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Simple Summary: Bispecific T-cell engagers (BiTEs) and bispecific antibodies (BiAbs) have emerged
as novel therapeutic modalities in the treatment of advanced hematological malignancies. BiTEs and
BiAbs redirect T cells to attack tumors and facilitate T-cell-mediated cell death. Blinatumomab was
the first BiTE to display proof-of-concept with its remarkable contribution towards the treatment of
acute lymphoblastic leukemia. Nearly a decade later, several BiTEs/BiAbs targeting a range of tumor-
associated antigens have transpired in the treatment of multiple myeloma, non-Hodgkin’s lymphoma,
acute myelogenous leukemia, and acute lymphoblastic leukemia. This review summarizes the most
recent evidence emerging from clinical trials regarding the use of BiAbs and BiTEs in hematological
malignancies whilst highlighting the limitations of these therapeutic options and providing practical
insights towards overcoming these limitations.

Abstract: Bispecific T-cell engagers (BiTEs) and bispecific antibodies (BiAbs) have revolutionized
the treatment landscape of hematological malignancies. By directing T cells towards specific tu-
mor antigens, BiTEs and BiAbs facilitate the T-cell-mediated lysis of neoplastic cells. The success of
blinatumomab, a CD19xCD3 BiTE, in acute lymphoblastic leukemia spearheaded the expansive devel-
opment of BiTEs/BiAbs in the context of hematological neoplasms. Nearly a decade later, numerous
BiTEs/BiAbs targeting a range of tumor-associated antigens have transpired in the treatment of mul-
tiple myeloma, non-Hodgkin’s lymphoma, acute myelogenous leukemia, and acute lymphoblastic
leukemia. However, despite their generally favorable safety profiles, particular toxicities such as
infections, cytokine release syndrome, myelosuppression, and neurotoxicity after BiAb/BiTE therapy
raise valid concerns. Moreover, target antigen loss and the immunosuppressive microenvironment of
hematological neoplasms facilitate resistance towards BiTEs/BiAbs. This review aims to highlight
the most recent evidence from clinical trials evaluating the safety and efficacy of BiAbs/BiTEs. Addi-
tionally, the review will provide mechanistic insights into the limitations of BiAbs whilst outlining
practical applications and strategies to overcome these limitations.

Keywords: bispecific antibody; antibodies; CAR-T; lymphoma; leukemia; multiple myeloma;
hematological cancer

1. Introduction

T-cell-redirecting strategies have emerged as highly promising therapeutic modali-
ties for the treatment of hematological malignancies. Notably, two approaches, namely
chimeric antigen receptor T cells (CAR-T) and bispecific antibodies (BiAbs), have shown
remarkable efficacy in the treatment of hematological malignancies. CAR-T cells have
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revolutionized the management of relapsed and refractory hematological malignancies
like multiple myeloma (MM), non-Hodgkin’s lymphoma (NHL), and acute lymphoblastic
leukemia (ALL) [1–4]. Despite CAR-T therapy’s remarkable success, its lengthy engineering
process—spanning approximately 6–8 weeks—can render some patients with advanced
disease ineligible for this therapy [5]. Furthermore, CAR-T therapy is often associated
with multiple end-organ toxicities, including severe neurotoxicity and cytokine release
syndrome (CRS), which may limit its utility, especially in patients with a lower performance
status or other comorbidities [6].

On the other hand, BiAbs and bispecific T-cell engagers (BiTEs) offer the T-cell-
redirecting capabilities of CAR-T as an off-shelf therapy whilst eliminating the logistical
and time constraints associated with CAR-T delivery. Additionally, BiAbs and BiTEs appear
to have a more favorable safety profile, with lower incidences of CRS and neurotoxicity
than CAR-T therapy [7].

The pioneering success of blinatumomab as the first BiTE demonstrated proof-of-
concept evidence with its remarkable contribution towards the treatment of ALL [8]. Nearly
a decade later, several BiAbs and BiTEs have emerged in the therapeutic landscape of hema-
tological neoplasms. This review summarizes the latest clinical trial evidence regarding the
use of BiAbs and BiTEs in hematological malignancies. Furthermore, it aims to highlight
the limitations associated with these therapeutic options and provide practical insights
towards overcoming these limitations.

2. The Biology of Bispecific Antibodies

Given that our focus is summarizing clinical data on the use of BiAbs in hematological
malignancies, a detailed discussion of the basic science of these drugs is beyond the scope
of this review and we direct readers towards other reviews that have explored this area in
greater detail [9,10].

2.1. Mechanism of Action

CAR-T therapy involves engineering a T cell to express a chimeric antigen receptor
(CAR) specific to a tumor-associated antigen. Administering CAR-T cells would hence
augment the anti-tumor immune response. BiAbs achieve a similar goal by containing
two binding sites, enabling them to bind two epitopes on the same antigen or two different
antigens [10,11]. One arm of the BiAb binds to the target tumor-associated antigen and the
other simultaneously binds CD3 on the surfaces of CD4+ helper T cells and CD8+ cytotoxic
T cells, resulting in the formation of an immunological synapse that activates T cells without
the need for T cell recognition of the MHC/antigen complex on tumor cells [10]. Activated
T cells release perforin and granzyme, resulting in the T-cell-dependent killing of tumor
cells via apoptosis. While BiAbs are a broad category of antibodies that target two antigens
or epitopes, the specific class of BiAbs that form immunological synapses between T cells
and tumor cells are called bispecific T-cell engagers (BiTEs). The BiAbs discussed in this
review are mostly BiTEs, and hence the two terms will be used interchangeably.

2.2. Resistance Mechanisms

Like other modalities of cancer treatment, tumors can become resistant to BiAbs/BiTEs
and consequently impair therapeutic efficacy. The administration of BiAbs imposes signifi-
cant selection pressures on tumor clones expressing the target tumor-associated antigen, but
inadvertently confer a selective advantage to sub-clones lacking the target antigen, resulting
in their expansion and resistance [12]. To counter this, combinatorial strategies of adminis-
tering multiple BiAbs or trispecific antibodies that target an additional tumor antigen have
been explored [12–14]. Additionally, specific genetic abnormalities in AML and ALL have
been associated with an inferior response to BiAbs/BiTEs, but the underlying mechanism
by which an adverse cytogenetic profile modulates the therapy response is unclear [15–17].
Specific tumor cells may also alter their intracellular signaling pathways in response to
T-cell-redirecting therapy, as one study showed that disrupted interferon-gamma signaling
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in HER2-positive tumor cells conferred resistance to killing by BiTE/CAR-redirected T
cells [18]. Alternatively, features extrinsic to the tumor cell, such as the strong presence of
regulatory T cells in the tumor microenvironment (TME), have been shown to modulate the
therapeutic response to BiAbs/BiTEs in multiple myeloma and B-cell ALL [19–22]. Lastly,
resistance may develop as a consequence of prior lines of cancer treatment itself, which can
lead to a loss of T cell fitness and anti-tumor function [23]. Long-term administration of
BiTEs can continually stimulate T cells, promoting their exhaustion and thereby promoting
tumor survival [24,25]. The specific mechanisms at play in different types of hematological
malignancies are discussed in their respective sections below.

3. Bispecific T-Cell Engagers and Antibodies in the Treatment of Multiple Myeloma

The introduction of protease inhibitors, immunomodulatory drugs (IMIDs), and anti-
CD38 monoclonal antibodies has significantly improved multiple myeloma (MM) patient
outcomes [26], but those with high-risk disease and adverse cytogenetic profiles often do
not respond to these treatments [27]. Such patients, often termed ‘triple refractory’, exhibit
poor survival outcomes [28]. In this regard, BiAbs and BiTEs have emerged as promising
additions to the MM treatment landscape, particularly for triple-refractory MM.

