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Post-acute COVID-19 sequelae, commonly known as long COVID,

encompasses a range of systemic symptoms experienced by a significant

number of COVID-19 survivors. The underlying pathophysiology of long

COVID has become a topic of intense research discussion. While chronic

inflammation in long COVID has received considerable attention, the role of

neutrophils, which are the most abundant of all immune cells and primary

responders to inflammation, has been unfortunately overlooked, perhaps due

to their short lifespan. In this review, we discuss the emerging role of neutrophil

extracellular traps (NETs) in the persistent inflammatory response observed in

long COVID patients. We present early evidence linking the persistence of NETs

to pulmonary fibrosis, cardiovascular abnormalities, and neurological

dysfunction in long COVID. Several uncertainties require investigation in future

studies. These include the mechanisms by which SARS-CoV-2 brings about

sustained neutrophil activation phenotypes after infection resolution; whether

the heterogeneity of neutrophils seen in acute SARS-CoV-2 infection persists

into the chronic phase; whether the presence of autoantibodies in long COVID

can induce NETs and protect them from degradation; whether NETs exert

differential, organ-specific effects; specifically which NET components

contribute to organ-specific pathologies, such as pulmonary fibrosis; and

whether senescent cells can drive NET formation through their pro-

inflammatory secretome in long COVID. Answering these questions may pave

the way for the development of clinically applicable strategies targeting NETs,

providing relief for this emerging health crisis.

KEYWORDS

neutrophils, neutrophil extracellular traps, COVID-19, long covid, thrombosis,
autoimmunity, fibrosis, inflammation
1 Introduction

Long COVID (LC), also called post-acute sequelae of SARS-CoV-2 infection,

encompasses the persistent symptoms following COVID-19. The Centre for Disease

Control and Prevention (CDC) defines LC as symptoms lasting beyond four weeks post-

SARS-CoV-2 infection, while the World Health Organization (WHO) describes it as the
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continuation or development of new symptoms three months

following the initial infection, lasting for at least 2 months

without any alternative explanation. LC is a multisystem disorder

encompassing a multitude of clinical presentations including

respiratory and cardiac dysfunction, neuropsychiatric

disturbances, and hypercoagulability (1–3).

The prevalence of LC is rising, with an estimated 65 million

people affected. This comprises 10-30% of non-hospitalized cases,

50-70% of hospitalized cases, and 10-12% of vaccinated-infected

individuals (1–3). Hence, COVID-19 patients of all severities

appear to be affected by LC. However, these figures likely

underestimate the true prevalence and incidence of LC due to

underreporting and undocumented cases. A substantial proportion

of LC patients report significant impairments in their quality of life

with an inability to perform tasks of daily living (4). Unfortunately,

no effective treatment exists for LC, with a need for further high-

quality and methodologically robust clinical trials (5). Viable

therapeutic targets for long COVID are also lacking, partly due to

the multitude of pathophysiological mechanisms that have been

identified and a poor understanding of which of these mechanisms

is causally linked to LC versus those that simply modulate its

biology. Nevertheless, theories of LC pathophysiology converge

on a chronic inflammatory response involving both the innate

and adaptive arms of host defense (6, 7).

Neutrophils, the most abundant circulating leukocytes,

constitute an essential component of innate immunity and are the

first responders to sites of acute inflammation. They contribute to

host defense by phagocytosis, pro-inflammatory cytokine

production, degranulation, and the formation of neutrophil

extracellular traps (NETs) (8, 9). Exaggerated neutrophil

responses, particularly the production of NETs, have been

implicated in the pathogenesis of acute COVID-19. NETs are

web-like structures composed of cytosolic and granular

neutrophil proteins embedded in a meshwork of either nuclear or

mitochondrial neutrophil DNA (10–12). Various strategies

targeting NETs have emerged as potential approaches to alleviate

their pathological effects in COVID-19 and other autoimmune and

inflammatory disorders (13–16).

Studies have indicated that the persistent release or impaired

clearance of NETs after COVID-19 resolution may be linked to the

pathogenesis of LC. This review explores the potentially disease-

mediating role of NETs in the multi-faceted pathophysiology of LC.
2 Neutrophil extracellular traps

2.1 Production

NET production, traditionally referred to as NETosis, was

initially believed to occur exclusively through the pyroptotic cell

death of neutrophils, resulting in the extrusion of nucleic acids and

proteins into the extracellular space (Figure 1). Through a process

called vital NET formation, however, neutrophils can release their

contents and remain viable thereafter.

Various stimuli have been reported to induce NET formation,

including microbial pathogen-associated molecular patterns
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(PAMPs) and their virulence factors, pro-inflammatory cytokines,

damage-associated molecular patterns (DAMPs) like high-mobility

group box-1 (HMGB1) and ATP, activated platelets, complement

proteins C5a and C3a, autoantibodies, and immune complexes (17–

28). These stimuli converge on increasing cytosolic calcium

concentrations, leading to the activation of NADPH oxidase and

the generation of reactive oxygen species (ROS) like superoxide and

hydrogen peroxide—a process termed the respiratory burst (29).

ROS molecules activate neutrophil proteases such as neutrophil

elastase (NE) and myeloperoxidase (MPO) (30). Mitochondrial

ROS can trigger similar processes but in a NAPDH oxidase-

independent manner (31). NE and MPO then degrade the

nuclear envelope, cleave numerous cytosolic proteins, and de-

condense nuclear chromatin (30). The cell cycle proteins cyclin-

dependent kinases 4 and 6 (CDK4/6) can also be repurposed to aid

in nuclear envelope breakdown (32). Proteolytic cleavage of the

pore-forming protein gasmerdin D (GSDMD) by caspases, NE, and

MPO results in its activation and subsequent translocation to the

cell membrane, increasing its permeability and augmenting the

intracellular calcium flux (33, 34). Concomitantly, the activation of

peptidylarginine deaminase-4 (PAD4), a calcium-dependent

enzyme, catalyzes histone citrullination, disrupting the

electrostatic attractions between DNA and histones and leading to

chromatin decondensation (35). Ultimately, chromatin disassembly

and compromised cell surface and nuclear membrane integrity lead

to the release of DNA and proteins as NETs.

There is no singular marker for NETs, but extracellular DNA,

NE, MPO, and citrullinated histone (cit-H3) are frequently used as

surrogate markers. It is worth noting that numerous controversies

have arisen regarding the exact relevance of several of the above-

mentioned mediators. For instance, NET production in response to

inflammasome signaling was previously thought to involve

GSDMD-dependent processes (36), but recent GSDMD knockout

experiments suggest a dispensable role of GSDMD in NET

production (37). Similar results have been observed in NADPH

and PAD4 knockout experiments (38, 39). These findings indicate

that redundant mechanisms of NET production exist and call into

question the exact functional relevance of many of these proteins

and, by extension, their therapeutic value. Idiosyncratic, stimulus-

dependent mechanisms likely exist, the elucidation of which may

enable context-specific therapeutic manipulations. These

controversies and others are covered in more detail elsewhere

(see (40)).

