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Abstract: Urban flood inundation is spatially uncertain. To quantify this uncertainty, it is necessary to explore the spatial probability of
urban flood inundation in different return periods. In this study, an urban flood spatial inundation probability assessment method based on
an improved Bayesian model is proposed, which comprises three parts: data reconstruction based on undersampling; optimal Bayesian
sample planning; and spatial inundation probability assessment. A case study of the central urban area of Jingdezhen City, China, is
presented in this paper. The results indicate that (1) the inundation probabilities generated based on various return periods (20-, 50-,
and 100-year return periods) are accurately determined and can provide more detailed inundation information. (2) The adoption of
the random undersampling data reconstruction method solves the problem of an imbalanced number of inundations/noninundations during
Bayesian modeling and substantially enhances the prediction accuracy compared with the traditional Bayesian modeling approach. (3) A
sensitivity analysis reveals that inundation probability is sensitive to the drainage network and elevation rather than soil water retention and
distance to river. With an increase in the return period, the inundation probability gradually increases. As the proposed method can quantify
flood inundation uncertainty, it is valuable in supporting specific flood risk assessments. DOI: 10.1061/NHREFO.NHENG-1726. This
work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/
licenses/by/4.0/.

Author keywords: Urban flood; Inundation probability; Bayesian model; Data reconstruction.

Introduction

Ongoing urbanization has caused urban flood disasters to become
increasingly serious (Jamali et al. 2018). Urban flood inundation
causes water accumulation on roads and residences, which can se-
verely interrupt traffic and damages private property. Serious urban
flood inundation accidents have occurred worldwide. For example,
on September 1, 2021, Hurricane Ida barreled into New York City,
causing severe flooding and 13 deaths and disrupting transit across
parts of New York. From July 17 to 21, 2021, catastrophic flooding

affected Zhengzhou, Henan, in China, causing severe flood damage
to property, motor, public transportation, and infrastructure; 73
people were killed. Urban flood risk assessment can provide an
effective approach to prevent and mitigate the adverse effects of
disasters (UNISDR 2009). A flood map shows the inundation area,
inundation range, and inundation depth and can be employed for
risk identification (Sun et al. 2020). However, urban flood inunda-
tion is spatially uncertain. Some areas may be inundated more
frequently, whereas other areas may be inundated less frequently.
It is necessary to not only explore whether certain areas will be
inundated in different return periods but also to better understand
the inundation probability.

In previous studies, flood maps have generally been obtained
from hydrological or hydrodynamic model simulations, which in-
volve physically based hydrologic processes (Bajabaa et al. 2013;
Chen et al. 2012). These methods, however, are overly dependent
on large amounts of data, such as pipeline data, fine-resolution
topography data, and flood control facilities, some of which are
difficult to obtain. Although hydrological or hydrodynamic models
can be developed using a probabilistic approach, which derives an
uncertain flood extent map due to uncertainty in model parameters
(Merwade et al. 2008; Di Baldassarre et al. 2010), establishing
these models is difficult and inefficient, especially in a rapid urbani-
zation context. In the era of big data and machine learning,
simplified models have calculated inundation probability by focus-
ing on the relationships between relevant factors and inundation
areas. Wang et al. (2015b) used random forest to evaluate regional
flood hazard risk. Tang et al. (2018) used a weighted naïve Bayes
classifier to assess the spatial urban waterlogging risk. Li et al.
(2010) constructed a Bayesian network to integrate multiple factors
for the assessment of catastrophic risk. The Bayesian method
can include the key urban environmental factors in probabilistic
modeling and also can be utilized to explore the quantitative
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relationship between these factors and numerous historical events.
The method has been used to estimate the likelihood of various
disasters, including earthquakes (Han et al. 2019; Cockburn and
Tesfamariam 2012), debris flows (Liang et al. 2012), and forest
fires (Sevinc et al. 2020). In flood risk assessment, in particular,
a spatial inundation assessment model based on a combination
of Bayesian and geographic information system (GIS) methods
has been proposed and applied in the Bowen Basin, Australia
(Liu et al. 2016, 2017), and Guangzhou, China (Tang et al. 2018).
However, this method may cause over- or underestimation of the
flood inundation probability, as it is based on the superimposition
of maximum inundation areas throughout a given historical period
without considering the flood frequency factor. To rectify this
shortcoming, different return periods of floods should be consid-
ered to calculate flood inundation probability.

Moreover, the Bayesian method assumes that the number of
samples in each category is approximately balanced. However,
flood inundation areas are generally concentrated only within a cer-
tain part of an urban area; therefore, the size of inundation obser-
vation samples is much smaller than that of noninundation areas.
Such an imbalance can cause the model to focus too much on major
sample data, whereas key minor data could be omitted during the
training process (Krawczyk 2016). Therefore, the problem of an
imbalanced sample size between inundation data and noninunda-
tion data should be solved in the very first step. The resampling
method is widely adopted to reconstruct data to address this prob-
lem (Mohammed et al. 2020), including over- and undersampling
techniques. The oversampling method expands the number of
minority class examples to balance the class distribution, while the
undersampling method eliminates the majority class examples ran-
domly. It has been found that the undersampling technique, when
combined with the naïve Bayes method, can decrease the training
time while increasing the classification performance (Aridas et al.
2019).