A prime target for BiTE therapy in MM is the B-cell maturation antigen (BCMA).
BCMA is selectively expressed on the surfaces of plasma cells and is associated with dis-
ease severity and unfavorable prognostic outcomes [29,30]. Teclistamab, a humanized
IgG BCMA-targeting BiAb, was recently approved by the European Medicines Agency
(EMA) and the Food and Drug Administration (FDA) for relapsed-refractory multiple
myeloma (RRMM) [31]. The MajesTEC-1 clinical trial demonstrated that teclistamab had
an overall response rate (ORR) of 63.0% and a complete response in 39.4% of 165 patients
during an average follow-up of 14.1 months [32]. The median duration of response and
progression-free survival was 18.4 months and 11.3 months, respectively. Adverse events
included grade 1–2 CRS, cytopenias, and infections [32]. Elranatamab, another BCMA
targeting IgG2A BiAb, has also shown promise in RRMM patients. It has obtained or-
phan drug designation by the EMA and FDA. The MagnetisMM-3 trial demonstrated an
ORR of 61.0%, with a complete response achieved in 27.6% of 123 enrolled patients with
triple-refractory MM during a median follow-up duration of 6.8 months [33]. CRS was the
most common side effect, with an otherwise manageable safety profile [33]. The recent
phase 2 LINKER-MM1 clinical trial explored the use of the anti-BCMA BiTE linvoseltamab
in triple-refractory MM, reporting an ORR of 64% in patients receiving a higher dose
(200 mg) compared to 50% for those on the lower dose (50 mg). Linvoseltamab demon-
strated a tolerable safety profile, with CRS and infections as the most common adverse
events [34]. ABBV-383, an anti-BCMA BiAb/BiTE, has the advantage of not requiring
step-up dosing, making it easier to administer and monitor. In a phase 1 trial, ABBV-383
achieved an ORR of 57% and a complete response in 29% of 124 RRMM patients [35].

The use of BCMA-targeting therapeutic modalities in MM may result in either the
decreased or complete loss of BCMA expression on MM cells and consequent antigen
escape [36]. To address this issue, researchers have explored the targeting of additional
antigens with BiTEs. G-protein-coupled receptor family C group 5 member D (GPRC5D),
expressed on neoplastic MM cells, is one such target [37]. The MonumenTAL-1 phase
1 clinical trial reported that talquetamab, an IgG4 Fc BiAb directed against GPRC5D,
demonstrated an ORR of 64–70% in 232 heavily pretreated RRMM patients [38]. The main
adverse events associated with talquetamab were CRS in 77–80% of patients (primarily
grades 1–2) and hematologic toxicity [38]. Talquetamab was additionally associated with
unique adverse effects of skin and nail disorders, likely explained by the expression of
GPRC5D in keratinized tissues and hair follicles [38]. However, the majority of these
particular adverse events were well tolerated in the MonumenTAL-1 trial [37]. Another
GPRC5D targeting BiTE, RG6234, demonstrated an ORR of 71.4% in RRMM patients during
a phase 1 clinical trial [39]. This trial also evaluated the response in patients who received
prior BCMA-targeting BiAb therapy, demonstrating an ORR of 55.6% in these patients [39].
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The Fc Receptor Homolog 5 (FcRH5) and CD38 have been considered potential targets
for BiAbs in MM [40]. Cevostamab, a humanized anti-FcRH5 IgG1 BiAb, elicited treatment
responses in patients previously exposed to CAR-T (44.4%), BiAbs (33.3%), antibody–drug
conjugates (50.0%), and BCMA-targeted therapy (36.4%) in an ongoing phase 1 study
enrolling 160 RRMM patients with a manageable safety profile, with grade 1–2 CRS being
the most common side effect, indicating its potential as a salvage therapy [41]. CD38,
a transmembrane glycoprotein, is expressed on neoplastic plasma cells in MM and is
a recognized component of the immunosuppressive TME [42]. ISB 1342, a CD3xCD38
BiAb/BiTE, demonstrated a manageable safety profile in 24 patients with RRMM during a
phase 1 dose-escalation study [43]. The development of novel targets for BiAbs in multiple
myeloma is still ongoing. Of particular interest is CD138, a transmembrane proteoglycan
that is highly expressed on the surface of neoplastic plasma cells [44].

These findings indicate that monotherapy with BiAbs holds tremendous therapeutic
potential in MM patients (Table 1). However, the ever-present risk of antigen escape
may hinder the efficacy of BiAbs. Combinatorial approaches targeting multiple antigens
simultaneously have been proposed to mitigate antigen escape. The RedirecTT-1 trial
enrolled RRMM patients to receive teclistamab and talquetamab, simultaneously targeting
BCMA and GPRC5D, respectively [45]. A total of 63 patients received this combination
therapy, achieving an ORR of 84% across all dosages [45]. Moreover, the ORR at the
recommended phase 2 regimen dose was 92%. CRS and cytopenias were the most common
adverse events [45]. Another potential mechanism to improve responses to BiAbs is to
upregulate target antigens to MM cells. For instance, inhibiting gamma-secretase, which
cleaves BCMA and releases it into the circulation, by nirogacestat has been shown to
increase the expression of BCMA on multiple myeloma cells [46]. Two ongoing phase
1 studies are investigating the safety of combining nirogacestat and anti-BCMA BiAbs
(NCT04722146 and NCT05090566).

Besides antigen escape, the immunosuppressive TME in MM poses challenges to the
efficacy of BiAb therapy. The immune microenvironment in MM is characterized by the
infiltration of T-regs and the upregulation of programmed death ligand 1 (PD-L1) on MM
cells [47–49]. The MajesTEC-1 trial demonstrated that exhausted CD8+ T cells coupled
with greater levels of T-regs resulted in lower response rates and inferior outcomes to
teclistamab [22]. Moreover, the immunosuppressive TME in MM progresses in correlation
with the length of disease and exposure to multiple lines of therapy [50]. Mechanistically,
patients at earlier stages of their disease have more functional CD8+ cytotoxic T cells
along with reduced levels of immunosuppressive T-regs [50]. Hence, the earlier utilization
of BiAbs/BiTEs may improve the tumor therapy response. Several clinical trials are
currently underway to explore the role of BiAbs in earlier disease stages, particularly as an
adjunct to control disease activity post-autologous stem cell transplantation (NCT05623020,
NCT05552222, NCT05243797, NCT05317416).

Reprogramming the TME to augment anti-tumor T-cell immunity may also improve
MM responses to BiAb. In this context, IMiDs, such as lenalidomide and thalidomide, have
also demonstrated the ability to enhance T-cell-directed responses against MM cells in vitro
and in vivo [51]. Daratumumab, an anti-CD38 monoclonal antibody, can induce T cell
expansion whilst skewing the repertoire of the TME T cells towards effector cytotoxic CD8+
T cells [52]. Clinical studies combining IMiDs and daratumumab with BiAbs are currently
in their infancy, but preliminary results have shown promising outcomes. Combining
teclistamab with daratumumab and lenalidomide achieved an ORR of 90% with tolerable
safety profiles in a phase 1 trial [53]. The phase 1b TRIMM-2 trial combined teclistamab
and daratumumab in RRMM patients and reported an ORR of 78% with manageable safety
profiles [54]. Lastly, the use of immune checkpoint inhibitors, particularly agents targeting
PD-L1/PD-1, can improve cytotoxic CD8+ T cell function; hence, combining ICIs with
BiAbs may constitute another approach to improve responsiveness by modulating the
TME of MM [55]. Figure 1 provides an overview of the BiAbs in MM and highlights the
mechanisms of resistance towards them.
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Table 1. Phase 1 and 2 studies evaluating the safety and efficacy of bispecific antibodies targeting BCMA, GPRC5D, and FcRH5 in multiple myeloma.