From a metabolic standpoint, neutrophils have relatively few

mitochondria compared to lymphocytes and macrophages and so

rely predominantly on ATP acquired through glycolysis (41). The

extrusion of NETs appears to also be majorly dependent on

glycolysis, such that stimulating NET production in vitro by PMA

under low glucose conditions causes neutrophils to lose their

characteristic polymorphic nuclear architecture but does not

result in the extrusion of NETs (42). Similarly, conditional

deletion of the mitochondrial protein optic atrophy-1 (OPA1) in

mice inhibits mitochondrial complex I activity, which decreases

NAD+ availability for the glycolytic pathways and hence inhibits

NETosis, with these models consequently displaying a subdued

antibacterial response to Pseudomonas aeruginosa infections (43). It
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was later described that the activity of lactate dehydrogenase (LDH)

and lactate production are essential for NET release, and the

mechanism by which PMA induces NETosis involves LDH

induction (44). Accordingly, sodium oxamate, an LDH inhibitor,

attenuates NET production in mouse models of sepsis (44).

Extracellular acidosis was recently shown to inhibit glycolysis and

lactate production, thereby attenuating NETosis (45). The

metabolic regulation of NET production seems, therefore, to be

strictly dependent on glycolysis and lactate production and can be

perturbed in systemic conditions where extracellular nutrient and

metabolite levels are altered. However, whether therapeutically

manipulating neutrophil metabolism can alter NETosis and allow

us to modulate the pathogenesis of various disease states is

not understood.
2.2 Therapeutic targets

Several mediators involved in NET production constitute

therapeutic targets (Figure 1). For simplicity, we can divide NET-

targeting strategies into four groups (1): inhibiting NET-inducing

stimuli, such as pro-inflammatory cytokines, platelets, DAMPs like

HMGB1, and complement proteins (2); inhibiting cellular

mediators of NETosis, including ROS, PAD4, and GSDMD (3);

the extracellular effectors of NETs, including NE, MPO, and histone

inhibitors; and (4) augmenting the degradation of NETs through

DNase-1. There are drugs in clinical use that inhibit NET-inducing
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stimuli, such as C5a receptor antibodies for ANCA-associated

vasculitides and IL-17 inhibitors for psoriasis (46, 47). Other than

these drugs, however, translational research on many of the other

targets is lacking, and the ones that have been tested often lack a

substantial clinical benefit. For example, the NE inhibitor sivelstat

failed to significantly improve the outcomes of patients in clinical

trials (48). The PAD4 inhibitors Cl-amidine and BB-Cl-amidine

have shown promise in several animal models but lack human data

(49–51). Dnase-1, which is FDA-approved for use as an inhalant in

cystic fibrosis (CF) patients (52), is the only drug specifically

targeting NETs approved for use. Recent studies have

demonstrated the benefit of DNase-1 in improving outcomes of

hospitalized patients with COVID-19-related ARDS, although

validation in larger randomized studies is awaited (53–55).

Disulfiram, commonly used for alcohol use disorder, can inhibit

GSDMD pore formation and reduce NET burden and fibrosis in

hamsters with COVID-19 (56, 57), but it has not been clinically

studied for this indication. The cyclic adenosine monophosphate

(cAMP)/protein kinase A (PKA) signaling pathway also suppresses

NET production by inhibiting the oxidative burst. Therapeutically,

this pathway can be leveraged by prostaglandin E2, cAMP analogs,

phosphodiesterase inhibitors, and adenosine A2A receptor agonists

to increase intracellular cAMP levels and suppress NETosis (58–

60). Overall, the COVID-19 pandemic has highlighted the

abundance of potential targets for NET inhibition, but a glaring

paucity of applicable medications whose clinical benefit has

been substantiated.
FIGURE 1

Mechanisms of NET production and potential therapeutic targets. NET-inducing stimuli converge on the production of reactive oxygen species, which
activate neutrophil proteases and enzymes to cause downstream nuclear envelope breakdown and chromatin decondensation. The release of NETs
either involves cell death with the extrusion of DNA-bound proteins or the exocytosis of NET components through the cell membrane from viable
neutrophils. We have also indicated steps in this pathway which have been therapeutically targeted. This Figure was created using Biorender.com.
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3 Neutrophils in acute COVID-19

3.1 SARS-CoV-2 infection

SARS-CoV-2 is an enveloped positive-sense single-stranded

RNA virus with a helical nucleocapsid belonging to the

coronavirus family. Its viral genome encodes four structural

proteins, including a surface spike (S) protein, which facilitates

viral cell entry and membrane fusion (61). The S protein is

composed of two subunits, S1 and S2. The S1 subunit contains

the receptor-binding domain (RBD) which binds to angiotensin-

converting enzyme 2 (ACE2) on host cell surfaces initially of the

nasopharyngeal epithelium (62, 63). This initial interaction is

established in the upper respiratory tract and is followed by

subsequent seeding to the lower respiratory tract (64).

After binding to ACE2, the S protein undergoes cleavage by the

transmembrane protease serine 2 (TMPRSS2) (62). Cleavage

exposes the fusion peptide of the S2 subunit, resulting in the

fusion of viral and host cell membranes (65). Following successful

cellular infection, essential viral proteins are synthesized, and

progeny SARS-CoV-2 virions are released via exocytosis to infect

other cells. Type II pneumocytes are the primary ACE2-expressing

cells in the alveolar epithelium, hence serving as the primary target

of SARS-CoV-2 infection in the lower respiratory tract (66, 67).

Tissue-resident alveolar macrophages represent the first line of

innate immune defense against SARS-CoV-2, recognizing SARS-

CoV-2 PAMPs through various pattern-recognition receptors

(PRRs), and triggering the production of pro-inflammatory

cytokines and chemokines (68–70). This initial innate response is

crucial in determining the severity of COVID-19 (71, 72). The

timely production of type I and III interferons and cytotoxic T-cell

responses is associated with mild-to-moderate infection (73–75). In

contrast, severe disease arises from an impaired interferon and T-

cell response coupled with an exaggerated innate neutrophil

response (73–75). This dichotomy in the immune response plays

a pivotal role in determining the severity of COVID-19 (71, 72).

