result follows
from the maximum principle.

Lemma 3.4 Along the flow (3.1), the mean curvature H = gi j hi j evolves as follows.

LH = λ′

F2 F
kl,pq∇i hkl∇ i h pq − n

(
λ′

F
+ u

)
− 2λ′

F3 |∇F |2 + 2

F2∇iλ
′∇ i F

+
(
u

F
+ λ′ + λ′

F2 F
kl(hrkh

r
l + gkl)

)
H − 2

λ′

F
|A|2.

123



   13 Page 10 of 14 P. Sahjwani, J. Scheuer

Proof Using the evolution of gi j , we can easily find the evolution of gi j ,

∂

∂t
gi j = −2g jkgil

(
λ′

F
− u

)
hkl .

Hence

LH = gi jLhi j − 2

(
λ′

F
− u

)
|A|2

= λ′

F2 F
kl,pq∇i hkl∇ i h pq − n

(
λ′

F
+ u

)

+ 1

F

(
∇ i F∇i (

λ′

F
) + ∇i F∇ i (

λ′

F
)

)

+
(
u

F
+ λ′ + λ′

F2 F
kl(hrkh

r
l + gkl)

)
H − 2

λ′

F
|A|2

= λ′

F2 F
kl,pq∇i hkl∇ i h pq − n

(
λ′

F
+ u

)
− 2λ′

F3 |∇F |2 + 2

F2∇iλ
′∇ i F

+
(
u

F
+ λ′ + λ′

F2 F
kl(hrkh

r
l + gkl)

)
H − 2

λ′

F
|A|2.

��

Corollary 3.5 Along the flow (3.1) and up to time t = 1, the curvature function satisfies
the estimate

n ≤ H ≤ C(n, ρ−(�),maxM0 F)

t
.

Proof We proceed similarly to the proof of Corollary 3.3. At maximal points of H ,
we have, using |A|2 ≥ H2/n and the concavity of F ,

LH ≤ −n

(
λ′

F
+ u

)
− 2λ′

F3 |∇F |2 + 2

F2∇iλ
′∇ i F

+
(
u

F
+ λ′ + λ′

F2 F
kl(hrkh

r
l + gkl)

)
H − 2

n

λ′

F
H2

≤ C − 1

nF
H2

≤ C − 1

C
H2,

where in the last step, we used Corollary 3.3. We have also used Cauchy-Schwarz to
absorb ∇F and first-order terms in H . The result again follows from a simple ODE
comparison argument. ��
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4 Proof of Theorems 1.1 and 1.3

In this section, we prove Theorem 1.1. In the following proof, we take C =
C (n, ρ−(�),max∂� F) to be a generic constant depending on the quantities men-
tioned.

Proof Let ε > 0 be such that

Wm+1(�) = fm+1 ◦ f −1
m (Wm(�)) + ε.

Let ρ−(�) be the inradius of� and pick the origin o as the centre of the corresponding
inball. Under the flow (3.1) with initial surface ∂�, Wm+1(�t ) evolves as (see [15,
Prop. 3.1] for details)

∂

∂t
Wm+1(�t ) = n − m

n + 1

∫
Mt

(
λ′(r) Em−1

Em
− u

)
Em+1,

where Mt = ∂�t . We compute

∫ ∞

0

∫
Mt

λ′
(
Em+1Em−1

Em
− Em

)
=

∫ ∞

0

∫
Mt

(
λ′Em−1

Em
− u

)
Em+1

= n + 1

n − m

∫ ∞

0

∂

∂t
Wm+1(�t ) dt

= n + 1

n − m
(Wm+1(B) − Wm+1(�))

= − n + 1

n − m
ε. (4.1)

In the first line of this calculation, we have used the Minkowski formula proved, for
example, in Guan/Li [8]

∫
Mt

λ′(r)Em =
∫
Mt

uEm+1.

