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a b s t r a c t

Micro-blogging services have recently been experiencing increasing success among Web
users. Different to traditional online social applications, micro-blogs are lightweight,
require small cognitive effort and help share real-time information about personal
activities and interests. In this article, we explore scalable pushing protocols that are
particularly suited for the delivery of this type of service in amobile pervasive environment.
Here, micro-blog updates are generated and carried by mobile (smart-phone type)
devices and are exchanged through opportunistic encounters. We enhance primitive push
mechanisms using social information concerning the interests of network nodes as well
as the frequency of encounters with them. This information is collected and shared
dynamically, as nodes initially encounter each other and exchange their preferences, and
directs the forwarding of micro-blog updates across the network. Also incorporated is
the spatiotemporal scope of the updates, which is only partially considered in current
Internet services.

We introduce several new protocol variants that differentiate the forwarding strategy
towards interest-similar and frequently encountered nodes, as well as the amount of
updates forwarded upon each encounter. In all cases, the proposed scheme outperforms
the basic flooding dissemination mechanism in delivering high numbers of micro-blog
updates to the nodes interested in them. Our extensive evaluation highlights how use can
be made of different amounts of social information to trade performance with complexity
and computational effort. However, hard performance bounds appear to be set by the level
of coincidence between interest-similar node communities and meeting groups emerging
due to the mobility patterns of the nodes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Onlinemicro-blogging services have become very popular in recent years. The basic idea behind them is to allow users to
post short messages and automatically receive updates from other specific users who they decide to ‘follow’. Although the
‘follower’ relationship is reminiscent of traditional online social networks (OSNs), it is also substantially dissimilar from
a typical online friendship in that links are essentially uni-directional and may not be reciprocated. Also, users do not
necessarily receive any kind of information about their followers and their interests, while followers can be blocked from
receiving updates if so desired.
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Thanks to user-originated features such as ‘retweeting’ (the forwarding of a received tweet, allowing its spread far beyond
the set of followers of its original source), micro-blogging has become an effective tool for information diffusion, similar to
news media services [1]. Additional user-originated features include a form of tagging (hash-tag) that allows categorisation
of updates by topic. Micro-blogging has found applicability in emergency scenarios (updates during riots in Kenya, Egypt,
Iran and Libya), and facilitated information dissemination at institutional level or in critical situations (help during large-
scale emergencies, live updates to track traffic delays), thus serving as a powerful instrument of cooperation [2,3]. It has also
been recommended as an effective alternative for reducing overload in working environments [4].

Capabilities such as targeting a specific user in a post (reply), or sending direct messages to users suggest a (weak)
definition of ‘friendship’ between users that have participated in a given number of these more direct interactions.
Alternative interpretations consider ‘friends’ those users for whom the follower relation is reciprocated [1]. According to
an exploratory study of Twitter usage [5], it is the compulsory brevity of the updates that further allows the reader to
effectively filter large numbers of messages. This feature reduces the cognitive threshold for the writer to decide to share
and the burden for the reader to process all updates. Because of their particular requirements in terms of message size and
their purpose to inform, warn, share and offer opinions, micro-blogs have been often compared to the concept of ‘utterance’
in linguistics [6,7,3,8].

Although micro-blogging has essentially been thought of as an online service, the particular structure of the induced
followers’ networks [9] makes them an ideal mechanism for the rapid dissemination of information amongst ad-hoc social
communities. The application of these services to the mobile domain suggests opportunities for sharing micro-blog posts
directly among local devices that can send and receive content while taking into account the local or temporal context.

In this work, we explore scalable decentralised push-based protocols for micro-blogging using mobile devices in
pervasive opportunistic environments [10]. According to our scenario, low payload micro-blogs (utterances) are generated
by the devices (nodes), stored directly in their memory, and opportunistically exchanged upon their pairwise interactions.
Ourwork extends the basic flooding concepts introduced in [8] by exploring in detail the role of similarity of interest between
users. As a consequence of the peculiar nature of micro-blogging services, where forwarding an update does not imply any
direct knowledge of the current status of followers, a user forwarding an utterance will have no knowledge about their
follower’s stored micro-blogs or preference for particular content. A push-based strategy such as this must therefore follow
some form of (pure or controlled) flooding strategy. However, to enhance these strategies’ performance by attempting to
reduce the number of irrelevant utterances delivered to users, we allow them to store limited social context about a subset
of users and use it to direct the forwarding of micro-blogs to encountered nodes.

The contribution we make is to explore different ways to use friendship, interest similarity and familiarity between
nodes to better suit various possible real-life scenarios. This is important because it allows protocols to be adaptive to social
content. In the baseline scenario, friendship links form between individual nodes having similar interests. Different interest
similarity thresholds can modulate the selectiveness of nodes in forming such relationships. Information about interest
profiles is dynamically sharedwithin the resulting social groups of friends and used to prioritise the dissemination of content
among them. Note that basing the social group exclusively on similar interests aims to reduce the computational effort for
storing, processing, and selecting updates not closely related to a node’s own interests. At a second level, nodes may keep
account of nodes they encounter frequently (familiar nodes). The relationships with these nodes, which do not necessarily
share similar interests, can be seen as a further (weaker) form of friendship that can be exploited to disseminate content on
behalf of other ‘familiar’ individuals.

We do not aim to deliver all relevant content to all nodes that may wish to receive it. Instead, we aim to deliver content
that is interesting to a node given some spatial or temporal context. We do not guarantee that users will always receive all
the interesting content that may be in the system for them, but aim to ensure that the content they do receive is of the most
interest. We aim therefore to reduce the dissemination of irrelevant content, thus removing the need for users to filter the
content they receive. In order to quantitatively assess the system’s ability to meet these aims we use twometrics describing
information retrieval quality, precision and recall.

Although the protocol could be extended to fuzzier classifications, we assume in this work that each utterance is
characterised by a well-defined topic (tag). Nodes gain positive utility when receiving an update that matches one of their
individual interests (tags). The obtained utility also accounts for the spatial and temporal validity of micro-blogs. The local
aspect, in particular, even if it is not originally considered in on-line services, is particularly suited to mobile pervasive
scenarios.

We assess different strategies for selection and pushing of utterances and find that the most successful strategies take
into account not only the individual interest profiles of friend nodes but also use a ‘community profile’ to push items to
nodes that are not friends, but may be familiar due to repeated interactions. A performance tradeoff must be made between
using all non-friend nodes and using only those that are familiar to us. Further tests reveal that considering the spatial and
temporal validity of content has an important impact on the system performance, and that pushingmore than one utterance
per encounter may deliver better performance in terms of recall, but worsen the performance in terms of precision. Finally
we examine the effect of basing the friend set of a node on both familiarity and similarity rather than just similarity.

The remainder of the document is organised as follows. Section 2 describes the main components of the proposed
micro-blog dissemination protocol, including the social information maintained by nodes and the criteria for forwarding
micro-blogs to encountered nodes. Section 3 presents the methodology and experimentation scenarios we have devised
for evaluating the protocol and revealing its main tradeoffs. Our experimental evaluation is structured into five sets of
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experiments, whose results are reported in Section 4. Related research and the differentiation elements of our work are
presented in Section 6, while Section 7 summarises our conclusions about the protocol performance and proposes future
work items.

2. Micro-blog dissemination protocol

This section introduces our protocol for opportunistic dissemination of ‘micro-blogs’. The protocol is executed bymobile
agents that interact opportunistically in the physical space. As the agents come within range of one another, they establish
connections and exchange micro-blogs. Although our initial motivation has been to develop a protocol for adapting and
testing current online micro-blogging services in a mobile opportunistic environment, the protocol can involve generic
mobile device nodes (i.e., not necessarily human users) that can interact automatically using wireless technologies.

Our protocol is push-based. Micro-blogs (also described as utterances) are forwarded to encountered agents on the
expectation that they carry some value for them, rather than because they are explicitly requested by them as a pull
model would dictate. Our objective has been to come up with a lightweight protocol that circumvents the overheads of
information discovery/advertisement operations, which are not well suited to opportunistic environments. At the same
time, the protocol draws on information about the users’ interests to control and direct the amount of floating information
in the network. Nodes exchange information about their preferences upon first contact and so iteratively build interest
profiles for the other nodes in the network. These profiles help them form implicit ‘groups of friends’, wherein utterances
are forwarded with higher care than among non-friend nodes. Only friend’s interest profiles are stored in the long term,
increasing the efficiency and scalability of the system. Ideally, the generated utterances are only forwarded to nodes that
are interested and actually ‘consume’ them, making minimum use of the storage and battery resources of nodes.

As we are considering a decentralised push based system, we assume nodes use only short range communication to
transfer information. No assumption is made on the availability of a cellular data network, making the protocol ideal for use
in areas of low or no signal, such as on underground transport systems. As such it is also suitable for use when no centralised
data connection or sufficient infrastructure is available, such as at a festival or a large sporting event, or when roaming in
a foreign country where data services may be costly. Moreover, it is suitable for use with any type of device, not just those
mobile phones with a data connection to a cellular network. Most tweets in such a system are likely to have local interest,
so using a decentralised system allows only local resources to be consumed in the consumption and forwarding of data.
Using the cellular data network would require fundamental changes to the architecture of the system, and may also have
associated battery costs for the mobile devices.

The following paragraphs present the main protocol ingredients: the interest profiles capturing the nodes’ interests in
different topics and the method to form groups of friends out of these interest profiles; the utterances, the elementary data
unit that is forwarded upon pairwise node encounters, and their specification; and, finally, the criteria that determinewhich
utterance should be pushed to which node.

2.1. Interest profiles and sets of friends

We assume that the interests of the network nodes can be coded into a finite well-defined global set M of distinct topics
(tags). Each mobile node x is interested in a subset of these topics that form its tag set.1 The interests of node x are captured
in his/her interest profile and are formulated by anM = |M|-dimensional vector Ix ∈ [0, 1]M , where the relative interest of a
node in a particular tag or topic may take any value between 0 and 1 (inclusive). Non-zero entries in Ix correspond to the tag
set of node x, whereas zero entries denote lack of interest in the corresponding tag. Practically, the entry Ixi reflects the rate
at which a node x generates micro-blogs related to the ith tag and/or its desire to receive information about the respective
topic. The interest profile vector is normalised for each node with

M
i=1 I

x
i = 1.