Clinically, the majority (~80%) of individuals infected with

COVID-19 experience either asymptomatic or mild disease, with

around 15% necessitating oxygen support, while 5% develop septic

shock, ARDS, and multi-organ failure requiring aggressive

treatments in intensive care units (ICUs) (76).
3.2 Neutrophil responses in COVID-19

Any discussion on the role of NETs in a specific disease is

incomplete without describing the contextualized perturbations

observed in the cells responsible for their production. This section

delves into the current knowledge surrounding numerical and

functional changes in neutrophils that ensue after SARS-CoV-2

infection. We focus on three key aspects: neutrophil alterations in

the circulation, bronchoalveolar lavage (BAL), and histopathologic

examination of lung autopsies from deceased COVID-19 patients.

Neutrophilia with an elevated neutrophil-to-lymphocyte ratio is

a salient feature of severe COVID-19 (77). The degree of

neutrophilia correlates positively with disease severity, being the
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highest in severe cases. Nonetheless, neutrophilia in COVID-19 is

orders of magnitude less pronounced than that seen in bacterial

ARDS (78). Notably, circulating neutrophils isolated from

individuals with severe COVID-19 exhibit pronounced activated

phenotypes (79), indicating that the disease not only induces

numerical alterations but also significantly impacts the phenotype

of the neutrophil compartment.

Recent research utilizing single-cell analysis has shed light on

the transcriptional diversity of neutrophil populations (80, 81). A

subset that has attracted considerable attention is interferon

(IFN)active neutrophils, which are thought to be primed for

infection control (82). These subsets also appear in COVID-19,

but their exact significance is still unclear (discussed below).

Another way of classifying neutrophils is based on their density

into low-density neutrophils (LDNs) and normal-density

neutrophils (NDNs). LDNs are functionally heterogeneous groups

of neutrophils but are generally considered more immature cells

that produce higher levels of pro-inflammatory cytokines and NETs

(83), with their emergence in autoimmune disorders like systemic

lupus erythematosus (SLE) being associated with disease

pathogenesis and severe clinical phenotypes (84, 85).

In the circulation, analyses of whole blood and PBMCs have

demonstrated the emergence of immature neutrophil populations

in severe—but not mild—COVID-19 (86, 87). This finding

indicates the activation of emergency myelopoiesis, although the

presence of immature neutrophils is not as significant as in cases of

bacterial ARDS (78). Both immature and mature neutrophils

display transcriptional signatures consistent with an activated

state, characterized by upregulated calprotectin (i.e., S100A8/A9)

expression and enhanced NET production (78, 87–89). Severe

COVID-19 is a lso associa ted with the expansion of

immunosuppressive clusters of neutrophils expressing the

immune checkpoint molecule PD-L1 (87, 90–92), which declines

in individuals recovering from severe disease. Another

immunomodulatory cluster of neutrophils associated with severe

disease are IFNactive neutrophils (87, 92), which are depleted by

dexamethasone treatment, suggesting their involvement in the

immunopathogenesis of severe COVID-19 (92). However,

IFNactive neutrophils also occur in mild COVID-19, which is part

of a coordinated interferon-stimulated gene (ISG) response across

all major immune cell populations in the blood, whereas these ISG-

expressing cells are systematically absent in patients with severe

disease (93), consistent with the globally blunted type I and III IFN

response characteristic of severe COVID-19 (73–75). These findings

indicate that the presence of IFNactive neutrophils is not a necessary

component of severe disease. The topic of neutrophil heterogeneity

in COVID-19 has been detailed by other reviews (94, 95).

Nonetheless, many of the current studies on this topic infer

distinct functionality from the transcriptomic data rather than

directly observing whether distinct subsets differentially impact

COVID-19 pathogenesis. Subset-specific manipulations are

required to further current findings.

Findings regarding neutrophil numbers and phenotypes in

bronchoalveolar lavage (BAL) are largely concordant with those

observed in the circulation. Numerically, mild COVID-19 does not

exhibit a significant neutrophilic infiltrate, which progressively
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increases with worsening disease severity (96–98), surpassing even

the levels seen in bacterial ARDS (86, 99). Phenotypically, BAL

neutrophils exhibit similar activation signatures-such as

calprotectin expression and NET production-as their circulating

counterparts (100). However, it remains unclear whether specific

transcriptional clusters of circulating neutrophils are selectively

recruited to the lungs or whether they infiltrate the infection site

indiscriminately. ScRNA-seq of BAL samples identified 5

transcriptionally distinct neutrophil clusters in severe COVID-19

patients, particularly those expressing VEGFA, chemokine

receptors, S100 proteins, and IFNs, which differentially impact

COVID-19 severity depending on interactions with other

immune cells (101). Mild COVID-19 is characterized by a robust

response of debris-clearing monocytes and anti-viral T-cells, with

IFNactive neutrophils being involved in viral clearance. Conversely,

severe infection is characterized by a depletion of monocytes and T-

cells that keep neutrophils in check, resulting in uncontrolled

neutrophilic responses characterized by the overwhelming

production of pro-inflammatory alarmins (e.g., S100A8/A9) and

NETosis (101).

Histological examinations of lung autopsies from patients who

succumbed to SARS-CoV-2 have corroborated these findings,

revealing the dense presence of alarmin- and NET-producing

neutrophils (102, 103). Notably, S100A8/A9 is key to aberrant

neutrophil responses in COVID-19, driving exaggerated innate

immune inflammation and uncontrolled pathological damage

(104). Inhibition of S100A8/A9 has shown promise in attenuating

COVID-19-related pneumonia in experimental models (104).

These findings provide valuable insights into the complexities of

neutrophil responses in the pathogenesis of COVID-19. Further

investigations are warranted to understand the functional impact of

distinct neutrophil subsets and specific properties that have

potential as therapeutic targets.
3.3 Neutrophil extracellular traps in
acute COVID-19

The involvement of NETs in acute COVID-19 was

hypothesized early in the pandemic (105–107) and subsequently

confirmed by seminal studies conducted by Zuo et al. and

Middleton et al. (79, 108). These investigations documented that

plasma MPO-DNA complexes were found to be elevated in

COVID-19 patients and correlated with disease severity, as

evidenced by a higher sequential organ failure assessment (SOFA)

score, incidence of intubation and death, and lower PaO2/FiO2

ratios (79, 108). Studies that followed expanded on the prognostic

role of NETs, with extracellular DNA, cit-H3, and NE also being

associated with clinical events and ICU admission (109, 110).

Neutrophils isolated from the plasma of COVID-19 patients

exhibit heightened basal NETosis, suggesting a predisposition

towards NET formation (79). Furthermore, the serum of COVID-

19 patients induced NETosis in control neutrophils (79),

highlighting the systemic activation state induced by the virus.

A striking feature of severe COVID-19 lung disease that sets it

apart from other viral pneumonia is the presence of distinctive
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microvascular occlusion with secondary lobular ischemia (111).

