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Abstract
We establish that, for ideal unconstrained uniaxial nematic elastomers described by a homo-
geneous isotropic strain-energy density function, the only smooth deformations that can be
controlled by the application of surface tractions only and are universal in the sense that they
are independent of the strain-energy density are those for which the deformation gradient
is constant and the liquid crystal director is either aligned uniformly or oriented randomly
in Cartesian coordinates. This result generalizes the classical Ericksen’s theorem for non-
linear homogeneous isotropic hyperelastic materials. While Ericksen’s theorem is directly
applicable to liquid crystal elastomers in an isotropic phase where the director is oriented
randomly, in a nematic phase, the constitutive strain-energy density must account also for
the liquid crystal orientation which leads to significant differences in the analysis compared
to the purely elastic counterpart.

Keywords Nematic elastomers · Objectivity · Isotropy · Controllable deformations ·
Director orientation · Surface traction
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1 Introduction

Liquid crystal elastomers (LCEs) are advanced multifunctional materials that combine elas-
ticity with orientational order [32]. Specifically, mechanical strains give rise to changes in
liquid crystalline order and, conversely, changes in the orientational order generate mechani-
cal stresses and strains. Because of their large reversible deformations and complex material
responses in the presence of external stimuli, such as heat, light, electric or magnetic fields,
LCEs are suitable for a wide range of applications in science, manufacturing, and medical
research [4].

LCEs can be synthesized by various methods. Without special aligning mechanisms,
polydomain samples are typically obtained where the material contains multiple subdo-
mains, each of them with their own nematic alignment, termed the “director”. Monodomain
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LCEs can be achieved by a secondary cross-linking after electric or magnetic fields are
applied or the material is mechanically deformed to induce the desired nematic orientation.

Sitting between the world of elastomers and that of liquid crystals, the analysis of LCEs
can take advantage of developments in both these fields [22]. For unconstrained isotropic
hyperelastic materials, it is well known that the only controllable deformations that can be
maintained universally, i.e., independently of the material parameters, by application of sur-
face tractions only, are those characterized by a constant deformation gradient in Cartesian
coordinates, the so-called homogeneous deformations. This fundamental result due to Er-
icksen (1955) [8] (see also [29] for an alternative proof) has been central to the phenomeno-
logical study of many elastic materials for which constitutive parameters are derived from
macroscopic experimental tests. The problem of controllable deformations for incompress-
ible homogeneous isotropic hyperelastic materials is much more involved and was examined
in [7, 17, 21]. We refer also to [28] for a review of these results. Extensions of the analysis
to anisotropic elasticity are presented in [34, 35] and to anelasticity in [15, 33].

In addition, nematic elastomers can sustain large reversible deformations under small
applied forces [9, 14, 16, 18, 19, 26, 27, 31, 36]. For ideal LCEs, the theoretical explanation
is that the energy depending isotropically on the macroscopic deformation only through
the relative strain of the microstructure is minimized by these materials through a force-
free state, resulting in the so-called soft-elasticity phenomenon, where the microstructure
consists of many homogeneously deformed parts, known as shear striping [1, 2, 5, 6]. Strain-
energy densities depending also on the macroscopic strain to realistically account for semi-
soft elasticity where the applied force required is small were proposed in [11–13] (see also
[23, 24]).

In this paper, we consider ideal unconstrained uniaxial nematic LCEs characterized by
a homogeneous isotropic hyperelastic strain-energy density and subject to surface tractions
only, i.e., in the absence of body forces. We prove that, in Cartesian coordinates, assuming
that the deformation gradient is sufficiently smooth, the deformation is always homoge-
neous, i.e., it has a constant deformation gradient, while the liquid crystal director is either
uniformly aligned or oriented randomly. If we weaken the smoothness assumption, then
multiple solutions with locally constant deformation gradients can exist, such as the classi-
cal shear striping. This result is a direct extension of Ericksen’s theorem for compressible
elastic materials [8] to ideal LCEs. The case where LCEs are modelled as incompressible
materials [1, 20, 24] is also of considerable interest, but will not be discussed here.

