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Summary 
 

Large, rare structural variants (SVs) have consistently been shown to 
confer liability for schizophrenia. However, almost all previous studies 
have been based on data derived from genotyping microarrays, which 
can only be used to detect a small number of SV types and have limited 
utility for identifying variants at the smaller end of the size spectrum 
(<100kb). Therefore, I assessed whether data derived from whole 
exome sequencing (WES) can be used to identify SVs in schizophrenia 
that have hitherto gone undetected. To do this, I applied two structural 
variant callers, CLAMMS and InDelible, to the WES data of two in-house 
samples for which SVs had previously been called using array data. As 
each caller mines a different aspect of WES data, they are sensitive to 
different types and sizes of SVs. 
 
The first WES dataset I applied these methods to is derived from a trios 
sample consisting of 616 schizophrenia probands and their parents. 
Both callers identified de novo SVs that were not detected in the array 
data, some of which overlapped genes that have been implicated in 
previous studies of schizophrenia or are plausible candidate risk genes. 
The second dataset was generated from 927 schizophrenia cases who 
have been extensively tested for cognitive ability. Subsets of small 
(<100kb), rare SVs generated by both callers were found to be 
associated with cognitive deficits, indicating that SVs previously 
undetected in the array data are implicated in schizophrenia 
symptomology. My thesis therefore provides evidence that WES data 
can be used to detect SVs under-reported in the literature that may have 
a role in schizophrenia.  
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Structure of thesis 
 

This thesis has seven chapters: An introduction, a methods chapter, four 
results chapters and a final discussion. The introduction gives an 
overview of schizophrenia as a clinical entity and describes the most up-
to-date findings regarding its genetic risk factors. It also describes 
genomic structural variation, including the different subtypes and 
mechanisms of formation, and closes with a section on the aims and 
objectives of my research. The methods chapter details the algorithms of 
the two structural variant callers used to conduct my PhD projects. The 
four results chapters report findings obtained from the application of the 
structural variant callers to the two in-house datasets, and each have 
their own introduction, methods, results and discission sections. The 
final chapter discusses how my research meets my thesis aims and 
objectives, and the implications of my findings for future studies of 
structural variation in schizophrenia.  
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Chapter 1: Introduction 
 

1. Schizophrenia 

Psychiatric disorders are clinical conditions whose symptoms involve abnormalities 

in thought, perception, emotion, and behaviour, cause significant distress, and 

negatively impact social and occupational functioning (Kaplan & Sadock, 2015). 

Among the most severe is schizophrenia, a disorder which typically onsets in late 

adolescence or early adulthood and tends to follow a chronic course of illness 

(Tandon et al., 2009a). Schizophrenia was initially proposed as a separate clinical 

entity in the late 19th century by psychiatrist Emil Kraepelin. Kraepelin observed that 

there were several distinct syndromes associated with psychosis with differential 

patterns of onset, symptomology, and outcome (Kraepelin, 1896). He recognized 

that one such condition onset in youth and was characterized by a progressive 

deterioration of cognitive and social abilities, thus proposing the term ‘dementia 

praecox’ (‘premature dementia’) as its diagnostic label (Kraepelin, 1919). In the early 

20th century, psychiatrist Eugen Bleuler proposed a name change, as he observed 

that the condition had a more heterogeneous presentation than was implied by 

Kraepelin’s label. Bleuler chose the term ‘schizophrenia’ (‘split psyche’), as he 

thought that the disorder’s hallmark feature was the disintegration of mental faculties 

(Bleuler, 1911). While Bleuler’s label is still in use, the diagnostic criteria for the 

condition underwent significant revisions over the course of the 20th century 

(Tandon et al., 2009a). 

 

1.1 Symptoms  

In current clinical practice, the two classification systems that are mostly commonly 

used to diagnose schizophrenia (and other psychiatric disorders) are the Diagnostic 

and Statistical Manual of Mental Disorders version 5 (Association, 2013) and the 

International Classification of Diseases version 10 (World Health Organization, 

2019). According to both, schizophrenia is a syndromic disorder, primarily 

characterized by ‘positive’ and ‘negative’ symptoms (described below). While the 

criteria do not require that onset occurs in adolescence or early adulthood, 

symptoms must have been present for at least six months to warrant a diagnosis. 

Individuals typically do not present with all symptoms, but at least two must be 
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present for a significant amount of time during a one-month period to meet the full 

criteria. When an individual presents with symptoms for the first time, it is referred to 

as their ‘first episode’ of the disorder, as schizophrenia is not necessarily chronic. 

 

1.1.1 Positive symptoms 

Positive symptoms are so-called because they indicate the presence of 

psychological characteristics that are typically not observed in healthy individuals. 

They are grouped into four categories: delusions, hallucinations, disorganized 

thinking/speech, and disorganized movement (Tandon et al., 2009a). Delusions are 

defined as strongly held beliefs that are maintained despite a lack of confirming 

evidence and/or the presence of contradicting evidence (Garety & Freeman, 1999). 

In the context of psychiatric diagnosis, they must also be inconsistent with an 

individual’s socio-cultural norms and educational background. Hallucinations are the 

perception of phenomena in the absence of external stimuli (Aleman & Larøi, 2008). 

While auditory hallucinations (typical in the form of voices) are the most common 

type observed in schizophrenia, visual, olfactory, and gustatory hallucinations have 

also been reported (Larøi, 2012). Disorganized thinking and speech typically present 

as difficulty staying on a topic of conversation, use of neologisms, and incoherent 

sentence structures (‘word salad’) (Andreasen, 1979). Disorganized movements, 

frequently referred to as ‘catatonic’ symptoms, are relatively uncommon (~5% 

prevalence; (Usman et al., 2011)). Individuals will display purposeless movements or 

be motionless for extended periods (Fink & Taylor, 2006). The terms ‘positive’ and 

‘psychotic’ are often used interchangeably to denote the whole symptom cluster. 

 

1.1.2 Negative symptoms 

Negative symptoms are so-called because they indicate the absence of 

psychological characteristics that are typically observed in healthy individuals. They 

can be divided into two categories: deficits of volition and deficits of affect (Tandon et 

al., 2009b). Loss of interest in usually enjoyable activities and a lack of motivation to 

pursue goals are common in schizophrenic individuals (Foussias & Remington, 

2010). These symptoms are usually observed alongside a blunting of emotions 

(affective flattening) and an inability to experience pleasure (anhedonia) (Kirkpatrick 

& Galderisi, 2008). Social withdrawal is typical but can be a behavioural 

consequence of positive symptoms (Blanchard et al., 2011). Negative symptoms are 
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usually present before the onset of positive symptoms and are less responsive to 

therapeutic intervention (Möller, 2007). Although cognitive impairments can 

technically be defined as a negative symptom for diagnostic purposes, in clinical 

research they are usually studied and discussed as a separate aspect of disorder 

symptomology. 

 

1.1.3 Cognitive impairments 

Progressive impairments of cognitive ability were thought to be a hallmark feature of 

schizophrenia by Kraepelin. While contemporary studies have confirmed that 

schizophrenic individuals on average perform worse than healthy individuals on 

battery tests designed to assess a broad spectrum of cognitive domains, they also 

suggest that deficits are not present in all cases.  In a meta-analytic review of 

existing literature encompassing 2,204 individuals with first-episode schizophrenia 

and 2,775 age- and gender-matched controls, (Mesholam-Gately et al., 2009) found 

that 80% of cases performed worse than controls in at least one of 10 cognitive 

domains: immediate verbal memory, delayed verbal memory, visual memory, 

processing speed, language function, visuo-spatial awareness, working memory, 

executive functioning, vigilance, motor coordination, social cognition and general 

cognitive ability (IQ). Standardised mean effect sizes (MES) ranged from -0.64 to -

1.20, indicating that impairments are not restricted to a subset of domains, though 

were most severe in immediate verbal memory (MES = -1.20) and processing speed 

(MES = -0.96).  

 

These and similar findings have led the development of cognitive test batteries 

specifically designed to test cognitive impairments in schizophrenia. One such 

battery is the Measurement and Treatment Research to Improve Cognition in 

Schizophrenia (MATRICS) Consensus Cognitive Battery (Marder & Fenton, 2004), 

which incorporates 10 tests designed to measure 7 domains: processing speed, 

working memory, attention/vigilance, verbal learning, visual learning, reasoning, and 

social cognition. By assessing cognitive ability in a schizophrenia case cohort, 

(Lynham et al., 2018) found that cases performed ~2 standard deviations lower than 

healthy controls across all domains, with verbal learning and processing speed most 

strongly impacted.  
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Case/control studies of cognitive impairment may underestimate the prevalence of 

cognitive impairments in schizophrenia, as they do not account for cases who 

perform at the same or higher level than controls, but whose cognitive abilities have 

still been impacted by the disorder (Keefe & Harvey, 2012). (Keefe et al., 2005) 

investigated the proportion of 107 schizophrenia cases whose current level of 

cognitive function falls below their expected level of cognitive ability, based on the 

antecedent factors of parental education levels and the results of vocabulary/word 

pronunciation tests that are designed to estimate premorbid IQ. Composite scores 

for current cognition were generated from the results of a test battery designed to 

measure 7 cognitive domains. To control for demographic factors, the same analysis 

was conducted on 50 healthy subjects whose parental education, age, and ethnic 

background did not differ significantly from cases. 98.1% of cases had current 

cognitive abilities that fell below expectation, compared with 40% of controls, 

indicating that the rate of cognitive impairment in schizophrenia may indeed be 

higher than is suggested by case/control studies.  

 

The onset and course of cognitive deficits in schizophrenia have been investigated 

by longitudinal studies. A meta-analysis by (Woodberry et al., 2008) found that by 

age 16, individuals who would subsequently develop schizophrenia had significantly 

lower IQ and motor function than those who did not, suggesting neurodevelopmental 

risk factors. While cognitive impairments worsen from the premorbid into the 

prodromal stages of the disorder, it is unclear whether cognition continues to 

deteriorate following the first episode. (Szöke et al., 2008) found that cognitive 

deficits were stable in 261 patients over a 10-year follow-up period, with no 

association between cognitive ability, the course of other symptoms, and therapeutic 

intervention. Individuals who achieved stable remission of symptoms in the first year 

had an improved cognitive baseline over other patients, however. In a 13-year 

follow-up study of 15 patients who developed the disorder between the ages 12-18 

(early-onset), (Smith et al., 2009) reported a significant decline in cognitive function, 

particularly in the domains of verbal memory and attention. Collectively, these results 

suggest that the course of cognitive deficits in schizophrenia is partly mediated by 

adolescent neurodevelopmental changes following disorder onset (Rapoport et al., 

2005), but then stabilise in adulthood. 
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1.1.4 Schizoaffective disorder  

Schizoaffective disorder is a distinct diagnostic entity from schizophrenia. However, 

the symptom overlap between the disorders is such that they are thought to share 

many of the same underlying neurobiological dysfunctions (Malaspina et al., 2013). 

Schizoaffective disorder cases are therefore often combined with schizophrenia 

cases in research to increase statistical power at the expense of phenotypic 

homogeneity. Schizoaffective disorder is also characterized by positive and negative 

symptoms but differs from schizophrenia insofar as symptoms typically associated 

with affective disorders, such as major depressive disorder and bipolar disorder, are 

also present, however psychotic symptoms need to be present outside affective 

episodes for the diagnosis to be made (Malaspina et al., 2013). Individuals 

diagnosed with schizophrenia may later receive a diagnosis of schizoaffective 

disorder if affective symptoms develop in later episodes. Conversely, first-episode 

schizoaffective disorder may later be diagnosed as schizophrenia if affective 

symptoms are no longer prominent (Keshavan et al., 2011). 

 

1.2 Epidemiology  

Approximately 0.3-0.7% of the global population are thought to be affected by 

schizophrenia (Saha et al., 2005; Tandon et al., 2009a), and lifetime prevalence is 

~0.4% (Messias et al., 2007). Reported prevalence rates vary widely across 

countries and ethnic groups (Jablensky, 2000), though this is thought to be primarily 

a consequence of variations in diagnostic criteria, healthcare access, cultural 

attitudes, and birth rates (higher prevalence in fast-growing populations) (Charlson et 

al., 2018). Lifetime incidence is associated with sex (1.42x higher in males (Aleman 

et al., 2003)) and urbanicity (March et al., 2008). The median age-at-onset is 25 

years (Solmi et al., 2022), and stratifies by sex. Males tend to be 21-25 years at first-

episode diagnosis and females 25-30 years (Li et al., 2016). Late-onset cases are 

more likely to be female, who have a second peak age-at-onset of ~45 years (Li et 

al., 2016). Despite these differences, schizophrenia has equal prevalence across 

both sexes (Saha et al., 2005). However, there is evidence that cognitive and 

negative symptoms are more severe in males (Nawka et al., 2013), while females 

are more likely to present with affective symptoms and therefore constitute a majority 

of schizoaffective disorder cases (Thara & Kamath, 2015).  
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1.3 Economic and social costs 

The World Health Organization ranks schizophrenia as the 8th leading cause of 

years lived with disability (YLD), accounting for 1.1% of all YLDs in 2019 

(Organization, 2019). The direct economic cost of the disorder is estimated to be 

~1.5% of healthcare budgets globally (Chong et al., 2016). Indirect costs are also 

substantial, as ~90% of schizophrenia cases are not employed (Marwaha & 

Johnson, 2004) and typically require intensive support from relatives/caregivers 

during the more severe stages of illness (Awad & Voruganti, 2008). Individuals with 

schizophrenia are also at high-risk of homelessness, substance abuse, and 

interactions with the criminal justice system (Fazel & Grann, 2006), though the 

majority do not exhibit violent or anti-social behaviours (Fazel et al., 2009). They are 

also around 8 times more likely than non-schizophrenic individuals to live alone 

(Hakulinen et al., 2019) and have significantly reduced fecundity compared to 

healthy controls (Power et al., 2013). The significant stigma associated with severe 

psychiatric illness often precludes gainful employment prospects even among 

recovered individuals (Thornicroft et al., 2009). 

 

1.4 Outcomes 

Schizophrenia is associated with a 13- to 15-year reduction in life expectancy 

(Hjorthøj et al., 2017) and a lifetime risk of suicide among cases is approximately 5% 

(Hor & Taylor, 2010). A longitudinal meta-analysis by (Jääskeläinen et al., 2013) 

found that 13% of schizophrenic individuals achieved recovery, defined as clinical 

remission and improved social functioning that have persisted for at least 2 years. 

Median recovery rates were found to be fairly stable across studies (6.0% to 18.4%), 

with no significant stratification by sex, first-episode status, or origin of sample. The 

annual recovery rate was estimated to be 1.4%, and no evidence was found that 

recovery rates have increased over the last 50 years, despite radical improvements 

in psychiatric healthcare services. Around 60% of patients have been found to 

experience a reduction in symptoms following antipsychotic treatments (Kinon et al., 

2010; Leucht et al., 2017; Suzuki et al., 2015), but rates of relapse are high (Alvarez-

Jimenez et al., 2012), and improvements are largely limited to positive symptoms. A 

significant proportion of clinical research is dedicated to establishing biomarkers that 

can predict recovery (Koutsouleris et al., 2016). 
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1.5 Environmental risk factors  

Several environmental exposures have been identified that increase schizophrenia 

liability, including prenatal infection and malnutrition, childhood adversity, substance 

abuse, urbanicity and migrant status.  

 

1.5.1 Prenatal risk factors 

Prenatal complications, typically involving prenatal infection or malnutrition, appear 

to play a role in schizophrenia. (Brown et al., 2004) noted a three-fold increase in 

schizophrenia risk, compared to controls, following exposure to influenza in early 

gestation. Similarly, (Babulas et al., 2006) reported a five-fold increased risk in 

offspring exposed to maternal genital and reproductive infections in the 

periconceptional period (but not later in gestation) compared to controls. In one of 

the most famous studies of psychiatric risk factors, (Hoek et al., 1998) found a two-

fold increased schizophrenia liability in the offspring of mothers who were pregnant 

during the 1944-45 'Dutch Winter Hunger' - a famine imposed on the Netherlands by 

a German trade embargo during the Second World War - compared to Dutch 

reference cohort born during the same period. These findings were replicated in 

Chinese individuals born during the 1959–1961 Chinese famine, which resulted from 

disruptions to agriculture during the 'Great Leap Forward' (St Clair, 2005), 

suggesting that parental malnutrition is a risk factor shared across ethnic groups. 

 

1.5.2 Childhood adversity 

Childhood adversity (CA) has been reported by several studies to increase 

schizophrenia liability. In a meta-analysis of 12 case/control studies,(Varese et al., 

2012) showed that individuals with a psychotic disorder, including schizophrenia, 

were 2.72 times more likely to have experienced any type of CA than controls. The 

largest impact was for emotional abuse (OR: 3.40). In a study of ~200 schizophrenia 

cases, (Larsson et al., 2013) found that 82% had experienced some form of CA, the 

most common subtype being emotional neglect (65%), though they did not compare 

with a healthy control group. Assessing the impact of CA on symptom dimensions, 

(Lee et al., 2018) reported associations with negative symptoms and cognitive 

impairments, but not with positive symptoms. In contrast to other findings (Bendall et 

al., 2008; Morgan & Fisher, 2007), CA was not found to be correlated with symptom 
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severity. CA was negatively correlated with global functioning (r = -0.109) in a meta-

analysis (Trotta et al., 2015), with emotional neglect producing the largest effect (r = -

0.250). Correlations were reported for social functioning dimensions tested 

separately, but not occupational functioning. 

 

1.5.3 Substance abuse 

Cannabis use has been consistently reported as one of the strongest environmental 

risk factors for schizophrenia, particularly during adolescence. A meta-analysis by 

(Marconi et al., 2016) found that individuals who had ever used cannabis had a two-

fold increased risk compared to controls, and an accelerated rate of onset. The 

association is dose-dependent, with up to a five-fold higher risk reported in 

individuals using high-potency medicinal tetrahydrocannabinol (THC), the 

psychoactive constituent of cannabis (Di Forti et al., 2015). Among schizophrenia 

cases, cannabis use has been associated with more severe positive symptoms, but 

not with negative symptoms. Some studies have reported an association between 

frequent alcohol use and schizophrenia (Jones et al., 2011), though these findings 

have not always been replicated (Hartz et al., 2014). There is also evidence that 

alcohol abuse can worsen the course of the disorder (Regier et al., 1990). It is 

possible that there is also an association between nicotine use and schizophrenia 

risk; a systematic review by (Mustonen et al., 2018) identified 6 longitudinal studies 

that reported increased nicotine use among individuals that would later develop 

schizophrenia. However, as schizophrenia tends to have a long prodromal phase 

and an extremely high proportion of cases self-medicate with nicotine (de Leon & 

Diaz, 2005), causal relations are difficult to assess. 

 

1.5.4 Urbanicity and migrant status 

Degree of urbanicity, measured in terms of population density, is associated with an 

approximately 1.5- to 4-fold increase schizophrenia (Kelly et al., 2010; Kirkbride et 

al., 2017; March et al., 2008). These findings have been consistent across 

geographical locations and ethnic groups. In a meta-analysis of 4 population studies, 

(Vassos et al., 2012) found that incidence of schizophrenia was 2.27 higher in the 

most urban location compared with the most rural location. Moreover, migrant/ethnic 

minority status confers a 2- to 3-fold higher risk for schizophrenia than native-born 

status and is consistent across different migrant groups and their countries of 
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destination (Anderson et al., 2015; Bourque et al., 2011; Cantor-Graae & Selten, 

2005). There is some evidence that risk is stratified by ethnic group, however, with 

migrants from African and Caribbean backgrounds having the highest incidence 

rates (Coid et al., 2008), though these differences may reflect access to care and 

diagnostic inaccuracies resulting from cultural and linguistic barriers (McGrath et al., 

2004). 

 

1.6 Neurobiology 

The neurobiology of schizophrenia is highly complex, involving the dysfunction of 

multiple brain regions and neural pathways. Several approaches have been used to 

investigate it, including neuroimaging, post-mortem studies, pharmacological studies, 

animal models, cellular models, and genetic studies. In this section I summarise the 

most important findings and explain how they relate to current aetiological 

hypotheses. 

 

1.6.1 Brain structure abnormalities 

No specific brain structure abnormality has been observed in all schizophrenic study 

participants, reflecting an underlying heterogeneity to the disorder. However, 

neuroimaging and post-mortem neuropathology studies have detected several 

abnormalities that have proven to be replicable.  

 

1.6.1.1 Enlarged lateral ventricles  

Enlarged lateral ventricles are among the most robust findings in schizophrenia. 

Based on structural magnetic resonance imaging (MRI) data, (Nakamura et al., 

2007) found that first episode cases have marginally larger ventricles at baseline 

compared to healthy controls, and a 10.4% ventricular enlargement after 1.5 years. 

A meta-analysis by (Erp et al., 2016) reported an 18% ventricular enlargement 

compared to healthy controls, in cases whose mean duration of illness was 10 years. 

Together, these results suggest a progressive loss of brain tissue following disorder 

onset. Enlarged ventricles have been associated with more severe negative 

symptoms and poor treatment response (Lieberman et al., 2005), though other 

studies have contradicted these findings (Gur et al., 2000; Ho et al., 2003). 

 

1.6.1.2 Grey and white matter volume 
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A volumetric reduction in both grey and white matter volume is another frequently 

reported brain structure abnormality. A meta-analysis of longitudinal MRI studies by 

(Vita et al., 2012) found significant volumetric reductions over time of whole brain 

grey matter in chronic schizophrenia cases. Compared to controls, the annualized 

percentage change (APC) was −0.59%. Significant reductions were also found in 

frontal grey (APC = −0.74%) and white (APC = −0.32%) matter, parietal white matter 

(APC = −0.32%), and temporal white matter (APC = −0.39%). Another meta-analysis 

of longitudinal MRI studies reported a progressive volumetric reduction only in the 

right anterior cingulate grey matter in high-risk individuals through transition into first-

episode schizophrenia (Liloia et al., 2021), suggesting that some structural 

abnormalities may be more prevalent at different stages of illness. It has been 

suggested that these findings may be confounded by the impact of antipsychotic 

medications. However, stability or increases in grey matter volume following 

antipsychotic treatments have been reported by multiple studies (Haren et al., 2011; 

Lieberman et al., 2005; Navari & Dazzan, 2009), indicating that volumetric reductions 

are indeed due to disorder progression and not psychiatric interventions. 

 

1.6.1.3 White matter integrity 

White matter integrity (WMI) can be investigated using diffusion tensor imaging (DTI) 

and serves as a proxy for the connectivity of different brain regions (D. K. Jones et 

al., 2013). DTI studies have revealed widespread significant reductions in WMI, 

involving the whole cortex and many sub-cortical structures, compared to controls. 

Corpus callosum, superior longitudinal fasciculus, cingulate, and thalamic radiations 

are consistently noted as the most severely affected tracts (Ellison-Wright & 

Bullmore, 2009; Friston, 2011; Karlsgodt et al., 2008) and have been found to be 

impacted in both high-risk individuals and first-episode schizophrenia (Peters et al., 

2010; Samartzis et al., 2014). As in the case of volumetric reductions, antipsychotic 

treatment has been associated with increased WMI in the cingulate and superior 

longitudinal fasciculus between cases (Wang et al., 2013). WMI correlates with 

cognitive impairments in schizophrenia, particularly processing speed and working 

memory (Kochunov et al., 2017), while disruption of thalamic radiations is thought to 

be significant in the development of positive symptoms (Jiang, Patten, Zarakenho, 

2021). 
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1.6.1.4 Subcortical abnormalities 

The impacts of schizophrenia on sub-cortical brain structures have also been 

studied. A meta-analysis of MRI studies noted significant volumetric reductions in the 

hippocampus (-4.10%), amygdala (-3.80%), thalamus (-2.74%), and nucleus 

accumbens (-3.69%) in chronic cases compared to controls (Haijma et al., 2013). A 

significant volumetric increase in the pallidum (2.28%) was also noted and found to 

be associated with age and illness duration, which may reflect the impact of 

antipsychotic treatment. In first-episode cases, reductions have been reported in the 

volumes of the hippocampus, amygdala, and thalamus, compared to controls 

(Takahashi et al., 2006), suggesting that these regions are among the first to be 

impacted. No association has been found between any measure of volumetric 

reduction and antipsychotic treatment (Haijma et al., 2013). 

 

1.6.1.5 Aetiology of brain structure abnormalities  

There has been much debate over whether structural brain abnormalities in 

schizophrenia represent neurodevelopmental or neurodegenerative processes. 

Many abnormalities are evident prior to symptom onset, indicating a 

neurodevelopmental component, while progressive ventricular enlargements and 

grey matter reductions in chronic cases suggest a neurodegenerative pathology. 

However, symptoms tend to be episodic or stable, inconsistent with the progressive 

deterioration observed in neurodegenerative disorders. Post-mortem histological 

studies have also found no evidence of gliosis in schizophrenia cases (Harrison, 

1999), a neuropathology thought to be the hallmark of neurodegeneration (Garden & 

Campbell, 2016). Thus, structural abnormalities likely have a neurodevelopmental 

aetiology (Rapoport et al., 2012) that is exacerbated by the behavioural/functional 

consequences of symptoms (social withdrawal, unemployment, substance abuse, 

etc.) (Li et al., 2017; Zhang et al., 2015). 

 

1.6.2 Neurochemical dysfunctions  

While neurochemical dysfunctions in schizophrenia are also heterogenous, there is 

broad support for the involvement of dopamine, glutamate and GABA 

neurotransmitter systems in the aetiology, progression, and treatment of the 

disorder.  
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1.6.2.1 Dopamine 

All currently prescribed antipsychotic medications are dopamine D2 receptor 

antagonists (Howes & Kapur, 2009), and drugs that increase transmission at 

dopaminergic neurons (e.g., amphetamine and L-DOPA) can worsen positive 

symptoms in cases (Lieberman et al., 1990) and induce schizophrenia-like 

symptoms in healthy controls (Angrist et al., 1980). Genetic studies have consistently 

reported strong associations with variants intersecting the D2 receptor gene DRD2 

gene (Ripke et al., 2014), which are thought to increase its expression (Y. Zhang et 

al., 2007). These receptors are preferentially expressed in the mesolimbic pathway, 

projecting from the midbrain ventral tegmental area to the striatum (Grace, 2016) . 

Positron emission tomography (PET) studies have reported elevated activity of this 

pathway in schizophrenia cases, compared to controls, which correlates primarily 

with the severity of positive symptoms (Howes et al., 2012). There is also evidence 

that hypo-activity of D1 dopaminergic neurons in the frontal cortex is involved in 

schizophrenia. PET studies have shown reduced activity in frontal cortical regions in 

cases compared to controls that correlates with low dopamine metabolite levels in 

cerebrospinal fluid (CSF) ((Goldman-Rakic et al., 2000) and is associated with 

negative symptom severity and cognitive impairment (Abi-Dargham et al., 2002). 

Animal studies have revealed that lesions in the frontal cortex produce elevated 

activity in the striatum (Peters et al., 2016), providing evidence that cortical and 

subcortical dopamine dysfunction observed in schizophrenia are causally related. 

Injection of THC has been associated with higher mesolimbic dopamine activity and 

reduced striatal dopamine reuptake in both imaging and animal studies (Bloomfield 

et al., 2014; Bossong et al., 2009), suggesting that dopamine dysfunctions may also 

account for the relation between cannabis use and schizophrenia. 

 

1.6.2.2 Glutamate  

The role of glutamate in schizophrenia was hypothesized from the observation that 

the NMDA receptor antagonists ketamine and PCP induce psychological and 

behavioural states in healthy controls that closely resemble both positive and 

negative schizophrenia symptoms (Krystal et al., 1994). (Kim et al., 1980) noted a 

reduction of CSF glutamate metabolites in cases, though these findings have not 

been replicated (Goff & Wine, 2008). Systemic injections of NMDA receptor 

antagonists have been shown to increase cortical glutamate levels in animal models 
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(Jeevakumar & Kroener, 2016; Moghaddam et al., 1997), which correlates with 

abnormal motor function, and cognitive and social impairments, suggesting that 

hyperactivity of glutamatergic neurons could underlie schizophrenia symptoms. 

NMDA receptors are an essential modulator of most forms of synaptic plasticity, 

which is thought to be crucial for learning and memory formation (Lau & Zukin, 

2007), and therefore can likely explain most forms of cognitive impairment in 

schizophrenia (Snyder & Gao, 2013). Genetic studies have shown a strong 

association between variants impacting GRIN2A, which codes for an NMDA receptor 

subunit, and schizophrenia case status (Pardiñas et al., 2018). As ~90% of neurons 

in the human brain are glutamatergic, it is still unknown which regions and pathways 

are most affected in schizophrenia, though it is probable that glutamate dysfunction 

accounts for the global abnormalities in brain structure observed in cases 

(Moghaddam & Javitt, 2012). 

 

1.6.2.3 GABA 

Dysfunction of GABA-ergic inhibitory interneurons has also been implicated in 

schizophrenia, and are thought to exacerbate aberrant glutamate activity. Post-

mortem transcriptional studies have consistently noted a reduction of GAD67 mRNA 

in the frontal cortex of schizophrenia individuals (Curley et al., 2011; Hashimoto et 

al., 2008). The GAD67 enzyme metabolizes glutamate into GABA, which in turn 

inhibits the activity of glutamatergic neurons, thereby serving as an important 

modulator of glutamate neurotransmission (Möhler, 2012). Lower levels of GABA 

membrane transporter GAT1 and a lower density of fronto-temporal GABA-ergic 

interneurons have also been observed (Glausier & Lewis, 2011; Katsel et al., 2011). 

A reduction in CSF GABA concentrations has been reported in first-episode cases, 

compared to controls (Ongür et al., 2010), and drugs that increase GABA activity, 

such as benzodiazepines, can relieve negative and cognitive symptoms that are 

typically refractory to typical antipsychotic treatments (Lavoie et al., 2007). 

 

1.6.2.4 Aetiology of neurochemical dysfunctions 

It is still unclear if or how dopamine and glutamate-GABA dysfunctions are causally 

related, with some studies suggesting that they underlie different symptom clusters 

or may even be associated with distinct subtypes of schizophrenia (Howes & Kapur, 

2009; Javitt, 2010). While subcortical dopamine abnormalities account for positive 
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symptoms, they do not seem to directly explain the occurrence of negative 

symptoms or the most prevalent cognitive impairments (verbal memory and 

processing speed). Glutamate-GABA dysfunctions can account for a wider range of 

symptoms, particularly in relation to synaptic plasticity, but there is no evidence they 

are correlated with mesolimbic pathway activation in cases (Stone, 2011), and they 

are not targeted by any approved antipsychotic treatments (Moghaddam & Javitt, 

2012). However, there are bidirectional projections between glutamate and GABA 

neurons in the frontal cortex and the midbrain VTA (Morales & Margolis, 2017), 

suggesting that primary dysfunctions could occur at either region before propagating 

to the other in a manner that is heterogeneous between cases (Lisman et al., 2008). 

It is also possible that glutamate-GABA dysfunctions represent the more progressive 

aspects of disease aetiology underlying chronic illness, while dopamine dysfunctions 

occur more acutely and periodically, thus explaining the typically episodic trajectory 

of positive symptoms (Carlsson & Carlsson, 2006). 

 

1.6.3 Neuroinflammation 

Recent studies have found increasing support for the role of neuroinflammation in 

schizophrenia. The disorder has been associated with increased risk of autoimmune 

diseases, including type 1 diabetes and multiple sclerosis (Eaton et al., 2006). 

Treatments that reduce immune activity have been found to reduce symptom 

severity (Frydecka et al., 2018; Kroken et al., 2018; Sommer et al., 2014), though 

these findings have proven difficult to replicate (Müller et al., 2015). Elevated levels 

of neuroinflammatory markers, such as interleukin-6, have also been detected in 

blood of both first episode and chronic schizophrenia cases, compared to controls 

(Goldsmith et al., 2016; Miller et al., 2011). In genetic studies, some of the strongest 

common variant associations to date occur within the major-histocompatibility-

complex coding region on chromosome 6 and are thought to increase expression of 

genes involved in complement system activation (particularly C4) (Sekar et al., 

2016). Neuroinflammation has been associated with many psychiatric disorders, and 

therefore likely underlies or exacerbates a wide range of symptoms not limited to 

schizophrenia (Khandaker et al., 2015). 

 

1.7 Genetics 

Family, twin and adoption studies have shown that schizophrenia is a highly 
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heritable disorder (Kendall et al., 2017). Early family studies from showed that risk 

increases with closer familial relationship to probands (Gottesman & Shields, 1972) 

This has been confirmed more recently in large population-based studies, e.g. 

(Lichtenstein et al., 2009). Estimates of disorder heritability can be derived from 

comparisons of phenotypic concordance between sets of monozygotic and dizygotic 

twin pairs, under the assumption that each pair are exposed to similar environmental 

risk factors. If a disorder has a strong genetic component (high heritability), 

concordance will be higher among monozygotic than dizygotic twin pairs, given that 

they share an additional 50% of their DNA. A meta-analyses 12 twin studies reported 

that genetic variance accounts for an estimated 81% of schizophrenia liability (95% 

CI: 73%-90%) (Sullivan et al., 2003). Heritability can also be estimated from the 

phenotypic concordance of diagnosed parents and biological offspring adopted into a 

different household soon after birth. In this case, genetic overlap is 50%, but 

environmental exposures can be dissimilar. Disorders with high heritability will again 

show high rates of concordance, given that the variance contributed by 

environmental risk is low. (Tienari et al., 2004) noted a 10-fold increased risk of 

schizophrenia and related psychotic disorders in the adopted-away offspring of 145 

diagnosed mothers, compared with adopted-away children of mothers with no 

psychiatric disturbance, again demonstrating that schizophrenia has a strong genetic 

basis.  

 

1.8 Genetic architecture 

The discovery that schizophrenia is largely shaped by genetic factors has led to an 

explosion of research investigating its molecular genetic basis, an effort that has now 

been ongoing for several decades (Sullivan et al., 2012). Recent findings have been 

driven by rapid advancements in DNA processing technologies, including the 

development of genotyping microarrays and high-throughput sequencing platforms 

(Mardis, 2008a). Consistent with early hypotheses based on symptom and 

demographic heterogeneity (Gottesman & Shields, 1972), both common and rare 

variant studies have revealed that the disorder is highly polygenic; resulting from the 

additive effects of likely thousands of genetic risk factors (Owen et al., 2016). Every 

individual in the general population has some genetic liability to schizophrenia but 

will only develop the disorder if the quantity and/or effect sizes of risk factors they 

carry (in addition to environmental exposures) are large enough to result in clinically 
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significant neurobiological dysfunction. This is known as the liability threshold model 

of disease, first proposed for complex traits in the 1960s (Falconer, 1965) (Figure 

1.1). Rare variants are more likely to have larger effects than commons ones, due to 

the impact of selection pressures (Figure 1.2) (Sullivan et al., 2012). Fewer rare 

variants are therefore required to cause illness, and burden of rare variants is 

associated with illness severity (Zoghbi et al., 2021). Several methods/study designs 

have been used to elucidate schizophrenia genetics, though in contemporary 

research, the predominant and most successful approach is the case/control 

association study (Visscher et al., 2017). 

 

 

Figure 1.1. The liability threshold model of disease. Adapted from (Howe et al., 2018) 
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Figure 1.2. Association between allele frequency and effect size. Adapted from 

Junior et al. (2017) 

 

1.8.1 Common risk variants  

1.8.1.1 Genome-wide association studies 

Genome-wide association studies (GWAS) assess the relative incidence of single 

nucleotide polymorphisms (SNP) in cases and controls to determine disease 

association and have been extremely successful for the detection of schizophrenia 

risk variants with population frequencies > 1% (Ripke et al., 2014). Typically, SNP 

genotypes for each study participant are derived from genotyping microarrays and 

filtered according to minor allele frequency (MAF) to isolate common variants 

(Manolio et al., 2009). Imputation is then applied to genotype data using known 

haplotype structures to increase the number of variants available for analysis 

(Marchini & Howie, 2010). For each SNP, a logistic regression model is constructed 

to estimate the probability of schizophrenia case status as a function of genotype 

and relevant covariates (usually age, sex, and ancestry) (Sullivan et al., 2012). As >1 

million SNPs are tested simultaneously, the Bonferroni-corrected p-value threshold 

for statistical significance is set to 5 x 10-8 (Sullivan et al., 2012). This threshold has 

generated replicable genome-wide significant hits in independent studies and in 
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meta-analyses (Ripke et al., 2014). 

 

1.8.1.2 PGC3 Schizophrenia GWAS 

GWAS sample sizes have increased substantially over the last decade, increasing 

the power of studies to detect schizophrenia-associated variants. The latest large-

scale schizophrenia GWAS was conducted by the Psychiatric Genetics Consortium 

(PGC) and included 76,755 cases and 243,649 controls of predominantly European 

ancestry (Trubetskoy et al., 2022). Testing SNPs with MAF > 0.05, 287 genomic-

wide significant hits were reported at independent (separately heritable) loci, 

concentrated in genes that are most highly expressed in glutamatergic neurons, 

particularly in frontal cortex and hippocampus, and in cortical and striatal inhibitory 

interneurons. These results are consistent with both the dopamine and glutamate-

GABA hypotheses of schizophrenia neurobiology.  

 

Likely causal variants were ascertained from the raw GWAS findings using fine-

mapping, transcriptomic and functional genomic analyses. Fine-mapping aims to 

isolate causal variants by separate testing of SNPs within an associated locus while 

accounting for the effects of linkage disequilibrium (LD), i.e. the co-segregation of 

variants in populations based on haplotypes (Wang & Huang, 2022). SNPs that 

occur in multiple, overlapping blocks of LD variants in the locus, each of which are 

independently associated with the phenotype in question, are more likely to be 

causal than SNPs that occur in just one. Seventy genes that contained variants 

refined by fine mapping were prioritised for further investigation.  

 

Putative causal SNPs were also determined based on their occurrence within 

expression quantitative trait loci (eQTLs), i.e., regulatory regions that dictate mRNA 

expression levels (Albert & Kruglyak, 2015). Summary-based Mendelian 

randomization (SMR) (Zhu et al., 2016) was used to ascertain 55 GWAS hits that co-

localize with eQTLs for genes expressed in adult or fetal brain, or in whole blood, 

giving a total of 120 unique prioritized genes impacted by putatively causal variants, 

of which 106 were protein-coding. The prioritized genes were enriched for genes 

expressed at the synapse, including voltage-gated calcium and chloride channel 

subunits, NMDA and metabotropic receptors, and genes that play a role in 

endocytosis and synaptic organization. 
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1.8.1.3 SNP-based heritability and polygenic risk scores  

The most strongly associated risk SNP identified by the PGC3 schizophrenia GWAS 

has an odds ratio of 1.23. Such modest effect sizes are not unexpected, given that 

all genotypes of tested SNPs have a population frequency of at least 0.05. However, 

when effect sizes of risk SNPs are combined, they explain ~25% of schizophrenia 

heritability. This value will continue to increase as studies become more highly 

powered but will always fall short of the actual heritability conferred by SNPs as 

GWAS do not account for the effects of SNP interactions. Moreover, additional 

heritability will be explained by rare SNPs and non-SNP genetic factors, such as 

indels and structural variants. The difference between heritability that can be 

currently explained by all known genetic risk factors and that approximated by twin 

studies (~80% for schizophrenia) is known as 'missing heritability' (Owen & Williams, 

2017). 

 

An individual’s genetic liability for schizophrenia, known as a polygenic risk score 

(PRS), can be calculated by combining the effect sizes of all risk SNP alleles they 

carry (Purcell et al., 2009). Variance explained by PRS will differ according to the 

GWAS p-value threshold used for SNP inclusion. PGC3 GWAS found that including 

SNPs with p < 0.05 produces PRS that can explain an average of 0.073 of variance 

in schizophrenia liability across test samples, while PRS based only on genome-wide 

significant SNPs explained an average of 0.024. This indicates that there are many 

SNPs contributing to schizophrenia heritability that are yet to meet the genome-wide 

significance threshold. PRS was able to explain most variance in liability in samples 

of European ancestry. This is expected given the ancestry make-up of the GWAS 

but does show that common schizophrenia variants differ between ancestries. 

 

1.8.2 Rare risk variants 

1.8.2.1 Next generation sequencing 

Due to cost and technical limitations, genotyping arrays are not designed to capture 

rare SNPs (Brady & Vermeesch, 2012). Moreover, the rarity of SNPs negatively 

correlates with their occurrence in haplotype blocks, such that imputation cannot be 

used to infer their presence. The advent of high-throughput, next-generation 

sequencing (NGS), however, has enabled the rapid and efficient detection of rare 
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SNPs (and other variant types, including indels and structural variants) without the 

need for imputation (Mardis, 2008b). In the context of genomics, NGS has two 

subtypes: whole exome (WES) and whole genome (WGS) sequencing. To date, 

most rare variant studies have been based on WES, as many rare schizophrenia risk 

variants are thought to occur in protein-coding regions (Sullivan et al., 2012). The 

exome constitutes only 2% of the human genome (Ng et al., 2010) making WES a 

cost-effective approach in terms of data storage and computation. As all my PhD 

research projects used data generated by WES, I describe the technical aspects of a 

typical WES run in section 2.4. The use of WGS to investigate genetic risk factors is 

still in its infancy as the quantity of data required for adequately powered studies is in 

most cases so large that the associated costs still outweigh potential benefits 

(Lappalainen et al., 2019). In this section, I describe findings regarding the 

contribution of rare SNPs and indels to schizophrenia risk. Structural variants have 

also been strongly implicated and I describe their role in section 2 of the current 

chapter. 

 

1.8.2.2 Single-nucleotide variants and indels 

GWAS are currently underpowered to detect rare schizophrenia risk SNPs and 

indels at whole-genome significance level. Nevertheless, case-control association 

analysis can still be used to detect rare risk variants if studies are appropriately 

designed to maximise variant effect sizes. To this end, researchers use two main 

approaches, often in conjunction: 1) test association with overall burden of variants, 

rather than each variant individually; 2) test only those variants that exhibit features 

known to increase deleteriousness. Approach 1 combines the effect sizes of 

individual variants while 2 ensures individual variants are only tested if there is 

reason to believe their functional impact will be sufficiently deleterious. Both 

approaches carry the additional advantage of limiting multiple testing burden.  

 

In one of the largest WES-based study of rare schizophrenia risk variants to date, 

the schizophrenia exome meta-analysis (SCHEMA) consortium implemented both 

approaches successfully (Singh et al., 2022). SNPs and indels with a minor allele 

count ≤ 5 were identified in 24,248 cases (~1/3 the number included in the PGC3 

schizophrenia GWAS) and 97,322 controls of predominantly European ancestry, and 

only retained for testing if they produced a premature stop codon (i.e. protein-
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truncating, PTV), or an amino acid substitution that is likely to disrupt protein function 

(damaging missense). Schizophrenia cases were found to have a significantly higher 

burden of PTVs across 3,063 genes that are highly intolerant to loss-of-function 

(LoFi; evidenced by a lower PTV rate than would be expected by chance) (p = 7.6 × 

10−35; odds ratio = 1.26). Moreover, PTV and damaging missense burden for 18,321 

genes was tested for association with schizophrenia case status. Although 5.6 

million variants were included in this analysis, only 23,321 independent tests were 

carried out, giving a Bonferroni corrected p-value threshold of 2.14 × 10−6.  

 

Variant burdens for 10 genes were found to be statistically significant at this 

threshold. All are highly intolerant to loss-of-function, evidenced by a much lower 

PTV rate than would be expected by chance. The highest reported odds ratio was 

44.2, for 11 PTV and damaging missense variants in CUL1, demonstrating the large 

effect size of rare variants that alter protein coding. The 10 genes coded for calcium 

and NMDA receptor subunits, regulators of neuronal migration growth, transcriptional 

regulators, nuclear transport proteins, and ubiquitination proteins. Two had also been 

implicated by PCG3 GWAS loci, indicating a partial convergence of rare and 

common risk factors.  

 

In an independent sample of 11,580 schizophrenia cases and 10,555 controls, (Liu 

et al., 2023) also found that schizophrenia cases carried a significantly higher burden 

of PTVs, but limited variants to those occurring in 80 LoFi genes produced by a data-

driven algorithm that prioritises genes previously implicated in schizophrenia 

(p = 5.4 × 10−6, odds ratio = 1.48). They argued that the higher effect size compared 

to the equivalent SCHEMA analysis demonstrates the efficacy of this variant 

prioritisation approach. The study also meta-analysed their own sample with that of 

SCHEMA to assess schizophrenia PTV burden in the 80 prioritised genes across 

ancestry groups and found that PTV burden was largely consistent across 5 diverse 

groups. This suggests that largely the same genes may be implicated by rare 

schizophrenia risk variants across ancestries, in contrast with the stratified genetic 

architecture of common risk variants.  

 

1.8.2.3 De novo variants 

Some rare variants arise spontaneously in the germline and are therefore not 
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inherited from either parent. These 'de novo' variants are more likely to be 

deleterious than transmitted ones, as they are yet to undergo selection pressure 

(Veltman & Brunner, 2012), and therefore present an opportunity to elucidate the 

genomic factors underlying disease. De novo variant studies typically have a ‘trio’ 

design, involving the comparison of variants called in schizophrenic probands and 

both parents to determine their transmission status. In WES data for 617 

schizophrenia trios and 713 control trios, (Fromer et al., 2014) found that de novo 

SNPs and indels were not significantly enriched in proband cases compared to 

controls. However, genes that had previously been implicated in schizophrenia were 

significantly enriched for non-synonymous (protein altering) de novo mutations (p = 7 

x 10-4) in cases, as were genes expressed at the post-synapse of glutamatergic 

neurons (p = 0.019), and specifically those encoding NDMA receptor (p = 0.025) and 

the ARC complexes (p = 4.8 x 10-5). 

 

Among 606 coding de novo variants called from WES data for 613 probands, (Rees 

et al., 2020) reported a significant excess of de novo PTVs affecting 3,471 LoFi 

genes (p = 2.3 x 10-3), but not loss-of-function tolerant genes. These data were 

combined with previously studied WES data for 2,831 trios to investigate the gene 

burden of de novo PTVs. While none were found to be significant after multiple 

testing correction, the most strongly associated gene (SETD1A) had been previously 

implicated in schizophrenia (Singh et al., 2016). The second most strongly 

associated gene (CUL1) was novel in this study but would later be confirmed to 

harbour rare schizophrenia risk variants by (Singh et al., 2022). This demonstrates 

that genes most strongly affected by de novo mutations in schizophrenia probands 

are likely to contribute to disorder risk.  

