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Abstract
Background: Ocular metastasis (OM) is a rare metastatic site of primary liver 
cancer (PLC). The purpose of this study was to establish a clinical predictive 
model of OM in PLC patients based on machine learning (ML).
Methods: We retrospectively collected the clinical data of 1540 PLC patients and 
divided it into a training set and an internal test set in a 7:3 proportion. PLC 
patients were divided into OM and non-ocular metastasis (NOM) groups, and 
univariate logistic regression analysis was performed between the two groups. 
The variables with univariate logistic analysis p < 0.05 were selected for the ML 
model. We constructed six ML models, which were internally verified by 10-fold 
cross-validation. The prediction performance of each ML model was evaluated 
by receiver operating characteristic curves (ROCs). We also constructed a web 
calculator based on the optimal performance ML model to personalize the risk 
probability for OM.
Results: Six variables were selected for the ML model. The extreme gradient 
boost (XGB) ML model achieved the optimal differential diagnosis ability, with 

www.wileyonlinelibrary.com/journal/cam4
https://orcid.org/0000-0002-6992-9059
https://orcid.org/0000-0001-6030-5533
mailto:
mailto:
https://orcid.org/0000-0003-1571-2433
http://creativecommons.org/licenses/by/4.0/
mailto:freebee99@163.com
mailto:tangang99@hotmail.com


2  |      SUN et al.

1   |   INTRODUCTION

Primary liver cancer (PLC) is a common malignant tumor 
of the liver and the sixth most common cancer in the 
world. PLC mainly includes hepatocellular carcinoma 
(HCC), intrahepatic cholangiocarcinoma (ICC), and 
mixed liver cancer, of which HCC accounts for 80%–90% 
and ICC accounts for 10%–15%.1 In the process of micro-
scopic examination of the tissue sections of patients with 

liver cancer, the common immunohistochemical markers 
of liver cancer patients were Gly-3 and Hep-1, and they 
were observed by HE staining sections (Figure 1). Distant 
metastasis is the main cause of death in PLC patients and 
often involves the lungs, abdomen, mediastinal lymph 
nodes, and even the brain.2 Ocular metastasis (OM) 
is rare due to the presence of the blood-eye barrier and 
fewer lymphatic vessels in the eye. Once OM occurs in 
PLC patients, it often indicates that their prognosis is very 

an area under the curve (AUC) = 0.993, accuracy = 0.992, sensitivity = 0.998, and 
specificity = 0.984. Based on these results, an online web calculator was con-
structed by using the XGB ML model to help clinicians diagnose and treat the 
risk probability of OM in PLC patients. Finally, the Shapley additive explanations 
(SHAP) library was used to obtain the six most important risk factors for OM in 
PLC patients: CA125, ALP, AFP, TG, CA199, and CEA.
Conclusion: We used the XGB model to establish a risk prediction model of OM 
in PLC patients. The predictive model can help identify PLC patients with a high 
risk of OM, provide early and personalized diagnosis and treatment, reduce the 
poor prognosis of OM patients, and improve the quality of life of PLC patients.

K E Y W O R D S

machine learning, ocular metastasis, primary liver cancer, Shapley additive explanations, 
XGBoost

F I G U R E  1   HE and characteristic 
immunohistochemistry of liver cancer. 
(A, B) are HE-stained section images of 
patients with liver cancer, (C, D) are Gly-3 
immunohistochemical staining images 
of patients with liver cancer, and (E, F) 
are Hep-1 immunohistochemical staining 
images of patients with liver cancer. HE, 
Hematoxylin eosin staining; Glypican-3, 
Gly-3.
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poor, and most of the patients with OM have metastasis 
in other sites. Therefore, early diagnosis and prediction of 
distant metastasis and the risk of OM are particularly im-
portant for the prognosis of PLC patients. Tumor markers 
are active components produced by the metabolism and 
secretion of tumor cells that can accurately reflect tumor 
properties and be used as serological indicators for auxil-
iary diagnosis of all types of tumors. Tumor markers can 
be significantly increased in the blood of PLC patients 
and can be used as prognostic indicators, which is con-
ducive to the early diagnosis and prognostic evaluation of 
liver cancer; however, their sensitivity and specificity in 
the diagnosis of distant metastasis in liver cancer remain 
low.3 Our previous retrospective analysis of PLC patients 
with hypertension showed that the area under the curve 
(AUC), sensitivity, and specificity of AFP combined with 
CA125 in the differential diagnosis of the OM group and 
non-ocular metastasis (NOM) group were 0.875, 0.762, 
and 0.884, respectively.4 However, the real clinical appli-
cation value is limited, and the accuracy and various eval-
uation indicators still have a large rate of missed diagnosis 
and misdiagnosis. With the development of diagnostic 
and screening technology in recent years, the diagnostic 
rate of PLC with extrahepatic metastasis is increasing. 
Currently, there is no standard treatment for PLC patients 
with distant metastasis. The existing guidelines recom-
mend targeted therapy, systemic chemotherapy, or the 
best supportive care for PLC patients with distant metas-
tasis, but the therapeutic effect is limited.5 Therefore, most 
of the research work has been committed to finding effec-
tive prediction methods, prognosis assessment, and timely 
intervention.