BiAB, Trial Targets BiAB Structure N Design ORR, CR (%) CRS (All Grade,
≥Grade 3) %

ICANS
(%) Infections (%)

Teclistamab
(Ph1-2,

NCT04557098)
[32]

BCMAxCD3 Humanized IgG
Fc 165

SQ, weekly injection at dose of
1.5 mg/kg. Step-up doses of

0.06 mg and 0.3 mg per kilogram.
63.0, 39.4 72.1, 0.6 3.0 76.4

Elranatamab
(Ph2,

NCT04649359)
[33]

BCMAxCD3 Humanized IgG2a 123
SQ, weekly injection at a dose of

76 mg for a 28-day cycle. Two
step-up doses at 12 mg and 32 mg.

61.0, 27.6 56.3, 0.0 3.4 61.8

Linvoseltamab
(Ph2,

NCT03761108)
[34]

BCMAxCD3 Fc Fab arms 252

Two cohorts received doses of
50 mg and 200 mg, respectively. IV,
with two step-up doses. A protocol

amendment allowed pts who
progressed at 50 mg to dose

escalate to 200 mg.

50 mg cohort:
50.0, 20.2

200 mg cohort:
64.0, 24.1

50 mg cohort:
53.0, 1.0

200 mg cohort:
37.0, 2.0

Grade 3 or 4
50 mg cohort: 1.0
200 mg cohort: 2.0

50 mg cohort: 59.0
200 mg

cohort: 43.0

Abbv-383
(Ph1,

NCT03933735)
[35]

BCMAxCD3 IgG4 Fc 124
IV, once every 3 weeks. Doses of

40 mg and 60 mg for escalation and
expansion cohorts.

57.0, 29.0

40 mg cohort:
83.0, 0.0

60 mg cohort:
72.0, 2.0

NR 40 mg cohort: 50.0
60 mg cohort: 43.0

Talquetamab
(Ph1,

NCT03399799)
[36]

GPRC5DxCD3 Humanized IgG4 232

102 patients IV weekly or every
other week at doses from 0.5 to

180 µg per kilogram of body
weight. 130 patients SQ weekly,
every other week, or monthly at

doses from 5 to 1600 µg
per kilogram.

At SQ doses of 405
µg/kg:

70.0, 23.0
and 800 µg/kg:

64.0, 23.0

At SQ doses of 405
µg/kg:
77.0, 3.0

and 800 µg/kg:
80.0, 0.0

At IV doses:
49.0, 5.0

NR NR

Cevostamab
(Ph1,

NCT03275103)
[41]

FcRH5xCD3 Humanized IgG1 160 IV administration in 21-day cycles.
Two step-up doses.

At 160 mg dose: 54%
At 90 mg dose: 36.7 80.0, 1.3 NR 42.5, 18.8

BiAb = bispecific antibody. CRS = cytokine release syndrome. ICANS = immune effector cell-associated neurotoxicity syndrome. ORR = overall response rate. CR = complete response.
NR = not reported. SQ = subcutaneous. IV = intravenous.
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Figure 1. This figure depicts the main bispecific antibodies in ongoing clinical trials for the treatment
of multiple myeloma. The bispecific antibodies are outlined according to their target myeloma-
associated antigen, including BCMA, GPRC5D, FcRH5, and CD38. The figure also outlines the key
strategies to overcome bispecific antibody resistance. One of the key strategies includes the synergistic
combination of bispecific antibodies with other bispecific antibodies, monoclonal antibodies, or
antibody–drug conjugates in order to target multiple antigens simultaneously. The second strategy
to overcome resistance is relevant to the main class of bispecific antibodies in multiple myeloma,
i.e., BCMA-targeting bispecific antibodies. This strategy involves using gamma-secretase inhibitors
such as nirogacestat to prevent the cleavage of membrane-bound BCMA into soluble BCMA, thereby
increasing the expression of BCMA on the surfaces of myeloma cells. Finally, the third strategy
involves the use of immunomodulatory agents, immune checkpoint inhibitors, and daratumumab to
modulate the tumor microenvironment and shift the repertoire of T cells by reducing the number of
immunosuppressive regulatory T cells and exhausted T cells.

In summary, BiAbs represent an effective therapeutic approach for RRMM in terms
of response rates and safety profiles. Overcoming antigen escape, either by combinatorial
approaches employing mechanistically diverse BiAbs or pharmacologically upregulating
the expression of target antigens, is an emerging area of investigation. Overcoming the
immunosuppressive TME, either by earlier intervention or reprogramming it through
IMiDs or ICIs, holds promise in terms of improving outcomes in RRMM patients.

4. Bispecific T-Cell Engagers and Antibodies in the Treatment of Acute
Lymphoblastic Leukemia

Precursor B-cell acute lymphoblastic leukemia (B-ALL) is characterized by the malig-
nant proliferation of B-lineage precursor cells in the bone marrow and peripheral blood [56].
While survival rates for adult and pediatric B-ALL patients have improved with the devel-
opment of effective chemotherapeutic protocols and salvage therapies, approximately 10%
of patients develop refractory disease, and there is a significant risk of relapse even after
achieving initial remission—hence the need for novel therapeutic options that improve
survival outcomes and facilitate minimal residual disease (MRD) clearance [57,58]. BiTEs
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constitute a promising strategy by reprogramming the immune system and directing T
cells toward neoplastic progenitor B cells.

CD19, a critical mediator of B-cell signaling, is expressed on most cells of the B-
lymphocyte lineage and is maintained during the neoplastic transition of precursor B
cells in B-ALL [59]. This makes CD19 an attractive target antigen for bispecific antibody
therapy. Blinatumomab is a BiTE that targets CD19 on neoplastic precursor B cells and
CD3 expressed on T cells and pioneered the early development of BiAbs. The efficacy of
blinatumomab was established through the phase 3 clinical trial TOWER, which compared
blinatumomab to standard-of-care chemotherapy in the treatment of relapsed/refractory B-
ALL [60]. The trial enrolled 405 patients, of which 271 patients received blinatumomab and
134 patients were given standard-of-care chemotherapy [60]. Blinatumomab demonstrated
a significant improvement in overall survival (7.7 months vs. 4 months) along with an
increase in the rates of complete remission (34% vs. 16%) [60]. However, despite achieving
complete hematological remission in approximately 90% of patients, around 50% of adult
patients with B-ALL still showed evidence of minimal residual disease positivity [61–64],
which was strongly associated with a higher risk of relapse [65,66]. Consequently, bli-
natumomab was evaluated in a phase 2 clinical trial for the treatment of MRD-positive
B-ALL in patients with complete hematological remission, achieving a complete MRD
response in 78% of patients, leading to improved overall survival and relapse-free sur-
vival [67]. In pediatric B-ALL, phase 3 clinical trials in the pediatric population with
relapsed/refractory B-ALL have demonstrated that blinatumomab is associated with im-
proved MRD clearance and an improved likelihood of transition towards allogeneic stem
cell transplantation [68,69]. The safety profile of blinatumomab is generally favorable,
with primary toxicities including infection, hematologic toxicity, and neurotoxicity, and a
lower incidence of CRS than other BiABs/BiTEs [60,70]. Moreover, CRS frequency can be
reduced further with blinatumomab following premedication with dexamethasone and the
implementation of step-up dosing. Although neurotoxicity with blinatumomab is more
frequent when compared to other BiAbs/BiTEs, the clinical manifestations are transient in
the majority of cases, and an improvement is noted swiftly following appropriate treatment
and the interruption of blinatumomab treatment [71]. Based on these results, blinatumomab
has received approval from the FDA/EMA for the treatment of relapsed/refractory B-ALL
and B-ALL with MRD positivity despite complete hematological remission [72].