 

1.8.3 Pleiotropy  

Both common and rare genetic risk factors for schizophrenia also confer liability to 

other psychiatric and neurological disorders. (Anttila et al., 2018) estimated common 

variant correlations (rg) between 42 traits by comparing the extent of LD between 

SNPs that are associated with different traits and found that schizophrenia is most 

correlated with bipolar disorder (rg = 0.68), major depressive disorder (rg = 0.34) and 

obsessive-compulsive disorder (rg = 0.33). (Howrigan et al., 2020) analysed de novo 

variants in ~3,000 schizophrenia probands and found that they are significantly 
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enriched for genes that that have been shown to harbour de novo variants in other 

neurodevelopmental disorders (NDD). (Rees et al., 2021) showed that genes 

associated with de novo variants in NDDs were enriched for de novo PTVs in ~3,500 

schizophrenia probands (p = 3.3 × 10−11), and that the set of de novo PTVs and 

damaging missense variants identified in NDD probands were significantly enriched 

in the schizophrenia probands (p = 5.0 × 10−6 ). Thus, not only are the same genes 

implicated by rare de novo variants in both disorders, but those genes also tend to 

be disrupted in the same ways.  

 

These findings imply that the current diagnostic boundaries for schizophrenia do not 

reflect the underlying neurobiology of the disorder, which is largely shared with that 

of other disorders (Owen, 2012). While this may not impact the clinical efficacy of 

current diagnostic systems (at least in the short term), it does suggest that a more 

dimensional approach to psychiatric disorders may improve the validity of genetic 

research. This may entail the grouping of cases according to symptoms that are 

shared between disorders (e.g. delusions in schizophrenia and bipolar disorder), so 

that the mechanisms underlying them may be more precisely investigated, which 

could then be used to facilitate the development of more finely targeted therapeutics 

(Cuthbert & Insel, 2013). 

 

1.9 Summary  

In this section I have given an overview of schizophrenia, including descriptions of its 

symptoms, epidemiology, neurobiology, and known environmental and genetic risk 

factors. To summarise, schizophrenia is severe psychiatric disorder characterised by 

positive, negative, and cognitive symptoms. It has a global prevalence of ~0.5% and 

tends to follow a chronic course, though 30% of cases achieve lasting recovery. 

Studies of schizophrenia neurobiology have converged on glutamate and dopamine 

pathway dysfunctions as primary aetiological mechanisms, though much is still 

unknown about relation between these dysfunctions and symptomology. 

Environmental risk factors include prenatal complications, childhood adversity, 

substance abuse and urbanicity. However, as twin studies have suggested that 

schizophrenia’s heritability is ~80%, most of the disorder’s liability is driven by 

genetic factors. Schizophrenia is highly polygenic, with a genetic architecture shaped 

by potentially thousands of common and rare genetic risk factors. Associated 
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variants are enriched for genes expressed in the postsynaptic density of glutamate 

neurons, and whose roles include synaptic organisation and plasticity, 

neurotransmission, transcriptional regulation, and ubiquitination. De novo variants 

have also been implicated. In the next section I describe structural variants and their 

role in schizophrenia aetiology, as all my PhD research involved calling structural 

variants in schizophrenia cases.  

 

2. Structural variants  

Structural variants (SVs) are alterations to the genome that are typically defined as 

larger than 50 base pairs (bps) (Feuk et al., 2006). In recent years, however, this 

class has been thought to apply to all variants larger than SNPs, Indels, and small 

tandem repeats (> ~10bp). They can be grouped into two broad types: 'balanced' 

and 'unbalanced'. Unbalanced SVs involve deviations from the normal diploid allele 

quantity, and therefore also known as copy number variants (CNVs) (Redon et al., 

2006). Heterozygous deletions and duplications are the most common CNVs 

(Conrad et al., 2010), though homozygous events and triplications have been 

identified (Itsara et al., 2009). Balanced SVs are changes in the location 

(translocation) or orientation (inversion) of a sequence, relative to a reference 

genome, that do not affect allele quantity. Some sequences known as 

retrotransposons can be copied or extracted from the genome and inserted at a 

different locus by cellular machinery; such events are called 'retrotranspositions' and 

can be unbalanced or balanced (Burns & Boeke, 2012). SVs are not distributed 

randomly across the genome and are generally 'recurrent' or 'nonrecurrent'. 

Recurrent SVs constitute ~60% of all events and have approximately the same start 

and end bases (breakpoints) across unrelated individuals, regardless of allele 

frequency (Sharp et al., 2006). Breakpoints of non-recurrent SVs, on the other hand, 

occur at different loci across unrelated individuals and are often unique (Weckselblatt 

& Rudd, 2015). 

 

2.1 Mechanisms of formation  

The mechanisms of SV formation vary by SV type and recurrence. CNVs and 

inversions most commonly arise through non-allelic homologous recombination 

during cell division (Stankiewicz & Lupski, 2010), while translocations are typically 
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formed through DNA repair mechanism know as non-homologous end-joining 

(Nambiar & Raghavan, 2011). DNA Replication-based mechanisms, such as fork 

stalling and template switching and microhomology-mediated break-induced 

replication can produce complex sequence rearrangements that involve 

combinations of SV types (Burssed et al., 2022), while retrotranspositions arise 

exclusively from the activity of retrotransposon machinery (Kazazian Jr., 2004). All 

mechanisms of SV formation have been observed in somatic and germline cells, 

though are more likely to occur in the latter as meiotic cell division is a more complex 

process than mitosis (Abyzov et al., 2016). 

 

2.1.1 Non-allelic homologous recombination 

Non-allelic homologous recombination (NAHR) is the exchange of highly similar, but 

non-allelic sequences between during cell division, and can occur within or between 

chromatids. Sequences that are most prone to NAHR are found between low-copy 

repeats (LCRs), defined as DNA stretches >1kb in size that are constituted by 

successive, highly homologous (>90%) sequences. LCRs make up ~5% of the 

human genome (Stankiewicz & Lupski, 2010). NAHR can also result from Alu short-

interspersed nuclear elements (SINEs), a type of retrotransposon that is highly 

abundant (~11% of human genome), typically around 300bp in length and have 

>80% sequence homology (Deininger, 2011). Long-interspersed nuclear elements 

(LINES) are another type of retrotransposon that can underlie NAHR but are less 

prone due to their length (~6kb) and lower sequence homology (~70%) (Cordaux & 

Batzer, 2009). Generally, shorter repeat elements with higher sequence similarity 

align/mispair more easily, increasing the chance of NAHR. 

 

SV size is determined by the relative distance between the mis-paired repeated 

sequence and its corresponding allele, while type is primarily determined by 

chromatid orientation (Chen et al., 2014). When non-allelic homologous sequences 

on sister chromatids are positively orientated (i.e in the same direction), 

recombination simultaneously produces deletion and duplication events (Figure 1.3, 

A). When they are negatively oriented, a deletion and inverted duplication occur. 

Intra-chromatid recombination results in a deletion if sequences are positively 

orientated and an inversion if they are negative orientated (Figure 1.3, A). 

Homologous sequences can be exchanged between chromatids on different 
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chromosomes, producing translocation events that may be balanced or unbalanced. 

Balanced (or ‘reciprocal’) translocations involve an equal exchange of DNA between 

chromosomes, with no net loss or gain, while unbalanced translocations involve an 

unequal exchange, producing a net loss of DNA in one chromosome and a net gain 

in the other.  

 

 

Figure 1.3. Non-allelic homologous recombination forming reciprocal a deletion and 

duplication (A), and an inversion (B). Adapted from (Chen et al., 2014) 

 

2.1.2. Non-homologous end-joining 

When double-strand DNA breaks (DSBs) occur during cell division, repair machinery 

typically uses the allelic sister chromatid sequence as a homologous template for 

repair. When a sister chromatid is not available, however, broken ends of DSBs are 

directly ligated through non-homologous end-joining (NHEJ) (Figure 1.4) (Chang et 

al., 2017). Nucleases and polymerases may resect damaged bases and add new 

bases before NHEJ occurs, resulting in small (<10bp) indels (Chang et al., 2017). 

More extensive damage involving several DSBs at adjacent loci can confound the 

repair machinery, leading to NHEJ of disparate strands, thereby forming deletions 

and intra-chromosomal translocation events (Chang et al., 2017). Moreover, an 

intervening sequence between DSBs may change its orientation prior to NHEJ, 
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resulting in an inversion. In cases where multiple chromosomes are damaged 

simultaneously (as in the presence of ionizing radiation), NHEJ can produce inter-

chromosomal translocations. As NHEJ does not depend on genomic features (such 

as LCRs), it typically produces non-recurrent SVs. However, NHEJ-based SVs are 

more likely to occur in regions prone to DNA damage, such as highly repetitive 

sequences and transcriptionally active sites (Barlow et al., 2013) 

 

 

Figure 1.4. Non-homologous end joining, resulting in small deletions and insertions 

(additions). Adapted from (Chang et al., 2017) 

 

2.1.3 Replication-based mechanisms 

Lesions or obstacles encountered during DNA replication, such as DNA damage, 

secondary DNA structures and transcriptional machinery, can cause a replication 

fork to temporarily stall and disengage its lagging strand (Burssed et al., 2022). If an 

adjacent fork is replicating an homologous sequence, the free lagging strand may 

anneal to its template and restart synthesis at a new position (Burssed et al., 2022). 

Depending on whether the new template is upstream or downstream of the original, 

duplications and deletions will occur, respectively. If the new replication fork is 
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moving in the opposite direction to the original, the replicated sequence will be 

inverted (Burssed et al., 2022) In rare instances, a lagging strand can switch to a 

template on a different chromosome, leading to a translocation event (Burssed et al., 

2022). Fork stalling and template switching (FoSTes) is most likely to occur in 

sequences with high microhomology, defined as short, stretches of highly similar 

bases that can be contiguous or interspersed (Hastings et al., 2009). In such 

regions, a lagging strand can switch templates many times in succession (Figure 1.5, 

A), giving rise to complex SVs that combine several subtypes. 

 

The breakage or collapse of a replication fork results in a single-ended DSB 

(seDSB), in which only the new synthesized double helix is broken, leaving the 

original intact. To repair the seDSB before DNA synthesis can continue, nucleases 

resect bases on the 5’ end, leaving an exposed 3’ overhang (Burssed et al., 2022). If 

this overhang contains a microhomology, it can invade a different region of the 

genome from the original strand, resulting in structural variation when DNA synthesis 

restarts (Figure 1.5, B). This mechanism is called microhomology-mediated break-

induced replication (MMBIR). As in FoSTeS, if the position on the new strand is 

upstream or downstream of the original position, a duplication or deletion will occur, 

respectively. If the new strand is in the opposite orientation, there will be an 

inversion. If it is on a different chromosome, a translocation will be the result. MMBIR 

can also be repeated if additional fork breakages occur after DNA synthesis restarts, 

giving rise to complex events. 

 

FoSTeS and MMBIR are more likely to occur at the beginning of the replication 

process, as polymerases are more likely to dissociate from the replication fork 

complex as it is still being formed (Hastings et al., 2009). As polymerases switch 

between different complexes at this stage, they tend to carry a small number of 

bases from their original template strand to their new template strand, which in turn 

produces small insertions at each resulting SV breakpoint (Hastings et al., 2009). It 

has thus been estimated that 35% of all SVs created by these mechanisms contain 

these short insertions (Hastings et al., 2009). 
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Figure 1.5. Replication-based mechanisms for complex SV formation: fork stalling 

and template switching (A) and microhomology-mediated break-induced replication 

(B). In A, a halt occurs at the replication fork (a), leading the lagging strand to detach 

from its initial template (b). Because of existing microhomology (shown in purple), 

the lagging strand shifts to a different template (indicated by the dashed line) at 

another active replication fork, and restarts the process of DNA synthesis (c). 

Ultimately, the strand goes back to its original template (d), and the newly formed 

DNA now includes adjacent sequences that were initially located in separate areas 

of the genome (e). In B, a replication fork collapses when it encounters a DNA lesion 

(a), resulting in a single-ended double-strand break (b). A resection of the 5′–3′ break 

creates a 3′ overhang with an exposed microhomology (c) (shown in purple), which 

acts as a template for a lagging strand from different region of the genome, where 

DNA synthesis is restarted (d). If the replication fork collapses again, the process 

can be repeated (e,f), resulting in a complex SV that again unites previously distant 

parts of the genome. Adapted from (Burssed et al., 2022).  

 

In regions of extended contiguous microhomology (also known as ‘microsatellites’), 

the replication complex can slip, causing the template and newly synthesized DNA 

strands to slip out of alignment, resulting in the formation of a DNA ‘loop’ on the 

synthesized strand whose bases correspond to one or more copies of the repeated 

sequence (Mirkin, 2007). This loop may be resolved in different ways. There is a 
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specialized type of repair machinery that can identify and excise them (Mirkin, 2007). 

In some cases, however, they are not recognized, and in future rounds of replication 

are integrated into the genome as the replication complex itself cannot recognise 

previous slippages (Figure 1.6). The resulting event is known as a small tandem 

repeat expansion and are usually defined relative to the number of repeats in a 

reference sequence. While these events are not typically defined as structural 

variants, they can be detected by one of the SV callers I used in my research. 

 

Figure 1.6. Formation of a small tandem repeat expansion. A DNA loop formed by 

slippage of the replication complex (top), is integrated into the genome in a second 

round of replication (bottom). Adapted from (Mirkin, 2007) 

 

2.1.4 Retrotransposition  

Retrotranspositions are generated by transcriptional retrotransposon machinery, 

typically acting on mobile elements (MEs), or retrotransposons, that are replicated 

throughout the genome (Lander et al., 2001). The machinery transcribes MEs into 

RNA, then reverse transcribes the RNA into cDNA, whereupon it is inserted at a 

different locus (Kazazian Jr., 2004) (Figure 1.7). Retrotransposons are thought to 

share an evolutionary origin with retroviruses but differ in that transcribed 

retrotransposons cannot leave their host cells (Lander et al., 2001). The most 

abundant type in the human genome is Alu, a ~300bp SINE mentioned in section 

2.2.1 as a possible substrate for NAHR. It has been estimated that there are > 1 

million Alu copies interspersed throughout the genome (Deininger, 2011). 6kb L1 
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LINEs are also common, with ~500,000 copies, though only a small fraction of these 

are still active and capable of retrotransposition (Brouha et al., 2003). 

 

L1 retrotransposon machinery can also generate pseudogenes, defined as 

sequences that bear close resemblance to functional genes at different locations but 

cannot be transcribed due to modifications in their structure (Esnault et al., 2000). 

This occurs through the ‘hijacking’ of a typical transcription process, whereby the 

retrotransposon machinery binds and reverse transcribes processed mRNA (Figure 

1.7) (Esnault et al., 2000). The number of exons in a pseudogene will vary according 

to how many had been transcribed when the disruption occurred, but also the 

number that are reverse transcribed by the L1 machinery (Wei et al., 2001). A 

pseudogene can also be inserted in reverse orientation to the original gene (Zhang 

et al., 2004). Pseudogene retrotranspositions are quite common; according to some 

estimates there are ~20,000 instances in the typical human genome (Zhang et al., 

2004). 

 

 

 

Figure 1.7. Mechanism of retrotransposition. Adapted from 

https://en.wikipedia.org/wiki/Retrotransposon 

 

https://en.wikipedia.org/wiki/Retrotransposon
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2.2 Structural variants in the human genome 

SVs tend to be more deleterious than SNPs/indels and therefore occur less 

frequently in the general population (Collins et al., 2003). The precise number of SVs 

that can be identified in a human genome differs according to the technologies used 

for detection, but current estimates based on NGS data range from 4,000-30,000 per 

genome (Chaisson et al., 2019; Mills et al., 2011; Sudmant et al., 2015). This 

variability is primarily a function of sensitivity to smaller (<1kb) variants (Mills et al., 

2011). Despite being less frequent than SNPs/indels, they affect significantly more 

individual bases and therefore account for a larger proportion of the genomic 

differences between individuals. Moreover, they cause a much broader range of 

functional consequences than the smaller variant classes. At larger size ranges, 

hundreds of genes and inter-genic functional sequences can be affected at once, 

resulting in the extensive disruption of thousands of interconnected biological 

processes. It is therefore challenging to determine the precise causal relations 

between SVs and clinical phenotypes. 

 

However, there are studies that have used predictive tools to estimate the impacts of 

SVs. (Abel et al., 2020) used WGS data from 17,795 individuals to investigate the 

impact of SVs across the human genome, using tools that can predict the functional 

consequences of variants. They found that individuals carry, on average, 2.9 rare 

(MAF < 0.01) SVs that alter coding regions, affecting the dosage or structure of 4.2 

genes and accounting for 4.0-11.2% of rare high-impact coding alleles. The majority 

of these were deletions (54.5%), with fewer duplications (42.2%) and a small number 

of inversions and complex events that disrupt exons. They also estimated that a 

typical genome carries 19.1 rare noncoding deletions that are as deleterious as 

PTVs, suggesting that further characterisation of non-coding regions will reveal 

additional variants of high-effect size in case-control analyses.  

 

The first SV to be recognized as the cause of a disorder was chromosome 21 

trisomy, which is so large it can be detected through standard light microscopy and 

gives rise to the set of physical and intellectual symptoms known as Down's 

syndrome (Asim et al., 2015). Large (>1mb) SVs that cause well-defined syndromes 

are known as genomic disorders and are typically associated with developmental 

abnormalities (Lupski, 1998). Other examples are Angelman syndrome, resulting 
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from the deletion of 15q11-q13 (Kishino et al., 1997), and DiGeorge syndrome, 

which is associated with the deletion of 22q11.2 (McDonald-McGinn, 2015a). While 

genomic disorder SVs are usually highly recurrent, there can be significant symptom 

heterogeneity between individuals (Lupski, 1998). This is likely a function of the large 

number of genes impacted and the modifying effects of other genomic and 

environmental factors (Lupski, 2007). Given that a large proportion of genomic 

disorder SVs arise through de novo mutation (in the form of NAHR), prevalence is 

similar between ancestry groups except in cases where the typical substrate for 

mutation varies between ancestries (Lupski, 1998). 

 

SVs have also been shown to have significant pleiotropy, conferring risk for several 

traits simultaneously. (Auwerx et al., 2022) tested the association of the copy 

numbers of CNVs called in 331,522 participants of the UK Biobank and 57 

continuous clinically relevant traits and identified 131 hits across 47 traits. In addition 

to confirming previously known associations, such as the negative impact of 1q21.1–

1q21.2 deletion on height, they found 26 traits that were associated with 16p11.2 

BP4-BP5, and 16 traits with 22q11.21. Thirty-eight percent of the autosomal CNV 

associations considered also harboured a SNP signal for the same trait in previous 

studies, demonstrating that some of the same disease mechanism underlie different 

types of variants. In another striking finding, deletion and duplication of the same loci 

conferred opposite effects on many traits. For example, 16p13.11 duplication was 

associated with decreased age at menopause, whereas its deletion was associated 

with increased age. This phenomenon is known as ‘mirror phenotypes’. (Auwerx et 

al., 2022) also tested the association between burden of deletions and duplications, 

in terms of the number of affected megabases, and the same 57 traits. Thirty-five of 

them (61%) were significantly associated with at least one burden metric, including 

increased levels of adiposity, liver/kidney damage biomarkers, leukocytes, glycemic 

values, anxiety, decreased global physical capacity or intelligence. 

 

2.3 Structural variants in schizophrenia 

There have been several studies to date that have investigated the role of SVs in 

schizophrenia. While there is no evidence that inversions, translocations, and 

retrotranspositions are associated with the disorder, rare CNVs confer significant 

risk. Eleven rare, mostly recurrent CNVs have been consistently shown to be highly 
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enriched in schizophrenia cases, compared to controls (Kirov et al., 2007; Levinson 

et al., 2011; Malhotra & Sebat, 2012; Rees et al., 2016; Walsh et al., 2008). These 

are shown in Table 1.1 and described below, along with their odds ratios and p 

values in a large meta-analysis conducted by (Rees et al., 2016), consisting of 6,882 

schizophrenia cases and 6,316 controls, in addition to case-control data used in 

previous analyses. 

 

 

Locus OR (95% CI) P 

1q21.1 del 8.35 (4.65-14.99) 4.1×10–13 

1q21.1 dup 3.45 (1.92-6.20) 9.9×10–5 

2p16.3 (NRXN1) del 9.01 (4.44-18.29) 1.3×10–11 

3q29 del 57.65 (7.58-438.44) 1.5×10–9 

7q11. 23 WBS dup 11.35 (2.58-49.93) 6.9×10–5 

15q11.2 del 2.15 (1.71-2.68) 2.5×10–10 

15q11-13q AS/PWS dup 13.20 (3.72-46.77) 5.6×10–6 

15q13.3 del 7.52 (3.98-14.19) 4.0×10–10 

16p11.2 dup 11.52 (6.86-19.34) 2.9×10–24 

16p13.11 dup 2.30 (1.57-3.36) 5.7×10–5 

22q11.2 del NA (28.27-∞) 4.4×10–40 

Table 1.1. 11 CNV loci that been consistently shown to be highly enriched in 

schizophrenia cases compared to controls. Odds ratios and p-values from (Rees et 

al., 2016). Del = deletion, dup = duplication.  

 

1q21.1. This locus contains several blocks of LCRs that can be substrates for 

NAHR. Most commonly, this results in an ~800kb recurrent deletion/duplication at 

the distal end of the locus, but in rarer cases can form an ~2mb recurrent deletion 
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that extends across the whole locus (Brunetti-Pierri et al., 2008). Genes within this 

locus, such as PRKAB2, CHD1L, and GJA8, have been implicated in neuronal 

development, synaptic plasticity, and neurotransmission (Harvard et al., 2011; 

Mefford et al., 2008), and these CNVs have been additionally shown to confer risk 

for intellectual disability and autism spectrum disorders (ASD). 

 

2p16.3 (NRXN1) deletion. NRXN1 deletions are non-recurrent and can vary in size, 

the most common encompassing exons in the NRXN1 gene, while others include 

additional adjacent genes (Kirov et al., 2009). It is the only schizophrenia associated 

CNV to affect just one gene, and therefore provides a unique opportunity for 

biological insight. NRXN1 codes for Neurexin 1, a cell adhesion protein that 

mediates neurotransmission (Südhof, 2008), indicating that disrupted synaptic 

activity is important in schizophrenia aetiology. 

 

3q29 deletion. This recurrent deletion typically spans approximately 1.6mb and 

encompasses around 20 genes (Willsey & State, 2015). It is very rare and has the 

largest effect size of schizophrenia associated CNVs. Several genes in this region, 

such as DLG1 and PAK2, play essential roles in synaptic function and neuronal 

development (Mulle et al., 2010). It has also been associated with a range of 

neurodevelopmental phenotypes (Glassford et al., 2016). 

 

7q11.23 WBS duplication. The size of the WBS recurrent duplication CNV usually 

spans 1.5-1.8 megabases (Mb) and includes 26-28 protein-coding genes (Merla et 

al., 2010). Several genes in this region, such as GTF2I and GTF2IRD1, have been 

associated with neurodevelopment and cognitive functions (Crespi et al., 2010). It is 

named for Williams-Beuren Syndrome, a genomic disorder associated with the 

deletion of this locus (Stromme et al., 2002). 

 

15q11.2 deletion. This recurrent deletion CNV spans approximately 500-700 

kilobases (kb) and encompasses four genes: NIPA1, NIPA2, CYFIP1, and 

TUBGCP5 (Burnside et al., 2011). CYFIP1 has been linked to synaptic function and 

neuronal development (Oguro-Ando et al., 2015) It is the most common 

schizophrenia risk CNV, often exceeding 1% frequency in case samples, evidenced 

by its relatively low effect size.  
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15q11-13q AS/PWS duplication. This locus contains imprinted genes, which means 

their expression varies according to their parent of origin (Falls et al., 1999). Deletion 

of the region in the paternal chromosome causes Prader-Willi syndrome (PWS), 

while deletion in maternal chromosome causes Angelman syndrome (AS) (Buiting, 

2010). Recurrent duplication in the maternal chromosome is associated with 

schizophrenia. The region spans approximately 4-6mb on chromosome 15 and 

contains several genes, including UBE3A, SNRPN, and a cluster of small nucleolar 

RNA (snoRNA) genes, that have been also implicated in neurodevelopmental 

disorders (Horsthemke & Wagstaff, 2008). 

 

15q13.3 deletion. This recurrent deletion is approximately 1.5mb in size and is likely 

formed by NAHR due to the presence of LCRs at its breakpoints (Sharp, 2008). 

Several genes within this region play a role in neuronal function, including CHRNA7 

and TRPM1 (Szafranski, 2010). It is also highly associated with epilepsy and occurs 

in ~1% of epilepsy cases (Helbig, 2009). 

 

16p11.2 duplication. This is one of the most strongly associated recurrent CNVs 

with schizophrenia. The locus is ~700kb in length and contains 26 genes, at least 5 

of which are involved in neuronal development, synaptic plasticity, and 

neurotransmission (Pucilowska, 2015). Its deletion is strongly associated with autism 

and developmental delay but is not enriched in schizophrenia cases (Malhotra & 

Sebat, 2012; Shinawi, 2010). 

 

16p13.11 duplication. This locus is ~600kb in length and contains three intervals 

subdivided by LCR blocks with near-identical sequence homology (Ullmann et al., 

2007). 12 recurrent CNV events have been observed in the region, depending on 

which LCRs are misaligned during NAHR. Deletions have been strongly associated 

with developmental delay, autism, and epilepsy (Ramalingam, 2011). An excess of 

deletions has been reported in schizophrenia cases, but evidence of association is 

modest (Ingason et al., 2011). While duplications were initially thought to be benign, 

there is now evidence for their roles in autism, epilepsy, and ADHD, in addition to 

schizophrenia (Williams et al., 2010). While the functional impact of the duplication is 

largely unknown, the region contains NDE1, which is known to be involved in cortical 
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development (Alkuraya, 2011). 

 

22q11.2 deletion. This deletion is the most strongly associated schizophrenia 

genetic risk factor. The affected locus is ~3mb in length, encompassing around 40 

genes (Shaikh et al., 2000). It contains 4 LCR regions and is thus prone to a high 

number of different CNV events (Burnside, 2011). Deletion of the entire locus causes 

DiGeorge Syndrome, a genomic disorder with a broad array of symptoms, including 

intellectual disabilities, cardiac defects, immune system dysfunctions, facial 

deformities, and psychiatric issues (McDonald-McGinn, 2015). Around 30% of 

DiGeorge syndrome cases develop schizophrenia or another psychotic disorder 

(Murphy, 1999). Deletion of the 1.5mb proximal region can also cause DiGeorge 

syndrome, but symptoms tend to be less severe (Burnside, 2011). Given the high 

gene content of the locus, the functional impact of its deletion with regards to 

schizophrenia is difficult to determine. A likely candidate gene is COMT, which is 

involved in dopamine metabolism (Egan, 2001). However, COMT was not implicated 

by common variants in the PGC3 schizophrenia GWAS (Trubetskoy et al., 2022). 

22q11.2 duplication has been found to be protective against schizophrenia (Rees et 

al., 2014). 

 

In addition to individual risk variants, an increased burden of rare CNVs genome-

wide have also been reported in cases compared to controls (International 

Schizophrenia Consortium, 2008; Rees & Kirov, 2021; Stefansson et al., 2008), and 

CNVs that have the largest impacts are enriched for LoFi genes (Marshall et al., 

2017) and neurodevelopmental disorder (NDD) risk genes (Kirov et al., 2014). De 

novo SVs have also found to be enriched in schizophrenia cases, which I discuss in 

the results chapters of projects I undertook to identify such SVs in a WES trios data 

set (chapters 3 and 4). 

 

2.4 Platforms used for structural variant detection 

2.4.1 Genotyping microarrays 

Most studies examining CNVs in schizophrenia have utilised genotyping microarrays 

(Wang & Bucan, 2008), whose primary function is to detect the relative quantities of 

SNPs in a DNA sample. This method involves the washing of fragmented cDNA from 

a single genome across millions of probes, each containing oligonucleotides that 
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anneal to fragments exhibiting a specific SNP variant, labelled with a fluorescent 

marker. The density of hybridised probes at a given locus linearly correlates with the 

intensity of fluorescence observed, quantified as the normalised log R ratio (LRR) for 

that SNP. Copy number variation is indicated by deviation from the expected LRR for 

contiguous probes (Wang & Bucan, 2008). A heterozygous deletion, for example, is 

evidenced by LRRs that are 50% less than would be expected for diploid copy 

number, while a heterozygous duplication is associated with a 33% increase in 

signal intensity (Figure 1.8, A). 

 

If the arrays used can detect different alleles at the same locus, a second metric that 

can be implemented to detect CNVs is the relative signal intensity of two alleles (A 

and B), known as B allele frequency (BAF). For diploid copy numbers, BAF at a 

given locus is expected be 0, 0.5 or 1 for AA, AB, and BB, respectively. For 

heterozygous deletions, however, BAF will be only 0 or 1, depending on whether the 

deleted sequence contains a B allele at that locus. Loci in the presence of a 

heterozygous duplication will have a BAF of ~0.33 if there are two copies of the A 

allele, and ~0.67 if there are two copies of the B allele (Figure 1.8, B).  
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Figure 1.8. Log R Ratios (A) and B allele frequencies (B) for contiguous microarray 

probes. Heterozygous deletion (left) and heterozygous duplication (right) are 

contrasted with diploid copy number (centre). Adapted from Nadolo et al. (2008) 

 

2.4.2 Whole exome sequencing 

Whole exome sequencing (WES) methods have also been used to successfully 

detect CNVs, in addition to other structural variant types, in protein-coding regions 

(Seaby et al., 2016) Similar to microarray methods, genomic cDNA is first isolated 

and fragmented. Then, exonal fragments are ligated with adaptors and enriched to 

produce an exome ‘insert’ library. These inserts are hybridised to baits on a flow cell 

within the sequencer and fluorescently labelled single nucleotides are introduced 

along with polymerases. As the polymerases cause labelled nucleotides to 

successively bind to each fragment, they emit one of four specific fluorescent 

wavelengths. Analysing the order at which these wavelengths occur, the sequencer 

thereby determines the sequence of the original fragments (Alekseyev et al., 2018).  

 

Different sequencing platforms are capable of processing inserts of different lengths 

and are generally divided into long-read (~10-100kb) or short-read (~100-200bp) 

subtypes (Adewale, 2020). Moreover, short-read platforms can process reads in one 

direction or in both directions simultaneously. The latter is known as ‘paired-end 

sequencing’ and produces two reads per insert that are referred to as read mates 

(Figure 1.9). While paired-end sequencing typically has a longer run time, it offers 

improved read assembly and alignment (Seaby et al., 2016). Moreover, as I describe 

in chapter 2, it can improve detection of balanced SV types that can impact the 

orientation and distance between read pairs. The average number of times a 

targeted base in a DNA sample can be sequenced by a platform is known as the 

platform’s coverage depth. Coverage depth can vary greatly between platforms, and 

generally platforms with a large coverage depth can produce more high-confidence 

variant calls. I describe how different elements of the data produced by a short-read 

sequencing platform can be used to detect SVs in chapter 2.  
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Figure 1.9. Paired-end sequencing fragment. The insert is sequenced in both the 

forward (Read 1) and backward (Read 2) directions.  

 

2.5 Summary 

In this section I have described the different types of SV and their mechanism of 

formation. I have also given an overview of SVs in the human genome, and types of 

clinical phenotypes they are associated with. I have described up-to-date knowledge 

about the role of SVs in schizophrenia, which is largely limited to large, rare recurrent 

CNVs. Finally, I have described the two platforms that have been most used to 

detect SVs in previous studies: genotyping microarrays and whole exome 

sequencing. This chapter will serve as relevant background for understanding the 

SVs I investigated in my own research. In chapter 2 I describe the processes by 

which the calling algorithms I used detect SVs in WES data.  

 

3. Aims and objectives  

The overarching aim of this PhD was to assess the utility of WES to detect SVs in 

schizophrenia, and to determine the potential impacts of any SVs identified in 

disorder aetiology. To achieve this, I called SVs in two data sets using two calling 

algorithms: CLAMMS (Packer et al., 2016) and InDelible (Gardner et al., 2021). Each 

caller leverages different aspects of WES data, and therefore produce largely non-

overlapping call sets. I describe each algorithm in detail in chapter 2. One of the data 

sets I analysed consisted of schizophrenia probands and their parents, while the 
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other consisted only of cases who had been extensively tested for cognitive 

performance. My primary objectives for research were: 

 

1) Assess the overlap and differences between call sets generated by the two calling 

algorithms, and CNV call sets previously generated from the same data using 

genotyping microarrays. I particularly focused on the size distributions of each call 

set, and whether they contained any variants that were known to confer 

schizophrenia risk. Based on these comparisons, I could conclude whether 

combining these approaches can produce a more accurate and comprehensive SV 

call set for analysis in schizophrenia, or whether only one approach is sufficient for 

future studies. 

 

2) Identify de novo SVs in the schizophrenia trios data and use findings from 

previous rare and common variant studies to determine whether any putative 

candidate schizophrenia risk genes are impacted by the SVs.  

 

3) Test SVs for association with cognitive deficits in schizophrenia, with particular 

focus on the role of SVs at the smaller end of the size spectrum. While SVs have 

been shown to be associated with cognition in schizophrenia (as I describe in the 

relevant results chapters), no studies have used SVs generated from WES data, and 

only large (>100kb) variants have been tested. As such there are large knowledge 

gaps regarding the contribution of smaller SVs (e.g. < 100KB) to cognitive 

impairments in schizophrenia.  
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Chapter 2: Structural Variant Callers 

 

In this chapter I give a detailed description of the two structural variant callers I used 

in the four studies carried out during my PhD: CLAMMS and InDelible. I also discuss 

the original studies describing these methods as well as benchmarking studies which 

evaluated the accuracy of these methods to detect known SVs. First, however, I will 

describe how raw sequencing data is processed and used to call SVs by CLAMMS 

and InDelible. 

 

1. Preparation of raw sequencing data 

1.1 FASTQ files  

In section 2.4.2 of chapter 1 I described the process by which short reads are 

generated from exome sequencing on Illumina paired-end short-read sequencing 

platforms. The data that is output by the sequencing machine is stored as a FASTQ 

file, which contains sequence and quality data for all reads. In a paired-end run, two 

files are generated, for one for R1 mates and another for R2. Each entry in a FASTQ 

describes an individual read and typically contains four lines: 1) a unique identifier, 

including run information and the flow cell lane/tile on which the read was 

sequenced, and whether the read is a first or second mate; 2) The base pair 

sequence of the read (a string of A, C, T, G and N); 3) a separator line, consisting of 

a single “+”, which is included for ease of parsing; and 4) A quality score string the 

same length as the sequence strings, specifying the quality of each base. 

 

The base quality scores in the final line represent the probability that each base has 

been correctly sequenced, based primarily of the intensity of the fluorescent signals 

and signal-to-noise ratios. The raw probabilities are transformed to the Phred-scale, 

defined as -10 log10(P), where P signifies the initial probability. This scale has two 

advantages: first, it is logarithmic, and so can represent a wider range of values in a 

smaller amount of data than the raw probability scores. Second, it allows for 

standardisation of quality scores across a range of sequencing platforms. The 

maximum possible Phred-score is 40, which corresponds to base call accuracy of 

99.99% and above, while a score of 30 corresponds to base call accuracy of 99.9%. 

For a FASTQ quality score string, Phred-scores for each base are converted to an 
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ASCII codes between 33 and 73 

(https://support.illumina.com/help/BaseSpace_OLH_009008/Content/Source/Informa

tics/BS/QualityScoreEncoding_swBS.htm ). An example of a FASTQ entry, from 

(https://knowledge.illumina.com/software/general/software-general-

reference_material-list/000002211), is shown by Figure 2.1 

 

 

Figure 2.1. An example FASTQ file entry  

 

1.2 Read alignment 

Before read data can be mined for the presence of SVs, the reads need to be 

aligned to a reference genome, such as Genome Reference Consortium Human 

Build 37 (GRCh37). There are several alignment tools that can take FASTQ 

sequence strings as their input, and which differ according to whether they align 

DNA or RNA, and the size of sequences they are configured to align. As all the WES 

data I used in my PhD was aligned using the Burrow-Wheeler Aligner (BWA) (Li & 

Durbin, 2009), this is the only approach I will provide details for. The BWA is named 

after the Burrow-Wheeler transform, a method of compressing reference sequences 

to allow for more computationally efficient mining of FASTQ input sequences in a 

reference genome. A reference genome input file is provided in FASTA format, 

which consists of sequences ranging from hundreds to thousands bases in length, 

paired with unique identifiers specifying their chromosomes and relative positions.  

 

The most recent version of BWA has three algorithms:  

 

1) BWA-backtrack, designed to align short reads generated by Illumina platforms 

~100bp in length. It consists of two steps: seed generation and seed 

extension. In the first step, sequences to align are divided into substrings 

called seeds, typically 32bp in length. The reference genome is mined for 

exact matches for each seed. In the second step, seeds that have been 

exactly matched are then extended to include the rest of the initial sequences, 

https://support.illumina.com/help/BaseSpace_OLH_009008/Content/Source/Informatics/BS/QualityScoreEncoding_swBS.htm
https://support.illumina.com/help/BaseSpace_OLH_009008/Content/Source/Informatics/BS/QualityScoreEncoding_swBS.htm
https://knowledge.illumina.com/software/general/software-general-reference_material-list/000002211
https://knowledge.illumina.com/software/general/software-general-reference_material-list/000002211


 44 

scoring each alignment based on number of mismatches. It can take account 

of insertions and deletions (indels) that compromise the unique alignment of a 

read sequence. 

2) BWA-SW is designed to align longer reads than BWA-backtrack. It has an 

equivalent seed generation step, but then implements the Smith-Waterman 

algorithm for alignment rather than seed extension, which is more sensitive to 

mismatches/indels but results in a slower run-time than BWA-backtrack.  

3) BWA-mem is a hybrid of the first two algorithms and runs faster than both. It 

was designed to replace BWA-backtrack and BWA-mem in most scenarios.  

 

In all three algorithms, a Phred-scaled mapping quality (MAPQ) score is calculated 

for each sequence alignment based on its quality (mismatches and indel content) 

and uniqueness, and from which the best alignment for a given read sequence is 

derived.  MAPQ scores range from 0-60, with 60 corresponding to a less than 10-6 

probability that the read is incorrectly mapped. In cases where the alignment process 

has failed or was not applied, MAPQ is set to 255. 

 

BWA-mem was used to align the WES read data used in the studies I undertook, 

and was conducted by Elliott Rees. Once all reads (and their mates, if applicable) in 

a FASTQ file have been aligned to a reference genome, BWA outputs a 

mapping/alignment file in SAM, BAM, or CRAM format, depending on the 

compression algorithm used. Mapping/alignment files can be paired with an index file 

which allows for computationally efficient retrieval of reads at reference loci of 

interest and are a required input for all SV calling methods.  Index files are not output 

by BWA but can be generated by the Samtools ‘Index’ function (Li et al., 2009). All 

data used in my research were in BAM format, whose index files were also 

generated by Elliott Rees and have the suffix BAI.  

 

1.3 BAM files 

Each entry in a BAM file corresponds to an aligned read, and has 11 mandatory 

fields of information, described in Table 2.1. The number of entries for a given read 

are based on the number of alignments generated for that read. A range of optional 

fields can be included based on BWA configuration, but as these are not relevant for 

the two SV callers, I will not describe them.  
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Field name Description Example 

QNAME Unique identifier for read K00267:46:HFYN2BBXX:5:2205:31101:21201 

FLAG An integer between 0 to 

65535, calculated based on 

combinations 12 of read and 

quality metrics. Described in 

more detail in 1.3.1 

145 

RNAME Chromosome read is 

aligned to in the reference 

genome 

1 

POS Start position of the read 

sequence in the reference 

genome 

2237429 

MAPQ Phred-scaled score 

indicating the likelihood that 

the read is correctly aligned  

60  

CIGAR  Acronym for ‘Compact 

Idiosyncratic Gapped 

Alignment Report.’ Specifies 

the number of matches, 

mismatches and indels in a 

read. Described in more 

detail in 1.3.2 

75M  

MRNM The reference chromosome 

to which a read’s mate is 

aligned. Set as ‘=’ if both 

reads align to the same 

chromosome, or ‘*’ no mate 

information is available 

=  

MPOS Start position of the read 

mate sequence in the 

reference genome 

2237421 
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ISIZE Base pair distance between 

reference position and mate 

position. Value is negative if 

read is the second mate 

(assuming typical read 

orientation). 

-83 

SEQ Base sequence of the read, 

in term of ‘A’, ‘T’, ‘C’, ‘G’ and 

‘N’  

CAGTGACCCCGAG […] 

QUAL Base quality scores, 

specified the FASTQ ASCII 

string 

@BBCD?CDDAFEE […] 

Table 2.1. The 11 mandatory fields for each entry in a BAM file. All examples are for 

a single entry in from a BAM file analysed as part of my research.  

 

1.3.1 BAM FLAG field 

The FLAG field is generated by summing the decimal equivalents of hexadecimal 

values corresponding to 12 read mate and quality properties specified in Table 2.2 

 

Property Hexadecimal notation (decimal 

equivalent) 

Read paired  0x1 (1) 

Read mapped in proper pair (i.e. both 

mares are mapped)  

0x2 (2) 

Read unmapped 0x4 (4) 

Mate unmapped 0x8 (8) 

Read reverse strand 0x10 (16)  

Mate reverse strand 0x20 (32) 

First in pair 0x40 (64) 

Second in pair 0x80 (128) 

Not primary aligned (i.e not the best 

quality alignment for the read)  

0x100 (256) 
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Read fails platform/vendor quality 

control 

0x200 (512) 

Read is PCR duplicate  0x400 (1024) 

Supplementary alignment (sequences 

within the read align to different 

reference loci) 

0x800 (2048) 

Table 2.2. The properties used to calculate the BAM FLAG field, with their 

hexadecimal notations and decimal equivalents. 

 

In the example entry given in Table 2.2., the alignment has four of these properties: 

Read paired (0x1), Read is mapped in a proper pair (0x2), Read is on the reverse 

strand (0x10) and Read is the second read in a pair (0x80). Thus, 0x1 + 0x2 + 0x10 

+ 0x80 = 1 + 2 + 16 + 128, which gives the FLAG value 145.  

 

1.3.2 CIGAR string 

The Compact Idiosyncratic Gapped Alignment Report (CIGAR) specifies the 

alignment properties of each base in an aligned sequence, including discrepancies 

with the reference genome that indicate the presence of indels. Each property is 

signified by a single letter, described in Table 2.3. I have only included those 

properties that are output from the alignment of DNA reads to a standard reference 

genome.  

 

Property signifier Description  

M Matches reference base at same position  

I Insertion, relative to reference sequence  

D Deletion, relative to reference sequence 

S Bases that mismatch with the reference genome but are still 

included in the read sequence. Known as ‘soft-clipping’ 

H Bases that mismatch with the reference genome but are 

excluded from the read sequence. Aligners will only exclude 

mismatching bases if they fall below a quality threshold, or 

are adaptor sequences. 
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Table 2.3. Signifiers for base alignment properties included in a CIGAR string. 

 

The CIGAR string in the example entry in Table 2.3 is ‘75M’, signifying that the read 

sequence has 75 bases, all of which match with the reference genome at the aligned 

position. An example of a more complex CIGAR string is ‘15S5M2D66M’. In this 

case, the read sequence consists of 87 bases, the first 15 of which are soft-clipped. 

The next 5 match, followed by an absence of 2 bases relative to reference, and 

finally 66 bases which also match.  

 

1.3.3 Whole-exome sequencing BAMs 

The size a WES BAM file based on an exome varies greatly with sequencing depth 

but is generally between 5-15GB and contains >10 million entries. Both the SV 

callers take WES BAM files (and their index files) as inputs, but mine very different 

aspects of their data, as I describe in the following sections. 

 

2. CLAMMS 

2.1 Introduction 

The first SV caller I describe is CLAMMS (Copy number estimation using Lattice-

Aligned Mixture Models), developed by Regeneron and published in 2016 (Packer et 

al. 2016, code repository: https://github.com/rgcgithub/clamms). CLAMMS detects 

CNVs in WES by leveraging coverage depth, based on the observation that 

coverage is correlated linearly with copy number state. In general, if reference 

sequence S is affected by a heterozygous deletion in individual X, there will be a 

~50% decrease in coverage for all bases within S in X’s WES data, relative to data 

for individuals with diploid copy number at S. This is because ~50% fewer reads that 

align to S from X’s DNA will be available for sequencing. Conversely, if S is affected 

by a heterozygous duplication in individual Y, there will be ~33% increase in 

coverage for all bases within S in Y’s WES data. Most of CLAMMS’ calling process is 

dedicated to reducing the impact of factors that confound this correlation between 

coverage and copy number state, so that copy number states can then be modelled 

across samples in a WES data set. CLAMMS can call CNVs across the whole allele-

frequency spectrum and is designed for use in large-scale analyses.  
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2.2 CLAMMS algorithm 

The algorithm has four main stages: 1) generate windows to be targeted for CNV 

calling; 2) compute coverage depth for all call windows in each BAM file; 3) model 

coverage copy number states across all BAM files; and 4) use models to call CNVs.  

 

2.2.1 Generating call windows  

The first step of the algorithm generates a file containing the exome sequence 

windows which will be targeted for CNV calling. Four input files are required: 1) a list 

of the exome regions captured by the sequencing platform used to generate to the 

WES data to be analysed; 2) the FASTA file for the reference genome to which 

reads have been aligned; 3) a list of mappability scores for bases genome-wide; and 

4) a list of 1333 special regions, included in the CLAMMS code repository.  

 

File 1) contains three fields, specifying the chromosome, start base and end base of 

each exome capture region. The base mappability scores contained in file 3) are 

defined as one divided by the number of places across the genome that a k-mer 

starting at that base aligns to, with up to two mismatches allowed. Scores range from 

0 to 1, with 1 indicating that the k-mer starting at the base does not map to any other 

position (i.e.. a unique alignment). A reference sequence containing a high 

proportion of bases with low mappabiltiy is prone to read malignment, such that 

coverage depth of bases across the sequence is likely to be inaccurate. Mappability 

scores for 75-mers and 100-mers can be downloaded from the UCSC Institute 

(https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability). The 

special regions listed in file 4) are either regions of known extreme sequence 

polymorphism, such as HLA and KIR gene clusters, or common duplications. The 

former are prone to read mismapping, while the latter are prone to copy number 

states > 3 (homozygous duplication).  

 

CLAMMS also requires a user-defined insert size variable when generating the 

windows file, for purposes of calculating window GC content. Defined as the number 

of G-C base pairs in a sequence, GC content has a large impact on base coverage 

depth. DNA fragments with a high GC content are more difficult to denature during 

PCR and are therefore likely to be under-represented among sequenced reads 

(Benjamini & Speed, 2012). The downstream consequence is that bases within such 

https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability
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fragments will have a coverage depth that is not representative of their copy number 

state in the source DNA. (Benjamini & Speed, 2012) found that GC content coverage 

bias is best estimated by the content of a full insert, not individual reads. The 

CLAMMS developers therefore recommend an insert size that is ‘a little bit bigger’ 

than the mean insert size for the sequencing process used, so that most reads will 

come from inserts of sizes smaller than this value. 