We associate two sets of nodes with each node x; both are dynamically built as nodes opportunistically interact with
each other. Each node therefore builds a distinct community of nodes with which it can interact, with the level of friendship
determining the manner and level of interaction between the nodes.

Set of familiar nodes. Familiar nodes are those nodes that come into contact more frequently with x. We measure the
contact frequency through the number of pairwise encounters: two nodes are noted as familiar if this number
exceeds a certain threshold thrF within a given time-window. In addition, for a node x we include some of the
nodes that, despite meeting less frequently with x, are familiar with other nodes y that are themselves familiar
with x. The complete procedure for determining those nodes is described in [12]. Note that we base the definition
of the familiarity exclusively on the number of contacts and not on the duration, since the latter parameter is not
influential in our simulation connections are open and close within a single time step after nodes have forwarded
(pushed) the selected items to the connected nodes. For each node in the network the group of nodes familiar to
it constitutes its familiarity set.

1 The use of a defined set can be seen as the natural extension to fuzzy classification of interests (see an adaptation of the concept of fuzzy set [11]) in
which each tag may have a probability value of being associated to other tags that are similar in meaning but substantially different semantically.



4 S.M. Allen et al. / Pervasive and Mobile Computing ( ) –

Set of friends. Friend nodes are those that have ‘similar’ interests with node x. The interest similarity between two nodes
can be measured through some measure of the similarity of their distribution of interests. To this end, we have
adopted the ‘proportional similarity (PS)’ metric, sometimes referred to as the ‘Czekanowski index’. With the PS
metric, the interest similarity PS(x, y) between two nodes x and y, with interest distributions Ix and Iy, equals [13]:

PS(x, y) = 1 −
1
2

M
i=1

Ixi − Iyi
 . (1)

The PS metric produces values in the interval [0, 1] and is shown in [13] to satisfy all 11 criteria suggested as
suitable for a measure of distributional similarity. A PS value of zero corresponds to two completely dissimilar
nodes (nodes whose corresponding interest profiles have no tags in common with positive frequencies), whereas
a value of one denotes the maximum degree of similarity (two nodes having identical interest profiles composed
of the same tag set with exactly coincident non-null frequency values).

In this work the forwarding of data draws heavily on the similarity of nodes’ interests. This reflects the concept
that the ultimate goal for a node is the reading and disseminating of updates closely related to its own interests.
Therefore, each node x in the network determines its set of friends, Nx as follows. When a node y encounters a node
x it is added to its ‘set of friends’ Nx if PS(x, y) exceeds some threshold thrS .

Nx
.
= {y|PS(x, y) > thrS}. (2)

This set is dynamically built as nodes interact, i.e., node pairs compute their pairwise PS values upon their first
encounter. Out of the individual friend sets, we can then form the undirected community graph Gc = (V , Ef ),
where V is the set of network nodes and Ef the set of friendship links between all node pairs.

2.2. Utterance definition

Utterances are defined as low-payload data (e.g., short text messages) that are produced and stored by each network
node. Contrary to online micro-blogging services, utterances are not pushed to a node’s friends immediately after their
generation but rather upon subsequent opportunistic contacts. Nodes generate a new utterance u over time in accordance
with their interest profiles and annotate them with the respective tag tu. Each node generates utterances according to a
Poisson(λ) process with an average rate λ; altering the value of λ will change the average time between the generation of
utterances, this provides a suitable estimate for the generation of messages within a system [14].

2.2.1. Utterance time and spatial validity
The utility of an utterance and the interest that other nodes have in receiving and reading it, is expected to decrease with

its lifetime. Also, some of the utterances may have only local significance and rapidly lose their importance when delivered
outside the geographical area in which they were generated. To capture the potential spatiotemporal scope of utterances,
we annotate them with both temporal and spatial scope attributes, as follows:

Time expiry attribute, texp. An utterance u remains useful up to time tuexp after its generation time, tu0 . If t
u
exp = ∞, the utility

of the utterance remains intact permanently.
Local reach attribute, lmax. An utterance has no value if received outside a given geographical area that includes its original

generation place lu0 (its ‘home’ area).

Upon their generation, utterances are stamped with the quadruple {t0, texp, l0, lmax}. Only utterances that may provide
some utility to the receiving node are selected for pushing during node encounters. In general, the utterance ‘validity’ could
be any monotonically decreasing function f (t − tu0 , l − lu0), where t and l = (lx, ly) are the current time and spatial node
coordinates. Note that whereas the time validity of an utterance is lost once its lifetime exceeds texp, its spatial validity can
be regained if the node that carries it moves back to the utterance’s home area.

2.2.2. Utterance utility for receiving nodes
Only a certain proportion of the circulating utterances bear actual value for the nodes. The main goal of our proposed

protocol is to maximise the average ‘degree of satisfaction’ for individual nodes during the dissemination of updates in the
network. Formally, we introduce a utility function U(u, t, l), which quantifies the satisfaction a user gets upon receiving an
utterance u of tag tu at time t and location l. The utility function captures two components. First, the utterance’s relevance
to the node’s interests is considered. The better an utterance matches the interest profile of the receiving node, the more
valuable it is. As discussed in Section 2.1, the interest of a node x in utterance u assigned to tag tu is the (tu)th entry of its
interest profile vector Ix. Secondly, the utterance validity is considered, as described in Section 2.2.1.

The overall utility gained by a node upon receiving the utterance u at time t and space l is given by:

U(u, t, l) = Ixu ∗ f (t − tu0 , l − lu0). (3)
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In our experimentation in Section 4, we consider functions, 1− u(t − tu0 − tuexp) for the time validity and 1− u(l− lu0 − lumax)
for the spatial validity components, respectively. Here u(·) is the step function and should not be confusedwith an utterance
u. Thus the overall utility is:

U(u, t, l) = Ixu ∗

1 − u(t − tu0 − tuexp)

 
1 − u(l − lu0 − lumax)


. (4)

2.3. Definition of the push protocol

With respect to actual forwarding, each node x classifies all other network nodes into two categories based on its and
other nodes’ interest profiles: those belonging to its set of friends Nx and those that are not included in Nx. However, nodes
do not need to exchange their own interest profiles, as defined in Section 2.1, but rather push profiles Pxy, maintained by
each of the nodes x for each member y of its ‘set of friends’ Nx.

2.3.1. Push profiles vs. interest profiles
Push profiles are M-dimensional vectors, whose elements Pxy

i determine the probability with which node x forwards
utterances of tag i to the friend node y. When compared to the interest profiles, push profiles allow the forwarding decision
to account for information beyond the interests of the encountered node. Nodes are then able to forward information that is
not only relevant to the node they have encountered (y), but that may also be relevant to the nodes that ymay subsequently
meet. For example there may be cases where a node y in Nx is not itself very interested in utterances of certain tags, but
some of its own friends are. We can then let the forwarding decision towards nodes in Nx take into account the interests of
nodes at various distances k from x in the community graph Gc .

Formally, let d(x, y) denote the minimum distance (hopcount) between x and y on Gc and Di(x) = {y ∈ V : d(x, y) = i}
be the set of nodes at distance i from node x. Note that D0 = {x}, D1 = Nx, and, within this general definition, any individual
node is included in only one of these node sets that are centred on node x. The k-order push profile of node y ∈ Nx is given by:

Pxy(k) =

k
i=0

αi


τ∈Di(y)−{x}

Iτ

where {αi} are constants determining theweight that the interests of the i−hop neighbours have on the forwarding decision.
The parameter k introduces a tradeoff between the amount of information that a node should collect about the preference

of interests of other nodes in the network and the effectiveness of its forwarding decisions. A value of k = 0 corresponds
to a more shortsighted push profile that takes into account only the interests of the receiving node y; k = 1 includes in the
push profile the interests of node y and its neighbours (two hops away overall); and k = 2 considers the profiles of all nodes
up to three hops away from the selecting node on Gc .

Note that for k > 0 node y needs to communicate to x only its aggregate push vectors without the need to fully disclose
the individual interest profiles of its own friends. The push profiles for each value of k are therefore composed such that:

Pxy(0) = α0Iy (5)

Pxy(1) = α0Iy + α1


τ∈Ny−{x}

Iτ (6)

Pxy(2) = α0Iy + α1


τ∈Ny−{x}

Iτ + α2


τ∈Y−{x}

Iτ (7)

where Y = ∪σ∈Ny Nσ − {y} and α0, α1 and α2 are weights between zero and one.
In addition, each node computes its community profile as the sum of the push vectors over all members of its ‘set of

friends’:

Px
=


y∈Nx

Pxy. (8)

The community profile vector is then normalised for each node with
M

i=1 P
x
i = 1.

Preliminary experiments have shown little difference when adjusting settings of the weights αi. The values of k that
optimise the performance seem to depend on the input data set used, but actual performance differences observed are not
significant. In general, the more similar nodes are, the fewer hops are necessary to build a push profile covering all interests.
In addition, values of k > 1 do not produce any performance improvement (this may be related to the partial applicability
of the transitivity property to the concept of similarity). Therefore in the experiments presented in this paper we considered
profiles formed only by a node and its direct neighbours in G (i.e., k = 1 corresponding to weight values α0 = α1 = 1 and
α2 = 0).

2.3.2. Selecting the utterance for forwarding
The push profiles defined in Eqs. (5)–(7) are then used to select which utterances to forward during encounters with

peers that belong to the same community (friends) and peers that do not (strangers).
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Ideally a node would store in its cache only micro-blogs that is itself interested in (those he wants to forward and make
other people read) and those that can be of some interest for its friends (similar to itself to some extent). However, since
utterances are very low payload data, we assume that buffer space is not a concern and focus exclusively on the assessment
of different utterance forwarding strategies. This allows us to focus exclusively on the selection process in our proposed
protocol (updates not corresponding to a node’s own interest or to those of his friends will not be considered for selection).