2 Ideal Liquid Crystal Elastomers

An ideal uniaxial nematic LCE can be described by a homogeneous strain-energy density
function of the form [22]

W(nc)(F,n) = W(A), (1)

where F represents the macroscopic deformation gradient from the cross-linking state, n is
the nematic director (a unit vector for the localized direction of uniaxial nematic alignment)
in the present configuration, and W(A) is the strain-energy density of the isotropic polymer
network, depending only on the (local) elastic deformation tensor A. The tensors F and A
satisfy the following relation [32],

F = GAG−1
0 , (2)
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where

G = (
a1/3 − a−ν/3

)
n ⊗ n + a−ν/3I (3)

is the nematically-induced (natural) deformation tensor defining a change of frame of refer-
ence from the isotropic to a nematic phase. In equation (3), a > 0 is a light- or temperature-
dependent shape parameter, ν represents the optothermal analogue to the Poisson ratio relat-
ing responses in directions parallel or perpendicular to the director n, ⊗ denotes the tensor
product of two vectors, and I = diag(1,1,1) is the identity tensor, with diag(·, ·, ·) denot-
ing the diagonal second order tensor. We assume both a and ν to be spatially independent.
The tensor G0 has a similar expression to that of G, with n0 instead of n, a0 instead of a,
and ν0 instead of ν, corresponding to the reference cross-linking state. The director n is an
observable (spatial) quantity, and may differ from n0 by a rotation.

The square of the natural deformation tensor, known as the step-length tensor, takes the
equivalent form [10] (see also [25]),

G2 = c (I + 2Q) , (4)

where c is the effective step length of the polymeric chain and Q is the symmetric traceless
order parameter tensor describing orientational order in nematic liquid crystals [3, 32]. In
an isotropic phase, where the liquid crystal molecules are randomly oriented, Q = 0.

In practice, LCEs can be modeled as incompressible materials at the cost of imposing
an extra constraint, namely det F = 1. However, here we consider universal solutions for
unconstrained LCEs, i.e., incompressibility is not enforced.

In equation (1), the elastic strain-energy density W is minimized by any deformation
satisfying AAT = I, and the nematic strain-energy function W(nc) is minimized by any de-
formation satisfying (FG0) (FG0)

T = G2. Without loss of generality, we assume that the
strain-energy density described by equation (1) vanishes in the reference state where F = I
and G = G0.

By (3), if R is a rigid-body rotation, then the following identity holds

RTGR = (
a1/3 − a−ν/3

) (
RTn

) ⊗ (
RTn

) + a−ν/3I. (5)

Since nematic elastomers are weakly cross-linked, the nematic director can rotate freely,
and the material displays isotropic mechanical properties. Then, the strain-energy density
given by (1) satisfies the following conditions inherited from isotropic finite elasticity [22]:

(C1) Objectivity/Frame-indifference. The constitutive equation is unaffected by a super-
imposed rigid-body transformation (which involves a change of position after defor-
mation). As n is defined with respect to the deformed configuration, it transforms
when this configuration is rotated, whereas n0 does not. Material objectivity is guar-
anteed by defining strain-energy functions in terms of the scalar invariants.
This is because, by the material frame indifference of W ,

W(RTA) = W(A), (6)

and by (2),

RTF = (
RTGR

) (
RTA

)
G−1

0 . (7)

Then (1), (5), (6) and (7) imply

W(nc)(RTF,RTn) = W(RTA) = W(A) = W(nc)(F,n). (8)
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(C2) Isotropy. The constitutive equation is unaffected by a rigid-body transformation prior
to deformation. As n is defined with respect to the deformed configuration, it does
not change when the reference configuration is rotated, whereas n0 does. For isotropic
materials, the strain-energy function is a symmetric function of the principal stretch
ratios.
This is because, since W is isotropic, i.e.,

W(A) = W(AR), (9)

and (2) holds, it follows that

FR = G (AR)
(
RTG−1

0 R
)
. (10)

Then, by (1), (9) and (10),

W(nc)(FR,n) = W(AR) = W(A) = W(nc)(F,n). (11)

Under the frame-indifference condition (C1), the LCE model defined by (1) can be ex-
pressed equivalently in terms of the scalar invariants [30], as follows:

W(nc)
(
I

(nc)

1 , I
(nc)

2 , I
(nc)

3 , I
(nc)

4 , I
(nc)

5

)
= W(I1, I2, I3), (12)

where

I
(nc)

1 = tr
(
FG2

0FT
) = tr

(
FTG2

0F
)
, (13)

I
(nc)

2 = tr
[
Cof

(
FG2

0FT
)] = tr

[
Cof

(
FTG2

0F
)]

, (14)

I
(nc)

3 = det
(
FG2

0FT
) = det

(
FTG2

0F
)
, (15)

I
(nc)

4 = n · FG2
0FTn, (16)

I
(nc)

5 = n · (FG2
0FT

)2
n, (17)

and {I1, I2, I3} are the principal invariants of the elastic Cauchy-Green tensors AAT and
ATA.

The following relations between
{
I

(nc)

1 , I
(nc)

2 , I
(nc)

3 , I
(nc)

4 , I
(nc)

5

}
and {I1, I2, I3} are ob-

tained:

I3 = (det A)2 = [
det G−1 det (FG0)

]2 = a2(2ν−1)/3I
(nc)

3 , (18)

where det G = a(1−2ν)/3,

I1 = tr
(
ATA

)

= tr
[
(FG0)

T G−2 (FG0)
]

= a2ν/3
[
tr

(
FG2

0FT
) − (

1 − a−2(ν+1)/3
)

n · (FG2
0FT

)
n
]

= a2ν/3
[
I

(nc)

1 − (
1 − a−2(ν+1)/3

)
I

(nc)

4

]
,

(19)
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and, using (18),

I2 = I3 tr
(
ATA

)−T

= a2(2ν−1)/3I
(nc)

3 tr
[
(FG0)

−1 G2 (FG0)
−T

]

= a2(2ν−1)/3I
(nc)

3 a−2ν/3
[
tr

(
F−TG−2

0 F−1) − (
1 − a2(ν+1)/3

)
n · (F−TG−2

0 F−1)n
]

= a2(ν−1)/3
[
I

(nc)

2 − (
1 − a2(ν+1)/3

)(
I

(nc)

5 − I
(nc)

1 I
(nc)

4 + I
(nc)

2

)]
.

(20)

Note that the above expression for I2 holds since, by the Cayley-Hamilton theorem, we have

(
FG0FT

)3 − I
(nc)

1

(
FG0FT

)2 + I
(nc)

2

(
FG0FT

) − I
(nc)

3 I = 0, (21)

and multiplying the above equation by
(
FG2

0FT
)−1

gives

I
(nc)

3

(
FG2

0FT
)−1 = (

FG02 FT
)2 − I

(nc)

1

(
FG2

0FT
) + I

(nc)

2 I. (22)

Hence,

n · F−TG−2
0 F−1n = n ·

(
I

(nc)

3

)−1 [(
FG2

0FT
)2 − I

(nc)

1

(
FG2

0FT
) + I

(nc)

2 I
]

n

=
(
I

(nc)

3

)−1 (
I

(nc)

5 − I
(nc)

1 I
(nc)

4 + I
(nc)

2

)
.

(23)

By the isotropy condition (C2), the LCE model given by (1) can be written equivalently
as

W(nc)(λ1, λ2, λ3,n) = W(α1, α2, α3), (24)

where λ2
1, λ2

2, λ2
3 are the principal eigenvalues of FG2

0FT and α2
1 , α2

2 , α2
3 are the principal

eigenvalues of ATA. The following relations between these principal eigenvalues and the
corresponding principal invariants hold,

I
(nc)

1 = λ2
1 + λ2

2 + λ2
3, I

(nc)

2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, I

(nc)

3 = λ2
1λ

2
2λ

2
3, (25)

and

I1 = α2
1 + α2

2 + α2
3, I2 = α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
3 I3 = α2

1α
2
2α

2
3, (26)

as usual.