 

The code used to generate the window file first divides exome capture regions that 

are ≥ 1kb long into equally sized windows 500-1kb long. This ensures that the 

breakpoints of CNVs that only partially overlap large exons can be more precisely 

determined. Exome capture regions < 1kb are treated as individual calling windows 

by default. Windows are then annotated with 5 metrics: 1) the bp interval of the 

exome capture region from which the window was derived; 2) number of GC-base 

pairs, extended to fit insert size; 3) GC content as a proportion of the insert size; 4) 

the mean mappability score for all bases in the window; and 5) ‘-6’ or ‘1’ depending 

on whether the widow intersects (by at least 1bp) a region of extreme polymorphism 

or common duplication, respectively.  

 

Windows are filtered if they have a GC content proportion that lies outside a 

configurable range, which by default is [0.3,0.7]. Investigating the relationship 

between coverage and GC content in the original CLAMMS study (Packer et al., 

2016), the developers found that coverage depth variance for windows that lie 

outside this range is too large to be adequately modelled (Figure 2.2). Windows are 

also filtered if their mean mappability score is < 0.75, or if they intersect a region of 

extreme sequence polymorphism. In total, ~12% of exome capture regions are 

excluded from the windows file.  
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Figure 2.2. Coefficient of variation (standard deviation/mean) of coverage (y axis), 

conditional on GC content (x axis), for 50 samples from the CLAMMS original study 

(jittered for visibility). Vertical lines show the upper and lower thresholds for GC 

content recommended by the developers. Above GC = 70%, coverage variance 

dramatically increases relative to sample mean. Below GC = 30%, variance of 

coverage itself is volatile. Adapted from (Packer et al., 2016) supplement. 

 

2.2.2 Computing depths of coverage 

In the second stage of the algorithm, depth of coverage is calculated for each call 

window in each BAM file to be analysed. This is achieved using the ‘bedcov’ 

command of Samtools, for which 2 input files are required: 1) the calls windows file; 

and 2) the indexed BAM file of each sample to be analysed. An additional parameter 

is the minimum MAPQ for a read to be counted, with 30 being the default suggested 

by the CLAMMS authors. The probability that a read with MAPQ > 30 has been 

mapped incorrectly is < 1% (Li & Durbin, 2009). As it is implemented in CLAMMS, 

Samtools determines the number of reads passing the MAPQ filter that are aligned 

to all bases in the windows file, then calculates the mean base coverage for each 

window. The output contains 4 fields, the first 3 of which specify the chromosome, 
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start base and end base of call windows, while field 4 gives the mean coverage 

value.  

 

Depth of coverage for each sample is then internally normalised to control for GC 

content bias and overall average depth of coverage. Two input files are required for 

this step: 1) the call windows file; and 2) the coverage file for each BAM, to which the 

following formula is applied: 

 

Covnorm(w) = Cov(w) / median(Cov | GC(w))  

 

where w is a call window, Cov is coverage for a given BAM and median(Cov | 

GC(w)) is the median coverage for that sample conditional on the GC content of w.  

The conditional median is calculated by binning all call windows for a BAM with 

similar GC content, computing the median coverage for each bin. A normalisation 

factor for each window is then calculated using a linear interpolation between the 

median coverage of the two bins nearest to it. The number of windows per bin is 

configurable, but the developers give a default size ‘that balances fine-grained 

binnings with the need to provide each bin with a sufficient sample size for 

estimation.’  

 

2.2.3 Modelling copy number states 

Aside from GC content and mappability, there are other factors whose confounding 

impact on coverage depth is more stochastic in nature. These include often-subtle 

differences in sample preparation and input DNA quality and are collectively referred 

to as ‘batch effects’ in the CLAMMS methods paper. Adequately mitigating the 

impact of batch effects is the first step of the CLAMMS modelling stage and is 

achieved by grouping samples according to similarities in quality metrics. The 

developers recommend using the following seven metrics, that can be generated 

using Picard (https://broadinstitute.github.io/picard/): GC_DROP_OUT, 

AT_DROP_OUT, MEAN_INSERT_SIZE, ON_BAIT_VS_SELECTED, 

PCT_PF_UQ_READS, PCT_TARGET_BASES_10X, and 

PCT_TARGET_BASES_50X. A description of each is given in Table 2.4, along with 

the Picard function used to generate it from BAM files.  
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Picard command  Picard metric Description 

CollectGcBiasSummaryMetrics GC_DROP_OUT 

Produced by calculating (%GC 

in ref - %GC in reads) for 50bp 

exonic windows and summing 

all positive values for GC = 

[50..100]. 

 
AT_DROP_OUT 

Produced by calculating (%GC 

in ref - %GC in reads) for 50bp 

exonic windows and summing 

all positive values for 

GC=[0..50]. 

CollectInsertSizeMetrics MEAN_INSERT_SIZE 

The mean insert size, 

excluding artefactual outliers.  

CollectHsMetrics 

ON_BAIT_VS_SELECTED 

Fraction of bases on or near 

baits (i.e., targeted sequences) 

that are covered by baits.  

 

PCT_PF_UQ_READS 

Fraction of aligned unique 

reads that pass Illumina's 

internal quality filter (PF) from 

total number of PF reads 

 

PCT_TARGET_BASES_10X 

The fraction of all target bases 

achieving 10X or greater 

coverage. 

 

PCT_TARGET_BASES_50X  

The fraction of all target bases 

achieving 50X or greater 

coverage. 

Table 2.4. Picard metrics used to group samples for coverage depth models, 

including commands used to generate each and a brief description.  

 

The CLAMMS authors recommend grouping samples according to the k-nearest 

neighbours' algorithm. This can be achieved in several ways, but for the studies I 

conducted, the seven Picard metrics for each sample were imported into an R 
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environment and normalised using min-max scaling. The package ‘FNN’ (Fast 

Nearest Neighbour (https://cran.r-project.org/web/packages/FNN/FNN.pdf)) was 

used to construct a k-d trees from the metrics, from which k-nearest neighbour 

groupings could be extracted. It cannot be known a priori which value of k best 

controls for batch effects in a given dataset. As a rule, however, larger values of k 

decrease variance of model parameters, but increase the potential bias of batch 

effects. The methods by which I optimised k were particular to each study and are 

therefore described in the methods sections of relevant results chapters. For each 

sample, a file was created containing its k-nearest neighbours. For the purposes of 

modelling, these files are referred to as ‘reference panels’.  

 

CLAMMS then uses sample reference panels to train exome-wide depth of coverage 

models for each call window. Two input files are required: 1) a reference panel file 

annotated with the file path to the normalised coverage files for each sample; and 2) 

the call window file. Each model has at least 4 sub-components (hence ‘mixture’), 

corresponding to copy number states 0-3, and two free parameters: the mean (μDIP) 

and standard deviation (σDIP) of the coverage depth corresponding to diploid copy 

number.  For a non-diploid copy number k, the mean is constrained to equal (k/2) x 

μDIP. Thus, if μDIP = 6, mean coverage for copy number 1 (haploid) is ½ x 6 = 3. 

Through an examination of male vs female samples on X chromosome, the 

developers found that haploid samples had approximately half the variance of diploid 

samples, so set the standard deviation for haploid samples to equal √0.5 x σDIP. 

Variance for copy numbers > 2 should be greater than for diploid samples, but the 

developers found that including this in the model increased the rate of false-positive 

duplications. The standard deviation for all events of copy number > 2 were therefore 

set to equal σDIP.  

 

While copy number 0 would result in no coverage in the absence of confounders, 

read mismapping can lead to a small amount of coverage even in the presence of 

such events. The authors therefore found coverage copy number 0 to fit an 

exponential distribution, with a mean (1/λ) initially equal to 6.25% of μDIP. In regions 

of no read mismapping, iterations of the model fitting algorithm will drop the mean to 

0, causing numerical instability. To prevent this, if the mean drops below 0.1% of 

μDIP, the exponential distribution is replaced with a point mass at 0. CLAMMS 
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considers copy numbers 4-6 only for windows intersecting regions where duplication 

is known to commonly occur (annotated ‘6’ in windows file generation). 

 

Each model is fit to the normalised coverage data for a reference panel by means of 

the expectation-maximisation (EM) algorithm. μDIP is initialized as the median 

coverage across all samples in the reference panel, for the call window to be 

modelled, while σDIP is initialised to the median absolute deviation of coverage 

(MAD) around the call window median, scaled by a constant factor. Figure 2.3, taken 

from the CLAMMS methods paper supplement, shows mixture models fit to real 

normalised coverage distributions for exons of gene GSTT1.  

 

 

Figure 2.3. Mixture models fit for mean observed normalised coverage distributions 

of exons of GSTT1, annotated with mean and variance parameters for diploid and 

haploid copy numbers at exon 4. Each point, jittered for visibility, represents an 
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individual sample from the DiscovEHR Study. Adapted from (Packer et al., 2016) 

supplement.  

 

A model file is the output containing 17 fields. The first three give the chromosome, 

start and end base of the calling windows. Field 4 gives the maximum copy number 

considered (6 if the window intersects a region of common duplication, 3 otherwise). 

Field 5 and 6 specify GC content proportion and mappability scores, while fields 7-10 

are model parameters: 7 gives the flag to introduce the point mass in windows with 0 

coverage (set to 1 if not applicable); 8 gives the λ value for the exponential 

distribution modelling non-zero coverage in windows where copy number is 0; 9 is 

μDIP and 10 is σDIP. Finally, Fields 11-17 gives the number of samples in the 

reference panel that have estimated copy numbers 0-6, respectively.  

 

2.2.4 CNV calling 

For each sample, the CNV calling stage requires two input files: 1) normalised 

coverage file; and 2) model file. An optional flag can be added to the call command 

with the sex of each sample as its argument (M or F), to call CNVs from sex 

chromosomes. CLAMMS calls CNVs using a Hidden Markov Model (HMM) (Eddy, 

2004), whose input is the sample’s normalised coverage values at each call window. 

The states are DEL (deletion), DIP (diploid) and DUP (duplication). Thus, the 

probability of observing a normalised coverage value x, at a calling window w, given 

state s, is determined by the mixture model trained at w that correspond to state s. 

Copy numbers 0-1 correspond to DEL, while copy numbers 3-6 correspond to DUP, 

and there are two prior assumptions: 1) DEL and DUP are of equal likelihood, and 2) 

CNV size is exponentially distributed. Using this HMM, CLAMMS identifies CNVs as 

a series of call windows where the maximum-likelihood sequence of states is non-

diploid, predicted by the Viterbi algorithm run in both the 5’ to 3’ and 3’ to 5’ 

directions. The developers found that running the algorithm in only the forward 

direction introduced a bias to the calling, as the probability threshold required to 

‘start’ a CNV is higher than that to extend it, such that calls would tend to overshoot 

3’ breakpoints. 
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Based on the emission probabilities of the HMM, CLAMMS generates 6 quality (Q) 

metrics: Qsome, Qexact, Qleft_extend, Qright_extend, Qleft_contract, 

Qright_contract.  

 

Quality metric Description  

Qsome a Phred-scaled probability the call region contains any CNV  

Qexact 

a non-Phred-scaled score measuring how closely the coverage profile 

for the call region matches the exact called CNV state and breakpoints 

Qleft_expand 

Phred-scaled quality score for the left breakpoint, based on likelihood 

ratio of called breakpoint compared to breakpoint if call extended by one 

window 

Qright_expand 

Phred-scaled quality score for the right breakpoint, based on likelihood 

ratio of called breakpoint compared to breakpoint if call is extended by 

one window 

Qleft_contract 

Phred-scaled quality score for the left breakpoint, based on likelihood 

ratio of called breakpoint compared to breakpoint if call is contracted by 

one window 

Qright_contract  

Phred-scaled quality score for the right breakpoint, based on likelihood 

ratio of called breakpoint compared to breakpoint if call contracted by 

one window 

Table 2.5. Descriptions of each CNV quality metric generated by CLAMMS CNV 

calling.  

 

The file output by the CNV calling algorithm contains 18 fields. Fields 1-4 give the 

chromosome, start window coordinate, end window coordinate and interval for calls. 

5 gives sample ID, while 6-7 specify CNV state (DEL or DUP), most likely copy 

number, and number of windows in the call. Fields 9-18 contain the 6 Q scores in 

Table 2.5, and the coordinates of the windows if the breakpoints are expanded or 

contracted by one window. For studies I conducted, CNV files were imported into R 

and subjected to a series of quality control filters, which I describe in the methods 

sections of the relevant results chapters. 
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2.2.5 Manual Inspection 

The coverage distribution for individual CNV calls can also be manually inspected 

using a plotting script included in the CLAMMS code repository. For a given sample, 

the scripts’ inputs are 1) list of CNV calls; 2) normalised coverage scores; and 3) 

model file. The output is a PNG file illustrating the mean coverage depth per exon 

impacted by a putative CNV, relative to model μDIP and σDIP. If an exon has been 

divided into >1 call window, the mean of coverage values for each window are 

calculated. Figure 2.4 shows an example plot, whose different elements are further 

explained in the legend. These plots were utilised in my quality control processes, 

again explained in the methods sections within the relevant results chapters.  

 

 

 

Figure 2.4. A CLAMMS coverage plot, showing a putative heterozygous deletion. 

The red lines highlight the CNV call region, while the black lines show the coverage 

profile for this sample +/-100kb beyond the CNV breakpoints. Each node along the 

line represents the mean coverage depth for an exon. 50% and -50% on the y axis 

show the expected coverage depth for heterozygous duplications and deletions, 
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respectively, relative to the mean of the sample’s reference panel (μDIP). The dark 

and light grey regions indicate mean reference panel coverage depth +/- 1 and 2 

standard deviations, respectively, for diploid copy number (σDIP). 

 

2.2.6 Summary 

In this section I have described the four stages of the CLAMMS algorithm: 1) 

generating call windows; 2) computing depth of coverage; 3) modelling copy number 

states; and 4) calling CNVs. Throughout these stages, there are two parameters that 

vary between different datasets: the insert size variable required to generate the call 

window, and the size of the reference panel used to model copy number states. 

Therefore, these are the two aspects of the algorithm that I focus on in the methods 

sections of the relevant results chapters. Unless specified, all other parameters were 

kept to their default values. In the next section, I justify my use of CLAMMS with 

reference to benchmarking analyses carried out by its developers.  

 

2.3 Published CLAMMS studies 

The developers tested CLAMMS on two WES datasets:1) Regeneron’s WES 

database, reported in (Packer et al., 2016); and 2) adult participants of Regeneron’s 

DiscovEHR study (Maxwell et al., 2017). The former was used primarily for call 

validation and method benchmarking, while latter was used primarily to test 

association of CNVs with clinical phenotypes in participant electronic health records 

(EHRs), and secondarily for further call validation. I describe the (Packer et al., 2016) 

study, and only those aspects of the (Maxwell et al., 2017) that pertain to call 

validation, as the details of the latter’s phenotype analyses are not relevant to justify 

my use of CLAMMs, nor my phenotype of interest. I refer to the quality control 

procedures of the Maxwell study in the relevant results chapters, however, as they 

informed my own analyses.  

 

2.3.1 Call validation 

CLAMMs was applied to 3,164 samples included in Regeneron’s WES database, for 

which high-quality CNVs had previously been called by PennCNV in their 

corresponding array data. Each algorithm was run with its ‘default parameters’. 

Coverage depth models were based a on reference panel size of 100, as this value 

was found to give the best trade-off between the variance of model parameters and 
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batch effect bias. Samples were excluded from the array-based test set if. 1) they 

had PennCNV calls > 50; 2) standard deviation of log R ratios > 0.23 (95th 

percentile); or 2) B-allele frequency drift >0.005 (95th percentile). To minimise false 

positives in the array-based call set, and to ensure that they could be detected by 

WES-based callers, calls were excluded if: 1) CNV length < 10kb or > 2mb; 2) they 

did not overlap at least 1 exon and 10 array SNPs; 3) they overlapped a gap in the 

GRCh37 reference genome; 4) had an AF > 1%. The last criterion is included as 

PennCNV is not designed to genotype common CNVs, so a high allele frequency 

call set is likely to be enriched for false positives. After sample and variant 

exclusions, the array-based call set included 1,715 CNVs (46% deletions, 54% 

duplications) across 1,240 samples.  

 

Samples were excluded from the WES call set if they had >2x the median number of 

calls. The median for this study was 14, so 26 (0.8%) samples were excluded for 

having >28 calls. PennCNV calls for these samples were still included in the test set, 

however. CLAMMS CNV calls were subject to additional QC that is not specified in 

the paper but is likely the same as that used in (Maxwell et al., 2017).  CLAMMS 

calls were compared to PennCNV calls according to three metrics: precision, recall 

and F-score. Precision refers to the percentage of PennCNV calls that were called 

by CLAMMS, subject to variant-level QC criteria. Recall is the percentage of 

PennCNV calls that were called by CLAMMS, with no variant-level QC applied. F-

score is defined as ‘the harmonic mean of precision and recall.’ Values of these 

metrics were calculated for three degrees of reciprocal call overlap: any overlap, 

33% overlap, and 50% overlap (Table 2.5).  

 

Metric Any Overlap 33.3% overlap 50% overlap 

Precision 78.4 71.9 67.2 

Recall 65.4 49.7 41.9 

F-score 71.3 58.8 51.6 

Table 2.5. Precision, recall and F-score metrics for CLAMMS calls tested for overlap 

with PennCNV calls. Adapted from (Packer et al., 2016) supplement.  

 



 61 

For all three metrics, percentage decrease and degree of overlap are negatively 

correlated. This is expected, as the assigned breakpoints for each call will differ by 

method. CLAMMS systemically under-estimates breakpoint distance, as it can only 

capture the parts of a CNV that occur in exons, and it is unlikely that even one CNV 

breakpoint will occur within an exon. However, the 20-point difference in F-score 

between any overlap and 50% overlap suggests that not insignificant proportion of 

overlaps are missed by the latter threshold. Precision is at least 10 points greater 

than recall for all overlaps, indicating that quality control is effective at excluding false 

positive calls in both methods. Sixty-seven to 78% of PennCNV calls overlapped 

CLAMMS calls, subject to QC, indicating a high validation rate. To benchmark this 

performance, the authors compared it with that of four similar methods, described in 

section 2.3.2. 

 

Calls produced from the same WES samples were also validated using TaqMan 

qPCR. Twenty rare and twenty-three common call loci were randomly selected from 

the set of all calls that intersected at least one disease-associated gene in the 

Human Gene Mutation Database ((Stenson et al., 2014), N = 7,430 genes), 

compared with PCR-based copy number predictions in 56 samples for the rare loci, 

and 165 samples for the common loci. Nineteen of twenty (95%) of the rare variants 

were validated, although authors don’t specify precisely what this means (i.e, 

whether each of the nineteen loci were validated in one, most, or all the 56 samples). 

Four of the common loci ‘appeared to be correct’, but results were ambiguous and 

inconclusive to due high variance in the PCR data. Two loci had ambiguous PCR 

results for two samples but validated the calls in the rest. The remaining seventeen 

non-ambiguous loci were all validated. The only rare locus that was not validated 

was also the smallest, at 718bp in length, though there appeared to be no correlation 

between size and PCR validation among the common loci, the smallest of which was 

559bp. 

 

In (Maxwell et al. 2017), the CLAMMS developers identified 475,664 CNVs in 47,349 

DiscovEHR participants. The median size of rare (allele frequency < 1%) CNVs was 

17.8 kb (Deletions 8.4kb, Duplications 32.8kb), while the ratio of rare duplications to 

deletions was 1.6:1. There was an average of one very rare (allele frequency <0.1%) 

CNV per individual. The developers used this call set to extend the PCR validation 
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reported in (Packer et al., 2016), assessing the algorithm’s error rates regarding 

variants of the lowest size range. Testing was carried out on small loci identified as 

non-transmissions and transmissions in 333 proband-parent duos included in 

DiscovEHR cohort, to assess the similarity of transmission rates obtained from PCR 

results with those of the CLAMMS quality-controlled call sets. All loci were 1-3 exons 

in length, with 21 corresponding to a single call window. 89.4% of predicted non-

transmissions were PCR validated (i.e. true positive in parent, true negative in 

proband), with a 86.9% validation rate for single exon loci. One hundred percent of 

transmissions were PCR validated (true positive in both parent and child), consistent 

with the assumption that the transmission status of a call increases confidence in its 

true positive status in both proband and parent. Collectively, these findings 

demonstrate that CLAMMS can adequately control for coverage depth confounders 

even at single exon resolutions. Given that the impact of batch effects can vary 

between datasets, however, it cannot be concluded that CLAMMS can call small 

CNVs in all samples with the same error rates. 

 

2.3.2 Benchmarking  

In (Packer et al. 2016), Precision, recall and F-score metrics were calculated for calls 

generated from the same data analysed by 4 additional publicly available callers, all 

of which leverage coverage depth in a similar way to CLAMMS: 1) XHMM (Fromer et 

al., 2012), CoNIFER (Krumm et al., 2012), CANOES (Backenroth et al., 2014) and 

ExomeDepth (Plagnol et al., 2012). All callers were run using default parameters and 

QC procedures recommended by their respective developers. Using the any overlap 

criterion, CLAMMS had an F-score 9.3% higher than XHMM, 6.6% higher than 

ExomeDepth, and 38.2% higher than CoNIFER. CANOES would not run on the 

server with the 30GB memory limits required by the developers, so no F-score 

comparison could be made. The CLAMMS developers argue that observed 

improvements are due to their algorithm’s higher precision, which was ~20% higher 

for all overlap criterion than the next best performing caller (XHMM), reflecting more 

robust quality control procedure. In summary, CLAMMS is reported by its developers 

to have a significantly higher rate of validation compared to alternatives, reflecting a 

greater ability to detect true positive events. 
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2.3.3 Computational advantages 

In addition to improved performance in variant calling, the CLAMMS developers 

report several advantages over alternative methods in terms of computational 

efficiency. These are mostly due to the way CLAMMS handles batch effects: a k-d 

tree for 7 quality metrics requires minimal computational power to produce, even for 

thousands of samples, and to extract reference panels from. This process is 

therefore quick and efficient to repeat if more samples are added to a dataset, or a 

different reference panel size is chosen. In contrast, CoNIFER and XHMM control for 

batch effects by calculating principal components of a sample-by-exon coverage 

depth matrix and excluding the contribution of the largest components. This requires 

construction of a very high dimensional space and is therefore computationally 

intensive (and likely why CoNIFER failed to run in the benchmarking analysis). 

Computation time also scales exponentially with sample size, limiting the application 

of these methods to large samples. ExomeDepth and CaNOES also control for batch 

effects by direct use of coverage depth data but are similar to CLAMMS in that they 

use a reference panel approach. Each sample’s coverage profile is normalised 

against the average of a reference panel of samples with whose coverage profile 

which with it is most highly correlated. Again, however, calculating these coverage 

correlations across the entire exome is computationally intensive and shares the 

same scalability issues as the principal component method. CLAMMS is therefore 

the only the method whose computational power scales linearly with sample size, 

making it most suited for integration in CNV calling pipelines.  

 

2.4 CLAMMs Summary  

In this section I described each stage of the CLAMMS algorithm, showing precisely 

how it uses coverage depth across exon call window to model copy number states, 

and thereby call CNVs.  I have also presented evidence, reported in the CLAMMS 

method paper, that CLAMMS both produces higher validation rates than alternative 

approaches, due its higher precision, and is more computationally efficient. The 

array call validation rate was important for my purposes, as much of my research 

involved assessment of the utility of WES and array-based approaches for detecting 

CNVs that meet different sets of criteria (size, type etc.). Using the approach that can 

call array-based CNVs with the greatest precision would lead to the most robust 

comparison of calls. The computational efficiency of CLAMMS was also important, 
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as I would be applying the method to different datasets and therefore needed a 

method that could be easily integrated into an SV calling pipeline.  

 

3. InDelible 

3.1 Introduction 

The second SV caller I describe is InDelible, developed by the Hurles lab at the 

Wellcome Sanger Institute (Gardner et al. 2021, code repository: 

https://github.com/HurlesGroupSanger/indelible). The impetus for InDelible’s 

development was the observation that SVs < 1kb in size were undetectable by 

existing array-based and WES-based methods. The potential clinical impact of such 

variants was therefore unknown, limiting the knowledge and diagnoses of congenital 

disorders that are driven by structural variation. To detect these small variants, 

InDelible mines the CIGAR strings of aligned reads in a BAM for soft-clipped bases. 

If a read has soft-clipped (i.e. misaligned) bases at its 5’ or 3’ end (or both), it is 

referred to as ‘split’. Split reads (SRs) can indicate the breakpoints of many SV 

types, allowing for the detection of events at very small bp resolutions, often smaller 

than the reads themselves.  

 

3.2 Split reads 

The number of bases that misalign in a split read is indicated by the integer 

preceding the ‘S’ (soft-clipped) signifier in their CIGAR string. Thus, the string 

‘24M12S’ corresponds to a split read consisting of 35 bases, whose first 24 bases (in 

the 5’-3’ direction) are matched/aligned to the reference genome, and whose last 12 

bases are soft-clipped. Figure 2.5 illustrates a split read that would have this CIGAR 

string. The junction between the aligned and misaligned bases in a split read is 

called the split position. The soft-clipped bases may or may not align to another 

reference sequence, depending on SV type.  

 

https://github.com/HurlesGroupSanger/indelible
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Figure 2.5, An illustration of a split read with CIGAR strig ‘24M12S’. The yellow bar 

shows the reference sequence at this locus. There are 3 reads mapped the 

reference, the first two of which contain no misaligned bases. The first read is split at 

its 3’ end, indicated by the red region. The junction between the aligned and 

misaligned bases (where the read turns from green to red) is the split position. The 

12 soft-clipped bases may align to another reference sequence, depending on the 

SV type that caused them.  

 

Insofar as an SR does indicate an SV breakpoint, there are likely to be other reads 

mapping to the same reference sequence that split at the same position (assuming 

adequate coverage). This is because, in the absence of read mismapping, they will 

be based on the same source DNA sequence, and therefore carry the same variant 

‘signature’. The SRs need not align to precisely the same reference sequence to 

have the same split positions, however; they just need to overlap at the reference 

position where the breakpoint occurs. SRs with the same split position are denoted 

as ‘clusters’ by the InDelible developers, and the algorithm is designed to detect 

these clusters and filter those that are unlikely to be caused by real SV events.  

 

3.3 InDelible algorithm.  

The algorithm has 6 stages: 1) Fetch: mine WES BAM files for SR; 2) Aggregate: 

merge SRs with the same split positions into clusters; 3) Score: score each cluster 

with a probability that it is not an artefact, using a random forest adaptive learning 

CTGTCTCTTATACACATCTGACGCTGCCGACGAG

CTGTCTCTTATACACATCTGACGCTGCCGACGAG

CTGTCTCTTATACACATCTGACGCTGCCGACGAG

CTGTCTCTTATACACATCTGACTGAACGTTAGATT
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Split read
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2

3

Aligned bases Misaligned/soft-clipped bases
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model; 4) Database: build allele frequency database for clusters, and determine the 

type, size, and other breakpoints of their corresponding SVs; 5) Annotate: annotate 

clusters with their allele frequency and gene intersects; and 6) denovo: an optional 

step that mines parental data (if available) for the presence of clusters called in 

probands. Figure 2.6 is an illustration of the algorithm taken from the InDelible 

methods paper. In the following six sections I describe each stage and how they are 

executed. 

 

 

Figure 2.6. The 6 steps of the InDelible structural variant calling algorithm, adapted 

from (Gardner et al. 2021). The horizonal grey lines in each diagram represent 

reads, and the multi-coloured regions show where reads are split. This is based on 

how split reads appear in the Integrative Genomics Viewer (IGV), described in 

section 3.4. SR = split read, MAF = minor allele frequency.  

 

3.3.1 Fetch  

In the first stage, soft-clipped reads are ‘fetched’ from all BAM files to be analysed, 

by interrogating the CIGAR and SEQ fields of all entries. Two input files are required: 

1) an indexed BAM file; and 2) a configuration file. The latter is an input for multiple 

stages and specifies paths to several datasets in the InDelible code repository, along 

configurable parameters by which the algorithm filters SRs or SR clusters. For Fetch, 

the parameters are minimum read mapping quality, minimum average base quality, 
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and minimum SR length. Split reads are not considered if they do not meet one of 

the criteria specified, the defaults for which are 5, 10, and 5, respectively.  

 

The output file generated by Fetch contains 10 fields, with each entry corresponding 

to a single SR. The first 5 specify its chromosome, split position, split end (5’ or 3’), 

number of soft-clipped bases and sequence of soft-clipped bases. Fields 6-8 specify 

ASCII base quality of soft-clipped bases, read mapping quality and average base 

quality; and the final two fields are Boolean variables indicating whether the aligned 

bases reverse complement the reference, and whether the read is split at both ends, 

i.e ‘double-split’. Double-split reads will have two file entries: one for the soft-clipped 

bases on their 5’ end, and the other for those at their 3’ end.   

 

3.3.2 Aggregate 

In the second step, SRs identified by Fetch are clustered according to their 

chromosome and split positions, and features are calculated that will be used as 

inputs for Score’s adaptive learning model. The proportion of reads in each cluster 

that are double-split is also calculated for downstream QC. Aggregate requires 4 

input files: 1) an SR file generated by Fetch; 2) an indexed BAM; 3) a reference 

genome in FASTA format; and 4) a configuration file. The configuration file can be 

the same file used in the previous stage. For Aggregate, the configurable exclusion 

parameter is the minimum number of SRs required to form a cluster, which is set to 3 

by default. Another parameter can be set for purposes of cluster annotation, which is 

the minimum number of soft-clipped bases for an SR in a cluster to be considered 

‘short’. This is set to 10 by default and informs calculations in both the Score and 

Database stage. A third parameter specifies the window size around the split 

position for which coverage depth should be calculated, set to 5 (+/-5bp) by default.  

 

The output file contains 21 headers, with each entry corresponding to a single SR 

cluster. The first three are chromosome, split position, and coverage depth in set 

window around the split position. 4 is ‘insertion context’, which is the number of 

insertions detected each cluster (derived from its CIGAR strings of its constituent 

SRs), and 5 is ‘deletion context’, the same but for deletions. Fields 6-12 give the 

number of SRs are ‘short’ and ‘long’, according to the configuration file parameter, 

and the number of SRs that are short and long at the 3’ end and the 5’ of the cluster. 
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Fields 13-17 gives the entropy (i.e. base variability) of the longest soft-clipped 

sequence, the sequence +/-20bp around the split position, the sequence from the 

split position +20bp, and the sequence from the split position -20bp. Fields 18-21 

contain a sequence similarity score for SRs in the cluster, the average of the 

average soft-clipped base quality, average SR mapping quality, the longest soft-

clipped base sequence, and finally the proportion of SRs that are double-split.  

 

3.3.3 Score 

In the third stage, the 17 metrics calculated in Aggregate (the final 17 fields of its 

output) are used as inputs for a 500-tree Random Forest adaptive learning model, 

which is by default trained on a set of 2,000 manually curated SR clusters called 

from WES data generated from participants of the Deciphering Developmental 

Disorders (DDD) study. I describe this dataset, and how InDelible was applied to it, 

in section 3.4. Based on the features exhibited by the training set, the model scores 

clusters according to their probability of being a true event. The inputs for Score are: 

1) a cluster file produced by Aggregate; and 2) a configuration file. Score uses the 

configuration file only to access the training data included in the InDelible code 

repository. A subfunction of Score, ‘Train’, can be used to retrain the model based on 

a truth set supplied by the user. The output of Score is largely identical to that of 

Aggregate, with the addition of three fields: probability that the cluster is a false 

positive (prob_n), probability that the cluster is a true positive (prob_y), and Boolean 

variable that is set to ‘Y’ if prob_y > 0.5 (i.e. likely to be true positive), and otherwise 

‘N’.  

 

3.3.4 Database 

In the fourth algorithm stage, InDelible calculates the frequency of each cluster, and 

the type, size, and other putative breakpoint of SVs. Its inputs are: 1) a file containing 

the file paths all the Score outputs, 2) reference genome, in FASTA format and 3) a 

configuration file. Frequencies are calculated by counting clusters with same the split 

positions and dividing by total number of Score outputs. InDelible does not factor in 

this calculation the possibility that SVs of different types could have the same split 

position, presumably because it highly unlikely. 

 

Ascertainment of SV type is derived from the longest soft-clipped sequence across 
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all clusters at the same position, defined as that sequence which has at least 60% 

homology to all other sequences. In the first step of this process, A synthetic FASTQ 

file is created whose unmapped reads correspond the longest soft-clipped 

sequences. BWA-mem is used to determine the reference sequence with which the 

sequences align. As it is implemented by InDelible, BWA-mem will only process 

sequences that are at least 19bp length. SV type can then be ascertained from the 

position of the alignment relative to the initial position of the soft-clipped bases. 

Section 3.5 serves to clarify, using diagrams, the precise relation between SR cluster 

patterns and SV type that is leveraged by Database.  

 

As some SV types produce split reads that map to several loci across the genome, 

the longest soft-clipped sequences are separately aligned to a database of repeated 

sequences (such as mobile elements) using the BLAST aligner. BLAST operates 

similarly to BWA-backtrack but is designed for alignment of sequences with curated 

sequence databases, rather than a reference genome. As implemented by InDelible, 

BLAST will only process sequences that are at least 22bp length. Database uses 

BLAST ‘hits’ to assign SV type if there is not a unique BWA-mem alignment for a 

soft-clipped sequence, there are repeat BLAST hits, and these hits correspond to a 

repeated sequence whose type (e.g. Alu, SINE, LINE) is defined in the sequence 

database.  

 

If the sequence does not have a BWA-mem alignment or a BLAST hit, it’s type 

cannot be determined. This is expected in the case of simple insertions, which 

therefore need to be ascertained by other means, described in section 3.5. 

Otherwise, InDelible can assign 6 SV types: deletions, duplications, translocations, 

mobile element retrotranspositions, pseudogene retrotranspositions and complex 

events involving insertions nested within deletions or duplications. Small tandem 

repeats are detectable from split read data, but high variability in their cluster 

patterns mean that they cannot be assigned by InDelible. SRs whose soft-clipped 

sequences are in reverse orientation to the reference genome can be evidence of 

inversions. However, the InDelible authors claim that this is more likely to be an 

artefact, and therefore exclude such sequences from type assignment.  

 

Calculation of SV size is also contingent on unique BWA-mem alignment of soft-
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clipped sequences to the reference genome. In all cases, depending on whether the 

soft-clipped sequences occur at the 5’ or 3’ end of their associated SR, the 5’ or 3’ 

end of the reference sequence to which they align will correspond to the 

other/alternate breakpoint of the SV. The precise bp size of the SV is therefore 

determined by subtracting this alignment position from the cluster split position. If the 

alignment position is upstream of the split position, size is given as a negative value. 

Database interrogates allele frequency data to establish if the alternate breakpoint of 

an SR cluster is equal to the split position of another cluster included in the Sore 

output, thereby determining if the alternative breakpoint was also called by InDelible.  

 

The output of Database contains 14 fields, which each field corresponding to a 

cluster that occurs at least once in the Score output. The fields are: chromosome, 

split position, split position frequency, split position count, total individuals assessed 

(i.e. number of Score output files), mean coverage around split position (calculated 

by Aggregate), alignment position, alignment mode (whether BWA-mem or BLAST 

was used to determine SV type, set to ‘FAIL_*’ if alignment failed), SV type, SV size, 

length of alignment, a Boolean variable for whether the alternate breakpoint was 

included in the Score output, a Boolean variable for whether the split position 

corresponds to the 5’ breakpoint, and a variant coordinate in the format CHR:BP1-

BP2.  

 

3.3.5 Annotate  

The fifth stage of the algorithm annotates the SR clusters in the output of Score with 

their corresponding fields contained in the Database output, according to the 

chromosome and split positions. It also annotates clusters with their gene intersects 

in the appropriate reference genome. The input files are: 1) A Score output file; and 

2) A Database output file; and 3) a configuration file. By default, Annotate uses the 

configuration file to access gene intersect reference genome coordinates, in 

ENSEMBL format. In addition, Annotate accesses a file listing exon transcript 

coordinates. Optional files can be specified in the configuration file for coordinates of 

genes contained in gene sets of interest.  Unless parental data is available for the 

denovo stage, the output of Annotate is used for downstream QC. It contains 41 

fields, with each entry corresponding to an SR Cluster. 24 fields are from the Score 

output, 9 from the Database output, and three additional fields are added for 
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ENSEMBL gene intersect, a Boolean variable for whether the cluster intersects an 

exon transcript, and the IDs of transcript intersects.  

 

3.3.6 denovo 

The final stage of the algorithm can only be applied to samples if the indexed BAM 

files for one or both parents is available. denovo interrogates the split positions of 

proband clusters in parent data to determine putative transmission status. The 

required inputs are: 1) an Annotate output file; 2) a maternal or paternal BAM, or 

both; and 3) a configuration file. Parameters of the configuration file relevant for 

denovo specify the minimum prob_y score threshold for proband clusters to be 

considered (default = 0.6), the minimum required coverage around the call position in 

parent data (specified by window size parameter, default = 9), and maximum number 

of reads that split at the same position in the parent for the SV to be considered 

inherited (default = 3). prob_y score threshold 0.6 was found by the developers to 

optimise false positive and false negative trade-offs in DDD sample calls. The 

denovo output add 3 fields per parent to the Annotate output: 1) number of SRs at 

cluster split position in parent; 2) the insertion/deletion context of the reads 

overlapping the split position in parent; and 3) coverage around the split position in 

parent.  

 

3.3.7 Summary 

In this section I described each of the 6 stages of the InDelible algorithm, along with 

their required inputs and their output files. The first 5 can be run on any WES BAM 

dataset, but the 6th can only be run on datasets that incorporate parental data. Any 

changes I made to default parameters in my own analyses will be explained in the 

relevant results chapters. In the next section, I explain how InDelible calls can be 

inspected using alternate methods, and the precise relation between SR patterns 

and SV types.  

 

3.4 Manual Inspection 

InDelible calls can be manually inspected in the Integrative Genomics Viewer (IGV) 

(Thorvaldsdottir et al., 2013). IGV enables direct viewing of read alignments in a 

BAM file at a given reference genome locus. Soft-clipped bases can be highlighted, 

thereby allowing for the visual identification of split reads. An example of the IGV 



 72 

interface (version 2.9.1), with reads loaded from a BAM file analysed in my own 

research, is shown in Figure 2.7. Explanations of each element of the interface are 

included alongside the figure. 

 

 

Figure 2.7: An example of the IGV interface loaded with a BAM file, illustrating reads 

aligned to a chromosome 12 locus. The textboxes alongside include descriptions of 

each element of the interface.  

 

IGV includes a function which can generate snapshots of the interface from a list of 

reference loci paired with BAM files, which can be used to inspect calls more 

efficiently. As I used this function in the same way for all InDelible analyses, I give 

the relevant details here. First, I created a 200bp (+/-100bp) window around each 

call position.  These windows are large enough to encompass the size of most 

human exons, thus allowing for the inspection of all reads adjacent to the SR cluster, 

but small enough to allow inspection of reads at the resolution of individual bases. In 

The lower segment of the genome track show the 

resolution of the viewed region and the 

chromosomal position of each base.

The red tick in the genome track shows where the 

displayed reads are aligned in genome. (In this case, 

the distal end of 12q22)

The coloured segments in the sequence 

track show the specific base type at 

each position, according to a reference 

genome. Green = A, Red = T, Blue = C, 

Orange = G. 

At high resolutions, The RefSeq Gene 

track shows the location of exons, 

annotated with their constituent 

codons. The 3’ end of an exon can be 

seen here, on the left-hand side. 

The coverage track shows the coverage 

depth for each base as a bar plot

The gray regions in the alignment track show where 

individual reads are aligned to the reference genome. 

The coloured regions in the alignment track show the 

base types of soft-clipped bases. Multiple reads in this 

locus split in the same position, indicative of an SV. 
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addition, the developers report in (Gardner et al. 2021) that InDelible is most 

sensitive to known variants 11-50bp in size (see section 3.4 for further details), such 

that most true positive variants I detect should have breakpoints that fit within a 

200bp locus. I then created file with 3 fields, with 1 entry per InDelible call: 1) sample 

ID; 2) the 200bp window in format CHR:BP1-BP2; and 3) a prefix for the snapshot 

output containing the a unique call ID and the sample ID. I input this file into a script 

that assigns each sample ID and window as variables and instructs IGV to generate 

a snapshot of each window in the relevant samples. In addition to sample ID and 

loci, the reference build must also be specified prior to running the snapshot function. 

Additional commands allow for the configuration of output image dimensions and 

how reads in the alignment track are sorted 

(https://github.com/igvteam/igv/wiki/Batch-commands). I sorted reads by base, which 

ensures all reads in the same order of their aligned bases in the reference genome.  

 

Insofar as both breakpoints occur with the 200bp window, these snapshots can be 

used both to confirm the SV type, size, and transmission status of InDelible call, and 

to assign type and size in cases where the algorithm had failed. In the next section, I 

describe the pattern of SR clusters associated with each SV called by InDelible, and 

how to determine SV type and size from IGV snapshots. There are several criteria by 

which a variant may be excluded by manual inspection. As some are specific to 

datasets, I describe them in the relevant results chapters.  

 

3.5 Split read patterns and structural variation  

Each type of SV is associated with a specific pattern of SRs, according to which their 

type and size can be determined by InDelible or by inspecting their call positions in 

IGV. The SR patterns of variants that InDelible can detect are described and 

illustrated below. Some of the figures depicting reads in IGV were created by the 

snapshot function, while others are screenshots taken directly within the interface. 

The elements of the interface are the same in both cases.  

 

3.5.1 Deletions 
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Figure 2.8. The split read pattern associated with a deletion. The reference genome 

is represented by the dark green line, within which the deleted sequence is coloured 

in gold. The light green lines represent the aligned bases of reads mapped to this 

locus, while the red lines represented their misaligned/soft-clipped bases. The 

vertical cyan and pink lines intersect the split positions of the two split read clusters, 

SR Cluster 1 and SR Cluster 2. SR = split read.  

 

A deletion is indicated by two SR clusters, corresponding the deletion breakpoints 

with respect to the reference genome. The 5’ cluster (SR Cluster 1) splits at its 3’ 

end, while the 3’ cluster (SR cluster 2) splits at its 5’ end. The soft-clipped bases of 

the clusters overlap one another if the event is smaller than the reads themselves (~ 

<150bp), an example of which is illustrated by Figure 2.8. The position at which SR 

Cluster 1 splits aligns to the 5’ end of the deleted sequence, which is indicated by the 

cyan line in the figure. The position at which the SR Cluster 2 splits aligns to the 3’ 

end, indicated by the pink line. Thus, the precise size of the deletion corresponds to 

the distance between the two SR Cluster positions. The soft-clipped bases in SR 

Cluster 1 align to the reference sequence directly after the 3’ end of the deleted 

SR Cluster 1

Deleted sequence

Aligned bases Misaligned bases

SR Cluster 2

Reference genome 

SR cluster 1 
position

SR cluster 2 
position
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sequence, while the soft-clipped bases in SR Cluster 2 align to the bases directly 

before its 5’ end. Deletions are also often indicated by a drop in coverage across the 

deleted sequence, as some reads that are impacted by the deletion will have <50% 

alignment with the reference and are therefore less likely to be successfully mapped 

than adjacent reads that are unaffected. Figure 2.9 shows an example of this pattern 

observed in an IGV snapshot.  

 

 

Figure 2.9. IGV snapshot showing evidence of an 18bp deletion on chromosome 17. 

I have used the same-coloured vertical lines in Figure 2.8 to annotate the split 

positions of the two SR clusters at this locus. The cyan line indicates the position of 

SR Cluster 1 and the pink line the position of SR Cluster 2. The size of the SV can 

therefore be calculated from the snapshot by counting the bases between the split 

positions. A decrease in coverage across the deleted sequence can be observed in 

the coverage track.  
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3.5.2 Duplications 

 

 

Figure 2.10. The split read pattern associated with a duplication. The reference 

genome is represented by the dark green bar, within which the duplicated sequence 

is coloured in gold. The light green bars represent the aligned bases of reads 

mapped to this locus, while the red bars represented their misaligned/soft-clipped 

bases. The vertical cyan and pink lines intersect the split positions of the two split 

read clusters, SR Cluster 1 and SR Cluster 2. SR = split read. 

 

A duplication is also indicated by two SR clusters, corresponding to the duplication 

breakpoints with respect to the reference genome. The 5’ cluster (SR Cluster 1) 

splits at its 5’ end, while the 3’ cluster (SR cluster 2) splits at its 3’ end. Reads 

affected by a duplicated sequence will split at the junction of its first copy and second 

copy. Depending on which copy aligns to the reference genome, the SRs will be soft-

clipped at their 5’ or 3’ ends. In Figure 2.10, the second copy of the duplication in SR 

Cluster 1 is aligning with the reference, so the reads are split at their 5’ end (cyan 

line). In SR Cluster 2, the first copy is aligning with the reference, so the reads are 

split at their 3’ end (pink line). As in the case of deletions, the precise size of the 

duplicated sequence therefore corresponds to the distance between the two split 

positions. The soft-clipped bases in SR Cluster 1 will align to bases directly before 

Duplicated sequence

Misaligned bases Aligned bases
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SR Cluster 2
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the 3’ of the duplicated sequence, while those in SR Cluster 2 align to bases directly 

after the 5’ end. Unlike the SR pattern for deletions, the misaligned bases of the two 

clusters can never overlap. Duplications are not typically associated with a decrease 

in coverage, as >50% of the bases in all affected reads can be aligned. If the event is 

large enough for reads to be entirely nested within the duplicated sequence, there 

will be an increase in coverage between the breakpoints. Figure 2.11 shows an 

example of this pattern observed in an IGV snapshot.  

 

 

Figure 2.11. IGV snapshot showing evidence of a 20bp duplication on chromosome 

1. I have used the same-coloured vertical lines in Figure 2.10 to annotate the split 

positions of the two SR clusters at this locus. The cyan line indicates the position of 

SR Cluster 1 and the pink line the position of SR Cluster 2. The size of the SV can 

therefore be calculated from the snapshot by counting the bases between the split 

positions.  
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3.5.3 Simple insertions 

 

 

Figure 2.12. The split read pattern associated with a simple insertion. The reference 

genome is represented by the dark green bar. As the inserted sequence (gold line) 

is, by definition, not in the reference genome, I have shown its position relative to 

reference genome just below it. The light green bars represent the aligned bases of 

reads mapped to this locus, while the red lines represented their misaligned bases. 

The lower three reads are not split but have misaligned bases nested between their 

aligned 5’ and 3’ ends corresponding to the inserted sequence. The misaligned 

bases in the SR cluster have an ‘S’ (soft-clipped) signifier in their associated CIGAR 

string, while those in the lower three reads have and ‘I’ (insertion) signifier.  