It is important to recall here that our exclusive focus is on push mechanisms that better emulate current on-line micro-
blogging services. Hence, we exclude more ‘expensive’ pull mechanisms involving exchange of information of the nodes at
each encounter (such as handshake mechanisms after the connection of peers and exchange of current cache content). This
means that nodes do not have knowledge on what the pairing node is currently carrying in its cache to use when taking
decisions about what items to push to it; these decisions are rather based on earlier acquired knowledge about nodes in the
same social community.

Inevitably, the dissemination of utterances results in some sort of (controlled) flooding process and the question is how
to make this most informed and efficient. Our protocol relies on knowledge of interest similarity across network nodes
to achieve this. Two forwarding modes can be broadly defined, as opposed to the interest-agnostic mode (push random),
where nodes randomly select utterances from their caches to forward to the encountered peer without accounting for their
interests.

First, nodes forming friendship links may use the individual push profiles for selecting utterances to forward during
pairwise encounters. Specifically, when node xmeets a social friend y it probabilistically selects a given number of utterances
according to the stored push protocol Pxy, with the further constraint that invalid utterances are not considered in the
selection process. We refer to this forwarding mode as Push according to friends interests.

Secondly,when a node xdoes not store directly the push profile of the currently encountered node, it can use an aggregate
of the profiles of all his social friends for forwarding (Push according to community profile). Similarly to the previous mode,
this selection strategy selects utterances from the whole cache probabilistically according to its community profile defined
in Eq. (8); again, invalid utterances, either time- or location-wise, are eliminated.

3. Experimentation methodology and set-up

In this section, we summarise our approach to assessing the performance of our push protocol.We describe the scenarios
we chose for the interest profiles of nodes and their mobility patterns in the physical space; the push protocol variants for
forwarding to friend and stranger nodes; and the metrics that summarise our protocol performance dynamics.

3.1. Mobility model

Mobility models determine the frequency and duration of encounters between different nodes, thus dictating themicro-
blog dissemination opportunities. In this work, we have chosen a ‘social’ mobility model, the Home-cell Community based
Mobility Model (HCMM) [15], which can take into account underlying social structure among the network nodes. HCMM
structures the physical space into disjoint cells and organises the network nodes into groups (communities) with common
spatial context: all nodes of a given community are randomly assigned to one of these cells, the community’s home cell. The
nodes’ movement patterns across cells are determined by the social attraction forces exerted upon them by other nodes and
follow a fixed pattern. As long as nodes move within their home cell, they select to stay therein or move towards another
destination cell with a probability proportional to the social links they maintain with nodes that are already at or move
towards that cell. Each visit to a destination cell lasts variable time and is succeeded by a return to the home cell with a
certain probability.Within cells nodesmove following a simple randomwaypoint model. A detailed description of themodel
can be found in [15].

HCMM lets the mobility patterns of nodes correlate with each other and reflect both their social relationships and their
preferences to move towards certain locations. In our work, we use the model to generate highly variable frequencies of
pairwise node encounters and, manipulating the familiarity threshold parameter thrF , control the cardinalities of nodes’
familiarity sets |F | (see Section 2).

Table 1 shows statistics about the sizes of nodes’ familiarity sets for different values of thrF , whenwe run simulationswith
120 nodes distributed in groups of 30 across four cells. It also reports howmany of them share the same home cell, reflecting
the joint impact of social links and location preferences on the resulting pairwise encounters. As it can be seen, nodes may
become more selective as to which nodes they will consider familiar by increasing thrF . The size of the familiarity set has
a direct impact on what a node should do and how much effort it needs to devote in forwarding (e.g., Protocol B in 3.3). In
our experiments in this paper we have used thrF = 150 for a time window of 50,000 iteration. This is consistent with the
setting used in [8], which conducted a tuning and a study on the sensitivity and optimisation of the familiarity threshold,
and we set the parameter that was forming a similar number of familiar nodes on average per node (about 50 nodes).

Note that, differently from [8], the set of familiar nodes is here of minor impact since are not used directly to define the
social communities (as we focus exclusively on interest similarity for their formation)
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Table 1
Statistics for the per-node familiarity node sets.

thrF No. familiar nodes
Min Max Avg.

50 84 108 95.73
150 37 68 51.19
200 22 63 41.27
350 7 42 20.05
500 3 32 11.82

3.2. Interest profiles of nodes

The nodes’ interests are simulated in one of two ways:

• (a) they are synthetically generated by manipulating the Zipf(s) distribution, where s is the skewness parameter of
the distribution.2 Through synthetic interest profiles we can vary controllably the average similarity of interests among
nodes with the same home cell (in-similarity) and with different home cells (out-similarity). In and out-similarity can be
defined analytically as following. Given ni a generic node belonging to community ci the in-similarity of ci is defined
as


ij sim(ni,nj)

n2
∀ni, nj ∈ ci and n = |ci| and the out-similarity of ci as


ij sim(ni,nj)

n∗m ∀ni ∈ ci, nj ∈ cj: ci ≠ cj and
n = |ci|,m =


j≠i |cj| where the function sim(a, b) calculates the similarity of nodes na and nb.

• (b) they are extracted out of real data of an online social networking application. This way, we can generate a more
realistic structure for interests’ similarity, which cannot be easily synthesised through probability distributions.

3.2.1. Synthetic interest profiles
In our experiments we have considered a population of 120 nodes, distributed in four groups of 30 nodes. Each group

of nodes is placed in a separate cell. The interests of each node are distributed over m tags, out of a global set of |M| tags
(m < |M|) (see Section 3.2.2). Each node’s relative interests over these tags are derived from a Zipf(s) distribution, where
the value of s is chosen randomly in [0, 2]. We examine four cases, varying the way the nodes’ interests are distributed over
the corresponding tags. We consider the case withm = 30 andM = 120.

Case 1. Tags are selected randomly and the ranking of tags is random for each node.
Case 2. Interest communities start to appear. Within each home cell, all tags are common but the preference ranking is

different for each node. The sets of common tags are disjoint between different home cells.
Case 3. The interest community structure gets stronger. As with Case 2, only now all nodes in the same home cell have the

same preference ranking for tags.
Case 4. This is a further variant of test Case 2, but with high similarity of interests across nodes in different home cells, i.e.,

the same 30 tags attract the interests of all 120 nodes.

3.2.2. Interest profiles extracted from real data
We have collected real data by crawling the Delicious3 website, a collaborative tagging application that allows users

to bookmark web resources annotated with tags. Delicious users follow other individuals through subscribing to their
bookmarks. The aggregation of users’ tag selections forms a ‘folksonomy’, a user-generated classification scheme.

We have crawled Delicious as follows. Starting from a single Delicious account (root user) – chosen randomly among
those placing recent bookmarks on the website – we have conducted a breadth-first exploration of the graph formed by
these links. This search has traversed a network of users, who are expected to have similar interests. Let X = {x1, . . . , x30}
be the collection of the 30 Delicious users returned by the search and TGX be the aggregated set of tags used by them.

To avoid the long tail of infrequently used tags, we prune the resulting sets by restricting our attention to a subset
consisting of the M most popular tags used by X , TGX (M) = {tg1, . . . , tgM}. If Bx

i denotes the number of bookmarks tagged
with i by user x, the interest rates of node x for tag i ∈ TGX (M) equal:

Ixi =
Bx
i

j∈TGX (M)

Bx
j
.

The value ofM is set to 120, as in Cases 1–4.
Repeating this process for each of the 30 nodes in X yields the interest profiles of the nodes we place within a single cell

of the mobility model presented in Section 3.1. The same procedure is followed to derive the interest profiles of nodes in

2 The Zipf distribution has been shown to be a good model for the popularity of web objects [16] and is remarkably flexible in capturing a wide range of
distributions, from the uniform (s = 0) to highly skewed ones with power-law characteristics (s ≫ 0).
3 www.delicious.com.

http://www.delicious.com
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Table 2
In-similarity, out-similarity and interest community structure modularity for
the five interest profile cases.

Data set In-similarity Out-similarity Modularity

Case 1 0.14137 0.11119 0.0365
Case 2 0.43417 0 0.7480
Case 3 0.72543 0 0.7499
Case 4 0.43417 0.41009 0.0241
Case 5 0.25353 0.18447 0.0672

Table 3
Friends node set statistics (similarity 0.5).

Data set Number of friends
Similarity 0.5 Similarity 0.2
Min Max Average Min Max Average

Case 1 0 1 0.08 0 37 13.9
Case 2 0 21 8.61 12 29 25.68
Case 3 14 29 24.06 27 29 28.9
Case 4 0 71 35.48 62 119 105.13
Case 5 0 22 4.76 0 89 53.88

the remaining cells, by choosing a different root user randomly each time. The setting that occurred from processing the
Delicious data in this way is termed as Case 5.

Table 2 reports the in-similarity and out-similarity values for all 5 cases. The index used to compute pairwise similarity
is the proportional similarity index introduced in Section 2.1. We also report the value of themodularitymetric. Modularity
quantifies the quality of a division of a network into communities [17], high values implying dense connections (high
similarity) between nodes within communities and sparse connections (low similarity) between nodes in different
communities. A value of modularity close to zero indicates that links are dispersed randomly throughout all the network,
and there is no clear community structure.

Case 1 reports low in- and out-similarity values. This is due to the fact that the interest profiles of nodes are chosen
randomly, and thus unrelated to any initial location assignment of nodes to home cells. Cases 2 and 3 increase the sharing
of interests inside the network communities (in-similarity) since nodes assigned to the same home cell use exactly the
same 30 tags; since the sets of common tags are disjoint for each home cell, the out-similarity representing the degree of tag
overlapping between nodes belonging to different home cells is zero. The degree of similarity inside cells is higher for Case 3,
where the nodes also share the same order in the ranking of their preferences for each tag. On the other hand, Case 4 has the
same in-similarity value with Case 2 but it also presents high out-similarity values between the different cells. Finally, the
real data setting in Case 5 reports values of in- and out-similarity between those in Cases 1 and 4. Regarding the modularity
values we note that Cases 2 and 3 present the highest values. This is anticipated since there are no links between cells, and
thus there is a natural distinction into communities. Such distinction does not exist in Cases 1 and 4, and the modularity
values approach zero. This also holds for Case 5, which attests that there is no clear community structure for the Delicious
network.