3 Stresses and Stress-Free Configurations

For nematic LCEs, the director is ‘free’ to rotate, hence F and n are independent variables.
Since G and G0 are symmetric, the Cauchy stress tensor for the nematic material with the
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strain-energy function described by (1) is calculated as follows [22],

T(nc) = J−1 ∂W(nc)

∂F
FT

= J−1G−1 ∂W

∂A
AT G

= (
det G−1 det G0

)
G−1TG,

(27)

where J = det F = det G det A det G−1
0 and

T = (det A)−1 ∂W

∂A
AT (28)

is the Cauchy stress tensor from isotropic finite elasticity. Equivalently,

T = β0 I + β1 B + β−1 B−1, (29)

where

β0 = 2√
I3

(
I2

∂W

∂I2
+ I3

∂W

∂I3

)
, β1 = 2√

I3

∂W

∂I1
, β−1 = −2

√
I3

∂W

∂I2
(30)

are scalar functions of the principal invariants {I1, I2, I2} of B = AAT .
The first Piola-Kirchhoff stress tensor for the nematic material is equal to

P(nc) = T(nc) Cof F = ∂W(nc)

∂F
= G−1 ∂W

∂A
= G−1P, (31)

where Cof F = JF−T and

P = ∂W

∂A
(32)

is the first Piola-Kirchhoff stress tensor from isotropic elasticity.
The corresponding second Piola-Kirchhoff stress tensor is

S(nc) = F−1P(nc) = G0A−1G−2PG0 = G0A−1G−2ASG0, (33)

where S = A−1P is the second Piola-Kirchhoff from isotropic elasticity.
Since the relation (29) between the Cauchy stress tensor T and the Cauchy-Green tensor

B is not invertible in general, more than one deformation gradient A may induce the same
stress tensor T. Thus the Cauchy stress tensor T(nc) in a nematic LCE may also be generated
by more than one deformation gradient F. Such deformations corresponding to the same
stress tensor can also alternate in LCE materials to produce inhomogeneous patterns. In this
case, for geometric compatibility, any two different gradient tensors F and F̂ corresponding
to two alternating phases must be rank-one connected, i.e., rank

(
F − F̂

) = 1.
For example, assuming that T = 0 for rigid-body rotations, i.e., when A = R, then

T(nc) = 0 when F = GRG−1
0 . In particular, in the absence of elastic deformations, such that

A = I and G = G0, the undeformed configuration, with F = I, is stress free, i.e., T(nc) = 0.
However, since it is possible for a stress-free state to be generated by more than one defor-
mation, when these deformations are geometrically compatible, they can also alternate in
the same material, producing an inhomogeneous pattern.
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More generally, if T = pI, where p is constant, while A = cR, where c is constant and R
is a rigid-body rotation, then T(nc) = p

(
det G−1 det G0

)
I for F = cGRG−1

0 . As it is possible
for the same stress to be generated by different deformations, if these are geometrically
compatible, then they can also alternate in the same material to produce inhomogeneous
patterns.

Our result concerning controllable deformation in ideal nematic elastomers is established
in the next section.

4 Controllable Deformations

Theorem For an ideal unconstrained uniaxial nematic LCE characterized by equation (1),
such that G0 is constant in Cartesian coordinates, a deformation with gradient F(X) of
differentiability class C2, such that det F(X) > 0, can be maintained for all W(nc) by the
application of surface tractions only (without body forces) if and only if both F and G are
constant in Cartesian coordinates.

Proof We set the notation F = FG0, so that F = GA (see Fig. 1). Since G0 is constant,
this amounts to a change of coordinates from the cross-linking state, with coordinates
(X1,X2,X3), to a virtual isotropic state, with coordinates (X1,X2,X3), such that

G0ij = ∂Xi

∂Xj

, i, j = 1,2,3. (34)

Henceforth, all calculations are carried out within this new system of coordinates.
The first Piola-Kirchhoff stress takes the form

P
(nc) = ∂W(nc)

∂F
=

5∑

i=1

∂W(nc)

∂I
(nc)
i

∂I
(nc)
i

∂F
. (35)

In the absence of body forces, the equation of elastostatic equilibrium is

Div P
(nc) = 0. (36)

Equivalently,

5∑

i=1

∂W(nc)

