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Summary of thesis

This PhD thesis details the work undertaken at Cardi� University on the quantum
enhanced spacetime (QUEST) experiment and at laser interferometer gravitational-
wave observatory (LIGO) Livingston, and it is structured as follows. Chapter one
gives an overview of the theory about the three major science goals for the QUEST
experiment: quantum gravity, high frequency gravitational waves and scalar �eld
dark matter. Chapter two is a review of the foundational scienti�c principles and
experimental methods used throughout the thesis. Chapter three is dedicated to
describing the QUEST experiment, from the design to the commissioning up to the
last results achieved at the time of writing. Chapter four describes the output mode
cleaner (OMC), an optical cavity in the detection path of QUEST which facilitates
the use of high power and is essential for QUEST’s unprecedented sensitivity level
goal. It was designed from �rst principles and has been brought to completion
with a working control loop and comprehensive characterisation. Chapter �ve is
related to a four month fellowship at LIGO Livingston. The project goal was to
develop a new method of acquiring the science laser vs X-arm length error signal
by cancelling the frequency noise introduced by an optical �ber. New �ber optic
breadboards were designed and installed in the per-stabilised laser enclosure and the
x-end station during the fellowship and the results do show promise. I am the joint
�rst PhD student to graduate on QUEST. The other, Sander Vermeulen, worked
on the data acquisition for QUEST. The Covid-19 lockdowns somewhat impacted
my work. As an experimentalist, losing access to the lab for several weeks certainly
delayed progress. Nonetheless, projects were su�ciently concluded to graduate.

{ iv {



Statement of work

The following lists specify my contributions to the research described in this thesis.
Unless stated, each activity was either conduced entirely/mostly independently.

QUEST general

• Assisted with the installation of the optical benches

• Wrote the laser operation instruction manual

• Wrote the interlock instruction manual

• Decided on, bought and installed the laminar ow bench

• Assisted with deep cleaning of the lab a few times

QUEST experimental work

• Optical component characterisation: Faraday isolators, mirrors etc (alongside
Dr Lorenzo Aiello)

• Laser characterisation: Beam pro�ling, power stabilisation, relative intensity
noise assessment (alongside Dr Lorenzo Aiello)

• Prototype stages: Fabry-Perot cavity and Michelson interferometer (alongside
Dr Lorenzo Aiello)

• Glued mirrors to the PZTs (alongside Dr Lorenzo Aiello)

• Soldered PZT cables to BNC connectors (alongside Dr Lorenzo Aiello)

• Redesigned a component of the \Little Input Mode Cleaner" from Caltech

• Built the \Little Input Mode Cleaner" from Caltech

• Developed Gaussian beam modelling Matlab script with focus on mode match-
ing telescope solution generation

• Assisted in lock scheme design

• Assisted in lock commissioning

• Attempted correction of longitudinal to angular coupling

• Designed the mode matching telescope - con�rming results against an inde-
pendent method used by Dr Lorenzo Aiello

• Assisted with optical positioning and tuning

{ v {



• Design of the CDS loop control overview screen

QUEST beam dumps

• Optical design

• Base designed, full 3D model

• Chose the glass

• Cut the glass

• Cleaned the glass (with help from Terri Pearce)

• Beam dump construction

• Attempted characterisation | limited by power meter sensitivity (no power
was detected anywhere around the dumps)

Output Mode Cleaner

• Entire design from �rst principles, optics, actuator, geometry, everything

• Lock loop design

• Lock loop construction (in CDS)

• Lock loop commissioning (with help from Dr Eyal Schwartz, Dr Lorenzo Aiello
and Dr Aldo Ejlli)

• OMC characterisation

• Breadboard design

• Breadboard construction

• Mode matching telescope(s) design, placement and tuning

• Housing design, full 3D model(s)

• Gluing of mirrors

• Soldering actuator wires

• Design of the CDS loop control overview screen

LIGO

• Design of �bre breadboard (with Dr Adam Mullavey)

• Construction of �bre breadboard

• Testing of �bre breadboard

• Characterisation of PDs

• Installation of breadboards in end chamber and main laser enclosure (with Dr
Adam Mullavey)

{ vi {



Contents

Introduction 2

1 Fundamental physics with table-top interferometers 6

1.1 Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Light cones and causal diamonds . . . . . . . . . . . . . . . . 7

1.1.2 Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Reality check . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.4 Measuring quantum gravity e�ects at horizons and length uc-
tuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.5 Signal con�rmation . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Wave solution to Einstein’s equations in the weak �eld limit . 14

1.2.2 Towards gravitational wave detection . . . . . . . . . . . . . . 15

1.2.3 Length uctuations | Strain . . . . . . . . . . . . . . . . . . 17

1.2.4 Gravitational wave frequency . . . . . . . . . . . . . . . . . . 17

1.3 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Scalar �elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Fluctuations in fundamental constants . . . . . . . . . . . . . 19

1.3.3 Length uctuations . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.4 Signal searches . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 The Michelson Interferometer . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.2 Shot-noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.3 Radiation pressure . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.4 Standard quantum limit . . . . . . . . . . . . . . . . . . . . . 26

1.4.5 Co-located Michelson interferometers . . . . . . . . . . . . . . 27

1.5 The quantum enhanced spacetime experiment . . . . . . . . . . . . . 28

2 From theory to experiment 30

2.1 Field propagation of the Michelson interferometer . . . . . . . . . . . 30

2.1.1 Signal sidebands by phase modulation . . . . . . . . . . . . . 34

2.2 Gaussian laser beam properties . . . . . . . . . . . . . . . . . . . . . 35

2.3 Optical cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Electric �elds around a cavity . . . . . . . . . . . . . . . . . . 39

2.3.2 Cavity geometry . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Resonance and Finesse . . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Frequency reference . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.5 Spacial mode �ltering . . . . . . . . . . . . . . . . . . . . . . 44

{ vii {



2.3.6 Low-pass �lter . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.7 Higher order mode generation . . . . . . . . . . . . . . . . . . 46

2.4 Modelling Gaussian beams . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.1 Mode-matching telescope solution . . . . . . . . . . . . . . . 50

2.5 The power-recycled Michelson interferometer . . . . . . . . . . . . . 52
2.6 Control loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.6.1 Transfer functions and their measurements . . . . . . . . . . 57
2.6.2 Noise, noise budget and noise projection . . . . . . . . . . . . 60
2.6.3 RIN suppression example . . . . . . . . . . . . . . . . . . . . 61

2.7 Signal read-out with interferometers . . . . . . . . . . . . . . . . . . 64
2.7.1 Heterodyne detection . . . . . . . . . . . . . . . . . . . . . . 66
2.7.2 Homodyne detection . . . . . . . . . . . . . . . . . . . . . . . 67
2.7.3 For the Michelson interferometer . . . . . . . . . . . . . . . . 67

2.8 The contrast defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.9 Pound{Drever{Hall locking . . . . . . . . . . . . . . . . . . . . . . . 71
2.10 Dither locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.10.1 Isolating noise and maximising the error . . . . . . . . . . . . 75
2.11 V shaped ba�e beam dumps . . . . . . . . . . . . . . . . . . . . . . 76

2.11.1 The physics of beam dumps . . . . . . . . . . . . . . . . . . . 78
2.11.2 Ba�e design . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.11.3 Further analysis of powers . . . . . . . . . . . . . . . . . . . . 85
2.11.4 QUEST's beam dumps . . . . . . . . . . . . . . . . . . . . . . 87

3 The QUEST Experiment 90
3.1 Sensitivity goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2 Comparisons to similar experiments . . . . . . . . . . . . . . . . . . 92

3.2.1 Gravitational wave detectors . . . . . . . . . . . . . . . . . . 92
3.2.2 Fermilab Holometer . . . . . . . . . . . . . . . . . . . . . . . 93
3.2.3 High frequency gravitational wave detectors . . . . . . . . . . 94

3.3 From the empty lab to QUEST . . . . . . . . . . . . . . . . . . . . . 96
3.3.1 Laser beam pro�le characterisation . . . . . . . . . . . . . . . 96
3.3.2 Prototype stages . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 QUEST's design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.4.1 AMY and BOB . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.4.2 Co-located . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.4.3 The power-recycled Michelson interferometers . . . . . . . . . 103
3.4.4 Bench layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.4.5 The injection breadboards . . . . . . . . . . . . . . . . . . . . 105
3.4.6 Vacuum chambers . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.7 The lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.8 The end test mass actuators . . . . . . . . . . . . . . . . . . . 109
3.4.9 Interferometer mirrors . . . . . . . . . . . . . . . . . . . . . . 110
3.4.10 Mode matching telescopes and lenses . . . . . . . . . . . . . . 112
3.4.11 Contrast defect at QUEST . . . . . . . . . . . . . . . . . . . 112
3.4.12 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.13 Squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.14 Scienti�c data acquisition . . . . . . . . . . . . . . . . . . . . 114

3.5 QUEST's lock scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.5.1 Lock acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 116

{ viii {



3.5.2 DC lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.5.3 Locking interface . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.4 Angular to longitudinal control coupling . . . . . . . . . . . . 122

3.6 Loop characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.7 The lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.8 QUEST Sensitivity (model) . . . . . . . . . . . . . . . . . . . . . . . 126
3.9 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 128

4 The Output Mode Cleaner 130
4.1 Motivation for the OMC . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2.2 Finesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2.3 Angle of incidence . . . . . . . . . . . . . . . . . . . . . . . . 140
4.2.4 Cavity Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.2.5 Vacuum requirement analysis . . . . . . . . . . . . . . . . . . 144
4.2.6 Housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.2.7 The OMC actuator . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2.8 Design speci�cations summary . . . . . . . . . . . . . . . . . 150

4.3 Detection breadboard . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.4 OMC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.4.1 Lock acquisition and auto-scan . . . . . . . . . . . . . . . . . 154
4.5 Loop characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.5.1 Loop electronics . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.5.2 First servo design . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.5.3 Final loop transfer functions . . . . . . . . . . . . . . . . . . 158
4.5.4 Maximising the error signal . . . . . . . . . . . . . . . . . . . 160

4.6 The lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.6.1 OMC lock test with a polarising beam splitter . . . . . . . . 163
4.6.2 Further ambient condition test . . . . . . . . . . . . . . . . . 166

4.7 OMC characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.7.1 Mirror reectivity . . . . . . . . . . . . . . . . . . . . . . . . 169
4.7.2 Length scan analysis . . . . . . . . . . . . . . . . . . . . . . . 170
4.7.3 OMC losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.8 Commissioning lessons . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5 Fibre noise cancellation method for constructing an X-arm vs sci-
ence laser error signal at LIGO 180
5.1 Advanced LIGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.2 Fibre noise cancellation method . . . . . . . . . . . . . . . . . . . . . 185

5.2.1 Fibre noise cancellation at LIGO . . . . . . . . . . . . . . . . 187
5.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.3 The work undertaken . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.3.1 The breadboard(s) design . . . . . . . . . . . . . . . . . . . . 190
5.3.2 The photodetectors . . . . . . . . . . . . . . . . . . . . . . . . 191
5.3.3 Installing the breadboards . . . . . . . . . . . . . . . . . . . . 193

5.4 Results for the �bre noise cancellation scheme . . . . . . . . . . . . . 194
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

{ ix {



6 Conclusion and outlook 198
6.1 QUEST and the OMC . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.1.1 Future work | QUEST . . . . . . . . . . . . . . . . . . . . . 199
6.1.2 Future work | The OMC . . . . . . . . . . . . . . . . . . . . 200

6.2 LIGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.2.1 Future work | LIGO . . . . . . . . . . . . . . . . . . . . . . 202

Appendix 204

A CDS and models in Simulink 206
A.1 CDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
A.2 SIMULINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B Quarter waveplate argument 214

C Mechanical dimensions 218
C.1 Beam dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
C.2 Gluing jig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.3 OMC housing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

{ x {



List of Figures

1.1 The light cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The causal diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The light sheet/horizon of the Michelson interferometer . . . . . . . 9
1.4 Representation of the e�ect a gravitational wave has on a test mass

ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Unequal passes through a beam splitter of the X and Y �elds . . . . 20
1.6 Simple Michelson interferometer . . . . . . . . . . . . . . . . . . . . 23
1.7 Power at the anti-symmetric port as a function of di�erential-mode

arm length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.8 Overlapping horizons of independent Michelson interferometers . . . 28