These vascular abnormalities are associated with endothelial

activation and damage, which, in turn, trigger inflammation and

thrombosis. Histopathological examination of post-mortem lung

specimens from COVID-19 patients has revealed a dense

neutrophilic infiltrate, neutrophil-platelet interactions, and the

presence of NETs in pulmonary microthrombi (79, 102, 112,

113). These observations suggest that NETs contribute to the

coagulopathy observed in severe COVID-19. Mechanistically, the

web-like structure of NETs acts as a scaffold for the deposition of

various clotting factors, promoting coagulation (114). Additionally,

extracellular histones in NETs activate endothelial cells and platelets

via TLR2 and TLR4 (115–119), and NET-associated proteases

cleave and inactivate tissue factor pathway inhibitor, augmenting

tissue factor activity (120). Skendros et al. demonstrated that

neutrophils release NETs enriched in tissue factor, contributing to

thrombosis in COVID-19 ARDS (121). Other than this study, the

mechanisms by which certain NET components contribute to

COVID-19 pathogenesis have been extrapolated from non-

COVID studies; direct evidence elucidating the specific

pathogenic roles of these components in COVID-19 is scare in

contemporary literature.

Multiple stimuli of NETosis in COVID-19 have been identified.

There is evidence that SARS-CoV-2 can directly infect neutrophils

through ACE2 and TMPRSS2, triggering NET formation (121).

Platelets are a major inducer of NETs, as exposing control

neutrophils to platelet-rich plasma from COVID-19 patients is

sufficient to stimulate NETosis (121). Platelets, which do not

typically interact with neutrophils, become important inducers of

NETs in the context of bacterial and viral infections (22, 122, 123),

perhaps mediated by platelet factor-4 (PF4) (103), p-selectin or

high-mobility group box 1 (HMBG1) (119). Autoantibodies against

PF4, observed in severe COVID-19 and vaccine-induced

thrombotic thrombocytopenia (VITT), are also capable of

stimulating NET formation (124–126). Lastly, elevated levels of

complement proteins, particularly C3 and C5, in COVID-19

provide another potential pathway for NETosis (121, 123, 127).

To gain a deeper understanding of NETs in COVID-19, future

studies employing higher-resolution approaches are needed.

Genetic or pharmacologic loss-of-function experiments targeting

specific NET components could provide valuable insights into their

precise pathogenic effects. It is important to consider the

dichotomous nature of NETs, as they have been shown to play

both beneficial and pathologic roles in various contexts. For

instance, NETs mitigate the systemic spread of HIV-1 and

Chikungunya virus infection (128, 129), with DNase-1

administration leading to disseminated infection (129). NETs can

also promote healing through the degradation of pro-inflammatory

molecules by their proteases (130). Importantly, degrading NETs as

a therapeutic strategy can inadvertently worsen the cytotoxic/pro-

inflammatory/pro-thrombotic effects of NET-bound DNA and

histones when they are liberated from NETs as NET-degradation

products (131, 132). NETs can suppress pro-inflammatory

macrophage phenotypes in autoimmune disorders like

rheumatoid arthritis (133), and induce anti-inflammatory M2
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polarization in Leishmania parasite infection (134) and myocardial

infarction (135), associated with decreased tissue damage in the

latter. The balance between these dual roles may reflect factors such

as the origin of neutrophil subsets, the stimuli triggering

NET formation, the degree of neutrophil activation, and the

composition of NETs themselves. Therefore, comprehensive

investigations into NETs in COVID-19 are crucial for discerning

their precise contributions and facilitating more precise

therapeutic manipulations.
4 Neutrophils and NETs in chronic
lung disease

Investigations into the association between neutrophil

responses, NETs, and LC have predominantly focused on chronic

lung disease and pulmonary fibrosis. The discussion herein

discusses the role of neutrophils and NETs in chronic lung

inflammation and pulmonary fibrosis in a myriad of non-

COVID diseases.
4.1 NETs in chronic inflammation

NETs have emerged as pivotal contributes towards several

chronic lung diseases, including asthma, chronic obstructive

pulmonary disease (COPD), cystic fibrosis, and bronchiectasis,

where they damage host tissue, impair mucociliary clearance,

hinder bacterial cell killing, and exacerbate inflammation (136).

Elevated neutrophil counts and NET markers, such as cell-free

DNA, have been observed in the lungs and sputum of COPD and

asthma patients, demonstrating a positive correlation with disease

severity and the frequency of exacerbations (137–140). The release

of the inflammasome-related cytokine IL-1b by macrophages can

induce NETosis in asthma (141). NET contents components such as

DNA, LL-37, defensins, and NE are pro-inflammatory and induce

the release of histamine and leukotrienes, leading to worsening

disease severity (136, 142).

Cystic fibrosis patients experience recurrent infections and have

a lung microenvironment rich in pro-inflammatory cytokines and

chemokines that promote neutrophil infiltration and NET

production (143). The sputum of cystic fibrosis patients exhibits

higher levels of extracellular DNA, NE, MPO, and calprotectin

(144–146). Among these, DNA and NE are particularly associated

with declining lung function and increased disease severity (147–

149). Additionally, the virulence factor pyocyanin produced by

Pseudomonas aeruginosa—the primary cause of pneumonia in

cystic fibrosis patients—can enhance NET formation (150, 151).

DNase is an effective therapy in reducing mucus viscosity in CF

patients by degrading NET-derived DNA (52). However, the

double-edged role of NETs is evident here, with NET degradation

recently shown to liberate NET-bound NE, enhancing its activity

and facilitating tissue damage (152).

Bronchiectasis is characterized by non-resolving neutrophilic

inflammation and is marked by elevated levels of NETs in sputum,
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with their levels positively correlated with exacerbation incidence,

worsening lung function, and mortality (153). Treating active

infections or reducing inflammation in bronchiectasis patients

reduces NET levels, leading to clinical improvement (154).

Moreover, emerging evidence suggests that antibiotics such as

macrolides can directly attenuate NETs independent of their

antimicrobial effects (154).

Together, these findings underscore the role NETs play in lung

diseases featuring chronic inflammation. Mechanistically, NET

components contribute to the amplification of pro-inflammatory

cytokines and chemokines, including IL-1, IL-6, and IL-8, by

alveolar epithelial cells and alveolar macrophages, thereby

perpetuating repetitive cycles of inflammation and alveolar

epithelial damage (155, 156). Smoking-related airway disease

exemplifies these features, as smoking induces the release of

NETs, which, in turn, promote T-cell differentiation and pro-

inflammatory cytokine secretion by airway epithelial cells and

macrophages, ultimately fostering chronic airway disease

(157, 158).