With the rise of big data and artificial intelligence in 
recent years, more machine learning (ML) and deep learn-
ing methods have been applied to clinical research, and 
compared with traditional prediction models, ML models 
often have higher accuracy and sensitivity based on big 
data. We had previously developed an ML model for bone 
metastasis in breast cancer patients based on the SEER da-
tabase and hospital data, in which the AUC of the extreme 
gradient boosting (XGB) ML model for predicting bone 
metastasis in breast cancer patients could reach 0.888, and 
the accuracy could reach 0.803.6 In addition, we have also 
studied the automated classification and identification of 
three different types of meibomian gland dysfunction in 
ophthalmology based on the deep learning DenseNet-169 
neural network, with a sensitivity of 0.88 and specificity 
greater than 0.95.7 Yamashita et al also developed an HCC-
SucvNet model based on deep learning survival analysis to 
predict recurrence after PLC hepatectomy, with an AUC 
of 0.724 in the internal verification set and 0.683 in the 
external test set, and provided the risk score for recurrence 
in each patient.8 However, currently there are few studies 

on the ML model of distant metastasis in PLC patients, es-
pecially for OM. Therefore, the purpose of this study was 
to further improve the accuracy of predicting the risk of 
OM in PLC patients, construct several prediction models 
based on biomarkers to quantify the risk of OM, compare 
the performance of different ML models with the opti-
mized traditional clinical prediction model, explain the 
different effects of serological indexes and tumor markers 
on OM in PLC patients, and choose the best ML model. A 
web calculator was developed to determine a personalized 
prediction of OM in PLC patients to improve their prog-
nosis. The significance of our study is to build a clinical 
prediction model of early OM in PLC patients based on 
the ML model, providing a mathematical model for early 
assessment of the clinical prognosis of PLC patients and 
assisting the clinical treatment of PLC patients.

2   |   METHODS

2.1  |  Subjects

The population data were collected from the First Affili-
ated Hospital of Nanchang University. We retrospectively 
collected the clinical data of 1572 patients with liver can-
cer from August 2001 to May 2015 and screened for miss-
ing data in each patient. Finally, we included 1540 PLC 
patients in this study, including 1520 NOM patients and 
20 OM patients. The inclusion criteria for the OM group 
were eye metastases in PLC patients diagnosed by CT and 
MRI and confirmed by histology and cytology. For the 
specific screening process, please see the flow chart in 
Figure 2. The inclusion criteria of PLC patients were the 
following: (1) cancerous liver tissue (confirmed by histo-
pathological biopsy); (2) no contraindication for magnetic 
resonance imaging (MRI); and (3) nonmetastatic liver 
cancer. The exclusion criteria of the OM group were the 
following: (1) primary malignant tumor of the eye; and (2) 
benign tumor of the eye. The experimental design of this 
study was explained to the patients and written informed 
consent was provided by all study participants. This study 
was performed in accordance with the tenets of the Decla-
ration of Helsinki and was approved by the Medical Eth-
ics Committee of the First Affiliated Hospital of Nanchang 
University and the approved number was cdyfy20170411.