∂I
(nc)
i

Div

(
∂I

(nc)
i

∂F

)

+
9∑

i=1

3∑

j=1

∂2W(nc)

∂I
(nc)
i ∂I

(nc)
j

(
Grad I

(nc)
j

) ∂I
(nc)
i

∂F
= 0. (37)

By the standard argument, if this holds for arbitrary W(nc), then

Div

(
∂I

(nc)
i

∂F

)

= 0, i = 1, . . . ,5,

and

(
Grad I

(nc)
j

) ∂I
(nc)
i

∂F
+

(
Grad I

(nc)
i

) ∂I
(nc)
j

∂F
= 0, i, j = 1, . . . ,5.
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Fig. 1 Schematic of
multiplicative decomposition
F = GAG−1

0 and adopted

notation FG0 = F = GA

In particular, if i = j , then

Grad I
(nc)
i = 0, i = 1, . . . ,5.

For i = 1, ∂I
(nc)

1 /∂F = 2F, hence

Grad I
(nc)

1 = 0 and Div

(
∂I

(nc)

1

∂F

)

= 2 Div F = 0. (38)

If the components of the deformation gradient are expressed in Cartesian coordinates as

F ij = ∂xi

∂Xj

, i, j = 1,2,3,

then Div F = 0 takes the form

3∑

k=1

∂2xi

∂X
2
k

= 0, i = 1,2,3,

and Grad I
(nc)

1 = 0 can be written as

3∑

i=1

3∑

j=1

∂xi

∂Xj

∂2xi

∂Xj∂Xk

= 0, k = 1,2,3.

Therefore,

0 =
3∑

k=1

∂

∂Xk

⎛

⎝
3∑

i=1

3∑

j=1

∂xi

∂Xj

∂2xi

∂Xj∂Xk

⎞

⎠ =
3∑

i=1

3∑

j=1

3∑

k=1

∂2xi

∂Xj∂Xk

∂2xi

∂Xj∂Xk

.

Noting that the right-hand side of the above equality is a sum of squares, it follows that

∂2xi

∂Xj∂Xk

= 0, i, j, k = 1,2,3.



Controllable Deformations of Unconstrained Ideal Nematic Elastomers 103

Hence F is constant in the Cartesian coordinates (X1,X2,X3), and since G0 is constant, F
is also constant in the Cartesian coordinates (X1,X2,X3).

Next, we show that G is constant as well. For i = 4,

Grad I
(nc)

4 = 0 and Div

(
∂I

(nc)

4

∂F

)

= 0. (39)

Taking any finite deformation with F constant, we choose the Cartesian coordinates along
its principal directions, such that F = diag

(
F 11,F 22,F 33

)
. Then the first equation in I

(nc)

4

implies:

F 11
∂n2

1

∂X1

+ F 22
∂n2

2

∂X1

+ F 33
∂n2

3

∂X1

= 0,

F 11
∂n2

1

∂X2

+ F 22
∂n2

2

∂X2

+ F 33
∂n2

3

∂X2

= 0,

F 11
∂n2

1

∂X3

+ F 22
∂n2

2

∂X3

+ F 33
∂n2

3

∂X3

= 0,

while the second equation implies

∂n2
1

∂X1

= 0,
∂n2

2

∂X2

= 0,
∂n2

3

∂X3

= 0.

From the above equations, we infer that ni is independent of Xi , for i = 1,2,3, and the
following conditions are satisfied simultaneously:

(
F 11 − F 33

) ∂n2
1

∂X2

= 0,
(
F 11 − F 22

) ∂n2
1

∂X3

= 0,

(
F 22 − F 33

) ∂n2
2

∂X1

= 0,
(
F 22 − F 11

) ∂n2
2

∂X3

= 0,

(
F 33 − F 22

) ∂n2
3

∂X1

= 0,
(
F 33 − F 11

) ∂n2
3

∂X2

= 0.