In this study, an improved Bayesian method through data
reconstruction is presented to assess the spatial inundation proba-
bility of urban floods under different return periods. Therefore, the
primary objectives of the present study are as follows: (1) to con-
struct a balanced data set using undersampling techniques for the
Bayesian model through data reconstruction conception; (2) to
obtain flood inundation probability maps for different return peri-
ods and to analyze the flood inundation probability; and (3) to an-
alyze the sensitivity of key urban factors to the flood inundation
probability.

Methods

Overall Framework of the Urban Flood Inundation
Probability Assessment Method

The proposed framework, which is shown in Fig. 1, includes three
modules: data reconstruction based on undersampling; optimal
Bayesian sample planning; and spatial inundation probability as-
sessment. Before data reconstruction, the influencing factors
should be selected by analyzing the flood inundation formation
process according to previous studies. Once selected, these grid-
based data sets are then standardized and classified into several
classes, which are applied as inputs of the naïve Bayes model.
The inundation maps under different return periods are also
classified into inundation and noninundation. A detailed process
is presented in the section “Data Collection and Processing.”
Due to the imbalance between inundation data and noninundation
data, the random undersampling technique is adopted to generate

the optimal Bayesian sample. These two steps are described in the
section “Module of the Bayesian Model Based on Data Recon-
struction.” Based on the optimal Bayesian sample, the posterior
probability in each grid can then be determined based on the condi-
tional probability. The model is described in the section “Probabil-
ity Assessment Based on the Naïve Bayesian Model.” Further, to
identify the most sensitive urban factors resulting in inundation,
the contribution of each selected factor to the overall probability
is estimated based on the derivative function, as introduced in the
section “Sensitivity Analysis.”

Module of the Bayesian Model Based on Data
Reconstruction

Bayesian model establishment based on data reconstruction in-
cludes two steps: data reconstruction based on undersampling
and optimal Bayesian sample planning. In the first step, noninun-
dation grids are equally divided into several groups according to the
geographical location, and random undersampling is then adopted
to select noninundation grids from each group. A balanced data set
is generated. In the second step, an optimal sample can be gener-
ated based on the naïve Bayesian training process.

Data Reconstruction Based on Undersampling
First, all grids from the inundation map under a certain return
period are divided into two data sets: the noninundation data set
(Set B) and inundation data set (Set A). Random undersampling
is adopted to select samples from Set B to establish a representative
Set B 0. In order to overcome the disadvantage of missing important
samples in traditional random undersampling, the k-means cluster-
ing technique is implemented to divide the noninundation data set
into several equal groups based on the geographic projected

Fig. 1. Framework of the proposed urban flood inundation probability
assessment method.
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coordinates. Therefore, the noninundation grids from different lo-
cations can be collected by randomly sampling each group. Then,
the number of Set B 0 is the same as that of Set A. Last, a balanced
data set is reconstructed by combining inundation grids (Set A) and
selected noninundation grids (Set B 0), which isMS ¼ fA;B 0g. It is
divided into two sets: a training set with 80% of the grids and a
testing set with 20%. The process is shown in Fig. 2.

Optimal Bayesian Sample Plan
As the random sampling method is employed to reconstruct the
observation data set, a new data set can be generated with a random
sampling process every time. There are a number of different bal-
anced training sets, MSi, MSi ∈ M. To ensure the accuracy of the
probability assessment model, it is necessary to screen the training
set with the optimal accuracy through multiple sampling and accu-
racy evaluation iterations. Therefore, the naïve Bayes method is
adopted to train these samples, and accuracy evaluation is carried
out until the optimal sample data table with the highest accuracy is
determined.

Naïve Bayes is a statistical classification technique that deter-
mines the class used for classification based on the hypothesis that
attributes are independent of each other. The naïve Bayes model
collects an example occurrence of an event and estimates the prior
probability for each class. The advantage of the naïve Bayes model
is that it is possible to estimate the parameters needed for classi-
fication with a small amount of learning data (Lee et al. 2020).

The naïve Bayes correlation equation is calculated following
Eq. (1)

PðY ¼ yjX1;X2; : : : ;XnÞ ∝ PðY ¼ yÞ
Yn

i¼1

PðXijY ¼ yÞ ð1Þ

where PðY ¼ yÞ = the prior probability of the class node; PðXijY ¼
yÞ = the conditional probability; and PðY ¼ yjX1;X2; : : : ;XnÞ =
the posterior probability. In this study, inundation or noninundation
conditions are considered nodes Y, and the selected urban factors
are considered nodes Xi.