2.2  |  Data collection

Medical records of all participants were collected to 
acquire basic information about their age, sex, and 
pathological tumor type. In addition, serological data 
were collected from both groups of subjects, including 
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F I G U R E  2   The flow chart of data cleaning. We cleaned the data from 2001 to 2015 and eventually included 1540 PLC cases, 20 of which 
had ocular metastases. Divide the training set and the test set according to a ratio of 7:3. We put SMOTE method on the training set to deal 
with the unbalanced data and did not process the test set to preserve the original ratio.



      |  5SUN et al.

hemoglobin (Hb), serum calcium, lipoprotein a, apoli-
poprotein B (Apo B), apolipoprotein A1 (Apo A1), 
low-density lipoprotein (LDL), high-density lipopro-
tein (HDL), triglycerides (TG), total cholesterol (TC), 
alkaline phosphatase (ALP), ferritin (FER), carbohy-
drate antigen-724 (CA724), CA153, CA199, CA125, car-
cinoembryonic antigen (CEA), and alpha-fetoprotein 
(AFP).

2.3  |  Statistical analysis

The statistical analysis was carried out by Python (ver-
sion 3.8) and R software (version 4.0.2). The synthetic 
minority oversampling (synthetic minority oversam-
pling technique; SMOTE) technique is applied to the 
original dataset using Python to reduce the impact of 
unbalanced data on machine learning partitioning data-
sets and subsequent verification.9 Using the method of 
stratified random sampling, the data set after SMOTE is 
randomly divided into the training set and internal test 
set according to the proportion of 7:3. Use the training 
set to build the ML model, and use the internal test set 
to verify and evaluate the model. The Mann–Whitney U-
test is used for continuous non-normal distribution data, 
and the chi-squared test is used for classified counting 
data. In univariate analysis, the variables with p < 0.05 
were included in the construction of the ML model, and 
multivariate logistic regression (LR) was used to deter-
mine the risk factors of OM in PLC patients. The Python 
programming language (version 3.8) was also used to 
develop and evaluate ML models and design web calcu-
lators. For model interpretation, the SHAP was imple-
mented using the Python SHAP package. p < 0.05 was 
considered statistically significant.

2.4  |  Data preprocessing and feature 
engineering

The label coding method was used to deal with the clas-
sification variables, such as gender, stage, pathologi-
cal type, and AFP comparison. Univariate analysis was 
used to select meaningful feature combinations to pre-
dict the risk of OM in PLC patients. We used the SHAP 
package to establish the order of importance of risk fac-
tors of OM in PLC patients. SHAP is a method based on 
cooperative game theory to interpret the results of the 
prediction model. This method can quantify the SHAP 
value of each characteristic variable, which represents 
the contribution of different characteristics to the pre-
dictive risk of OM in PLC patients. For each sample, 
the model can produce a predictive value, and the sum 

or average value of the absolute value Shapley of each 
feature of all samples is the overall importance score of 
the feature. In addition, the SHAP method also proves 
that each eigenvalue has a positive or negative effect on 
the prediction results, which is similar to the coefficient 
value in logical regression. When the SHAP value is pos-
itive, it indicates that the corresponding feature leads to 
a higher probability of OM risk, while when the SHAP 
value is negative, it indicates that the corresponding fea-
ture leads to a lower risk of OM.10,11

2.5  |  Machine learning model building

All the algorithm models are based on scikit-learn (ver-
sion 1.1.1). In this study, we use six different ML mod-
els: multilayer perceptron (MLP) model12,13; AdaBoost 
(AB) model14; Bagging (BAG) classification model15; LR 
model16; gradient boosting machine (GBM) model17; 
XGB model. The ML algorithm was trained and ad-
justed to predict OM in PLC patients. The random 
search method in scikit-learn is used to adjust the super 
parameters of the different models. Then, through the 
internal 10-fold cross-validation of the whole data, the 
predictive performance of the ML model was evalu-
ated. Then we chose the model with the optimal perfor-
mance to construct a web calculator. Model parameter 
settings are detailed in Data S1. The parameter settings 
link is accessible from https://github.com/Wu-Shi-Nan/
liver_cancer_ml_param​eters/​blob/main/model_param​
eter_setti​ngs.txt.

3   |   RESULTS

3.1  |  Demographic features

There were significant differences in tumor staging, 
AFP, CA125, CA199, and ALP between the NOM and 
OM groups (p < 0.05). The proportion of Stage IV pa-
tients and the contents of AFP, CA125, CA199, and ALP 
in the OM group were significantly higher than in the 
NOM group. Other related indicators can be found in 
Table 1.