Finally, Table 3 reports statistics for the cardinality of the similarity node set (i.e., friends’ node set) for the five interest
profiles. It can be seen that a high similarity threshold restricts the set of friends quite severely in some cases.

3.3. Forwarding protocol variants

We run experiments with three push protocol alternatives. Each one determines the utterances to push to friend and
stranger nodes by combining differently the forwarding modes described in Section 2.3.2.

Protocol A—Each of the nodes x pushes utterances to friends y according to the friend’s interest profile Pxy, pushes to
strangers according to its community profile Px.

Protocol B—Each of the nodes x pushes to friends according to the friend’s interest profile Pxy, pushes to all familiar
strangers according to its community profile Px, pushes random utterances to all non-familiar strangers.

Protocol C—Each of the nodes x pushes to friends according to the friend’s interest profile Pxy, pushes random items to all
strangers.

Push Random—Each of the nodes x pushes random items to all encountered nodes.
Push random serves as the basic low-effort flooding benchmark. It represents the least computationally intensive

selection process, as utterances are not checked for validity or how well they match against interest profiles before being
pushed. On the other hand, protocols A, B and C exploit interest similarity information and both push utterances matching
the interest profiles of encountered friends (and/or their 1-hop neighbours’). However, protocol A is more ‘socially-selfish’
in that it forwards to all strangers only utterances that are of interest to its own friend set. For every stranger node, the
protocol must invest the extra computational effort of locating an utterance that fits the community profile, checking its
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(a) High precision, high recall. (b) High precision, low recall. (c) Low precision, high recall. (d) High precision, low recall.

Fig. 1. Possible scenarios for the sets of (non-)interesting utterances a node does (not) receive and related precision/recall values.

validity both spatially and temporally and then pushing that to the non-friend node. Protocol B however discriminates
between stranger nodes that are met often (‘‘familiar strangers’’) and those that are seen irregularly and few times (‘‘non-
familiar strangers’’). For familiar strangers, the computational effort is the same with protocol A, whereas for non-familiar
strangers utterances are selected and forwarded randomly from the cache, without spending time and computational effort
on checking the utterance validity or matching it with an interest profile. Finally, protocol C is, from a complexity point of
view, an intermediate protocol between protocol B and the push-random variant, which pushes only randomly selected
content to all stranger nodes.

3.4. Performance evaluation metrics

The performance of the protocol is determined by its capacity to disseminate interesting information across the network
withoutwasting network resources. The dissemination capacity of the protocol is assessed through twometrics with origins
in the field of information retrieval. If U is the total set of utterances produced in the network, IUx the produced utterances
of interest to node x, and IUx

r (resp. nIU
x
r ) the interesting (resp. non-interesting) utterances it receives, we can define:

Global precision, PG. The ratio of the number of valuable utterances received by all nodes (those producing a positive
utility)


x∈V IUx

r to the total number of utterances received by all nodes


x∈V (IUx
r + nIUx

r ).
Global recall, RG. The ratio of the number of valuable utterances received by all nodes in the network


x∈V IUx

r to the total
number of potentially valuable utterances generated in the network (those that could have been successfully received by
any of the nodes to produce a positive utility)


x∈V IUx.

An efficient push protocol must present good scores for both precision and recall metrics (Fig. 1(a)). Otherwise, nodes
may feature high precision values but still receive only a small number of utterances that fall in their interests (low recall,
as in Fig. 1(b)); or, achieve high recall values but only at the expense of also receiving an unnecessarily high number of
uninteresting utterances (low precision, as in (Fig. 1(c))).

4. Experimentation results

This section presents the results from our extensive experimentation with the micro-blogging protocol. In all simulation
runs, the HCMM default parameterisation in [15] is used. The physical space is divided into four cells of size 500m×500m.
Nodes are divided into four groups with interests distributed as discussed in Section 3.2.2 and each group is assigned to
a different HCMM ‘home’ cell. In all simulation runs, unless explicitly stated otherwise, each node generates utterances
according to a Poisson(λ) process with an average rate λ of one utterance every 10 min and pushes one utterance on
each encounter with another node. One utterance transmission per encounter is considered initially for simplicity, later
in Section 4.3 we consider pushing more than one utterance per encounter.

The default utterance spatial validity4 is lmax = 500 m and their temporal validity texp is 2 h. The duration of all
experiments reported in the rest of the paper is 300,000 iterations, with each iteration step corresponding to 0.1 s. Average
precision and recall values over the network population are calculated and plotted for each simulation iteration.

For all input data sets, two values have been considered for the similarity threshold, thrS , when constructing the set of
friends for each node: 0.2 and 0.5. The thrS parameter modulates the friends’ set cardinality; higher values result in fewer
friends and less overhead in the protocol operation. The familiarity threshold thrF is set to 150 encounters.

4.1. Comparison of dissemination protocols

This section compares the four dissemination strategies defined in Section 3.3 under two scenarios for the nodes’
interest profiles: one drawing on synthetic interest profiles with high in-similarity and zero out-similarity (Case 2); and
one drawing on real data withmore balanced distribution of in-similarity and out-similarity values (Case 5). Figs. 2–5 report
the comparison results for all four protocols.

Looking at the general trend of the precision and recall curves, both of them converge to constant values after relatively
short transitive phases. Precision values experience overshoots as the protocol starts getting into operation in the network,

4 For the sake of simplicity, we consider squares of length a = 2lmax centred on the utterance generation location.
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(a) Precision. (b) Recall.

Fig. 2. Precision and recall, interest profile dataset 2, similarity threshold thrS = 0.2.

(a) Precision. (b) Recall.

Fig. 3. Precision and recall, interest profile dataset 2, similarity threshold thrS = 0.5.

(a) Precision. (b) Recall.

Fig. 4. Precision and recall, interest profile dataset 5, similarity threshold thrS = 0.5.

as nodes acquire interest profiles and push utterances inlinewith the interests of the receiving nodes. Likewise, recall values
start from zero since it takes some time till nodes start receiving potentially interesting utterances at their caches and grow
more smoothly with time towards fixed values. Both metrics appear to reach steady values after a number of iterations that
is scarcely dependent on the interest profile scenario, when the fraction of ‘floating’ utterances that are any time valid in
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(a) Precision. (b) Recall.

Fig. 5. Precision and recall, interest profile dataset 5, similarity threshold thrS = 0.5.

the network stabilises. However, the achieved convergence values and the relative protocol behaviour clearly depend on
the interest profiles (a complete comparison of the performance for all different data sets is shown in Section 4.4).

Beyond these common trends, the following remarks can be made when comparing the plots in Figs. 2–5:
• The precision performance of protocols A, B, and C is considerably better in Case 5 than in Case 2. This is largely due

to the milder differences of interests among nodes with different home cells in Case 5. Because of the higher interest
similarity between all nodes, utterancesmatching the average interests of the friend nodes have higher chances to appeal
to ‘stranger’ nodes, i.e., nodeswith interests that are not similar enough to classify them as friends. On the contrary, under
Case 2 nodes only rarely receive an utterance of interest upon encounters with stranger nodes because there is zero out-
similarity, i.e., their interests lie in completely different tags. When the sets of friend nodes are adequately large (lower
similarity thresholds), the three protocols demonstrate the same performance, as shown in Fig. 2(a) and (b).

• Although for higher thrS the set of friends, i.e., similar, nodes becomes smaller, the performance of protocols A and B is
not affected (see Fig. 2 vs. Fig. 3 and Fig. 4 vs. Fig. 5) since nodes can still push relevant enough utterances to the set of
nodes dS that fall outside of their similarity set due to the use of the push-community mode towards all stranger nodes.
On the contrary, the performance of the other protocols deteriorate substantially.

• The push-random protocol always exhibits the worst behaviour, setting a lower performance bound. Its performance
changes across the two datasets but does not depend on the cardinality of the similarity node set.

In summary, the results suggest that the achieved push protocol performance is not always intuitive but rather jointly
determined by the size of similarity node sets, the way the interests are distributed within and across nodes sharing the
same home cell, and the exploitation of familiar nodes. Note that, for a given node, its familiar nodes are those that end up
doing themost of the actual forwardingwork for it.While itmay be awaste of effort to push something ofmore use to a non-
familiar stranger, it is not awaste to do so for a familiar stranger in the expectation that hewillmake the same effort in return.
Protocols A and B can use familiar nodes as ‘bridges’ in order to push utterances of interest to other nodes. Familiarity links
can then emerge as a different, although lower, level of friendship than those based on similarity of interests. Such practices
have their direct analog in real life; for example, with work colleagues that may not necessarily share interests with us, but
with whomwemay have an inclination to cooperate. Furthermore, theremay be situations in which none of the individuals
we have the opportunity to come into contact with bears any similarity of interests with us. Therefore, we naturally address
themost familiar ones among them (rather than pure strangers) in order to disseminate resources representing our interests
(with the aim of reaching other network individuals having more similar interests to ourselves).

In particular, we can see how the performance of protocol C degrades dramatically in some cases. This reinforces the idea
that simply pushing random items to stranger nodes is ineffective, and that some knowledge of community interest must be
used for those stranger nodes (as carried out by protocols A & B) in order to improve the protocol performance. The ‘bridging’
action performed by these stranger nodes between groups of familiar nodes is therefore an important contribution to the
effectiveness of the model.

In part this bridging and focus on community interest profiles results in a content replication strategywithin the network
that emphasises our own interests. However, content replication is not a focus of this study, so this is not evaluated against
other strategies.