 

Simple insertions are indicated by one or two SR clusters, depending on how reads 

that mapped to the reference are affect by the inserted sequence. If the inserted 

sequence is only at the 5’ or 3’ of all reads, there will be one cluster. It is at the 5’ 

end of some reads, and at the 3’ of others, there will be two clusters (Figure 2.12). In 

Inserted sequence

Misaligned basesAligned bases

Reference 
genome 

SR Cluster 1

SR Cluster 2
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the figure, the inserted sequence causes the reads in cluster 1 to split at their 3’ 

ends, shown by the cyan line. However, it also causes the reads in cluster 2 to split 

at their 5’ end, show by the pink line. The first misaligned bases in these reads will 

correspond to the insertion itself, followed by reference bases that occur after the 

inserted bases. In the case of simple insertions that are small enough to be nested in 

reads, this split read pattern occurs alongside reads with nested misaligned bases 

(the lower three reads) which correspond precisely to the inserted sequence and 

have an ‘I’ (insertion) signifier in their associated CIGAR string, rather than an ‘S’ 

(soft-clipped) signifier. In IGV, the misaligned bases in these reads are truncated and 

replaced with a purple marker, which when selected opens a window showing the 

size and constituent bases of the insertion, based on the read’s CIGAR string (Figure 

2.14). A decrease in coverage across the inserted sequence is also typical, as 

impacted reads are less likely be successfully mapped. Figure 2.13 shows an 

example of this event in an IGV snapshot, in which a single SR Cluster, split at its 3’ 

end, and nested misalignments can be observed.  

 

Figure 2.13. IGV snapshot showing evidence of a 9bp simple insertion (purple line) 

on chromosome 17. I have used the same-coloured vertical line in Figure 2.12 to 
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annotate the split positions of the single SR cluster at this loci. The cyan line 

indicates the position of SR Cluster 1. The purple line in the reads above the SR 

cluster indicate that the inserted sequence is nested within these reads. Clicking on 

this in the IGV interface will open a window specifying the size and specific base 

sequence of the insertion (Figure 2.14) 

 

 

Figure 2.14: In the IGV interface, clicking on the purple line shown in Figure 2.13 

opens this window, showing the size and constituent bases of the simple insertion 

based on the read’s CIGAR string.  

 

As I explained in section 3.4.4, InDelible can’t assign simple insertion as an SV type, 

as their associated soft-clipped bases do not align to the reference genome 

(assuming no read mismapping), nor are they among the sequences included in the 

curated database of repeat sequences interrogated by BLAST. In cases where the 

inserted sequence is too long to be nested in reads, and where no bases in the 

adjacent reference sequence are among the soft-clipped bases in the SR cluster (or 

there are too few of them), it is not possible on the basis of an IGV snapshot to 

differentiate a simple insertion from a large (>100bp, so the other breakpoint is 

outside the snapshot window) deletion that failed alignment.  

 

3.5.4 Small tandem repeats 
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Figure 2.15. The split read pattern associated with a small tandem repeat. The 

reference genome is represented by the dark green bar. The gold bar shows the 

position of the small tandem repeat instances in the sample, while the brown bar 

shows the reference genome position of the repetitive sequence that has been 

extended in the sample. 33% more copies of the repetitive sequence occur in the 

sample. As in the case of simple insertions, the lower three reads are not split but 

have nested misaligned bases, corresponding to the small tandem repeat expansion. 

 

Although small tandem repeats (STRs) are not usually defined as SV, I include them 

here because they can be detected through SR analysis in the same manner as SVs 

and are therefore called by InDelible. The SR pattern caused by STRs combines 

elements of patterns for insertions and duplications. There may be one SR Cluster or 

two (as in Figure 2.15) depending on how reads are mapped to the repetitive 

sequence in the reference genome. If the 3’ end of the read is aligned (SR Cluster 

1), the sequence directly upstream of the repetitive region will be misaligned by the 

number of bases corresponding the extended length of the STR in the sample. If the 

5’ end of the read is aligned (SR Cluster 2), the sequence directly downstream of the 

repetitive region will be misaligned by the number of bases corresponding the 

Reference genome 

Small tandem repeats 
position in sample

Misaligned basesAligned bases

SR Cluster 1

SR cluster 1 
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extended length of the STR in the sample. In both cases, the misaligned bases 

closest to the split position will correspond to the extension sequence. In some 

mappings, an STR is recognised as an insertion and the read will not be split, but 

with contain an insertion signifier in their CIGAR strings. Again, IGV will truncate the 

STR and replace it with a purple marker, which when selected will show the size of 

the event and its constituent bases. Figure 2.16 shows an example of this SR pattern 

in the IGV interface.  

 

 

Figure 2.16: An IGV snapshot showing evidence of a 9bp small tandem repeat on 

chromosome X. I have used the same-coloured vertical lines in Figure X to annotate 

the split positions of the two SR clusters at this locus. The repetitive region in the 

reference genome consists of 9 instances of CCG. 3 further CCG instances occur in 

the sample genome. In the first SR cluster, the final 9 instances of the repetitive 

sequence are aligned to the reference, so there are 3 instances just prior to the split 

position (cyan line). In the second SR Cluster (which was filtered for having only two 

reads), the first 9 instances align, so there are 3 instances just after the split position 

(as least in one of the reads, the only contains 2 of the additional 3 CCG instances) 

(pink line). 5 reads impacted by the sequence are not split as the event was detected 

as an insertion by the aligner. However, in 2/5 reads the inserted sequence contains 

only 6 bases, corresponding to two CCG instances. This was likely caused by 
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replication errors during PCR.  

 

InDelible does not assign small tandem repeats as an SV type, in part because the 

Database script does not differentiate repetitive soft-clipped bases from non-

repetitive soft-clipped bases, but also because the orientation of the cluster split 

position to its alignment position is the same as that of duplications.  

 

3.5.5 Translocations  

Translocations (including segmental duplications) are indicated by the same single 

cluster SR pattern as insertions, only in this case the soft-clipped bases resolve to a 

single non-adjacent locus - a different region of the chromosome or a different 

chromosome. As such these events can only be differentiated from insertions in the 

InDelible output data if they have a BWA-mem alignment. However, a feature unique 

to translocations that can be observed in IGV is the discordant mapping of paired 

reads to non-adjacent loci, which allows for identification by manual inspection even 

if no BWA-mem alignment was found. Discordant mapping occurs when the first 

breakpoint of the translocation is in or just flanking the inner sequence between two 

read mates. If the breakpoint occurs upstream of inner sequence, the first discordant 

read will be split at its 3’ end. If it occurs downstream, the second discordant read 

will be split at its 5’ end. If the first breakpoint is upstream of or in the inner sequence 

and the second breakpoint occurs with the second read, the second read will be split 

at its 3’ end. However, if the first breakpoint occurs in the inner sequence, and the 

event is longer than the second read, neither read will be split (as illustrated by 

Figure 2.17). If the breakpoint occurs before the inner sequence in any of the 

discordant read pairs at each locus, the translocation event is at the locus to which 

the first read is mapped. If the breakpoint occurs after the inner sequence, the event 

is at the locus of the second read. In the highly improbable case in which the 

breakpoint occurs in the inner sequence of all the discordant reads, the locus of the 

translocation can still be determined in WES data, as it is highly unlikely that both 

reads in each pair will map to an exon.  
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Figure 2.17. The discordant mapping of a read pair when the first breakpoint of a 

translocation (gold line) occurs in the inner sequence between the reads (blue bar).  

Both reads are sequenced from chromosome 1 DNA but read 2 consists of a 

sequence translocated from chromosome 6. As the translocated sequence is larger 

than the read itself, read 2 maps to chromosome 6 of the reference genome without 

splitting (bottom right). The same mapping would occur if the reads were sequenced 

from chromosome 6 and read 1 consisted of a translocated sequence from 

chromosome 1. However, as it is highly unlikely that both reads will map to an exon, 

the locus of the event can still be determined in WES data.  Chr = chromosome  

 

The precise size of translocated sequences is equal to the distance between the split 

position of the SR cluster at the first locus and the reference genome position to 

which the first misaligned base of the SRs in the second cluster aligns. InDelible 

does not calculate the size of these events. However it can be calculated from IGV 

snapshots there is a snapshot for each locus and the event is <100bp, allowing the 

soft-clipped bases at the second locus to be manually aligned to reference genome 

at the first locus. 

 

In some cases, the translocated sequence is small enough to be nested within the 

combined length of a discordant read pair and their inner sequence, and neither the 

first nor second breakpoint occurs in the inner sequence, resulting in read mates that 

are both split and discordant. The size of the event then corresponds to the 

combined length of the soft-clipped bases in the first mare, the inner sequence, and 

aligned bases in the second mate, illustrated in Figure 2.18. 

Read 1 Read 2

Inner sequence

Sequence translocated from 
Chr6 to Chr1

Translocation breakpoint 1 

Reference genome
Chr6 locusChr1 locus

Read 1,  mapped to Chr1 Read 2,  mapped to Chr6



 85 

 

 

Figure 2.18. The discordant mapping of a read pair when the first breakpoint of a 

translocation (gold line) occurs in read 1 and the second breakpoint (brown line) 

occurs in read 2. As in Figure 2.17, both reads are from chromosome 1 DNA, but the 

translocated sequence originates in chromosome 6. In only this case will discordant 

reads both be split. The soft-clipped bases of read 1 will align to the reference 

position of the 5’ end of translocated chromosome 6 sequence, while those of read 2 

will align to the reference sequence in chromosome 1 that directly follows the second 

breakpoint. The size of the translocation is thus equal to (n soft-clipped bases in read 

1) + (n bases in inner sequence) + (n aligned bases in read 2).   

In IGV, discordant reads are colour coded according to the chromosome to which 

their mate is mapped. The colour for each chromosome is shown in Figure 2.19 

below.  

 

 

Figure 2.19. IGV chromosome colour code for discordant reads. A discordant read 

will be coloured according to the chromosome to which its mate is mapped. E.g. the 

mate of a read mapped to chromosome 2 is mapped to chromosome 7, the read on 

chromosome 2 will be coloured light blue. If both reads are mapped to the same 

chromosome, they will have the same colour.   
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Figure 2.20 shows an example in IGV of a SR pattern in chromosome 6 that is 

indicative of a translocation at that locus. Colour coded, non-split and split discordant 

reads can also be observed. The soft-clipped bases of the SR cluster align to 

chromosome 11, which is expected given the dark brown colour of the adjacent 

discordant reads. Figure 2.21 shows the locus corresponding to the misaligned 

bases of the SRs in Figure 2.20, and the second reads in the discordant pairs. The 

translocation almost certainly occurs at chromosome 6 because the chromosome 11 

locus does not intersect an exon.  

 

 

Figure 2.20. IGV snapshot showing evidence of a translocation on chromosome 6. 

The soft-clipped bases of the single SR cluster align to a locus in chromosome 11. 

The dark brown line represent discordant reads, coloured as such because their 

mates are mapped to the same chromosome 11 locus. As two of the discordant 

reads are split at their 3’ ends, the translocation breakpoint 1 is at the position of the 

split and not at the locus to which both their mates are mapped. 
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Figure 2.21. IGV snapshot of discordant reads mapped to chromosome 11 that are 

the mates of those shown mapped to chromosome 6 in Figure 2.20. The reads are 

coloured light brown as that is the colour-code for chromosome 6. One of the 

discordant reads is split, indicating that its sequence contains the second breakpoint 

of the translocation. None of the reads are mapped to an exon, increasing 

confidence that the event is at the chromosome 6 locus.  The misaligned bases in 

the SR Cluster correspond to the sequence directly downstream of the second 

breakpoint, starting at 6:170,852,752. As the split position of the SR Cluster in Figure 

X is 6:170,852,764, the size of the event is 12bp (170,852,764 - 170,852,752). 

 

3.3.6 Retrotranspositions 

These events can be considered a subtype of translocation that are caused by the 

insertion of mobile elements (MEIs) by the types of retrotransposon machinery 

described in section 2.1.5 of chapter 1. Small MEIs are therefore indicated by the 

same SR pattern as insertions but can be identified in the InDelible output by their 

assigned type, based on the alignment of their soft-clipped bases to a sequence in 

the repeat sequence database mined by BLAST. Typically, BLAST alignment of their 

associated SRs will have >10 genome-wide hits. Figure 2.22 shows the SR pattern 
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associated with a SINE element that has been inserted into chromosome 17. As 

MEIs are a type of translocation, discordant read pairs are adjacent to the SR 

Cluster, whose mates map to several other genomic loci where the SINE element 

has been inserted. In this case the discordant reads cannot be used to determine the 

source loci of the retrotransposition event, and so its precise size cannot be 

calculated by manual inspection.  

 

 

Figure 2.22. IGV snapshot showing evidence of a SINE retrotransposition on 

chromosome 17. The misaligned bases of the single SR cluster are the 5’ end of the 

SINE. As this element occurs throughout the genome, discordant reads in this locus 

have mates which are mapped to 9 different chromosomes:  1, 2, 3, 4, 7, 8, 9, 10 

and 15. 

 

A subtype of retrotransposition involves the partial transcription and translocation of 

successive exons in a gene by the LINE-1 retrotransposon machinery, described in 

section 2.1.5 of chapter 1. This creates an additional copy of the affected exons 

called a pseudogene. Reads that are generated from a pseudogene map to the 
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reference at the loci of their source exons. The SR pattern associated with these 

events is very specific, illustrated in Figure 2.23.  

 

 

Figure 2.23. The split read pattern associated with a pseudogene retrotransposition 

spanning 2 exons. The reference genome is represented by the dark green bar, 

within which the exons are coloured in blue. There are 4 split read clusters, 2 per 

exon, whose split positions align precisely to the 5’ and 3’ exon junctions.  

 

As an exon in a pseudogene does not contain any intronic DNA, its associated SRs 

split at the 5’ and 3’ junctions of its source exon locus in the reference genome. The 

soft-clipped bases at the 5’ junction will either align to the 3’ junction of the upstream 

exon, or possibly a 5’ cap if it is the first exon in the gene in the former case, SRs will 

also occur at the 3’ junction the of the upstream exon. These events can implicate 

any number of exons in a gene, depending on when the LINE-1 machinery ‘hijacks’ 

the transcription process. Figure 2.24 is an IGV snapshot shows SRs associated 

with this type of retrotransposition at the 5’ and 3’ junctions of a single exon.  

 

InDelible can only assign this SV type if the retrotransposed pseudogene known to 

repeat throughout the genome and is therefore included in the curated repeat 

sequence database. Otherwise, the InDelible is likely to misclassify clusters 

associated with this event type as deletions that span intronic regions, as the 

orientation of the split position to alignment position is the same as that of deletions. 

However, they are straightforward to classify in IGV, given that the split position 

always align precisely to exon junctions. The size of an event corresponds the 
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combined length of all the exons to which the SR Clusters are mapped. It should be 

noted that that is no way to determine actual location of an event in their source DNA 

based on split read data alone. Its gene annotations in the InDelible output are 

therefore invalid.  

 

 

Figure 2.24. IGV snapshot showing evidence of the retrotransposition of a 

pseudogene based on chromosome 4 gene CC2D2A. The split positions of the 2 SR 

clusters align precisely to the 5’ junction (cyan line) and 3’ junction (pink line) of the 

exon at this locus. As this is not the first exon implicated in this event, the soft-

clipped bases in the 5’ SR cluster align to the 3’ end of the next upstream exon. The 

soft-clipped bases in the 3’ SR cluster align to the 5’ end of the next downstream 

exon.  

 

3.3.7 Complex events  

Some SV events involve a combination of types and are therefore indicated by SR 

patterns corresponding to different SV types occurring at the same locus. For 

example, one copy of a duplicated sequence may contain an insertion, in which case 

there will be 3 SR clusters associated with this SV: 2 for the duplication breakpoints, 

and 1 for the 5’ insertion breakpoint (Figure 2.25).  

 



 91 

 

Figure 2.25. The split read pattern associated with a complex-duplication/insertion. 

The reference genome is represented by the dark green bar, within which the 

duplicated sequence is coloured in gold. The position of the inserted sequence within 

the duplicated sequence, relative to the reference genome, is shown by the orange 

bar. In this example, the insertion only occurs within the first copy of the duplicated 

sequence, and so would only be visible in the soft-clipped bases of SR Cluster 1. In 

the aligned bases of SR Cluster 2, the inserted bases would be evident in their 

CIGAR strings, and a purple maker at the 5’ insertion breakpoint in IGV. SR Cluster 

3 is produced from reads who’s 3’ bases partially align to the first copy of the 

duplicated sequence, but then misalign due to the insertion. As their 3’ ends either 

do not extend beyond the length of the insertion, or do not extend far enough beyond 

it for the reference bases that occur after the insertion to be aligned, their misaligned 

bases are soft-clipped.  

 

InDelible assigns this event type by assessing the insertion contexts of soft-clipped 

bases (produced by BWA-mem, in the same way BWA generates CIGAR strings 

from non-synthetic FASTQ reads) to which it has already assigned the deletion or 
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duplication type. Size is calculated in the same way as non-complex events, with the 

added step of adding the length of the insertion context in the case of complex 

duplications and subtracting it in the case of complex deletions. Size can be 

determined from IGV by counting the distance between the two SR clusters and 

adding or subtracting (depending on type) the insertion length revealed by reads in 

which the insertion is nested (indicated by the purple marker). Figure 2.26 is an IGV 

snapshot showing the SR patterns that indicate a complex-duplication/insertion. 

 

Figure 2.26. IGV snapshot showing evidence of a 32bp complex-duplication/insertion 

on chromosome 5. The insertion is 3bp and is nested at the 5’ end of the first copy of 

the 29bp duplicated sequence. The lowermost SR cluster is caused by reads that 

contain the insertion at their 3’ ends, but don’t extend far enough beyond the length 

of the insertion for their subsequent reference bases to aligned. The length of the 

complex event can be calculated in IGV interface by counting the distance between 
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the outer most SR clusters, then adding the length of the inserted bases, revealed by 

the purple marker at the 5’ insertion breakpoint.  

 

3.4 Published DDD InDelible study 

I now describe the study carried out the developers of InDelible (Garder et al. 2021), 

which was used to test and benchmark the algorithm, as well as identify SVs 

contributing to developmental delay. As InDelible was primarily developed to detect 

SVs of clinical significance that were missed by existing array and WES-based 

methods, the purpose of the DDD InDelible study was to demonstrate that it can 

detect putative developmental disorder risk variants in a clinical cohort. However, 

identified variants were also compared with those previously identified by other 

methods for validation purposes, and the algorithm was benchmarked against 

alternative SR-based methods using a well-characterised truth set.  

 

3.4.1 Call validation 

13,438 probands with severe developmental disorders were analysed, of which 

9,848 has WES data available for both parents. A proband and both parents are 

collectively referred to as a ‘trio’. To ascertain variants that were likely to be of 

clinical significance, calls in both trio and non-trio probands were restricted to those 

with allele frequency < 0.004, and which intersect 399 dominant or X-linked genes 

that are associated with developmental disorders in the Developmental Disorders 

Genotype-to-Phenotype database (DDG2P). Calls in trio probands were also 

excluded if either parent sample had > 2 SRs at the same position, indicating 

transmission. These criteria gave a preliminary set of 260 candidate DD-risk SVs 

across all probands. By identifying which of these variants were previously called by 

other methods, the authors assessed the sensitivity of InDelible to known variants of 

different size ranges (Figure 2.28). They found that InDelible was most sensitive to 

known candidate variants in the 21-50bp size range, of which it detected 48.3%. The 

algorithm was highly insensitive to variants less than 10bp in size (<10% detection 

rate), and variants larger than 50bp (< 5% detection rate). Among 63/260 novel 

candidate SVs, 45 (71.4%) were within the 11-20bp and 21-50bp size ranges. 11 

(17.5%) were >10bp and 7 (11.1%) were >50bp (Figure 2.28). 

 

InDelible’s sensitivity to such a narrow size range of small variants is likely due to the 
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inverse correlation between allele frequency and the occurrence of an SV breakpoint 

within an exon. Although the expected frequency of the class of SVs detected by 

InDelible has not been studied, the frequency of SVs in both clinical and population 

data has been shown to decrease with size (Sudment et al., 2015). Therefore, a size 

increases, it is less likely that the breakpoint of an SV affecting a coding region will 

fall within an exon, and therefore be detectable using split read information.  

 

 

 

Figure 2.28. The upper plot shows the sensitivity of InDelible to candidate risk SVs 

previously discovered the Deciphering Developmental Disorders probands, by 

variant length. The lower plot specifies the number candidate risk SVs discovered by 

InDelible for each variant length range. These are further subset by novel (brown) 

and known (orange) variants. Adapted from (Gardner et al. 2021) 

 
 

Also reported in the paper is the breakdown of the 63 novel candidate DD-risk 

variants according to their SV type (Figure 2.29).  There were 32 (50.8%) deletions, 

18 (34%) duplications, 1 (1.6%) simple insertion, 8 (12.7%) complex-

insertions/duplications, 3 (4.8%) translocation and 1 (1.6%) Alu MEI 
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retrotransposition. I use these type and size reports in the relevant results chapters 

to assess whether my findings are broadly commensurate with those of the DDD 

study. For reasons given in the chapters, a robust statistical comparison of results 

was not appropriate, though I was still able to check that my results contained similar 

SV types and a had a similar size distribution. 

 

 

 

Figure 2.29: Variant types of the 63 novel candidate developmental disorder-risk 

structural variants detected in the InDelible Deciphering Developmental Disorder 

study. Figure adapted from (Gardner et al. 2021) 
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3.4.2 Benchmarking 

InDelible was benchmarked against two alternative methods that also use SR 

information in WES data for variation calling: GATK (Collins et al., 2020) and Manta 

(Chen et al., 2016). All three callers were applied to a well-characterised control 

sample produced by the Genome in a Bottle Consortium (GIAB) (Zook et al., 2016). 

Results were then compared against a gold-standard indel and SV call set produced 

by GIAB for the same sample, to assess sensitivity and false discovery rates for 

each algorithm. InDelible was found to equal or exceed the sensitivity of both 

alternative methods for variants between 21 and 10kb in length (Figure 2.30, A). 

Assessing sensitivity by SV type, it detected 81.7% more >20bp deletions than 

GATK, and >15% more than Manta. It also detected 86.9% and 8.2% more 

duplications and insertions >20 bp in length than each alternative method, 

respectively. InDelible had lower false discovery rate compared with Manta (Figure 

2.30, B), but an increased rate compared with GATK, which the developers attribute 

to the fact that InDelible is designed (primarily due to the training data applied to its 

adaptive learning model) to be maximally sensitive to rare, clinically significant 

variants as opposed to population-level variants. They also note that their analyses 

likely ‘drastically overstate’ the false positive rates of all callers, as the GIAB gold-

standard calls were largely based on long-read sequencing data, which may be more 

difficult to call using the short-read based methods that query SR information.  
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Figure 2.30. Sensitivity and false positive rates of InDelible, GATK and Manta. The 

methods were benchmarked using a well-characterised control sample produced by 

the Genome in a Bottle Consortium. A) Sensitivity of the callers to > 20bp deletions 

of different size ranges is shown on the right side of the plot, while sensitivity to 

>20bp duplications/insertions is shown on the left. (B) False positive rate for the 

callers, relative to the total number of sites called by each. 
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3.5 InDelible summary  

In this section, I have described the InDelible algorithm, and the variant types it is 

designed to detect. I’ve described also described the validation and benchmarking 

analyses undertaken by the InDelible authors and reported in the methods paper. 

Based on comparison with a set of known, putative clinical variants called in the 

DDD study, the algorithm was found to be most sensitive to variants 11-50bp in 

length. Peak sensitivity was 0.5, for variants 21-50bp. While this is quite low 

(compared e.g., to CLAMMS sensitivity to CNVs), it is better than the sensitivity of 

alternative methods that use the same calling approach and is a size range that is 

entirely outside the discovery resolution of array-based methods. This is important as 

Aim 3 of my thesis is to compare the utility of array and WES-based approaches for 

detecting all types of SV, not just those that can be detected using both platforms. 

Moreover, InDelible is designed to be maximally sensitive to variants of clinical 

significance, which is also crucial for my purposes as both Aim 1 and Aim 2 involve 

assessment of variants for schizophrenia-risk status, and Aim 3 the association of 

variants with cognition, a clinically significant phenotype.  

 

4. Chapter summary 

In this chapter, I have described the algorithms of the of two SV callers I used in my 

PhD research: CLAMMS and InDelible. These descriptions describe the necessary 

background to understand which elements of BAM data each caller utilises, and 

therefore the differences between their call outputs. CLAMMS leverages coverage 

depth across exon windows to estimate copy number status and is therefore 

designed to detect both heterozygous and homozygous CNVs at resolutions of 

single exons (~150bp) and greater. On the other hand, InDelible interrogates aligned 

reads for split read information, and then uses this information to determine 6 SV 

types (deletions, duplications, translocations, MEI retrotranspositions, pseudogene 

retrotranspositions and complex insertions) and breakpoints, but not copy number. It 

is also most sensitive to variants at resolutions <100bp, and largely insensitive to 

variants >500bp. Taken together, therefore, the SV callers can detect CNVs across 

the entire size spectrum. I’ve also described the validation and benchmarking efforts 
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undertaken by their respective developers, justifying my choice to use these 

algorithms over similar alternative.  

  

  



 100 

Chapter 3: Using read coverage depth in whole exome 

sequencing data to detect de novo CNVs in schizophrenia 

 

1. Introduction 

1.1 De novo CNVs in schizophrenia 

De novo variants are yet to undergo selection pressure and are therefore more likely 

to be deleterious than transmitted variants (Acuna-Hidalgo et al., 2016; Rees et al., 

2011). Given the strong association between schizophrenia (SCZ) and reduced 

fecundity (Power et al., 2013), it has been hypothesised that rare (<1% frequency) 

de novo copy number variants (CNVs) may play a role in SCZ aetiology, insofar as 

disease-causing variants have a reduced likelihood of transmission (Rees et al., 

2012). Multiple studies have confirmed this hypothesis by investigating the incidence 

of rare de novo CNVs in SCZ parent-proband trios.  

 

Analysing a sample of 662 Bulgarian proband-parent trios, (Kirov et al., 2012) 

identified 32 rare de novo CNVs in 32 cases, 8 of which occurred at four known SCZ 

risk loci: 1 deletion at 3q29, 4 deletions at 15q11.2, 2 deletions at 15q13.3 and 1 

duplication at 16p11.2. The median size of de novo CNVs was 321kb. The authors 

found that these SCZ probands had a higher incidence of de novo CNVs (5.1%) than 

two sets of unaffected controls: an Icelandic cohort comprising 2623 individuals 

(2.2%, p=0.00015) and 872 unaffected siblings from a large family autism study 

(1.6%, p=0.00008). The difference in de novo incidence between control cohorts was 

found to be non-significant (p = 0.28).  

 

In 177 cases of largely white European ancestry (1 was Hispanic and 1 African-

American), (Malhotra et al., 2011) identified 9 rare de novo CNVs in 8 cases, with 

median size 348kb. Though none occur in known SCZ risk loci (1 duplication does 

occur in 22q11.2 locus, but only deletions at this locus have been found to confer 

disease risk (Rees et al., 2014)), the authors also compared de novo CNV incidence 

with 426 unaffected controls from the Simons Simplex Collection, again finding that 

rate of mutation is significantly greater among SCZ cases (4.5% vs 0.9%, p = 0.007).  

(Xu et al., 2012) analysed 359 proband-parent SCZ trios recruited from the 

genetically homogeneous Afrikaner population in South Africa. All probands had no 
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history of SCZ among first- or second-degree relatives, so are referred to as 

‘sporadic’ cases. The authors identified 17 rare de novo CNVs in 15 cases, 5 of 

which occur at known SCZ loci: 3 deletions at 22q11.2 and 2 duplications at 

16p13.2. Comparing the incidence of de novo CNVs with 159 unaffected individuals 

recruited from the same population, the authors found that these events are ~8 times 

more frequent in sporadic cases (p = 7.8 x 10-5). Thus, there is strong evidence in 

existing literature that de novo CNVs are implicated in schizophrenia.  

 

1.2 CNV detection methods 

Previous studies aiming at detecting de novo CNVs in schizophrenia used CNV 

detection methods based on data generated from genotyping arrays with the number 

of probes ranging from 900K-2.1M. While such methods have been successful for 

the detection of large CNVs (>100kb), they are less accurate in detecting smaller 

events, as it becomes increasingly difficult to separate probe signal from noise at 

smaller resolutions. It has been estimated that high-density (>1M probes) array 

platforms are unable to reliably detect CNVs <40kb in size (Carter, 2007). Arrays that 

have been designed to capture a high density of SNPs in CNV prone regions may 

improve discovery resolution for some smaller CNVs (Haraksingh et al., 2017), but 

these have not been used in large de novo CNV studies of SCZ. More recently, 

however, whole exome sequencing (WES) technology has successfully detected 

CNVs missed by genotyping arrays in protein-coding regions (Zhao et al., 2013). 

WES can theoretically detect copy number changes that affect single exons (~ 

150bp), i.e., much smaller than the resolution provided by SNP arrays (Marchuk et 

al., 2018). CNV detection methods using WES are thus a promising complement, or 

even alternative, to array-based methods.  

 

1.3 Study aims 

In this chapter I present research completed in the first year of my PhD, in which I 

explored the utility of CLAMMS for identifying small (<100kb) and rare de novo CNVs 

the WES data for a SCZ trios cohort comprised of 616 probands and their parents. 

Rare de novo CNVs had been called previously in this sample using array-based 

methods, so I was able to compare the discovery resolution of the sequencing 

method with that provided by genotyping microarrays. I also compared the size 
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distribution of these calls and assessed the newly identified de novo events for 

possible SCZ risk. 

 

2. Methods 

2.1 Trios sample description  
The 616 trios that were included in this study were comprised of probands and 

parents recruited by mental health professionals from inpatient and outpatient 

psychiatric facilities in 7 European countries: Bulgaria, Italy, Germany, Netherlands, 

Russia, Spain, and the UK. Probands were diagnosed with schizophrenia or 

schizoaffective disorder according to DSM-IV or ICD-10 criteria. The number of 

individuals diagnosed with each disorder were unavailable. Individuals were 

excluded if they had previously received a diagnosis of a neurodevelopmental 

disorder or intellectual disability. DNA was obtained from peripheral blood. The 

breakdown of the cohort by nationality and diagnostic criteria is given in Table 3.1.  

 

Nationality Diagnostic criteria N trios 

Bulgaria DSM-IV, SCZ or SAD 69 

Germany ICD-10, SCZ 309 

Italy SCZ, diagnostic system 

not provided  

11 

Netherlands DSM-IV, SCZ  78 

Russia ICD-10, SCZ or SAD 74 

Spain DSM-IV, SCZ 36 

UK DSM-IV, SCZ or SAD 39 

Table 3.1. Breakdown of cohort by nationality and diagnostic criteria for inclusion. 

SCZ = schizophrenia, SAD = schizoaffective disorder 

 

2.2 Genotyping and calling CNVs from array data 

Samples were genotyped using OmniExpress-24 and CoreExome-24 Illumina bead 

arrays. Illumina’s BeadStudio v2.0 was used to call genotypes, to normalize the 

signal intensity data, and to establish the log R ratio and B allele frequency 

according to the standard Illumina protocols. PennCNV was used for rare (<1% 

frequency) de novo CNV detection, carried out by Dr Elliott Rees according to 
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protocols described in (Rees et al., 2014). Results of this analysis have not been 

published. 

 

2.3 Whole Exome Sequencing  

Samples were isolated and prepared using the Nextra DNA Exome capture kit, 

HiSeq 3000/4000 PE Cluster Kit and HiSeq 3000/4000 SBS Kit, and sequenced on 

Cardiff University on Illumina HiSeq 3000/400 platforms. Raw sequencing reads in 

FASTQ format were processed according to GATK best practice guidelines 

(DePristo et al., 2011) and aligned to human reference genome (GRCh37) using 

BWA-mem version 0.7.1536 to generate BAM files for CNV calling. The mean read 

depth per sample was 31.7x and mean insert size was 164.2 bp. 

 

2.4 Calling CNVs from WES data  

CNVs for all samples were called from WES BAM files using CLAMMS (Packer et 

al., 2016), full description of which is given section 2 of chapter 2. Two aspects of the 

CNV calling process vary according to sample quality metrics and thus warrant 

separate discussion here. CLAMMS requires a user-defined insert size variable 

when generating the windows files, for purposes of calculating GC content. An insert 

is the sequence between adaptors and therefore determines the combined size of 

read pairs. The developers recommend a size that is ‘a little bit bigger’ than the 

mean insert size for the sequencing process used, such that most reads will come 

from inserts of sizes smaller than this value. The mean insert size of the sequencing 

processes used in the present study was estimated by calculating the mean of the 

mean insert sizes across all samples, which was 164.2 bp. Therefore, the insert 

variable size was set to 200.  

 

The second sample-specific aspect of CLAMMS involves accounting for ‘batch 

effects’, where differences in sample preparation and input DNA quality can 

sometimes introduce stochastic volatility and distort read coverage depth exome-

wide. CLAMMS controls for batch effects by clustering samples into reference panels 

based on 7 quality metrics generated by Picard 

(http://broadinstitute.github.io/picard.). The appropriate reference panel size (k) 

cannot be determined a priori and varies depending on the level of stochastic 

volatility in the sample. After QC, the k that minimises the number false positive and 

http://broadinstitute.github.io/picard
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false negative calls should be selected. Given that the present study employs a trios 

design, the best indicator of error rates is the proportion of transmissions to non-

transmissions across the sample after excluding low quality and common (>1% 

frequency) CNV calls, calculated as (n transmissions/(n non-transmissions + n 

transmissions).  

 

Each parent will transmit only half of the variants they carry to their corresponding 

proband, and therefore, the expected transmission rate for parental CNVs is 0.5. If 

the call set contains an excess of false positives, however, there will be an excess of 

parental calls that are non-transmitted, giving a lower-than-expected transmission 

rate. If the call set has a high false-negative rate, there is a low likelihood for a 

transmission to be called in both proband and parent, also giving a lower-than-

expected transmission rate. Thus, the reference panel size (k, described in section 

2.2.3 of chapter 2) that best minimises both error rates should produce a 

transmission rate that is closest to 0.5. In the present study, k = 100 was selected. At 

this reference panel size, the transmission rate among high quality, rare calls was 

0.32. When k was set to 50, the transmission rate was 0.25, while k=150 gave a 

transmission rate of 0.21 (Table 3.2).   

 

K N Transmission N Non-transmission Transmission rate 

50 133 396 0.25 

100 150 433 0.32 

150 143 552 0.21 

Table 3.2. Establishing reference panel size associated the best transmission rate. K 

= reference panel size. T = transmission 

 

2.5 Sample quality control 

The criteria used for performing sample- and variant-level quality control (QC) was 

based on (Maxwell et al., 2017), a DiscovEHR study that also used CLAMMS. First, 

outlying samples that contained > 2x median calls (n = 22) (Figure 3.1) were filtered 

out. Several trios were thereby rendered incomplete and were also removed at this 

stage as it would not be possible to determine the transmission status of their variant 

calls in later analysis.  
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Figure 3.1. Histogram showing distribution of number of CNVs before quality control. 

The red line intercepts the x axis at n = 22. All samples with N CNVs > 22 were 

filtered.  

 

2.6 Variant quality control 

The first step of variant QC (prior to sample QC in the pipeline) was merging calls 

that occurred within 10kb of each other, as this may indicate that they are one 

variant that has been called as separate events by CLAMMS. To ensure that 

independent de novo CNVs that were observed in the same sample were not 

mistakenly merged together, I manually inspected the coverage profiles for all 

merged de novo CNVs and found no evidence that any de novo events were wrongly 

merged into a single CNV call.   

 

I then filtered out the set of CNV calls in inlying samples that were disproportionally 

called in samples that were filtered during sample QC, as this suggests that 

CLAMMS is liable to generate false positive calls in these regions. Isolating the CNV 
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calls in inlier and outlier sample sets independently, I identified inlier calls that 

overlapped other inlier calls by at least 50% reciprocally. I identified inlier calls that 

overlapped outlier calls to the same extent. Calls were removed from inliers if 2 x (n 

overlapping calls in inliers) < (n overlapping calls in outliers).  

 

Calls were also filtered according to two quality metrics generated by CLAMMS: 

Qsome, a phred-scaled probability that the call region contains any CNV; and 

Qexact, a non phred-scaled quality score that is a measure of how closely the 

coverage-profile aligns with the called CNV and breakpoints. Deletions were filtered 

if Qsome <= 50 AND Qexact <= 0.5, while duplications were filtered if Qany <= 50 

AND Qexact <= -1.0. The less stringent criteria for duplications is reflective of the 

fact that they are more difficult to identify using coverage depth than deletions (Teo 

et al., 2012). 

 

PLINK 1.9 (Purcell et al., 2007) was used to identify common CNVs in parents, 

defined as those occurring in greater than 1% of the unrelated parents, which were 

then filtered out. I did not include probands when estimating variant frequency as this 

would entail an overrepresentation of transmitted calls among common variants, 

given that they should appear at least twice in the whole sample by default. 

 

2.6.1 Defining transmitted, non-transmitted and de novo CNV calls 

Parental calls were defined as transmitted if they overlapped any call in their 

respective proband call set by at least 1 base pair. Parental calls were defined as 

non-transmitted if they did not overlap any call in their respective proband call set, 

and proband calls were defined as de novo if they did not overlap any calls in the call 

sets for their respective parents. As described in section 2.4, the sample-wide 

transmission rate for rare variants was then calculated and used to determine the 

most appropriate reference panel size for CLAMMS.  

 

2.6.2 Manual inspection of putative de novo CNVs 

CNVs found to be de novo were manually checked by inspecting regional coverage 

plots for the call for each member of the respective trio (described in section 2.2.5 of 

chapter 2, also see figures below).  These plots illustrate the normalised coverage 

depth of the call region for a given sample relative to the diploid mean (μDIP) of their 



 107 

respective reference panel as well the standard deviation for diploid copy number 

(σDIP) and expected coverage profiles for heterozygous deletions and duplications 

(Figure 3.2). Regions flanking the CNV breakpoints of 100kb were also included to 

assess coverage volatility around the putative events.  

 

De novo and non-transmitted CNVs were accepted as real if most of the exons’ 

relative coverage depths within the putative CNV were increased or decreased to 

around the + or – 50% level (Figure 3.3). Calls were also filtered out if exons beyond 

the breakpoints had similar deviations (Figure 3.4), suggesting that call may be the 

product of general coverage volatility in the wider region. I accepted an event as 

transmitted, if there was only partial evidence of deviation in the other member of the 

trio, as these would be unlikely to be real de novos or false positives. Therefore, 

CNVs that showed evidence of being present in the regional coverage plots in either 

parent, but were not called by CLAMMS, were removed from the de novo call set 

and added to the transmissions call set (Figures 3.5a & 3.5b). 
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Figure 3.2. Example CLAMMS coverage plot, showing a heterozygous deletion. The 

red lines highlight the CNV call region, while the black lines show the coverage 

profile for this sample 100kb beyond the CNV breakpoints. Each node along the line 

represents the mean coverage depth for an exon. 50% and -50% on the y axis show 

the expected coverage depth for heterozygous duplications and deletions, 

respectively, relative to the mean of the sample’s reference panel (μDIP). The dark 

and light grey regions indicate mean reference panel coverage depth +/- 1 and 2 

standard deviations, respectively, for diploid copy number (σDIP).  
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Figure 3.3. CLAMMS coverage plot for a putative heterozygous duplication. This call 

was excluded however as most of the exons within the call region have a mean 

coverage depth that lies within the expected variance for diploid copy number. 
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Figure 3.4. CLAMMS coverage plot showing evidence of a duplication. This call was 

excluded however as many of exons beyond the call region have a mean coverage 

depth that lies outside the expected variance for diploid copy number. 
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Figure 3.5a 

 

 

Figures 3.5b. The CLAMMS coverage plot above (a) shows evidence of a deletion in 

a proband. This was designated as de novo in the transmission distortion analysis, 

as no deletion was called in the same region for either parent. The plot below 

showing the same genomic region in the mother (b) strongly suggests it is a 

transmission, however.  
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2.7 Quality control summary 

This section summarises the number of samples or variant calls excluded at each 

stage of QC. A total of 230,180 CNVs were called by CLAMMS across all samples, 

reduced to 225,439 after merging adjacent CNV calls in the same sample. Prior to 

quality control, the median and mean CNVs called per sample were 11 and 122 

(standard deviation = 397.8), respectively, with calls per sample ranged from 1 to 

3829. From the initial sample of 1863 individuals, 429 were excluded for having an 

excess of CNV calls (> 2x median). An additional 331 individual were removed for 

being members of incomplete trios, leaving 369 complete trios for further analysis. 

After filtering low quality and common variants, 726 rare calls remained. 

Transmission rate analysis tentatively determined that 205 rare CNVs were 

transmissions, 433 were non-transmissions, and 88 were de novo, giving a sample-

wide transmission rate of 0.32. Manual inspection excluded a further 288 calls, such 

that 177 transmissions, 252 non-transmissions and 9 de novos remained in the final 

analysis. Following manual inspection, the transmission rate increased to 0.41, 

indicating that my criteria for exclusion were effective at filtering false positive calls. 

Table 3.2 details the N of CNV calls remaining after each QC stage.  

 

Quality control stage N CNV calls remaining 

Unfiltered CLAMMS output 230,180 

 

Call merging  225,439 

  

Remove outlying samples (N CNV calls > 22) 12,982 

 

Remove incomplete trios 10,374 

 

Filter calls overrepresented in outlying samples 10,010 

 

Filter calls with low quality scores 6,916 

 

Filter common variants (> 1% frequency) 726 
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Filter out calls that fail manual inspection                       438 

Table 3.2 - N CNVs remaining after each quality control step for CLAMMS calls. 

Entries in the first column state what was filtered out at each stage. Quality control 

steps are listed in order of application.   

 

2.8 Assessing size distribution of transmitted and non-transmitted CNVs 

To assess the size distribution of non-de novo CNVs, I separately binned transmitted 

and non-transmitted CNV into four size ranges: <10kb; 10kb-50kb; 50kb-100kb and 

>100kb.  

 

2.9 Annotating variants for possible SCZ risk 

Rare de novo CNVs that passed manual inspection were annotated for 50% 

reciprocal overlap with any of the 11 SCZ risk loci described in Rees et al. (2016) 

and shown in Table 1.1 in chapter 1. For de novo CNVs that did not occur in known 

SCZ risk loci, I evaluated whether any affected genes showed evidence for 

association with SCZ in large case-control exome sequencing or GWAS studies. 

First, the affected genes were tested via the SCHEMA database (Singh et al., 2020), 

a consortium of SCZ exome sequencing study results that includes 24,248 cases 

and 97,322 controls, and de novo mutations from 3,444 parent-proband trios. Finally, 

I tested whether the de novo CNVs overlapped any common variant loci implicated 

by (Trubetskoy et al., 2022), the PGC3 schizophrenia GWAS.  

 

2.10 Assessing overlap with rare de novo CNV identified in array data 

I then determined which rare de novo events that passed manual inspection 

overlapped those that were identified in the array data by at least one base. For 

those that did not, I evaluated the BAF and LRR of overlapping probes from the 

microarray data for evidence of deviations that would be expected for the type of 

CNV called in case they were real events but were missed by PennCNV. The 

relation between BAF/LRR and structural variation is described in section 2.4.1 of 

chapter 1. Rare de novo CNVs that were called in the array data but not by 

CLAMMS were also identified and individually assessed by manual inspection.  

 

3. Results 
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3.1 Rare de novo CNVs detected by CLAMMS 

Following manual inspection, 9 of the 88 rare de novo CNVs called by CLAMMS 

were classed as high-quality: 7 deletions and 2 duplications (Table 3.3). All were 

heterozygous events, called in 9 (1.5%) separate probands. Figures 3.6 and 3.7 

show coverage depth plots for Chr10:18242203-19896831 deletion and 

17:44171923-44249519 duplication, and the same regions plotted for the respective 

parent data, showing that they are not transmitted.  

 

Three deletions occur at known SCZ risk loci:, 3q29 deletion, 16p13.11 deletion, and 

22q11.2 deletion. I also found evidence that a further two deletions may confer SCZ 

risk: Chr18:163305-5478439 DEL was found to disrupt a gene with nominal 

association (p < 0.05) with SCZ in previous exome sequencing studies according to 

the SCHEMA database (Singh et al., 2020), DLGAP1 (p = 0.0386, OR = 3.44). 

Chr10:18242203-19896831 DEL was found to overlap a SCZ-associated locus 

(Chr10:18538669-18751891, p = 4.80E-13) generated by clumping genome-wide 

significant signals for common variants (Trubetskoy et al., 2022). This locus 

encompasses the gene CACNB2 and was still implicated after fine-mapping for 

casual variants. 

 

Family ID Chromosome Start base End base Size 

(KB) 

Type Known SCZ 

loci 

RUS_1009 2 202122903 202150091 27 DEL 

 

 

GER_3911 2 218568674 218604303 35 DUP  

GER_3855 3 195754042 197273323 1519 DEL 

 

3q29 DEL 

GER_681 6 10955346 11233735 278 DEL 

 

 

SPA_312 10 18242203 19896831 1654 DEL 

 

 

RUS_2022 16 15493193 17451938 1958 DEL 

 

16p13.11 DEL 

 

GER_3902 17 44171923 44249519 77 DUP  
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GER_3378 18 163305 5478439 5315 DEL 

 

 

UK_1238 22 18900636 21411491 2510 DEL 

 

22q11.2 DEL 

 

Table 3.3 - de novo CNVs called in the exome sequencing trios data, including size 

in kilobases, CNV type and intersections with known schizophrenia risk loci. SCZ = 

schizophrenia, DEL = deletion, DUP = duplication, KB = kilobases. 
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Figure 3.6a - CLAMMS coverage depth plot for de novo CNV Chr10:18242203-

19896831 DEL.  

 

  

Figures 3.6b and 3.6c – Proband call region Chr10:18242203-19896831 plotted for 

the respective parental samples, showing that no CNV is present in either case.  
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Figure 3.7a – CLAMMSS coverage depth plot for de novo CNV Chr17:44171923-

44249519 DUP 

Figure s 7b and 3.7c – Proband call region Chr17:44171923-44249519 plotted for 

the respective parental samples, showing that no CNV is present in either case 
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3.2 Presence of rare de novo CNVs detected by CLAMMS in array data  

5 of 9 rare de novo deletions detected by CLAMMS were also identified in the array-

based analysis (Table 3.4). Of the remaining 4 CNVs detected by CLAMMS only, 

evidence was found for the presence of 2 in their corresponding array-based 

BAF/LRR data. Due to its large size, Chr10:18242203-19896831 DEL was likely 

called in the array analysis, but its corresponding sample did not pass QC. However, 

the BAF/LRR data clearly indicates a deletion in this region (Figure 3.8). 

Chr17:44171923-44249519 DUP and Chr2:218568674-218604303 DUP were 

missed entirely by the array-based analysis as they are both <100kb in size, and 

occur in regions with few array probes, shown in Figures 3.9 and 3.10. However, 

most probes in Chr17:44171923-44249519 DUP call region have an LRR around 

0.33, the expected signal intensity for a heterozygous duplication. There are not 

enough probes in the array data of Chr2:218568674-218604303 DUP to confirm its 

presence. While array data for the sample carrying Chr22:18900636-21411491 was 

unavailable, it is a large 22q11.2 deletion event, and so would most likely have been 

identified in the array-based analysis if its carrier were included.  