3.2  |  Univariate and multivariate 
LR analysis

Through the establishment of the univariate LR model, we 
selected the features with a p < 0.05 from the univariate 
LR analysis and then conducted a multivariate LR analy-
sis to determine the risk factors for OM in PLC patients. 

https://github.com/Wu-Shi-Nan/liver_cancer_ml_parameters/blob/main/model_parameter_settings.txt
https://github.com/Wu-Shi-Nan/liver_cancer_ml_parameters/blob/main/model_parameter_settings.txt
https://github.com/Wu-Shi-Nan/liver_cancer_ml_parameters/blob/main/model_parameter_settings.txt
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In univariate LR, AFP, CEA, CA125, CA199, ALP, and TG 
were risk factors for OM, and these indexes were incor-
porated into the characteristic variables of six ML mod-
els. Multivariate LR showed that AFP, CA125, and CA199 
were independent risk factors for OM in PLC patients 
(p < 0.05). If the odds ratio (OR) and 95% confidence in-
terval (CI) of these risk factors are greater than one, then 
they are high-risk predictors of OM (Figure 3; Table 2).

3.3  |  Machine learning model 
performance

We used six different ML models, namely MLP, AB, BAG, 
LR, GBM, and XGB, to evaluate the risk probability and 
related accuracy of OM in PLC patients. The prediction 
performance of all models was evaluated with 10-fold cross-
validation of training sets and fivefold cross-validation 

T A B L E  1   Comparison of baseline data between the two groups.

Variables Total (n = 1540) NOM group(n = 1520) OM group (n = 20) p value

Gender, n (%)

Male 1320 (86) 1304 (86) 16 (80) 0.52

Female 220 (14) 216 (14) 4 (20)

Stage, n (%)

Stage 1 1 (0) 1 (0) 0 (0) 0.002*

Stage 2 60 (4) 60 (4) 0 (0)

Stage 3 293 (19) 293 (19) 0 (0)

Stage 4 97 (6) 92 (6) 5 (25)

Unknown 1089 (71) 1074 (71) 15 (75)

Pathological type, n (%)

Hepatocellular carcinoma 286 (19) 286 (19) 0 (0) 0.07

Cholangiocarcinoma 42 (3) 42 (3) 0 (0)

Mixed hepatocellular 
carcinoma

1 (0) 1 (0) 0 (0)

Unknown 1211 (79) 1191 (78) 20 (100)

AFP, n (%)

<400 765 (50) 764 (50) 1 (5) <0.001*

≥400 775 (50) 756 (50) 19 (95)

Age, Median (Q1, Q3) 51 (42, 61) 52 (42, 61) 49 (44.75, 52.5) 0.174

CEA, Median (Q1, Q3) 2.15 (1.22, 3.62) 2.17 (1.22, 3.6) 2.06 (1, 7.52) 0.954

CA125, Median (Q1, Q3) 34 (13.75, 143) 33 (13.66, 138.68) 449.6 (198.58, 675.43) <0.001*

CA199, Median (Q1, Q3) 24.04 (12.3, 56.49) 24 (12.27, 55.95) 46.86 (19.11, 189.45) 0.028*

CA153, Median (Q1, Q3) 14.63 (10.94, 17.06) 14.63 (10.94, 17.07) 13.82 (12.24, 14.93) 0.854

CA724, Median (Q1, Q3) 5 (2.92, 9.7) 5 (2.92, 9.7) 4.08 (2.95, 8.99) 0.959

FER, Median (Q1, Q3) 214 (133, 321) 214 (133, 321) 204.5 (119.03, 217) 0.162

ALP, Median (Q1, Q3) 117 (79, 183) 116 (79, 182) 198.5 (131, 298.25) <0.001*

TC, Median (Q1, Q3) 4.19 (3.04, 5.12) 4.19 (3.04, 5.11) 3.92 (3.44, 5.31) 0.576

TG, Median (Q1, Q3) 1.02 (0.79, 1.54) 1.02 (0.79, 1.54) 1.36 (0.76, 2.08) 0.189

HDL, Median (Q1, Q3) 1.23 (0.99, 1.54) 1.23 (1, 1.54) 1.27 (0.93, 1.46) 0.904

LDL, Median (Q1, Q3) 2.33 (1.57, 3.11) 2.33 (1.57, 3.11) 2.44 (1.62, 3.66) 0.505

Apo A1, Median (Q1, Q3) 1.43 (1.3, 1.8) 1.43 (1.3, 1.8) 1.42 (1.34, 1.96) 0.271

Apo B, Median (Q1, Q3) 0.89 (0.61, 1.16) 0.89 (0.61, 1.16) 0.95 (0.67, 1.17) 0.641