The success of blinatumomab has inspired investigations into its potential utility
across different clinical presentations in B-ALL. Blinatumomab has been studied as an
adjunct to consolidation chemotherapy in patients with MRD-negative B-ALL, demon-
strating significant improvements in overall survival compared to standard consolidation
alone [73]. It has also been recently evaluated in a phase 2 clinical trial in combination with
induction chemotherapy in adults with Philadelphia chromosome-negative ALL, achiev-
ing MRD negativity in 92% of patients [74]. These findings suggest that blinatumomab
may reduce the need for allogeneic stem cell transplantation in certain patient popula-
tions; however, more data are required from clinical trials along with greater follow-up
times. Blinatumomab is currently being evaluated as a potential maintenance therapy post-
allogeneic stem cell transplantation in B-ALL patients [74]. In Philadelphia chromosome
t(9:22)-positive ALL, which has a poor prognosis with inferior treatment responsiveness
to conventional chemotherapy, chemotherapy-free induction and consolidation regimens
with blinatumomab and tyrosine kinase inhibitors (TKIs) have shown promising outcomes
in two phase 2 clinical trials, indicating that this combination may potentially be superior
to intensive chemotherapy, particularly in unfit patients [15,75–77].

In summary, revolutionary advances in B-ALL treatment have been made, spear-
headed by the development of blinatumomab. Table 2 provides an overview of the main
studies that outline the utility of blinatumomab in different patient populations. Nonethe-
less, resistance to blinatumomab poses a significant challenge to its efficacy (Figure 2). Loss
of CD19 surface expression and subsequent antigen escape occurs in approximately 10–15%
of patients who have relapsed following blinatumomab therapy [78–80]. Possible mecha-
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nisms underpinning the loss of CD19 expression include its alternative mRNA splicing,
disrupted CD19 membrane trafficking, and the clonal expansion of leukemic cells that
contain CD19 deletions [81,82]. Overcoming CD19 antigen loss mainly relies on identifying
novel target antigens. CD22 is a novel target antigen that is expressed in the majority of
leukemic blasts in B-ALL [83]. Combination therapies involving CD19 and CD22 CAR-T
therapy have demonstrated promising preclinical potential and are currently being in-
vestigated in clinical trials [84–86]. The anti-CD22 antibody–drug conjugate inotuzumab
ozogamicin (INO) has shown promising outcomes in the treatment of B-ALL, and combin-
ing INO with blinatumomab may represent a novel approach to combat antigen escape [87].
A recent phase 2 trial assessed the effect of INO with or without blinatumomab in combi-
nation with low-intensity chemotherapy amongst older adults with relapsed/refractory
B-ALL, demonstrating promising outcomes regarding survival and disease clearance [88].
Another potential mechanism of resistance is the possibility of a myeloid lineage switch
following blinatumomab therapy, particularly in KMT2A(MLL)-rearranged ALL, which
may lead to the development of AML [89–92]. A recent preclinical study evaluated the
possibility of combining anti-CD19 and anti-CD33 BiAbs to target tumor heterogeneity and
prevent clonal escape [93].

Table 2. Selected clinical trials evaluating the efficacy of blinatumomab in different patient populations.

First Author, Year Phase N Study Design and Patient
Population Outcomes Adverse Events

Kantarjian et al. 2017
[60] 3 405

Heavily pretreated
relapsed/refractory

Philadelphia-negative
B-ALL. Randomized 2:1

comparison between
blinatumomab and

standard-of-care
chemotherapy.

Median overall survival in
blinatumomab group

7.7 months vs. 4.0 months in
standard-of-care group.
Complete hematologic
remission in 34% in the
blinatumomab group vs.

16% in the
standard-of-care group.

Infection in 34.1% of the
blinatumomab group vs.

52.3% in the
standard-of-care group.

Neurotoxicity in 9.4% in the
blinatumomab group vs.

8.3% in the
standard-of-care group.

Gökbuget et al. 2018
[67] 2 116

Open-label, single-arm
study, adults with B-cell

precursor ALL in
hematologic complete
remission with MRD

(≥10−3).

MRD clearance in 78% of
patients. Relapse-free

survival at 18 months 54%.
Median overall survival of

36.5 months.

Cytokine release syndrome
in 3%. Neurotoxicity grade

3 in 10%, grade 4 in 3%.

Brown et al. 2021
[69] 3 208

Ages 1–30 years with first
relapse B-ALL.

Randomized between 2
cycles of blinatumomab and

2 cycles multi-agent
chemotherapy.

2-year disease free survival
54.4% in the blinatumomab

group vs. 39.0% in the
chemotherapy group. 2-year
overall survival 71.3% in the

blinatumomab group vs.
58.4% in the

chemotherapy group.

Infection in 15.0% of the
blinatumomab group vs.

65.0% in the
chemotherapy group.

Litzow et al. 2022
[73] 3 224

Patients with negative MRD
(<0.01%) post-induction

therapy were randomized to
either receive conventional

consolidation chemotherapy
or blinatumomab in

addition to conventional
consolidation.

Upper boundary for efficacy
analysis was crossed in
favor of blinatumomab,

with a significant
improvement in overall

survival in favor of
blinatumomab arm. Median
overall survival not reached

vs. 71.4 months, hazard
ratio 0.42, p = 0.003.

NR
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Table 2. Cont.

First Author, Year Phase N Study Design and Patient
Population Outcomes Adverse Events

Salek et al. 2022
[74] 2 29

Single cycle of
blinatumomab followed by
high-dose chemotherapy in

induction therapy for
Philadelphia-negative

adult ALL.

93% of patients achieved
complete hematological

remission after induction, of
which 52%

were complete
molecular remissions.

Febrile neutropenia in 15%,
and hepatotoxicity in 11%.

No neurotoxicity observed.

Foà et al. 2020
[15] 2 63

Philadelphia-positive ALL
patients. Single-arm trial in

which Dasatinib plus
glucocorticoids were

administered, followed by
two cycles of

blinatumomab.

Complete remission
achieved in 98%. At median

follow-up of 18 months,
overall survival was 95%
with disease-free survival

of 88%.

Grade ≥ 3 adverse events
included cytomegalovirus
reactivation in 6 patients,
neutropenia in 4 patients,

and neurotoxicity in
one patient.Cancers 2023, 15, x FOR PEER REVIEW 9 of 31 
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Figure 2. This figure outlines the mechanism of action of blinatumomab, the main bispecific T-cell
engager utilized in the treatment of acute lymphoblastic leukemia. Blinatumomab binds to the CD19
antigen expressed on neoplastic B lymphoblasts along with the CD3 receptor expression on T cells,
resulting in subsequent T-cell-mediated lysis of the leukemic cell. The figure also outlines some of the
potential applications of blinatumomab therapy in acute lymphoblastic leukemia. This includes its
use for relapsed/refractory disease, in addition to its incorporation in induction and consolidation
regimens for different subtypes of acute lymphoblastic leukemia. The figure also illustrates the key
mechanisms of resistance associated with blinatumomab therapy, including (1) antigen escape and
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loss of CD19 expression; (2) myeloid lineage switch after blinatumomab therapy, which has been
reported in cases of KMT2A(MLL)-rearranged acute lymphoblastic leukemia, resulting in the de-
velopment of acute myelogenous leukemia; (3) the immunosuppressive microenvironment in acute
lymphoblastic leukemia is associated with an increased percentage of regulatory T cells along with a
lower frequency of CD8+/CD3+ T cells, thereby facilitating resistance to blinatumomab.