2.1 The electromagnetic �elds of the interferometer . . . . . . . . . . . . 31
2.2 Intensity distributions of the Hermite-Gaussian modes . . . . . . . . 36
2.3 Amplitude distributions of the Hermite-Gaussian modes . . . . . . . 37
2.4 Geometry of the Gaussian beam . . . . . . . . . . . . . . . . . . . . 38
2.5 Electric �elds of the Fabry-P�erot cavity . . . . . . . . . . . . . . . . 39
2.6 Optical cavity geometries . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7 Powers around the Fabry-P�erot cavity as a function of cavity length 42
2.8 Cavity power variations as a function of cavity couplings . . . . . . . 43
2.9 Cavity misalignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.10 Steering mirrors and the beam walk . . . . . . . . . . . . . . . . . . 47
2.11 Mode-matching examples . . . . . . . . . . . . . . . . . . . . . . . . 48
2.12 q-parameters around a Fabry-P�erot cavity . . . . . . . . . . . . . . . 50
2.13 Mode-matching telescope model . . . . . . . . . . . . . . . . . . . . . 51
2.14 The power-recycled Michelson interferometer . . . . . . . . . . . . . 53
2.15 Simple control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.16 Simple control loop with noise input . . . . . . . . . . . . . . . . . . 56
2.17 Bode plots of high and low-pass �lters . . . . . . . . . . . . . . . . . 58
2.18 Bode plots of various �lter combinations . . . . . . . . . . . . . . . . 59
2.19 Measuring the open loop transfer function . . . . . . . . . . . . . . . 59
2.20 Laser power noise suppression loop . . . . . . . . . . . . . . . . . . . 61
2.21 Bode plots for laser power stabilisation loop . . . . . . . . . . . . . . 62
2.22 Noise budget and result of laser power suppression loop . . . . . . . 64
2.23 Detecting mirror displacement using local oscillator . . . . . . . . . . 65
2.24 Common readout techniques for the interferometer . . . . . . . . . . 68
2.25 Contrast defect at the anti-symmetric port . . . . . . . . . . . . . . 70
2.26 Phases around the Fabry-P�erot cavity as a function of cavity length 71
2.27 Pound{Drever{Hall error signal . . . . . . . . . . . . . . . . . . . . . 73

{ xi {



2.28 Comparison between the transmission peak of a cavity and a parabola 74
2.29 Three common beam dumps . . . . . . . . . . . . . . . . . . . . . . . 76
2.30 QUEST's glass beam dumps 3D model . . . . . . . . . . . . . . . . . 77
2.31 Reection beam cross-sectional area . . . . . . . . . . . . . . . . . . 79
2.32 Transmission beam cross-sectional area . . . . . . . . . . . . . . . . . 80
2.33 Brewster's angle de�nition . . . . . . . . . . . . . . . . . . . . . . . . 82
2.34 BRDF analysis of various glass options . . . . . . . . . . . . . . . . . 83
2.35 Interior angles of the V-shaped beam dump . . . . . . . . . . . . . . 83
2.36 Power in reection of the dump, for both polarisations . . . . . . . . 85
2.37 Beam propagation through two pieces of glass . . . . . . . . . . . . . 86
2.38 Overall power in reection and transmission of the V-shaped beam

dumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.39 The beam dump glass preparation . . . . . . . . . . . . . . . . . . . 88
2.40 The beam dumps in use . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.1 QUEST design sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2 Synchronous recycling interferometer . . . . . . . . . . . . . . . . . . 95
3.3 Knife-edge characterisation data at two distances . . . . . . . . . . . 97
3.4 Measured beam radii as a function of distance . . . . . . . . . . . . . 98
3.5 Fabry-P�erot prototype Finesse . . . . . . . . . . . . . . . . . . . . . 99
3.6 Fringe lock of prototype Michelson interferometer . . . . . . . . . . . 100
3.7 Sensitivity curve for prototype Michelson interferometer . . . . . . . 101
3.8 QUEST's experimental layout . . . . . . . . . . . . . . . . . . . . . . 102
3.9 The layout of QUEST . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.10 Injection breadboard layout . . . . . . . . . . . . . . . . . . . . . . . 106
3.11 The vacuum chambers of QUEST . . . . . . . . . . . . . . . . . . . . 107
3.12 Vacuum pipe connecting vacuum chamber of QUEST . . . . . . . . 108
3.13 The ETM mounts and actuators . . . . . . . . . . . . . . . . . . . . 110
3.14 End test mass PZT locations . . . . . . . . . . . . . . . . . . . . . . 110
3.15 Characterisation of high reectivity optics . . . . . . . . . . . . . . . 111
3.16 Data acquisition signal ow . . . . . . . . . . . . . . . . . . . . . . . 115
3.17 QUEST lock acquisition layout . . . . . . . . . . . . . . . . . . . . . 117
3.18 Pound{Drever{Hall error signal o�set . . . . . . . . . . . . . . . . . 118
3.19 Anti-symmetric port pick-o� . . . . . . . . . . . . . . . . . . . . . . 120
3.20 LSC overview screen . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.21 Signal ow for the three �lter bank stages in LSC . . . . . . . . . . . 122
3.22 Longitudinal to angular coupling . . . . . . . . . . . . . . . . . . . . 123
3.23 Open loop transfer function of QUEST's DARM loop during DC lock 124
3.24 2-minutes of DC lock . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.25 Weekend DC lock data from the X-arm transmission photodetector . 126
3.26 Noise budget for QUEST sensitivity measurement . . . . . . . . . . 127
3.27 Measured displacement sensitivity curve for one of QUEST's power-

recycled Michelson interferometers . . . . . . . . . . . . . . . . . . . 128

4.1 Photos of the OMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2 Transmission of modes from the OMC . . . . . . . . . . . . . . . . . 132
4.3 Higher order mode transmission of triangular cavity as a function of

cavity g-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.4 The lengths of the linear and triangular cavities . . . . . . . . . . . . 139
4.5 BRDF vs. angle of incidence . . . . . . . . . . . . . . . . . . . . . . 140

{ xii {



4.6 OMC angles and lengths . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.7 Angle of incidence on the concave mirror, and how it inuences spot

position within the OMC . . . . . . . . . . . . . . . . . . . . . . . . 143
4.8 Index of refraction of air changing with pressure and temperature . . 145
4.9 Bandwidth as a function of round-trip-length . . . . . . . . . . . . . 146
4.10 OMC original housing . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.11 OMC updated housing . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.12 The OMC actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.13 Actuator resonance as a function of load . . . . . . . . . . . . . . . . 149
4.14 Actuator hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.15 Detection breadboard layout . . . . . . . . . . . . . . . . . . . . . . 151
4.16 OMC control overview screen . . . . . . . . . . . . . . . . . . . . . . 153
4.17 OMC lock sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.18 OMC electronic circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.19 PZT and CDS RC circuit transfer functions . . . . . . . . . . . . . . 156
4.20 OMC dither lock control loop . . . . . . . . . . . . . . . . . . . . . . 158
4.21 Measured transfer functions of the OMC dither loop . . . . . . . . . 159
4.22 Measured and modelled transfer functions of the OMC dither loop . 160
4.23 Error point spectra with tuning demodulation phase . . . . . . . . . 161
4.24 Four days of OMC lock . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.25 Test setup for the four day lock . . . . . . . . . . . . . . . . . . . . . 163
4.26 Polarisation stability test setup . . . . . . . . . . . . . . . . . . . . . 164
4.27 Polarisation stability test results . . . . . . . . . . . . . . . . . . . . 165
4.28 Polarisation stability test spectra . . . . . . . . . . . . . . . . . . . . 165
4.29 Weekend ambient condition test - Control signal . . . . . . . . . . . 166
4.30 Weekend ambient condition test - Actuator signal . . . . . . . . . . . 167
4.31 Weekend ambient condition test - Transmission signal . . . . . . . . 167
4.32 Weekend ambient condition test - Error signal . . . . . . . . . . . . . 168
4.33 Isolating frequencies in the spectra . . . . . . . . . . . . . . . . . . . 169
4.34 OMC length scan - transmission peaks and actuator voltage . . . . . 170
4.35 Actuator voltages for resonances identi�cation . . . . . . . . . . . . . 171
4.36 Transmission peak bandwidth �t . . . . . . . . . . . . . . . . . . . . 172
4.37 OMC scan with higher order modes identi�ed . . . . . . . . . . . . . 174
4.38 OMC transmission throughput . . . . . . . . . . . . . . . . . . . . . 175
4.39 OMC length scan with 45� linearly polarised input light . . . . . . . 176
4.40 Laser frequency hop regions as a function of crystal temperature . . 177
4.41 OMC length scan with dual fundamental resonance and poor input

polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.1 The 5 longitudinal degrees of freedom for Advanced LIGO . . . . . . 181
5.2 Layout of the arm length stabilisation system . . . . . . . . . . . . . 183
5.3 Proof of concept experimental layout . . . . . . . . . . . . . . . . . . 185
5.4 Proof of concept results . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.5 Modi�ed layout of the arm length stabilisation system . . . . . . . . 188
5.6 Advanced LIGO lock scheme ow charts . . . . . . . . . . . . . . . . 189
5.7 The �bre breadboard layout . . . . . . . . . . . . . . . . . . . . . . . 190
5.8 Photodetector volts to watts conversion . . . . . . . . . . . . . . . . 192
5.9 Photodetector shot noise limit test layout . . . . . . . . . . . . . . . 192
5.10 Photodiode shot noise limit required power . . . . . . . . . . . . . . 193

{ xiii {



5.11 Fibre breadboards installed in the science laser enclosure and the X-
end station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.12 Fibre-quarter waveplate paddle . . . . . . . . . . . . . . . . . . . . . 194
5.13 Fibre cancellation method results . . . . . . . . . . . . . . . . . . . . 195

A.1 CDS with whitening and de-whitening �lters . . . . . . . . . . . . . 207
A.2 Nyquist frequency example . . . . . . . . . . . . . . . . . . . . . . . 207
A.3 OMC Michelson interferometer speci�c Simulink model . . . . . . . 209
A.4 Simulink model for OMC lock . . . . . . . . . . . . . . . . . . . . . . 211
A.5 OMC Simulink model DEMOD box . . . . . . . . . . . . . . . . . . 211
A.6 OMC Simulink model AUTOSCAN box . . . . . . . . . . . . . . . . 212
A.7 Filter bank screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

C.1 The beam dump platform dimensions . . . . . . . . . . . . . . . . . 218
C.2 The jig dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
C.3 The OMC housing dimensions . . . . . . . . . . . . . . . . . . . . . . 219

{ xiv {



List of Tables

3.1 Laser beam pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.2 QUEST optical speci�cations . . . . . . . . . . . . . . . . . . . . . . 111
3.3 End test mass PZT signal distribution matrices . . . . . . . . . . . . 116
3.4 Sensitivity measurement details . . . . . . . . . . . . . . . . . . . . . 126

4.1 OMC properties for QUEST and gravitational wave detectors. . . . 131
4.2 OMC design speci�cations . . . . . . . . . . . . . . . . . . . . . . . . 150
4.3 OMC mirror power reectivities . . . . . . . . . . . . . . . . . . . . . 170
4.4 OMC optical properties . . . . . . . . . . . . . . . . . . . . . . . . . 172

{ xv {



Acronyms

AC Alternating Current.

ADC Analogue to Digital Converter.

AOI Angle Of Incidence.

AS Anti-Symmetric.

ASC Angular Sensing and Control.

ASD Amplitude Spectral Density.

BRDF Bidirectional Reectance Distribution Function.

BS Beam Splitter.

C-PIT Common Pitch.

C-YAW Common Yaw.

CARM Common Arm Length.

CD Contrast Defect.

CDS Control and Data System.

CSD Cross-Spectral Density.

D-PIT Di�erential Pitch.

D-YAW Di�erential Yaw.

DAC Digital to Analogue Converter.

DARM Di�erential-mode Arm Length.

DC Direct Current.

DFO Dark Fringe O�set.

EOM Electro-Optic Modulator.

ETM End Test Mass.

F-QWP Fiber Quarter Waveplate.

F-Re Fiber Retroreector.

{ xvi {



FI Faraday Isolator.

Fib Fiber optic.

FSR Free Spectral Range.

FWHM Full Width at Half Maximum.

GW Gravitational Wave.

HOM Higher Order Modes.

HP High Pass.

HV High Voltage.

HWP Half Wave Plate.

IFO Michelson Interferometer.

IR Infrared.

ITM Input Test Mass.

JamMT Just another mode matching tool.

LIGO Laser Interferometer Gravitational-Wave Observatory.

LLO LIGO Livingston Observatory.

LO Local Oscillator.

LP Low Pass.

LSC Length Sensing and Control.

OMC Output Mode Cleaner.

PBS Polarising Beam Splitter.

PD Photodetector.

PDH Pound-Drever-Hall.

PLL Phase Lock Loop.

PMC Pre-Mode Cleaner.

PR-IFO Power-Recycled Michelson Interferometer.

PRM Power Recycling Mirror.

PSD Power-Spectral Density.

PSL Pre Stabilised Laser.

PZT Lead Zirconate Titanate (Pb Zr Ti) - also commonly referred to PiezoElectric
Transducer.

{ xvii {



QUEST Quantum Enhanced Space-Time.

QWP Quarter Wave Plate.

RC Resistor-Capacitor.

REFL Reection/Reected.

RF Radio Frequency.

RIN Relative Intensity Noise.

RoC Radius of Curvature.

SHG Second Harmonic Generator.

SNR Signal to Noise Ratio.

SRM Signal Recycling Mirror.

TEM Transverse Electromagnetic.

{ xviii {



. . . I would rather have questions that can't be answered
than answers that can't be questioned.

Richard P. Feynman

{ xix {



{ xx {





Introduction

There are two theories of Physics which have managed to break free of their academic

shackles and inuence the wider world, making appearances in almost all modes of

pop-culture from movies to poems: General Relativity (GR) and Quantum Mechan-

ics (QM). Though not everyone could describe nor have any formal education of

them, most have heard of them | almost everyone knows the name Einstein and

almost everyone knows the phrase `sub-atomic'. The same probably cannot be said

of the majority of the fundamental physical theories, even greats like the laws of

thermodynamics. Something entices the mind about the universal scale of GR and

the science �ction-like world of QM. Both are titans in their own right and represent

the leading methods of understanding the universe; from the smallest of scales, the

quantum, to the biggest of scales, the cosmological. However, they are incompatible

| the crossover from where one steers the ship to the other is still not very well

understood.