The optimal sample can be generated through model training
and accuracy evaluation, which exhibits the highest prediction ac-
curacy. The specific training and accuracy evaluation process is
shown in Fig. 3.

In regard to the evaluation metrics, the overall accuracy (OA)
and Cohen’s kappa coefficient (K) are adopted to quantify the clas-
sification performance. OA is computed as the ratio between the
number of correctly classified test samples and the total test sam-
ples. K is considered to assess the extent of agreement between the
prediction results and the actual classification results. An OA value
that exceeds 0.8 indicates good classification accuracy. A K value
greater than 0.6 indicates that a given classification is unlikely to
have been obtained by chance alone.

If the samples pass the relevant OA and K thresholds, they are
stored as alternative sampling tables. The random undersampling
process is repeated 10,000 times to ensure that the probability dis-
tribution of each factor is infinitely close to the actual probability
distribution. The most accurate table is selected as the optimal sam-
ple through accuracy comparison.

Probability Assessment Based on the Naïve Bayesian
Model

After acquiring the optimal sample, the posterior probabilities of
inundation and noninundation in each grid can be calculated with
Eqs. (2) and (3), respectively

Pðy1jx1; x2; x3; : : : ; xrÞ ¼ PðY ¼ y1Þ
Yr

i¼1

Pðxijy1Þ ð2Þ

Pðy2jx1; x2; x3; : : : ; xrÞ ¼ PðY ¼ y2Þ
Yr

i¼1

Pðxijy2Þ ð3Þ

where PðY ¼ y1Þ and PðY ¼ y2Þ = the prior probabilities of inun-
dation and noninundation, respectively; y1 and y2 = inundation and
noninundation, respectively; xi ∈ fx1; x2; : : : ; xrg = the influenc-
ing factor; and Pðxijy1Þ and Pðxijy2Þ = the conditional probabilities
of each influencing factor under inundation condition and noninun-
dation condition, respectively.

The posterior probability is the revised or updated probability of
an event occurring after taking into consideration new information.
Although the posterior probabilities are biased due to a change in
the priors, undersampling does not affect the ranking order returned
by the posterior probability (Pozzolo et al. 2015). In order to ana-
lyze the inundation risk, a standardized probability (P 0) of posterior
inundation probability in each spatial grid is calculated with Eq. (4)

P 0 ¼ Pðy1jx1; x2; x3; : : : ; xrÞ
Pðy1jx1; x2; x3; : : : ; xrÞ þ Pðy2jx1; x2; x3; : : : ; xrÞ

ð4Þ

The standardized probability ranges from 0 to 1 and is further
divided into five levels at equal intervals: very low (< 0.2); low
(0.2–0.4); medium (0.4–0.6); high (0.6–0.8); and very high
(> 0.8), which indicates the flood inundation risk. Finally, probabi-
listic flood inundation maps are generated in five levels.

Sensitivity Analysis

A sensitivity analysis is performed to quantify the effect of each
selected urban factor on the flood inundation probability. This
analysis is achieved by investigating the effect of small changes
in the influencing factor probability on the posterior probability.
The derivative function is applied to identify and estimate the con-
tribution of each factor to the overall probability (Laskey 1995).

Fig. 2. Data reconstruction process by grouping and random undersampling.
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Specifically, GeNIe software (BayesFusion, LLC 2021) is adopted
to calculate the factor sensitivity based on the algorithm proposed
by Kjærulff and van der Gaag (2000). The specific process entails
the acquisition of a set of target nodes and the application of a
derivative function to calculate the complete derivative of the pos-
terior probability distribution of the target node to each numerical
parameter in the Bayesian model. The derivative functions are
shown in Eqs. (5) and (6). The higher the sensitivity value is, the
more pronounced the influence of the representative factor on the
inundation probability (Wang et al. 2002)

PðyjeÞðxÞ ¼ ∂xþ β
γxþ δ

ð5Þ

Sðxjy; eÞ ¼ ∂PðyjeÞ
∂x ¼ α − βγ

ðγxþ 1Þ2 ð6Þ

where x = the probability of each influencing factor; y = a query,
i.e., inundation or noninundation; and e = the evidence correspond-
ing to the value of y entered into the Bayes model, which is part of
the influencing factors. Moreover, PðyjeÞðxÞ = the posterior prob-
ability, which is a fraction of two linear functions of x; Sðxjy; eÞ =
sensitivity value of query y at x given e; and ∂, β, γ, and δ =
constants with respect to x.

Study Area and Materials

Study Area

Jingdezhen City is located in northeastern Jiangxi Province, where
the terrain is high in the boundary area and low at the center, similar

to a basin. As one of the three major storm centers in Jiangxi
Province, Jingdezhen City frequently and seriously suffers from
severe floods resulting from sustained heavy rainfall, especially
in low-lying areas along the river. On June 19, 2016, the entire city
suffered severe flooding; the average rainfall was 240 mm. Accord-
ing to reports from the Jingdezhen Government, 375,000 people
were affected, and the direct economic losses were 700 million
Chinese Yuan. In the first 10 days of July 2020, the rainfall was
492 mm. Four consecutive flooding events occurred in Changjiang,
thereby exceeding historical records. The hydrographic bureau
issued red warnings many times during these events.