Lastly, the immunosuppressive TME in ALL may promote resistance to blinatu-
momab [94]. A higher burden of T-regs has been associated with resistance to blina-
tumomab, whereas a greater presence of CD8+ effector and memory T cells and CD3+ T
cells is associated with a better response to treatment [21,95]. B-ALL patients who do not
respond to blinatumomab exhibit T-cell deficiency in the TME and higher levels of immune
checkpoint molecules such as PD-1, TIM-3, and TIGIT compared to responders [95,96].
In agreement with these findings, a recent phase 2 clinical trial on patients with chronic
lymphocytic leukemia (CLL) and Richter’s transformation to diffuse large B-cell lymphoma
(DLBCL) showed that complete responders to blinatumomab expressed the lowest levels
of PD-1, TIM-3, and TIGIT [97]. T-cell exhaustion may be related to exposure to multiple
lines of cancer therapy before blinatumomab, as these agents are not typically used as
first-line treatments, or from continuous exposure to blinatumomab, with the persistent
T-cell stimulation causing subsequent exhaustion [24,25]. Accordingly, strategies to repro-
gram the immunosuppressive TME include treatment-free intervals, which can reduce
T-cell exhaustion, and the use of ICIs such as nivolumab and pembrolizumab [24]. Results
from early-stage clinical trials demonstrate that combining ICIs with blinatumomab is safe;
however, efficacy results are still awaited [98,99].

5. Bispecific T-Cell Engagers and Antibodies in the Treatment of Non-Hodgkin’s Lymphoma

Non-Hodgkin’s lymphoma (NHL) encompasses a diverse group of lymphoprolif-
erative neoplasms with varying grades of progression and severity [100]. Among the
numerous NHL subtypes, indolent follicular lymphoma (FL) and diffuse large B-cell lym-
phoma (DLBCL) are the most common [100]. The introduction of the anti-CD20 monoclonal
antibody rituximab has significantly improved the prognosis of B-cell NHL. However, a
significant number of patients develop relapsed and/or refractory disease that does not
respond to conventional chemotherapy [101]; hence, the need arises for novel treatment
strategies, such as those that harness T-cell-mediated anti-neoplastic activity. CAR-T ther-
apy has demonstrated remarkable efficacy in the treatment of relapsed/refractory NHL,
but urgent intervention is required for patients with rapidly progressive disease [102].

BiAbs targeting multiple effector cell surface markers (CD3, CD16a, 4-1BBL, CD28,
CD47) and B-cell antigens (CD19, CD20, CD22, CD37, CD79b) have been developed for
NHL treatment [103]. CD20 is a critical B-cell surface antigen that is expressed on ap-
proximately 90% of malignant B cells but not on hematopoietic stem cells, minimizing the
risk of myelosuppression [104,105]. These characteristics render CD20 an attractive target
antigen for BiAbs in NHL [106]. Currently, several CD3xCD20 BiAbs, including glofita-
mab, mosunetuzumab, epcoritamab, odronextamab, and Igm-2323, have shown significant
activity in the treatment of both indolent and aggressive NHL subtypes, including FL, DL-
BCL, transformed follicular lymphoma (tfFL), primary mediastinal large B-cell lymphoma
(PMBCL), mantle cell lymphoma (MCL), and Richter’s transformation, in phase 1 and 2
clinical trials (Table 3). In patients with relapsed/refractory FL (RRFL), mosunetuzumab
and odronextamab have demonstrated compelling efficacy, achieving complete response
rates of 60% and 75%, respectively [107,108]. In DLBCL patients, glofitamab, odronex-
tamab, and epcoritamab displayed similar complete response rates of 37–39% [109–112].
However, when considering the durability of responses, glofitamab showed better results,
with 70% of patients still in complete remission after 18 months, compared to 48% with
odronextamab [110,112].

Regarding adverse events, low-grade CRS is the most common side effect associ-
ated with CD20xCD3 antibodies, with grade ≥3 occurring rarely (Table 3). CRS events
usually occur during the first cycle of treatment, and their severity can be attenuated by
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step-up dosing, premedication with steroids, and the administration of a B-cell-depleting
agent [107,108,110,111,113,114]. Other adverse events, such as pyrexia, neutropenia, ane-
mia, and electrolyte changes, are transient and clinically insignificant. Importantly,
CD20xCD3 BiAbs are associated with a lower incidence and severity of immune effector
cell-associated neurotoxicity syndrome (ICANS) than CAR-T therapy [110,115]. Further-
more, infections were common but varied between BiAbs, which could be attributed to
different rates of neutropenia among BiAbs (38% with glofitamab vs. 21.7% with epcori-
tamab) [110,111]. Similarly, hypogammaglobulinemia associated with CD20xCD3 BiAbs
may predispose patients to infection.
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Table 3. Phase 1 and 2 studies evaluating the safety and efficacy of CD20xCD3 bispecific antibodies in different subtypes of non-Hodgkin’s lymphoma.

BiAB, Trial BiAB Structure N Design ORR, CR (%)
CRS (All

Grade,
≥Grade 3) %

ICANS % Infections %

Mosunetuzumab
(Ph2, NCT02500407)

[107]
IgG1, humanized 90

IV, 21-day cycles, step-up dosing
(1/2/60/60 mg) then 30 mg onwards. Pts

achieving a CR by cycle 8 completed
treatment; those with a partial response or

stable disease received 17 cycles total

RRFL
77.8, 60.0 44.0, 2.0 NR NR

Odronextamab
(Ph2, NCT03888105)

[108]

Fully human
IgG4-based 96

IV, 21-day cycles, step-up dosing in two
regimens (1/20 mg or 0.7/4/20 mg) then

80 mg till cycle 4. Followed by 160 mg
maintenance every 2 weeks till disease

progression or unacceptable toxicity

RRFL
81.0, 75.0 51.0, 0.0

0.0 in 0.7/4/20
regimen

3.0 in 1/20
NR

Odronextamab
(Ph2, NCT03888105)

[112]

Fully human
IgG4-based 121

IV, 21-day cycles, step-up dosing in two
regimens (1/20 mg or 0.7/4/20 mg) then
160 mg till cycle 4. Followed by 320 mg
maintenance every 2 weeks till disease

progression or unacceptable toxicity

RR DLBCL
53.0, 37.0 53.0, 0.0

4.0 in 0.7/4/20
regimen

6.0 in 1/20
NR

Epcoritamab
(Ph2, NCT03625037)

[111]
IgG1, humanized 157

SQ, 28-day cycles, once weekly step-up
doses in weeks 1–3 of cycle 1, then full

doses once weekly through cycle 3, once
every 2 weeks in cycles 4–9, and once every

4 weeks in cycle 10 and thereafter, until
disease progression or unacceptable toxicity

RR DLBCL
63.0, 39.0 49.7, 2.5 6.4 (one death) 45.2

Glofitamab
(Ph2, NCT03075696)

[109]

2:1 configuration
with bivalency to

CD20
154

Pre-treatment with 1000 mg obinutuzumab,
followed by IV glofitamab 7 days later,

21-day cycles, two step-up doses
(2.5/10 mg) then 30 mg for 12 cycles.