NETs also damage the alveolar epithelium in various models of

acute lung injury, including transfusion-associated lung injury

(159), trauma (160), ventilator-associated lung injury (161),

primary graft dysfunction after lung transplantation (162),

lipopolysaccharide-related sepsis (163), influenza pneumonitis

(164), and COVID-19 (79, 108, 165, 166), all of which are known

to feature fibrosis as a sequela. A recent review by Scozzi and

colleagues details the role of NETs in these diseases (167). The

induction of NETs leads to cytotoxic effects on the alveolar

epithelium and vascular endothelium (146, 160, 168).

Additionally, NETs contain tissue factor, which contributes to

thrombosis in ARDS (169).
4.2 NETs in fibrosis

Interstitial lung disease (ILD) is an umbrella term that

encompasses a range of conditions characterized by diffuse lung

parenchymal changes, alveolar inflammation, and interstitial

fibrosis. ILD can result from various causes, including

environmental (pneumoconiosis, hypersensitivity pneumonitis),

smoking, drugs (bleomycin, chemotherapy, nitrofurantoin),

connective tissue disease (SLE, scleroderma), or idiopathic origins

(IPF vs non-IPF). This discussion focuses on specific pathways

through which NETs contribute to fibrosis, shedding light on

potential mechanisms that may also translate in the context of LC.

Lung fibroblasts, which constitute the majority of the cellular

constituents of the lung parenchyma, are the major effectors of

pulmonary fibrosis (170). Several NET components have been

associated with fibroblast activation (170). Myofibroblasts exposed

to NETs display increased expression of connective tissue growth

factors, collagen production, and proliferation/migration, with

these effects being mitigated by DNase-1 treatment (171).

Bleomycin, a drug known to induce pulmonary fibrosis, triggers

PAD4-dependent NET formation in neutrophils, contributing to

the development of ILD. Accordingly, PAD4-KO mice display
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attenuated bleomycin-induced NETosis with decreased pulmonary

fibrosis (172).

NET components such as histone H3 and MPO promote the

differentiation of lung fibroblasts into myofibroblasts, an effect that

is attenuated by exogenous DNase-1 administration (173). NE

within NETs has recently been shown to induce fibroblast

proliferation and myofibroblast differentiation, thereby facilitating

the progression of lung fibrosis (174). Notably, NE-KO mice were

protected from asbestos-induced lung fibrosis (174). NE has also

been implicated in promoting a-SMA and fibronectin expression in

macrophages, resulting in a fibrotic phenotype termed the

macrophage-to-myofibroblast transition (175, 176). Additionally,

IL-17 contained within NETs enhances the fibrotic activity, but not

the differentiation, of myofibroblasts, suggesting that the NET

components mentioned earlier may prime the process of IL-17-

driven fibrosis (171).

Epithelial-to-mesenchymal transition (EMT), induced by

NETs, has been observed in LC and is a widely recognized

phenomenon in various disease contexts. Chronic lung allograft

dysfunction (CLAD), characterized by marked lung fibrosis and

subsequent dysfunction, is associated with NET production, which

triggers EMT in alveolar epithelial cells, as evidenced by increased

a-SMA and decreased E-cadherin expression, closely resembling

the effects of the well-known EMT inducer TGF-b (177).

Endothelial cells can internalize NETs through their surface

RAGE receptors (178), but the persistent NET release overwhelms

their uptake capacity, leading to the accumulation of NETs in the

extracellular space. Subsequently, NE disrupts intercellular tight

junctions to increase vascular permeability and promotes

endothelial-to-mesenchymal transition by promoting b-catenin
signaling (178). Macrophages, also through RAGE receptors, can

internalize NETs (176). The phagocytosis of NE into macrophages

has been shown to induce the macrophage-to-mesenchymal

transition in murine models of post-spinal surgery fibrosis (176).

Similarly, NETs facilitate the macrophage-to-myofibroblast

transition and attenuate TGF-b1 secretion from macrophages,

promoting renal fibrosis after unilateral renal obstruction and the

fibrotic remodeling of chronic venous thrombi (179, 180).
5 Neutrophil extracellular traps in
long covid

5.1 The theorized role of NETs in
long COVID

Sawadogo et al., drawing upon knowledge of NETs and their

interaction with the adaptive immune system, hypothesized a link

between prolonged neutrophil activation, NET release, and the

development of LC (181). They highlighted the fact that NET

components—including double-stranded DNA, histones,

citrullinated peptides, MPO, and proteinase-3—are unbeknownst

to the adaptive immune system and, hence, constitute neoantigens.

These neoantigens have the potential to initiate and sustain

autoimmune processes by triggering the production of
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autoantibodies (14, 182). Compelling evidence from conditions

like systemic lupus erythematosus and rheumatoid arthritis shows

that the presence of autoantibodies can induce NETosis and

subsequently protect them from degradation, supporting the

notion that NETs can foster autoimmunity by harboring

neoantigens (182). This phenomenon would fuel a chronic pro-

inflammatory response, activation of the coagulation cascade, and

fibrosis (40, 82). Similar to SLE, COVID-19 exhibits the presence of

LDNs in circulation, which release NETs enriched with oxidized

nucleic acids that possess heightened immunostimulatory

capabilities, further enhancing autoimmunity and IFN responses

(27). Our group similarly postulated a role for NETs-related

autoimmune vasculitides as a mechanism of LC vascular

disease (183).

The discussion below focuses on the role of NETs in

autoimmunity, lung disease, cardiovascular disease, and

neurologic/neuropsychiatric complications seen in LC (Figure 2).

We also present emerging data showing cellular senescence-

associated inflammation to play a role in LC pathogenesis.
5.2 NETs and autoantibodies in
long COVID

Studies have demonstrated that circulating neutrophils isolated

from individuals with LC display higher levels of NET induction

compared to those of healthy controls (184, 185). Longitudinally

following surrogate NET markers for at least 6 months in patients

previously hospitalized for COVID-19 demonstrates sustained

elevations in serum concentrations of NE, MPO, and cell-free

DNA, although they were lower compared to acute COVID-19

patients but still higher than non-COVID controls (186). These

findings indicate an incomplete resolution of NETs after acute

COVID-19.

Severe COVID-19 features the emergence of autoantibodies

against a wide array of proteins including type I IFNs, numerous

interleukins, and self-antigens associated with autoimmune

diseases, such as anti-nuclear antibodies (ANAs), anti-histone

antibodies, and anti-neutrophil cytoplasmic antibody (ANCA),

which are components of NETs (187–190). Most of the

autoantigens identified exist complexed to extracellular nucleic

acids—and such would be the case within NETs—which are then

recognized by nucleic acid PRRs such as Toll-like receptors (e.g.,

TLR7) (189). Although the exact mechanism of their pathogenicity

is unclear, their presence is positively correlated with disease

severity. However, a large cohort study comparing non-ICU and

ICU-admitted COVID-19 patients demonstrated that ANAs are not

associated with disease severity but rather reflect a dysregulated

immune response due to extensive cell death (191).