It is quite remarkable that the same phenomena | the interference of light | which

was used to provide experimental evidence for quantum mechanical principles such

as wave-particle duality [1{3], a cornerstone of quantum �eld theory, has also been

used to observe a prediction of GR [4], the gravitational wave (GW) [5]. Modern

gravitational wave detectors are modi�ed versions of the Michelson interferometer

[6] which use optical cavities to enhance the sensitivity to di�erential arm length

change | the mechanism that generates an interference-born output signal in the

Michelson interferometer. On September 14th 2015, gravitational waves generated

via the inspiral and merger of two black holes were detected for the �rst time ever [7]

by the two Laser Interferometer Gravitational-wave Observatory (LIGO) detectors,

con�rming once again GR's status as the leading theory of gravity. Since then, many

other gravitational wave detections have been made [8{11].

The event of the �rst detected gravitational waves briey radiated more energy in

the form of gravitational waves, than the combined light energy of all the stars in

the observable universe for the same time period [12]. These gravitational waves

then propagated for around 1.3 billion light-years [7, 12, 13], and were detected by

displacing mirrors by less than a thousandth the diameter of a proton.
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That is gravity at the macroscale, but what about the quantum scale? Theories of

quantum gravity [14{16] reliably seem to conclude that spacetime, the fabric of the

universe, is itselfquantisedand length measurements of these spacetime quanta have

an inherent uncertainty. Repeated length measurements, drawing closer and closer

to a Planck-like precision, will soon enough arrive at an irreducible variance [17{22]

| the quantum limit of length accuracy. Observations of a quantum spacetime could

provide much needed clues about how gravity manifests at the quantum level, and be

the building blocks of a unifying bridge between GR and QM. It is convenient then

that through the decades long push to detect gravitational waves, the technology

required to be sensitive enough to length uctuations to attempt observing quantum

spacetime signatures, is now here. It seems quite �tting that it is once again the

phenomenon of light interference that may be used to achieve this goal.

Building on the experimental breakthroughs of the gravitational wave detectors,

it is conceivable that a quantum spacetime signal can be detected and the team

behind the QUEST experiment at Cardi� University's Gravity Exploration Group

is striving to do just that. QUEST is a pair of co-located table-top Michelson

interferometers with power-recycling and quantum enhancements, and the goal to

reach unprecedented displacement sensitivity level in the bandwidth of 1� 250 MHz.

The main science goal is detecting/setting new upper limits for a quantum spacetime

signal, with auxiliary goals of ultra-high frequency gravitational waves and scalar

�eld dark matter research. I was fortunate enough to start my PhD only a handful

of weeks before the optical tables were installed in the QUEST lab. Since their

installation, I have been involved in every aspect of the optical and control system

setup. I was also granted a 4 month fellowship at LIGO Livingston. My project

there was to investigate a suggested modi�cation to the lock acquisition process

of the detector cavities. The modi�cation would remove a substantial amount of

auxiliary optics which each introduce loss.

My thesis is presented in six chapters:

1. This chapter introduces the physical phenomena QUEST aims to investigate

and shows how each of them is expected to result in a signal at the output of

a length measuring instrument. This will lead to a description of Michelson

interferometers and why they are the ideal detectors for these kinds of signals.

Their theoretical workings and capabilities will be introduced as well.

2. I will describe the fundamental experimental considerations and methods used

throughout the PhD.

3. This chapter is where I detail QUEST's experimental setup, the commissioning

e�orts, showcase the lock scheme and the latest achieved results from commis-

sioning.
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4. This chapter is focused on QUEST's OMC. I will discuss its function, design,

lock process and characterisation. This is one of the aspects of QUEST that

sets it apart from the nearest competitor experiment | without the OMC,

QUEST's groundbreaking sensitivity could not be reached.

5. In this chapter, the work at LIGO Livingston will be discussed. It begins by

describing the current method used to obtain a science laser vs X-arm error

signal and why that perhaps is not the best method. Then the alternative

method of constructing that error signal which is less optically expensive is

described. Finally, the work carried out in installing this update will be de-

tailed.

6. The concluding remarks, outlook and summary of the work undertaken during

my PhD as well as anticipated future work.

Appendix sections include, QUEST's control and digital system, a proof that a

quarter waveplate and a mirror can be used equivalently to a half waveplate and

mechanical dimensions of some components I designed.
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Chapter 1

Fundamental physics with

table-top interferometers

This chapter introduces the theory of the science goals for the QUEST experiment.

Each will be described as a physical phenomenon, with emphasis of how they are

expected to produce a length uctuation which can in principle be detected by a

su�ciently sensitive experiment.

1.1 Quantum Gravity

Quantum mechanics and General relativity are irreconcilable in their current forms

in describing the gravitational interaction at the quantum scale [23{25]. Otherwise

successful theories in their own right, neither can describe nature in terms of the

other. Attempts to reconcile the incompatibilities are ongoing [14{16] and tend to

arrive at a similar conclusion: spacetime is quantum in nature and as such is subject

to an uncertainty in terms of length [17{22]. Experimental evidence of this length

uncertainty is yet to have been recorded, but the length noise predicted by quantum

theories of gravity based on the holographic principle [26] are perhaps within reach.

Irreducible variance in repeated length measurements could provide the foundations

for reconciliation | a bridge between quantum mechanics and general relativity.

The basis for the theory will be described as follows.

Firstly, the concepts of light cones and causal diamonds will be introduced, together

with the idea of a Rindler horizon. From the description of this speci�c horizon,

the origin of the theories of quantum spacetime will be introduced together with

why an irreducible variance of repeated length measurement is expected. This,

along with the entropy bound of the horizon, will highlight why (thanks to the

holographic principle) a possible detection of quantum spacetime uctuations is

potentially possible.
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Chapter 1. Fundamental physics with table-top interferometers

1.1.1 Light cones and causal diamonds

Light cones de�ne the causally connected regions from an event,X . The z axis of

Fig. 1.1a is time and thex � y plane is space. The perimeter of the cone is the null

line, i.e. the path a photon would take were it travelling in that direction, which is

at 45� with respect to both axes.

(a) (b)

Figure 1.1: (a) A light cone, where time is the z axis and space is con�ned to the x � y plane. The
surface of the cone is the null surface, the region separating causally connected events. Within the
cone events are in causal contact. (b) Sphere projections of the cone's cross section at particular
times t = 0, t = � 1 and t = � 2 . Space is 3-dimensional with time determining the sphere's radius.
The surface of the sphere is the light sheet or horizon, it is the membrane between causally connected
events.

The future light cone of X encompasses all events that can be a�ected byX while

the past light cone of X contains all events that can have had an inuence on it.

Everything outside the cones requires faster than light speed in order to have reached

and inuenced X , or for it to have reached and inuenced X . This is why these

regions are regarded as not in causal contact.

In a 3-dimensional space, the light cone is actually a sphere; the projection of which

onto the x � y plane is the circle of points where a plane at constantz intersects

the cone. Every time step� forwards (or backwards), the sphere radiusr grows (or

is reduced) by r = �c | see Fig. 1.1b. This sphere surrounding an event is the

boundary between that which is causally connected to the event and that which is

not and is de�ned as a light sheet.

The individual light cones of two causally connected events lead to the de�nition of
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1.1. Quantum Gravity

the causal diamond, i.e. where the future of eventX A meets the past of eventX B .

Fig. 1.2a shows the respective light cones of these two events and Fig. 1.2b shows

where the future of X A and the past of X B overlap | the causal diamond between

X A and X B .

(a) (b)

Figure 1.2: (a) Individual light cones of causally connected events X A and X B . (b) The overlap
between eventsX A and X B | X B lies within the future light cone of X A and ipso facto, X A lies
within X B 's past. The surface of the cones is the causal diamond betweenX A and X B .

The plane at the centre of the causal diamond (which in a 3-dimensional space looks

like a sphere/light sheet) can be de�ned as a conformal Killing horizon or Rindler

horizon [27].

If a Michelson interferometer (introduced in Sec. 1.4) is used for some experiment

as in Fig. 1.3, then in line with the principles shown in Figs. 1.1 and 1.2, event

X A would be two photons separating at the beam splitter and heading down their

respective orthogonal arm. The noteworthy limit of X A 's future light cone is when

those photons impinge on the end mirrors. This projects a light sheet with a radius

equal to the arm length, Fig. 1.3a. EventX B is then those two photons recombining

and interfering back at the same beam splitter. The noteworthy limit of X B 's past

light cone is when those photons reect from the end mirrors. This also projects a

light sheet of the same radius, Fig. 1.3b.
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Chapter 1. Fundamental physics with table-top interferometers

(a) (b)

Figure 1.3: The light sheet/horizon of the Michelson interferometer, centred on the beam splitter.
(a) Shows the �rst event and its future light cone which in 3-dimensional space is a sphere. The
event is a pair of photons separating at the beam splitter. The limit of the future light cone is
where those photons impinge on their end mirror. (b) Shows the second event and its past light
cone. This event is when those two photons recombine and interfere at the same beam splitter. The
limit of the past light cone is where those photons reect from the end mirrors. The dashed lines
are the perimeter of a sphere which represent the light sheets of the causally overlapping events,
they have a radius equal to the Michelson interferometer arm length.

This thought experiment shows how measurements taken with a Michelson interfer-

ometer trace a causal diamond. The light sheet is shown in Fig. 1.3 as the dashed

sphere; it has a radius equal to the length of the Michelson interferometer arms.

This light sheet surrounding the experiment could be thought of as anexperimental

horizon | the region around the experiment which separates that which is in causal

contact with it and that which is not.

The importance of the experimental horizon (and horizons in general) is related to

the surface area of its projection and what that surface area says about the entropy

content of the volume of spacetime is encapsulates; it is related to the surface area

of black holes. That connection, and why the experimental horizon is critical to the

quantum gravity theories under investigation, will be highlight in the next section.

1.1.2 Horizons

The following discusses the surface area of the black hole event horizon. In some

theories of quantum gravity there is a comparison drawn between the surface area

of the event horizon and the surface area of a general causal diamond | speci�cally

how the information content of a volume of spacetime is expected to be limited.

What follows is a purely geometric argument, it is not related to observers moving

through various frames passing through, or observing something passing through

the event horizon of a black hole.

The entropy content of a black hole is described by Bekenstein-Hawking entropy

(SBH ) [28] and it is required for black holes to be compatible with the laws of ther-
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1.1. Quantum Gravity

modynamics; without this entropy, the information paradox [29] is left unaddressed.

Arguments for assuming black holes have an associated entropy include,

ˆ The information within the black hole is not observable. Since black holes

can be formed by the gravitational collapse of a star, which carries entropy,

the thermodynamic description of that collapse is apparently lost behind the

horizon. In order to address this, the black hole itself must have an implicit

entropy, to recover the lost information.

ˆ In thermodynamics, there are many microstates associated with a system

which can be described by one observable macrostate. Some classes of black

hole are completely described by only a few observable parameters [30], i.e.

mass, electric charge and spin; all determined by the formation and evolu-

tionary history of the black hole. But many formation scenarios can result in

similar values for each of the observable parameters or macrostates. In this

way, the information of a black hole is analogous to a thermodynamic system

| many microstates (that which formed the black hole) lead to but a few

observable macrostates. The black hole can therefore be described as having

an associated entropy.

ˆ Entropy can be described as a measure of missing information, or uncertainty

[31]. A black hole's event horizon prevents the observation of all information

which passes through. Therefore, the black hole can be considered as a place

for information to become uncertain.

These are logical arguments, based largely on the reluctance to break the laws of

thermodynamics. This is important because of what the entropy of a system says

about the information content permitted within. If the entropy can be linked to the

surface area of the horizon, not the volume that horizon encompasses, the physical

rami�cations are vast.

Entropy is also present in quantum systems due to the uncertainty of their mi-

crostate. If a quantum systemA is entangled with another quantum systemB , the

entropies of A or B can not reach zero independently. Their microstates are mutu-

ally dependent, i.e. it is not possible to exactly know one without exactly knowing

both. This uncertainty is known as entanglement entropy Sent [28].

In leading theories of quantum gravity, the entropy of a black hole and the entan-

glement entropy of its horizon coincides [28, 32],

SBH =
A
4G

�
kB c3

h
= Sent (1.1)

whereA is the surface area of the horizon andG is Newton's gravitational constant.

The constants ofkB , h and c (Boltzmann's constant, Planck's constant and the speed
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Chapter 1. Fundamental physics with table-top interferometers

of light, respectively), have been included here for dimensional completeness, they

are not present in [28, 32]. According to Eq. 1.1 bothSBH and Sent are restricted

to the surface area of the black hole rather than the volume, meaning that the

information within the black hole is entirely encoded on the surface of the horizon.

This equivalence is reached using various di�erent approaches of fundamental physics

[32{34] but, most importantly, the result of Eq. 1.1 can be shown to hold for causal

diamonds as well [35{38] which is why horizons are important to describe. This link

implies that the entropy content of a causal diamond (including that of empty space

or some experiments) is restricted to its surface area, not volume.