Lipoprotein a, Median (Q1, Q3) 132 (54, 332) 137 (54, 332) 78 (53, 148) 0.163

Ca2+, Median (Q1, Q3) 2.13 (2, 2.27) 2.13 (2, 2.27) 2.11 (2.02, 2.18) 0.768

Hb, Median (Q1, Q3) 119 (103, 134) 119 (103, 134) 122.5 (112.5, 133) 0.474

Abbreviations: ALP, alkaline phosphatase; Apo B, apolipoprotein B; ApoA1, apolipoprotein A1; FER, ferritin; Hb, hemoglobin; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; TC, total cholesterol; TG, triglycerides.
*p < 0.05 represented statistically significant.
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based on the optimal ML model, as shown in Figure 4A,B. 
The results from the training sets showed that the XGB 
model performed best, with an F1 score = 0.894, accu-
racy = 0.978, sensitivity = 0.857, and specificity =0.980 
(Table  3). The results of 10-fold cross-validation showed 
that the AUC of XGB = 0.994 and the standard error = 0.005, 
which was better than other ML models and the traditional 
LR model. We built a fivefold cross-validation based on the 
optimal ML model, XGB, in the raw train set to evaluate the 
stability of the results, where AUC = 0.83 and the standard 
error = 0.049. ROC curve results for the training set and 
test set can be seen in Figure 4C,D. AUC value of the XGB 
model in the training set is 0.999, and the AUC value in the 
test set is 0.863. According to the processing principle of 
unbalanced data, we drew the precision-recall (PR) curve 
and calibration curve, in which the XGB model performed 
best. The area under the PR curve in the training set and the 
test set were 0.993 and 0.933, respectively (Figure 5). The 
confusion matrix of the results of the XGB ML model was 
drawn according to the balanced data of the synthetic mi-
nority over-sampling technique (SMOTE) in the train set, as 
shown in Figure 6A. In the XGB ML algorithm, there were 
1066 samples in the NOM group, 1067 in the OM group, and 
only 1 sample in the wrong prediction. In the test set, there 
were 444 samples in the NOM group, 6 in the OM group, 
and 10 samples in the wrong prediction (Figure  6B) (Ac-
curacy = 0.978; Sensitivity = 0.857; Specificity = 0.980). Ac-
cording to the above six ML models, we drew a radar chart 
to evaluate the maximum values of five indexes. Compared 
with other ML models, the sensitivity, F1 score, AUC, accu-
racy, and specificity of XGB had the best values (Figure 7).

3.4  |  Importance of feature variables

We used the SHAP library to establish a risk factor 
model of OM in PLC patients based on XGB (Figure 8). 

The explanation of the risk factor model presented in 
Figure 8A is as follows: the SHAP values are on the X-
axis, and all values on the left side are the proportion 
of negative correlations of the predicted value, while 
the right-side values are the proportion of positive cor-
relations of the predicted value. The Y-axis represents 
the descending order of importance of these features on 
OM in PLC patients. In the XGB model, the important 
variables were CA125, ALP, AFP, TG, CA199, and CEA. 
The specific SHAP value details of each characteristic 
variable can be seen in Figure 8B. In addition, accord-
ing to the SHAP library, we selected two subjects, in-
cluding the OM group and the NOM group. The base 
value calculated according to our model was −16.6, in 
which the relative recurrence of the low-risk group was 
−18.26 (Figure 8C). The high-risk factors for OM were 
ALP = 168 and AFP content >400. Other low-risk factors 
were CA199 = 0.6, CA125 = 60.27, and TG = 1.92. The 
calculated value of relative OM in the high-risk group 
was −7 (Figure  8D). In this sample, CEA = 1.66, AFP 
content >400, and CA125 = 440.3 were the high-risk fac-
tors for OM, while ALP = 79 and CA199 = 11.95 were the 
low-risk factors. The samples of the two subjects showed 
that an AFP content >400 was a common high-risk fac-
tor, while CA199 was a relatively low-risk factor. For 
other specific numerical details, please see Figure 8.