 

CNV detected by CLAMMS 

(CHR:BP1-BP2) 

Size 

(KB) 

Type Identified in array data Supported by manual 

inspection of BAF/LRR 

2:202122903-202150091 27 DEL Yes - 

2:218568674-218604303 35 DUP No No 

3:195754042-197273323 1519 DEL Yes - 

6:10955346-11233735 278 DEL Yes - 

10:18242203-19896831 1654 DEL No Yes 

16:15493193-17451938 1958 DEL Yes - 

17:44171923-44249519 77 DUP No Yes 

18:163305-5478439 5315 DEL Yes - 

22:18900636-21411491 2510 DEL No Array data unavailable 

Table 3.4 - Status of rare de novo CNVs detected by CLAMMS in the array-based 

analysis. DEL = deletion, DUP = duplication, BAF = beta allele frequency, LRR =  log 

R ratio.  
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Figure 3.8. B allele frequency (BAF) and Log R Ratio plots (LRR) for de novo CNV 

discovered in the WES analysis, Chr10:18242203-19896831 DEL. Start and end 

base pairs differ from the sequencing calls as these are the closest recorded SNPs 

to the sequencing loci. The blue points represent array probe signals. Due to the 

deletion of an allele at every recorded SNP along the region, the beta allele for each 

probe is either absent or the only signal present. Thus, the frequencies for beta 

alleles cluster around 0 and 1 in the BAF plot.  LRR is a measure of probe signal 

intensity. As a deleted sequence entails 50% fewer SNPs present to bind array 

probes, the LRRs cluster around –0.5 on the normalised scale.  
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Figure 3.9. B allele frequency (BAF) and Log R Ratio plots (LRR) for de novo CNV 

discovered in the WES analysis, Chr2:218568674-218604303 DUP. This CNV’s 

small size (35kb) is reflected by the fact that there are only two probes in its call 

region. I was therefore unable to confirm the presence of this CNV in the array data.  
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Figure 3.10. B allele frequency (BAF) and Log R Ratio plots (LRR) for de novo CNV 

discovered in the WES analysis, 17:44171923-44249519 DUP. While this CNV’s 

small size (77kb) also means that there are a small number of probes in its call 

region, most of the probes have an LRR above the 0 baseline, the expected signal 

intensity for a heterozygous duplication. However, the BA plot is uninformative. I 

therefore concluded that the array data only partially confirmed the presence of this 

CNV.  
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3.3 Rare de novo CNVs previously detected in the microarray data and 

CLAMMS validation 

Ten rare de novo CNVs were previously discovered in the microarray data that could 

potentially be identified in the WES data: 5 deletions and 5 duplications. All 5 

deletions and one duplication were detected by CLAMMs (Table 3.5), though the 

latter was found to be a transmission in the sequencing data (Figure 3.11). Three 

duplications found in microarray data were called by CLAMMS but were removed 

during QC as their respective samples had an excess of CNV calls, while the 

remaining duplication was missed entirely by CLAMMS.  

 

Family ID CHR Start base End base Size (KB) Type Validated by 

CLAMMS 

RUS_1009 2 202102685 202149628 46 

  

DEL Yes 

  

GER_3855 3 195750742 197346566 1595 

  

DEL Yes 

  

GER_681 6 10955408 11227987 272 

  

DEL Yes 

  

GER_2630 7 73184318 74115258 930 DUP Excluded during 

QC 

       

GER_2747 9 105765465 105767917 2 

  

DUP Not called 

  

GER_2114 10 131753010 132043419 290 DUP Excluded during 

QC 

       

GER_3241 13 65296926 69633096 4336 

  

DUP Excluded during 

QC 

RUS_2022 16 15493046 18166320 2673 

  

DEL Yes 

  

SPA_9045 16 75558483 75577559 19 

  

DUP Found to be 

transmission 
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GER_3378 18 61355 5952544 5891 

  

DEL Yes 

 

Table 3.5 - de novo CNVs discovered in microarray data, along with size in bases 

and CNV type. Microarray calls were considered validated if they were also called 

from sequencing data by CLAMMS and passed all QC, including manual inspection. 

DEL = deletion, DUP = duplication.  

  



 124 

a 

 

b 

 

 
Figures 3.11 a & b. CLAMMS coverage depth plots for Chr16:75558483-75577559 
DUP in proband (a) and parent (b). This CNV was considered de novo in the 
microarray analysis but was determined to be transmitted in the exome sequencing 
data  
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3.4. Size distribution of rare, transmitted and non-transmitted CNVs  

Though rare transmitted and non-transmitted CNVs were called across a broad size 

spectrum in the WES data, the majority were smaller than 100kb (Fig 3.12). The 

median size was 34.4Kb.  Of 177 transmissions that passed QC: 47 were < 10kb; 59 

were 10-50kb, 37 were 50kb-100kb and 34 were >100kb. Of 252 non-transmissions 

that passed QC: 117 were < 10kb; 102 were 10-50kb, 23 were 50kb-100kb and 10 

were >100kb. 

 

 

Figure 3.12. Size distribution of rare transmitted and non-transmitted CNVs, subset 

by 4 size ranges. kb = kilobases.  
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4. Discussion 

My results demonstrate that large, rare de novo CNVs known to be pathogenic for 

schizophrenia can be reliably called from exome sequencing data and strengthen the 

case for the role of de novo CNVs in the aetiology of schizophrenia. In addition to the 

three de novo CNVs that overlapped known SCZ loci, I’ve reported evidence of SCZ 

association for two novel loci, drawing on results from previous sequencing and 

common variant studies.  

 

Evidence for the role of DLGAP1 is increased here, as it was found to be affected by 

de novo CNV carried by a SCZ individual in an earlier study (Kirov et al, 2012), and 

there is evidence that it harbours more protein-truncating and damaging missense 

variants in schizophrenia cases and controls in SCHEMA (OR = 3.44). CACNB2 was 

also implicated by a de novo CNV in the present study and has been shown to 

harbour putative causal SNPs in the PGC3 schizophrenia GWAS.  Both DLGAP1 

and CACNB2 are expressed at the post-synapse and have roles in synaptic 

organisation and plasticity (Rasmussen et al., 2017; Dolphin, 2012), and are thus 

highly plausible risk genes.  

 

I’ve also identified putative de novo CNVs in the sequencing data that were not 

detected in the microarray data, suggesting that a combination of both types of data 

could increase sensitivity for discovering CNVs. Two of these CNVs were <100kb in 

size, and manual inspection of their array data showed that the most likely reason for 

their being missed was a low number of probes in the call regions. This 

demonstrates that CNV calling using WES data can mitigate the resolution issues of 

an array-based approach.  

 

However, while CLAMMS detected all five de novo deletions observed in the 

microarray data, four of five array data duplications were either filtered or not called 

in the array data. In the three cases where the CNVs were filtered, this was due to 

an excess of CNV calls (indicating poor quality) in their respective samples. The 

array duplication that was not called by CLAMMS is only 2kb in length, and therefore 

likely to be a false positive.   
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Assessing the size distribution of rare transmissions and non-transmissions called by 

CLAMMS, this method is sensitive to variants across a broad size spectrum. Indeed, 

164 of these manually inspected events (117 non-transmissions and 47 

transmissions) are smaller than 10kb and so would likely be missed entirely in array-

based analysis. The excess of small events among non-transmissions is indicative of 

an increased false positive rate compared with transmissions, which is expected 

given that transmissions are more likely to be real by virtue of their being called in 

both proband and parent.  It cannot be ascertained from my results, however, what 

proportion of small variants were not detected by CLAMMS, and my findings require 

orthogonal support from a separate approach, such as quantitative PCR.  
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Chapter 4: Detecting small structural variants in 

schizophrenia proband-parent trio exome sequencing data  

 

1. Introduction 

1.1 Background 

One of the aims of my PhD was to identify structural variants (SV) in WES that had 

been undetectable in array data, and to assess their association with schizophrenia. 

I partly met this aim in the previous chapter, where I used the CLAMMS algorithm to 

detect putative de novo CNVs in the WES SCZ trios samples that were smaller than 

the approximate discovery resolution of PennCNV (~100kb) (Wang et al., 2007). 

However, 5/9 of the de novo CNVs were also detected in the array data, 

demonstrating that CLAMMS and PennCNV are also sensitive to the same variants. 

For the current chapter, I progressed this aim by applying the SV calling algorithm 

InDelible (Gardner et al., 2021) to the same trios sample. As described in section 

3.4.1 of chapter 2, InDelible is most sensitive to variants 21-50bp in size, and is 

largely insensitive to variants >500bp, such that the SVs it is designed to detect from 

WES data are undetectable in array data. In addition to deletions and duplications, 

InDelible can detect balanced events (insertions, translocations), which are also 

undetectable by both PennCNV and CLAMMS. When the research presented in this 

chapter was conducted, the role of structural variants detectable by InDelible in 

schizophrenia had not been studied.  

 

1.2 Study Aims 

Completed in the second year of my PhD, the primary aim of this research was to 

analyse WES from a schizophrenia trio sample to detect rare (allele-frequency <1%) 

de novo SVs that cannot be discovered from array data. While large (>100kb) de 

novo SVs have been shown to be important risk factors for schizophrenia (Rees et 

al., 2012) it is unknown whether smaller SVs, including those within the size range 

detected by InDelible (<100bp), also contribute to disease risk. The second aim of 

this chapter was to therefore assess whether any de novo variants discovered using 

the InDelible algorithm are likely to contribute to increased risk for schizophrenia. 

This was done by evaluating whether any de novo SVs intersected genes that have 

previously been associated with SCZ in small variant studies (Singh et al., 2022).  
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2. Methods 

2.1 Trios recruitment and whole exome sequencing 

The samples used in the current study are the same as those described previously in 

chapter 2, section 2.1. Thus, the recruitment protocols, sample size and sequencing 

procedures were the same as those specified that study. 

 

2.2 Structural variant calling: InDelible 

SVs were called using InDelible (Gardner et al., 2021), described in section 3 of 

chapter 2. In this chapter, I produced a call set that was designed to identify de novo 

SVs, which required all 6 steps of the algorithm to be applied to proband WES data. 

Here, the ‘denovo’ step interrogates proband SV call regions in both parents, 

determining the number of reads that split at the same base positions as in the 

proband. If no split reads are identified in proband call regions in either parent, the 

proband call is likely to be de novo.  

 

InDelible requires a configuration file as input, specifying parameters that are used 

for variant processing at different stages. I configured the algorithm to exclude reads 

with mapping quality < 5, base quality < 10, and SR length < 5 at first processing 

step (Fetch), and to exclude SR clusters containing <3 SRs at the second step 

(Aggregate). These thresholds were recommended by the InDelible authors 

(Gardner et al., 2021). I also configured InDelible to exclude SR clusters if the read 

depth coverage at the same position in either parent was <9. At lower coverage, 

there may be too few split reads to call SVs in parents even if an SV is present. By 

default, the ‘denovo’ step also outputs only those proband calls with a prob_y quality 

score >0.6 of being real events, according to the random forest model generated in 

InDelible step 3 (Score). In the initial pre-QC proband-only call set, 268,526 SV calls 

were identified in 604 probands. For 12 probands, all SV calls were filtered by 

InDelible’s default variant processing.  

 

2.3 Quality control 

2.3.1 Sample-level quality control  
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I excluded samples that were outliers for their total number SV calls. The number of 

SVs calls per individual was normally distributed (Figure 4.1). The lower and upper 

thresholds for sample exclusion based on number of SV calls, which were 

determined by inspecting the distribution of SV calls, were < 190 calls and > 780 

calls, respectively.  

 

Figure 4.1: number SV calls histogram for the proband-only call set, annotated with 

the mean number and outlier thresholds.  

 

48 samples were excluded in the proband-only call set. 16,569 SV calls were filtered 

from the proband-only call set by sample exclusion. 251,957 variants in the proband-

only call set were retained for further analysis. 

 

2.3.2 Variant-level quality control  

Using the fourth step of the InDelible algorithm (Annotate), calls were annotated with 

their allele-frequencies (AF) in the Deciphering Developmental Disorders (DDD) AF 

database (sample size = 13,438). Additionally, I created an AF database from the 

parent samples of the SCZ trios (sample size = 1238) using the InDelible command 
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‘Database’. The inputs and output files for this command are described in section 

3.3.4 of chapter 2. In my analysis of SVs, calls were retained if they had an AF <= 

0.01 in both the DDD data and among the SCZ parents or were absent from the 

DDD database and/or SCZ parents database. After applying SV AF filters, 227,137 

calls were excluded from the proband-only set.  

 

Additional variant level SV QC was applied following the recommended criteria 

outlined in the original InDelible DDD study (Gardner et al. 2022). First, SV calls 

were filtered if the average mapping quality (MAPQ) of their constituent SRs was < 

20. As soft-clipped bases are not included in the calculation for a read’s MAPQ, this 

filter ensures that the aligned portions of the SRs are unlikely to be mis-mapped. 

Second, calls were excluded if >10% of their SRs were split at both the 5’ and 3’ end 

(double split), but only if they didn’t also have a valid bwa alignment. These 

alignments are generated in the Database step of the InDelible algorithm and are 

used to determine likely variant type and breakpoints. SR clusters with a high 

proportion of double split reads and with no BWA alignment or BLAST hit are most 

likely the result of errors when adaptors were cleaved from reads during sequencing. 

Calls were then excluded if they were aligned to non-exonic sequences according to 

human reference genome GRCh37. Given that all reads are expected to be derived 

from the exome, this step excludes any calls that are the consequence of read 

misalignment or non-exonic DNA contamination. Finally, remaining calls were 

excluded if they had < 5 SRs in their corresponding cluster.  

 

Finally, SV calls in the proband-only call set were filtered if either parent sample had 

>2 SRs at the same position. According to InDelible author Eugene Gardner, this 

threshold was chosen to account for expected noise in WES data which can produce 

SRs even when no structural variant is present, usually because of read 

misalignment. After applying sample and variant level QC, 59 putative de novo calls 

remained in 25 samples. Twenty-three samples had one call, while one sample had 

ten de novo calls and the remaining sample had 26. In each of the latter two 

samples, all calls intersected the same gene. As I describe in section 3.6.6 of 

chapter 2, this call pattern is indicative of pseudogene retrotranspositions, and so did 

not in itself provide sufficient grounds for exclusion.  
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2.3.3 Manual Inspection 

IGV snapshots were created for each putative de novo call, along with snapshots for 

the same locus in both parents, according to procedures described in section 3.4 of 

chapter 2. Based on these snapshots, there were four criteria by which calls were 

excluded:  

 

1) One of the two (or more in case of complex events and pseudogene 

retrotranspositions) SR clusters in the proband were also found in a parent sample 

(i.e., it was a transmission and not a de novo event). In some cases, the other SR 

cluster associated with an SV at the called loci was filtered for having too few SRs 

but would have been identified in a parent according to the parent SR > 2 criteria. If 

the SR cluster that passed QC happens to a have <2 SRs in parents, the call is 

misidentified as de novo. Figure 4.2 shows an example of this in proband and 

parent, respectively. Seven calls were excluded by this criterion. 

 

Figure 4.2. The top alignment track in this IGV snapshot shows an 18bp 
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chromosome 3 deletion called in a proband. The topmost SR is part of a cluster of 3, 

the other 2 SRs of which were not included in the snapshot but were identified by 

inspecting all reads at this locus in the IGV interface. This cluster was filtered during 

the aggregate stage of calling for having < 5 SRs. However, it also occurs in a parent 

(bottom alignment track), in which it has 4 SRs. It would therefore have been 

identified as a transmission in the proband according to the parent SRs > 2 criterion. 

The other SR cluster observed in the proband passed all de novo QC as it unusually 

does not appear at all in the parent data.  
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2) The longest SR in the cluster had no valid BWA-mem alignment and there was a 

significant discrepancy between the misaligned bases in each SR. This indicates that 

multiple errors were introduced in these reads during DNA processing, and so it is 

probable that any structural change corresponding to the SR cluster is a 

consequence of these errors and does not occur in the source DNA.  An example is 

shown in Figure 4.3, the only call excluded by this criterion. 

 

Figure 4.3. In this IGV snapshot, the misaligned bases in the SR cluster either do not 

themselves align, or in one case are significantly different from those in the other 

SRs. It is likely that errors were introduced into the reads at the loci during the 

sequencing process, and so we cannot be confident that the called SR cluster is 

indicative of a real event. 
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3) The SR cluster is mapped to a sequence that contains successive instances of a 

single base, and all the misaligned bases in the SR are also the same base. Such 

loci are prone to replication errors, so again we cannot be confident that any 

structural change in the proband DNA is not a consequence of these errors. Figure 

4.4 shows the only event to be excluded by this criterion.  

 

Figure 4.4. The misaligned base of the SR cluster in this IGV snapshot are all 

cytosines and are mapped to a locus that contains many successive cytosines. 

Given that sequences containing successive single bases are prone to replication 

error, it is possible that the SR cluster is a consequence of such errors and does not 

indicate an event that is carried by the proband.  
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4) The SR Cluster had fewer than 5 reads in the proband. In one proband, InDelible 

called an SR Cluster with 6 reads, which therefore passed the N SR >5 QC criterion. 

However, upon manual inspection I found that there was only one SR at the called 

position. I have not been able to find the reason for this discrepancy.   

 

Figure 4.5. IGV snapshot showing a locus at which InDelible called an SR Cluster 

containing 6 reads. However manual inspection revealed there is only 1 read. The 

adjacent discordant reads may indicate a translocation, but the misaligned bases in 

the SR do not have a valid bwa alignment.  
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2.3.4 Quality control summary 

Sample-level and variant level quality control are summarised in Tables 4.1 and 4.2, 

respectively. 

 

N probands in initial output  604 

N probands retained 556 

Table 4.1. Summary of sample-level quality control. Samples were excluded for 

having too few or an excess of calls.  

 

Quality control step N calls 

Initial output 268,526 

Prob_Y > 0.6 - 

Sample-level quality control 251,957 

Allele-frequency < 0.01 24,822 

MAPQ > 20 24,820 

% double split filter 22,552 

Exonic 14,115 

N SRs > 5  97 

N SRs in parents < 2 59 

Manual inspection 49 

Table 4.2. Summary of variant-level quality control. The call set fields show number 

of calls remaining after each quality control step was applied. Prob_y quality filter 

applied by default at the denovo processing stage so would have excluded 0 calls in 

the proband-only call set.  MAPQ = mapping quality, SR = split reads 

 

2.4 Structural variant annotation  

In InDelible’s Annotate step, SVs are annotated with the Ensembl gene they affect. I 

converted Ensembl IDs into their corresponding HGNC symbol using R package 

‘annotables (https://www.rdocumentation.org/packages/annotables/versions/0.1.1). I 

subsequently annotated the genes affected by SVs with SCZ case-control 

association statistics taken from the SCHEMA analysis ((Singh et al., 2022); 

described in section 1.8.2.2 of chapter 1); these included the number of PTVs and 

missense variants with a MPC ≥ 3 observed in the affected gene in SCZ cases and 

https://www.rdocumentation.org/packages/annotables/versions/0.1.1
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controls, and the SCHEMA meta p-value. I also annotated genes that were among 

120 prioritised genes in the PGC3 SCZ GWAS ((Trubetskoy et al., 2022); criteria for 

prioritisation described in section 1.8.1.1 of Chapter 1). Finally, I annotated genes as 

being ‘loss-of-function intolerant’ if they had a probability of loss of function (pLI) 

score > 0.9 in the gnomAD database (Karczewski et al., 2020). 

 

3. Results 

3.1 Identification of putative de novo structural variants 

After QC, 49 putative de novo split read clusters were identified in 15 probands; 

however, 36 of these clusters mapped to two pseudogene retrotransposons events. 

Therefore, a total of 15 putative de novo SVs were identified in 15 probands (2.4% of 

all probands; Table 4.3). These included 2 pseudogene retrotransposons, 7 

deletions, 1 duplication, 1 insertion, 1 complex-insertion/deletion, 1 complex-

insertion/duplication, and 2 SVs whose type could not be determined. The smallest 

SV was 19bp and the largest was 12.1kb. The mean and median sizes were 

2,571.7bp and 51bp, respectively. Two chromosome 22 deletions were found to be 

instances of the same SV event in separate probands.  Two chromosome 15 SVs, 

whose type I was unable to determine, were also found to be instances of the same 

event in separate probands.  

 

Table 4.3 shows the 15 SV events along with their type and size, as determined 

through manual inspection and by InDelible. For pseudogene retrotranspositions, 

their genomic position is the 5’ and  3’ position of the pseudogene. I have given their 

size in exons rather than base pairs. Although InDelible assigned estimated SV sizes 

to most of the SR clusters for these events, these sizes correspond to the distance 

between a cluster and the next downstream exon (Figure 2.23), which are precisely 

those sequences that are not part of the retrotransposed sequence. The sum of 

these sizes cannot be meaningfully compared with the sizes I have determined 

through manual inspection, so I recorded the InDelible assigned size for the events 

as ‘NA’.  
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Chromosome Position SV Type, Manual 

Inspection 

SV Type, 

InDelible 

Size, Manual 

Inspection 

Size, 

InDelible 

2 133,427,484 Duplication Duplication 20bp 20bp 

4 5’: 15,504,140 

3’: 5,518,240 

Pseudogene 

retrotransposition 

Deletion  5 exons NA 

5 138,163,329 Complex-

insertion/duplication 

Unknown 32bp NA 

11 33,360,930 Complex-insertion/deletion Unknown 19bp NA 

11 35,684,964 Deletion Unknown 21bp NA 

12 123,341,130 Deletion Unknown 110bp 0 

12 7,046,560 Deletion Deletion  39bp 39bp 

14 22,992,575 Deletion Unknown 26bp NA 

14 10,541,1147 Insertion Unknown Unknown NA 

15 81,558,066 Unknown Unknown Unknown NA 

15 81,558,066 Unknown Unknown Unknown NA 

17 5’: 28,525,550 

3’: 28,549,020 

Pseudogene 

retrotransposition 

Deletion 13 exons NA 

22 23,223,571 Deletion Unknown 12493bp NA 

22 23,223,570 Deletion Unknown 12493bp NA 

X 47,836,307 Deletion Unknown 421bp 421bp 

Table 4.3:  Putative de novo events identified in the proband-only call set. The two 

call positions for pseudogene retrotranspositions correspond to the position for the 

5’-most and 3’-most calls that were associated with these events. SV type and size 

determined through manual inspection and by the InDelible algorithm are included 

for comparison. The InDelible SV type for the pseudogene retrotranspositions is the 

mode of the type assigned to their constituent calls. Bp = base pairs.  

 

Of the 4 SV calls that InDelible could assign an SV type, 2 of the types were 

confirmed by manual inspection, a deletion and duplication. InDelible incorrectly 

assigned the SV type ‘deletion’ to most of the constituent calls of the 2 pseudogene 

retrotranspositions, as it misidentified intronic regions between SR Cluster positions 

and their bwa alignments as deletions. InDelible estimated the size of 4 events, of 

which 2 sizes were confirmed by manual inspection: a 39bp deletion and a 421bp 

deletion. A duplication that was estimated by InDelible to be 20bp in size was found 

to be 63bp in manual inspection. InDelible estimated the size of a deletion as 0 as 

the bwa alignment for the call was upstream of its SR Cluster position. I determined 
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the size of this event to be 110bp.  

 

3.2 Examples of SR clusters for putative de novo structural variants 

Figures 4.6-9 show the SR patterns for three de novo SV, as they appear in IGV: a 

deletion, a complex-insertion/duplication and 1 exon of a pseudogene 

retrotransposition. Reads from both parents at the same locus in are included below 

the probands sequencing reads, as evidence that the SV was de novo. Figure 4.6 

shows an example of a SR cluster for which neither myself nor InDelible could 

assign a SV type.   
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Figure 4.6: The topmost alignment track shows evidence of a 39bp deletion on 

chromosome 12, called in a proband. The two bottom alignment tracks show the 

same locus in each parent. Neither parent sample has any SRs, confirming the de 

novo status of this SV.  
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Figure 4.7: The topmost alignment track shows evidence of a 19bp complex-

insertion/deletion on chromosome 12, called in a proband. The two bottom alignment 

tracks show the same locus in each parent. Neither parent has any SRs at this locus, 

confirming the de novo status of this SV. 
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Figure 4.8: The topmost alignment track shows evidence of a pseudogene 

retrotransposition, called in a proband, and constituted of 13 exons of gene SLC6A4. 

The SR Cluster is one of 26 associated with this event. The two bottom alignment 

tracks show the same locus in each parent. Neither parent sample has any SRs, 

confirming the de novo status of this SV. 
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Figure 4.9: IGV snapshots of the same locus in 2 probands, showing evidence of 2 

instances an SV whose type I have been unable to determine. It is characterised by 

a single SR cluster which splits at both ends.  

 

3.3 Genes affected by de novo SVs 

Twelve of fifteen putative de novo SVs were annotated by InDelible with the 

ENSEMBL gene they intersect. These genes are: LYPD1, CC2D2A, CTNNA1, 

HIPK3, TRIM44, ATN1, HIP1R, AHNAK2, IL16, IL16, SLC6A4 and ZNF81. The three 

SVs that do not have a gene annotation were designated as ‘exonic’ by InDelible and 

intersect regions in the Ilumina Nextera exome capture kit. Two were the 

chromosome 22 deletions called at the same position and occur ~7kb upstream of 

IGLL5. The other was the chromosome 14 deletion, which occurs ~32kb upstream of 

LINC02332. The two pseudogene retrotranspositions were annotated with genes 

CC2D2A (chromosome 4) and SLC6A4 (chromosome 17). Although the 
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retrotransposed elements are composed of exons from these genes, however, they 

do not actually intersect the genes in the proband DNA. These gene annotations, 

therefore, cannot be used to acquire biological insights about the possible impact of 

the SVs themselves. 

 

3.3.1 Previous evidence for association between genes affected by de novo 

SVs and schizophrenia  

None of the genes affected by de novo SVs were previously enriched for PTVs and 

missense variants with MPC scores  3 in schizophrenia in the SCHEMA study with 

a P-value  > 0.05 (Table 4.4), nor were they among the 120 genes that were 

previously prioritised as being likely to underpin schizophrenia GWAS common allele 

loci. However, two genes affected by de novo SVs are loss-of-function intolerant: 

CTNNA1 (pLI =  0.97) and ATN1 (pLI = 1). The SV intersecting CTNNA1 is a 

complex-insertion/duplication, while the SV intersecting ATN1 is a deletion. gnomAD 

proability of loss-of-function (pLI) results for all gene annotations, excluding those for 

pseudogene retrotranspositions, are show in Table 4.4. 

 

Chromosome Position SV Type Gene SCHEMA class 1 

statistics 

pLI 

OR P 

meta 

2 133427484 Duplication LYPD1 1.46 0.506 0.25 

4 15504140 Pseudogene 

retrotransposition 

NA NA NA NA 

5 138163329 Complex-

insertion/duplication 

CTNNA1 0.535 0.639 0.97 

11 33360930 Complex-

insertion/deletion 

HIPK3 0.463 0.489 1 

11 35684964 Deletion TRIM44 2.68 0.17 0 

12 7046560 Deletion ATN1 1.15 0.724 NA 

12 123341130 Deletion HIP1R 0.912 0.778 NA 

14 22992575 Deletion NA NA NA 0.55 

14 105411147 Insertion AHNAK2 1.46 0.194 0.05 

15 81558066 Unknown IL16 0.683 0.448 NA 

15 81558066 Unknown IL16 0.683 0.448 0 
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17 28525550 Pseudogene 

retrotransposition 

NA NA NA NA 

22 23223571 Deletion NA NA NA 0 

22 23223570 Deletion NA NA NA 0 

X 47836307 Deletion ZNF81 0.256 0.926 0 

Table 4.4: SCHEMA association statistics and probability of loss-of-function (pLI) 

statistics for genes affected by de novo structural variants. Gene annotations for 

pseudogene retrotranspositions have been replaced with ‘NA’, as these events do 

not occur at their called positions. SV = structural variant, OR = odds ratio, pLI = 

probability of loss-of-function.  

 

4. Discussion  

4.1 Discussion of de novo structural variants discovered by InDelible 

The primary aim of this study was to detect rare de novo SVs in 621 schizophrenia 

probands that could not be detected using array-based methods. Using InDelible, I 

identified 15 putative de novo events with AF < 1% in 15 (2.4%) probands: 7 

deletions, 1 duplication, 1 insertion, 1 complex insertion-deletion, 1 complex 

insertion-duplication, 2 pseudogene retrotranspositions and 2 SVs whose type I 

couldn’t determine. The largest of these events is a 12.4kb deletion carried by two 

separate probands and is about half the size of than the smallest de novo CNV 

detected by CLAMMS (35kb). Moreover, while the size of this event is significantly 

smaller than the ~100kb resolution required for reliable detection using array-based 

methods, it is possible that it could have been called from array data for this sample 

but removed following a CNV size QC filter. As I reported in chapter 2, the smallest 

putative de novo SV detected from the array data was a 19kb duplication (which was 

found using CLAMMS to be a transmission). However, it is extremely unlikely that a 

region smaller than ~50kb is targeted by enough array probes to differentiate true 

CNV signals from noise. The next largest de novo SV detected by InDelible was a 

pseudogene retrotransposition that constituted of 13 partially transcribed exons. 

Given that the average length of a human exon is 150bp, this SV is ~2kb. 

 

In effect, pseudogenes are an additional copy of each of the exons of the genes from 

which they were generated. While technically the probes in microarrays that overlap 

exons associated with pseudogenes might be able to detect the extra copy of this 
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coding region, the size of the exons, and the distance between the exons, would 

preclude pseudogenes retrotranspositions being accurately called from array data. It 

is possible that these events could be called by CLAMMS, however, as in WES data 

they would also be associated with an increase in coverage depth at each of their 

constituent exons.  Given that CLAMMS only assess coverage at exons, its calling 

algorithm could extrapolate the impacted sequence to include intronic regions too, 

such that it would call a duplication whose size spans the entire sequence from the 

first exon in the pseudogene to the last. In the present study, however, neither of the 

de novo pseudogene retrotranspositions were also called by CLAMMS. 

 

Unless insertions are already known (as in the case of MEIs), and therefore can be 

targeted by an array, this SV type cannot be detected in array data either. A 

fragmented insertion would either not hybridise any array probes or would off-target 

hybridise to probes with which it happens to have sequence similarity. Complex 

events involving insertions would therefore be undetectable in array data too, as 

there would be no way to differentiate their component events using probe signal 

alone. In summary, all de novo SVs detected by InDelible were not detected in the 

array data due to their small size or type. However InDelible cannot be used to 

validate small CNVs called on array data, as its sensitivity to events larger than 

500bp is < 0.1 

 

4.2. De novo structural variants with unknown type 

InDelible was not able to determine the type of 2 de novo SVs, and I could not 

determine the type either through manually inspecting the sequence reads in IGV. 

They were both called on chromosome 15 at position 81,558,066 and have the same 

SR pattern (Figure 4.9), involving a single SR Cluster that is split at both its 5’ and 3’ 

ends. The reads are mapped to an exon of gene IL16 and the split positions occur 

close the centre of the exon. The misaligned bases of the second cluster align to 

161kb contig GL000220.1. It is possible that these events indicate pseudogene 

retrotranspositions in which the retrotransposed element is a partially or alternatively 

spliced form of the IL16 exon, which has been inserted into an instance of 

GL000220.1. 

 

4.3 De novo structural variants with unknown size  
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I was unable to identify the sizes of three de novo events: 2 SVs of unknown type on 

chromosome 15, and a simple insertion called on chromosome 14. As I could not 

determine the event type in former cases, I was unable to infer their size. In the latter 

case, there are no reads in which the insertion is nested such that its size and 

constituent bases were identified during alignment, and none of the misaligned 

bases in the single SR cluster align to any adjacent sequence (Figure 4.10). There is 

thus no method, based on the alignment data available, to identify the second 

breakpoint position of the insertion, and hence its size. 

 

 

Figure 4.10. IGV snapshot showing evidence of a simple insertion on chromosome 

14, whose size I could not determine.  

 

4.4 Comparison of SVs in the current study with those presented in the DDD 

study 

The number of de novo SVs I identified in the SCZ probands is too few to enable a 

statistically meaningful comparison between the size distributions and variant types 

of these events with those identified in the original DDD study (cite Gardner et al. 

2021). Moreover, restriction of calls to those that intersect DD-risk genes in the DDD 

study may have resulted in an over-representation of variants in a particular size 

range or type. However, I can still assess whether the size and SV types of the de 

novo SVs is broadly commensurate with the findings of the DDD study. 

 

The size distribution of the 15 de novo SVs is similar to that of the DDD call set, 
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though more skewed toward larger SVs. No variants were <10bp, 6 (40%) were 11-

50bp, 6 (40%) were >50bp and 3 (20%) were of unknown size. My results indicate 

that InDelible is sensitive to de novo variants in the 11-50bp size range and 

insensitive to de novo variants <10bp, which is in line with the findings reported in 

the original InDelible study. In combination with the results of chapter 3, my results 

also indicate that InDelible is insensitive to de novo variants >20kb in size, as 

InDelible detected 0/9 of the >20kb de novo CNVs I identified in the same sample 

using CLAMMS. 

 

As in the DDD call set, about half of the de novo SCZ SVs were deletions (7/15, 

46.8%). I detected one duplication, one insertion and two complex insertion events, 

but no mobile element insertions or translocations. The InDelible authors reported no 

pseudogene retrotranspositions in their call set, as they only assessed SVs whose 

gene intersects could be ascertained. In summary, the size distribution, and types of 

the de novo SVs are broadly commensurate with those reported in the DDD study: 

40% were 11-50bp in size, the range InDelible is most sensitive to detect, and 4/5 

SV types were also reported among the novel DDD candidate SVs.  

 

4.5 Genes impacted by de novo SVs and schizophrenia risk 

A secondary aim of this study was to assess whether any identified de novo SVs 

intersect known SCZ-risk genes. My initial source for SCZ-risk genes was SCHEMA, 

a meta-analysis of PTV and missense mutations identified in schizophrenia cases, 

controls and trios across multiple WES studies. None of the genes affected by 

putative de novo SVs in the SCZ probands were nominally associated with SCZ 

case status in SCHEMA. I also found that of the genes affected by de novo SVs 

were among the 120 genes prioritised by the PGC3 SCZ GWAS. Finally, as loss-of-

function intolerant genes are enriched for SCZ-risk variants, I investigated whether 

any of the gene intersects had a pLI > 0.9 according to the gnomAD database. I 

found that ATN1 and CTNNA1 had pLI scores of 0.97 and 1, respectively. The SVs 

that intersect these genes are a 19bp deletion (ATN1) and a 32bp complex-

insertion/duplication (CTNNA1).  

 

ATN1 and CTNNA1 are both plausible schizophrenia risk genes. The former 

encodes Atrophin 1, which is especially enriched in sub-cortical brain regions 
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including amygdala, hippocampus, and hypothalamus (Palmer et al., 2019). Higher 

expression of ATN1 has been observed in foetal brain tissue, suggesting a role for 

this gene in neurodevelopment (Palmer et al., 2019). Further evidence for a 

neurodevelopmental role is the epigenetic regulation of ATN1 expression by lysine-

specific demethylase 1 (LSD1), which has been reported to control the differentiation 

of neural progenitor cells (Zhang et al., 2014). Downregulation of ATN1 causes early 

differentiation of these cells (Zhang et al., 2014). These findings are significant as 

multiple schizophrenia risk genes have also been shown to be preferentially 

expressed in foetal brain tissue (Cameron et al., 2023), and to play a role in neuronal 

stem cell differentiation (Iannitelli et al., 2017). 

 

Exon 5 of ATN1 contains a CAG repeat region, which when expanded to ≥48 copies 

is known to cause Dentatorubral-pallidoluysian atrophy (DRPLA) (Carroll et al., 

2018). The extended polyglutamine tract that results in the Atrophin 1 protein is 

thought to impede protein-protein interactions and thus has a similar functional 

consequence as haploinsufficiency (Ross, 2002). The core symptoms of DRPLA are 

ataxia and cognitive impairment (Carroll et al., 2018). In teenaged and early 

adulthood onset, psychiatric symptoms such as irritability, depression, and psychosis 

have also been reported (Carroll et al., 2018). 

 

In the context of schizophrenia, these findings are significant as SCZ most 

commonly develops in early adulthood, and psychosis is among its hallmark 

symptoms. The complex-insertion/deletion I identified also occurs in exon 5, ~800bp 

downstream of the CAG repeat. This exon is very large (~1kb), and so the de novo 

SV is unlikely to have the same impact on protein function as the CAG repeat 

expansion. However, insofar as disruption of this exon can cause SCZ-like 

symptoms in people with DRPLA, it is possible from my findings that this SV could 

also play a role in SCZ more generally.  

 

CTNNA1 encodes the cell adhesion protein Catenin alpha-1 (α-cat). α-cat is most 

highly expressed in epithelial and muscle tissue but is also expressed throughout the 

brain where it plays a role in synapse formation and maintenance (Arikkath & 

Reichardt, 2008). Florescent-tagged α-cat localizes to dendritic spines and axons 

(Chiarella et al., 2018). In knock-models, dendritic spines are misshapen and more 
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motile than in wild-type, with disorganized filopodia along the synaptic cleft, resulting 

in dysfunctional synapses that are less responsive to local signal changes (Arikkath 

et al., 2009). Aberrant synapse formation has been widely reported in schizophrenia 

(Glausier & Lewis, 2013). Many SCZ-risk genes encode proteins that localize to the 

post-synapse in particular, and are directly involved in the regulation of synaptic 

activity (Fromer et al., 2014). 

 

In α-cat knock-out mice, cerebellar ataxia has been reported, along with deficits in 

fear-potentiated startle response (Park et al., 2002). The latter phenotype is 

observed in schizophrenia cases and has been used to indicate a SCZ-like 

phenotype in multiple animal models. I have not found studies reporting the 

phenotypic consequences of CTNNA1 disruption in human, but given its function and 

behavioural consequence of knock-out in mice, it is a plausible schizophrenia risk 

gene.  

 

Experimental validation of the SV calls and independent replication in case-control 

data is required before they can be considered novel SCZ risk factors. Nevertheless, 

my results support the utility of using WES data to identify small SVs that may 

contribute to schizophrenia liability. In summary, there is evidence that ATN1 and 

CTNNA1 could be schizophrenia risk genes. They both play roles in brain that have 

been implicated by known SCZ-risk genes, and SCZ-like phenotypes have been 

observed in humans or mouse models in cases of gene disruption. 

 

4.6. Limitations of study design 

The main limitation of this study is that I have not experimentally validated the 

putative de novo variants that were identified using InDelible. It was not possible to 

use array data from the trios analysed in this study to validate the de novo SVs, 

given the size and/or types of these SVs are not detectable from array data. I 

originally intended on validating InDelible de novo SV calls using PCR, which is how 

putatively pathogenic variants detected in the DDD study were validated. However, 

due to significant limitations imposed on laboratory research during the COVID-19 

pandemic, this was not possible. Nevertheless, SVs discovered using InDelible had 

high validation rates in the original DDD study, where for 23 variants that the DDD 

study authors were able to obtain PCR results for, 100% were found to be true 
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positives. As my quality control procedures were very similar to those implemented 

in the DDD study, these results suggest that I can have a high degree of confidence 

that the SCZ trios de novo call set are real events.  

 

The dearth of studies assessing the rate of rare, small SVs in schizophrenia 

case/control data also limits the current study’s ability to predict pathogenic de novo 

SVs. Given that rare CNVs that are smaller than 500kb, but larger than those 

detected by InDelible, have been found to have a more limited clinical impact than 

large events (Hollenbeck et al., 2017), it can be reasonably assumed that the impact 

of variants <500bp in size will be more modest still. However, I hypothesised that 

SVs which impact schizophrenia risk genes, based on findings from GWAS or 

sequencing studies, are more likely to have a role in schizophrenia. While none of 

the de novo SVs discovered in the current study affected genes robustly associated 

with schizophrenia the in SCHEMA or the PGC3 GWAS, 2 SVs did disrupt loss-of-

function intolerant genes, and therefore might have pathogenic effects. However, 

these findings are preliminary and require replication in larger case-control studies.  

 

4.7 Summary 

In this chapter I have presented research that involved using the InDelible algorithm 

to detect small, rare de novo SVs in a WES trios sample consisting of 621 

schizophrenia probands and both parents. I identified 15 putative de novo SVs in 15 

(2.4%) probands, ranging in size from 19bp to 12kb. I then assessed the possible 

pathogenicity of these SV by ascertaining whether they intersected genes that have 

been previously associated with schizophrenia. I found that two de novo variants, a 

19bp deletion and a 31bp complex-insertion/duplication intersected genes with pLI > 

0.9: ATN1 and CTANN1, respectively. Both genes have roles in the activity of the 

post-synapse, and their disruption has been associated with phenotypes relevant to 

schizophrenia, either in clinical cases or in animal models. Thus, they are both 

plausible candidate risk genes, suggesting the two de novo variants may contribute 

to the development of schizophrenia in their respective carriers. However, further 

genome-wide significant support from larger case-control studies of SVs is required 

before ATN1 and CTANN1 can be considered true SCZ risk genes. While the SVs 

identified in the current study require experimental validation via orthogonal 

methods, my results suggest that InDelible can be used to detect clinically relevant 



 153 

de novo small SVs in a small proportion of people with schizophrenia. By combining 

InDelible with an approach like CLAMMS, clinically impactful SVs across a very 

broad size spectrum can be detected using WES data.  
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Chapter 5: Combining whole exome sequencing and 

microarray data to identify rare CNVs impacting cognition 

in schizophrenia 

 

1. Introduction 

1.1 Cognition in schizophrenia  

In addition to the core positive and negative symptoms, cognitive impairments have 

been widely reported in schizophrenia. Studies have identified deficits in attention, 

working memory, processing speed, problem solving, planning, abstract thinking, 

visual and verbal learning and social cognition (Bowie & Harvey, 2006; Heinrichs & 

Zakzanis, 1998; Lynham et al., 2018; Mesholam-Gately et al., 2009). A meta-

analysis of 204 studies showed that cognitive performance among SCZ patients is at 

least 1 SD lower on several cognitive tests, especially memory and executive 

functioning (Heinrichs & Zakzanis, 1998).  Cognitive symptoms are also extremely 

common, affecting up to 98% of patients according to some estimates (Keefe et al., 

2005), and are among the earliest signs of disease onset (Häfner et al., 1992; Rund, 

1998). The presence and severity of such impairments are highly correlated with 

poor functional, occupational and social outcomes (Green, 2006; Kraus & Keefe, 

2007), and are the symptom dimension that is least responsive to therapeutic 

interventions (Tripathi et al., 2018).  

 

Cognitive symptoms in SCZ are associated with both common and rare genomic 

factors (Calafato & Bramon, 2019; Creeth et al., 2022; Hubbard et al., 2021; 

Smeland et al., 2017), and genomic factors that impact loss-of-function intolerant 

genes and neurodevelopmental risk genes are particularly enriched. Among rare 

variants, large copy number variants (CNVs) have been found to impact cognition in 

SCZ. CNVs that been shown to confer risk for SCZ are associated with lowered 

cognition in both SCZ cases and in the general population. However, the literature is 

inconsistent regarding the magnitude of their impact.  

 

1.2 Impact of CNVs on cognition in schizophrenia.  
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(Hubbard et al., 2021) identified rare (<1% frequency) CNVs >10kb occurring in 1 1 

SCZ-risk loci (described in (Rees et al, 2016), and shown in Table 1.1 of chapter 1) 

in 15 participants of the Cardiff Cognition in Schizophrenia (COGS) cohort, a UK-

based case sample consisting of 875 SCZ individuals tested for general and 

premorbid cognitive ability. CNVs either overlapped risk loci by ≥50% or affected a 

critical gene. The authors report an association between SCZ-risk CNV carrier status 

and decreased general cognitive ability (β = −0.66, p = .047), which they replicated 

in an independent Irish sample comprised of 679 SCZ cases (β = −0.91, p = .025), of 

whom 7 carried a SCZ-risk CNV. In addition, premorbid cognition was strongly 

affected among SCZ-risk CNV carriers (β = −7.16, p = .008). Secondary analyses 

were carried out exploring the impact of SCZ risk-CNVs across seven cognitive 

domains: attention, working memory, reasoning/problem solving, speed of 

processing, visual learning, verbal learning, and social cognition. Patients with SCZ 

who were carriers of CNVs were more impaired across all domains, compared to 

SCZ patients with no such CNVs, with the differences reaching about 0.5SD for the 

different cognitive domains tested. 

 

The authors also found that the burden of CNVs >10kb that impact loss-of-function 

intolerant (LoFi) genes are associated with general cognitive deficits, even after 

controlling for the impact of the 12 SCZ-risk CNVs (β = −0.15, p = .048). Deletions 

affecting LoFi genes had a stronger effect than duplications (deletions: β = −0.21, p 

= .055; duplications: β = −0.05, p = .513). Deletions affecting genes that code for 

synaptic proteins were also associated with lowered general cognition (β = −0.22, p 

= .035) when covarying for SCZ-risk carrier status. Finally, burden of all CNVs 

>100kb in size was tested for association with general cognition, according to three 

metrics: n CNVs, total length of CNVs, and N genes impacted by CNVs. No 

association was found with any burden metric. 

 

(Thygesen et al., 2021) identified 29 rare (<1% frequency) SCZ-risk CNVs >100kb in 

29 participants of the Psychosis Endophenotypes International Consortium (PEIC) 

family study, comprising 749 individuals diagnosed with a psychotic disorder (576 

with SCZ (74.9%)), 646 of their unaffected relatives, and 2013 non-relative 

unaffected controls. The authors defined SCZ-risk CNVs as those affecting one of 27 

loci with ‘good evidence’ of an association with SCZ, as described by (Marshall et al., 
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2017), (Kirov et al., 2014), and (Stefansson et al., 2014a). Only those CNVs that 

overlapped a SCZ-risk loci by >10% were included. Across the whole sample, SCZ-

risk CNV carriers demonstrated deficits in immediate (β = −8.0, p = 0.0036) and 

delayed (β = −3.3, p = 0.0115) verbal recall, measured by the ability to repeat 15 

words that were read to participants at rate of 1 word per second, either immediately 

or after 30-minute delay. SCZ-risk CNV carrier stratus was also nominally associated 

with poorer block design score (β = −10.0, p = 0.031), a measure of visuospatial 

reasoning.  

 

In the same study, when restricting the analysis to individuals with a diagnosis of 

SCZ, their relatives and controls, the association between SCZ-risk CNV carrier 

status and immediate verbal recall remained at the same significance level (β  = -

8.39, p = 0.004), though the association with delayed verbal recall was weaker (β = -

3.10, p = 0.025). The association with block design score was also slightly weaker (β  

= -9.787, p = 0.046). The authors also tested the burden of rare (<1% frequency) 

CNVs >200kb for association with cognition but reported no significant results.  