Importantly, the detection of IgG and IgM autoantibodies

against NETs is frequent in hospitalized COVID-19 patients, their

levels tracking with increased circulating NET markers and worse

disease outcomes (192). The levels of anti-NET IgG inversely

correlate with the ability to clear NETs, suggesting that

autoantibodies protect NETs from degradation by DNase-1 (192).

Similar observations have been made in SLE, where anti-dsDNA
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and anti-histone antibodies are thought to protect NETs against

degradation by circulating DNase (193).

Mechanistically, after an infection, the germinal center B-cell

response is crucial for the development of high-affinity antibodies

through the processes of class-switching, somatic hypermutation,

and affinity maturation. Impaired germinal center B-cell responses,

as observed in severe and critical COVID-19 cases, lead to the

emergence of extrafollicular B-cell responses (194, 195). This

aberrant activation pathway induces the production of

polyreactive autoantibodies with limited somatic hypermutation,

similar to patterns observed in SLE (196). These polyreactive

antibodies, along with an abundant supply of self-antigens from

dead or dying cells and NETs, may drive the development of

autoantibodies in COVID-19 (197).

In the context of LC, COVID-19 survivors exhibit higher

detectable levels of ANAs 3 months and 12 months post-infection

compared to age- and sex-matched healthy controls (198).

Persistently positive ANA titers are associated with LC symptoms

of fatigue, dyspnea, and cough (198). ANA positivity also correlates
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with higher levels of TNF-a (198). The presence of autoantibodies

associated with antiphospholipid syndrome, including anti-

cardiolipin, anti-phosphatidylserine/prothrombin, and anti- b2
glycoprotein, is evident in approximately half of hospitalized

COVID-19 patients (199). Moreover, these IgG autoantibodies

induce NETosis in neutrophils isolated from healthy patients and

accelerate venous thrombosis when injected into mice (199). More

recently, it was demonstrated that a significant fraction of LC

patients exhibit positivity for IgM/IgG anti-cardiolipin and anti-

b2 glycoprotein autoantibodies (186). In the same cohort, LC

patients demonstrated higher levels of NET markers than healthy

controls, indicating incomplete resolution of NETs after recovery

from SARS-CoV-2 (186).

These findings draw intriguing parallels between COVID-19

and autoimmune diseases like SLE, highlighting the presence of

NETs as a potential source of neoantigens. Dysregulated humoral

responses, coupled with the sustained presence of NETs, contribute

to the initiation and perpetuation of autoimmunity. However,

discerning the pathogenicity of specific autoantibodies in LC
FIGURE 2

The potential role of NETs in long COVID may involves multiple pathways. NETs have been shown to drive pro-fibrotic responses in the alveolar
epithelium and lung fibroblasts, leading to lung fibrosis. An array of autoantibodies detected in long COVID, including anti-NET IgM and IgG, which
have been shown to protect NETs against degradation, contributing to downstream inflammation, vascular damage, and thrombosis. NETs are
known to contribute to atherosclerosis and myocardial inflammation, perhaps explaining the cardiovascular sequelae in long COVID patients.
Neuropsychiatric abnormalities in long COVID are associated with neuroinflammation and blood-brain barrier disruption, which can be induced by
neutrophil-endothelial cell interactions and NET production. This Figure was created using Biorender.com.
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remains largely unchartered territory, as existing data does not

establish causal relationships.
5.3 NETs in long COVID lung disease

Respiratory symptoms such as cough and dyspnea are frequently

observed in individuals with LC (200, 201). A meta-analysis of over

257,000 COVID-19 patients reported that dyspnea persisted for > 12

months after the initial COVID-19 infection in 31% of cases (202).

Radiologically, a combination of persistent inflammation (ground

glass opacities and consolidation) and fibrosis (fibrotic bands,

interlobular septal thickening, and honeycombing) can be observed

(203, 204). Persistent inflammation dominates the early post-acute

phase, with fibrosis becoming more prevalent during the follow-up

period (203). Significantly, approximately 45% of severe COVID-19

survivors will develop pulmonary fibrosis (205). Risk factors for the

development of pulmonary fibrosis as LC include various indicators

of more severe disease, such as ICU admission, mechanical

ventilation, longer hospitalization, and steroid/immunoglobulin

treatment (205).

One study by George et al. study has provided substantial

insight into the role of NETs in the pathogenesis of LC lung

disease, particularly by including a comparison group of patients

who experienced complete clinical and radiologic resolution of

acute COVID-19 symptoms (206). The authors demonstrated

that a subset of severe COVID-19 survivors developed interstitial

lung disease (ILD)-related changes on chest computed tomography

scan at 3-6 months post-SARS-CoV-2 infection, accompanied by a

restrictive pattern on pulmonary function testing. Patients with

persistent interstitial changes exhibited significantly elevated

neutrophil counts and serum MPO concentrations compared to

controls, which positively correlated with the radiologic extent of

pulmonary disease. Comparing the plasma proteome of these

patients revealed that the neutrophil chemoattractant IL-17 was

the only protein significantly associated with persistent ILD on

multivariate analysis (OR 3.72, 95% CI 1.20-16.84, p=0.0403) (206).

Furthermore, neutrophil chemokines CXCL1 and CXCL8 positively

correlated with the degree of restrictive disease on pulmonary

function testing, while CXCL8 and the inflammasome-related

cytokine IL-18, along with its receptor IL-18R1, were directly

associated with the radiological extent of interstitial disease (206).

These differences were also reflected in nasal brushing samples

taken to model mucosal immunological changes in the upper

airways. In vitro experiments using alveolar epithelial cell lines

showed that purified NETs increased the expression of fibronectin-

1, vascular endothelial growth factor, and alpha-smooth muscle

actin, while reducing E-cadherin expression, indicating that NETs

drive epithelial-to-mesenchymal transition (EMT) and subsequent

extracellular matrix deposition, which are established processes in

pulmonary fibrosis (206). These changes were primarily driven by

the host response to infection, such as through NETs, rather than

direct viral infection of alveolar epithelial cells (206).

These findings are consistent with lung autopsies of deceased

COVID-19 patients revealing the presence of alveolar epithelial cells
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demonstrate that co-culturing alveolar epithelial cells with

neutrophils, alveolar macrophages, and SARS-CoV-2 virus results

in the production of factors such as TGF-b, IL-8, and IL-1b by

alveolar macrophages, along with NET production, ultimately

leading to a complete EMT signature. Notably, removing either

neutrophils or alveolar macrophages resulted in an incomplete

EMT phenotype (207). These findings support the notion of an

alveolar macrophage/neutrophil/NETosis axis, whereby factors

released by alveolar macrophage-derived factors induce NETosis,

which, in turn, promotes EMT in pneumocytes.