It can be shown that the quantum uncertainty of horizon position is related to the

entropy of a systemSsys [28] by

�L 2 �
L 2

p
Ssys

(1.2)

whereL is the radius of the horizon. Since the uncertainty depends on entropy, both

the macro (L ) and the micro (`p = 1 :6163� 10� 35 m, the Planck length) scales are

included and, and if we assume 4-dimensions [28],

�L �
p

`pL: (1.3)

This has the appearance of a random walk relationship [39] following root-N statis-

tics1 and it implies Planck length uctuations of position. A photon traversing the

horizon would follow a random walk trajectory suggesting the spacetime itself has

an attributed quantum uncertainty. For the QUEST experiment as described in

Chapter 3 which has arm length L = 1 :8 m, we expect�L � 5:4 � 10� 18 m. Initial

LIGO had su�cient sensitivity to detect this level of �L [40], but the signals are

expected to be in the MHz. No version of LIGO (or any of the large gravitational

wave detectors) was designed for that bandwidth. Therefore, unfortunately, it is

not expected that archived/future LIGO/Virgo/GEO600 data would contain these

signals.

This restriction of entropy to the surface area horizon is commonly called hologra-

phy [26, 34]. If su�ciently accurate repeated samples in the position of a causal

diamond/horizon are measured, quantum uctuations in the geometry of the space-

time bounded within could be observed [28].

The conclusion is that the surface area of the casual diamond restricts the entropy

within and that uctuations in spacetime, i.e. length measurements, occur. These

uctuations are not expected to be wholly independent but to be in some way

1 If particles travelling at velocity v have an average inter-particle separation R, then the time
between collisions is � = R=v. The number of steps taken in measurement time T is N = T=� and
the expectation value of position goes as � x �

p
N� �

p
T � .
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1.1. Quantum Gravity

entangled. These factors combined point towards a discontinuous magnitude of the

spacetime uctuations (which limits precision), potentially bringing them within

reach of measurement.

1.1.3 Reality check

So far, what has been discussed is quite abstract. The key point is that measure-

ments of spacetime, achieved by some detector repeatedly measuring length, will

have some fundamental precision limit; analogous to how a particle's measured mo-

mentum is limited in precision if its position is arbitrarily well known. If this detector

could measure the distance between two objects at a Planck-like accuracy while that

distance was free of any perturbation, the distance measured would not be the same

each time, there would be some uncertainty which cannot be surpassed | a result

of the `size noise' present in the spacetime quanta which together form the distance

separating the objects. This uncertainty is not arbitrarily small though, the entropy

is limited by the size of the detector. The entropy contains the information, and

so if it is limited, the information is too; including the length variance precision.

Furthermore, if two detectors are placed closely such that they overlap and share a

large portion of the same spacetime volume, an entanglement between the spacetime

quanta would produce coherent uctuations in both detectors. This entanglement

is expected, again, due to the entropy limit. In this case, the detector(s) is assumed

to be a Michelson interferometer.

1.1.4 Measuring quantum gravity e�ects at horizons and length
uctuations

The causal diamond/light sheets shown in Fig. 1.2 encapsulates the whole exper-

iment. We can break it down into a series of nested diamonds representing each

quantum step the photons take along the arms. Given the uncertainty in the posi-

tion of a horizon, and the random walk nature of the uctuations, we can assume

each sequential horizon is statistically uncorrelated with a scale of~̀p. Since the po-

sition of each horizon is independent of the others, this uncertainty, in 4-dimensional

space, sums to an experimentally observable uctuation in length given by [28]

�L 2 =
`pL
4�

(1.4)

which scales with
p

L showing a random walk style uncertainty2. For an instrument

making repeated length measurements of the horizon geometry, this will appear

as an irreducible noise at the output. Two identical instruments, like Michelson

interferometers occupying the same or strongly overlapping causal diamonds, will

2For QUEST, with arm length 1.8 m, this gives �L � 1:5 � 10� 18 m
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Chapter 1. Fundamental physics with table-top interferometers

measure correlated uctuations. The entanglement of the spacetime uctuations at

the overall horizon requires uctuations to be present in both instruments. Time

integration of their cross-correlated data will allow the attenuation of uncorrelated

noise and the strengthening of correlated noise.

1.1.5 Signal con�rmation

A problem in experimental work is providing evidence that a given signal is indeed

born of the phenomena under investigation. The question is, how might a correlated

noise be con�rmed as having an origin in entanglement due to overlapping detectors?

A suggested reasonable starting method for gaining corroborating evidence would

be to incrementally separate the detectors until they are no longer overlapping. The

correlated noise or signal should diminish with distance and be non-existent where

the detectors are entirely separate.

1.2 Gravitational Waves

Before Einstein, the theory provided by Newtonian gravitation predicted gravity

to be a force acting between two masses. The magnitude of the force is given by

Gm1m2=r2 where G is Newton's gravitational constant, m1;2 are the masses of the

bodies between which the force is exerted andr is their separation. This view poses

some problems, for example, it suggests the force acts instantaneously if changes in

the variables occur. For instance, if the Sun were to disappear, we would be relieved

of our orbital elliptical path around it the instant it happened. On the other hand,

it would take � 8 minutes to see the light go out raising the contradiction: the

gravitational information of the Sun's disappearance arrives instantly, while the

light, travelling at the maximum speed limit permitted by the laws of physics, does

not.

In the Einstein theory of gravitation, gravity is not conceived as an instantaneous

force felt between two objects, but rather a consequence of the e�ect those masses

have on the spacetime around them [30]. The concept of a spacetime �rst originated

in Einstein's 1905 work [41], though it was not then formulated exactly as spacetime.

In 1908, Minkowski [42] took seriously the idea that space and time were in fact

inseparable phenomena and that the fabric of the universe itself could be described

as a spacetime. In 1915 the idea was made famous by Einstein's theory of general

relativity [4].

In this theory, it is postulated that the presence of mass warps spacetime itself,

changing the geometry of space: previously straight paths, the shortest distance

between two points in a space where Euclidean geometry applies, become curved.
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1.2. Gravitational Waves

This curvature describes why two masses appear to be attracted to one another.

The Earth travelling around the Sun is following the shortest path in the curved

geometry, the so-called `geodesic'.

1.2.1 Wave solution to Einstein's equations in the weak �eld limit

The core of general relativity is represented by Einstein's �eld equations, which

describe the relationship between the geometry of spacetime and the energy/matter

distribution [30]:

G�� =
8�G
c4 T�� (1.5)

In Eq. 1.5, G�� is the Einstein tensor which describes the geometry of spacetime.T��

is the stress-energy tensor that characterises the density of energy and momentum

in spacetime andc is the speed of light. The indices� and � represent the temporal

and spatial component of the tensor, in which the notation 0� 3 has been adopted,

with the index 0 referring to the time component and the indices 1� 3 to the spatial

ones, respectively. Later on (Sec. 1.2.2) the subscripts�� will be switched to ij

| in this form, only the spatial coordinates are present. The physical meaning

of Einstein's equation is perfectly summarised by the sentence of physicist John

Archibald Wheeler: \ Spacetime tells matter how to move; matter tells spacetime

how to curve" [43].

Using the de�nition of Einstein's tensor, Eq. 1.5 can be rewritten as

R�� �
1
2

g�� R =
8�G
c4 T�� (1.6)

whereR�� is the Ricci tensor, R the Ricci scalar andg�� is the metric tensor, which

is the generalised gravitational potential describing the geometric and causal struc-

ture of a local spacetime. Equation 1.6 is a set of ten nonlinear partial di�erential

equations in four independent variables, that is, it is not possible to get an analytical

solution. Some assumptions aboutg�� can be made to simplify the calculations. For

example, far from a region of mass sources, spacetime is at (Minkowskian) and it

is described by the metric tensor� �� given by

g�� � � �� =

0

B
B
B
B
@

� 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C
C
C
C
A

(1.7)

where the (� ; + ; + ; +) notation has been adopted. Considering a Minkowskian

spacetime as a background with a little perturbation jh�� j � 1, we can rewrite the

metric tensor as

g�� = � �� + h�� : (1.8)
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Chapter 1. Fundamental physics with table-top interferometers

This is the so-called weak �eld limit and by introducing 3 the trace-reversed metric
�h�� [5, 44] where

�h�� = h�� �
1
2

� �� h (1.9)

and now Einstein's �eld equations can take the form of a wave equation [5, 44]:

� �h�� = �
16�G

c4 T�� (1.10)

where � = r 2 � 1
c2

@2

@t2 is the D'Alembertian operator. Far from matter sources,

T�� = 0 and the wave equation becomes:

� �h�� = 0 : (1.11)

With this operator, h�� becomesh(2�f t � k � x) where f = jk jc=2� represents a

wave propagating at c, in the k̂ = k=jk j direction [5, 44]. f is the wave frequency

and k = 2 �=� is the wavenumber with � being the wavelength. This is a light speed

wavelike solution to Einstein's �eld equations. We see that gravitational radiation

can exist. This gravitational radiation is the gravitational wave.

1.2.2 Towards gravitational wave detection

Considering a wave travelling in the ẑ direction; in the transverse traceless (TT)

gauge4, hT T
�� is given by [5]

hT T
�� =

0

B
B
B
B
B
B
B
@

0 0 0 0

0 a b 0

0 b � a 0

0 0 0 0

1

C
C
C
C
C
C
C
A

: (1.12)

This wave can be described as a combination of two orthogonal polarisations, the

so-called plus and cross polarisations

hT T
�� = ĥ+ + ĥ� =

0

B
B
B
B
B
B
B
@

0 0 0 0

0 h+ 0 0

0 0 � h+ 0

0 0 0 0

1

C
C
C
C
C
C
C
A

+

0

B
B
B
B
B
B
B
@

0 0 0 0

0 0 h� 0

0 h� 0 0

0 0 0 0

1

C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
@

0 0 0 0

0 h+ h� 0

0 h� � h+ 0

0 0 0 0

1

C
C
C
C
C
C
C
A

(1.13)

3This is a way to simplify the calculation to arrive at the �nal solution of the wave equation
[5, 44].

4The TT gauge is used because gravitational waves have an especially simpli�ed form in this
gauge [5].
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1.2. Gravitational Waves

A key step is to now quantify the e�ect a gravitational wave would have on some

kind of detector, that we can imagine as a ring of test masses at rest with the ring

de�ning the detector's proper frame. The coordinate distance of each test mass from

the centre of the ring is given by � i as shown in Fig. 1.4.

Figure 1.4: Representation of the e�ect a gravitational wave has on a test mass ring, in the x � y
plane.

A gravitational wave propagating in the ẑ direction has tensor componentsh33 = 0,

leaving displacement (along with our the test mass ring) con�ned to thex � y plane.

For the plus polarisation, assuminghT T
ij = 0 at t = z = 0 we get

hT T
ab = h+ sin(!t )

 
1 0

0 � 1

!

(1.14)

with a; b = 1 ; 2, the indices in the transverse plane [5, 44]. Since� i is the distance

to a test mass from the origin, with no perturbation we have � i = x0 = y0. But if a

perturbation is displacing the test masses by a distance�x (t) and �y (t), we have

� i (t) = ( x0 + �x (t); y0 + �y (t)) ; (1.15)

and then for the plus polarisation

� •x = �
h+

2
(x0 + �x )! 2 sin(!t ); � •y = +

h+

2
(y0 + �y )! 2 sin(!t ): (1.16)

At the �rst order, the terms �x and �y can be neglected allowing immediate inte-
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gration of the equations:

�x (t) =
h+

2
x0 sin(!t ); �y (t) = �

h+

2
y0 sin(!t ): (1.17)

The same approach for the cross polarisation yields

�x (t) =
h�

2
y0 sin(!t ); �y (t) =

h�

2
x0 sin(!t ): (1.18)

That is, the gravitational wave introduces a time dependent strain on the test mass

ring/detector. Provided that a perpendicular wave direction relative to the detector

plane, a quadrupole pattern emerges | shown in Fig. 1.4.

1.2.3 Length uctuations | Strain

In general relativity, a geodesic describes the trajectory of a particle in spacetime

that is freely falling in a gravitational �eld and a geodesic deviation describes how a

that trajectory changes in a curved spacetime [5, 44]. The equation of the geodesic's

deviation from atness in the detector's proper frame takes the form [5, 44],

•� i =
1
2

•hT T
ij � i : (1.19)

This shows explicitly how a gravitational wave warps spacetime which has a local

e�ect of causing distance changes between objects, �L (for example, test masses of

a real detector5). Assuming we have a plus polarised gravitational wave travelling

perpendicularly to the detector like a Michelson interferometer, the change in its

arm lengths due to the gravitational wave passage is given by [5, 44]

� L �
1
2

hL (1.20)

whereh is the amplitude of the gravitational wave. Measuring � L requires an instru-

ment capable of detecting length uctuations of order h=2. For the �rst gravitational

wave detection, `GW150914',h was of the order of 10� 21 [7].

1.2.4 Gravitational wave frequency

In terms of binary inspiral and merger events, the frequency of a gravitational wave

is a function of the system massM , the speed of lightc and Newton's gravitational

constant G. Therefore, there is then a range of frequencies for the mass of the system

as [45{47]

f inspiral . (0:02 ! 0:05)
c3

GM
; f ringdown � (0:06 ! 0:15)

c3

GM
(1.21)

5 � i is the distance between two geodesics | with two test particles a �xed distance apart, this is
constant in at spacetime. It can only vary in a warped spacetime. L is just the distance separating
the test particles, i.e. it is the length of the detector.
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For QUEST the bandwidth is 1 � 250 MHz [48]. This suggests that were black hole

mergers to be detected, it would require a system mass of (16� to 10 m) solar masses.

Black holes of this mass could be primordial black holes [49, 50].

Other sources of gravitational waves in the 1� 250 MHz region include stochastic

gravitational wave background and black hole superradiance [48].