 

(Foley et al., 2020) found increased cognitive deficits among SCZ patients who 

carried rare (<1% frequency) SCZ-risk CNVs >20kb, defined according to 15 loci 

described in (Rees et al., 2014). The case sample comprised 1215 Irish individuals, 

of whom 19 carried a SCZ-risk CNV. Specifically, the authors identified three 

phenotypic variables that were significantly associated with carrier status: ‘history of 

developmental delay’ (OR = 5.19, p = 0.003), ‘comorbid neurodevelopmental 

disorder’ (OR = 5.87, p = 0.009) and ‘specific learning disorder’ (OR = 8.12, p = 

0.012). Collectively, these results suggest a neurodevelopmental basis for the 

observed cognitive deficits, and that SCZ-risk CNVs impact cognitive ability prior to 

disease onset.  

 

(van Scheltinga et al., 2013) tested whether two CNV burden metrics: the total 

number of CNVs and the total number of genes affected by CNVs, were associated 

with IQ in 350 SCZ patients and 322 controls. Though the authors do not specify a 

base pair size threshold, they did not consider events that spanned fewer than 10 

consecutive probes. Also, they did not filter CNVs by allele frequency. No result was 

statistically significant. 
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In summary, there is clear evidence that SCZ-associated CNVs, and deletions 

affecting LoFi genes, cause deficits in the cognitive performance of patients affected 

with SCZ. These deficits appear to occur before disorder onset, and lead to worse 

cognitive performance compared to SCZ patients do not carry a CNV.  

 

1.3 Impact of SCZ-risk CNVs on cognition in the general population 

CNVs associated with increased SCZ risk have also been found to be associated 

with lowered cognitive ability in the general population, indicating that their impact on 

cognition might be partly independent of other genetic risk factors for SCZ. (Kendall 

et al., 2017) investigated the impact of rare SCZ-risk CNVs on cognition in 152,000 

participants in the UK Biobank, a large data resource that is partially representative 

of the UK general population, although is older and healthier in general. Individual 

calls were filtered if they spanned <10 probes or had a density coverage of <1 probe 

per 20k base pairs.  

 

CNVs were defined as SCZ-risk if they overlapped any of the 11 loci described by 

(Rees, 2016b). The authors reported significantly impaired performance in carriers of 

SCZ-risk CNVs, compared with CNV non-carriers, across 7 tests designed to 

evaluate the following cognitive domains: episodic memory, processing speed, 

reasoning, numeric working memory and visual attention. SCZ-risk CNV carriers 

were less likely to complete higher education (OR = 0.61, p = 2.4 × 10−18), and 

tended to have occupations that require fewer academic skills (OR = 0.64, p = 3.7 × 

10−11). The authors also found that SCZ case status (not all of whom were SCZ-risk 

CNV carriers) was significantly associated with lowered cognition across all 7 

domains, and cognitive impairment was significantly greater for SCZ cases than for 

SCZ-risk CNV carriers, indicating that other risk factors or disorder progression itself 

may impair cognition beyond the impact of known CNV risk factors. 

 

(Stefansson et al., 2014b) investigated the impact of schizophrenia risk CNVs on 

cognitive function in an Icelandic sample with no schizophrenia diagnoses. Several 

CNVs were found to negatively impact cognition, including 15q11.2 deletion, 16p11.2 

deletion, 1q21.1 duplication, and 1q21.1 deletion. However, the effects of some 

CNVs were limited to specific cognitive domains. For the 15q11.2 deletion carriers, 
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performance on reading and arithmetic test was significantly lower compared to non-

carriers (reading: p = 3.2 x 10-3; arithmetic: p = 1.6 x 10-3), while impacts on other 

domains more modest. There was also higher prevalence of dyslexia and dyscalculia 

among carriers of this CNV, even after adjusting for IQ, suggesting that it contributes 

to language and numeracy deficits independently of general cognitive ability. 

Similarly, carriers of 16p11.2 deletion showed significantly reduced performance in 

verbal memory (p = 3.4 x 10-3) and processing speed (p = 5 x 10-4). 

 

1.4 CNV detection methods 

Previous studies used CNV detection methods based on data generated from 

genotyping microarrays (hereafter referred to as arrays) with the number of probes 

ranging from 550K-1.1M (Table 5.1). In section 1.2 of chapter 3, I discussed that a 

limitation of these approaches is the ability to differentiate true deviations in probe 

signals caused by CNVs from noise at base pair resolutions < ~100kb, and it has 

been estimated that even high-density (>1M probes) array platforms are unable to 

reliably detect CNVs < 40kb in size (Carter, 2007). 

 

Study Genotyping arrays used N probes 

Hubbard et al., 2021 Illumina 

HumanOmniExpressExome-8v1 

951,117 

Thygesen et al., 

2020 

Affymetrix Human SNP Array 6.0 946,000 

Foley et al., 2020 Affymetrix Human SNP Array 6.0 946,000 

Illumina HumanCoreExome 542,586 

van Scheltinga et 

al., 2013 

Illumina HumanHap550 beadchip 550,000 

Kendall et al., 2016 UK Biobank Axiom Array 820,967 

UK BiLEVE array 807,411 

Stefansson et al., 

2014 

Ilumina Human610-Quad 610,000 

Table 5.1. Number of probes on the genotyping arrays used in the 6 studies 

described in sections 1.2 and 1.3.  
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However, there is evidence that whole exome sequencing (WES) technology can 

successfully detect CNVs missed by genotyping arrays in protein-coding regions, 

particularly for smaller CNVs (Zhao et al., 2013). In chapter 3, I reported that ~81% 

(143/177) of transmitted CNVs that were called in a trio sample using the WES-

based CNV calling algorithm CLAMMS were <100kb in size, and of these 47 were 

<10kb in size. Therefore, exome-sequencing studies have the potential to advance 

our understanding of the genetics of cognition in SCZ by analysing CNVs that are 

typically missed in arrays based CNV studies.  

 

1.5 Study aims 

The primary objective of the research presented in this chapter, which was 

conducted in the second and third years of my PhD, was to use CNV calls generated 

by CLAMMS to further our understanding of the genetic contribution to cognitive 

impairment in schizophrenia, progressing the broader thesis aim 3 specified in 

section 3 of chapter 1. This required completing the following aims: 

 

1) Use CLAMMS to call rare (>1% frequency) CNVs from WES data for 875 

individuals with schizophrenia or a related psychotic disorder, recruited in the 

Cardiff Cognition in Schizophrenia (COGS) study (the same cohort analysed 

by (Hubbard et al. 2021)). Each participant of Cardiff COGs has been 

assessed for general cognitive ability (hereafter referred to as ‘current 

cognition’) and estimated premorbid cognitive ability, which were used as the 

primary cognitive phenotypes in this chapter. 

2) Compare the sensitivity to detect known pathogenic or schizophrenia-risk 

CNVs between WES and array CNV call sets.  

3) Assess whether analysing a consensus CNV call set based on both WES and 

array-based approaches produces a more accurate CNV call set and 

increases power to identify CNVs contributing to cognition in SCZ.  

4) Explore the impact of small CNVs typically missed in array studies (i.e. CNVs 

(<100kb) on cognition in SCZ.  

5) Determine if CNVs intersecting genes previously implicated in cognition in 

schizophrenia are associated with cognitive deficits in this sample. Variant 

sets were further refined to identify those that affect loss-of-function intolerant 



 160 

(LoFi) genes and neurodevelopmental disorder (NDD) risk genes, given the 

strong impact of variants affecting these genes on cognition in SCZ.   

 

I hypothesised that large deletions affecting LoFi genes would have the largest 

impact on both cognitive metrics, and that the effects of small events and 

duplications would be more modest. Combining platform call sets may not affect any 

observed association of large events with cognition, given that both approaches are 

able to detect such events. However, if small CNVs (and particularly small deletions 

affecting LoFi or NDD-risk genes) do indeed impact cognition in SCZ, their effects 

are more likely to be captured by WES-based call sets than the array-based call 

sets. 

 

2. Methods 

2.1 Sample description 

2.1.1 Recruitment  

The Cardiff Cognition in Schizophrenia (COGS) cohort (Lynham et al., 2018) 

consists of 927 individuals recruited by mental health professionals from in-patient, 

out-patient, and volunteer mental health services across the UK. After initial 

screening of medical records, individuals were excluded if they had a previous 

diagnosis of intellectual disability, a neurological disorder known to impact cognitive 

ability, or a current substance abuse disorder. Participants were aged between 17 

and 82 years at recruitment. Mean age was 43.3 and 60% of participants are male.  

 

2.1.2 SCAN instrument 

Participants were assessed using The Schedules for Clinical Assessment in 

Neuropsychiatry (SCAN) (Wing et al., 1990). SCAN consists of 22 segments 

designed to identify and rate symptom dimensions that occur among known 

neuropsychiatric disorders. It is divided into two parts, the first of which is concerned 

with general neurotic symptoms, anxiety, eating disorders and substance abuse. 

After a preliminary screening, interviewers can move to part two if appropriate, which 

assesses psychotic symptoms and disorders of affect, speech, and behaviour. 

Trained psychologists and psychiatrists carried out the assessments under the 
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supervision of principal investigator James Walters.  

 

2.1.3 Psychiatric diagnoses  

If applicable, participants were then given a best-estimate lifetime diagnosis of a 

neuropsychiatric disorder based on SCAN outcomes and medical records, in line 

with DSM-IV criteria (Bell, 1994) (Table 5.2). Interrater reliability for diagnosis was 

strong; schizophrenia = 0.83, schizoaffective depressive = 0.63, schizoaffective 

bipolar = 0.72, bipolar disorder = 0.85  (Lynham 2018). In the present study, 

although CNVs were called in every sample to improve overall call quality, for 

downstream variant-phenotype association analyses individuals were excluded if 

they had no accompanying phenotypic information, or had a diagnosis of Mania, 

Bipolar Disorder, Major Depressive disorder or Other. 

 

DSM-IV Diagnosis N participants 

Schizophrenia 598 

Schizoaffective disorder (depressive type) 136 

Schizoaffective disorder (bipolar type) 72 

Other non-affective psychotic disorder 69 

Mania 16 

Bipolar disorder 5 

Major depressive disorder 17 

Other 4 

NA 10 

Table 5.2. Psychiatric diagnoses received by Cardiff COGS participants, according 

to DSM-IV criteria.  

 

2.2 Assessing cognitive ability  

2.2.1 Current cognitive ability 

All participants had been tested for current cognitive ability. This was carried out 

using the Measurement and Treatment Research to Improve Cognition in 

Schizophrenia (MATRICS) Consensus Cognitive Battery (CCB) (Marder & Fenton, 

2004), which assesses cognitive performance across seven domains: processing 

speed, attention/vigilance, working memory, verbal learning, visual learning, 
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reasoning/problem solving and social cognition. Description of all tests administered 

per cognitive domain are given in Table 5.3. 

 

Cognitive domain Test Description 

Processing speed Trail making test, part A; BACS, 

symbol coding subtest; 

Category fluency test (animal 

naming)  

Trail making test, part A: 

subjects draw a line between 

numbered circles in ascending 

numerical order, from 1 to 25, 

as quickly as possible. 

 

BACS symbol coding subtest:  

According to provided key, 

subjects are given 90 seconds 

to assign numbers to non-

meaningful symbols. 

 

Category  fluency test (animal 

naming): In 60 second, 

subjects produce as many 

examples as they possible of 

animal names.  

Attention/vigilance The Continuous Performance 

Test, Identical Pairs version  

Observing changing symbols 

on a screen, subjects respond 

as quickly as possible when 

two identical symbols are 

presented in a row.  

Working memory Spatial span subtest of WMS, 

3rd ed.; Letter-number span 

test  

WMS spatial span subtest: 

Subjects observe squares in a 

grid as they change colour in a 

particular order and are then 

required to specify the order as 

quickly as possible. 
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Letter-number span test: 

subjects listen to a series of 

letters/digits, then repeat 

series with letters in 

alphabetical order, or digits in 

ascending order. 

Verbal learning Hopkins Verbal Learning Test Subject listens to utterances of 

12 nouns, then is required to 

repeat the words back in any 

order, both immediately and 

then after a 25 minute delay.  

Visual learning Brief Visuospatial Memory Test Subjects observe a visual 

display of 6 basic figures on a 

2x3  grid, and are then 

required to draw each figure as 

accurately as possible in the 

correction locations on a new 

2x3 grid, both immediately and 

then after a 25 minute delay. 

Reasoning/problem 

solving 

Neuropsychological 

Assessment Battery, mazes 

subtest 

Consists of 7 printed mazes of 

increasingly difficultly that 

subjects are required to trace 

through as quickly as possible.  

Social cognition Mayer-Salovey-Caruso 

Emotional Intelligence Test, 

managing emotions branch 

Questions are designed to test 

how effectively subject can 

regulate their own emotion in 

decision-making, and 

incorporate the emotions of 

others into their decision-

making.  

Table 5.3. Tests comprising the Measurement and Treatment Research to Improve 

Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery and their 

corresponding cognitive domains.  
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Raw scores of all MATRICS tests were normalised to produce z-scores against the 

mean and standard deviation of 103 healthy controls, recruited across the UK and 

matched to case samples on sex and age (50% male, mean age = 41.7 years). For 

participants with test results across 5 or more domains (926 of 927 participants), 

composite z-scores were calculated according to MCCB manual procedures by Amy 

Lynham. These scores are an estimate of general, current cognitive ability.  

 

2.2.2 Premorbid cognitive ability  

Premorbid cognitive ability had been estimated using the National Adult Reading 

Test (NART) (Nelson, 1982). The NART consists of 50 words which participants are 

instructed to read aloud. As the words have irregular pronunciation, the test is 

designed to evaluate vocabulary rather than the ability to apply standard rules of 

pronunciation.  

 

2.3. Sequencing and genotyping  

2.3.1 Sample preparation, whole exome sequencing and genotyping. 

DNA samples were extracted from whole blood. The exomes of 498 samples were 

isolated using the Nextera DNA Exome capture kit and sequenced on an Illumina 

HiSeq X platform at the Broad Institute (hereafter referred to as the Broad 

subcohort). The exomes of remaining 429 samples were also isolated using the 

Nextera DNA Exome capture kit but were sequenced at Cardiff University on an 

Illumina HiSeq 3000/4000 platform (hereafter referred to as the Cardiff subcohort). 

The GATK best practice pipeline was used to process raw paired-end sequencing 

reads, which were then aligned to human genome reference build 37 

(GRCh37/hg19) with the Burrow-Wheeler Aligner (BWA) v0.7.15 (Li & Durbin, 2009). 

Genotyping was carried out at the Broad Institute, Massachusetts, on the 

HumanOmniExpressExome-8v1 combo array, consisting of 951,117 individual SNP 

probes.  

 

2.3.2 Sequencing Coverage Depth 

The coverage depth of a given sequenced base in a sample’s raw alignment data is 

the number of reads that are aligned to that base. Though coverage depth is 



 165 

primarily determined by sequencing platform, features of the genome itself can lead 

to large differences in coverage both within and between samples, as discussed in 

chapter 2. The mean target coverage depth metric for a sample is the mean 

coverage depth for all bases in the targeted region (exome). In the present study, 

sample coverage metrics were generated using Picard 

(http://broadinstitute.github.io/picard/). Across all samples sequenced at Cardiff 

University, mean target coverage depth is 32.4, while for those sequenced at the 

Broad Institute it is 84.3. Figure 5.1 shows the mean coverage depth for all samples 

in Cardiff COGS, coloured by sequencing site.  

 

Figure 5.1: Mean target coverage for 927 Cardiff COGS WES samples, coloured by 

whether they were sequenced at Cardiff University (blue) or at the Broad Institute 

(red).  

 

2.4 CNV calling 

2.4.1 CLAMMS 

http://broadinstitute.github.io/picard/
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I called CNVs from the WES data using the CLAMMS algorithm (Packer et al., 

2016). CLAMMS estimates the copy number of a given exonic sequence in a sample 

by comparing its coverage depth to those of the same sequence in a reference panel 

of samples with similar quality metrics. A full description of the CLAMMS algorithm is 

given in section 2 of chapter 2. As there is a significant difference in mean target 

coverage between samples sequenced at each site, I called CNVs for Broad-

sequenced and Cardiff-sequenced subcohorts separately.  

 

Two aspects of the CNV calling process vary according to sequencing protocol and 

sample quality metrics and thus warrant description here. For purposes of calculating 

GC content, CLAMMS requires a user-defined insert size variable when generating 

the windows file. The authors recommend a size that is ‘a little bit bigger’ than the 

mean insert size for the sequencing process used, such that most reads will come 

from inserts of sizes smaller than this value. The mean insert size of the sequencing 

processes used in the present study was estimated by calculating the mean of the 

mean insert sizes across samples from each cohort, generated by the Picard 

command ‘CollectInsertSizeMetrics’. The mean insert size for the Cardiff and Broad 

sequencing processes is 164.7 and 376.1, respectively. A separate windows file was 

therefore generated for each cohort, using window sizes 200 for Cardiff subcohort 

and 400 for the Broad.. 

 

The second sample-specific aspect of CLAMMS is the accounting for batch effects, 

i.e. differences in sample preparation and input DNA quality that may introduce 

stochastic volatility and distort read coverage depth exome-wide. In CLAMMS, batch 

effects are controlled for by clustering samples into k reference panels based on 7 

quality metrics generated by Picard (http://broadinstitute.github.io/picard), described 

in chapter 2. As it cannot be known a priori which value of k can adequately control 

for batch effects, in the current study 40 different values were applied for each 

sample, from 10-400 in increments of 10. CNVs were called for samples based on 

each reference panel size, and all QC steps were applied accept allele-frequency 

filters.  

 

To determine the k that maximised the quality of CNV calls, I evaluated for each 

value of k the number of samples that failed QC, assuming that higher quality CNV 

http://broadinstitute.github.io/picard
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calls will result in lower sample drop-out rates. Additionally, for each value of k, I 

calculated the number of WES-based CNV calls that overlapped a CNV called in the 

same sample from the array data, under the assumption that higher quality WES 

CNV calls are more likely to also be observed in the array CNV call set.  

 

Figures 5.2 and 5.3 show the number of samples failing QC plotted against number 

of CNVs called in array data. In both Broad and Cardiff subcohorts, a strong 

correlation was observed between sample drop-out rate and the number of CNVs 

observed in both WES and array call sets. While CNV quality initially increases as 

reference panel size increases, this trend reverses for larger reference panel sizes. 

For the Cardiff subcohort, the optimal reference panel size was 130, while for the 

Broad subcohort it was 50. Correlation between reference panel size and CNV 

quality was lower for Cardiff-sequenced samples, suggesting a greater amount of 

stochastic volatility in coverage depth across samples in this cohort.  
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Figure 5.2. Performance of different reference panel sizes for Cardiff subcohort. A 

reference panel size (k) of 150 was chosen (circled), as it produced the lowest 

sample drop-out and the 2nd highest number of calls that were also identified in 

array data. 
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Figure 5.3. Performance of different reference panel sizes for Broad subcohort. A 

reference panel size (k) of 50 was chosen (circled), at it produced both the lowest 

sample drop-out and the highest number of of calls that were also identified in array 

data.  
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2.4.2 PennCNV 

BeadStudio v2.0 was used to call genotypes, to normalize the signal intensity data, 

and to establish the logRratio (LRR) and B allele frequency (BAF) according to the 

standard Illumina protocols. Elliott Rees used PennCNV (Aug 2009 version (Wang & 

Bucan, 2008)) for CNV detection and conducted all QC according to protocols 

described in (Rees et al., 2014). Both unfiltered and high-quality calls with allele-

frequency <1% were analysed.  

 

2.5 Quality control 

2.5.1 CNV Merging  

For the calls generated from each cohort using the chosen reference panel sizes 

discussed in the previous section, one sample level and five variant level quality 

control (QC) criteria were applied, based on (Maxwell et al., 2017). First, separate 

calls for a sample that were the same CNV type and whose start and end 

coordinates were within 10kb were merged into a single call using bedtools’ merge 

command, as it is unlikely that they are separate CNV events. In the raw output, 

5,684 calls were generated for Cardiff subcohort, while 13,945 calls were generated 

for the Broad subchort. After merging, there were 5,684 and 13,665 calls, 

respectively.  

 

2.5.2 Sample level quality control  

The data used in the current study had previously undergone sample-level QC as 

described in (Creeth et al., 2022). This included excluding samples that did not have 

a diagnosis of schizophrenia, schizoaffective disorder, or other non-affective 

psychotic disorder (n = 52). Additionally, samples were excluded if their inferred sex 

did not match their expected sex or were in a second-degree, or closer kinship 

(Creeth et al., 2022). I applied the following additional sample-level QC that is based 

on the distribution of SVs called per individual by CLAMMS. The number of CNVs 

per sample followed a normal distribution (Figure 5.4). In both subcohorts, I decided 

to use 2 x median number of CNVs as the upper threshold beyond which samples 

could be considered outliers. A lower limit was not applied as there was no long tail 

at the left side of the distribution in either case and no sample had 0 CNV calls.  For 

the Cardiff subcohort, the median n CNV calls was 9 and for Broad subcohort the 

median was 15. Figures 5.4 and 5.5 are histograms for N CNV calls, illustrating 
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sample medians and upper thresholds. Twenty-five samples were filtered from the 

Cardiff-sequenced subcohort and 22 from the Broad-sequenced subcohort.  

 

 

Figure 5.4. Histogram for n CNV calls per Cardiff-sequenced sample after merging. 

Median number of calls = 9. The red vertical line shows the threshold (2 x median = 

18) above which samples were excluded for having an excess of calls.  
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Figure 5.5. Histogram for n CNV calls per Broad-sequenced sample after merging. 

Median n calls = 15. The red vertical line shows the threshold (2 x median = 30) 

above which samples were excluded for having an excess of calls.  

 

2.5.3 Variant level quality control 

First, specific CNV regions were removed that were disproportionally prevalent 

among samples excluded in the sample level QC step, indicating loci for which CNV 

calling is problematic in each subcohort but were not included in the list supplied by 

the CLAMMS authors. Nine-hundred and ten call loci were identified among samples 

passing QC in Cardiff subcohort that occurred at least once. Of these, 43 were found 

to be overrepresented among outlier samples. Among samples passing QC in Broad 

subcohort, 1328 call loci occurred at least once and 34 were overrepresented among 

those samples that failed. Filtering these loci left 3,484 calls for Cardiff-sequenced 

samples and 7,146 for Broad-sequenced samples.  

 

All remaining calls were combined into a single set comprising 10,610 calls. Calls 

were then filtered according to two quality scores generated by CLAMMS and 

described in Chapter 2: Qsome and Qexact. Different criteria were applied to 

deletions and duplications, based on observations of differing performance for CNV 
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type, as described by the developers of CLAMMS, and reflective of the fact that 

duplications are more difficult to identify using coverage depth than deletions (Mei 

Teo et al, 2012). Deletions were filtered if Qsome <= 50 AND Qexact <= 0.5, while 

duplications were filtered if Qany <= 50 AND Qexact <= -1.0, leaving 4,551 CNV 

calls in total. Finally, Plink 1.9 ((Purcell et al., 2007), 

https://zzz.bwh.harvard.edu/plink/contact.shtml) was used to exclude remaining calls 

if they occurred in > 1% of samples.  1,137 rare CNVs remained after frequency 

filtering.  

 

2.5.3.1 Manual inspection of CNV calls 

To further minimise the CNV false positive rate, the sequencing coverage profiles for 

all CNVs that passed QC were manually inspected, according to the same methods 

outlined in section 2.6.2 of chapter 3. Figs. 5.6 and 5.7 show plots for calls that were 

excluded. Following manual inspection, 868 calls remained.  

  

https://zzz.bwh.harvard.edu/plink/contact.shtml
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Figure 5.6. Coverage plot for a deletion that failed manual inspection. The red line 

shows mean coverage per exon between the CNV breakpoints, relative to the 

model’s diploid mean, while the black line shows coverage for exons outside of the 

CNV region. The dark and light grey regions are the coverage depth within 1 and 2 

standard deviations of the diploid mean, respectively.  
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Figure 5.7. Coverage plot for a duplication that failed manual inspection.  
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2.6 Quality control summary 

13,945 CNVs were called by CLAMMS from the Broad subcohort, and 5,684 for the 

Cardiff. From the initial sample of 927 individuals, 47 were excluded for having an 

excess of CNV calls (> 2x median), 22 from the Broad subcohort and 25 from the 

Cardiff subcohort. The number of calls remaining after each stage of variant QC 

across all samples are summarised in Table 5.4  

 

Quality control stage N CNV calls remaining 

Unfiltered CLAMMS output 19,629 

 

Call merging  

 

19,349 

Remove outlying samples (N CNV calls > 22) 10,711 

 

Filter calls overrepresented in outlying samples 10,630 

 

Filter calls with low quality scores 4,551 

 

Filter common variants (> 1% allele-frequency) 

 

1,137 

Filter calls that fail manual inspection                               979 

Table 5.4 - N CNV calls remaining after each quality control step, across all COGS 

samples. Entries in the first column state what was filtered out at each stage. Quality 

control steps are listed in order of application.  

 

2.7 CNV calls rate and mean target coverage 

Figures 5.8 and 5.9 show the relation between subcohort and the average number of 

CNV calls per sample, before and after application of all variant-level QC criteria 

except allele frequency filters and manual inspection. Broad-sequenced samples 

have more CNV calls per individual in both cases. However, variant-level QC 

reduces the mean difference in the number of CNVs called (Figures 5.8 and 5.9). 
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Figure 5.8: Mean number of CNV calls before variant-level QC, stratified by 

subcohort/sequencing site.  

Figure 5.9: Mean number of CNV calls after all variant-level QC except for allele 

frequency filter and manual inspection, stratified by subcohort/sequencing site. 

  



 178 

2.8 Comparing sequencing and array calls  

2.8.1 Sample exclusion  

For analyses that compared CNV calls between WES and array data, I only included 

CNVs from samples that passed QC on both platforms. Of 1,326 samples in the 

entire Cardiff COGS cohort, 1,097 had been either sequenced or genotyped. Of 

these, 927 had been sequenced and 993 had been genotyped, while 808 had been 

both sequenced and genotyped. Table 5.5 shows the number of samples excluded 

from the high-quality (HQ) and unfiltered (ANY) call sets that were not both 

sequenced and genotyped. 

Table 5.5 N samples in unfiltered and high-quality call sets for both platforms, and n 

samples excluded from call sets for not having been both sequenced and genotyped. 

HQ = high-quality, SEQ = sequencing,  

 

Using bedtools, individual CNV calls were then removed from the unfiltered and 

high-quality array call sets if they did not overlap any of the targeted regions listed in 

the Nextera exome capture file by at least one base, ensuring that all remaining 

array calls had the potential to be detected in the WES data.  8,720/12,671 (69%) of 

CNV calls were thereby excluded from the unfiltered array call set, and 402/1075 

(37.3%) from the high-quality array call set.  

 

2.8.2 CNV size comparison 

To compare the numbers of CNVs identified by both approaches across a range of 

CNV sizes, high quality calls from each data set were separated into 6 subsets 

according to their size: <= 20kb, 20kb-50kb, 50kb-100kb, 100kb-500kb, 500kb-1mb 

and >= 1mb. For each sample, bedtools was used to count the number of CNVs 

called in both datasets, where concordant CNVs were defined as those overlapping 

by one base-pair or more. 

 

2.8.3 Known schizophrenia risk CNVs 

Sixteen known schizophrenia risk CNVs were previously called in the Cardiff COGs 

 ANY SEQ HQ SEQ ANY ARRAY HQ ARRAY 

Total N samples 927 880 993 983 

N samples excluded  127 108 186 184 
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sample using array data (Table 5.6), based on the 11 CNVs described in (Rees et al, 

2016) and presented in Table 1.1 of chapter 1. To ascertain whether any of these 

CNVs had been called by CLAMMS, high quality CNVs called in the sequencing data 

that reciprocally overlapped a pathogenic CNV by at least 66% were identified. This 

constraint ensured that no smaller calls within the breakpoints of a pathogenic CNV 

would be included. 

 

CNV Locus Type N 

1q21.1 DUP 2 

2p16.3 (NRXN1) DEL 1 

7q11. 23  DUP 1 

15q11.2 DEL 4 

16p11.2dup DUP 1 

16p13.11dup DUP 4 

22q11.2del DEL 3 

Table 5.6. Known schizophrenia risk CNVs identified in Cardiff COGS array data. 

CNV = copy number variant, DUP = duplication, DEL = deletion, N = number of 

CNVs 

 

2.8.4 Overlapping sequencing and array calls 

Unfiltered CNV calls were annotated if they overlapped different subsets of calls in 

the other platform’s dataset. Those that passed all QC in the sequencing data were 

separately annotated if they overlapped, by at least a single base, calls in the array 

data that also passed all QC, and separately, unfiltered array calls. Similarly, calls 

that passed all QC in the array data were separately annotated if they overlapped, by 

at least a single base, calls in the sequencing data that also passed all QC, and 

separately, unfiltered sequencing calls. Three additional subsets per platform were 

thereby created, described in Table 5.7, and illustrated in Figures 5.10a-c. 

 

Platform subset Description  

HQ SEQ High quality, rare sequencing calls  

HQ SEQ & ANY ARRAY 

Intersect of high quality, rare sequencing calls and unfiltered 

array calls 
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HQ_SEQ & HQ_ARRAY 

Intersect of high quality, rare sequencing calls and high 

quality, rare array calls  

HQ ARRAY High quality, rare array calls  

HQ ARRAY & ANY SEQ 

Intersect of high quality, rare array calls and unfiltered 

sequencing calls   

Table 5.7. All platform subsets created by examining overlaps between sequencing 

and array calls, in addition to separate high quality call sets. HQ ARRAY & HQ SEQ 

was not included in later testing as it is identical to HQ SEQ & HQ ARRAY.  
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Figure 5.10a: Venn diagram illustrating the intersect (orange) of high-quality rare 

calls from the WES data (HQ SEQ, red), and unfiltered called from WES array data 

(ANY ARRAY, yellow). Circle size is not representative of actual data.  

 

Figure 5.10b: Venn diagram illustrating the intersect (grey) of high-quality rare calls 

from the array data (HQ ARRAY, blue), and unfiltered called from the WES data (HQ 

ARRAY, blue). Circle size is not representative of actual data. 
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Figure 5.10c: Venn diagram illustrating the intersect (purple) of high-quality rare calls 

from the WES data (HQ SEQ, red), and high-quality rare calls from the array data 

(HQ ARRAY, blue). Circle size is not representative of actual data. 
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2.9 Subsetting variants by type, size, platform, and gene set.  

All high quality CNVs that passed QC calls were annotated according to their size: 

LARGE if >100kb, or SMALL if <100kb. 100kb is the approximate discovery 

resolution for reliable CNV detection in array data. Genes that occurred within the 

breakpoints of these CNVs were identified using a script written by Elliott Rees 

whose inputs were the call sets and complete human gene list indexed to the 

GRCh37/hg19 build. Calls were further annotated if any genes they encompass are 

included in the Developmental Disorders Genotype-Phenotype (DDG2P) (Wright et 

al., 2015) or in the Genome Aggregation v2.1.1. (gnomAD) (Karczewski et al., 2020) 

databases. The former is a curated set of genes (n = 2579) that have been reported 

to be implicated in developmental disorders, including whether risk mutations are 

mono- or bi-allelic, effects on phenotype and degree of confidence in association (4 

categories: limited, moderate, strong, definitive). In the present study, the database 

used was downloaded on 22/04/22 and the set was limited to genes harbouring 

monoallelic autosomal mutations that have a ‘strong’ or ‘definitive’ degree of 

confidence (n = 772).  

 

The gnomAD database contains constraint metrics for the majority of known human 

genes (n = 19,704). One such metric is probability of loss-of-function (pLI), derived 

from the deviation of the observed n of protein-truncating-variants (PTV) from the 

expected n, accounting for sequencing content, coverage, and methylation, across 

multiple studies. Calls were annotated if they overlapped genes whose pLI score > 

0.9 (n = 3,063), indicating a high degree of constraint. 

 

One hundred and sixty subsets of variants were produced in total, based on the total 

number of intersects of five platform subcategories, three CNV type subcategories, 

three size subcategories and three gene set subcategories. These are shown in 

Table 5.8. 

 

Category Subcategory  

Platform 

 
 

HQ SEQ; HQ ARRAY; HQ SEQ-ANY ARRAY; HQ ARRAY-

ANY SEQ; HQ SEQ-HQ ARRAY; HQ SEQ-HQ ARRAY  
 

CNV Type Any type; Deletion; Duplication 
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Size Any size; Small (<=100kb); Large (>100kb) 

 
 

Gene set All genes; LoFi genes; NDD-risk genes  

Table 5.8. All Intersections of these subcategories determined the total n of CNV 

sets that would be tested for association with cognition (n = 160). HQ = high quality 

calls, SEQ = sequencing, ANY = unfiltered calls, LoFi = loss-of-function intolerant, 

NDD = neurodevelopmental disorder  

 

2.10 Statistics  

All CNV subsets from both platforms were tested for association with current and 

premorbid cognition using linear regression. Models were generated using R 

package ‘speedglm’, which transforms the data so that models can be generated 

faster than by the using the equivalent base R functions, without compromising their 

validity (https://cran.r-project.org/web/packages/speedglm/speedglm.pdf). I covaried 

for age at disorder onset, age2, sex, sequencing site, and principal components 1-10 

that had previously been derived from common SNP variation. Beta coefficients and 

95% confidence intervals produced using R package ‘confint’, for current and 

premorbid cognition were extracted from each model and plotted using R package 

ggplot2. 

 

2.10.1 Multiple testing correction 

For aim 3, I compare CNV calls between WES and array data, which does not 

require correction for multiple testing as it has already been demonstrated by 

previous studies that large CNVs (and particularly deletions) called from array data 

impact cognition. The objective of these analyses is only to assess whether the 

same variant types called by CLAMMS alter the strength of previous findings. For 

aim 4, however, I analyse WES data to investigate whether small CNVs typically 

missed by arrays contribute to cognitive deficits in schizophrenia. As the cognitive 

impacts of small CNVs have not previously been investigated (at least in the context 

of schizophrenia), correction for multiple testing is required. This analysis involved 

testing HQ SEQ deletions and duplications < 100KB in two genes sets: LoFi genes 

and NDD risk genes, for two cognitive phenotypes. Therefore, I applied FDR 
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correction for 8 independent tests (two CNV types (deletions, duplications), two gene 

sets and two cognitive phenotypes). 

 

3. Results 

3.1 Rare CNVs identified in sequencing data. 

A total of 979 high quality, rare CNVs were identified in the sequencing data. Three-

hunded and twenty-seven were called in the Cardiff-sequencing samples and 652 in 

the Broad-sequenced samples. 556 (61%) participants were found to carry at least 

one rare CNV, while 278 (30%) were found to carry 2 or more. 352 (36%) were 

deletions and 627 (64%) were duplications. Table 5.9 shows the number of CNVs 

observed for each predicted copy number. Figures 5.11-14 are regional coverage 

plots showing evidence of small (<100kb) and large (>100kb) deletions and 

duplications. 

 

CNV Type N Predicted copy number N 

Deletion 352 0 0 

  
1 352 

Duplication 627 3 592 

  
4 9 

  
5 10 

  
6 6 

Table 5.9. The total N of rare deletions and duplication identified across all WES 

data samples and for each integer copy number.  
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Figure 5.11. Regional coverage plot showing evidence for 3.6kb heterozygous 

deletion on chromosome 6.  
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Figure 5.12. Regional coverage plot showing evidence for a 2.2kb heterozygous 

duplication on chromosome 7. 
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Figure 5.13. Regional coverage plot showing evidence for a 2.5mb heterozygous 

deletion on chromosome 22, in the DiGeorge Syndrome locus (22q11.2).  
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Figure 5.14. Coverage plot showing evidence for a 282kb heterozygous duplication 

on chromosome 9.  
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3.2 Comparison of sequencing and array CNV calls 

Eight hundred and sixty-eight rare sequencing CNVs were called in samples that 

were also genotyped. Six hundred and seventy-three rare CNVs in the array data 

were called in exome capture regions in samples that were also sequenced: 250 

(36%) deletions and 423 (64%) duplications. Five CNVs in the sequencing data were 

called as separate events in the array data, and two CNVs in the array data were 

called as separate events in the sequencing data. The calls for each CNV were 

merged, reducing the total number of calls in the sequencing set by two and in the 

array set by six. After merging, 321 rare CNVs were identified in both call sets, 

comprising 37% (321/866) of the sequencing calls, and 48% (321/667) of the array 

calls. One hundred and eleven (35%) of the intersecting calls were deletions and 210 

(65%) were duplications. Figures 5.15a & b illustrate the platform overlap for 

deletions and duplications, respectively. 35/158 (22%) of rare sequencing calls that 

failed manual inspection were identified in the array data.  
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Figures 5.15a &b: Venn diagrams showing the platform overlap of calls in the high 

quality, rare call sets, by deletion (above) and duplication (below). HQ = high-quality, 

SEQ = sequencing.  
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Summary statistics for the size ranges of rare CNV called in both platforms’ data sets 

are given in Table 5.10; they specify the largest and smallest CNVs, as well as the 

mean and median sizes. Figures 5.16-17 show density plots of CNV size for both 

platforms.  

 

CNV size metric Size – WES calls Size - Array calls 

Smallest 160bp 13kb 

Largest 6.2mb 10mb 

Mean 128.4kb 244kb 

Median  34.4kb 107kb 

Table 5.10. CNV size metrics for high quality, rare CNVs called in sequencing and 

array data. CNV = copy number variant, WES = whole exome sequencing, bp = base 

pairs, kb = kilobases, mb = megabases  
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Figure 5.16. Density plot for size of high quality, rare CNVs called in sequencing 

data. X-axis scale has been log10 transformed. The dashed vertical line intersects at 

size 100kb, the approximate discovery resolution for reliable CNV detection in array 

data, and in the present study a chosen threshold separating ‘small’ and ‘large’ 

events.  
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Figure 5.17. Density plot for size of high quality, rare CNVs called in array data. X-

axis scale has been log10 transformed. The dashed vertical line intersects at size 

100kb, the approximate discovery resolution for reliable CNV detection in array data, 

and in the present study a chosen threshold separating ‘small’ and ‘large’ events.  
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Figures 5.18-19 illustrate the platform intersects of rare CNVs within small (<100kb) 

and large (>100kb) size ranges. As each CNV has different breakpoints called in 

each data set, the intersect of CNVs for each size range differs according to which 

set is taken as primary in the comparison. For example, if a CNV is 90kb in the 

sequencing data but 110kb in the array data, it will only be included in the intersect 

of small CNVs if the sequencing set is taken as primary. These size discrepancies 

produced a net difference of 41 CNVs between the large and small intersects for 

both platforms.   
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Figure 5.18a & b: Intersect of rare CNVs that are large (>100kb) and small (<100kb) 

in the sequencing data with all CNVs in the array data. HQ SEQ = high-quality, rare 

sequencing calls. HQ_ARRAY = high-quality, rare array calls.   
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Figures 5.19a & b: Intersect of rare CNVs that are large (>100kb) and small (<100kb) 

in the array data with all CNVs in the sequencing data. HQ SEQ = high-quality, rare 

sequencing calls. HQ_ARRAY = high-quality, rare array calls.   
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Table 5.11 shows the percentages of rare CNVs identified in each data set that were 

also identified in the other set, binned into six size ranges. 

 

CNV size 

% HQ SEQ in HQ 

ARRAY (N) 

% HQ ARRAY in HQ 

SEQ (N) 

under 20kb 10.6 (44/415) 42 (13/31) 

20kb-50kb 49.6 (67/138) 46.3 (50/108) 

50kb-100kb 59.2 (71/120) 42.3 (77/182) 

100kb-500kb 70 (112/160) 47.8 (137/287) 

500kb-1mb 88.2 (15/17) 68.4 (26/38) 

over 1mb 75 (12/16) 85.6 (18/21) 

Table 5.11. Percentage of rare CNVs identified in each platform’s data that were also 

identified in the other platform’s data, binned into 6 size ranges. CNV = copy number 

variant, N = N CNV calls.  

 

3.3 Schizophrenia-risk CNVs 

16 instances of CNVs impacting schizophrenia-risk loci were identified in the array 

data. All these events were detected by CLAMMS and passed variant QC except for 

one 16p11.2 duplication, whose corresponding sample was filtered in the 

sequencing analysis for having an excess of calls (Table 5.12). No additional 

schizophrenia CNVs were discovered in the WES data.  

 

SCZ-risk locus CNV Type N in array N in sequencing Details 

1q21.1 DUP 2 2  

2p16.3 (NRXN1) DEL 1 1  

7q11. 23 DUP 1 1  

15q11.2 DEL 4 4  

16p11.2 DUP 1 1 

Event was called 

in sequencing, 

but sample didn’t 

pass QC.  

16p13.11 DUP 4 4  

22q11.2 DEL 2 2  
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Table 5.12. CNVs affecting schizophrenia risk loci identified in sequencing and array 

data. All events called by CLAMMS were also called in the array data. SCZ =  

schizophrenia, DEL = deletion, DUP = duplication. 

 

3.4 CNVs affecting loss-of-function intolerant and neurodevelopmental 

disorder risk genes 

Table 5.13 shows the number of rare CNVs for each platform that were found to 

intersect at least one LoFi gene or one NDD-risk gene.  

 

Platform N LoFi gene 

intersects (%) 

N NDD-risk gene 

intersects (%) 

N LoFi and NDD-risk 

gene intersects (%) 

HQ SEQ 151 (17.4) 54 (6.2) 44 (5.0) 

HQ ARRAY 109 (16.3) 40 (6.0) 33 (5.0) 

Table 5.13. N rare CNVs, for each platform, that were found to intersect one LoFi 

gene, NDD-risk gene, or both. % = percent of total number of CNVs.  

 

3.5 Impact of CNVs on cognitive function  

3.5.1 Current cognitive function 

In the primary analyses, burden of small deletions and duplications in HQ SEQ were 

not found to be nominally associated with current cognition, even when impacting 

LoFi and NDD-risk genes (Table 3.14). In the secondary analyses, however, all large 

deletions in HQ SEQ, HQ SEQ & ANY ARRAY, and HQ SEQ & HQ ARRAY subsets 

were nominally associated (p<0.05) with current cognitive deficits in SCZ (Table 

5.20), though no association was found for large duplications (Table 5.20). 

Moreover, large deletions affecting LoFi and NDD-risk genes in every platform 

subset were more strongly associated with cognitive deficits than those that were not 

restricted by gene set, while restricting by gene set did not produce any significant 

associations for large duplications (Figures 5.21 and 5.22). Table 5.14 specifies 

effect size, and nominal and corrected p values for all tests in the primary analysis, 

while figures 5.20-22 show effect sizes (beta coefficients) and 95% confidence 
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intervals for all current cognition regression models, for both the primary and 

secondary analyses. Results for HQ ARRAY & HQ SEQ (wherein HQ ARRAY was 

taken as primary in the comparison) have been omitted, as they do not contain any 

CNVs that are not accounted for in the large and small HQ SEQ & HQ ARRAY 

intersects.  

 

Gene set CNV type N variants Beta  p q 

LoFi genes Deletion 8 -0.0596 0.355 0.61 
 

Duplication 43 0.0894 0.379 0.61 

NDD-risk genes Deletion 3 -0.694 0.897 0.9 
 

Duplication 16 0.299 0.661 0.88 

Table 5.14. Impact of small (<100kb) SVs affecting loss-of-function intolerant and 

NDD-risk genes on current cognitive ability. LoFi = loss-of-function intolerant; NDD = 

neurodevelopmental disorder.  
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Figure 5.20. Impact of rare CNV burden on current cognition. n = ‘n’ refers to the 

number of variants tested in each subset. Effect sizes (beta coefficients) are shown 

as coloured points. The lines extending from each point are 95% confidence 

intervals. HQ = high-quality call set, ANY = unfiltered call set, DEL = deletion, DUP = 

duplication.  
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Figure 5.21. Impact of rare CNVs affecting loss-of-function intolerant (LoFi) genes on 

current cognition. ‘n’ refers to number of variants tested in each subset. Effect sizes 

(beta coefficients) are shown as coloured points. The lines extending from each point 

are 95% confidence intervals. HQ = high-quality call set, ANY = unfiltered call set, 

DEL = deletion, DUP = duplication.  
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Figure 5.22. Impact of rare CNVs affecting neurodevelopmental disorder risk (NDD 

risk) genes on current cognition. ‘n’ refers to number of variants tested in each 

subset. Effect sizes (beta coefficients) are shown as coloured points. The lines 

extending from each point are 95% confidence intervals. HQ = high-quality call set, 

NDD = neurodevelopmental disorder, DEL = deletion, DUP = deletion, kb = 

kilobases. No result is given for small deletions in HQ ARRAY & ANY SEQ as no 

variants met these criteria.  
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Of particular interest are the four of large deletions affecting NDD-risk genes in HQ 

SEQ. They all occur with the 22q.11.2 locus, whose deletion is a cause of 

DiGeorge/VCF syndrome (DGS) (Cirillo, 2022), and is a risk factor for schizophrenia. 

Two are typical instances of the DGS-causing deletion, while the others impact only 

the distal end of the whole 3mb locus and are 673kb in size (Table 5.15).  

 

CHR Start End Type Size N genes NDD-risk 

genes 

LoFi 

genes 

22 18,900,636 21,411,491 DEL 2.5mb 65 TBX1, LZTR1 HIRA, 

UFD1L, 

DGCR8, 

RTN4R, 

SCARF2, 

MED15 

22 18,900,636 21,411,491 DEL 2.5mb 65 TBX1, LZTR1 
 

HIRA, 

UFD1L, 

DGCR8, 

RTN4R, 

SCARF2, 

MED15 

22 20,738,965 21,411,491 DEL 673kb 19 LZTR1 SCARF2, 

MED15 

22 20,738,965 21,411,491 DEL 673kb 19 LZTR1 SCARF2, 

MED15 

Table 5.15. Four large deletions that impact NDD-risk genes in the HQ SEQ call set. 

CHR = chromosome, NDD = neurodevelopmental disorder, LoFi = loss-of-function 

intolerant, DEL = deletion.  

 

3.5.2 Estimated premorbid cognitive function 

In the primary analyses, only small deletions called in HQ SEQ that impacted NDD-

risk genes were found to be nominally associated with estimated premorbid 

cognition, though the effect size for small deletions impacting LoFi genes was 

trending in the expected direction (Table 5.15). In the secondary analyses, only large 
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deletions in the HQ SEQ subset were nominally associated with estimated premorbid 

cognitive deficits (Figure 5.23), though restricting to LoFi and NDD-risk genes also 

produced significant associations for the HQ SEQ & ANY ARRAY and HQ SEQ & 

HQ ARRAY sets (Figures 5.24 and 5.25). A slightly significant association was also 

found for small deletions in HQ SEQ (p = 0.041, Figure 5.23). Again, large 

duplications were not found to be associated with estimated premorbid cognition 

(Figure 5.23), even when restricting variants by gene sets (Figures 5.24 and 5.25).  