According to Master Plan of Jingdezhen (2012–2030), the
central urban area of Jingdezhen, with an area of approximately
192.7 km2, is selected as the study area [Fig. 4, released by
Ministry of Natural Resources of the People’s Republic of China
(2019)]. In this area, the population is concentrated, and the infra-
structure, such as roads, drainage networks, water conservancy, and
so on, is constructed. The average elevation is 32 m, and the terrain
is inclined from northeast to southwest. There are nine administra-
tive districts, including Liyang Town, Lvmeng Town, Hongyuan
Town, Fuliang Town, Xianghu Town, Zhushan District, Jingcheng
Town, Hetang Town, and Nianyushan Town. The Changjiang River
and its tributaries, namely, the Nanhe River and Xihe River, flow
through the central urban area.

Data Collection and Processing

Factors Selection and Data Collection
Urban floods are generally triggered by intense rainfalls when the
capacity of urban drainage systems is overwhelmed (Chen et al.
2015). In this study, we assume that rainfall is evenly distributed

Fig. 3. Process to obtain the optimal sample.
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in space because the study area is a small region. Besides the rain-
fall, underlying surface factors such as urban drainage systems, hy-
drology (river network), soils and land cover (soil water retention
capacity), and topography (elevation and slope) interactively influ-
ence and control the dynamic processes of flooding, according to
previous studies (Liu et al. 2016; Abebe et al. 2018; Wu et al. 2019,
2021). Moreover, with rapid and large-scale urbanization, much of
the land surface is now covered by roads and buildings. These roads
and buildings are impervious, which reduce infiltration of water
into the ground and accelerate runoff to ditches and streams. There-
fore, flood disasters are also associate with road density (Rahman
et al. 2021).

In conclusion, the spatial differences in topographic character-
istics, soil conditions, river network, drainage networks, and road
networks affect urban flood inundation probability significantly.
Taking the characteristics of the study area into account, elevation,
slope, soil water retention (SWR), river network density and prox-
imity, drainage network density, and road network density are iden-
tified as main influencing factors in this study.
Topographic Characteristics. It is pointed out that elevation and
slope determine runoff formation time and its volume (Liu et al.
2020). Elevation data are collected from the Water Conservancy
Bureau of Jingdezhen City, and slope data are extracted from a dig-
ital elevation model (DEM) to quantify the control of the topogra-
phy of the hydrological process. The DEM and slope are shown in
Figs. 5(a and b), respectively.
SWR. The potential maximum SWR is considered to reflect the
ability of soil to relieve rainfall pressure, which is related to urban
flood disasters. According to the Soil Conservation Service curve
number (SCS CN) method, the potential maximum SWR can be
calculated through SWR ¼ ð25,400=CNÞ − 254. The curve num-
ber (CN) value is determined by the infiltration capacity of the land
cover type in each grid unit and the soil type to which it belongs.

Referring to Tang et al. (2018), the hydrologic soil groups were
classified into four groups (A, B, C, and D) determined by the in-
filtration rate of each soil (see Table 1). CN values are summarized
in Table 2 based on the combinations of infiltration rates of soil and
land cover in the study area. The potential maximum SWR in the
study area is shown in Fig. 5(c).
River Network and Proximity. River network map data were col-
lected from the National Basic Geographic Information Centre
(2017). The river network density refers to the river length per unit
area and is calculated with a linear density function for a radius of
1 km. River proximity reflects the distance to the river, which can
be obtained using a multiple buffer tool. The river proximity and
river network density in the study area are shown in Figs. 5(d
and e), respectively.
Drainage and Road Networks. The urban drainage network ex-
presses the water volume that the system can accommodate. Road
network density influences runoff and drainage in a floodplain.
Drainage and road network data were obtained from the Water Re-
sources Bureau of Jingdezhen City. The drainage and road network
densities are calculated using the linear density function with a
radius of 1 km. The drainage network density and road density
are shown in Figs. 5(f and g), respectively.
Inundation Maps for Different Return Periods. Inundation
maps for different return periods were collected from the Devel-
opment of a Master Plan for Jingdezhen City Integrated Flood
Risk Management Consulting Services (Wang et al. 2015a),
which implemented the Jiangxi Wuxikou Integrated Flood Man-
agement Project.