1.3 Dark Matter

Since as early as the 1930s astronomers and cosmologists have suspected issues with

our understanding of gravity and particle physics [51, 52]. It did not take very long

for there to be a general scienti�c consensus [53] that there must be something out

there that they could not see yet. Di�erent observations (such as galactic rotation

velocities, gravitational lensing and the angular anisotropy of the cosmic microwave

background) [54{58] all arrive at the same conclusion: baryonic matter is estimated

to account for less than 5% of the whole mass content of the universe. That which we

cannot see was termed dark matter and dark energy. Only dark matter candidates

will be described hereon.

The search for dark matter is ongoing. Low-mass scalar �eld dark matter mod-

els predict interesting e�ects that can in principle be detected by sensitive enough

detectors. Here, why scalar �eld models are of unique interest, particularly to inter-

ferometer based experiments, will be described.

1.3.1 Scalar �elds

Scalar �eld dark matter models predict early universe vacuum misalignment mech-

anisms producing low-mass (m� � 1eV) particles, which would be distributed

throughout the universe as a coherently oscillating �eld with angular Compton fre-

quency ! � = m� c2=~ [59].

In these models, the dark matter �eld � couples with standard model �eld suggesting

a potential detection mechanism. The interaction term is an addition to the standard

model Lagrangian which, considering only interactions linear in� , results to be [59]

L lin
int =

�
� 

F�� F ��

4
�

�
� e

me �	 e	 e (1.22)

where F �� is the electromagnetic �eld tensor, me the rest mass of the electron,�	 e

and 	 e is the standard model electron �eld and its Dirac conjugate, respectively.

�  and � e parameterise the coupling of the dark matter �eld with photons and

electrons, respectively.
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1.3.2 Fluctuations in fundamental constants

The physical e�ect of the additional term in Eq. 1.22 is to induce changes to the �ne

structure constant � and electron rest massme values. Fluctuations in these fun-

damental constants imply (oscillatory) changes in the physical sizel and refractive

index n of solids, which are parameterised as [59]

�l
l

=
�

�
��
�

�
�m e

me

� �
1 �

! 2

! 2
0

� � 1

(1.23)

and
�n
n

= � 5 � 10� 3
�

2
��
�

+
�m e

me

�
: (1.24)

respectively.

1.3.3 Length uctuations

An instrument sensitive to length and/or refractive index changes could in principle

be exploited for searching for scalar �eld dark matter-induced e�ects. Michelson

interferometers serve as ideal candidates since nowadays their sensitivity to length

changes of the arms are second to none.
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1.3. Dark Matter

Figure 1.5: Beam splitter paths. The purple beam coming from the left is the injection beam, it
originally inputs 100% of the power. The red beam is the Y-arm path after prompt reection from
the 50/50 reective (R) coating of the beam splitter. The end mirrors are assumed 100% reective.
The red beam (shown now as a red arrow head) then travels through the beam splitter once more
towards the photodetector. The blue beam is the X-arm path. It is transmitted through the 50/50
beam splitter surface and travels through the beam splitter before reaching the X-arm. Upon
returning to the beam splitter, it travels through the beam splitter once more before recombining
with the red beam, and a �nal time through the beam splitter now with the blue beam, towards
the photodetector.

An additional bene�t of the interferometer speci�cally, is that the central beam

splitter interacts asymmetrically with the beam path of each arm. This will enhance

a di�erential signal, i.e. the output to the interferometer. This is a result of the

50/50 reective coating on the incident edge and of the purely anti-reective coating

on the rear edge of the beam splitter. The beam promptly reected travels in the

Y-arm and passes through the beam splitter only once | see Fig. 1.5 | while the

transmitted beam travels in the X-arm and passes through the beam splitter three

times.
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The oscillation of the dark matter �eld would also change the size of the end mirrors,

which will a�ect the path length of each arm as well. But since the rest size of the

mirrors is intentionally equal, the e�ect will be largely symmetric, resulting in a

negligible signal in an interferometer's output. Also, for the frequencies of interest,

the wavelength of the scalar �eld (� � ) is expected to be at least three orders of

magnitude larger than detector arm lengths [60], further minimising an end mirror's

contribution to any possible dark matter signal.

Changes to the beam splitter size,�L , and refractive index, �n , will result in a

di�erential optical path length of the arms as [60]

� (L x � L y) �
p

2
��

n �
1
2

�
�l + l�n

�
: (1.25)

The refractive index is expected to provide a negligible contribution, i.e. have an

a�ect � three orders of magnitude lower than that of size uctuations [60], so it will

not be considered in the following calculations.

1.3.4 Signal searches

The uctuations in beam splitter size due to the oscillatory density distribution of

the dark matter �eld we are moving through are expected to produce Doppler-shifted

and Doppler-broadened signals in interferometers as [60]

� (L x � L y) �
�

1
� 

+
1

� e

��
nl ~

p
2� local

m� c

�
cos(! obst) (1.26)

where � local = 0 :4 GeV/cm3 [59] is the local dark matter density and ! obs the �eld's

angular frequency, relative to the observer. Standard galactic dark matter halo

models give an expected frequency linewidth of �! obs=! obs � 10� 6 [60].

With two identical and co-located interferometers, the magnitude of a signal ob-

tained from cross-correlated data6 is [59]

� (L x � L y) �
�

2cl
p

� local

! �

�
sinc� 1

�
! � L

c

���
n �

1
2

��
! 2

BS

! 2
BS � ! 2

�

��
1

� 
+

1
� e

�
+

n
�

10� 2

� 
+

5 � 10� 3

� e

��
(1.27)

where the sinc function is related to the frequency response of an interferometer

with arm length L , resulting in a periodic signal modulation and ! BS is the (an-

gular) mechanical resonance frequency of the beam splitter.! � is again the �eld's

angular Compton frequency. The
�

! 2
BS=

�
! 2

BS � ! 2
�

��
feature appears like a har-

6Cross-correlation is a signal processing technique which serves to asses how similar multiple
data inputs are. In this case, the two data paths are Fast Fourier Transformed and then multiplied.
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monic oscillator which suggests any driving frequency higher than the beam splitter

resonance will be attenuated.

Searches for these kinds of dark matter signals have been recently carried out using

data from the GEO600 gravitational wave detector [60] and Fermilab's Holometer

[59]. GEO600 is more sensitive than the other operational gravitational wave detec-

tors (LIGO and Virgo) to signals originating at the beam splitter. This is largely

due to the fact they do not use Fabry-P�erot cavities in the arms [60], and their use

of world record levels of squeezing (6 dB [61]). Fermilab's Holometer [62] consists of

two co-located interferometers, ideally suited for cross-spectrum analysis which en-

ables further noise suppression. The Holometer will be further described in Chapter

3.

1.4 The Michelson Interferometer

From the theories discussed so far, it turns out that an instrument sensitive to uc-

tuations in length, like an interferometer, is ideally suited to potentially detect the

above phenomena: quantum gravity signatures, high frequency gravitational waves

and scalar �eld dark matter. There are di�erent types of interferometer con�gura-

tions, yet each operates with the same general principle | interfering light to detect

variations in the resulting pattern due to changes in length [63{66]. The speci�c

type we will focus on is the Michelson interferometer [6], exploiting a Gaussian laser

beam (detailed in Sec. 2.2) as a light source.

Here, the relationship between the arm lengths and the output signal generated by

a Michelson interferometer will be shown.

Optical components are described by their �eld amplitude reection and transmis-

sion coe�cients, r and t, respectively. In terms of reected and transmitted power,

the coe�cients become R = r 2 and T = t2, respectively. We use the convention that

Eref l = rE c (1.28)

and

E trans = itE c (1.29)

where Ec is the input �eld, commonly called the carrier 7. The origin of this con-

vention is in Sec. 2.1. The Michelson interferometer depicted in Fig. 1.6 uses a

50:50 (R = T = 0 :5) beam splitter to split the carrier �eld Ec into two orthogonal

arms of length L x and L y . At the end of each arm there is a highly reective mirror

(R � 1) which redirects the respective �eld back towards the beam splitter where

7The carrier refers to the main �eld at any point, in contrast to any other �eld frequencies present,
such as those used for control purposes, or signals generated within the Michelson interferometer
| this is discussed in more detail in Sec. 2.1.1.
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interference between the two �elds occurs. The two outputs of the beam splitter

are the symmetric and anti-symmetric ports, with �elds ES and EAS , respectively.

These ports are also commonly referred to as the bright and dark ports, respectively.

Figure 1.6: The Michelson Interferometer. Ec is the input (carrier) �eld which is split with a
50:50 ratio at the beam splitter into the two arms of length L x and L y . The �elds propagate along
each arm, get reected from the end mirrors and return to the beam splitter where their �elds
interfere. The two outputs of the beam splitter are shown as the symmetric port ES which is
directed back towards Ec and the anti-symmetric port EAS which is directed downwards and out
of the instrument.

Both outputs can be used for signal detection, but conventionally the anti-symmetric

(AS) port is used. Using the convention detailed in [67] (abridged in Sec 2.1), the

�eld at the anti-symmetric port is given by

EAS = i
Ec

2
[ei � x + ei � y ]; (1.30)

where � x = 2kL x and � y = 2kL y are the total phases accumulated in the crossings

of X- and Y-arm, respectively, k = 2 �=� is the wavenumber and� is the wavelength

of the carrier laser. Therefore,

EAS = i
Ec

2

h
e2ikL x + e2ikL y

i
: (1.31)

De�ning the common-mode arm length (CARM) �L as the average of the two arms

and the di�erential-mode arm (DARM) length � L as the di�erence between the

two, we have
�L =

L x + L y

2
; � L = L y � L x ; (1.32)

from which

L x =
2�L � � L

2
; L y =

2�L + � L
2

(1.33)

and thus we can rewrite Eq. 1.31 as

EAS = iE ce2ik �L cos(k� L ): (1.34)

{ 23 {



1.4. The Michelson Interferometer

The physical quantity we are interested in measuring is the powerPAS = EAS E �
AS ,

which we can write from Eq. 1.34 as

PAS = Pc cos2(k� L ) (1.35)

where Pc = EcE �
c is the power of the carrier �eld. Fig. 1.7 is a plot of Eq. 1.35

showing the output of the Michelson interferometer at the anti-symmetric port as

a function of � L . At the maximums, there is perfect constructive interference and

they are called the bright fringe. Minimums, where there is perfect destructive

interference, are the dark fringe.

Figure 1.7: Michelson interferometer output at the anti-symmetric port. The peaks are commonly
referred to as the bright fringe, here all the light is constructively interfering and exiting via the
anti-symmetric port. The troughs are called the dark fringe, where all the light is destructively
interfering and no light exits at the anti-symmetric port. The transmission at the symmetric port
is PS =Pc = 1 � PAS =Pc (neglecting losses).

1.4.1 Noise

The noises in the interferometer we are interesting in are sensing and displacement

noise.

The sensors in question here are photodetectors which convert the power detected by

the sensor to an output voltage. They do this by virtue of their quantum e�ciency,

which converts power to a photocurrent, and their transimpedance gain (provided

by a resistor) which converts that photocurrent to volts. There are two main types

of sensor noise. The resulting Johnson noise (which is a thermal e�ect due to the

temperature of the resistor [68]) resulting in an output voltage variance. This is

not a function of the power at the sensor; it exists when the sensor is covered and

could be considered as the sensor's noise oor. This noise must be exceeded in

order for the power uctuations at the sensor to be detected. The other sensor

noise is the photocurrent noise driven by photon shot-noise (described in Sec. 1.4.2)
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which is a quantum photon counting error | this also results in a variance in the

sensor's output voltage. Provided there is su�cient power in the beam (which is

a requirement that must be ensured for experimental work), the photocurrent or

shot-noise exceeds the Johnson noise and is then the limiting sensor noise.

From Fig. 1.7, sensor noise could be understood as a noise in the y-axis. If the sensor

responsible for measuringPAS =Pc is outputting a voltage with variance, there is no

way of determining whether that variance is due to interesting scienti�c phenomena

driving DARM displacement, or simply some artifact of instability in the voltage

output of the sensor.

Displacement noises are phenomena which move the optics and therefore lead to

erroneous signals at the output since they are indistinguishable to the scienti�cally

interesting signals. From Fig. 1.7 this could be understood as a noise in the x-axis.

Seismic motion is an example of this category, but radiation pressure is an example

of displacement noise as well, as will be described in Sec. 1.4.3. Improvements to

displacement noises require displacement isolation systems, whether that be passive

or active. For example, in LIGO the optics are suspended as a series of pendula,

each providing isolation to displacement noise from the suspension point above; this

is a passive measure. They also use active feedback systems to counteract seismic

noise coupling to the optical tables from which the optics are suspended [69].

1.4.2 Shot-noise

As described above, di�erential changes in Michelson interferometer arm lengths are

measured by power uctuations at the anti-symmetric port. The maximum sen-

sitivity to DARM length changes that an experiment can achieve depends on the

stability of the power measured where no length change occurs, i.e. if the optics

were perfectly still then ideally the output of the detector would be constant. The

high-frequency sensitivity is often limited by photon shot-noise which has its roots

in the Heisenberg uncertainty relationship between the numberN  of and phase�

of photons, i.e. � N  � � � 1 [48].

The uncertainty in the number of photons in a laser beam � N  follows Poisson

statistics [70], i.e. � N  =
p

N  �
p

�P=~! where � is the measurement time,P

the beam power, and! the angular frequency of the photons.