Another study explored the role of Kruppel-like factor 2 (KLF2)

in pulmonary sequelae of LC (208). KLF2 is a fibroblast protein, and

its downregulation has been implicated in fibrosing disorders (209,

210). Lung fibroblasts stimulated with plasma from severe COVID-

19 patients downregulate KLF2 and acquire a pre-fibrotic

phenotype (208). Treating lung fibroblasts with a combination of

DNAse-1 (to degrade NETs) and JAK/IL-6 inhibitors baritinib/

tocilizumab (to attenuate inflammation) normalized KLF2

expression. Significantly, COVID-19 patients treated with this

combination showed better outcomes compared to those

receiving standard-of-care therapy. Furthermore, exposing lung

fibroblasts to the plasma of treated patients resulted in higher

KLF2 expression (208).

Together, these findings suggest that NETs and the

inflammatory environment in the circulation and lung

parenchyma of COVID-19 patients, particularly in severe cases,

induce fibrotic phenotypes in alveolar epithelial cells and lung

fibroblasts, which may explain the development of pulmonary

fibrosis observed in a significant proportion of severe COVID-

19 survivors.
5.4 NETs in the cardiovascular
manifestations of long COVID

Several prospective and retrospective studies have consistently

demonstrated a higher incidence of vascular pathologies, such as

arterial thrombosis, venous thrombosis, atherosclerosis, vasculitis,

and hypertension, in patients with LC (211–214). Notably, a

prospective study of 153,760 COVID-19 patients revealed that

convalescent individuals had a significantly higher risk of

developing future cardiovascular disease, cerebrovascular

disease, thromboembolic events, and ischemic heart disease

compared to healthy contemporary and historical controls

(211). This highlights a distinctive vascular feature of LC,

characterized by widespread activation of pro-coagulant

pathways (215–218). Indeed, elevated levels of pro-inflammatory

and pro-thrombotic mediators have been observed in LC patients

compared to healthy controls (219). It has recently been shown

that NETosis persists at a greater level in LC patients compared to

convalescent recovering patients (184). Persistent activation of

pathways related to immunothrombosis and neutrophil activation

has also been observed in COVID-19 survivors 6 months after the

initial SARS-CoV-2 infection (220).
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NETs are critical mediators of immunothrombosis and

endotheliitis, exerting their function through various mechanisms

(221, 222). NETs have also been implicated in the development of

atherosclerosis, where endothelial cells promote NET formation. In

turn, NETs lead to an increase in pro-inflammatory signaling and

subsequent recruitment of immune cells to atherosclerotic plaques

(223–228). NETs have also been shown to participate in the

pathophysiology of ANCA-associated vasculitides (229),

suggesting a potential link between autoimmunity, NETs, and

vasculopathy. Promising results have been observed with NET-

targeted therapies in the treatment of vascular pathologies, further

supporting the involvement of NETs (230–233). Additionally, a

larger burden of NETs has been observed in the coronary thrombi

of COVID-19 convalescent patients with ST-elevation myocardial

infarction when compared to historical controls (12, 234). These

findings provide evidence of plausible evidence of NETs in the

pathogenesis of vascular disorders in LC.

Cardiac involvement is an archetypal feature of LC and

encompasses a wide range of presentations, including cardiac

inflammation, cardiac fibrosis, dysrhythmias, ischemic heart

disease, and cardiac impairment (235, 236). Cohort studies

utilizing cardiac magnetic resonance imaging in patients with LC

have demonstrated evidence of impaired ventricular function in

addition to increased cardiac edema and inflammation (237–239).

Additionally, patients with LC demonstrated a heightened

incidence of myocardial injury particularly in the form of

myocardial fibrosis (240). The interplay between NETs and

cardiac disorders in several viral and bacterial infections was

recently reviewed (241). Clinical evidence for the involvement of

NETs in COVID-19-induced cardiac inflammation has recently

been established through autopsy reports from 21 SARS-CoV-2

infected individuals, showing the presence of NETs in all patients

and its association with myocarditis and cardiac injury (242).

Additionally, targeting NETs in a mouse model of COVID-19

through DNase I therapy resulted in the attenuation of cardiac

injury (243). Neutrophils recruited to the heart via the cytokine

midkine (MK), which then induces NETosis, contribute to the

pathogenesis of myocarditis and cardiac inflammation (244).

Targeting MK attenuates neutrophil infiltration and NET

formation, associated with a reduction in ventricular systolic

dysfunction and myocardial fibrosis (244). In vitro studies have

highlighted a potential role for NETs in the development of cardiac

fibrosis through enhancing fibroblast migration and promoting

cardiac myofibroblast differentiation (245). These findings suggest

a potential role for NETs in non-ischemic cardiac injury in LC.
5.5 NETs in neurologic manifestations of
long COVID

Another prominent feature of LC is the array of neurological

complications the sizeable chronic burden of which has been

indicated by numerous studies (246–249). On a gross scale, a UK

BioBank study analyzed brain MRI scans pre- and post-infection

and observed a greater clinical burden of cognitive decline and
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atrophy affecting the hippocampus and orbitofrontal cortex in the

post-infection group (250).

Mechanistically, direct viral invasion of the brain does not

appear to be prominent except in very severe acute COVID-19

cases (7). Instead, neuroinflammation, micro-clots, and the

activation of CNS-resident glial cells are hypothesized to be

crucial mediators of LC-associated neurological sequelae (251).

Experiments in ACE2-transgenic mice have indicated that even a

mild SARS-CoV-2 respiratory infection raises systemic cytokine

levels, such as CCL11, which can be neurotoxic by inducing reactive

states in microglia (252). Indicators of glial cell reactivity are

elevated amongst LC patients with persistent depressive

symptoms (253). A study of 76 LC patients experiencing “brain

fog” (encompassing headache, fatigue, malaise, and altered level of

consciousness) was the first to objectively demonstrate COVID-19-

associated BBB disruption by utilizing neurological biomarkers and

dynamic contrast-enhanced magnetic resonance imaging (254).

Sustained elevations in S100b, IL-8, TGF-b, and GFAP were

observed in brain fog LC patients, indicating persistent

inflammation. Importantly, the adhesion of peripheral blood

mononuclear cells to brain microvascular endothelial cells was

enhanced in patients with brain fog, and exposing endothelial

cells to the serum of these patients triggered endothelial cell

activation (254).

A distinctive feature of LC is the higher propensity for

developing ischemic strokes (251). Lee et al. documented the

presence of microvascular injury indicated by scattered

microthrombi, endothelial activation associated with the adhesion

of autoantibodies and complement proteins, and BBB disruption

indicated by the perivascular presence of fibrinogen in brain

autopsies of individuals who died suddenly with or after COVID-

19 (255, 256). Co-localizing with fibrinogen were microglia/

macrophages, CD8+ T-cells, and reactive astrocytes, with areas of

neuronal loss observed from microglia phagocytosis (255, 256).