3.5  |  Web page calculator

The XGB model had the optimal prediction performance; 
therefore, the above web predictor was used to predict the 
risk probability of OM. Users only need to enter the spe-
cific number of characteristic variables in the sidebar of 
the web page and click Predict to obtain the risk probabil-
ity of OM. In addition, the important factors of eye me-
tastasis were calculated and sorted according to the user 

F I G U R E  3   Univariate and multivariate logistic regression (LR) results in forest map. (A) Showed the univariate LR results in the 
forest map and (B) showed the multivariate LR results in the forest map. ALP, alkaline phosphatase; Apo A1, apolipoprotein A1; Apo B, 
apolipoprotein B; CI, confidence interval; FER, ferritin; Hb, hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; OR, 
odds ratio; TC, total cholesterol; TG, triglycerides.
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variables in real-time, and the degree of influence of each 
variable on the results could be intuitively seen.(https://
ml-cance​r-medic​ine-live-liver​cance​r-eyeme​tasti​s-zrbnzl.
strea​mlit.app/) (Figure 9).

4   |   DISCUSSION

In this study, six ML algorithms were used to predict the 
risk of OM in PLC patients for the first time, and an XGB 

model that could be used to predict OM in PLC patients 
was obtained and explained. The XGB model is based on 
the concept of gradient tree enhancement for introduc-
ing new features to further improve the speed and per-
formance of the classifier and has been widely used in 
medicine and ecology in recent years.18,19 Subsequently, 
we designed a web calculator based on the XGB model to 
predict and calculate the probability value of OM to help 
clinicians make a targeted diagnosis and treatment plan as 
accurately as possible.

T A B L E  2   Univariate and multivariate logistic regression.

Characteristics Category

Univariate analysis Multivariate analysis

OR (95% CI) p-Value OR (95% CI) p-Value

Gender Male Ref Ref Ref Ref

Female 1.516 (0.502–4.579) 0.46 \ \

Stage Stage 1 Ref Ref Ref Ref

Stage 2 1 (0-Inf) 1 \ \

Stage 3 1 (0-Inf) 1 \ \

Stage 4 343163599.287 (0-Inf) 1 \ \

Pathological type Hepatocellular carcinoma 
(HCC)

Ref Ref Ref Ref

Cholangiocarcinoma 1 (0-Inf) 1 \ \

Mixed hepatocellular 
carcinoma

1 (0-Inf) 1 \ \

Unknown 14349881.235 (0-Inf) 0.987 \ \

AFP <400 Ref Ref Ref Ref

≥400 19.201 
(2.564–143.792)

0.004* 26.813 
(3.142–228.838)

0.003*

CEA \ 1.012 (1.004–1.021) 0.004* 1.011 (1–1.022) 0.049*

CA125 \ 1.001 (1.001–1.002) <0.001* 1.001 (1–1.002) 0.047*

CA199 \ 1.002 (1.001–1.003) 0.003* 1.001 (0.999–1.003) 0.206

ALP \ 1.002 (1–1.003) 0.041* 1.001 (0.999–1.003) 0.441

TG \ 1.326 (1.012–1.737) 0.041* 1.248 (0.929–1.678) 0.141

Age \ 0.977 (0.945–1.011) 0.18 \ \

CA724 \ 1.037 (0.988–1.087) 0.138 \ \

FER \ 0.999 (0.997–1.002) 0.595 \ \

LDL \ 1.205 (0.935–1.554) 0.15 \ \

CA153 \ 0.993 (0.967–1.019) 0.582 \ \

Apo B \ 0.98 (0.528–1.821) 0.95 \ \

HDL \ 1.122 (0.797–1.579) 0.51 \ \

Ca \ 0.902 (0.173–4.695) 0.902 \ \

TC \ 0.988 (0.922–1.059) 0.739 \ \

Lipoprotein a \ 0.998 (0.995–1.001) 0.17 \ \

Apo A1 \ 1.706 (0.674–4.317) 0.26 \ \

Hb \ 1.005 (0.986–1.024) 0.629 \ \

Abbreviations: ALP, alkaline phosphatase; Apo B, apolipoprotein B; ApoA1, apolipoprotein A1; CI, confidence interval; FER, ferritin; Hb, hemoglobin; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein; OR, odds ratio; TC, total cholesterol; TG, triglycerides.
*p < 0.05 represented statistically significant.