The uncertainty in the phase can be related to the uncertainty in propagation dis-

tance (i.e. uncertainty in Michelson interferometer arm length � L ) by � � = k� L =

2� � L=� , where � is the wavelength of the laser.

The shot-noise-limited displacement amplitude spectral density (ASD) in a Michel-

son interferometer is given by [48, 71]

SSN
� L (f ) =

r
c~�

4�P BS
(1.36)
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where PBS is the power on the beam splitter. Eq. 1.36 shows that to increase the

signal-to-shot-noise-ratio the options are to decrease� or increasePBS . Changing

the laser's wavelength is not so simple, because, for example, optics have coatings

designed for a speci�c wavelength, with narrow bandwidths, and the same is true for

photo detectors | they operate within a narrow bandwidth as well. An experiment

could be designed with this in mind and set out to use a much smaller wavelength

laser. However, a three order of magnitude decrease in� = 1064 nm puts the light

at the far end of UV if not x-ray light, which is not ideal for optical experiments

where people are constantly nearby.

The most practical method of improving SSN
� L is to increase power on the beam

splitter. In order to do this, besides input power increase, a particular optical

device | a resonant cavity | is exploited. A cavity can provide a three order of

magnitude increase in power on the beam splitter quite readily, as described in Sec.

2.3.

1.4.3 Radiation pressure

The uncertainty in the number of photons per unit time has a second noise e�ect.

Each photon imparts momentum to the optics they impinge [72] which means a

displacement in the mirrors proportional to square root of power in the beam [73]

| or equivalently, to the number of photons arriving. If the number of photons was

constant, this displacement e�ect is cancelled by virtue of the di�erential arms each

receiving an equal momentum transfer. However, the uncertainty in the number

of photons at each optic leads to a stochastic displacement noise | the radiation

pressure noise, �L RP .

Radiation pressure has an inverse proportionality to power compared to shot-noise

[73] i.e.

� L RP /
p

P (1.37)

and so there is a balance to be struck between the two. Increasing the laser power will

reduce the shot-noise oor, but will increase the radiation pressure noise. However,

radiation pressure is a low frequency noise; for experiments like LIGO and Virgo, it

is the dominant quantum noise at frequencies below� 50 Hz, above which shot-noise

becomes dominant [74, 75], which means it will not be the main limiting noise for

experiments looking in the kHz-MHz region.

1.4.4 Standard quantum limit

The standard quantum limit is the lowest noise oor a classical experiment can

achieve without some novel quantum mechanical based intervention. Once all other

noise sources are addressed, the quantum noises of shot-noise at the sensor and radi-

ation pressure at the optics are limiting. They are a feature of quantum mechanics,
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they cannot be suppressed by feedback loops. A novel method fast becoming stan-

dard practice at advanced high sensitivity interferometer experiments is to inject

squeezed states of light (a method referred to as `squeezing'), the process of reducing

one quadrature of the quantum noise of photons (number or phase) at the expense

of the other, resulting in a higher signal-to-noise (SNR) than would otherwise be

possible by bringing noise below the standard quantum limit.

When discussing noise, it is common to do so in the context of the SNR rather than

noise alone. For example, when aiming to reduce the shot-noise limit the power

can be increased. This works because of the di�erent relationships the signal and

the noise have to that increased power, as described earlier. But for something like

radiation pressure or seismic noise, the improvement is likely only going to reduce

noise while having no impact on the signal. So, when discussing improvements to

noise it may be a direct reduction of noise, or as a byproduct of increasing both the

signal and the noise amplitudes by di�erent amounts. In both approaches, the SNR

is ultimately increased.

1.4.5 Co-located Michelson interferometers

If two nearby Michelson interferometers were operated simultaneously and indepen-

dently, their time averaged cross-spectrum could be used to strengthen any cor-

related signals while mitigating the uncorrelated noise sources. This principle of

the data from two separate detectors being cross-correlated is of bene�t to all phe-

nomena which generate an output signal in Michelson interferometers | assuming

non-interesting correlated noises, such as seismic noise, are su�ciently suppressed.

Further, if the two independent Michelson interferometers were so nearby that they

actually spatially overlapped or were `co-located', this dual Michelson interferometer

con�guration would be particularly constructive for the quantum gravity search.

Two co-located Michelson interferometers which share a strongly overlapped region

of spacetime de�ne a common horizon. The light sheet diagram of Fig. 1.3 is

expanded on to include these two co-located Michelson interferometers in Fig. 1.8.

Otherwise independent entangled uctuations are present and correlated to both

instruments due to this spatial overlap, and the time integrated cross-spectrum

of their separate data will establish a convenient method of enhancing the signals

generated within their common horizon. As described in Sec. 1.1.5, a signal believed

to have an entanglement origin could be scrutinised by varying the overlap of the

detectors. There should be a relationship between separation and signal strength,

with an expected signal extinction when they are no longer overlapping.
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1.5. The quantum enhanced spacetime experiment

Figure 1.8: The overlapping independent Michelson interferometers generate a common horizon
and causal diamond. Entangled length uctuations within each of the separate causal diamonds
are now correlated between the two instruments and will appear as a common signal in their cross-
spectrum.

1.5 The quantum enhanced spacetime experiment

The QU antum EnhancedSpace-T ime (QUEST) experiment [48] exploits the prin-

ciples of the co-located Michelson interferometer with the express purpose of estab-

lishing new upper limits for quantum spacetime signals. It is a table-top experiment,

of the order of 2 m in length with a data-acquisition rate capable of detecting individ-

ual photon cross times, making it sensitive to di�erential-mode length uctuations

in the 1 � 250 MHz region. Chapter 3 will describe QUEST's experimental layout,

control systems and commissioning e�orts to date. Chapter 4 details the Output

Mode Cleaner, an optical cavity in the detection path which plays a key role in

facilitating QUEST's groundbreaking sensitivity.

{ 28 {





Chapter 2

From theory to experiment

This chapter aims to give an overview of concepts which are important throughout

the thesis. Those familiar to interferometry, Gaussian beams, optical cavities and

control schemes may not need the revision. The majority of the topics here are

commonly accessible in such works as Bond [67], Saulson [76], Hecht [77], Siegman

[78] and Abramovici [79].

The topics of this chapter are included given their foundational importance to the

overarching themes of this thesis: the design and uses of high sensitivity optical de-

vices, control schemes and commissioning. Where derivations are included, they are

intended to provide those new to the topics a somewhat all encompassing overview,

alleviating the need to refer to citations for a general understanding.

Where the work here o�ers a perhaps unique or original approach is in Sec. 2.4.1

where the mode-matching telescope solution generator is detailed, and Sec. 2.11

where the design of glass beam dumps, which hugely reduce scattering, is described.

2.1 Field propagation of the Michelson interferometer

This derivation is an abridged version of that in Bond et al. [67]. The major results

are the anti-symmetric (AS) port �eld and the origin of the complex coe�cient

added to a �eld with transmission through an optic.
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Figure 2.1: The electromagnetic �elds of the interferometer.

The electric �eld ~E is described by [67]

~E(x; y; z; t ) = Ec~ep cos(!t � ~k � ~r + � ) (2.1)

where Ec is the carrier �eld amplitude, ~ep the polarisation direction, ! = 2 �� the

angular frequency with � the frequency, ~k = !=c the wavenumber, ~r the direction

of propagation and � is a phase o�set.

In the case of a linearly polarised �eld propagating along thez axis, Eq. 2.1 becomes

E(z; t) = Ec cos(!t � kz + � ): (2.2)

When the electric �eld inside a Michelson interferometer arrives at the beam split-

ter, the �eld is split in the two arms according to the reection and transmission

amplitude coe�cients r and t, respectively, with the phase changing� r and � t , re-

spectively. Following the electromagnetic �elds propagation shown in Fig. 2.1, we

have

EX1 = tE cei� t ; EY1 = rE cei� r 1 (2.3)

where � r 1 is the phase reection coe�cient from the front side of the beam split-

ter. We cannot assume the reection from either side is equivalent, but because of

symmetry we can assume equivalency of the transmission� t , in both directions [67].

The �elds EX1 and EY1 both propagate down their respective arms and return.

Assuming the end mirrors (referred to in the �eld of gravitational wave detection as

the end test masses, ETMs) to be fully reective (rET M = 1) and to have no inuence

on the phase (� r;ET M = 0), the �elds coming from the arms and approaching the
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2.1. Field propagation of the Michelson interferometer

beam splitter are

EX2 = tE cei ( � t +� X ) ; EY2 = rE cei ( � r 1 +� Y ) (2.4)

where � X and � Y are the total accumulated phase in the horizontal and vertical

arms, respectively.

Following the second interaction with the beam splitter, the �elds go as

ES = EX2;trans + EY2;ref l = EX2 tei� t + EY2 rei� r 1 = Ec

�
Tei (2� t +� X ) + Rei (2� r 1 +� Y )

�

(2.5)

EAS = EX2;ref l + EY2;trans = EX2 rei� r 2 + EY2 tei� t = Ecrt
�
ei ( � t + � r 2 +� X )+ ei ( � t + � r 1 +� Y )

�

(2.6)

whereR = r 2, T = t2 and � r 2 is the phase reection coe�cient from the back side of

the beam splitter. For convenience, the phase factors are separated into the common

and di�erential ones

� + = � r 1 + � t +
1
2

(� X + � Y ) (2.7a)

� � = � r 1 � � t +
1
2

(� X � � Y ) (2.7b)

� + = � t +
1
2

(� r 1 + � r 2 + � X + � Y ) (2.8a)

� � =
1
2

(� r 1 � � r 2 + � X � � Y ): (2.8b)

This reduces Eqs. 2.5 and 2.6 to

ES = Ecei� + [Rei� � + Te� i� � ] (2.9)

and

EAS = Ecrte i� + 2 cos(� � ) (2.10)

respectively.

For an optic, the conservation of energy requires thatR + T = 1 (neglecting losses1).

With a 50/50 beam splitter, R = T = 0 :5, which meansr = t = 1=
p

2, giving

ES = Ecei� + cos(� � ) (2.11)

and

EAS = Ecei� + cos(� � ): (2.12)

1The full relationship is R + T + P = 1 where P is the loss coe�cient.
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Conservation of energy also requires that the power out of a system must equal the

power into the system, i.e. Pc = PS + PAS , with Pc = EcE �
c = ESE �

S + EAS E �
AS .

After substitution, we have

E 2
c = E 2

c cos2(� � ) + E 2
c cos2(� � ) (2.13)

1 = cos2(� � ) + cos2(� � ): (2.14)

Eq. 2.14 is true if and only if

� � � � � = (2 N + 1)
�
2

(2.15)

where N 2 Z. Combining this with Eqs. 2.7b and 2.8b, this gives

1
2

(� r 2 + � r 1 ) � � t = (2 N + 1)
�
2

: (2.16)

The convention most commonly used is to assumeN = 0 and � r 1 = � r 2 = 0 [67],

which gives � t = � �= 2. For keeping track of phase for power calculations, this is

equal to � t = �= 2, or equivalently, N = � 1.

With this convention in mind, the amplitude coe�cients r and t for an optic are

recast asr and it , respectively, to account for this phase change in the transmitted

�eld, i.e. Er = rE c and E t = itE c. Substituting � + and � � back in

EAS = Ecei ( � t + 1
2 ( � r 1 + � r 2 +� X +� Y )) cos

�
1
2

(� r 1 � � r 2 + � X � � Y )
�

(2.17)

and including the particular values for each, remembering �X;Y = 2kL X;Y

EAS = Ecei ( �= 2+ 1
2 (0+0+2 kL X +2 kL Y )) cos

�
1
2

(0 � 0 + 2kL X � 2kL Y )
�

(2.18)

EAS = Ecei ( �= 2+ 1
2 (2kL X +2 kL Y )) cos

�
1
2

(2kL X � 2kL Y )
�

(2.19)

EAS = Ecei ( �= 2)eik (L X + L Y ) cos (kL X � kL Y ) (2.20)

remembering �L = ( L X + L Y )=2 and � L = L Y � L X

EAS = iE ceik (2 �L ) cos (� k� L ) (2.21)

cos is an even function and so we arrive at the anti-symmetric �eld as de�ned in Eq.

1.34.
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2.1.1 Signal sidebands by phase modulation

Phenomena that drive di�erential-mode arm (DARM) length changes to the Michel-

son interferometer couple power from the carrier into new �elds with an o�set fre-

quency called sidebands; from the super-position principle, they are separate �elds

from the carrier [80]. To derive these sidebands, take from Eq. 2.4 (though the same

is true for both arms [67]), including the above-mentioned convention

EY2 = rE cei 2kL Y : (2.22)

If something lengthens the arm at a certain frequency, this introduces an additional

phase component in the �eld

EY2 = rE cei (2kL Y + kL Y A p cos(
 p t )) (2.23)

where Ap is the amplitude of the e�ect and 
 p = 2 �� p is the angular frequency� p

of the length modulation. The factor ei (kL Y A p cos(
 p t )) is the phase modulation to

the carrier with modulation index mp = kL Y Ap, which can be generally expanded

using the Bessel FunctionsJn (mp) [67] as

eim p cos(� ) =
1X

n= �1

= i nJn (mp)ein� : (2.24)

For small Ap, mP � 1 and this expansion gives us

EY2 = rE cei (2kL Y )

"

1 +
ikL Y Ap

2
e� i 
 p t +

ikL Y Ap

2
ei 
 p t

#

+ higher order terms (2.25)

where the terms inside the square brackets are for the leading order (n = 0), and

the next-to-leading-orders (n = � 1 and n = 1), respectively. In the approximation

mp � 1 the higher order terms contribution is so small that they can be neglected

(though if mp is signi�cant, many non-negligible sidebands are generated), which

reduces Eq. 2.25 to

EY2 = ac + a� 
 (t) + a
 (t) (2.26)

where ac is the carrier �eld and a� 
 (t) and a
 (t) are the lower and upper �rst-

order sidebands, respectively, shifted from the carrier frequency by� � p and + � p,

respectively. This is the result for the Y-arm of a Michelson interferometer. In

the case where some phenomenon drives a balanced DARM uctuation | i.e. of

equal magnitude in both arms | the sidebands generated in the X-arm are identical

except they are 180� out of phase to those in the Y-arm. In this instance with the

Bessel expansion and simpli�cation,Ex2 = ac � a� 
 (t) � a
 (t) [67].