The spatial distribution of inundation areas for 20-, 50-, and
100-year return periods is collected at a 30 m spatial resolution
(Pregnolato et al. 2021), as shown in Fig. 6. The results are
produced via Danish Hydraulic Institute (DHI) MIKE modeling
under current conditions and apply the design rainstorm and flood

Fig. 4. Location of the study area. (Reprinted from Ministry of Natural Resources of the People’s Republic of China 2019.)
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(considering different return periods) inferred by a typical flood in
1998 as input. The daily precipitations are 261.1, 311.5, and
349.0 mm for 20-, 50-, and 100-year return periods, respectively.
River flooding and urban-area waterlogging are considered in the
simulation process. The model encompasses a coupling simulation
of an urban drainage network model, river model, and 2D surface

flow model. In this study, the number of submerged grids in the
20-year return period is 3,425; the number of submerged grids
in the 50-year return period is 5,693; and the number of submerged
grids in the 100-year return period is 33,832.

Data Processing
There are two types of influencing factors: raster data, including
soil type, land use data, and the DEM; and vector data, such as the
area boundary and river, road, and drainage networks. The spatial
resolution is set to 30 m, and 213,540 grids are established in the
study area.

To facilitate Bayesian model processing, all variables should
be unified considering classification standards. Regarding inun-
dation maps, 0 indicates noninundated areas, and 1 indicates in-
undated area. In regard to the influencing factors, the value of
each factor is divided into five classes based on expert suggestions
and relevant studies (Huang et al. 2021), of which 1 indicates the
lowest class and 5 indicates the highest class (as summarized in
Table 3). The spatial distributions of the seven factors are shown
in Fig. 5.

Results

Optimal Sample for the Different Flood Return Periods

Optimal samples (Table 4) are selected from all sampling tables,
satisfying the accuracy requirements after 10,000 training epochs.
The sample numbers of the inundated and noninundated grids in
the optimal sample for the 20-, 50-, and 100-year return periods are
3,425, 5,693, and 33,832, respectively. The OA index and K index
meet the aforementioned requirements, with values greater than 0.8
and 0.6, respectively.

Based on the selected optimal sample, the prior and conditional
probabilities are calculated. The conditional probability distribution
is the distribution of each factor at different levels under inundation

Fig. 5. Spatial distribution of the seven factors: (a) elevation; (b) slope; (c) soil water retention; (d) river proximity; (e) river density; (f) drainage pipe
density; and (g) road density.

Table 1. Definitions of hydrologic soil groups

HSG Soil texture Infiltration rate

A Sand, loamy sand, sandy soil Highest
B Loam, silty loam High
C Sandy clay loam Low
D Clay loam, silty clay loam,

sandy clay, silty clay, clay
Minimum

Table 2. Curve number values

Land cover category

Hydrologic soil group

A B C D

Evergreen broadleaf forest 25 55 70 77
Evergreen needleleaf forest 25 55 70 77
Mixed forest 36 60 73 79
Second forest 32 58 72 79
Barren 78 82 88 90
Shrub 45 66 83 83
Grass 34 60 74 80
Orchard 40 62 76 82
Wetland 72 82 88 90
Low-density residential 48 66 78 83
High-density residential 77 85 90 92
Commercial/industrial 89 92 94 95
Cropland 58 72 81 85
Water 100 100 100 100
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and noninundation conditions, from which it is determined that the
distribution of each influencing factor under inundation conditions
is completely different from that under noninundation conditions.
For example, Fig. 7 shows the prior and conditional probabilities
that correspond to the optimal sample for the 100-year return
period. The conditional probability of elevation with Class 1 under
inundation conditions is high, but it is very low under noninunda-
tion conditions. Similar results are observed for the 20- and 50-year
return periods but are not repeated here.

Inundation Probability Maps

Based on the trained results of the prior and conditional probabil-
ities, the posterior probability for each grid is calculated. Flood in-
undation probability maps of Jingdezhen Central City based on the
proposed method for the 20-, 50-, and 100-year return periods are
shown in Fig. 8.

From the 20- to 100-year return periods, the flood inundation
probability distinctly increases. Statistics of the spatial inundation
probability are shown in Table 5. The average inundation probabil-
ity increases from 0.2190 to 0.3828. Areas with a high probability
also increase, e.g., certain areas with a moderate probability for
the 20- and 50-year return periods attain a high probability for the
100-year return period. The proportions of the areas with a mod-
erate or higher probability for the 20-, 50-, and 100-year return
periods are 24.5%, 28.7%, and 42.2%, respectively.

The most obvious changes are observed on both sides of the
Changjiang River. The most likely inundated areas are concentrated

Table 4. Summary of the optimal sample for the three return periods

Return
period (year)

Sample number of
inundated grids

Sample number of
noninundated grids OA K

20 3,425 3,425 0.8693 0.7363
50 5,693 5,693 0.8489 0.6983
100 33,832 33,832 0.8790 0.7288

Fig. 7. Conditional probability corresponding to the optimal sample for the 100-year return period.

Fig. 6. Inundation area in Jingdezhen under three different return periods: (a) 20-year return period; (b) 50-year return period; and (c) 100-year return
period.