Note that our protocol implicitly assumes that all network nodes adhere in a cooperative way to our proposed protocols
and all share the final goals of not only receiving themost useful updates but also disseminating those that can be of highest
utility for other network nodes (including those we are not necessarily in contact with or even aware of their existence).
Extending the definition of the protocol by considering the existence of malicious or uncooperative behaviours would
require the direct introduction of trust and cooperation links among nodes. This goes way beyond the scope of this paper
and can be considered as a future enhancement of the push protocol.
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Table 4
Global precision, interest profile dataset 2, similarity threshold thrS = 0.5.

texp
0.5 h 2.0 h Inf

lmax

250 0.18678 0.19225 0.20650
500 0.19293 0.21177 0.22646

2000 0.18940 0.21971 0.22997

Table 5
Global recall, interest profile dataset 2, similarity threshold thrS = 0.5.

texp
0.5 h 2.0 h Inf

lmax

250 0.10328 0.17529 0.18694
500 0.16004 0.24339 0.23625

2000 0.19482 0.29117 0.26918

Table 6
Global precision, interest profile dataset 5, similarity threshold thrS = 0.5.

texp
0.5 h 2.0 h Inf

lmax

250 0.11631 0.19328 0.20330
500 0.18629 0.30182 0.32277

2000 0.24952 0.40849 0.45104

Table 7
Global recall, interest profile dataset 5, similarity threshold thrS = 0.5.

texp
0.5 h 2.0 h Inf

lmax

250 0.12814 0.17271 0.18281
500 0.17037 0.24288 0.25532

2000 0.21121 0.31381 0.32028

Overall, Protocol B represents a trade-off between global precision and recall and the effort required by nodes to carry
out pushes. Therefore, we retain it for the rest of the experiments presented in this section.

4.2. Effect of the time and spatial components

This subsection discusses the impact of the time and spatial scope of utterances on the protocol performance. We have
run experiments with various values of the time validity parameter texp, ranging from 0.5 h to infinite time (no utterance
expiry), and two values of the spatial validity parameter, lmax = 250 and 2000 m, i.e., spatial validity is restricted to the
size a single cell and to the whole physical space, respectively. Tables 4–7 compare the global precision and recall values
obtained at the end of simulations for each combination of spatial and temporal validity, for both Cases 2 and 5 input data
sets and similarity threshold equal to 0.5.

As can clearly be seen, the precision and recall values increase as the spatial and temporal scope of utterances grows. As
utterances remain valid longer, they are forwarded in more encounters and reach more nodes that would like to consume
them. These results confirm how the scope of the micro-blogs currently available in the network (i.e., their spatial and
temporal relevance) should be taken into account in the definition of the model.

4.3. Number of items pushed per encounter

In all experiments presented so far, the number of forwarded utterances over the full simulation is constant (one push
per encounter). In this section, we compare three alternatives with respect to the number of forwarded utterances and the
way these are chosen upon each encounter: (a) push one item from the cache probabilistically; (b) push the most relevant
(top-k) items; or, (c) push k items from the cache probabilistically.

Nodes select utterances to push probabilistically using a roulette wheel selection based on the relative interest values
stored in the push profile (see Section 2.3.2). When pushing to node y, a node xwill select an utterance uwith tag i (ui) with
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(a) Precision. (b) Recall.

Fig. 6. Precision and recall, interest profile dataset 2, similarity threshold thrS = 0.2.

(a) Precision. (b) Recall.

Fig. 7. Precision and recall, interest profile dataset 2, similarity threshold thrS = 0.5.

probability:

pui =
Pxy
i

n
j=0

Pxy
j

.

Utterances with high relative interest values have a higher probability of being selected for forwarding.
When nodes adopt the push top-k strategy, their stored utterances are ordered according to the encountered node’s push

profile. The cache of a node x when pushing to node y with each position containing an utterance u with some interest tag
(i, j, k, . . .) is ordered so that:

· · · ≤ Pxy
ui ≤ Pxy

uj ≤ Pxy
uk ≤ · · ·

that is, items below ui in the cache have lower relative interest values in the push profile, and items above ui have a
higher relative interest value in the push profile. The top k items in the cache are then selected for forwarding. Under this
forwarding strategy the same most relevant utterances will always be selected for forwarding, as long as they do not fail
in the spatiotemporal check. For this reason, the overall variety in the disseminated utterances is significantly reduced and
the subset of most relevant updates ends up being replicated multiple times in the nodes’ caches, penalising the protocol
performance. In cases, where nodes exercise the push-random strategy, i.e., towards non-familiar strangers, k items are
simply chosen at random out of the stored items.

Figs. 6–9 plot precision and recall values, as obtained in these experiments for cases 2 and 5 and similarity thresholds
thrS = {0.2, 0.5}.

As explained above, in general, pushing the top k items from the cache delivers worse precision and recall than in all
other scenarios. However, the performance gap is narrower when the friend sets are more strictly defined (higher similarity
threshold).
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(a) Precision. (b) Recall.

Fig. 8. Precision and recall, interest profile dataset 5, similarity threshold thrS = 0.2.

(a) Precision. (b) Recall.

Fig. 9. Precision and recall, interest profile dataset 5, similarity threshold thrS = 0.5.

On the other hand, the performance of the remaining three forwarding variants, i.e., push one, push 5(10) probabilistic,
presents a tradeoff between precision and recall. In all cases the ‘push one’ scenario delivers better precision than any of the
variants forwardingmore items per encounter. This means that pushingmore items actually introduces ‘noise’ in the nodes’
caches and tends to reduce the ratio of the useful utterances in comparison to the total amount received at a particular time
of the run.

Pushingmore items inevitably improves the dissemination in terms of global percentage coverage of the available items.
The recall delta improvement when increasing the probabilistically forwarded utterances from five to ten is less dramatic
than when they are increased from one to five. Apparently, the number of useful utterances a node gains access to would
further improve if items swapped all their cache content at each encounter; nevertheless, this would clearly overload the
network and sacrifice performance in terms of precision.

4.4. Effect of different datasets

In this section, we conduct experimentswith all five interest profile data sets introduced in Section 3.2.2. In all simulation
runs, five utterances are pushed during each encounter, chosen probabilistically as described in Section 4.3. The resulting
precision and recall values are plotted against simulation time in Figs. 10 and 11, whereas their steady-state values are
summarised in Table 8. It can bedirectly seen that all five data sets yield similar recall values,while there is large performance
differentiation among them in terms of precision. Note that the actual length of the transition phase for each data set seems
to be lightly but positively correlated with the precision scores of the protocol for the respective data set.

As intuitively expected, the artificial Case 4, introduced as an extreme scenario for interest similarity across the network
(the interests of all network nodes are spread over the same 30 tags), produces the best outcomes overall. On the other
extreme, the worst results are presented by Case 1; for thrS = 0.5 the nodes’ friend sets are almost empty (Table 3). Less
intuitively, remarkable performance is achieved by the protocol for Case 5, where the nodes’ profiles are extracted out of a
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(a) Precision. (b) Recall.

Fig. 10. Precision and recall, all data-sets, sim 0.2.

(a) Precision. (b) Recall.

Fig. 11. Precision and recall, all data-sets, sim 0.5.

Table 8
Global precision-global recall.

Data set Similarity 0.5 Similarity 0.2
Precision Recall Precision Recall

Case 1 0.15549 0.25193 0.17569 0.28626
Case 2 0.16445 0.26408 0.19896 0.32218
Case 3 0.18544 0.27642 0.19600 0.32362
Case 5 0.28888 0.28667 0.35342 0.32913
Case 4 0.72911 0.28906 0.91839 0.33823

real-world online social application. Although the dataset features low levels of interest similarity among nodes sharing the
same home cell (see 2), it yields better performance than both Cases 2 and 3, which feature high in-similarity andmodularity
scores. The protocol benefits more from the better balanced distribution of interests across the network (Case 5) rather than
the stronger similarity of interests within limited groups of nodes (Cases 2 and 3).

An insightful node-level index in this respect, positively correlated with the performance the protocol exhibits for the
five interest profile datasets, is the average similarity of its familiarity set Fx. For each node, this index describes how
much interest-similar are on average the nodes it encounters more frequently and uses more heavily as forwarding relays.
Table 9 reports these indices, as calculated at the end of the simulation for each node (steady-state), and averaged over the
whole node population.

4.5. Synthetic traces

Using the Haggle Infocom 2006 mobility traces shows essentially the same results as when using HCMM. Haggle traces
are reduced to 300,000 timesteps to allow comparison with earlier results using HCMM, and are applied to the same test
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(a) Precision. (b) Recall.

Fig. 12. Precision and recall, interest profile dataset 5, similarity threshold thrS = 0.5.

Table 9
Average similarity per node for the familiarity sets.

Data set Proportional similarity

Case 1 0.12898
Case 2 0.14869
Case 3 0.16676
Case 5 0.22196
Case 4 0.41713

Table 10
Average similarity per node for the familiarity sets.

Data set Proportional similarity

Case 1 0.159687
Case 2 0.200554
Case 3 0.232841
Case 5 0.284385
Case 4 0.411996

cases considered earlier (see Section 3.2.1) to represent different distributions of interest preferences within the network
nodes. All other parameters are the same as used in the rest of the paper. Nodes connect in pairs to other network nodes,
then push one or more micro-blogs from their caches and disconnect (we consider as before that this happens within one
time step). This allows a node to connect with as many node as are in range as possible, increasing the variety of contacts,
although it is worth noticing that with these traces we may not always have more than one node in range at the same time,
a thing that was very likely to happen with the mobility considered earlier. If more than one node is in range at the same
time the selection of which node to connect to is done randomly. Note that if two nodes stay in range for a long duration
they can potentially repeatedly push utterances to each other by repeating the sequence above for a number of times.

Examining the results obtained using theHaggle trace in Figs. 12–13 show that the shape of the curves is slightly different
to the results previously obtained using HCMM, although we can see a similar convergence. This can be due to the fact that
here nodes appear to connect to a lower number of peers. This is confirmedby thepresence of a smaller size for the familiarity
set (31.03 nodes) obtained with the same familiarity threshold thrF = 150 used for all of the experiments discussed earlier
in this article.