This coupling of light from the carrier to sidebands by di�erential-mode length
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modulation has the e�ect of generating a signal at the anti-symmetric port even when

the carrier is maintained at the dark fringe, since those sidebands constructively

interfere at the beam splitter. Phenomena which generate CARM uctuations also

produce sidebands in the same manner, but the these do destructively interfere and

do not exit at the anti-symmetric port.

Other types of modulation to a �eld, amplitude and frequency modulation are not

considered here. QUEST, which is described in Chapter 3, is interested in phase

modulation sidebands generated by di�erential-mode uctuations in the interferom-

eter arm lengths. Phase modulation e�ects, both di�erential- and common-mode,

are also useful for control schemes. Manually driving a length change generates

sidebands in the same way and those sidebands can be used for length sensing of

an optical device. This will be more apparent in Secs. 2.9 and 2.10 where speci�c

control schemes which generate and use phase modulated sidebands are described.

2.2 Gaussian laser beam properties

The laser beams used in optical interferometry are Gaussian beams, which are so-

lutions to the paraxial wave equation [78]. In the paraxial wave equation, the as-

sumption is that a wave function u(x; y; z) which has electric �eld

E(x; y; z) = u(x; y; z)e� ikz (2.27)

varies slowly in z (the propagation direction) compared to x and y [67]. The as-

sumption extends to say that the second derivative ofz is also very small; this is

equivalent to saying that the wave vector is very close to parallel to thez axis. By

substituting the �eld into the standard wave equation we end up with the di�erential

equation for u
�
@2

x + @2
y + @2

z

�
u(x; y; z) � 2ik@zu(x; y; z) = 0 : (2.28)

Now we make the paraxial wave assumptions [67]:

j@2
z u(x; y; z)j � j 2k@zu(x; y; z)j ; j@2

x u(x; y; z)j ; j@2
y u(x; y; z)j: (2.29)

and Eq. 2.28 simpli�es to the paraxial wave equation,

�
@2

x + @2
y

�
u(x; y; z) � 2ik@zu(x; y; z) = 0 : (2.30)

A �eld which solves Eq. 2.30 has a paraxial beam shape when used in the form of

Eq. 2.27.

There is an in�nite set of solutions to Eq. 2.30, each describing a unique electro-

magnetic distribution of the �eld transverse to the beam propagation direction |

which here is assumed to bez. The solutions are called modes. The modes de-
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scribed in this thesis are the Hermite-Gaussian modes [81]; there are other bases

the beam can be decomposed into, Laguerre{Gaussian [82], Ince-Gaussian [83] and

Hypergeometric-Gaussian [84], but these will not be discussed here.

The number of nodes splitting the mode in thex; z (tangential) and y; z (sagittal)

planes are given by the subscripts n and m, respectively with n, m2 Z+ . Modes are

then labelled as TEMnm , where TEM stands for transverse electromagnetic. The

zeroth order solution TEM00 is called the fundamental mode or the carrier; these

three designations are used interchangeably. This is the purely Gaussian mode

associated with signal generation and instrumentation control and it is the mode

usually made resonant inside a cavity as will be described in the next section, Sec.

2.3. Modes where n+m> 0 are referred to as the higher order modes. The intensity

distributions of the fundamental mode and some low order higher order modes are

shown in Fig. 2.2. The �eld amplitude for the modes in the tangential plane is

shown in Fig. 2.3. This highlights how each node is actually a phase ip in the

�eld. This will be important when discussing the design of a triangular cavity in

Sec. 4.2.2.

Figure 2.2: Intensity distributions of the Hermite-Gaussian modes [81]. Numbers refer to the
amount of nodes creating separate lobes; the �rst number for the n( x; z) plane and second for the
m(y; z) plane.
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Figure 2.3: Higher order Hermite-Gaussian mode �eld amplitude for the n( x; z) order mode [78].

A Gaussian laser beam is a superposition of all the modes where usually the funda-

mental mode is the overwhelmingly dominant mode. The Gaussian name is because

of the intensity distribution observed through the beam's cross section | it is max-

imised at the propagation axis andfalls o� with a Gaussian distribution from that

centre, see Fig. 2.4a. The size of the beam is de�ned from the radius! taken where

I = I max =e2, where I is the beam intensity and e is Euler's constant. The Gaussian

pro�le is maintained throughout propagation, but the variance increases because the

beam diverges with distance propagated. The Gaussian intensity distributionI (z)

at propagation distance z is [78]

I (z; r ) =
2Pc

�! (z)2 e� 2r 2=! (z)2
(2.31)

where Pc is the total power of the beam, ! is the beam radius andr is the distance

from the beam's propagation axis.

One of the main properties of a Gaussian beam is the waist | where the beam

radius is at its smallest when converging/being focused. At the waist positionz0 the

beam has radius! 0; see Fig. 2.4b. Propagation distancez (which can be negative)

is measured from the waist and the beam properties at anyz can be calculated

provided both ! 0 and z0 are known.
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(a) (b)

Figure 2.4: (a): Cross sectional pro�le of a Gaussian beam. The beam radius is de�ned as the
distance from the axis to the point where the intensity falls to 1 =e2 the peak. (b): Side pro�le of
Gaussian beam through a focus point. ! 0 is the waist radius located at z0 , zR the Rayleigh length
measured from z0 . ! (z) is the radius of the beam at propagation distance z from z0 .

Another important property is the Rayleigh length (or Rayleigh range) zR , which is

the distance required for the cross sectional area of the beam to double that of the

cross sectional area at the waist, it is described by [78]

zR =
�! 2

0n
�

(2.32)

where � is the wavelength of the laser andn the refractive index of the medium the

beam is propagating through. The beam radius! (z) at a given z is [78]

! (z) = ! 0

s

1 +
�

z
zR

� 2

: (2.33)

Unlike a plane wave where the wavefront is always planar by de�nition, a Gaussian

beam exhibits a curved wavefront as it propagates. The radius of curvature of the

beam wavefront isR(z) [78]

R(z) = z +
z2

R

z
: (2.34)

These properties are important for ensuring the beam is matched to the geometry

of an optical device it is to impinge on, as will be more apparent in the following

sections.

If a Gaussian beam of powerPin propagates through an iris of radiusa, then the

power that propagates through the iris Pout is given by [78]

Pout = Pin

�
1 � exp

�
� 2a2

! (z)2

��
: (2.35)

Any loss in power is due to clipping | the amount of the beam blocked due to being

wider than the aperture.
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A more thorough description of the Gaussian beam includes the Gouy phase [85].

When the beam is focused there is a phase shift from one side of the focus to the

other with respect to that of a plane wave experiencing the same focusing. Each

mode, including the fundamental, accumulates a speci�c amount of this Gouy phase.

The Gouy phase of the fundamental and that which separates successive order modes

from it is [78, 85]

� G(z) = � arctan
�

z
zR

�
(2.36)

Since the order of a mode is de�ned as the sum total of nodes, n + m, the shift of

a particular mode is [78, 85],

� G;nm (z) = (n + m + 1) � G(z) (2.37)

2.3 Optical cavities

Optical cavities are arrangements of mirrors which, under the right conditions which

are described in this section, trap the electric �eld and make it resonate. They can

be used for many di�erent purposes either as the main component of an experiment,

or as a supplementary component. Some of the main experimental uses will be

described in this section.

2.3.1 Electric �elds around a cavity

An exploited feature of an optical cavity is to trap the electric �eld and make it

resonate before allowing it to pass through or be reected. Where the �eld ends up

is a matter of the interference conditions, which is determined by the relationship

between the cavity length and the �eld frequency. In order to appreciate the prop-

erties of the cavity �elds, we can break them down into separate in�nite series |

the reected �eld, the �eld circulating inside the cavity, and the transmitted �eld.

Starting with the incident �eld, Ec, we describe all others in terms of the reectivities

(r i ) and transmissivities (t i ) of the mirrors where subscript i identi�es the mirror

with i = 1 and i = 2 for the input and output mirrors, respectively.

Figure 2.5: Electric �elds in and around a cavity of length L . The left mirror is the input mirror
with reectivity r 1 and transmisivity it 1 . The right mirror is the output or end mirror, r 2 and it 2 .
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As Fig. 2.5 shows, the reected �eld Er consists of a promptly reected �eld ( Er 0),

and of the �elds which have entered the cavity and completedn number of laps

(Er 1;2;:::n ), for n = 1 ! 1 , until transmitting back out through the �rst mirror in

the direction of the source.

The circulating �eld Ecirc begins at the immediately transmitted incoming �eld

(Ecirc; 0), followed by the �elds again completing n laps.

The transmitted �eld E t begins with the �eld that enters the cavity and is trans-

mitted through the second mirror without completing any laps. Followed by each

�eld having completed n laps, and then transmitting through the second mirror.

The electric �elds around a cavity of length L are mathematically expressed as

[67, 76, 86],

Er = Ec
r1 � r2(r 2

1 + t2
1)e� 2ikL

1 � r1r2e� 2ikL (2.38)

Ecirc = Ec
it 1

1 � r1r2 e� 2ikL (2.39)

E t = Ec
� t1t2e� ikL

1 � r1r2 e� 2ikL (2.40)

In terms of measured power, Eqs. 2.38 - 2.40 become,

Pr = Pc
R1 + R2

1R2 + 2R1R2T1 + R2T2
1 � 2r1r2R1 cos(2kL ) � 2r1r2T1 cos(2kL )

R1R2 � 2r1r2 cos(2kL ) + 1
(2.41)

Pcirc = Pc
T1

R1R2 � 2r1r2 cos(2kL ) + 1
(2.42)

Pt = Pc
T1 T2

R1R2 � 2r1r2 cos(2kL ) + 1
(2.43)

It is possible to see that the powers are all dependent on the relationship between

the separation of the mirrors L and the wavelength of the laser (absorbed in the

wavenumber k).

2.3.2 Cavity geometry

Three common layouts for the optical cavity are the linear Fabry-P�erot cavity such

as those in the arms of gravitational wave detectors [87], triangular such as the LIGO

input mode cleaner [88] and the bow-tie, such as that used for the LIGO Output

Mode Cleaner [89]. These common con�gurations are shown in Fig. 2.6.
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(a) (b) (c)

Figure 2.6: Cavity geometries. (a) is the linear Fabry-P�erot, (b) the triangular and (c) the bow-tie
con�gurations.

For whichever geometry the cavity is designed, there is a stability requirement that

exists between the cavity length and the curvature of the mirrors of which it is

comprised. Each mirror of the cavity has a so called g-factor [44, 78]

gi = 1 �
L

RoCi
(2.44)

where L is the cavity length and RoCi is the radius of curvature of the i th mirror.

For a cavity to be stable the condition of

0 < g1g2gi < 1 (2.45)

must be met [44] . If it is met, this means that for any point with the cavity,

the transverse structure and phase of the beam is repeated at that point after each

round-trip of the cavity [44]. The selection of which geometry is appropriate depends

on the intended use of the cavity. Though a linear cavity is perhaps the simplest to

construct, it does direct all of the reected �eld back towards the source while the

other two direct the reected �eld away. However, the reection towards the source

may actually be why the cavity is used | the arm cavities of the large gravitational

wave detectors for example. There may be a constraint on the physical size of the

cavity. If a large round-trip is desirable but space is limited, the bow-tie may be

the best option. The question of cavity geometry was one of the �rst tackled in the

design of QUEST's Output Mode Cleaner, the subject of chapter 4.

2.3.3 Resonance and Finesse

Plotting Eqs. 2.41, 2.42 and 2.43, reveals the dependence onL of the powers | see

Fig. 2.7.
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(a)

(b)

Figure 2.7: Cavity resonance condition. Red is reected, blue is transmitted and black is circulat-

ing power. (a): A low quality cavity with r 1;2 = 0 :8, t1;2 =
q

1 � r 2
1;2 = 0 :6. (b): A higher quality

cavity with r 1;2 = 0 :96, t1;2 =
q

1 � r 2
1;2 = 0 :28. Note the y axis, more reective mirrors lead to

increased internal power. Subscripts 1 and 2 denote the input and output mirrors, respectively.

From the two examples of Fig. 2.7, (a) with low reectivity mirrors and (b) with

high reectivity mirrors, it is clear that R1;2 and T1;2 play a huge role in determining

how �ne the resonance is and how much power is built internally, but for resonance

itself, it is the relationship between L and � that dictates when it can happen.

Eqs. 2.42 and 2.43 are maximised when the denominator is minimised, which occurs

where cos(2kL ) = 1. This condition of maximum circulating and transmitted power

(and minimised reected power) is the resonance condition.