Table 5.16 specifies the effect sizes, and nominal and corrected p values for all tests 

in the primary analysis, while figures 16-18 show effect sizes (beta coefficients) and 

95% confidence intervals for all current cognition regression models, for both the 

primary and secondary analyses. Results for HQ ARRAY & HQ SEQ (wherein HQ 

ARRAY was taken as primary in the comparison) have been omitted, as they do not 

contain any CNVs that are not accounted for in the large and small HQ SEQ & HQ 

ARRAY intersects. 

 

Gene set CNV type N variants Beta p q 

LoFi genes Deletion 8 -0.106 0.783 0.9 
 

Duplication 43 0.262 0.0992 0.4 

NDD-risk genes Deletion 3 -1.24 0.0361 0.29 
 

Duplication 16 0.359 0.167 0.45 

Table 5.16. Impact of small (<100kb) SVs affecting loss-of-function intolerant and 

NDD-risk genes on estimated premorbid cognitive ability. LoFi = loss-of-function 

intolerant genes. NDD = neurodevelopmental disorder.  

Results of primary analyses for current cognition. * = nominal significance  
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Figure 5.23. Impact of rare CNV burden on premorbid cognition. ‘n’ refers to number 

of variants tested in each subset. Effect sizes (beta coefficients) are shown as 

coloured points. The lines extending from each point are 95% confidence intervals. 

DEL = deletion, DUP = deletion, kb = kilobases. 
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Figure 5.24. Impact of rare CNVs affecting loss-of-function intolerant (LoFi) genes on 

premorbid cognition. ‘n’ refers to number of variants tested in each subset. Effect 

sizes (beta coefficients) are shown as coloured points. The lines extending from 

each point are 95% confidence intervals. DEL = deletion, DUP = deletion, kb = 

kilobases.  
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Figure 5.25. Impact of all CNVs affecting DDG2P genes (developmental disorder risk 

genes) on premorbid cognition. ‘n’ refers to number of variants tested in each subset. 

Effect sizes (beta coefficients) are shown as coloured points. The lines extending 

from each point are 95% confidence intervals. NDD = neurodevelopmental disorder, 

DEL = deletion, DUP = deletion, kb = kilobases.  
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Small deletions affecting NDD-risk genes in HQ SEQ were nominally associated with 

premorbid cognition. Only one of these was identified in array data (2:50847158-

50883558 NRXN1). All three are singletons and impact one gene (Table 5.17), such 

that it may be simpler to derive their neurobiological effects than it is for larger 

variants affecting several genes.  

 

CHR Start End Size Type NDD-risk gene 

11 77034140 77103567 69kb DEL PAK1 

11 1477564 1482259 5kb DEL BRSK2 

2 50847158 50883558 36kb DEL NRXN1 

Table 5.17. Small (<100kb) deletions affecting neurodevelopmental disorder (NDD) 

risk genes in the HQ SEQ call set.  CHR = chromosome, AF = allele frequency, DEL 

= deletion.  
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4.Discussion  

4.1 Summary of aims 

The research presented in this chapter had five aims:  

 

1) Identify rare CNVs in the Cardiff COGS WES data set using CLAMMS. 

2) Compare the sensitivity to detect known pathogenic or schizophrenia-risk CNVs 

between WES and array CNV call sets. 

3) Assess whether analysing a consensus CNV call set based on both WES and 

array-based approaches produces a more accurate CNV call set and increases 

power to identify CNVs contributing to cognition in SCZ 

4) Explore the impact of small CNVs typically missed in array studies (i.e. CNVs 

(<100kb)) on cognition in SCZ.  

5) Determine if CNVs intersecting genes previously implicated in cognition in 

schizophrenia (LoFi and NDD-risk genes) are associated with cognitive deficits in 

this sample. 

 

4.2 Schizophrenia-risk CNVs 

For aim 1, I identified 868 putative, rare (AF < 1%) CNVs in 556 (61%) COGS 

participants: 352 deletions and 627 duplications. Sixteen schizophrenia-risk CNVs 

that were previously detected in the array were called by CLAMMS, and all but one 

CNV passed QC. This demonstrates that it is not necessary to implement both 

approaches if the only objective of a study is to detect large schizophrenia-risk CNVs 

(aim 2), assuming that the WES sample is large enough to sufficiently control for 

batch effects.  

 

4.3 CNV sizes across platforms 

CNVs across a broad size spectrum were detected by both approaches. More large 

(>100kb) CNVs were detected in the array data (n = 354) than in the WES data (n= 

193), though given that 65 CNVs identified as small in the WES data were found to 

be large in the array data, this difference is likely to be primarily due to the 

systematic underestimation of breakpoint distances by CLAMMS. This is a limitation 

of setting a hard threshold (100kb) when comparing large/small CNVs across 

platforms. Seventy-two percent of large WES CNVs were identified in the array data 
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and 51.4% of large array CNVs were identified in the WES data, which may suggest 

that the WES large CNV call set contains fewer false positives than that of the array 

data, as events that were called by both approaches are more likely to be real. It 

could also mean that CLAMMS has lower sensitivity to large events, however.  

 

Approximately twice as many small (<100kb) variants were identified in the WES 

data (n = 673) than in the array data (n = 321), indicating that CLAMMS is more 

sensitive to variants in this size range. This is also reflected by the difference in 

median CNV size: 34.4kb for the WES call set and 107kb for the array call set. One 

hundred and eighty-two small CNVs in the WES data were detected in the array 

data, demonstrating that combining approaches can enable the detection of events 

that are too small to be reliably called in array data alone. This intersect constituted 

27% of the small WES CNVs. This could indicate a high rate of false positive calls, 

though it may primarily be reflective of the fact that small events are harder to detect 

in the array data. Orthogonal validation of both intersecting and non-intersecting 

CNVs would be required to confirm this. 56.3% of small array CNVs were detected in 

the WES data, suggesting that there can reasonable confidence in the validity of 

small events called from array data.  

 

4.4 Cognitive impact of CNVs by type, size and gene set 

For my primary analyses of cognition, I tested the association of rare, small (<100kb) 

CNVs called in the WES data that affect LoFi and NDD-risk genes with current and 

premorbid cognition, as the impact of CNVs in this size range had not been explored 

by previous studies (aims 4 and 5). While all effect sizes for small deletions affecting 

these gene sets were trending in the expected direction, there were no significant 

associations found for current cognition, though small deletions in NDD-risk genes 

were associated with estimated premorbid cognition. There were only three variants 

in this subset, however, limiting conclusions that can be drawn about the impact of 

this gene set as whole.  

 

Each of the three small deletions affecting NDD-risk genes impact only one gene: 

PAK1, BRSK2 and NRXN1 (Table 5.17). The proteins encoded by these genes are 

functionally related to synapse formation and maintenance; for example, PAK1 

encodes p21-activated kinase 1, an enzyme that has been demonstrated to play a 
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role in cortical development (Bokoch, 2003). A reduced number of pyramidical 

neurons, particularly in upper cortical layers, has been observed in PAK1 knock-out 

mouse models compared to wild type, indicating disrupted neuronal migration (Kelly 

& Chernoff, 2012). BRSK2 encodes Brain-selective kinase 2 which plays a 

significant role in neuronal polarisation; compared to wild-type, knock-out mice show 

a marked decrease in distinct axon and dendrite formation (Hiatt et al., 2019). 

NRXN1 deletion is known SCZ-risk CNVs, and the gene encodes the neurexin 1 cell 

adhesion protein. This trains-membrane protein is localised in the pre-synapse, and 

binds to neuregulins on the post-synaptic membrane, primarily to maintain synaptic 

structure and organisation (Südhof, 2008). It is therefore plausible that the CNVs 

impacting these genes are clinically impactful for their respective carriers. 

 

In the secondary analysis, rare, small deletions unrestricted by gene set in HQ SEQ 

(n = 205) were nominally associated with estimated premorbid cognition, but those in 

HQ ARRAY were not.  While the latter result was expected (as arrays are mostly 

insensitive to such variants), the former is quite surprising given that small deletions 

affecting LoFi genes (n = 8) in HQ SEQ were not found to be associated with this 

cognitive metric. The likely implication is that there is a sufficient number of small 

deletions in the larger, unrestricted call set to partly overcome the power limitation 

that besets the LoFi analysis. While non-significant, the effect size for small deletions 

called in HQ SEQ on current cognition is trending in the expected direction, 

suggesting that reproducing my analysis with a larger sample would give a 

significant association for this cognitive measure also. I can thus conclude there is 

evidence in my results that small deletions called in WES data do negatively impact 

cognition in SCZ (aim 4).  

 

Corroborating previous studies, I’ve also showed that rare, large deletions, 

particularly those affecting LoFi and NDD-risk genes, are associated with deficits in 

current and estimated premorbid cognition in schizophrenia (aim 5). There is no 

evidence in my results that large deletions impact one cognitive measure more 

greatly than the other. When variants are not restricted by gene set, however, only 

large deletions detected in the WES data were associated with either cognitive 

measure. As it is already known that large deletions negatively impact cognition, 

these findings support the hypothesis that the WES large CNV call set contains 



 213 

fewer false positives than the array-based call set. Restricting the array-based large 

deletions to LoFi and NDD-risk genes produced significant associations with current, 

but not estimated premorbid cognition, though in the latter case effect sizes were 

trending in a more negative direction.  

 

Of particular interest were the rare, large deletions affecting NDD-risk genes called in 

the WES data that are associated with current cognition. All four of these occur with 

the 22q.11.2 locus whose deletion is reported to cause DiGeorge/VCF syndrome 

(Cirillo et al., 2022). However, two only affect the distal end of the locus, and are 

around 700kb in length compared to the 2.5mb deletion of the whole region (Table 

5.15). This smaller subtype, known as a nested central deletion, has not been 

studied in the context of cognition beyond small clinical samples (Burnside, 2015; 

Karbarz, 2020), and is explored further in a follow up study presented in section 5 of 

the current chapter.  

 

Duplications of any size were not associated with either cognitive measure, even 

when restricted to those affecting LoFi and NDD-risk genes. However, effect sizes 

for all sets of large duplications are trending in the direction of lower cognitive ability 

for both measures. This may be indicative that such variants are indeed associated 

with cognitive deficits but have a more limited impact than large deletions. Repeating 

analyses on larger cohorts would be required to confirm this hypothesis.  

 

4.5 Combining WES and array call sets 

Combining WES and array-based call sets consistently produced weaker effect sizes 

for both cognitive measures than WES call sets tested separately (aim 3). However, 

effect size of the large deletions in the HQ SEQ & HQ ARRAY intersect on current 

cognition is trending in a more negative direction than that of HQ SEQ and HQ 

ARRAY tested separately, suggesting that combining call sets might improve power 

to detect effects from CNVs on cognition by removing false positive calls. Similarly, 

the effect size of large deletions in the HQ ARRAY & ANY SEQ intersect on current 

and estimated premorbid cognition was trending in a more negative direction than 

large deletions in HQ ARRAY, suggesting that even the unfiltered call set from the 

other platform can be used to effectively exclude false positives from the putatively 
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high-quality calls.  

 

4.6 Summary 

My results demonstrate that schizophrenia-risk CNVs can be effectively identified in 

both WES and array data, such that only one type of data may be used for a study if 

this is the primary aim. My results suggest that CLAMMS is more sensitive to small 

(<100kb) variants than PennCNV, though orthogonal evidence is required to confirm 

this. In addition, I have corroborated previous findings that large (<100kb) deletions, 

particularly those affecting LoFi and NDD-risk genes, impact cognitive in 

schizophrenia. My results also suggest that small (>100kb) deletions impact 

cognition in schizophrenia, though reproducing my analysis in a larger sample will be 

required to draw a more robust conclusion. There is limited evidence to suggest that 

combining WES and array data improves power to detect CNVs impacting cognition, 

as WES call sets tested separately consistently produced stronger effect sizes. In 

section 5, I report a follow-up study in which I tested the impact of central deletions in 

22q11.2 locus on cognition in a non-clinical cohort, following my findings that they 

were associated with current cognitive deficits in Cardiff COGS.  
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5. Follow-up study: 22q11.2 central deletions in the UK Biobank 

5.1 Introduction 

5.1.1 22q11.2  

In section 3.5.1 I described four rare, large (>100kb) deletions impacting NDD-risk 

genes that were associated with current cognitive deficits in SCZ. All four occur 

within the proximal q arm of chromosome 22 (22q11.2), a locus consisting of ~3mb 

that is prone to structural variation due to the occurrence of 4 low copy repeat 

regions (LCRs), referred to as LCR22A–D (Karbarz, 2020). Homologous non-allelic 

recombination at these LCR regions can generate at least 5 CNVs of varying size. 

These are grouped into two categories based on their position within the locus: 

proximal and central. A-D proximal events are the largest subtype, spanning the 

entire locus. Proximal A-B spans 50% of the locus, while proximal A-C spans ~66%. 

The central locus is nested at the distal end of the proximal locus. Central B-D is 

~30% the size of A-D, while central C-D is ~50% of B-D (Karbarz, 2020). Figure 5.26 

shows the whole locus annotated with known CNV deletions and intersecting genes, 

coloured by NDD-risk status (purple) and high loss-of-function intolerance (red) 

according to criteria described in section 2.9.  
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Figure 5.26: The 22q11.2 locus, annotated with gene positions, LCRs and reported 

deletion events, grouped by proximal and central types. Genes in purple boxes are 

neurodevelopmental disorder risk genes, while those in red boxes are loss-of-

function intolerant genes, defined according to criteria described in section 2.X. This 

Figure is adapted from (Karbarz, 2020).  

  

Proximal

Central
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Deletion of the proximal A-D locus is the primary cause of DiGeorge Syndrome 

(DGS), whose symptoms include multiple neurological, morphological, and cardiac 

abnormalities (Cirillo et al., 2022). Haploinsufficiency of genes HIRA, TBX1, and 

COMT is thought to be critical in DiGeorge Syndrome (DGS) aetiology (Gothelf et al., 

2004; Merscher et al., 2001; Ye et al., 2021). The central locus does not include the 

critical DGS genes. However, (Burnside, 2015) reviewed symptom reports of 45 

carriers of central deletions in previous clinical literature in addition to 23 carriers of 

this event recruited though her own lab (total n = 68) and reported a less severe 

DGS-like phenotype. The most common features were growth restriction (16/68 

(24%)), developmental delay (16/68 (24%)), intellectual disability (17/68 (25%)), 

language delay (15/68 (22%)), and dysmorphic features (31/68 (46%)). Of the 35 

central deletion carriers that underwent follow-up analysis, 14 (40%) were found to 

have inherited the central deletion event, a stark contrast with the ~90% de novo rate 

for proximal deletions.  

 

5.1.2 Aims 

Two of the deletions identified in Cardiff COGS are 2.5MB instances of the proximal 

A-D event, while the other two are 673KB instances of the central B-D event. Given 

the association of the B-D deletions with current cognitive deficits in Cardiff COGs, 

and Burnside’s finding of cognitive deficits as the most common clinical features of 

carriers, I investigated whether this event also impacts cognition and functional 

outcomes in the UK Biobank (Sudlow et al., 2015), a much larger population sample 

(n = 502,485). I also used the UK Biobank dataset to undertake secondary analysis 

to determine the association of the central deletions with 5 neuropsychiatric 

phenotypes in which cognitive symptoms are prevalent: schizophrenia ((Owen et al., 

2016), bipolar disorder (Bora & Pantelis, 2015), anxiety disorders (Beesdo et al., 

2010), major depressive disorder (Rock et al., 2014), and neurodevelopmental 

disorders (Craig et al., 2016). 

 

5.2 Methods 

5.2.1 UK Biobank 

The UK biobank (UKB) is large data resource based on the UK population. It 

includes >500,000 participants, for which multiple environmental, demographic, 



 218 

health exposures have been recorded, many of which are relevant for the study of 

mental health disorders. Most participants were recruited between 2006 and 2010, 

though a minority have been recruited since. The version of UKB used in the present 

study is from February 2021 and includes 502,485 participants aged 40-69 years at 

recruitment. The mean age at recruitment is 56 years and 54% of participants are 

female.  

 

5.2.2 Cognition and functional outcomes  

UKB participants have been tested for cognitive function using a battery of tests 

designed to measure separate cognitive domains, carried out at UK Biobank 

recruitment centres. A subgroup also completed online follow-up tests. For testing 

association with 22q11.2 carrier status, I only selected those tests that had been 

completed by at least ~20% of participants, following the methods of (Kendall et al., 

2017). Details for each selected test, including the number of participants available in 

the February 2021 version of the data, are given in Table 5.18.  

Test Cognitive domain Description N participants (%) 

Pairs 

Matching  

Episodic memory Participant is shown 6 pairs of cards 

for 3 seconds, then asked to identify 

matching pairs among overturned 

cards. The total number of errors is 

the outcome measure, transformed 

by log + 1  

420882 (84%) 

Reaction 

Time 

Processing speed Participant is shown two cards 

simultaneously and are asked to 

press a button as quickly as possible 

if both are the same. Outcome 

measure is the log-transformed 

mean reaction time of correct 

responses.  

418406 (83%) 
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Table 5.18 Cognitive metrics analysed in this study. ‘N participants’ refers to the 

number of UK Biobank participants for which test data was available in the February 

2021 version.  

 

Educational, vocational, and economic outcomes are highly associated with 

cognitive ability (Deary et al., 2007; Strenze, 2007), and are collectively referred to 

Fluid 

Intelligence 

Reasoning/problem 

solving 

Participant asked to complete as 

many verbal and numerical 

reasoning questions as possible 

within 2 minutes. Total number of 

correct answers is used as the 

outcome measure.  

134610 (25%) 

Digit Span  Numeric working 

memory 

Participant shown progressively 

longer strings of numbers on a 

screen, then asked to recall them 

once they had disappeared. Length 

of longest recalled string is used as 

the outcome measure.  

92445 (18%) 

Symbol 

Digit 

Substitution 

Complex 

processing speed 

Participant is required to match 

numbers with symbols according to 

a key shown at the top of the test 

page. The correct number of 

substitutions is used as the outcome 

measure.  

102118 (20%) 

Trail Making 

A & B 

Visual processing 

speed 

In test A, participant is required to 

connect 24 randomly positioned 

numbered circles in ascending order 

as quickly as possible. In Test B, the 

circles’ labels alternate between 

letters and numbers. The log-

transformed time taken to complete 

each test are used as outcome 

measures.  

90165 (18%) 
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as 'functional outcomes'. I tested three such measures that had data available for 

most participants: educational qualifications, household income and the Townsend 

Deprivation Index. Descriptions of each are given in Table 5.19, including the  

number of participants for which data was available in the February 2021 version of  

the data. 

 

Functional Outcome Description N participants (%) 

Educational 

qualifications  

Participant asked to specify which of the 

following qualifications they have attained: 

1) College or University degree; 2) A 

levels/AS levels or equivalent; 3) O 

levels/GCSEs or equivalent; 4) CSEs or 

equivalent; 5) NVQ or HND or HNC or 

equivalent; 6) Other professional 

qualifications e.g. nursing/teaching. 

Outcome measure is a binary variable, with 

participants who had attained 1) or 2) as 

their highest-level qualification coded as 

‘1’.  

395545 (79%) 

Household income Participant asked the average total income, 

before tax, received by their household. 

Options are 1) Less than £18,000; 2) 

£18,000 to £30,999, 3) £31,000 to 

£51,000; 4) £52,000 to £100,000; 5) 

Greater than £100,000. Outcome measure 

is a binary variable, in which individuals 

who responded 4) or 5) are coded as ‘1’.  

362527 (72%) 

Townsend 

Deprivation Index 

An index of social deprivation, assigned to 

participants based on their post code at 

recruitment. For a given post code, it is 

calculated according to four census 

metrics: percentage households without a 

car, percentage over-crowded households, 

420777 (84%) 
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percentage households not occupied by 

owner, and percentage unemployed 

persons. Overcrowding and unemployment 

are log-transformed, then all metrics are 

standardised and summed. A higher index 

score indicates a greater degree of social 

deprivation.  

Table 5.19. 3 functional outcomes analysed in this study. ‘N participants’ refers to the 

number of UK Biobank participants for which data was available in the February 

2021 version. 

 

5.2.3 Neuropsychiatric disorders  

UKB includes ICD-10 participant diagnoses for many neuropsychiatric phenotypes, 

derived from at least one of: primary care data, hospital admissions data and death 

registers. As a separate analysis, I tested 5 neuropsychiatric phenotypes for which 

there is robust evidence of association with cognitive deficits: schizophrenia, bipolar 

disorder, anxiety disorders, major depressive disorder, and neurodevelopmental 

disorders. The anxiety disorders metric combines two anxiety disorder subtypes: 

‘phobic anxiety disorders’ and ‘other anxiety disorders’, the latter of which includes 

panic disorder and generalised anxiety disorder. The neurodevelopmental disorders 

metric also combines two disorder subtypes: specific developmental disorders of 

speech and language, and specific developmental disorders of scholastic skills. 

Table 5.20 gives the number of cases of each neuropsychiatric disorder in the 

February 2021 version of the data.  

 

Neuropsychiatric disorder  N cases (%) 

Schizophrenia 1,351 (0.3) 

 

Bipolar disorder 2,205 (0.4) 

 

Major depressive disorder 58,414 (11.6) 

 

Anxiety disorders 15,347 (3.1) 
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Neurodevelopmental disorders 98 (0.02) 

Table 5.20. Number of cases of each neuropsychiatric disorder analysed in this 

study, according to ICD-10 diagnoses derived from at least one of multiple types of 

health record.  

 

Prior to testing association with central deletion carrier status, I determined how 

many carriers had been diagnosed with at least one of these five disorders, and 

disorder prevalence in carriers vs non-carriers across the UKB.  

 

5.2.4 22q11.2 deletions in UK Biobank 

22q11.2 deletion events were previously called from array data by Kim Kendall and 

George Kirov, according to protocols described in (Kendall et al., 2017). In total, they 

identified 47 carriers of proximal and central deletions. N carriers of each CNV 

subtype are given in table 5.21. 

 

Deletion subtype Interval (mode) Size (mean) N carriers (%) 

Proximal A-B 22:18876630-20311646 1.2mb 7 

 

Proximal A-C - - 0 

 

Proximal A-D 22:18876630-21505360 2.6mb 5 

 

Central B-D 22:20457855-21505360 818kb 15 

 

Central C-D 22:21052014-21505360 433kb 22 

Table 5.21: N carriers of each 22q11.2 deletion subtype previously called in the UK 

Biobank.  

 

As (Kendall et al., 2017) were interested in the association of known pathogenic and 

SCZ risk CNVs with cognitive ability and functional outcomes in UKB, they only 

considered the proximal A-D subtype. The authors note that one would expect about 

37 A-D carriers in a sample of this size, given that the incidence in new-borns is 
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approximately 1:4000, while they only detected 5. They argue that the likely 

explanation for this is the UKB recruitment strategy. As the median age of death for 

individuals with DGS is 46.4 (Van et al., 2019), many carriers are likely to have died 

younger than recruitment age-range 40-69. The low number of carriers meant that 

were too few who were participants in all 7 of the cognitive tests they investigated to 

produce valid models.  

 

5.2.5 Statistics 

I tested the impact of central deletion carrier status (i.e either subtype, n = 37), 

central B-D deletion carrier status (n = 15) and central C-D carrier status (n = 22) on 

the cognitive, functional, and neuropsychiatric outcomes. Using R package 

speedglm, I generated linear models for all cognitive test scores and Townsend 

Deprivation Index.  Binary models for educational qualifications, household income 

and all neuropsychiatric outcomes were generated using package logistf, which 

mitigates bias produced from the low carrier numbers using Firth's penalized 

likelihood approach. Age at recruitment, age squared, sex, and the first ten principal 

components were included as covariates in all models. The model for educational 

qualifications included an additional binary covariate based on age to account for 

CSE introduction in 1965, produced by binning participants according to whether this 

qualification was available to them at 15 years of age. I applied an FDR correction of 

10 for the 7 cognitive tests and three functional outcomes, and an FDR correction of 

5 for the 5 neuropsychiatric outcomes.  

 

5.3 Results 

5.3.1 Cognitive ability  

All point estimates for the effect sizes of carrier status on cognitive tests scores 

trended in the expected direction for lower cognition (Figure 5.27). Central deletion 

carrier status was nominally associated (p < 0.05) with lower performance in Pairs 

Matching (beta = 0.44, nominal p = 0.016, n carriers = 31) and Symbol Digit 

Substitution tests (beta = -1.51, nominal p = 7.0 x 10-4, n carriers = 4). Testing the 

deletion subtypes separately, only C-D carrier status was nominally associated with 

lower performance in Pairs Matching (beta = 0.47, nominal p = 0.046, n carriers = 

19) and Symbol Digit Substitution tests (beta = -1.73, nominal p = 7.8 x 10-4, n 

carriers = 3). After FDR correction, central deletion carrier status and C-D carrier 
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status were still associated with lower performances in the Symbol Digit Substitution 

test (central: q = 7.0 x 10-3 ;C-D: q = 7.8 x 10-3). Effect sizes and 95% confidence 

intervals for all cognitive tests are shown in Figure 5.27.  

 

 

Figure 5.27: Association between central 22q11.2 deletions and 7 tests of cognition 

in the UK Biobank. B-D = deletion of the central B-D interval, C-D = deletion of the 

central C-D interval. ‘n’ refers to the number of carriers of each event type that were 

tested.  

 

5.3.2 Functional outcomes 

Central deletion carrier status was nominally associated with lower educational 
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qualifications level (beta = -1.02, p = 0.019, n carriers = 30) lower household Income 

(beta = -1.62, p = 0.029, n carriers = 28) and higher Townsend Deprivation Index 

score (beta = 0.54, p = 2.3 x 10-3, n carriers = 31) (Figure 5.28). B-D deletion carrier 

status was nominally associated with lower household income (beta = -2.25, p = 

0.02, n carriers = 11), while C-D deletion carrier status was nominally associated 

with higher TDI score (beta = 0.55, p = 0.015, n carriers = 19). After FDR correction, 

central deletion carrier status was associated with Townsend Deprivation Index 

score (q = 0.028). Effect sizes and 95% confidence intervals for all functional 

outcome tests are shown in Figure 5.28. 

 

 

Figure 5.28: Impacts of central 22q11.2 deletions on 3 functional outcomes in the UK 

Biobank. B-D = deletion of the central B-D interval, C-D = deletion of the central C-D 

interval. ‘n’ refers to the number of carriers of each event type that were tested. 

 

5.3.3 Neuropsychiatric disorders 

Among all central deletion carriers, 7/37 (19%) reported/diagnosed with an AD, 8/37 

(22%) reported/diagnosed with MDD, while 3/37 were comorbid for an AD and MDD. 
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There were 0 cases of SCZ, BPD or NDD among carriers, though these disorders 

are rare in UKB, and for 25/37 (68%) none of the five disorders were reported or 

diagnosed. Across the whole cohort, AD and MDD case status was more prevalent 

among carriers than non-carriers, and being reported/diagnosed with none of the five 

disorders was more prevalent among non-carriers (Figure 5.29) 

 

 

Figure 5.29: The frequencies of 6 neuropsychiatric disorders and their comorbidities 

among carriers and non-carriers of central 22q11.2 deletions in the UK Biobank. AD 

= anxiety disorders, MDD = major depressive disorder, BPD = bipolar disorder, SCZ 

= schizophrenia, NDD = neurodevelopmental disorders.  

 

Central deletion carrier status was nominally associated with AD (beta = 1.32, p = 

4.0 x 10-3, n = 31) and B-D deletion individually is nominally associated with AD 

(beta = 1.66, p = 0.013). After FDR correction, only central deletion carrier status 

was associated with AD (q = 0.02). Effect sizes and 95% confidence intervals for AD 

and MDD tests are shown in Figure 5.30. 
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Figure 5.30: Associations of central 22q11.2 deletions with anxiety disorder and 

major depressive disorder case status in the UK Biobank. B-D = deletion of the 

central B-D interval, C-D = deletion of the central C-D interval. ‘n’ refers to the 

number of carriers of each event type that were tested. 

 

5.4 Discussion  

I found that 22q11.2 central deletion carrier status is significantly associated with 

worse performance in the Symbol Digit Substitution test, a measure of complex 

speed processing. However, confidence in this result is limited by the fact that there 

were only four carriers who had scores for the test. Moreover, carrier status was 

correlated with deficits across all cognitive tests, suggesting that the impact of this 

CNV is not limited to a particular cognitive domain, and that the absence of 

significant association with other test scores is a function of low power. My results 

therefore appear to corroborate RD Burnside’s report of cognitive deficits among 

carriers. I also found that central deletion carrier status was nominally associated 

with all three functional outcome metrics I tested, though after FDR correction was 
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only associated with Townsend Deprivation Index score. The results provide further 

evidence that this CNV negatively impacts a broad range of cognitive abilities, as 

these functional outcomes are themselves highly correlated with general measures 

of cognition. Twenty-eight of 31 carriers had data for all three metrics, such that 

power is less of a limitation than in the case of some of the cognitive metrics.  

 

Anxiety disorders, major depressive disorders, and their comorbidity were found to 

be more prevalent among central deletion carriers than non-carriers. There were too 

few cases of schizophrenia, bipolar disorder and neurodevelopmental disorders to 

enable a comparison,  An absence of any of these five neuropsychiatric disorders 

was found to be more prevalent among non-carriers. Carrier status was significantly 

associated with anxiety disorder diagnosis, and the effect size for major depressive 

disorder was approaching significance. It is therefore possible that the central 

deletion is causative of neuropsychiatric symptoms, though given the small numbers 

of cases for more severe phenotypes I cannot conclude whether its effects are 

limited to the milder end of the disorder spectrum. It is also not clear whether the 

impact of the CNV on neuropsychiatric symptoms is mediated by, or independent of, 

its effects on cognition; or, conversely, whether its effects on cognition are in part 

mediated by neuropsychiatric symptoms.  

 

The findings presented in this section provide preliminary evidence that the central 

deletion increases risk for psychiatric disorders. However, the ascertainment biases 

that are associated with the UK Biobank sample significantly lower my study’s power 

to detect significant associations between genetic factors and psychiatric disorders. 

Therefore, future research could test the association between the central 22q11.2 

deletion and schizophrenia using large schizophrenia case-control samples 

(Marshall et al., 2017; Rees et al., 2014). As deletion of the larger A-D 22q11.2 

region is strongly associated with schizophrenia, it is reasonable to hypothesise that 

overlapping deletions of the B-D/C-D loci may also be associated with the disorder, 

albeit with lower penetrance. Moreover, it is also possible that duplication of the 

central loci is protective for schizophrenia. It is important for future work to refine the 

penetrance estimates for the different 22q11.2 CNV breakpoints for schizophrenia, 

and/or cognitive deficits, as this would inform clinical management of people who 

present with these CNVs. 
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Chapter 6: Investigating the contribution from small 

structural variants to cognition in schizophrenia  

 

1.Introduction 

1.1 Background 

As I described in section 1.1 of chapter 5, several studies have demonstrated the 

impact of CNVs on cognition in schizophrenia (Foley et al., 2020; Hubbard et al., 

2021; Thygesen et al., 2021). However, none have studied the impact of small 

structural variants. In Chapter 5 I reported evidence that deletions <100kb in size 

negatively impacted estimated premorbid cognitive ability in Cardiff COGS 

participants. In the present chapter I further my investigation of the impact of small 

SVs on cognition schizophrenia, by assessing whether SVs called by InDelible in this 

samples are also associated with cognitive deficits.  Given small SVs have been 

shown to contribute to developmental disorders by the InDelible developers (Gardner 

et al., 2021), and other types of small mutation (SNVs/indels) are associated with 

lower cognition in schizophrenia (Creeth et al., 2022), I hypothesized that small SVs 

called by InDelible will also contribute to cognitive deficits in schizophrenia.  

 

In a previous study of Cardiff COGS, colleagues at Cardiff University reported an 

association between burden of ultra-rare point mutations under selective constraint 

(URCVs) and current cognitive ability (β = −0.18; p = .005) (Creeth et al., 2022). 

URCVs are defined as singletons that are either protein-truncating variants (PTVs) in 

LoFi genes with a gnomAD probability of loss-of-function (pLI) scores ≥ 0.9 25) or 

damaging-missense variants with a constrained pathogenicity classification (MPC) ≥ 

2, that do not occur in gnomAD’s non-neuro data set.  The study also found that 

URCVs that occur within 348 NDD-risk genes described in (Satterstrom et al., 2020), 

(Singh et al., 2020) and (Kaplanis et al., 2020), have a larger impact on both current 

and premorbid cognition than URCVs that do not occur within these genes (Table 

6.1), though the difference between the effect sizes was not statistically significant.  
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Cognitive 

measure 

Constrained variant set N Variants Effect size (SE) Z-Test 

Premorbid IQ In NDD genes 51 −0.26 (0.14) 0.43 

Non-NDD genes 341 −0.1 (0.05) 

Current cognition In NDD genes 52 −0.36 (0.18) 0.42 

Non-NDD genes 348 −0.16 (0.07) 

Table 6.1. Impact of ultra-rare coding variants in neurodevelopmental disorder risk 

(NDD) genes on cognition in Cardiff COGS. The differences in effect size between 

those variants in NDD and not in NDD risk genes was evaluated using a Z-test, the 

p-values for which are given in the last column. SE = standard error.  

 

1.1 Study aims 

Conducted in the second year of my PhD, the primary aim of the present study was 

to investigate whether rare (allele-frequency < 1%), small (<1kb) structural variants 

(SVs) that are typically missed using microarray technology contribute to cognitive 

impairments in schizophrenia (SCZ). SVs of this size are under-reported in the 

literature and there have been no studies investigating association between small 

SVs and cognition in schizophrenia.  To test whether small SVs impact cognition in 

schizophrenia, I used InDelible to call SVs from whole exome sequencing (WES) 

data generated from the Cardiff Cognition in Schizophrenia (COGS) cohort DNA 

samples (n = 927). Individuals in this schizophrenia sample have been assessed for 

current cognitive ability and estimated premorbid cognitive ability, allowing for 

detection of variants that may affect deficits on cognition that predate disorder onset 

or are a consequence of schizophrenia progression. I therefore tested whether rare 

SVs discovered by InDelible were associated with measures of current cognitive 

ability and estimated premorbid cognitive ability.  

 

Given previous findings from this sample that show damaging rare coding variants in 

constrained genes or known NDD genes are associated with lower cognition, I 

hypothesized that rare deletions in these genes would have the greatest effects on 

cognition in schizophrenia. To increase the power of the current study, I performed a 

secondary analysis where I jointly analysed deletions with the damaging rare coding 

variants that have been previously called in the current sample and evaluated 
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whether this increases power to detect associations between rare variants and lower 

cognition in schizophrenia.  

 

2. Methods   

2.1 Sample description 

The samples used in the current study are the same as those described previously in 

chapter 5, section 2.1. Thus, the recruitment protocols, sample size and sequencing 

procedures were the same as those specified that study.  

 

2.2 Cognitive phenotypes 

The cognitive phenotypes used in the current study are the same as those described 

previously in chapter 5. Briefly, I tested two measures of cognition: 1) current 

cognition and 2) estimated premorbid IQ for association with the burden of rare SVs.  

 

2.3 Calling structural variants  

SVs were called from BAM files using InDelible (Gardner et al., 2021), described in 

section 3 of chapter 2. Given that Cardiff COGS is not a trios sample, I omitted the 

‘denovo’ step and only applied the first 5 steps of the algorithm: Fetch, Aggregate, 

Score, Database and Annotate. As the algorithm does not require modelling aspects 

of the data that differ systemically between the subcohorts (e.g coverage depth), 

variants were called for all samples in the same run. InDelible requires a 

configuration file as input, specifying parameters that are used for variant processing 

at different stages. I configured the algorithm to exclude reads with mapping quality < 

5, base quality < 10, and SR length < 5 at the Fetch step, and to exclude SR clusters 

containing <3 SRs at the Aggregate step. These thresholds were recommended by 

the InDelible developers and were also applied in the SCZ trio analysis reported in 

chapter 4.  

 

2.4 Quality control 

2.4.1 Initial InDelible output  

The initial InDelible output contains 119,191,134 calls across all samples, 

111,976,650 of which were in the Broad subcohort and 7,214,484 were in the Cardiff 

subcohort. No sample had 0 calls. The former subcohort is 1.2x larger than the latter 
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but has 15.5x the number of calls. InDelible assigned an SV type to 750,776 (0.67%) 

of the Broad subcohort calls and 219,612 (3.04%) to the Cardiff subcohort calls and 

calculated a size for 162,145 (0.14%) of the Broad subcohort calls and 37,673 

(0.52%) of the Cardiff subcohort calls.  

 

2.4.2 Random forest quality score 

In the Score step, InDelible uses a random forest adaptive learning model score 

each call according to its probability of being a real event, the details of which are 

described in section 3.3.3 of chapter 2. This score is output as the metric ‘prob_y’. In 

chapter 4, the chosen prob_y threshold for the trio analysis was > 0.6. However, 

when this threshold was applied to the Cardiff COGS WES data, the number of SVs 

called was too high for them to all be manually inspected (>5000 calls). Given 

manual inspection of the reads that map to an SV is a critical step in SV quality 

control, I applied a more stringent prob_y threshold of > 0.8, which excluded 

103,931,750 SVs from the initial call set (88.8% of the initial SVs from the Broad 

subcohort, and 74.1% of the initial SVs from the Cardiff subcohort).  

 

2.4.3 Coverage depth and number of calls  

As the InDelible authors found in the DDD sample that sample coverage depth was 

highly correlated with the number of InDelible calls exome-wide, I assessed the 

correlation between these metrics in the Cardiff COGs data after application of the 

prob_y filter.  Figure 6.1 shows a strong positive correlation between sample 

coverage depth and number of calls, which explains much of the discrepancy 

between the subcohorts. However, this figure also shows that there is significantly 

greater variance in the Broad subcohort than in the Cardiff that is not explained by 

coverage depth.  
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Figure 6.1 Mean coverage depth plotted against number of InDelible calls.  

 

2.4.4 Sample-level quality control 

The data used in the current study had previously undergone sample-level QC as 

described in (Creeth et al., 2022). This included excluding samples that did not have 

a diagnosis of schizophrenia, schizoaffective disorder, or other non-affective 

psychotic disorder (n = 52). Additionally, samples were excluded if their inferred sex 

did not match their expected sex or were in a second-degree, or closer kinship 

(Creeth et al., 2022). I applied the following additional sample-level QC that is based 

on the distribution of SVs called per individual by InDelible. This QC was separately 

applied to the two subcohorts, given the large discrepancy in number of calls 

between them. Summary statistics for the number of calls for each subcohort’s call 

set, following application of the prob_y quality filter, are shown in Table 6.2. In the 

Broad subcohort, the number of calls followed a right-skewed distribution with 

outliers only at the upper end (Figure 6.2). The chosen threshold for sample 

exclusion was > 72,182 calls, equal to the mean + 3 standard deviations. In the 

Cardiff subcohort, the number of calls followed a normal distribution with outliers only 

at the lower end (Figure 6.3), though no samples had 0 calls. The chosen threshold 
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for sample exclusion was < 1,800 calls. Nine samples were excluded from the Broad 

subcohort and 9 from the Cardiff subcohort. 

 

Subcohort Min. 1st Qu. Median Mean 3rd Qu. Max. SD 

Broad 8824 15815 20914 25992 29630 89972 15396.8 

Cardiff 11 3582 4412 4348 5166 7416 1197.1 

Table 6.2. Number of SV summary statistics for the Broad and Cardiff subcohorts, 

following application of prob_y quality score filter to the initial InDelible output. SD = 

standard deviation  
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Figure 6.2. Number of SV calls distribution for the Broad subcohort, annotated with 

mean and outlier threshold.  
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Figure 6.3.  Number of SV calls distribution for the Cardiff subcohort, annotated with 

mean and outlier threshold.  
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2.3.5 Variant-level quality control 

In the Annotate step, SV calls were annotated with their frequencies in three allele-

frequency (AF) databases: the database based on Deciphering Developmental 

Disorders study probands (N = 13,438) included in the InDelible code repository, the 

database produced during my InDelible analysis of the SCZ trios that is based on 

parents (N = 1,219) , and a database based on all 927 Cardiff COGS participants. 

AF databases for the samples I analysed were generated using InDelible’s Database 

function, whose parameters are described in section 3.3.4 of chapter 2. Calls were 

filtered if their call position had an AF > 0.01 in one or more of the databases. 

14,155,039 common calls were thereby excluded. 

 

Four additional variant-level QC criteria were applied to all samples, following QC 

recommendations outlined in (Gardner et al., 2021), and which were previously 

applied in the SCZ trios study described in chapter 4. First, SV calls also needed to 

be based on SR clusters whose average mapping quality was >=20, ensuring that 

the aligned bases if each read were unlikely to be mis-mapped. Second, calls were 

excluded if > 10% of SRs in their respective cluster were split at both ends, but only 

if they did not also have a valid BLAST hit. ‘Double split’ reads are likely to be 

caused by errors during sequencing but in some cases can result from 

retrotransposition of the of the types of repetitive sequences (e.g. MEIs) that are 

detected by InDelible’s implementation of BLAST. Third, calls were then excluded if 

they were aligned to non-exonic sequences, according to human reference genome 

GRCh37, thereby filtering those that are the consequence of read misalignment or 

non-exonic DNA contamination. Finally, remaining calls were excluded if they had < 

5 SRs in their corresponding cluster.  

 

Collectively, these criteria excluded a further 95,212 calls, leaving 588 calls to be 

manually inspected.  Of these calls, 319 were in the Broad subcohort, and InDelible 

had assigned an SV type to 104 (32.6%) calls and calculated the size of 95 (29.8%) 

calls. For the remaining 269 calls in the Cardiff subcohort, InDelible had assigned an 

SV type to 134 (49.8%) calls and calculated the size of 132 (49.1%) calls.  

 

2.3.5 Manual inspection 

Upon manual inspection, there were three criteria by which calls were excluded: 
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1) Forty-one calls in the Broad subcohort had a single SR cluster that is preceded 

by a total decrease in coverage at the breakpoint, such that there are no reads 

mapped to any sequence in the locus downstream of the call position. Inspecting 

instances in the IGV interface revealed that there were often no mapped reads 

for several kb, after which coverage will abruptly normalise. The soft-clipped 

bases in the SR cluster typically align to the locus after the loss of coverage and 

are often in an atypical orientation to their mate. Ten instances were called 

deletions by InDelible, 6 as duplications and the rest as unknown. The algorithm 

also calculated a size for 18, the median of which was 4143.5. IGV snapshots of 

2 instances are shown in Figures 6.4 a & b. 
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Figures 6.4 a & b. IGV snapshots showing two instances of calls that were excluded 

according to criterion 1). In both cases a total loss of coverage is observed at the call 

position. In figure a (top), some reads occur in an RL orientation, which are coloured 

in green. The majority are in the normal LR orientation. In figure b (bottom) almost 

every read occurs in an LL orientation, coloured in teal.  
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2) There were many individual SRs surrounding the call position, often observed 

with many discrepancies between the mismatched bases in the called SR cluster, 

indicating that multiple errors were introduced at this locus during the sequencing 

process. It is therefore probable that any structural change corresponding the SR 

cluster is a consequence of these errors. Sixty-seven calls were excluded by this 

criterion, of which 63 were called in the Broad subcohort. An example is show in 

Figure 6.5 

 

 

 

Figure 6.5. IGV snapshot showing a call that was excluded by criterion 2). There are 

several individual split reads surrounding the call position, indicating that errors were 

introduced into this locus during sequencing.  
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3) The SR cluster is mapped to a sequence that contains successive instances of a 

single base, and all the misaligned bases in the SR are also the same base. 

Such loci are prone to replication errors during PCR, limiting confidence that any 

structural change to the proband DNA is not a consequence of these errors. Two 

calls were excluded by this criterion, both called in the Broad subcohort. An 

example is shown in Figure 6.6.  

 

Figure 6.6. IGV snapshot of a call excluded by criterion 3. The misaligned bases 

contain almost exclusively one base (G), reflecting the sequence slightly upstream 

on the reference genome. However single base sequences are highly prone to errors 

during the sequencing process, and so we cannot have confidence that this call is 

not the result of an artefact.  

 

2.3.5.1 Manual inspection summary 

A total of 110 calls were excluded by manual inspection, of which 106 (96.4%) were 

called in Broad subcohort samples. I was able to determine an SV type for 138 SVs 

that InDelible failed to classify. Moreover, InDelible misclassified the SV type 

associated with 91 calls. Sixty-two calls classified as deletions were found to be 

among the constituent calls of pseudogene retrotranspositions and 14 were 

artefacts. Four calls classified as duplications were found to be complex-

duplication/insertions and 11 were artefacts. One call InDelible classified as a 

translocation was also likely an artefact: it had BWA-mem alignment on the same 
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chromosome, but a BLAST hit on another chromosome, and the call position was 

surrounded by single read splits.  

 

I was able to ascertain the size for 134/360 (37.2%) of calls InDelible had also failed 

to calculate a size for. Forty-three of these were associated with pseudogene 

retrotranspositions, and so were annotated with the number of exons implicated in 

their corresponding event. The other 57 were deletions, duplications, simple 

insertions, small tandem repeats or complex-duplication/insertions < 110 in size 

(mean size = 26bp). Of the 226 calls neither InDelible nor I ascertained a size for, 

there were 2 deletions, 28 simple insertions, 16 non-pseudogene retrotranspositions, 

1 translocation, 102 calls of unknown type and 77 artefacts.  

 

2.3.6 Quality control summary 

Sample-level and variant level quality control are summarised in Tables 6.3 and 6.4, 

respectively. 

 

 Subcohort 

Broad  Cardiff   

N samples in initial output  498 429 

N samples retained 489 420 

Table 6.3. Summary of sample-level quality control for each subcohort. Samples 

were excluded for having too few or an excess of calls.  

 

Quality control step N calls retained 

Initial call output 119,191,134 

Prob_Y > 0.8 15,259,384 

Sample-level quality control 14,250,835 

Allele-frequency < 0.01 95,796 

MAPQ > 20 95,796 

% double split filter 87,635 

Exonic 1,666 

N SRs > 5  588 
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Manual inspection 478 

Table 6.4. Summary of variant-level quality control across all samples. The second 

column N calls remaining after each quality control step was applied, which are 

specified in the first column. MAPQ = mapping quality, SR = split reads.  

 

2.7 Structural variant annotation  

The genes impacted by SVs were annotated for their estimated probability of 

constraint against loss-of-function mutations (pLI), derived from gnomAD 

(Karczewski et al., 2020). A gene is defined as loss-of-function intolerant (LoFi) if it 

has a pLI > 0.9. I also annotated variants that affected genes from the DDG2P 

database (April 2021 version) (Wright et al., 2015) that have either been confirmed to 

cause a neurodevelopmental disorder, or are thought to be probable candidate, and 

are associated with a monoallelic mode of inheritance. Genes that fit these criteria 

are termed NDD-risk genes (N = 726).  