Moreover, the traces used were originally spread over a number of days and this necessarily involves periods of time
(such as night time) when nodes do not come into contact with one another. In our simulation however, the nodes will still
produce new utterances (for consistency with the simulation conducted in the rest of the paper), this will clearly decrease
the recall value during these periods. This results in the periodic fluctuation in the recall value seen in the results.

Protocols A, B, C, D perform very similarly to the results obtainedwith the simulatedmobilitymodel (see Figs. 12 and 13)
with the two protocols A and B that apply our pushing mechanism (based on community profiles) also to nodes outside the
social community (either all (A) or only the familiars (B)) resulting in higher performances.

Tables 11 and 12 show the precision and recall values obtained for protocols A and B for the same input data sets
used in 4.4 (see Section 3.2.1 for a detailed description). Protocol A is again producing the higher performances thus
confirming the results obtained earlier (see Section 4.1). Note that with this specific mobility the application of Protocol
B is less immediate. In fact, this protocol exploits, for a given node, the set of its familiar nodes beside all nodes included its
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(a) Precision. (b) Recall.

Fig. 13. Precision and recall, interest profile dataset 5, similarity threshold thrS = 0.2.

Table 11
ProtocolB-global precision-global recall.

Data set Similarity 0.5 Similarity 0.2
Precision Recall Precision Recall

Case 1 0.188698 0.338208 0.207787 0.375912
Case 2 0.217378 0.408279 0.217671 0.404708
Case 3 0.213602 0.392840 0.217734 0.405313
Case 5 0.384623 0.415303 0.410608 0.419664
Case 4 0.901553 0.390607 0.91839 0.39298

Table 12
ProtocolA-global precision-global recall.

Data set Similarity 0.5 Similarity 0.2
Precision Recall Precision Recall

Case 1 0.24810 0.35520 0.25053 0.35952
Case 2 0.28080 0.41756 0.27876 0.42683
Case 3 0.28118 0.42572 0.28053 0.44316
Case 5 0.49907 0.44074 0.49942 0.46484
Case 4 0.91937 0.46479 0.91324 0.46156

social community by forwarding them according the so-called push community protocol based on the ‘community profile’
(see Section 2.3). Therefore the benefits of this protocol are strictly dependent on the ability of such familiar nodes to travel
outside their original geographical community to reach other areas and there forward those micro-blogs proper of their
original community (acting then as ‘bridges’). However, whereas the simulated mobility based on HCMM allowed each
node to come potentially into contact with any other node in the network (all moving within a geographically restricted
area) with the synthetic traces we cannot expect any particular patterns of movements and this makes the application of
protocol B less predictable.

If we compare the performance of the different data sets, the positive correlation with the index representing the
similarity of the familiarity set (most frequently encountered nodes, see Table 10) can still be observed for both protocols.
This emphasises the fact that the protocol performance increases themore similar are the nodes that come into contact. The
values of this index are (almost in all cases) higher than those considered previously with HCMM (also a consequence of
having smaller familiarity sets), and this has the consequence of producing on average higher values of precision and recall.

Note that the fact that similar nodes come into contact more frequently clearly improves recall, since a node has more
opportunity to receive those micro-blogs most valuable for himself that are produced by the nodes sharing more interests
(higher similarity value). We can also see that, in general, reducing the similarity threshold (thus increasing the number of
social friends to which our actual protocol is applied and so the computational effort since we store individual profiles for
any of the nodes in the social community) does not seem to produce very significant improvements in terms of precision
(which is the most significant performance measure to evaluate the quality of the updates provided to a given node). This
confirms a more effective choice of the protocol when applied to a restricted social community of similar nodes.

A good performance is once again shown by the real case dataset (Case 5) that presents homogeneous values of similarity
throughout the network, thusmaking at least a percentage of the utterances carried in each node’s cache potentially valuable
for the rest of the network peers. This is clearly evident in Figs. 14 and 15 that show the performances of Protocol A for both of
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(a) Precision. (b) Recall.

Fig. 14. Precision and recall, all data-sets, sim 0.5.

(a) Precision. (b) Recall.

Fig. 15. Precision and recall, all data-sets, sim 0.2.

the similarity thresholds considered and presents a very similar behaviour to the one shown in Section 4.4: the effect of the
different interest profiles used as an input ismuchmore significant in terms of precisionwhile only amarginal improvement
can be observed for the recall metric.

5. High level analysis and discussion

This section proposes a more high level analysis of the results discussed aiming to identify what are the parameters and
the variables that mainly influence the performance of the model. In particular, attention will be given to the response of
the model to variations in the input data representing the distribution of preference of interests of the individual nodes and
how the use of different mobility models may affect the performance.

5.1. Impact of the protocols on the lower bound

As shown in Section 4.1 protocols A and B clearly outperform the other forwarding strategies tested. This is a consequence
of the fact that these two protocols not only exploit the social community of a node (by keeping record of the distribution of
interests of the individual nodes that aremembers of it and forwardingmicro-blogs accordingly) but also those nodes outside
the social community (all nodes for protocol A and only familiar nodes for protocol B). The interest profiles of the nodes
outside the social community are here not directly stored and used for direct forwarding but are instead used as ‘bridges’
to forward micro-blogs representing the interests of the sending node and its community. Hence the effectiveness of such
strategies is dependent on the ability of those nodes to explore the network, thus disseminating resources of potentially
common interest. Any of these two variations of the protocol clearly outperform the basic protocol that pushes utterance
randomly for any encounter. In this random scenario, nodes do not form neighbourhoods with similar or familiar nodes, but
rather push an utterance selected at random from the cache to every node that they meet, thus this protocol can represent
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a baseline flooding to compare the performance of the other protocols against. Note that, to our knowledge, this protocol
constitutes the only pure push protocol that could be identified for comparison (free from any form of hand-shaking during
pairwise connections, or any other exchange of knowledge about the status of the resources currently carried by an node).

A two way analysis of variance (ANOVA, see [18,19]) has been conducted on the average values of precision and recall at
the end of the run for the two sample cases shown in Figs. 2–5 (for different values of the similarity threshold) showing that
both protocols A and B produce improvements of statistical significance with respect to the values produced by the lower
bound represented by the random push protocol. We obtain values of the F-statistics of 14.55 for precision and 39.03 for
recall, both greater than the tabled values of 7.70. The complete ANOVA tables are shown in Figs. 16 and 17 of Appendix
considering a significance level α = 0.05. Hence, we can reject the null hypothesis that the improvements brought by our
protocols A and B with respect to the basic random pushing are not statistically significant. In addition, we can see that the
F-statistics calculated on themean variations for the different cases tested is lower than the tabled values for both precision
and recall (4.02 and 2.83 < 6.38), therefore we can accept the null hypothesis that the different cases tested do not produce
effects of statistical significance (with respect of the other source of variation).

5.2. Impact of the spatial and temporal parameter

We have also conducted an ANOVA to evaluate the impact of the temporal and spatial parameters considered in
Tables 4–7 (again assuming for simplicity the absence of anymutual interaction). Results for a significant level α = 0.05 are
shown in Figs. 18–21 separately for precision and recall and for each of the sample cases considered 2 and 5. The analysis on
the recall values show that both the spatial and temporal parameters have a significant impact on the performance (although
the effect of the spatial parameter shows higher values of the calculated F-statistics, thus leading potentially to lower values
for the significance level α). For precision, this tendency is increased aswe can see that in the first case (5) the time influence
the null hypothesis of no impact on the results can be only barely rejected (19.63 > 19.00). Furthermore, for the other case
considered (Case 2 in Fig. 21) we cannot reject the null hypothesis of not producing any statistically significant variation for
both temporal and spatial parameter (F = 6.11, 16.26 < 19.00).

This behaviour, that overall stress the major impact of the spatial component on the potential utility of each generated
utterance, can be explained by considering the different nature of these quality metrics and by considering the way they are
computed in our simulation. In fact, the values of precision calculated as the ratio between the useful utterance received to
the total received can be only slightly affected by variations in the temporal and spatial validity of the utterance (since the
proposed protocol takes into account such validity in the selection of the most useful utterance to forward to the currently
pairing node). On the contrary, recall could be more heavily affected since a restriction in the time and space validity of
micro-blogs will necessarily reduce the percentage of those able to reach destination nodes potentially interested into them
within their range of validity. Note that the reasons above together with the difficulties in effectively predicting nodes
mobility (and so the actual encounters that are possible for a single node) all have a significantly negative impact on the
recall values. As a consequence, the precision metric appears as largely the most important for an overall quality measure
of the performance.

5.3. Impact of the interest profiles in relation to protocols, mobility, and similarity thresholds

By analysing in Sections 4.4 and 4.5 the results obtained for both the mobility patterns considered (simulated mobility
with the HCMM model and synthetic traces) we have observed how the response of the system to different dat sets,
representing distribution of interests of the network nodes, appears to be significantly different in terms of precision
but relatively similar for recall. In particular, it is the effect of such distributions of interests for the most frequently
encountered nodes that suggests a positive correlation with the improvements in the overall system performance (we have
also noted how this index representing the similarity of the familiar nodes appear higher for the results obtained with the
synthetic traces).We then conclude our discussion by evaluating towhat extent the variations in node’s interest preferences
introduced by the different datasets have an impact in relation to other systemvariables such as the use of different similarity
thresholds, the application of the specific strategy, and the mobility models themselves.