By the isotropy condition (C2), we can apply any rotation R prior to the deformation, such
that

{
F 11,F 22,F 33

}
permute along the diagonal, while n does not rotate. After replacing

diag
(
F 11,F 22,F 33

)
first with diag

(
F 22,F 33,F 11

)
and second with diag

(
F 33,F 11,F 22

)
,

we also obtain, respectively:

(
F 22 − F 11

) ∂n2
1

∂X2

= 0,
(
F 22 − F 33

) ∂n2
1

∂X3

= 0,

(
F 33 − F 11

) ∂n2
2

∂X1

= 0,
(
F 33 − F 22

) ∂n2
2

∂X3

= 0,

(
F 11 − F 33

) ∂n2
3

∂X1

= 0,
(
F 11 − F 22

) ∂n2
3

∂X2

= 0,
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and

(
F 33 − F 22

) ∂n2
1

∂X2

= 0,
(
F 33 − F 11

) ∂n2
1

∂X3

= 0,

(
F 11 − F 22

) ∂n2
2

∂X1

= 0,
(
F 11 − F 33

) ∂n2
2

∂X3

= 0,

(
F 22 − F 11

) ∂n2
3

∂X1

= 0,
(
F 22 − F 33

) ∂n2
3

∂X2

= 0.

We distinguish the following two cases. First, if at least two of the three diagonal val-
ues

{
F 11,F 22,F 33

}
are different from each other, then Grad n = 0, i.e., n is uniform

in the Cartesian coordinates (X1,X2,X3), and since G0 is constant, n is also uniform
in the Cartesian coordinates (X1,X2,X3) (see also [34]). Thus G is constant. Second, if
F 11 = F 22 = F 33 = F , then F = F I, where F is a constant scalar in the Cartesian coordi-
nates (X1,X2,X3). Hence, the current configuration is an isotropic state, i.e., G is constant,
in the Cartesian coordinates (X1,X2,X3). Because G0 is constant, it follows that G is con-
stant also in the Cartesian coordinates (X1,X2,X3), i.e., either n = n0 or both the reference
and current configurations are isotropic.

Conversely, when F and G are constant in the Cartesian coordinates, given that G0 is con-
stant, the equation of elastostatic equilibrium in the absence of body forces is automatically
satisfied. �

We note that, when equal and opposite homogeneous shear deformations generate al-
ternating shear stripes in LCEs as in soft (or semi-soft) elastic phenomena, the deforma-
tion gradient in two adjacent stripes are geometrically compatible (see, e.g., [22, Chap. 6]).
Therefore, by assuming that, the deformation gradient is piecewise of differentiability class
C2, the result of the above theorem can be extended to shear-striping patterns, which can
also be maintained universally by the application of surface tractions only in ideal nematic
elastomers. This is formally presented in the next result.

Corollary For an ideal unconstrained uniaxial nematic LCE characterized by equation (1),
such that G0 is constant in Cartesian coordinates, a deformation with gradient F(X) which
is piecewise of differentiability class C2, such that det F(X) > 0, can be maintained for all
W(nc) by the application of surface tractions only (without body forces) if and only if both
F and G are piecewise constant in Cartesian coordinates. In two adjacent subdomains, the
deformation gradient, F+ and F−, must be rank-one connected, i.e., rank (F+ − F−) = 1,
for geometric compatibility.

5 Conclusion

For unconstrained uniaxial nematic LCEs described by a homogeneous isotropic strain-
energy density function, we proved that the only deformations that are independent of the
material parameters and can be maintained by the application of traction forces on the
boundary of the body, assuming that the deformation gradient is sufficiently smooth, are
the homogeneous deformations, i.e., those for which the deformation gradient is constant
and the director is either uniform or randomly oriented in the Cartesian coordinates. This re-
sult is consistent with the classical Ericksen’s theorem for nonlinear homogeneous isotropic
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hyperelastic materials, which is directly applicable to ideal LCEs in an isotropic phase. How-
ever, in a nematic phase, the constitutive strain-energy density is a function of five invariants
instead of three, to account also for the liquid crystal orientation.

Since LCEs are to a large extent incompressible materials, and we know from the elastic
case that this extra constraint guarantees the existence of additional universal solutions, there
are also important inhomogeneous deformations that can be controlled by the application of
surface tractions and are independent of the constitutive parameters. We refer to [1, 20, 24]
where such deformations have been examined.
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