We have also used that � converges to a round ball at infinite time, �∞ = B where
(1.2) holds with equality, and Wm is preserved under the flow, Wm(B) = Wm(�).
Along the flow, we have

−λ(r) ≤ λ′(r)
F

− λ(r)

v
≤ λ′(r)

and hence, using λ ≤ λ′,
∣∣∣∣λ

′(r)
F

− u

∣∣∣∣ ≤ λ′(max
∂�

r) ≤ cosh(ρ−(�) + log 2) ≤ 2 cosh(ρ−(�)), (4.2)
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where we used (3.2) and [1, Thm. 1].
Using the above bound, we want to estimate the Hausdorff distance between Mt

and M0 = ∂�. Let X(ξ, 0) and X(ξ, t) be two points in M0 and Mt , respectively. Let
γ : [0, t] → H

n+1 be a curve defined as

γ (τ) = X(ξ, τ ).

Then we have due to (4.2),

dHn+1(X(ξ, 0), X(ξ, t)) ≤ max[0,t] |∂τ γ |t ≤ 2 cosh(ρ−(�))t .

From this, we get

dist(Mt , ∂�) ≤ Ct, ∀t ≥ 0.

From (4.1) and λ′ ≥ 1, we get

∫ ∞

0

∫
Mt

(
Em − Em+1Em−1

Em

)
≤ n + 1

n − m
ε.

Then using [12, Lemma 4.2] and Corollary 3.5, we get for δ > 0,

∫ 2δ

δ

∫
Mt

| Å|2 ≤ C max[δ,2δ] Em−1
∫ 2δ
δ

∫
Mt

E2
m+1,n1| Å|2

Em
≤ C

δm−1 ε, (4.3)

where we also used E2
m+1,i j = ∂2Em+1

∂κiκ j
≥ 1. Hence there exists tδ ∈ [δ, 2δ], such that

‖ Å‖L2(Mtδ ) ≤ Cδ
−m

2
√

ε.

Now put

δ = ε
1

m+2

to obtain

dist(Mtδ , ∂�) + ‖ Å‖L2(Mtδ ) ≤ Cε
1

m+2 . (4.4)

In order to apply [2, Thm. 1.2], we view Mtδ as a Riemannian submanifold of the
Euclidean ball of radius 2, which is conformal toHn+1 as in (2.2). Due to Lemma 2.3
and furnishing the Euclidean geometric tensors by a tilde, we see that M̃tδ is convex.
Now we have to normalize M̃tδ ,

M̂tδ =
(

|Sn|
|M̃tδ |

) 1
n

M̃tδ ≡ γ M̃tδ .
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Note that |Mtδ | is controlled from above and below in terms of ρ−(�), due to the
convergence of the surface area-preserving curvature flow

∂

∂t
X =

(
λ′

E1
− u

)
ν,

which converges to a geodesic sphere with radius between ρ−(�) and ρ−(�)+ log 2.
Due to Lemma 2.1, we have γ = γ (n, ρ−(�)). [2, Thm. 1.2] gives, provided that
ε ≤ ε0(n, ρ−(�),max∂� F) with ε0 sufficiently small, a parametrization

ψ : Sn → M̂tδ ⊂ B2(0) ⊂ R
n+1

and a point O ∈ R
n+1, such that ψ satisfies the estimate

‖ψ − id−O‖W 2,2(Sn) ≤ C‖ ˚̂A‖L2(M̂tδ )
≤ C‖ Å‖L2(Mtδ ) ≤ Cε

1
m+2 .

This implies that M̂tδ is Hausdorff-close to the Euclidean unit sphere, that M̃tδ is close
to a Euclidean sphere of radius γ −1 and that in turn Mtδ is close to a hyperbolic sphere,
with exactly the same error estimate,

dist(Mtδ , SH) ≤ Cε
1

m+2 .

Employing (4.4) finishes the proof for ε ≤ ε0. However, if ε > ε0, the estimate is
trivial due to

max
∂�

r ≤ ρ−(�) + log 2.

To prove Theorem 1.3, we reconvene at (4.3) and do not estimate max Em using
Corollary 3.5, but the constant itself is now allowed to depend on H . Hence the factor
δ−m+1 is simply not present and in the subsequent computations, we can pretend m
would be one. The proof can then literally be completed as above. ��
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