5.3.1. Effect of the similarity thresholds
We have observed how the results for the different input datasets (e.g different distribution of interests for the network

nodes) generally increase when lowering the similarity threshold, thus enlarging the social communities of each node and
then the number of nodes towards which the friend’s interest profiles are recorded and used directly for the selection of
the utterances to push. However, we want here to investigate if such differences are statistically significant with respect to
those caused by the use of the different datasets and how this impacts the different metrics considered. We have conducted
a series of ANOVA’s examining the results shown in Table 8 (for the simulation using HCMM) and Table 11 (for the synthetic
traces) whose details are shown in Figs. 22–25. We can observe from the results (Figs. 22 and 24) that the improvements on
the dependent variable precision are not significant for both mobility models since the F-statistics calculated is lower than
the tabled one (3.81, 7.07 < 7.70), whereas the impact of the different distributions of interests in the input file is well
above the tabled threshold (F = 58.49, 283.78 > 6.38) and so we can clearly reject the null hypothesis that their impact is
not significant on the precision values observed.
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Different outcomes are observed on the dependent variable recall (Figs. 23 and 25). They confirm the statistical
significance of the impact of the different interest distributions showing values of the calculated F-statistics above the tabled
ones for both mobility models, although with much closer gaps than with the precision variable (F = 15.64, 8.04 > 6.38).
In addition, the increase in values caused by an enlargement of the social community are significant only for the HCMM case
(39.68 > 7.70) whereas the opposite happens for the results obtained with the synthetic traces (F = 2.17 < 7.70, that
does not allow the rejection of the null hypothesis of no significant influence). The latter result could be related to the fact
that with the synthetic traces the most frequently encountered nodes appear more similar to each other compared with the
simulated mobility (see Tables 9 and 10). This has the effect of producing higher performance in recall since similar nodes
sharing interests in the samemicro-blogs topics come into contact directly, and further enlargements of node communities
do not bring about any further significant improvements. This also confirms the fact that the response in terms of recall for
using different input profiles of interest is not very important.

In conclusion, enlarging the social community by reducing the value of the similarity threshold does not produce
important improvements especially in terms of precision that, as mentioned above, constitutes the most important metric
for ameasure of the quality performance of the system. Note that precision is the only parameter that is measurable by each
node individually in a distributed way while recall can only be a global metric computed centrally by the system.

5.3.2. Effect of the specific dissemination strategy
Having established the statistical significance of the impact of the different data sets providing different distributions of

the interest preferences in the network, we can now investigate this effect in relation to other parameters, as for example
the actual choice of the dissemination strategy. We have sen earlier in Section 5.1 how protocols A and B both produce
a significant effect in comparison to the basic push-random protocol adopted as lower bound. We have then conducted
a further ANOVA on the differences produced by the two protocols over the whole range of input datasets considered
(see Figs. 26–29). We conducted two separate analyses for the dependent variables precision and recall and for both the
similarity thresholds (since similarity shows a significant effect on one of the dependent variables). We are considering for
simplicity only the results obtained with the synthetic mobility traces (see Tables 11 and 12).

Results show how the null hypothesis stating no significant impact from the use of any of these two protocols
can be always accepted. In particular, for precision this analysis produces very low level for the F-statistics values
(0.24, 0.14 < 5.31, see Figs. 26 and 27), whereas for recall the calculated values are closer (although still lower) to the tabled
ones (F = 3.90, 4.70 < 5.31, see Figs. 28 and 29). Therefore the variations in the results produced by either protocols A
or B cannot be considered of particular importance, thus making the choice of protocol B preferable since requiring far less
computational effort as explained in Section 4.1.

5.3.3. Effect of the mobility
Finally, we are interested in investigating the statistical relevance of the results obtained with the different mobility

models when computed over the whole range of input datasets representing the interest profiles of the network nodes. We
have observed in Section 4.5 how the precision and recall values obtained with the synthetic traces are on average higher
than those for the simulated mobility (HCMM), and how this can be related to higher values of the similarity of the familiar
set index in the former case.We have conducted separate analysis of variance for the two dependent variables precision and
recall and for the two similarity thresholds used (see Figs. 30–33) to determine how this improvement may be significant
in relation to the entire range of input datasets representing different distribution of interest preferences within nodes.

Results show a different behaviour for the twometrics considered. For recall there is an influence of the differentmobility
with respect to the interest data sets (F = 43.31, 57.43 > 5.31, see Figs. 32 and 33). This effect can be explained by
considering that with the synthetic traces themost frequently encountered nodes aremore similar to each other (in relation
to the simulated HCMM model) and this can lead to a higher recall rate (since nodes come directly into contact with those
producing utterances they are interested in). Moreover, the impact on recall is the direct consequence of the fact that this
metric does not present significant variations within the different interests data sets (for both mobility models).

However, more importantly, the precisionmetric is clearly not affected by the change inmobility, which accepts the null
hypothesis of no impact of mobility on precision for the different data sets (F = 0.30, 0.03 < 5.31, see Figs. 30 and 31).
This is a clear measure of the effectiveness of the selection mechanism of the protocol that is designed to push and
forward valuable content for different patterns of movement of the network nodes (and so different similarity level of the
encountered nodes).

With precision being the most indicative quality metric for our model, we can then conclude that the impact of the
distribution of interest profiles in the network (represented by the different input data sets) is of major impact on the
performance with respect of all size of the social communities (similarity threshold); dissemination strategy; and mobility
model used.

6. Related work

Scalability has long been identified to be a challenge for social systems. On-line social networks (OSN) present major
scalability problems; as an example, Internetmicro-blogging services such as Twitter cannot clearly deal with people having
many followers [20]. Hence, and evenmore so in themobile context, it is mandatory to control the size of social groups. This
can be achieved, for example, by imposing grouping criteria that take into account the frequency of contacts among mobile
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devices (i.e., familiarity [12]) or the commonality of users’ interests (i.e., interest similarity [21]). Note that the concepts
of familiarity and similarity have a direct analog in human social networks that diversely balance ‘family’ (kinship) and
‘friendship’ links [22].

Two examples of social approaches to opportunistic networking are Mobi-clique and Mobisoc. Mobi-clique [23] is a
mobile social networking software for smart phones supporting existingOSNs. Its testing on the participants of two scientific
conferences has shown that the social network of friends could be completed and improved by considering directly the nodes
inter-contacts and sharing information such as their on-line profiles. Mobisoc [24] is another middleware platform aiming
to monitor, manage, and share the social organisation of physical mobile communities. However, these architectures are
centralised rather than distributed, involve retrieval of event notifications, and rely on the sharing of user profiles rather
than proper content.

Social information has inspired the design of routing protocols in opportunistic environments such as HiBOp [25] and
BUBBLE Rap [26]. HiBOp makes use of social context (e.g., places preferentially visited, hobbies) to assess the potential of
encountered nodes as relays towards the message destination. BUBBLE Rap uses more formal concepts and metrics from
Social Network Analysis, such as Communities and Betweenness Centrality, to inform its forwarding decisions. Both HiBop
and BubbleRap use social information to transmitmessages to a single destination that is interested in it. On the contrary, our
protocol disseminates a particular instance of ‘messages’, i.e., micro-blogs, to many destinations, which may be interested
in them.

Therefore,more relevant to ourwork are content dissemination schemes that have inspired from social attributes. A recent
example is ContentPlace [27] that exploits social relationships between users to control the placement of data objects
and optimise content availability. With ContentPlace nodes are explicitly viewed as members of one or more locality-
related communities; for example, the workplace or the residence neighbourhood. Content forwarding is then utility-
driven: content objects present different utilities for each node depending on its own preferences and the preferences of
the communities it is a member of. Upon encounters, nodes request those objects in the encountered nodes’ caches that
maximise their aggregating utility; by weighing appropriately the utility function terms, a node can balance differently its
local against the other nodes’ interests in his choice of replicated objects.

ContentPlace combines push and pull mechanisms for content dissemination with ‘downloading’ nodes choosing which
items should they copy from the encountered nodes’ caches. Moreover, nodes need tomaintain detailed estimates about the
popularity and availability of each data object to all other nodes in the network. A purer push approach that also accounts for
the content preferences of nodes is described in theHaggle search-basednetwork architecture (SNA) in [28]. Thereby content
objects carry metadata describing the broader topic(s) they belong to, while network nodes also declare their interests in
these topics. Haggle nodes dynamically construct a semi bipartite relation graph capturing the interest of nodes to content
objects and the relevance among data objects themselves and, upon encounters with other nodes, use it to decide what
should be pushed to the node. The system also recruits typical delegate forwarding schemes acknowledging that interest-
based forwarding through direct contacts alone cannot always suffice to serve the dissemination objectives.

Our micro-blog sharing protocol shares some ideas with the two content dissemination schemes. First, it relies on the
mobility of nodes and their equipment with short range wireless technologies to opportunistically exchange micro-blogs.
Secondly, it explicitly accounts for the interests of users in its pushdecision, asHaggle SNAand,more implicitly, ContentPlace
did and relies onmetadata (i.e., tags) to describe the thematic scope of data. On the other hand, it differentiates from the two
schemes in important directions. Contrary to Haggle SNA, our protocol does not need to retain a detailed account (relation
graph) of the matching between all network nodes and data objects. It introduces a hierarchy in the level of state that has to
bemaintained at each node, withmore detailed information (push profiles) maintained for nodeswith similar interests, and
no information for nodes with little or no interests’ overlap. Moreover, the stretched specification of push profile for k > 0
(see Section 2) in combinationwith simple forwarding policies towards interest-dissimilar nodes, circumvents the deadlocks
that exclusive use of interest forwarding creates in Haggle SNA. When compared to ContentPlace, our scheme saves both
the pull overhead (exchange of caches’ content upon encounter, per-object utility computations) and the detailed estimates
that have to be carried out in the background about the popularity and availability of objects in each community and the
network as a whole.

This reduced complexity of our push protocol has been largely dictated by the nature of its workload. Micro-blogs
are small-payload data, which are expected to be generated dynamically and in large quantities at extremely diverse
locations in the network. Moreover, compared to typical content dissemination, micro-blogs present a casual type of
communication with often restricted spatiotemporal scope. This is an aspect only partially considered in current on-line
micro-blogging services like Twitter. In [1], it is reported that once a new trendy topic appears in Twitter, e.g., a news
item, the majority of related updates (as well as the majority of re-tweets about that topic) are produced within a very
short time window. Furthermore much of the information posted via mobile devices is likely to avail spatially bounded
scope. As such, decentralised approaches are a natural evolution of work that has already commenced in this area. For
example, [29] describes a prototype system that uses distributed servers to avoid problems that arise from a single service
provider. In addition, when information has strong local relevance, subscribing to the updates from individual users is of
lesser importance. Instead, users should be provided with the local information with the most relevance to their interests,
irrespective of the author (spatial information).