RR DLBCL
58.0, 38.0 64.0, 4.0 8.0 59.0

Mosunetuzumab
(Ph1/2, NCT02500407)

[116]
IgG1, humanized 89

SQ, 21-day cycles, step-up dosing, 3 groups
(5/15/45 mg, 5/45/45 mg, 5/45/90/90/

45 mg) then 45 mg onwards. Pts achieving
a CR by cycle 8 completed treatment; those

with a partial response or stable disease
received 17 cycles total

iNHL
82.0, 64.0

aNHL
36.0, 20.0

27.0, 0.0 3.0 14.0 grade 3/4



Cancers 2023, 15, 4550 13 of 30

Table 3. Cont.

BiAB, Trial BiAB Structure N Design ORR, CR (%)
CRS (All

Grade,
≥Grade 3) %

ICANS % Infections %

Igm-2323
(Ph1, NCT04082936)

[117]

Ten binding domains
for CD20; one

binding domain
for CD3

29 IV on days 1, 8, and 15 of 21-day cycles
until disease progression

(FL n = 11)
(DLBCL n = 13)

(MCL n = 3)
(MZL n = 2)

34.8, 21.7

20.7, NR 0.0 NR

BiAb = bispecific antibody. CRS = cytokine release syndrome. ICANS = immune effector cell-associated neurotoxicity syndrome. ORR = overall response rate. CR = complete response.
NR = not reported. DLBCL = diffuse large B-cell lymphoma. iNHL = indolent NHL. aNHL = aggressive NHL. MCL = mantle cell lymphoma. MZL = marginal zone lymphoma.
SQ = subcutaneous.
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CD19 is another potential target antigen in NHL due to its ubiquitous expression on
B cells, including neoplastic B cells [118]. CD19-targeting BiAbs, such as blinatumomab,
AFM11, duvortuxizumab, and Tnb-486, have been evaluated in NHL treatment [119–122].
Blinatumomab’s success in the treatment of ALL paved the way for efforts to explore
its efficacy in NHL. Blinatumomab has shown substantial efficacy for the treatment of
NHL in phase I and II clinical trials but is associated with a high rate of potentially se-
vere neurological events [119,123]. The high frequency of neurological events, coupled
with blinatumomab’s narrow half-life, necessitating continuous infusions, has halted any
further development in its use for NHL [119,123]. Similarly, phase I studies assessing
AFM11 and duvortuxizumab were discontinued due to neurotoxicity concerns [120,122].
Tnb-486, a novel CD3xCD19 BiAb, demonstrated a complete response in 91% of RRFL
patients in a phase 1 trial and had a lower incidence of ICANS and CRS compared to
blinatumomab [119,121,123]. Mechanistically, the lower incidence of ICANS and CRS
associated with Tnb-486 is likely due to its unique anti-CD3 moiety, designed to bind
CD3 on T cells with low affinity, thereby attenuating the release of pro-inflammatory
cytokines [124]. The higher incidence of ICANS observed with CD19xCD3 BiAbs when
compared to CD3xCD20 BiAbs may be due to potential on-target off-tumor toxicity as-
sociated with targeting CD19, which is expressed on the pericytes and vascular smooth
muscles that line the blood–brain barrier (BBB); therefore, the use of anti-CD19 BiAbs such
as blinatumomab may impair the integrity of the BBB [125].

The CD20xCD3 BiAbs mosunetuzumab, glofitamab, and epcoritamab have received
accelerated FDA approval for specific NHL subtypes due to their substantial efficacy. How-
ever, factors impairing the efficacy of CD20xCD3 BiAbs require further exploration. For
example, antigen escape resulting from reduced CD20 expression has been observed in a
significant number of NHL patients treated with rituximab and was associated with an
inferior prognosis [126]. Loss of CD20 expression has also been associated, deemed to be a
potential contributor towards resistance to the CD20xCD3 BiAb mosunetuzumab [121]. Up-
regulating CD20 expression on NHL cells may, therefore, constitute a potential mechanism
to enhance the efficacy of CD20xCD3 BiAbs. In this regard, gemcitabine can upregulate
CD20 on DLBCL cells in vitro, which enhances the antitumor activity of rituximab [127].
A recent phase Ib/II trial demonstrated that epcoritamab + GemOx (gemcitabine, oxali-
platin) in RR DLBCL displayed a higher ORR than epcoritamab monotherapy (92% vs.
63%) [111,124]. Moreover, ameliorating antigen escape through targeting multiple antigens
simultaneously in NHL may provide a novel approach to enhance their efficacy [113,128].
The antibody–drug conjugate polatuzumab vedotin (PV) targets CD79b, an antigen that
is expressed on the majority of malignant B cells in NHL [129]. Two phase Ib/II clinical
trials assessing the efficacy and safety of glofitamab and mosunetuzumab in combination
with PV have demonstrated promising results, with ORRs of 80% with glofitamab and 72%
with mosunetuzumab in RR DLBCL [113,128]. The ORRs observed with this combination
appear to be superior to those reported with both glofitamab monotherapy (ORR 58.0%)
and mosunetuzumab monotherapy (ORR 42.0%) in RR DLBCL [109,130]. Additionally,
results from a phase Ib study demonstrated that glofitamab + Pola-R-CHP (PV, rituximab,
cyclophosphamide, doxorubicin, prednisone) in patients with treatment-naive DLBCL
demonstrated an ORR of 100% in patients who completed the treatment cycle [121]. These
combination regimens have also demonstrated remarkable efficacy in treatment-naive
patients in numerous ongoing phase 3 trials comparing their efficacy to standard-of-care
treatment [131,132].

Chronic exposure to BiAbs results in continuous T-cell stimulation and subsequent
exhaustion, impairing the efficacy of BiAbs/BiTEs [133]. In vitro studies have shown that
continuous exposure to BiAbs impairs the T-cell-mediated lysis of neoplastic cells [23].
Exhausted T cells, characterized by the increased expression of inhibitory checkpoint
molecules such as PD-1 [134], correlated with disease progression in DCLBL patients re-
ceiving glofitamab [135]. Combining BiABs with IMiDs, such as lenalidomide, can enhance
T-cell activation via B7-CD28-mediated signaling and reduce T-cell exhaustion and surface
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PD-1 expression [136]. Phase 1–2 clinical trials combining epcoritamab with lenalidomide
+ rituximab (R2) in patients with relapsed/refractory FL have demonstrated improved
efficacy for the combination regimen than epcoritamab monotherapy (complete response
rates of 86% vs. 50%, respectively) [114,137]. Multiple clinical trials evaluating the effi-
cacy of a BiAb and lenalidomide combination for RRFL are underway, with promising
phase 1 safety results, but are yet to be conducted in NHL [138–141]. Another strategy is
to activate co-stimulatory receptors, such as CD28 and 4-1BB on T cells, which improve
T-cell activation, expansion, and survival [142,143]. Preclinical evidence demonstrated that
the antineoplastic capacity of odronextamab was enhanced through its combination with
REGN5837, a BiAb that cross-links CD28 on T cells with CD22 on tumor cells. REGN5837
was capable of reactivating exhausted T cells, expanding the intra-tumoral population of
T cells, and promoting T-cell persistence, resulting in increased tumor lysis [144]. Addi-
tionally, RO7227166, a novel CD19 × 4-1BBL costimulatory BiAb, enhanced the anti-tumor
efficacy of glofitamab [145]. Thus, future efforts should be directed towards exploring
novel strategies to enhance the T-cell-engaging capacity of BiAbs to dampen the risk of
therapeutic resistance facilitated by the immunosuppressive microenvironment of NHL.