Table 3. Classification standards of the influencing factors

Class

Influencing factors

Elevation
(m)

Slope
(%)

SWR
(mm)

River density
(m=km2)

River proximity
(m)

Pipe density
(m=km2)

Road density
(m=km2)

Very low ≤30 ≤1 ≤40 ≤0.1 ≤200 ≤0.5 ≤2
Low 30–50 1–5 40–80 0.1–0.6 200–400 0.5–2 2–4
Medium 50–70 5–10 80–120 0.6–1.2 400–600 2–3.5 4–6
High 70–90 10–15 120–160 1.2–1.8 600–800 3.5–5 6–8
Very high >90 >15 >160 >1.8 >800 >5 >8
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at the city center along the Changjiang River and extend in the east
and west directions in the 20- and 50-year return periods. Com-
pared with the 20-year return period, in the 50-year return period,
the most likely inundated areas extend more widely to the east,
west, and north, for which the observed extension is roughly con-
sistent with the distribution of the river. The areas likely to be in-
undated further expand in the 100-year return period, for which
the high-probability areas are located along the Changjiang River.
The probability gradually decreases toward the surrounding areas.
High-probability areas are concentrated in Zhushan District and
Jingcheng Town along the Changjiang River. Fuliang Town,
Hongyuan Town, Xianghu Town, and other areas transition from
low-probability areas in the 20- and 50-year return periods to
moderate- and high-probability areas in the 100-year return period.

There are obvious differences in the inundation probability
among the various regions. Zhushan District exhibits the highest
probability, followed by Nianyushan Town. The average probabil-
ity of these two regions for the 100-year return period reaches
0.7758 and 0.4564, respectively. Areas with the highest probability
are concentrated near the Changjiang River in Zhushan District,
where impervious areas are increasing because of the area’s rapid
economic development and increasing population density. In
Nianyushan Town, areas with the highest probability are also
located near the river.

The areas in Jingcheng Town along the Xihe River also attain
high probabilities (the average probability is 0.3810), which are
mainly attributed to the basin-shaped terrain with a higher elevation
in the boundary region and a lower elevation at the center. Further-
more, the areas exhibit a high river density and are more likely to
become flooded in the event of heavy rain.

The average probability in Lvmeng Town is 0.3500 in the
100-year return period. In addition to the areas near the river, high-
probability areas are concentrated in the southern part of Lvmeng

Town, which is an extremely low-lying region. The probability in
Hongyuan Town and Fuliang Town is relatively low. The high-
probability area in Liyang Town in the southwest region is large,
but this area mainly comprises rural areas.

Results Verification

To verify the effectiveness of the proposed method in urban flood
inundation probability assessment, grids with a moderate or higher
probability in the different return periods are compared with the
inundation maps produced via DHI MIKE modeling. The propor-
tion of the consistent grids to the total inundated grids is calculated.
Fig. 9 shows the prediction accuracy based on the naïve Bayes
model with data reconstruction for the different return periods. Blue
indicates the area that is consistent with the modeled inundation
situation; red indicates the area that is inconsistent with the mod-
eled inundation situation. The accuracy rates for the 20-, 50-, and
100-year return periods are 91.97%, 88.38%, and 88.79%, respec-
tively, thereby demonstrating that the proposed model achieves
good performance.

For comparison, the results are also obtained with the traditional
naïve Bayes model without data reconstruction. The traditional
method does not address the imbalance between inundation sample
sets and noninundation sample sets. The results reveal that the
traditional model does not pass the overall accuracy and Cohen’s
kappa coefficient tests for all three return periods. The resultant
flood inundation probability maps are shown in Fig. 10.

Compared with Fig. 8, the inundation probabilities depicted in
Fig. 10 for the three return periods are highly underestimated.
The areas that are most likely to be inundated are much smaller,
especially for the 20- and 50-year return periods. As previously
mentioned, when the sample distribution of the categories in the
training set is uneven, the classifier substantially focuses on catego-
ries with larger sample sizes and disregards those with smaller
sample sizes (Wickramasinghe and Kalutarage 2020).

Fig. 11 shows the prediction results based on the traditional
Bayesian model for the three return periods. A statistical compari-
son between the traditional approach and the proposed method is
carried out (Table 6). The accuracy of the naïve Bayes model
without data reconstruction is 10.16%, 6.69%, and 66.21% for
the 20-, 50-, and 100-year return periods, respectively, which
is much lower than that of the naïve Bayes model with data
reconstruction, at accuracies of 91.97%, 89.74%, and 90.6%,
respectively. The results suggest that many inundated grids cannot

Fig. 8. Flood inundation probability maps based on the naïve Bayes model with data reconstruction for the (a) 20-year return period; (b) 50-year
return period; and (c) 100-year return period.

Table 5. Statistics of the spatial inundation probability in Jingdezhen for
the three return periods

Return
period (year) Mean Maximum

Percentage of areas
with moderate above

probability (%)

20 0.2190 0.9851 24.5
50 0.2809 0.9861 28.7
100 0.3828 1.0000 42.2
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be identified with the naïve Bayes classifier without data recon-
struction. Moreover, the accuracy of the proposed model with data
reconstruction is much higher, especially in the 20- and 50-year
return periods, as the imbalance gaps are narrowed through data
reconstruction, which can significantly improve the modeling
accuracy.