Finally, the adoption of a simple pure push approach to the dissemination of micro-blogs emphasises the decoupling
between receiving and consuming a micro-blog instance. Nodes do not necessarily have to become aware of the received
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updates upon the time of their reception; they are rather free to consume them (read their caches) in their own time
(speaking of users [1] uses the term ‘potential readers’). A node may well find in its own cache valuable information about
desired topics, for example in the form of suggestions/recommendations about facts or events, that is earlier unknown to it.

Our work in this paper expands and further formalises in several ways the preliminary studies reported in [6,8]:
friendship links between node pairs form based on the similarity of their interests rather than the frequency of their
encounters; four forwarding modes are specified and combined to compose four different variants of interest-similarity
based forwarding; utilities accounting for the spatiotemporal scope of micro-blogs are formalised. Furthermore, the
assessment of the micro-blog dissemination protocols is far more systematic and exhaustive: the nodes’ mobility patterns
are now directed by a social mobility model (rather than the simpler random way point model); the intersection of
the similarity and familiarity sets are controlled via introduction of proper synthetic interest profiles; far more protocol
parameterisation options (e.g., number of forwarded utterances per encounter) are analytically evaluated. Finally all
simulations in the previous studies are performed in a static environment, where social groups and the corresponding
interest distributions within them are assumed to be known a-priori before the beginning of the simulation. In these
experiments the set of friends and the set of familiar nodes are constructed dynamically during simulations as nodes come
into contact with each other.

7. Conclusions

This article proposes a protocol for dissemination of micro-blogs in opportunistic mobile environments. It is a push
protocol that circumvents the processing overheads of pull-based approaches and is suited to the requirements of its data
workload, i.e., large numbers of small payload micro-blogs, often with restricted spatiotemporal scope. In parallel, it is
consistent with current practice in online micro-blogging services.

The protocol exercises interest-based forwarding. It draws on limited social information about theway the nodes’ interests
intersect over different thematic areas to make informed forwarding decisions and improve the efficiency of the micro-blog
dissemination process. The mobile devices are organised by the protocol into communities of similar nodes with common
interests. At the same time, the mobility of nodes gives rise to sets of familiar nodes that meet with higher frequency
with each other. The maintained state and the forwarding behaviour of nodes differ according to the community(ies) the
encountered nodes are classified into. Utterances are forwarded to friend (aka similar) nodes inline with their interests
(push-profile);whereas, for the rest of the nodes, utterances are either randomly selected or account for the average interests
of the push-node’s friends (push-community).

We have detailed the protocol components and evaluated variants of interest-based forwarding under a wide set of
scenarios for the nodes’ interests, their selectiveness in establishing friendship links, and the frequency of encounters with
nodes that have similar interests. In all cases, the protocol performance is assessed via twometrics derived from the field of
information retrieval: precision and recall. In particular, it is precision that can be considered as the principal measure of the
performance quality and whose optimisation has been directly addressed by the protocol design in terms of selection and
storage of micro-blogs. Nodes mobility has been simulated through the application of a computational model reproducing
the nature of human contacts as well as the use of real traces made available to the public. The protocol behaviour could be
summarised into the following points:

• The most successful strategies combine pushing according to individual profiles and community profiles. We propose
two variations of the protocol that both outperform a basic strategy based on the random dissemination of micro-
blogs. However, the performance benefits have to be balanced against the computational effort involved in each strategy
implementation. For this reason, an intermediate solution that selects utterances for forwarding based on individual
profiles for all friend nodes, while it invokes the community push profile for familiar nodes may be preferable.

• When utterances have restricted spatiotemporal scope the recall metric appears as themost affected while the precision
metric does not produce significant variations, thus confirming the effectiveness of the protocol design. In addition,
the spatial component of the utility appears having greater influence on the performance than the temporal one, thus
suggesting that a proper evaluation of micro-blogging dissemination protocols may have to take the spatial attributes of
utterances into account.

• Besides additional computation effort, the possibility to pushmore than one utterance upon each encounter gives rise to
a precision-recall trade off: more utterances of interest reach the nodes’ caches but only together with larger quantities
of irrelevant updates.

• The scheme performance turns out to always benefit from high coincidence between the nodes’ similarity and familiarity
node sets. An index that is positively correlated with the precision and recall values the protocol achieves is the average
(over all network nodes) similarity index calculated for the set of familiar nodes, the ones more heavily involved in
forwarding action.

• The considerations above suggest as how it is the distribution of interests of the network nodes that has themajor impact.
This is confirmed by a statistical analysis of the results showing as the effect of various system parameters (such as
the similarity threshold (that actually defines the size of the social communities and so the range of nodes of direct
application of the push-protocol); the particular dissemination strategy used; and the specific of mobility adopted) is
not significant when compared to the influence that the different distributions of the nodes profile of interests has on
the system performance. To take this into account a number of distinct input data sets have been generated and used
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Fig. 16. Two-way ANOVA on the dependent variable precision to evaluate the impact of protocols A and B against push-random in relation to the sample
Cases 2 and 5 with different similarity thresholds 0.2 and 0.5 (no interaction assumed, α = 0.05).

Fig. 17. Two-way ANOVA on the dependent variable recall to evaluate the impact of protocols A and B against push-random in relation to the sample
Cases 2 and 5 with different similarity thresholds 0.2 and 0.5 (no interaction assumed, α = 0.05).

Fig. 18. Two-way ANOVA on the dependent variable recall to evaluate the impact of the spatial and temporal parameters (no interaction assumed,
α = 0.05, Case 2, similarity threshold of 0.5).

Fig. 19. Two-way ANOVA on the dependent variable recall to evaluate the impact of the spatial and temporal parameters (no interaction assumed,
α = 0.05, Case 5, similarity threshold of 0.5).

(although all necessarily based on the ‘tags’ model). These include a number of artificially generated profiles based on
a probability distribution that simulates the ‘long-tail’ of interest preferences of the individual nodes together with one
data sets obtained by crawling data from a real on line social network.

As future work on the protocol, we would promote two items. Firstly, the two mobility models that we have considered
in this work propose possible way to capture social context in the way nodesmove in the physical space, yet still potentially
allowing nodes to explore the geographical regions considered in its entirety. Further insights to the performance potential
could be given through the assessment of the protocolwith othermobilities that can extend the physical region ofmovement
as well as impose potential restrictions on the nodes mobility, for example by forcing similar nodes to move within
specifically defined areas. Secondly, the different forwarding modes introduced in Section 3.3 express different levels of
cooperation across the network. The push-community mode, for example, is a form of interest-community selfishness and
assumes reciprocation in the nodes’ behaviour. The vulnerability (resp. resilience) of the protocol to different instances of
node misbehaviours is a research item worth exploring.
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Appendix. ANOVA tables

This section presents a list of the anova tables. For both one and two ways analysis when the calculated values of the
F-statistics are greater than the tabled ones we can reject the null hypothesis that the corresponding effect of the specific
treatment or source of variation is not of statistical significance.
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Fig. 20. Two-way ANOVA on the dependent variable precision to evaluate the impact of the spatial and temporal parameters (no interaction assumed,
α = 0.05, Case 5, similarity threshold of 0.5).

Fig. 21. Two-way ANOVA on the dependent variable precision to evaluate the impact of the spatial and temporal parameters (no interaction assumed,
α = 0.05, Case 2, similarity threshold of 0.5).

Fig. 22. Two-way ANOVA on the dependent variable precision to evaluate the impact of the use of different similarity threshold in relation to the different
interest profiles Cases 1–5 (no interaction assumed, α = 0.05, HCMMmodel).

Fig. 23. Two-way ANOVA on the dependent variable recall to evaluate the impact of the use of different similarity threshold in relation to the different
interest profiles Cases 1–5 (no interaction assumed, α = 0.05, HCMMmodel).

Fig. 24. Two-way ANOVA on the dependent variable precision to evaluate the impact of the use of different similarity threshold in relation to the different
interest profiles Cases 1–5 (no interaction assumed, α = 0.05, synthetic traces).

Fig. 25. Two-way ANOVA on the dependent variable recall to evaluate the impact of the use of different similarity threshold in relation to the different
interest profiles Cases 1–5 (no interaction assumed, α = 0.05, synthetic traces).
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Fig. 26. One-way ANOVA on the dependent variable precision to evaluate the impact of the use of the different protocols (A and B) against the whole
range of interest datasets (no interaction assumed, α = 0.05, synthetic traces, similarity threshold 0.2).

Fig. 27. One-way ANOVA on the dependent variable precision to evaluate the impact of the use of the different protocols (A and B) against the whole
range of interest datasets (no interaction assumed, α = 0.05, synthetic traces, similarity threshold 0.5).

Fig. 28. One-way ANOVA on the dependent variable recall to evaluate the impact of the use of the different protocols (A and B) against the whole range
of interest datasets (no interaction assumed, α = 0.05, synthetic traces, similarity threshold 0.2).

Fig. 29. One-way ANOVA on the dependent variable recall to evaluate the impact of the use of the different protocols (A and B) against the whole range
of interest datasets (no interaction assumed, α = 0.05, synthetic traces, similarity threshold 0.5).

Fig. 30. One-way ANOVA on the dependent variable precision to evaluate the impact of the different mobility (HCMM and synthetic traces) against the
whole range of interest datasets (no interaction assumed, α = 0.05, similarity threshold 0.2).

Fig. 31. One-way ANOVA on the dependent variable precision to evaluate the impact of the different mobility (HCMM and synthetic traces) against the
whole range of interest datasets (no interaction assumed, α = 0.05, similarity threshold 0.5).

Fig. 32. One-way ANOVA on the dependent variable recall to evaluate the impact of the different mobility (HCMM and synthetic traces) against the whole
range of interest datasets (no interaction assumed, α = 0.05, similarity threshold 0.2).

Fig. 33. One-way ANOVA on the dependent variable recall to evaluate the impact of the different mobility (HCMM and synthetic traces) against the whole
range of interest datasets (no interaction assumed, α = 0.05, similarity threshold 0.5).
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