6. Bispecific T-Cell Engagers and Antibodies in the Treatment of Acute
Myelogenous Leukemia

Acute myelogenous leukemia (AML) is characterized by the infiltration of imma-
ture leukemic cells in the bone marrow and their accumulation in peripheral blood [146].
Survival rates and outcomes of AML have not improved substantially over the past few
decades [146]. Chemotherapy followed by allogeneic stem cell transplantation is the
standard of care for AML, but many patients develop relapse or treatment-refractory dis-
ease [147]. T-cell-engaging immunotherapies, such as BiAbs, offer a novel approach to
target chemotherapy-resistant AML tumor cells. However, the application of BiAbs in
AML faces challenges due to the limited target antigens that are ubiquitously expressed
on malignant AML cells [148]. Additionally, the overlapping expression of target antigens
between malignant AML cells and hematopoietic stem cells raises concerns about on-target
off-tumor toxicities, particularly hematologic toxicity and cytopenias.

Current bispecific T-cell engagers in AML target many antigens, including CD33,
CD123, CLL-1, and FLT-3 (Figure 3) [149]. CD33, a glycoprotein expressed on immature
myeloid blasts and leukemic stem cells, has garnered significant interest. CD33 is of
particular interest due to its expression on the majority of immature myeloid blasts and
leukemic stem cells [149,150]. High CD33 expression correlates with adverse cytogenetic
profiles and poor outcomes [151]. However, CD33 is also expressed on hematopoietic stem
cells, which increases the risk of myelosuppression [152]. Gemtuzumab ozogamicin, an
anti-CD33 antibody–drug conjugate, is approved for relapsed/refractory AML in CD33+
adults [153,154]. Clinical trials evaluating the efficacy of anti-CD33 bispecific T-cell en-
gagers such as AMG 673, AMG-330, and GEM333 have been terminated despite promising
preliminary results; however, there are two CD33xCD3 BiAbs in clinical development after
the completion of initial phase 1 studies (JNJ-67561244 and AMV564).

CD123, the low-affinity binding subunit of the IL-3 receptor, has emerged as another
target antigen for BiTE therapy in AML. CD123 is widely expressed on leukemic stem cells
and myeloid blasts and correlates with disease severity and therapy resistance [155–157].
Flotetuzumab, a CD123xCD3 dual-affinity retargeting protein (DART), demonstrated
anti-leukemic activity with a manageable toxicity profile in relapsed/refractory AML
patients [17]. XmAb14045, another CD123xCD3 targeting BiAb, also showed anti-leukemic
activity in relapsed/refractory AML patients and is currently being assessed in a phase
II clinical trial (NCT05285813) [158]. Other CD123xCD3 BiAbs, such as APVO436 and
MGD024, are being evaluated in ongoing phase 1 clinical trials after demonstrating anti-
leukemic activity in preclinical studies [159,160].
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CLL-1, and FLT-3.

CLL-1 (CLEC12A) is another potential target antigen for BiTE/BiAb therapy in AML
due to its expression on leukemic stem cells and myeloid blasts but not hematopoietic stem
cells [161–163]. However, CLL-1 has low expression levels on cell surfaces, potentially
impairing the antibody activity [162]. MCL-117 is a CLL-1xCD3 bispecific T-cell-engaging
antibody that has shown promise in preclinical studies but did not yield optimal clinical
responses (NCT03038230) [164,165]. FLT-3, a receptor-type tyrosine kinase, is expressed
on leukemic stem cells and myeloid blasts and represents a promising target antigen for
BiAbs/BiTE therapy in AML [166–168]. FLT-3 inhibitors such as midostaurin and gilteri-
tinib are currently approved for use in FLT-3-mutated AML patients [169,170]. However,
FLT-3 expression on hematopoietic stem cells and its limited presence across different
AML subtypes pose challenges [171]. CLN-049, a CD3xFLT3 BiTE, demonstrated anti-
leukemic activity in preclinical studies and is currently being evaluated in a phase 1 trial
(NCT05143996) [172].

BiTEs hold promise in AML treatment, but clinical trials are currently in their infancy
(Table 4). There are also several limitations, such as the toxicity of BiAbs/BiTEs, which
may hinder the utilization of BiAb/BiTE therapy in AML. Adverse events, such as CRS
and cytopenias, are associated with BiTE therapy, but step-up dosing and premedication
with steroids have shown to be effective in reducing their severity [17,158]. Strategies
to reduce CRS, such as premedication or design modification, should be explored fur-
ther [173]. Another limitation is potential antigen loss or insufficient expression of the
targeted antigen on cell surfaces. For example, single nucleotide polymorphisms (SNP) in
the CD33 splicer enhancer region can alter the antibody-binding domain of CD33, result-
ing in resistance to gemtuzumab ozogamicin [174]. Combining BiAbs targeting multiple
antigens on AML cells may overcome therapy resistance due to target antigen loss or
structural alterations. The immunosuppressive TME in AML contributes to therapy resis-
tance [175–177]. For instance, myeloid-derived suppressor cells (MDSCs) expressing CD14
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and CD33 may curb effective anti-tumor responses [178,179]. Additionally, the upregula-
tion of immune checkpoints such as PD-L1 on T cells has been shown to correlate with an
impaired anti-tumor T-cell response in AML [180–182]. The CD33xCD3 BiAbs AMG330 and
AMV564 have demonstrated anti-leukemic activity by activating T cells and modulating
MDSCs [183–185]. Notably, AMG330 induces potent inflammatory cytokine responses,
resulting in the upregulation of PD-L1 on AML cells and subsequent immune evasion [150].
These results indicate that combining BiAbs/BiTEs with immune checkpoint inhibitors
such as anti-PD-1 may provide a novel approach to augment bispecific antibody therapy in
AML and attenuate treatment resistance.

Table 4. Past and present clinical trials evaluating the use of bispecific T-cell engagers and antibodies
in acute myelogenous leukemia.

Trial ID Antibody
Name Targets Patient Population Phase Primary

Outcomes Status

NCT02520427 AMG 330 CD33xCD3 Relapsed/refractory AML, MDS 1 Safety Terminated

NCT03224819 AMG 673 CD33xCD3 Relapsed/refractory AML 1 Safety Terminated

NCT03516760 GEM333 CD33xCD3 Relapsed/refractory AML 1 Safety Terminated

NCT03915379 JNJ-67571244 CD33xCD3 Relapsed/refractory AML, MDS 1 Safety and
efficacy Completed

NCT03144245 AMV564 CD33xCD3 Relapsed/refractory AML 1 Safety and
efficacy Completed

NCT04582864 Flotetuzumab CD123xCD3 Relapsed/refractory AML 2 Efficacy Recruiting

NCT05285813 XmAb14045 CD123xCD3 Relapsed/refractory AML, MDS 2 Efficacy Recruiting

NCT03647800 APVO436 CD123xCD3 Relapsed/refractory AML, MDS 1 Safety Recruiting

NCT05362773 MGD024 CD123xCD3

Relapsed/refractory AML, MDS,
Hodgkin’s lymphoma, B-cell
leukemia, hairy cell leukemia,
CML, systemic mastocytosis

1 Safety Recruiting

NCT02715011 JNJ-63709178 CD123xCD3 Relapsed/refractory AML 1 Safety Completed

NCT03038230 MCLA-117 CLL-1xCD3 Relapsed/refractory AML 1 Safety Halted

NCT05143996 CLN-049 FLT-3xCD3 Relapsed/refractory AML, MDS 1 Safety Recruiting

7. Overview of the Toxicities Associated with the Use of Bispecific Antibodies in the
Treatment of Hematologic Malignancies

The previous sections have expounded on the therapeutic potential of BiAbs/BiTEs
in hematological malignancies. However, ensuring the safety and tolerability of these
therapeutic modalities is of paramount importance to incorporate them into treatment
protocols for hematological malignancies. The primary adverse events associated with
BiAb and BiTE treatment include CRS, infections, hematological toxicity, and neurotoxicity
(Figure 4). This section provides an overview of these toxicities associated with BiAbs and
BiTE therapy and explores strategies to alleviate these toxicities and minimize their impact.
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Figure 4. This figure outlines the features of primary toxicities associated with bispecific T-cell engag-
ing therapy in hematological malignancies. These primary toxicities include neurotoxicity/immune
effector cell-associated neurotoxicity syndrome, cytokine release syndrome, infections, and hemato-
logic toxicity.