 

2.8 Statistics 

Linear regression models were used to test for association between normalised 

current and estimated premorbid cognition scores. Covariates included were sex 

(coded as 1 for male, 2 for female), age at interview, age2, , sequencing site (coded 

as 1 for Cardiff, 2 for Broad) and first 10 principal components for common SNP 

variation.  Using the above linear regression model, the current study tested 4 

classes of SV for association with cognition: 1) all SVs; 2) all SVs except those of 

unknown type; 3) deletions; 4) duplications. Each class of SV was tested under two 

allele frequency thresholds (< 1% and singletons defined as SVs observed in one 

sample). I also performed two gene-set analyses for SVs that affected LoFi genes 

and NDD-risk genes. Combining SVs with the URCVs analysed by (Creeth et al., 

2022) produced two further burden metrics: 5) the sum of SVs and URCVs in LoFi 

genes; and 6) the sum of SVs and URCVs in NDD-risk genes. Thus, a total of 18 

variant burden metrics were produced for each individual. 

 

2.8.1 Multiple testing correction  

In the primary analysis, 18 different rare variant burden metrics were tested for 
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association with two cognitive phenotypes (current cognition and estimated 

premorbid cognition). Therefore, I applied FDR correction for 36 independent tests.  

 

3. Results 

3.1 Rare structural variants identified by InDelible 

Four hundred and seventy-eight rare structural variants were identified, 

corresponding to 375 individual SV events in 290 (31.2%) individuals. Two hundred 

and four SVs (53.9%) were called in the Broad subcohort, and 173 (46.1%) in the 

Cardiff subcohort. There were 119 deletions, 58 duplications, 36 simple insertions, 9 

complex-duplication/insertions, 2 small tandem-repeats, 1 translocation, 36 

pseudogene retrotranspositions, 16 retrotranspositions of other types (SINE, Alu 

etc.), and 100 SVs whose type I was unable to determine (Figure 6.7).  

 

Figure 6.7. Pie chart showing the numbers of each structural variant type identified in 

all samples. SV = structural variant.  
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3.2 Structural variant size distribution 

Through InDelible and/or manual inspection, the size of 288/375 (76.8%) of SVs 

could be determined. After excluding pseudogene retrotranspositions, the mean and 

median SV size was 835.7bp and 32bp, respectively, and ranged from 5bp to 57kb. 

Table 6.5 gives summary statistics of SV size for all variants, and for each subcohort 

separately. Figure 6.8 shows the sizes of SVs binned into ranges also used in the 

InDelible methods paper (Gardner et al. 2021).  

 
 

Min 1st Qu. Median Mean 3rd Qu. Max SD NAs 

All samples  5 22 32 835.7 78 57118 5032.4 147 

Broad subcohort 5 29.25 50.5 1698 281.25 57118 7519.4 99 

Cardiff subcohort 6 19 25 171.2 41 7204 737 48 

Table 6.5. Summary statistics for structural variant size, for all samples and by 

subcohort. All sizes are given in base pair length.  ‘NAs’ refers to the number of SVs 

for which both I and InDelible failed to calculate a size. SD = standard deviation  
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Figure 6.8. Structural variants binned into size ranges also used in the InDelible 
paper (Gardner et al. 2021). All sizes are given in base pairs.  
 

I calculated the size for all 36 of the pseudogene retrotransposition events, in terms 

of the number of exons implicated. Eighteen of 36 were found to be 1 exon in length. 

Eleven events were 2 exons in length, 6 in the Broad subcohort and 5 in the Cardiff. 

7 events had 4 or more exons, all of which were called in the Cardiff subcohort. The 

largest event consisted of 8 exons.  

 

3.3 Examples of SR clusters for structural variants identified in the current 

sample 

Figures 6.9-12 provide examples of the SR clusters for the following SV types: 

deletion, a duplication, a simple insertion, and a complex-insertion/duplication.  

 



 248 

 

Figure 6.9. IGV snapshots of 2 SR Clusters that indicate the 5’ (top) and 3’ (bottom) 

breakpoints of a 223bp deletion on chromosome 5.  
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Figure 6.10. IGV snapshot showing 2 SR clusters associated with a 31bp duplication 

on chromosome 7. An A>C transversion can also be observed in this snapshot, 

within the duplicated sequence.  
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Figure 6.11. IGV snapshot showing 2 SR clusters associated with a 16bp simple 

insertion on chromosome 6.  
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Figure 6.12. IGV snapshot showing 2 SR clusters associated with a 39bp complex-

duplication/insertion on chromosome 2. The duplicated sequence is 32bp in length, 

and the insertion, indicated by the purple marker in the top-most reads in the 

alignment track, is 7bp.  
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3.3 Comparison of InDelible and CLAMMS call sets 

Thirty-five InDelible deletions and duplications were larger the 160bp, the size of the 

smallest CNV identified by CLAMMS. Three of these (8.6%) were detected by 

CLAMMS: a 7kb deletion, a 1kb deletion and 30kb duplication (Table 6.6). CLAMMS 

underestimated the size of all three events, indicating that their second breakpoints 

do not occur within exons (Table 6.6). This validation rate is consistent with the 

differential sensitives of the two call algorithms: InDelible is largely insensitive to 

variants >100bp, while CLAMMS is largely insensitive to variants <1kb. Therefore, 

CLAMMS cannot be used to validate large InDelible CNVs (and vice versa). 

 

Chromosome Type InDelible call 

position 

InDelible size CLAMMS 

call interval 

CLAMMS size 

5 DUP 110447233 30,284 110427935-

110447042 

19,107 

9 DEL 139934690 1,373 139934220-

139934521 

301 

11 DEL 93459167 6,933 93466380-

93469938 

3,558 

Table 6.6. CNVs identified by InDelible in current study that were also identified by 

CLAMMS. 

 

I discussed in section 4.1 of chapter 4 that pseudogene retrotranspositions are 

unbalanced events and could therefore by mis-called as duplications by CLAMMS at 

the locus of their constituent exons. Two of 36 (5.6%) of the pseudogene 

retrotranspositions called by InDelible were called as duplications by CLAMMS: one 

spanned 6 exons, and the other spanned 1 exon (Table 6.7). CLAMMS 

overestimated the size of both as included intervening intronic regions. Moreover, 

the 1 exon event was called by CLAMMS as larger than the 6 exon event (Table 

6.7).  

 

Chromosome InDelible call 

positions 

InDelible size CLAMMS call 

interval 

CLAMMS 

size 
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19 5':30476211; 

3':30505791 

6 exons 30477186-

30506520 

29,334 

10 97023620 1 exon 96997679-

97031577 

33,898 

Table 6.7. Pseudogene retrotranspositions called as duplications by CLAMMS. 5’ 

and 3’ call positions for the chromosome 19 event refer to 5’-most and 3’-most 

InDelible calls.  

 

3.4 Association between rare structural variants and cognitive ability  

3.4.1 Current cognition  

Figure 6.13 shows the effect sizes for all SV variant burden metrics on current 

cognition, including the number of variants tested and 95% confidence intervals. 

Figure 6.14 shows effect sizes for singleton SV variant burden metrics on current 

cognition. I found no nominally significant association (p < 0.05) between the overall 

burden of rare SVs and current cognitive ability (Figure 6.13; ‘No Gene Set’ panel). 

Restricting variants by gene set produced a nominally significant association for SVs 

impacting NDD-risk genes, but the effect size was trending in the positive direction 

and did it not survive multiple testing correction (beta = 0.86, p = 0.027, q = 0.98). 

(Figure 6.13; NDD-risk panel). Restricting the analysis specific types of SV (e.g. 

deletions or duplications) (Figure 6.13), or singletons (Figure 6.14), did not produce 

significant results. The strongest effects on lower current cognition was observed for 

deletions affecting NDD-risk genes (beta = -0.71, p = 0.43). However, this is based 

on only 2 deletion SVs were found in NDD-risk genes and therefore the confidence 

interval is very large (95% confidence interval: -2.4800, 1.0600) 
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Figure 6.13 Impact of SV variant burdens, including non-singletons, on current 

cognitive ability. The coloured points represent effect sizes, and the horizontal lines 

95% confidence intervals. SV = structural variant, UNK = unknown type, DEL = 

deletion, DUP = duplication, No Gene Set = variants not restricted by any gene set, 

LoFi = variants impacting loss-of-function intolerant genes, NDD-risk = variants 

impacting neurodevelopmental disorder risk genes.  
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Figure 6.14. Impact of singleton SV variant burdens on current cognitive ability. The 

coloured points represent effect sizes, and the horizontal lines 95% confidence 

intervals. SV = structural variant, UNK = unknown type, DEL = deletion, DUP = 

duplication, No Gene Set = variants not restricted by any gene set.  
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3.4.2 Estimated premorbid cognition 

Figure 6.14 shows the effect sizes for all SV variant burden metrics on premorbid 

cognition, including number of variants tested and 95% confidence intervals. Figure 

6.15 shows effect sizes for singleton SV variant burden metrics on estimated 

premorbid cognition. Nominally significant associations were found for the overall 

burden of SVs (p = 0.0173), burden of SVs excluding SVs of unknown type (p 

0.0229), and burden of duplications (p = 0.0455), but effect sizes were positive 

(overall burden: beta = 0.13; excluding unknown types: beta = 0.15; duplications: 

beta = 0.2) and no result was significant after multiple testing correction (overall 

burden: q = 0.42; excluding unknown types: q = 0.42; duplications: q = 0.45). Null 

results were found when restricting the analysis to singleton SVs (Figure 6.16) and 

SVs affecting LoFi or NDD-risk genes (Figure 6.15). 
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Figure 6.15. Impact of SV variant burdens, including non-singletons, on estimate 

premorbid cognitive ability. The coloured points represent effect sizes, and the 

horizontal lines 95% confidence intervals. SV = structural variant, UNK = unknown 

type, DEL = deletion, DUP = duplication, No Gene Set = variants not restricted by 

any gene set,  LoFi = variants impacting loss-of-function intolerant genes, NDD-risk 

= variants impacting neurodevelopmental disorder risk genes.  
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Figure 6.16. Impact of singleton SV variant burdens on current cognitive ability. The 

coloured points represent effect sizes, and the horizontal lines 95% confidence 

intervals. SV = structural variant, UNK = unknown type, DEL = deletion, DUP = 

duplication, No Gene Set = variants not restricted by any gene set. 
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3.4.3 Combined analysis of SVs and rare coding variants 

In previous work, ultra-rare coding variants (URCVs) were previously associated with 

current cognition and estimated premorbid cognition in the current sample (Creeth et 

al 2021). For both cognitive measures, I performed a combined analysis of URCVs 

and deletions in LoFi genes and NDD genes, given deletions had the strongest point 

estimate effect size for lower current cognition. However, the combined analysis of 

URCVs and deletions in LoFi genes did not increase the negative effect sizes of the 

URCVs tested separately on current cognition (Figure 6.17). For current cognition, 

adding deletions in NDD genes to the equivalent URCV burden test did marginally 

increase the negative effect size (difference = -0.015), however there were only two 

deletions impacting NDD-risk genes (Figure 6.17). This trend was not observed for 

estimated premorbid cognition. Figures 6.17 and 6.18 show the effect sizes for gene 

set variant burden metrics tested separately and combined, for each cognitive 

measure, including number of variants tested and 95% confidence intervals. 

 

 

Figure 6.17. Impact of combined structural variant and ultra-rare constrained variant 

burdens affecting loss-of-function intolerant and neurodevelopmental disorder risk 

genes on current cognitive ability. The coloured points represent effect sizes and the 

horizontal lines are 95% confidence intervals. SV = structural variant, URCV = ultra-

rare constrained variant, LoFi = variants impacting loss-of-function intolerant genes, 
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NDD-risk = variants impacting neurodevelopmental disorder risk genes. 

 

 

 

Figure 6.18. Impact of combined structural variant and ultra-rare constrained variant 

burdens affecting loss-of-function intolerant and neurodevelopmental disorder risk 

genes on premorbid cognitive ability. The coloured points represent effect sizes, and 

the horizontal lines are 95% confidence intervals. SV = structural variant, URCV = 

ultra-rare constrained variant, LoFi = variants impacting loss-of-function intolerant 

genes, NDD-risk = variants impacting neurodevelopmental disorder risk genes. 

 

4. Discussion 

4.1 Discussion of rare structural variants called by InDelible  

The research reported in this chapter aimed to test whether the InDelible SV calling 

algorithm could identify SVs that are typically missed from array-based SV studies 

that contribute to variation in cognitive ability in schizophrenia. To do this, I identified 

375 rare SV events in 290 (31.2%) COGs participants, with a median SV size of 

32bp. To evaluate whether the size and frequency characteristics of the SVs 

identified in the current study are as expected, it would have been useful to compare 

the SV calls I made with those presented in the the original InDelible DDD study 

(Gardner et al., 2021), which to my knowledge is the only published study that has 
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used InDelible. However, as described in section 3.4 chapter 2, the DDD study 

designs differs too much from the current study to enable a statistically meaningful 

comparison of results. Nevertheless, I can still assess whether my findings are 

broadly commensurate with the SV types and sizes described in the DDD study.  

 

In both the DDD and current study, deletions are the most prevalent SV type. They 

constitute 32 (51%) of the novel SVs that were assigned a type in the InDelible 

paper, and 118 (43%) of SVs that were assigned a type in my results. Duplications 

are second most common SV type in both studies, making up 18 (28.6%) of novel 

SVs and 60 (21.8%) of the SVs I identified. The third most common type in the DDD 

study are complex-deletion/insertions, which make up 8 (12.7%) of the novel SVs. I 

did not detect any instances of this event type in the current study, but I did identify 9 

(3.3%) complex-duplication/insertions. The third most common event type in the 

current study was both pseudogene retrotranspositions and simple insertions, which 

constituted 9.6% of the SVs with 36 instances of each. The former are not reported 

in the InDelible DDD study, as that study only considered SVs that affected known 

NDD-risk genes, and a limitation of pseudogene retrotranspositions is that it is not 

possible from exome sequencing data to determine where in the genome these 

events are inserted, thus we cannot know if they impact NDD-risk genes.  

 

There was only 1 simple insertion in the DDD results. It is possible that that some of 

the 36 simple insertions I reported have been misclassified, given that they can only 

be classified through manual inspection, and in some cases would be 

indistinguishable from an SR cluster associated with a large deletion that happened 

to fail both BWA and BLAST alignment. Sixteen retrotranspositions of other types 

were identified in COGS, and one in the DDD results (an Alu). Two translocations 

were identified in DDD results and one in my results. Thus, the only event type in the 

DDD results that was not identified in COGS is complex-deletion/insertion.  

 

26.8% (n = 91) of the SVs identified were between 21-50bp in length, confirming that 

it is variants in this size range that InDelible is most sensitive to detect. Also in 

keeping with the InDelible DDD results, the size ranges with the fewest number of 

variants were 1-5 bp (0.2%, n = 1) and >10kb (0.8%, n = 3), demonstrating that 

InDelible is largely insensitive to point mutations/small indels and large structural 
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variants. As the DDD authors suggest, then, the algorithm does indeed target a class 

of variants that are under-reported in the literature, and whose clinical impacts are 

largely unknown.  

 

In summary, the types and size distribution of the rare SVs identified in the current 

study are broadly commensurate with those reported in the DDD study: Deletions 

and duplications are the most common SV type in both results, and all but one event 

type identified in the DDD study were also in my results. The vast majority of SVs I 

identified were also in the size range InDelible is most sensitive to, validating the 

findings of its developers.  

 

4.2 Comparison of InDelible and CLAMMS call sets 

3 of 35 (8.6%) of InDelible CNVs that were larger than the smallest CLAMMS CNV 

(160bp) were called by CLAMMS. This validation rate is consistent with the 

differential sensitives of the two call algorithms: InDelible is largely insensitive to 

variants >100bp, while CLAMMS is largely insensitive to variants <1kb. Therefore, 

CLAMMS cannot be used to validate large InDelible CNVs (and vice versa). In 

addition, 2/36 (5.6%) pseudogene retrotranspositions called by InDelible were called 

as duplications by CLAMMS. The CLAMMS call intervals were much larger than the 

size dictated by the number of exons that were found to be included in these events 

by InDelible. This is expected, as CLAMMS intervals include the intronic regions 

between the exons. However, the event that was found to implicate only 1 exon was 

called as larger than the event that implicated 6 exons, suggesting that InDelible may 

also have missed SR clusters associated with the former. These findings also 

suggest that CLAMMS is largely insensitive to pseudogene retroreptranspositions 

(as it missed 94% of those detected by InDelible), though this may more a function of 

their small size rather than their type.  

 

4.3 Association between rare structural variants and cognitive ability in 

schizophrenia 

For any type or frequency of SV tested in the current study, no significant association 

was found between SV burden and current cognition. Overall SV burden, SV burden 

excluding SVs of unknown type, and duplication burden were nominally associated 

with estimated premorbid cognition. However, effect sizes were all positive and no 
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result remained significant after correcting for multiple testing, indicating that these 

results were likely false positive.  

 

When I restricted the analysis to the overall burden of deletions, the point-estimate 

for the effect size of these SVs on both cognitive measures was trending in a more 

negative direction than that of duplications. This is in line with previous findings 

(including those reported in chapter 5) that show deletions have stronger effects on 

cognition in schizophrenia compared with other types of SV. However, if InDelible 

has a greater accuracy for calling deletions compared with other SV types, this might 

also contribute to the weak evidence for deletions having an effect on lower 

cognition.  

 

When the analysis of deletions was further restricted to those occurring in LoFi or 

NDD-risk genes, weaker effects were found on both current and estimated 

premorbid cognition in all cases except small deletions affecting NDD-risk genes on 

estimated premorbid cognition. This pattern of effects contrasts with findings made 

from recent studies of rare coding variants and cognition in schizophrenia, where 

rare coding variants in LoFi and NDD genes had stronger effects on cognition. 

However, the effects from deletions on observed in the current study are based on a 

very small number of variants, have very large confidence intervals, and are not 

significant. Therefore, larger, and better powered studies of SVs discovered using 

InDelible are required to determine whether this type of SV truly contributes to 

cognition in schizophrenia.  

 

Power could be improved by increasing the number of variants tested through 

implementing a less conservative QC thresholds, such as lowering the prob_y filter 

from > 0.8 to > 0.6; however, a critical issue of this would be the time-based 

restrictions on effective manual inspection that comes with a significantly larger call 

set, as I have shown that manual inspection is crucial for excluding artefacts in this 

data, particularly in the Broad subcohort. Without manual inspection of SVs in the 

larger call set, relaxing the QC would likely increase the number of false positive 

calls, and thus reduce the power of the current study.  
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The InDelible SV calling algorithm is relatively new and has not been widely tested. 

Therefore, it is important to note that unlike PTVs or large CNVs, no methods have 

been developed to prediction the impact of small SVs discovered by InDelible on 

protein function. While this is a limitation of the current study, I hypothesised that 

InDelible SVs affecting LoFi genes were more likely to have pathogenic effects than 

SVs in non-LoFi genes, given the previous evidence for association between other 

classes of rare mutation and lower cognition in schizophrenia. Nevertheless, the 

current study could be improved by first predicting the consequence of each variant 

on protein conformation and stability, and selecting only those that are likely to cause 

disruption (Sudmant et al., 2015). Bioinformtic tools such as I-Mutant (Capriotti et al., 

2005) can use thermodynamic data to predict the impact of point mutations on 

protein stability. 

 

4.4 Combined analysis of deletions and ultra-rare constrained variants  

Adding deletions impacting LoFi genes to the URCVs did not increase the negative 

impact of URCVs tested separately for either cognitive measure. Adding deletions 

impacting NDD-risk genes to URCVs did marginally increase the impact of URCVs 

test separately, but only in the cases of current cognition. Moreover, there were only 

2 deletions in this set, and they were not separately associated with cognitive 

deficits. Despite affecting fewer bases, the likely reason why the URCVs have a 

greater impact on cognitive deficits than the SVs is due to how they are defined. 

While it is more likely that a random SV of any size will be more deleterious than a 

random point mutation of the same AF, just as a function of the number of bases 

impacted, the selection criteria for URCV is based on whether they alter protein 

coding to such an extent they are selected against. As no analogous criteria could be 

applied to the SVs, given that their impact on protein coding and their relative 

prevalence in the general population is unknown, many if not most will have a more 

minimal impact on protein coding of LoFi and NDD genes than any of the URVCs. 

Deriving and applying such criteria to the SVs would make for a more valid 

comparison of the two variant types.  

 

4.4 Differences between Cardiff and Broad subcohort 

Throughout the QC process, multiple differences between the COGs subcohorts 

were observed. First, despite consisting of 1.2x more samples, 15.5x more calls 
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were in the initial InDelible output for the Broad subcohort. Figure 6.1 shows there is 

a strong correlation between sample coverage and number of calls, such that 

coverage difference between subcohorts is the main factor behind this discrepancy. 

However, the shapes of the distributions for number of calls was also different: The 

Broad subcohort had a right-skewed distribution (Figure 6.2), while the Cardiff had a 

normal distribution (Figure 6.3). As the number of calls in the SCZ trios also had a 

normal distribution, it seems that the distribution for the Broad subcohort is atypical, 

possibly indicating that a greater proportion of samples have an excess of 

artefacts/false positive calls. Moreover, 14.7% more calls were filtered from the 

Broad subcohort by the prob_y filter, which is intended to exclude calls with a low 

probability of indicating real SVs and therefore also suggests that these samples 

contain a higher proportion of false positive calls.  

 

Manual inspection of rare SVs confirmed this hypothesis, as 96% of calls that were 

excluded as artefacts were called in Broad-sequenced samples. I also observed a 

kind of artefact that was unique to this subcohort, indicating systematic errors during 

the sequencing process that did not occur for the Cardiff subcohort. This goes to 

show that batch effects can produce SR patterns that cannot be detected in all WES 

data samples, and so may not be detected as artefacts if the SV caller is 

tested/trained on one dataset only. It also highlights the critical importance of manual 

inspection of split reads, to detect idiosyncrasies in data to which the algorithm and 

automated QC steps are not sensitive.  

 

4.5 Summary  

 In this chapter I have presented research that involved application of the InDelible 

algorithm to detect small, rare structural variants in WES trios sample consisting of 

927 cases. I identified 375 rare SV events in 290 (31.2%) participants, ranging from 

5bp to 57kb in size. I then assessed the impact of SV burden on cognition, finding no 

association of any variant burden metric with either cognitive measure. Combining 

variants with URCV also did not improve the effect size observed for the latter tested 

separately. It is likely that my study had limited power, however, and further work 

needs to be carried out to understand the deleteriousness of small SVs, to design a 

study that will be able to effectively reveal their impact on cognition.  
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Chapter 7: General Discussion  

 

1 Summary of thesis aims 

In section 3 of chapter 1, I listed 3 overarching thesis aims, which are restated 

below: 

 

1) Assess the overlap and differences between rare SV call sets generated by the 

two calling algorithms in WES data, and call sets previously generated from the 

same data using genotyping microarrays. 

 

2) Identify de novo SVs in the schizophrenia trios data and use findings from 

previous rare and common variant studies to determine any putative candidate 

schizophrenia risk genes that are impacted by SVs. 

 

3) Test rare SVs for association with cognitive deficits, with particular focus on the 

role of SVs at the smaller end of the size spectrum. 

 

In the following sections I discuss each of these aims in turn, assessing the extent to 

which my research has met them. I also discuss the limitations of CLAMMS and 

InDelible and how future studies of SVs in schizophrenia could build on my findings 

 

2 Discussion of thesis aims  

2.1 Discussion of Aim 1 

Using CLAMMs and InDelible, I generated four sets of calls, two per WES data set 

analysed. The first two were de novo call sets, called across 616 schizophrenia 

probands. CLAMMS identified 9 putative de novo CNVs in 9 (1.5%) individuals: 7 

deletions and 2 duplications (Table 3.3). InDelible, meanwhile, identified 15 putative 

de novo SVs in 15 (2.4%) individuals: 2 pseudogene retrotransposons, 7 deletions, 1 

duplication, 1 insertion, 1 complex-insertion/deletion, 1 complex-insertion/duplication, 

and 2 SVs whose type could not be determined (Table 4.3). There was no overlap 

between the call sets due to the differential sensitivities of the callers. CLAMMS is 

only sensitive to CNVs and its lower discovery resolution is approximately the size of 

a human exon (~150bp). InDelible, on the other hand, calls all SV types except 
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inversions, is most sensitive to SVs 21-50bp in size, and is largely insensitive to 

variants >100bp. The smallest de novo event identified by CLAMMS was 27kb, and 

the largest identified by InDelible was 12.5kb.  

 

My findings suggest that the rate of de novo SVs that can be called by InDelible is 

greater than the rate that can be called by CLAMMS, at least in the context of 

schizophrenia. As about the same number of de novo CNVs were identified by each 

algorithm (8 by InDelible, 9 by CLAMMS), this is a function of the broader number of 

SV types called by InDelible. However, given that InDelible had a significantly higher 

false negative rate, according to call validation tests carried out by its developers, 

compared to CLAMMS (see sections 2.3.1 and 3.4.1 of chapter 2), it is plausible that 

the actual difference between de novo SV rates in the small (<150bp) and large size 

ranges is greater than is indicated by my results. To my knowledge, however, the 

expected difference has never been robustly investigated, likely because small SV 

callers like InDelible are a very recent development. 

 

Seven of nine of the de novo SVs identified by CLAMMS were also identified by 

PennCNV in the array data for the same individuals, though one of the carriers was 

not genotyped. Moreover, 6/10 de novo CNVs identified by PennCNV were validated 

by CLAMMS, though one was found to be a transmission. An additional 3 were 

called by CLAMMS but were filtered during sample-level quality control. A 2kb 

duplication was not called by CLAMMS, but due its small size is likely to be a false 

positive in the array data. Thus, combining CLAMMS and PennCNV can increase 

power to detect de novo CNVs if both WES and array data are available, or can used 

as a method for call validation. Given the high degree of overlap between these call 

sets, however, it can also be argued that the use of only one method is sufficient.  

 

The second rare SV call sets I produced were called across 927 schizophrenia 

cases in the Cardiff COGS cohort. CLAMMS identified 977 rare CNVs in 556 (61%) 

participants: 352 deletions and 627 duplications. InDelible identified 478 rare SVs in 

375 individuals: 119 deletions, 58 duplications, 36 simple insertions, 9 complex-

duplication/insertions, 2 small tandem repeats, 1 translocation, 36 pseudogene 

retrotranspositions, 16 retrotranspositions of other types (SINE, Alu etc.), and 100 

SVs whose type could not be determined (Figure 6.7). The smallest CNV called by 
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CLAMMS was 160bp, ~100bp larger than InDelible’s target size range. However, 35 

(8.6%) of InDelible CNVs were larger than 160bp, 3 of which were also called by 

CLAMMS: two deletions and a duplication (Table 6.6). In addition, 2 CNVs called as 

duplications by CLAMMS were identified by InDelible as pseudogene 

retrotranspositions (Table 6.7). A discussed in chapter 6, this low rate of validation 

between the call sets consistent with their differential sensitives and demonstrates 

that the two callers can be used for mutual validation of calls. However, it also shows 

there can be convergence of coverage depth and split reads as evidence for the 

same events. 

 

Eight hundred and sixty-six of the rare CNVs identified CLAMMS were carried by 

individuals for whom array data was available. Three hundred and twenty-one of 866 

(37%) of the CNV were identified by PennCNV, a modest degree of overlap. Much of 

this was driven by large (>100kb) events.  One hundred and thirty-nine of 193 (72%) 

of large events called by CLAMMS were also in the array data, compared with 

182/673 (27%) of small events. Orthogonal evidence is required to determine if the 

low degree of overlap between small events is primarily due to a high positive rate 

among CLAMMS calls, or the low sensitivity of PennCNV to these events. As 

CLAMMS has been demonstrated to have a high (>90%) validation rate for variants 

as small as 1 exon in length (section 2.3.1 of chapter 2), there is reason to suppose 

the latter. However, of small 327 events called in the array data, 140 (44%) were 

validated by CLAMMS, indicating that the discrepancy in my results is not simply due 

to the lower number of small events detected in the array data. Again, there was no 

overlap between the InDelible and PennCNV call sets.  

 

In summary, assessing the overlaps between call sets generated by CLAMMS and 

InDelible showed that these methods are highly complementary, in that they mine 

different aspects of the data and are sensitive to different SV types and size ranges. 

One cannot be used to validate calls produced by the other, though there can be 

some overlap between their call sets. By applying both callers to the same data, 

however, SVs from across the broadest possible size range can be identified, 

ranging from 10bp to several megabases. Assessing overlaps between CLAMMS 

and PennCNV call sets showed significant overlap in the case of large (>100kb) 

CNVs, such that only one approach is sufficient for studies that are primarily 
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interested in such events. There is evidence that CLAMMS is much more sensitive to 

smaller events, though orthogonal support is required to confirm this. 

 

2.2 Discussion of Aim 2 

As mentioned above, 9 de novo CNVs were detected in the WES trios data by 

CLAMMS, and 15 by InDelible. I found that 2 of the de novo CNVs called by 

CLAMMS were instances of the 11 known SCZ-risk CNVs: 3q29 deletion and 

22q11.2 deletion. This demonstrates that pathogenic CNVs can be successfully 

identified by CLAMMS. Another CNV was a deletion of 16p13.11, a locus for which 

only duplications have been conclusively shown to increase SCZ risk, though an 

excess of the deletion has been previously reported in cases (Ingason et al., 2011). I 

also found evidence that a further 2 deletions may confer SCZ risk: Chr18:163305-

5478439 deletion was found to disrupt DLGAP1, a gene with nominal association (p 

< 0.05) in SCHEMA, and which had been implicated previously in a SCZ de novo 

CNV study (Kirov et al. 2012); and Chr10:18242203-19896831 deletion, which 

overlaps a locus within the CACNB2 gene that was significantly associated with SCZ 

in the PGC3 GWAS (Trubetskoy et al. 2022), and was still implicated after fine-

mapping. DLGAP1 and CACNB2 are expressed at the post-synapse and play roles 

in synaptic organisation and plasticity (Rasmussen et al., 2017; Dolphin, 2012). It is 

therefore plausible that both CNVs confer SCZ risk in their respective carriers.  

 

Variants affecting genes with a high probability of loss-of-function (pLI) have 

consistently been found to be enriched in SCZ cases (Singh et al., 2022). Two of the 

small SVs identified by InDelible occurred within high pLI genes: a 19bp deletion in 

ATN1 (pLI =  0.97) and a 32bp complex-insertion/duplication in CTNNA1 (pLI = 1). 

While neither of these genes have been previously implicated in SCZ case/control 

association studies, they are plausible candidate risk genes. ATN1 has been 

implicated in neurodevelopment, specifically the differentiation of neural progenitor 

cells, psychotic symptoms have been reported in dentatorubral-pallidoluysian 

atrophy cases, a neurological disorder caused by a CAG trinucleotide repeat 

expansion in this gene. CTNNA1 has a clear role in synapse development and 

maintenance (Arikkath & Reichardt, 2008), and knock-out mice show deficits in fear-

potentiated startle response (Park et al., 2002), a phenotype that is also evident in 

schizophrenia cases. 
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Thus, I have shown that both CLAMMS and InDelible can detect de novo variants in 

schizophrenia cases that affect established and plausible schizophrenia-risk genes. 

Deriving the precise functional consequences of the CLAMMS variants is 

complicated, as they impact more genes than just those I have discussed, and likely 

also affect promotor regions for genes that are outside the deleted locus. It is much 

simpler in the case of the InDelible variants, however, as their functional impact is 

likely to be limited to their predictable effects on protein conformation and stability. 

While it was beyond the scope of my thesis to explore these effects, I think it will 

prove to be an important aspect of detecting small SVs that are likely to be 

pathogenic in future work.  

 

2.3 Discussion of Aim 3 

I tested both the CLAMMS and InDelible rare SV call sets generated from Cardiff 

COGS participants for association with current and estimated premorbid cognitive 

ability, focusing primarily on small (<100kb) variants that are outside the discovery 

resolution for reliable detection by PennCNV. I found that small CLAMMS CNVs 

affecting loss-of-function intolerant (LoFi) genes were not associated with current or 

premorbid cognition, though the effect sizes for deletions were trending in the 

expected negative direction (Tables 5.14 & 5.16). Small deletion affecting 

neurodevelopmental disorder-risk genes were associated with estimated premorbid 

cognition, though there were only three variants in this test set. The effect size for 

small deletions affecting LoFi genes was trending in the expected negative direction, 

and there is no sign that small duplications negatively impact cognition. Testing small 

deletions without gene set restrictions produced a nominal association with 

estimated premorbid cognitive ability, however, suggesting that the absence of signal 

for the smaller, theoretically more deleterious variant sets is due to low power. Taken 

together, these results do suggest that small deletions impact cognition in 

schizophrenia and provide sufficient grounds for repeating the analysis in larger 

samples.  

 

My exploratory analysis of larger variants showed that large deletions, but not 

duplications, are associated with lower current and estimated premorbid cognitive 

ability. Consistently with previous studies, negative effect sizes increased when 
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variants were restricted to those affecting LoFi and NDD-risk genes, providing further 

evidence that disruption of these gene sets produces cognitive deficits that are partly 

independent of schizophrenia progression. There is no evidence in my results that 

large deletions impact one cognitive measure more greatly than the other. 

Restricting variants to those that were also identified in the array data did not, 

generally, improve power to detect variants that impact cognition. Given that large 

CNVs are known to negatively impact cognition, this may indicate that the large 

CLAMMS CNV call set contains fewer false positives than the PennCNV call set. 

 

In a follow-up study, I tested a subtype of large, rare deletion in the 22q11.2 locus – 

central deletion - that was associated with current cognitive deficits in Cardiff COGS 

for cognitive and neuropsychiatric effects in the UK Biobank (UKB). This event 

occurs at the distal end of the DiGeorge Syndrome locus and has been associated 

with a less severe DGS-like phenotype in clinical studies (Burnside, 2011). I found 

that it was associated with speed-of-processing deficits in the UKB and observed 

non-significant deficits for the other 5 domains tested. In addition, central deletions 

negatively impacted functional outcomes that are highly correlated with cognitive 

ability and were associated with anxiety disorder case status. In line with previous 

studies, these findings show that CNVs associated with lowered cognition in 

schizophrenia also impact cognition in the general population. It is unknown whether 

22q11.2 central deletions confer risk for schizophrenia, however, and there were not 

enough SCZ cases in the UKB to test this. Future work on this variant will involve 

testing its incidence in a large schizophrenia case-control data set.  

 

Testing rare SVs produced by InDelible for association with cognition gave highly 

inconclusive results. Without gene set restrictions, no SV burden was associated 

with cognitive deficits, though deletions had a marginally more negative effect size 

than duplications. Overall SV burden and duplication burden were nominally 

associated with estimated cognitive enhancements, though these results were not 

significant after multiple testing corrections were applied.  Restricting deletions by 

gene set only produced a more negative effect size for deletions in NDD-risk genes 

on current cognitive ability, though only 2 variants were included in this test and the 

effect was non-significant. Combining deletion burdens with URCVs called by 

(Creeth et al. 2021) had minimal or no impact of the negative effects of URCVs 
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tested separately. Overall, these results are not surprising when compared to those 

of the small CLAMMS deletions. If there is limited power in this data to detect the 

impact of variants <100kb but >100bp, power should be even more limited to detect 

the impact of variants < 100bp in size. As discussed in chapter 6, however, the 

reason why significant associations were detected for URCV is because they were 

restricted to those variants that are known to have a deleterious impact on protein 

structure – PTVs and damaging missense variants. To increase power to detect any 

impacts of InDelible SVs in future studies, similar criteria should be implemented 

before testing.  

 

To summarise, my findings corroborate previous studies that showed associations 

between large, rare deletions, particularly those affecting LoFi and NDD-risk genes, 

and cognitive deficits in schizophrenia. They also contain suggestive evidence for 

association of rare deletions <100kb with cognitive deficits, a variant class that has 

been hitherto untested in the context of schizophrenia. Future studies of these 

variants should be conducted in larger samples, and for rare SVs <100bp more work 

should be conducted to determine their precise functional impacts in order to the 

isolate variants that are most likely to be clinically significant.  

 

3 Limitations of SV callers 

3.1 Limitations of CLAMMS 

The main limitations of the CLAMMS algorithm are associated with choosing a 

reference panel size (k) that optimally controls for batch effects. While the minimal 

computational resources required to generate the reference panels themselves is the 

main reason why CLAMMS is more computationally efficient than alternative 

algorithms, the optimal k cannot be known a priori, requiring implementation of the 

whole calling and qc pipeline for number of values. This could be prohibitively time 

consuming for larger samples, in addition to producing a large amount of output 

data. Appropriate metrics by which call error rates can be tested must also be 

available (transmission rate for SCZ trios; array overlap and sample drop out for 

Cardiff COGS). However, this is not strictly necessary for producing calls, as the 

CLAMMS authors recommend a default k of 100 based on their own analyses. Also, 

it is likely that only a few k’s need to be tested to gauge the most appropriate size, as 
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I showed in the CLAMMS analyses of the trios. I decided to test 40 values of k in the 

COGS analyses as I wanted to assess the differences in batch effects between the 

Cardiff and Broad subcohorts, in addition to selecting the optimal k.  

 

A limitation of the CLAMMS CNV output is the imprecise estimation of CNV size, a 

consequence of basing calls on exon coverage only. CNVs whose breakpoints occur 

with intronic regions will always be called smaller than they are by CLAMMS. This is 

not a large limitation if researchers are primarily interested in the genes that are 

affected by CNVs, but it does mean that functional analyses of CNV impacts cannot 

be precise. For example, there may be a promotor region in an intronic region that is 

affected by a CNV but is not included in the CLAMMS call interval for that CNV as it 

occurs prior to the first exon which that CNV affects. Array-based approaches face a 

similar limitation if probe density around CNV breakpoint is low, but typically allow for 

more precise estimation of breakpoint positions. Application of methods similar to 

CLAMMS in whole genome sequencing (WGS) data would not have this limitation 

however, as coverage for all intronic regions can be modelled, allowing for much 

more precise breakpoint estimation than WES and array-based methods.  

 

Another limitation that is very specific, and observed during my analysis, is the 

tendency of CLAMMS to misclassify pseudogene retrotranspositions as duplications. 

This does not appear to be a significant issue, as only 2/35 such events were 

identified by CLAMMS in the Cardiff COGs data, and the others were either not 

called or filtered by quality score criteria. However, it does highlight the fact that non-

CNV events can produce deviations in coverage that can be captured by a 

coverage-based WES caller, and there is no way to determine such errors based on 

the call data alone. Researchers ought to be cognisant of this, and check for 

misclassifications using alternate methods (such as InDelible) if possible. However, 

this would not be a limitation for WGS analysis, which would likely call such events 

as duplications at successive exons, given that the corresponding lack of coverage 

deviation between exons would be recognised.  
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3.2 Limitations of InDelible   

Although InDelible is most sensitive to variants 21-50bp in size, it still only detected 

~50% of known variants in this size range that had been previously detected in the 

DDD study (Gardner et al 2021). Thus, InDelible cannot be used, at least on its own, 

to assess the general population rates of its targeted variants even in sufficiently 

large samples, or to ascertain variant prevalence in case/control samples. However, 

this does not undermine the utility of InDelible to detect potentially pathogenic 

variants in clinical samples, as the authors demonstrated in the DDD study, and is 

indicated by own analyses.   

 

InDelible assigned an SV type to 1.2% and 3% of calls in the initial output of the SCZ 

trios and COGS Cardiff subcohort analyses, respectively. In the DDD study, the 

authors reported that InDelible assigned a type to 10.2% of the initial output. 

However, the median coverage depth across the DDD cohort is 90X, compared with 

30x for the SCZ trios and the COGS Cardiff subcohort. Thus, the greater proportion 

of variants whose type could be determined in the DDD study is most likely due to 

differences in coverage depth. At higher coverage depth, not only will a given SR 

cluster will have more SRs, but the average length of misaligned bases in the SRs 

will be longer, thus increasing the likelihood of a valid alignment when the longest 

misaligned sequence is run through BWA-MEM or BLAST, and in turn the likelihood 

of InDelible assigning an SV type to a call.  

 

The Broad subcohort does have approximately the same coverage depth as the 

DDD cohort, but an even lower percentage of SV type assignments than both the 

Cardiff subcohort and the SCZ trios (0.7%). My analyses strongly suggest, however, 

that there were large, systematic errors introduced during the sequencing process 

for the Broad subcohort, producing many split reads artefacts that were detected by 

InDelible, and are likely to have confounded the correlation between coverage and 

SV type assignment rate.  

 

Moreover, to account for sequence homology and SNPs the recommended minimum 

sequence length is 22 for both BLAST and 19 for BWA-MEM, which are both 

implemented in InDelible. 76.6% of calls in the initial SCZ trios’ output have a longest 

misaligned sequence that is < 19 bases, and thus could not be assigned an SV type 
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by default. Of those calls whose longest misalignment is > 22 bases, there was no hit 

for 61%. This does not in itself present an issue, as most unfiltered calls will be 

based on artefacts in the data and should therefore be expected to not have a valid 

SV type. However, there will be a significant number of calls that are based on real 

events that have a longest misalignment < 19 due to low coverage. Altering 

implementation of the alignment tools in InDelible such that the minimum sequence 

length can be lowered to better fit the data is unlikely to significantly improve the rate 

of SV type assignment in the SCZ trios, as homology among small sequences would 

result in multiple off-target hits. While SV type can also be independently ascertained 

from manual inspection, in the analysis of larger samples or more common variant 

sets this could be prohibitively time consuming, limiting the scalability of InDelible for 

data with lower coverage.  

 

I found that InDelible misclassifies calls indicative of pseudogene retrotranspositions 

as deletions affecting inter-exonic regions. This is not unexpected, given that the SR 

pattern of clusters at the 5’ and 3’ ends of successive retrotransposed exons 

corresponds to that of a deletion, and in its current form InDelible does not include 

code to correctly identify these events if they do not appear in the repeated 

sequence database mined by BLAST. However, an additional criterion could be 

added to the SV type identifier script, which assigns this SV type when successive 

clusters occur at the junctions of exons. It is extremely unlikely that any other SV 

types will have breakpoints at precisely these positions so the possibility of 

misclassification would be minimal.  

 

Calculation of SV size by InDelible is also dependent on there being a unique BWA-

MEM alignment for soft-clipped bases, as the algorithm uses this alignment to 

estimate the other breakpoint position for a given call. Thus, size can only be 

calculated for unbalanced events, as insertions will have no unique alignment and/or 

repeat BLAST hits (in the case of MEIs), while translocations will align in most cases 

to another chromosome. This is not a limitation of the algorithm in the case of large 

insertions and MEIs, as it is not possible to determine the other breakpoint if no 

unique alignment position has been found. However, in the case of small insertions 

that can be nested within reads (<10bp), code could be implemented to mine CIGAR 

alignment strings in reads adjacent to SR clusters to discern the length of any nested 
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insertions that occur at the same positions. InDelible already checks this information 

in SR Clusters to identify complex events, for example where an insertion is nested 

within a copy of duplicated sequences. I described in section 3.5.5 of chapter 2 how 

in some cases the precise size of translocations can be calculated from their 

associated SR Cluster positions on different chromosomes. It is possible to 

implement this calculation in a script, though unlike in the case of deletions and 

duplications, both SR Clusters would need to be paired at a prior analysis stage as 

there is no way to determine both breakpoints from one cluster alone. 

 

4. Implications for future studies  

My findings have several implications for how future studies of SVs in schizophrenia 

should be conducted. First, if the purpose of a study is to detect rare, large CNVs, 

large de novo CNVs, or CNVs impacting schizophrenia-risk loci, impacting protein-

coding regions, it is not necessary to implement both WES and array-based 

methods, as I found CLAMMS and PennCNV have approximately the same 

sensitivity for detecting such events. Call sets do not overlap completely though, and 

if both approaches can be used it is likely to yield a small number of events that 

would not be detected if only one of them was applied. Given that only large 

deletions called by CLAMMS were negatively associated with current cognition in 

COGS, however, there is some evidence that the CLAMMS call set may contain 

fewer false positive calls. And based on the raw number of small (<100kb) deletions 

called by each algorithm, as well the nominal association of small deletions called by 

CLAMMS with estimated premorbid cognition in COGS, there is evidence that 

CLAMMS is more sensitive to small events than PennCNV and should thus be the 

preference in studies investigating these events. My analysis of the impact of small 

events on cognition was limited by power, however, so future studies should also 

include larger samples.  

 

I have shown that mining split read information in WES data can yield calls for 

events of types and sizes that are entirely undetectable in array data. Thus, WES 

data should be generated over array data if researchers are to investigate the 

broadest possible range of SVs. While my de novo analysis of InDelible calls 

produced events that impact plausible schizophrenia risk genes, my analysis of the 
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impact of these events on cognition was highly inconclusive. Limited power was 

likely the main issue, but also not including methods and criteria than can filter 

variants based on their likely functional impacts (in addition to their occurrence within 

LoFi/NDD-risk genes). Future studies, even in larger samples, may still be limited by 

power issues if they do not include methods to this effect. Moreover, the InDelible 

algorithm could be improved by including code that is able to assign a broader range 

of SV types more accurately to calls, such as pseudogene retrotranspositions and 

simple insertions. However, as split read patterns associated with some events are 

complex, and batch effects can produce artefacts that are specific to data sets, 

manual inspection will always be needed to assign types to some events.  

 

Wide-spread implementation of short-read WGS will overcome many of the issues 

that beset WES SV callers. For example, the primary reason why InDelible is 

insensitive to large events is because there are significantly fewer of them than small 

events such that their breakpoints are unlikely to occur in exons. For the same 

reason, a caller like CLAMMS cannot use split read information to support its 

coverage-based calls. However, if all non-coding regions are also available for 

analysis, there would be no such limitations. SV callers could then implement both 

split read information and coverage depth, among other metrics, into their algorithms 

to call large events, producing a more valid call set than algorithms that only use one 

of these aspects of the data. In addition, breakpoints could be determined with high 

precision, so that functional analysis of calls can be much more precise than is 

currently possible with both WES and array-based SV calls.  

 

There are already several short-read WGS SV callers that implement such 

approaches. For example, SoftSV (Bartenhagen & Dugas, 2016) and Wham 

(Kronenberg et al., 2015) use both discordant read pairs and split reads to discern 

SV breakpoints, while SoloDel (Kim et al., 2015) uses discordant reads and 

coverage. Manta (Chen et al., 2016) and GRIDDSS (Cameron et al., 2017) leverage 

three aspects of WGS data: discordant read pairs, split reads, and assembly of 

sample genome relative to the reference. The latter is a relatively novel technique 

which uses graph-based assemblies of genomic loci, in which nodes correspond to 

loci while edges represent loci overlaps. Edges in a sample genome assembly that 

deviate from the reference can be evidence of structural variation. A benchmarking 
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study found that methods that use multiple aspects of the data, and especially those 

that implement some kind of genome assembly approach, tend to outperform others 

in both precision and recall (D. L. Camerson et al., 2019). In addition, methods that 

use split reads were found to be highly effective at resolving both breakpoints of SVs 

at single nucleotide-resolutions.  These methods will be instrumental in driving 

forward the understanding of structural variation generally, as well as in clinical 

contexts like schizophrenia. 
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