Fibrin clots are also generally elevated in the blood of LC patients

(216). A recent study associated elevated serum fibrinogen and D-

dimer levels relative to C-reactive protein during acute admission

with neurocognitive deficits 6 and 12 months after acute COVID-

19, supporting the notion of an acute inflammatory response being

responsible for the long-lasting neurological effects of LC (257).

Together, these findings suggest that BBB disruption during acute

COVID-19 leads to the spillover of fibrinogen which, along with

propagating a hypercoagulable state and micro-clots (258), foster

neurotoxic resident glial cell phenotypes that damage neurons in a

subtle but debilitating manner with long-lasting neurocognitive

consequences (see (259) for a detailed review on the neurological

effects of fibrinogen).

The brain is typically devoid of neutrophils and NETs due to the

integrity of the BBB (260). However, in scenarios where the BBB is

compromised, neutrophils infiltrate and NETs are often visualized

in brain tissue where they contribute towards ongoing

neuroinflammation (260, 261). Recent studies proposed that

COVID-19 facilitates BBB disruption by increasing the expression

of matrix metalloproteinase-9 (MMP-9) which leads to basement
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membrane degradation (262, 263). The levels of NETs in the brain

have been directly related to the degree of neuroinflammation in

model organisms of Alzheimer’s disease, meningitis, ischemic

stroke, and traumatic brain injury (264). That being said, direct

evidence of the involvement of NETs in cerebral micro-clots and

neuroinflammation in acute and LC is lacking. The fact remains

that many of the autoantibodies (82), complement proteins (121),

fibrinogen (265), Von-Willebrand factor (266), and platelets (267)

that are hypothesized to be key to the micro-clot formation in LC

and driving its neurological manifestations are known to be

intertwined with neutrophil biology and NET production. Hence,

directing research efforts toward identifying and tackling NETs may

improve our understanding of the neurological sequelae of LC.
5.6 Cellular senescence and NETosis

Cellular senescence refers to a state of cell cycle arrest

accompanied by the release of inflammatory molecules collectively

termed the senescence-associated secretory phenotype (SASP) (268).

Cellular senescence is associated with a chronic low-grade

inflammatory state and is causally implicated in aging and various

chronic diseases, including pulmonary fibrosis, neurodegeneration,

and cardiovascular disease (269–277). Viral infections, including

SARS-CoV-2, trigger a cellular stress response, culminating in the

induction of senescence, termed virus-induced senescence (VIS) (278).

The intracellular signaling pathways mediating SARS-CoV-2—

induced VIS have been extensively reviewed elsewhere (278). Suffice

it to say that multiple studies have shown elevated levels of senescence

markers in the upper and lower respiratory tract of COVID-19

patients, indicative of SARS-CoV-2 infection-related VIS, which

results in the elaboration of a pro-inflammatory SASP that recruits

and induces pro-inflammatory M1 phenotypes in macrophages

(279–282). Notably, some samples with a high burden of senescent

cells did not show detectable viral infection, suggesting that

senescence can persist even after clearance of SARS-CoV-2 (278,

280). Linking senescence induction to COVID-19 pathology, Lee

et al. demonstrated that supernatant from SARS-CoV-2-induced VIS

cells can induce endothelial cell senescence or apoptosis, promote M1

macrophage polarization, activate platelets, trigger NET production,

and accelerate thrombosis (280). Treating with senolytic drugs, which

eliminate senescent cells by causing their selective apoptosis, reduced

the levels of SASP-reminiscent pro-inflammatory cytokines in

hamster models of SARS-CoV-2 infection. However, the

histopathological impact on inflammation and thrombosis did not

significantly improve with senolytic treatment (280).

In the context of LC, it is important to note that senescent cells

are typically cleared by the immune system because of their

chemoattractive SASP (283). However, in certain circumstances,

such as tumorigenesis, senescent cells can persist and contribute to

long-term disease recurrence by evading immune surveillance

(284–286). Although data on whether senescent cells persist and

drive LC phenotypes are currently lacking, ongoing studies have
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demonstrated SARS-CoV-2 infection-induced VIS of human brain

organoids in corticothalamic neurons and GABAergic ganglionic

eminence neurons, which are responsible for modulating neuronal

circuitry and processing of sensory information (287). SARS-CoV-2

was shown to induce the loss of dopaminergic neurons in the

brainstem responsible for coordination and consciousness,

potentially explaining abnormalities in these processes in LC

(287). However, multiple studies have suggested that direct SARS-

CoV-2 infection of the brain likely plays an insignificant role in

acute and long neuro-COVID (251).

Additionally, the downstream consequences of senescence

induction and pro-inflammatory SASP elaboration—in terms of

changes in neuronal function, synaptic plasticity, astrocyte or

microglial activation, or the recruitment of circulating innate and

adaptive immune cells—are currently unclear. The BBB disruption

in LC does support the role of neutrophils and NETs, as is indicated

by their role in other CNS pathologies that involve BBB disruption

(261). Other than the data above, no studies directly observing

senescent cell persistence and their roles in LC in other organ

systems such as the lungs have not yet been conducted, but several

hypotheses have been put forward (288, 289). Exploring the link

between senescence and NETosis is particularly important given the

rapid evolution of senolytic therapies into clinical trials and the

feasibility of targeting senescent cells; such research may uncover

therapeutic targets with great potential for translation into

clinical applications.
6 Conclusions and outlook

The findings discussed provided valuable insights into the

involvement of neutrophils and NETs in LC. However, there are

still unanswered questions that, once addressed, could position NETs

as viable targets for therapeutic interventions. Understanding the

heterogeneity of neutrophils in LC, exploring the factors that sustain

increased NETosis induction levels after SARS-CoV-2 resolution, and

examining the impact of NETs on other organ systems, particularly

the cardiovascular and nervous systems, are crucial areas to

investigate. It is somewhat counterintuitive that short-lived

neutrophils can exhibit a sustained activation response in LC,

perhaps being influenced by alterations in effector phenotypes of

long-lived cells or microenvironmental changes in the bone marrow

(290). The impact of location must also be explored, i.e., considering

compartmentalized/organ-specific pathophysiological differences,

influenced perhaps by the potential role of persistent senescent cells

and their influence on immune cell recruitment, is vital. Identifying

factors—such as autoantibodies—that determine NET degradation

capacity in the post-acute phase, as well as elucidating the specific

NET components responsible for organ-specific pathology such as

lung fibrosis, will enhance our understanding of LC. Addressing these

uncertainties may pave the way for clinically applicable strategies

aimed at targeting NETs, potentially alleviating this emerging

health crisis.
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