7.1. Cytokine Release Syndrome (CRS)

CRS is characterized by an exaggerated inflammatory response with elevated levels of
cytokines interleukin-2 (IL-2), interleukin-6 (IL-6), interferon-gamma (IFN-γ), and tumor
necrosis factor-alpha (TNFα) [186,187]. The clinical manifestations of CRS are variable,
ranging from mild fever and malaise to severe hypotension and hypoxia [188]. The severity
of CRS is graded according to guidelines from the American Society for Transplantation
and Cellular Therapy (ASTCT) [189]. Grades 1 and 2 are more common and characterized
by non-life-threatening symptoms, whereas grades 3 and 4 require urgent intervention
due to the life-threatening nature of symptoms. For instance, a recent meta-analysis of
53 studies found that the rate of CRS in patients treated with BiAbs was 67%, but the rate
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of severe (grade 3 or 4) CRS was 0.2% [190]. In the context of BiAb and BiTE therapy,
CRS occurs due to T-cell activation via the CD3 component of BiTEs/BiAbs [191]. CRS
tends to occur primarily during the first cycle of treatment. Additionally, comparing
intravenous and subcutaneous administrations of BiAbs/BiTEs, CRS tends to manifest on
the first day of intravenous administration compared to the second day of subcutaneous
administration [23].

Therefore, intensive monitoring is essential for patients receiving BiAb/BiTE therapy,
particularly during the initial 48 hours of dose administration. Step-up dosing has been
shown to mitigate the release of inflammatory cytokines and reduce the duration and
intensity of CRS [192]. Additionally, the use of BiAbs/BiTEs with a lower affinity for CD3
may ameliorate CRS [192]. Pretreatment with immunosuppressive/immunomodulatory
drugs can also attenuate CRS both in vitro and in vivo [193].

When patients develop CRS, immediate supportive care is needed, followed by ad-
mission to intensive care units. Supportive care includes the maintenance of normoxia and
administration of fluids/antipyretics. Furthermore, the administration of steroids and/or
IL-6-blocking mAb tocilizumab can significantly alleviate both the duration and severity
of CRS [188].

7.2. Infections

It is vital to closely monitor patients receiving BiAb/BiTE therapy for signs of in-
fection. Patients should be screened for opportunistic or reactivation infections such as
cytomegalovirus and Epstein–Barr virus [194]. A pooled analysis of 1185 patients re-
ceiving BiAb therapy identified a 50% rate of infections, of which 24.5% were graded
as severe [195]. The prevalence of hypogammaglobulinemia was reported to be 75.3%.
Furthermore, 25.5% of the total deaths were attributed to infections [195]. The incidence
of infections in the context of BiAb/BiTE therapy is often multifactorial. Patients with
hematological malignancies who receive BiAb/BiTE therapy often have refractory dis-
ease with prior exposure to multiple lines of therapy, increasing their risk of infection.
Moreover, patients with active hematological malignancies are often neutropenic due to
impaired hematopoiesis. Anti-BCMA BiAb/BiTEs in multiple myeloma and anti-CD20
BiAb/BiTEs in non-Hodgkin’s lymphoma impair B-cell function, resulting in profound
hypogammaglobulinemia [196,197]. Lastly, continuous T-cell stimulation by BiAbs/BiTEs
may promote T-cell exhaustion, increasing the susceptibility to infections [24]. Preventative
strategies to minimize the infection risk in BiAb/BiTE therapy include prophylactic IVIG
and antimicrobials (antibiotics, antivirals, and antifungals) [194–196].

7.3. Hematologic Toxicity

Patients treated with BiAbs/BiTEs are predisposed to the development of hema-
tological toxicities, including anemia, thrombocytopenia, and neutropenia. The exact
mechanism behind the development of these toxicities remains unknown but may be
linked to therapy-induced pro-inflammatory cytokine release and/or the impairment of
hematopoiesis [198,199]. Supportive measures, such as the transfusion of blood products
and granulocyte colony-stimulating factors, should be considered to improve hematologic
parameters and reduce the infection risk.

7.4. Neurotoxicity

Neurotoxicity in the context of BiAb/BiTE therapy can arise either from CRS or as
a consequence of immune effector cell-associated neurotoxicity syndrome (ICANS) [200].
The symptoms of neurotoxicity due to CRS or ICANS are variable and may include seizures,
confusion, tremors, dysphasia/aphasia, and ataxia [200]. The severity of ICANS is graded
based on the ASTCT guidelines [189]. Strategies to alleviate the risk of ICANS are sim-
ilar to those employed in CRS, including steroids and tocilizumab. Notably, blinatu-
momab carriers the highest risk of neurotoxicity, likely due to CD19 co-expression in
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neural tissue, necessitating a high index of suspicion for ICANS for patients receiving
blinatumomab [71,125].

8. Conclusions and Future Directions

BiAbs/BiTEs have transformed the treatment landscape for advanced hematological
malignancies, with several approved BiAbs/BiTEs showing promising efficacy and favor-
able safety profiles. Additionally, early-stage clinical trials of numerous other BiTEs have
demonstrated encouraging anti-neoplastic activity, raising optimism for their approval in
the coming years.

However, the efficacy and tolerability of certain BiAbs/BiTEs warrant further explo-
ration. Antigen escape is a major resistance mechanism to BiAb/BiTE therapy. Elucidating
additional tumor-associated target antigens and exploring combinatorial, multi-antigenic
BiAb/BiTE may counteract antigen escape. Additionally, the immunosuppressive TME in
hematological malignancies is a significant contributor to BiAb/BiTE resistance. Investi-
gating strategies to normalize the tumor microenvironment, such as immune checkpoint
inhibitors and immunomodulatory agents, may enhance the efficacy of BiAbs/BiTEs and
mitigate therapeutic resistance.

Presently, much of the BiAb/BiTE research in hematological malignancies focuses
on patients with relapsed/refractory disease, but it is plausible that patients in the early
stages of their disease may respond to BiAbs/BiTEs more favorably due to their lower
tumor burden and a TME more conducive to anti-tumor immune responses. We have
already discussed how T-cell dysfunction consequent to exposure to multiple lines of cancer
therapy has been associated with resistance to BiABs, early-stage disease being associated
with a better therapeutic response to BiTEs, and clinical trials being underway to assess the
efficacy of BiAbs/BiTEs in early-stage hematologic malignancies. Exploring novel BiAb
engineering strategies such as trispecific antibodies—which target more tumor antigens
and minimize the risk of antigen escape—is also important. Incorporating natural killer
cell engagers may also synergize with bispecific T-cell engagers and potentially enhance
the anti-tumor immune response.

In conclusion, the field of bispecific T-cell engagers holds tremendous therapeutic
potential, and we eagerly anticipate further progress from future preclinical studies and
clinical trials. The continued advancement of these therapies is expected to have a signifi-
cant impact on the treatment of hematological malignancies, bringing hope to patients and
healthcare professionals alike.
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