Sensitivity of the Influencing Factors

The sensitivity value of each selected urban influencing factor,
which is calculated based on the mean probability in the three
return periods, is listed in Table 7. The sensitivity of the differ-
ent factors varies. The drainage network density exhibits the high-
est sensitivity value of 0.64, followed by the elevation with a

Fig. 9. Accuracy evaluation of the naïve Bayes model with data reconstruction for (a) 20-year return period; (b) 50-year return period; and
(c) 100-year return period.

Fig. 10. Flood inundation probability maps based on the naïve Bayes model without data reconstruction for the (a) 20-year return period; (b) 50-year
return period; and (c) 100-year return period.

Fig. 11. Accuracy evaluation of the naïve Bayes model without data reconstruction for (a) 20-year return period; (b) 50-year return period; and
(c) 100-year return period.
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sensitivity value of 0.46. In addition, the river density and slope
exert great impacts on the inundation probability.

The higher the drainage network density is, the higher the in-
undation probability, as inundation is mostly caused by overflow of
the drainage system in urban areas. The drainage network density is
relatively high in the Zhushan District, Jingcheng, and Lvmeng,
which are central areas of Jingdezhen City. The inundation prob-
ability is higher in these areas, as the drainage design standard is
low, and most pipes were designed based on only a one-year return
period. The elevation also imposes a notable influence on the in-
undation probability. Small elevation changes may cause large
changes in the inundation probability. The lower the elevation is,
the higher the inundation probability of an area. In Jingdezhen City,
the terrain is complex and dips from northeast to southwest. There-
fore, the elevation varies greatly. Low-lying areas located in the
southwest are easily inundated and should be given more attention.
In addition, the slope determines inundation. The steeper the slope is,
the higher the water flow. The river density is also a sensitive influ-
encing factor. In addition to the city center along the Changjiang
River, areas with a higher river network density attain a high inun-
dation probability.

The sensitivity of the river proximity is relatively low, but this
finding does not suggest that river proximity is a nonessential
factor. High-probability areas in the central city of Jingdezhen are
concentrated near the river and extend toward surrounding areas.
Under the dual influences of heavy rainfall and external floods,
areas closer to the river are therefore more prone to flooding and
inundation. The low sensitivity is mainly attributed to the overall
high level in urban areas where the Changjiang River runs through.
The same situation is also found in the road network density factor,
which yields a minimal difference in this case. In addition, the
probability of urban flood inundation is less sensitive to the poten-
tial maximum SWR in this study. This indicates that the changes in
potential maximum SWR lead to fewer changes in the probability
of urban flood inundation.

To further verify the sensitivity analysis results, statistical analy-
sis of the distribution characteristics of the seven influencing
factors is conducted at different probability levels in Fig. 12.
The horizontal axis indicates the class of each factor, and the ver-
tical axis indicates the proportion of the total grids at a given prob-
ability level. The class distribution of each factor at the different

probability levels varies, thus revealing that changes in the drainage
network density, elevation, slope, and river network density may
cause great changes in the inundation probability. Specifically,
the proportion of the drainage network density in Class 1 decreases
with an increase in the inundation probability from very low to very
high, while the proportions of the drainage network density in
classes 4 and 5 exhibit the opposite trend (the proportions increase
with an increase in the inundation probability). This finding indi-
cates that the drainage density exerts a significant impact on the
flood inundation probability. From very low to very high inunda-
tion probabilities, the mean proportion of the elevation at levels 3 to
5 decreases, and the mean proportion at levels 1 and 2 increases.
This finding demonstrates that the lower the elevation is, the higher
the inundation probability. The slope trend is consistent with that
of the elevation, which is not unexpected, as the slope is highly
relevant to elevation changes.

Discussion

In this paper, an improved Bayesian method through data recon-
struction is proposed to assess the spatial inundation probability
of urban floods under different return periods. The undersampl-
ing technique is used to reconstruct data before developing the
Bayesian method, which can address the imbalance problem be-
tween inundation and noninundation data sets. However, some
important samples from the majority class might be overlooked us-
ing the undersampling technique (Tang et al. 2018), which would
result in overestimation of the inundation situation. Therefore,
the k-means clustering technique is used to divide noninundated
grids into several equal groups based on the geographic location
before random undersampling. This approach ensures that as many
samples as possible can be collected from different geographic
locations, thus reducing the risk of removing useful data from
noninundation samples. As a result, the assessment accuracy of
the proposed method is much higher than that based on the naïve
Bayes model without data construction. Although grouping noni-
nundated grids according to geographic locations is a simple
method that achieves good performance, many different random
undersampling methods could be explored in the future. For exam-
ple, Bach and Werner (2021) proposed the KNN_RU method,
which removes the maximum k-nearest neighbors of the samples
belonging to the majority class. Lin et al. (2017) considered a
small number of cluster centers and their nearest neighbors to re-
present all data samples of the majority class based on a clustering
technique.