From the cos(2kL ) = cos(2 � 2�=� � L ) = 1 requirement for resonance, it is clear that

cavity resonance is achieved when the length of the cavity is an integer number of

half wavelengths,

L = n
�
2

for n = 1 ; 2; 3; ::: (2.46)

which is visible in Fig. 2.7. This is the condition to allow a standing wave to form

within the cavity. The reectivity of the mirrors determines the internal ampli�ca-

tion, and the proportion of the �eld reected and transmitted. Either the length of

the cavity is controlled to suit the wavelength of the laser, or the wavelength of the

laser is controlled to suit the length of the cavity.

The cavities in Fig. 2.7 are set up to be what's calledImpedance matched, where the
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reectivity/transmissivity of both mirrors are the same i.e. R1 = R2 and T1 = T2

(assuming the ideal case, where there is no loss); subscripts 1 and 2 denote the

input and output mirrors, respectively. This con�guration is preferred for a cavity

where the transmitted beam is used since, on resonance transmitted power is equal

to input carrier power; Pt = Pc (ignoring loss). Sometimes though, the reected

beam is used instead (such as the cavities within the arms of the large gravitational

wave detectors). If T1 > T 2, the cavity is called Overcoupled while for T1 < T 2, it

is called Undercoupled. The di�erent con�gurations and the e�ect they have on the

cavity powers are shown in Fig. 2.8.

Figure 2.8: Display of di�erent cavity couplings. T1 is shown on the x axis, and T2 = 1 � T1 .
Left shows undercoupled sinceT1 < T 2 . Right shows overcoupled sinceT1 > T 2 . Where T1 = T2

this is critically coupled or impedance matched. Red is reected, blue is transmitted and black is
circulating power.

For the impedance matched case (0.5 on thex axis of Fig. 2.8), transmitted power

is greatest which could be of bene�t to certain setups, while with overcoupled higher

circulating power can be achieved. This is very bene�cial if, for example, the ob-

jective of the cavity is to amplify the power within, or keep photons bouncing back

and forth for as long as possible to sample a length change imperceptible to a single

crossing.

An important parameter is the cavity Finesse F which is de�ned as [78],

F =
� F SR

� cav
(2.47)

where � F SR is the cavity Free Spectral Range, i.e. the frequency distance between

the successive transmission peaks [78]

� � F SR =
c

2L
=

c
L rt

(2.48)
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with L as the cavity length and c the speed of light. L rt is the cavity round-trip-

length which for a linear cavity is 2L .

� cav is the cavity bandwidth [78],

� � cav =
2� � F SR

�
arcsin

�
1 � r1r2

2
p

r1r2

�
(2.49)

where r1, r2 are the mirror reection coe�cients. For highly reective mirrors,

r1 � r2 � 1 and the arcsin function can be reduced to its argument, i.e. [78],

F �
�

p
r1r2

1 � r1r2
(2.50)

For a �xed length cavity, improvements to the mirror reectivities will reduce the

bandwidth2.

2.3.4 Frequency reference

Fig. 2.7 and the equations of Sec. 2.3.1 highlight that if a cavity's length can be

assumed as stable, then the cavity can be used as a witness for uctuations in the

laser's frequency | optical cavities are commonly used for this purpose. If the length

is �xed in the sense that it has no actuators (but is still subject to length noise due

to vibrations, thermal expansion etc), then the resonance condition is maintained by

acting on the wavelength (frequency) of the laser. This is not a drastic wavelength

variation, it is a minute change well within the bandwidth of the components, i.e.

� � � the full-width-half-maximum. With a high Finesse cavity, the bandwidth is

narrow which means the range of frequencies which will result in a single resonance

gets smaller. Therefore, higher Finesse cavities are more challenging to control and

hold on resonance, but if it can be achieved, the laser's frequency will be more stable.

2.3.5 Spacial mode �ltering

In addition to power build up and frequency stabilisation, another exploited feature

of optical cavities is spacial mode �ltering. Assuming the fundamental mode is

the signal carrier, the higher order modes in the beam do not contribute to the

signal, they can therefore be considered as a pure noise source which needs to be

suppressed | via spacial mode �ltering. To utilise this feature, the impedance

matched condition is ideal since the transmitted beam is always separate from the

input and reected beams and so can be used downstream of the cavity. This

description will therefore assume the cavity is impedance matched. A consequence

of the Gouy phase shift is that when entering a cavity, higher order modes have a

2For cavities with more than two mirrors, it is simply a case of including each mirror, i.e.
F � �

p
r 1r 2r 3=(1 � r 1r 2r 3) [90].
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frequency shift � � nm relative to the fundamental mode [90]

� � nm =
c

L rt
(n + m)

1
�

arccos
� p

g1g2
�

(2.51)

where gi is the g-factor of the i th cavity mirror as introduced in Sec. 2.3.2, Eq.

2.44. When the fundamental mode3 is in resonance within the cavity, and as such is

transmitted through, the higher order modes present in the beam are not resonant

because of the � � nm frequency shift. The higher order modes are therefore reected

from the cavity providing then a purely fundamental laser mode downstream of the

cavity. This is why cavities act as spacial mode �lters and are said to `clean' the

beam (of higher order modes).

The transmission of higher order modes with respect to the fundamental mode from

a linear cavity is given by [90]

Tnm

T00
=

1
h
1 +

� 2
� F sin

� 2�
L � � nm

�� 2
i 1=2

: (2.52)

2.3.6 Low-pass �lter

The �nal interesting feature of cavities is their frequency response transfer function

H (� ) given by [91]

H (� m ) =
�

t1t2

1 � r1r2

� 2 1
p

1 + i (� m =� p)
(2.53)

where t1;2 and r1;2 are the transmission and reection coe�cients for the cavity

mirrors, respectively, i is the imaginary number, � m is some modulation frequency

and � p the cavity pole frequency � p = � cav=2.

Normalised to the maximum transmission, the gain of a cavity is [91]

jH (� m )j =
1

q
1 + ( � m =� p)2

(2.54)

and the phase delay is [91]

arg[H (� m )] = tan � 1
�

� m

� p

�
: (2.55)

This is a classic low-pass �lter transfer function [79, 91] which means that if an input

parameter is uctuating, then uctuations at frequency � m > � p will be suppressed

by the cavity which can be useful for noise suppression. However, it also attenuates

3A cavity can be made resonant with any mode, but in this case it is assumed the fundamental
mode is the resonant one.
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potentially interesting signals in exactly the same manner. The cavity pole is there-

fore a property that requires careful design so not to preemptively begin suppressing

signals.

2.3.7 Higher order mode generation

Cavities have states of resonance where the Gaussian beam geometry is repeated

each round-trip, these states are called eigenmodes. The eigenmode is de�ned by

the cavity axis and the geometry of the mirrors, including separation and radius of

curvature. Where the beam wavefront matches each mirror's radius of curvature,

the cavity is said to be mode-matched. Imperfect alignment and/or mode-matching

generate higher order modes within the cavity, with power from the fundamental

mode coupling to those higher order modes. Their coupling mechanism is described

well in [67] | each factor and the mitigation strategy will be described in the

following sections.

Misalignment

If the input beam is misaligned to the cavity axis, either by tilt � or translation x 0

(Fig. 2.9a and Fig. 2.9b, respectively), power is coupled to �rst order higher order

modes [92].

(a) (b)

Figure 2.9: Cavity misalignment. (a): Angular misalignment, the beam has angle � to the cavity
axis. (b): Translation misalignment, the beam is distance x 0 from the cavity axis.

Two dedicated mirrors, ideally with no other optics in between them or the cavity,

are required to steer the beam into the cavity | see Fig. 2.10. The greater the

separation of the mirrors, the more angular control they provide by simple virtue of

trigonometry.
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(a) (b) (c)

Figure 2.10: The beam walk. (a): the near mirror only is acted on and a maximum transmission
is found, this could be assumed to be the best alignment. (b): the far mirror is now acted on and
the transmission is reduced, it is a worse alignment than (a). (c): The near mirror is acted on again
which brings the beam closer to the cavity axis and provides a higher transmission than in (a).

Alignment can be carried out in the form of a beam walk; the process of iterative

improvements to the transmitted power when a length scan (or frequency shift) is

occurring. Tuning one mirror followed by the other to maximise transmitted power

can (almost certainly will) lead to erroneous maximums | it may appear like a max-

imum has been reached but it is a local maximum, not the global maximum. With

the beam walk, once a maximum is reached, one mirror is intentionally misaligned

and the other is used to recover and ideally improve the previous maximum.

The idea of a beam walk is shown in Fig. 2.10. Say while acting on the pitch control

of the closest mirror as in Fig. 2.10a, the transmission reached a maximum. The

beam is not very well aligned to the cavity axis but it is the best that can be achieved

with the current position of the furthest mirror. Now consider the case where the

furthest mirror is acted on as in Fig. 2.10b, the beam is worse than in Fig. 2.10a

and so the transmission is reduced. However, now acting on pitch of the closest

mirror again, the beam can be brought to very close to the cavity axis as in Fig.

2.10c. This will have a higher transmission than the previously achieved value of Fig.

2.10a. The beam walk is carried out for both pitch and yaw degree of freedom, it is

an iterative (and somewhat laborious) process. This could be automated with some

algorithm and motorised mirror mounts, which would also present the opportunity

for an alignment feedback loop to maximise transmission.

The length scan will show the transmission spectrum provided it covers at least one

� F SR . This can be used to simultaneously maximise the fundamental transmission

while minimising the higher order modes visible in the spectrum.

Mode-matching

Mode-matching is related to the beam wavefront's radius of curvature matching that

of the cavity's concave mirror (there could be multiple curved mirrors, but for the

current description it will be assumed only one is present). For this to happen, the

correctly sized and positioned waist must be generated within the cavity. Once the

beam reaches the curved mirror from the waist, through symmetry the mirror will
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focus the beam back to the waist | in this condition, the Gaussian beam retraces

itself geometrically. Deviation in the size or position of the waist will result in a

mismatch of the radius of curvatures and the �eld will not be correctly repeated

each round-trip, causing a coupling of power to second order higher order modes.

Examples of mode-matching are in Fig. 2.11.

Figure 2.11: Mode-matching examples; green lines depict a matching radius of curvature where
blue are incorrect. (a) | (d) show a linear cavity with a plane input and a concave end mirror.
The waist must be on the plane mirror since only the curved end mirror can focus the beam back
to the waist. Also a plane mirror is equivalent to a curved mirror with in�nite radius of curvature
and at the waist ( z = 0), R(0) = 1 . (a) has too small a waist, the beam diverges too much and
becomes larger than the mirror, and R(z) > RoC . (b) has too large a waist, R(z) < RoC . (c) has
a correctly sized but incorrectly positioned waist. R(z) is wrong for both mirrors. (d) is ideally
mode-matched, R(z) = RoC. (e) shows a symmetrical cavity with equally concave mirrors either
end, requiring the waist be positioned at the center of the cavity. (f) is a triangular cavity with two
plane mirrors and one concave mirror. The plane mirrors do not focus the beam in any way and so
the symmetry of the cavity puts the waist in between the plane mirrors.

Mode-matching is generally controlled using a two lens telescope, one for each degree

of freedom (position and size). As with alignment, mode-matching can be tuned

while observing the transmission spectrum of a cavity length/frequency scan. Second

order higher order modes will reduce in amplitude while the fundamental mode will

grow.

To design the telescope, usually lenses of �xed and standard focal length are used |

so the position of the available lenses is what needs to be determined. It is not ideal

to allow these lenses to be positioned downstream of the steering mirrors because

moving a beam using the steering mirrors with a lens in the path is likely to cause

deformations and astigmatism in the beam. A method which was developed during

this PhD to solve the mode-matching telescope is described in the next section.
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2.4 Modelling Gaussian beams

When modelling a Gaussian laser beam propagation, the required information is the

waist size and position ! 0 and z0, respectively, and the refractive index(es) of the

medium(s) it will propagate through. With those, the beam radius ! (z) and radius

of curvature R(z) at any propagation distance z (measured from the waist) can be

calculated. The complex beam parameters (also known as the q-parameters) are

de�ned as [78]

q(z) = z + izR (2.56)

1
q(z)

=
1

R(z)
� i

�
�n! (z)2 : (2.57)

To calculate the outgoing (subscript 2) light ray from the input (subscript 1) light

ray the ABCD matrices (which are optical component operator matrices) are used;

they are de�ned as [67, 78]

 
x2

� 2

!

=

 
A B

C D

!  
x1

� 1

!

(2.58)

wherex i is the distance of the ray from the optical axis and� i the divergence angle to

the optical axis. Among the many component speci�c matrices, the most exploited

in this thesis are:

| propagation through medium of refractive index n a distanced

 
x2

� 2

!

=

 
1 d

n

0 1

!  
x1

� 1

!

; (2.59)

| propagation through a thin lens 4 of focal length f

 
x2

� 2

!

=

 
1 0

� 1
f 1

!  
x1

� 1

!

; (2.60)

| reection from a mirror of radius of curvature RoC
 

x2

� 2

!

=

 
1 0

� 2
RoC 1

!  
x1

� 1

!

; (2.61)

| propagation from one medium to another, with refractive indices n1 and n2,

respectively  
x2

� 2

!

=

 
1 0

0 n1
n2

!  
x1

� 1

!

: (2.62)

4The thin lens approximation means there is no need to account for the change in refractive
index; Eq. 2.60 is only valid for this approximation. This will be the assumption for all cases in
this thesis.
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