In addition, flood inundation probability maps are obtained con-
sidering different flood return periods. In previous studies, inunda-
tion data have often been derived via the superposition of different
inundated surfaces during a given historical period, and a maximum
inundation map has consequently been generated. Representative
studies were developed by Liu et al. (2016, 2017) and Wu et al.
(2019). However, the inundation probability of various areas differs.
Certain areas may become inundated many times, while other areas
may become inundated only once. Maximum inundation maps can-
not distinguish this difference, which might over- or underestimate
the inundation probability. The flood inundation probability maps
generated in this study for different return periods can overcome this
weakness and facilitate a more accurate probability assessment.

In our study, the influence of the urban environment on the prob-
ability of urban flood disaster risk is detected through sensitivity
analysis. It is confirmed that both drainage network density and
elevation are important factors for the probability of urban flood
inundation. On a small scale, such as a 1 km resolution, topography

Table 6. Accuracy comparison of the naive Bayes models with and
without data reconstruction

Model accuracy
20 year
(%)

50 year
(%)

100 year
(%)

Naïve Bayes model without
data reconstruction

10.16 6.69 66.21

Naïve Bayes model with
data reconstruction

91.97 89.74 90.6

Table 7. Sensitivity of the influencing factors

Factors Sensitivity value

Elevation 0.46
Slope 0.27
SWR 0.13
River density 0.34
River proximity 0.13
Drainage network density 0.64
Road density 0.18
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and drainage mainly determine the inundation level (Chen et al.
2022). Because Jingdezhen City is located along the Changjiang
River, fluvial floods also affect urban inundation. The areas with
a higher river network density attain a high inundation probability.
By contrast, potential maximum SWR is not a sensitive factor for
the probability of urban flood inundation on a small scale, although
it has an important impact on the flood runoff amount of the whole
area (Szwagrzyk et al. 2018).

Conclusion

Urban floods cause unprecedented damage to lives and properties
around world. An urban flood map is used to identify areas at risk
of flooding and consequently to improve flood risk management
and disaster preparedness. However, the spatial extent of flooding
in urban areas is particularly uncertain. In order to quantify the
uncertainty of urban flood inundation and explore the influence of
the urban environment on the probability of urban flood disaster risk,
a spatial inundation probability assessment model based on an im-
proved naïve Bayesian model is proposed. First, data reconstruction

through random undersampling before the naïve Bayesian model is
conducted, and the k-means clustering technique is adopted during
undersampling. Second, flood inundation probability is calculated
based on prior probability and conditional probability of each influ-
encing factor. Last, sensitivity analysis is performed to identify the
most contributed factor to the overall probability.

In conclusion, the findings of this study are presented as fol-
lows: (1) probabilistic inundation maps for different return periods
are produced. Compared with the conventional maximum inunda-
tion mapping method, this study can more accurately calculate the
inundation probability with greater detail for different return peri-
ods. (2) Data reconstruction through random undersampling before
naïve Bayesian model application solves the imbalanced sample
size problem, and the k-means clustering technique ensures that
as many samples as possible are collected from different geo-
graphic locations, thereby reducing the risk of removing useful
data from noninundation samples. The inundation probability in
the study area is more accurate than with the original naïve
Bayesian model. The prediction accuracy reaches 91.97%, 89.74%,
and 90.6% in the 20-, 50-, and 100-year return periods, respectively,
in Jingdezhen. (3) The probability of urban flood inundation is

Fig. 12. Proportion of the different influencing factor classes at the various inundation probability levels.
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sensitive to drainage network density and elevation in central
Jingdezhen City.

The novelties of this study are mainly threefold. First, an im-
proved naïve Bayesian method based on data reconstruction was
proposed, which addressed the imbalanced problem and improved
the accuracy of inundation probability. Second, urban flood inun-
dation assessed using the Bayesian network is considered as an
alternative to complex hydrological or hydrodynamic model sim-
ulations, which can quantify uncertainty and utilize available data
and preexisting knowledge. Third, the inundation probabilities gen-
erated based on various return periods can provide more detailed
inundation information than those determined with the commonly
adopted superposition method, in which historical inundation maps
are simply overlaid.

The proposed method is a simple and cost-effective way to ob-
tain urban inundation probability compared with complex and
costly hydrological or hydrodynamic model. More significantly,
the inundation probability can be obtained rapidly and accurately
without rebuilding and retraining the model once the environment
is changed. Moreover, this method can be applied to other cities
suffering from floods by establishing the relationship between spa-
tial inundation and environmental factors. The model performance
will be further improved with more historical data collected. Thus,
our research is ongoing to verify this method by collecting more
data from different cities in an attempt to establish a general
and robust classifier that can be used anywhere and in the changing
context.
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