https://ml-cancer-medicine-live-livercancer-eyemetastis-zrbnzl.streamlit.app/
https://ml-cancer-medicine-live-livercancer-eyemetastis-zrbnzl.streamlit.app/
https://ml-cancer-medicine-live-livercancer-eyemetastis-zrbnzl.streamlit.app/
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Liver cancer is the second most common cause of 
cancer-related death worldwide,20 and its incidence 
has been on the rise in recent years. There are a large 
number of patients with HBV and HCV in China, which 
play a vital role in tumorigenesis and are important risk 
factors for liver cancer.21 Epidemiological studies have 
shown that about 50%–75% of liver cancer patients have 
distant metastasis in the course of the disease.22 The 
most common sites of metastasis include the lungs and 
local lymph nodes. The probability of OM from liver 

cancer is very low; however, once it occurs, the prog-
nosis is very poor. OM is often associated with multi-
ple systemic metastases, and the clinical treatment for 
its patients is often radiotherapy and chemotherapy.23 
Thus far, ocular metastases from rectal cancer,24 lung 
cancer,25 breast cancer,26 gastric cancer,27 and esoph-
ageal cancer have been reported.28 The main clinical 
manifestations of patients with OM were exophthal-
mos, pain, ophthalmoplegia, diplopia, and decreased 
vision.29 Our previous studies on OM in patients with 

F I G U R E  4   Validation of machine learning algorithms. (A) AUC values of 10-fold cross-validation. (B) Five cross-validation results for 
the best machine learning model of XGB. (C) receiver operating characteristic curve of all machine learning methods in the train set. (D) 
Receiver operating characteristic curve of all machine learning methods in the test set. AUC is used as an indicator of performance, the XGB 
model achieved the best predictive performance, and the MLP model had the lowest predictive performance. AB, adaptive boosting; AUC, 
area under the curve; BAG, bootstrapped aggregating; GBM, gradient boosting machine; LR, logistic regression; ML, machine learning; 
MLP, multilayer perceptron; ROC, receiver operating characteristic; XGB, extreme gradient boost.
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Model F1 score AUC Accuracy Sensitivity Specificity

AB 0.873 0.854 0.953 0.847 0.946

LR 0.834 0.822 0.931 0.791 0.869

BAG 0.795 0.81 0.921 0.818 0.847

MLP 0.751 0.735 0.884 0.836 0.819

GBM 0.834 0.824 0.934 0.834 0.916

XGB 0.894 0.863 0.978 0.857 0.980

Abbreviations: AB, adaptive boosting; AUC, the area under the curve; BAG, bootstrapped aggregating; 
GBM, gradient boosting machine; LR, logistic regression; MLP, multilayer perceptron; XGB, extreme 
gradient boost.

T A B L E  3   Comparison of six machine 
learning metrics in the test set.

F I G U R E  5   Precision recall curve and a calibration curve of each machine learning model. (A, B) showed the precision-recall curve of 
the train set and test set; (C, D)showed the calibration curve of the train set and test set. In the six machine models, the XGB model showed 
the best performance in test set data.
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liver cancer complicated with hypertension or diabetes 
showed that AFP and CA125 were independent risk fac-
tors for OM.4,30 However, these studies did not provide 
the calculation method for predicting the probability of 
OM in PLC patients; thus, there remained a gap for real 
clinical application. In this study, we compared the tra-
ditional LR model and other ML models and developed 
and applied the XGB ML model to the clinical predic-
tion of OM in PLC patients. The XGB model successfully 

achieved the advantages of high accuracy, sensitivity, 
and specificity; therefore, we developed a web calcula-
tor based on this model to personalize OM prediction in 
PLC patients. Clinicians only need to input the patient's 
indicators in the sidebar of the web page to obtain the 
predicted probability risk of OM.

ML is a mathematical model that applies artificial in-
telligence under the background of big data and deter-
mines the relationship between variables from a large 

F I G U R E  6   Confusion matrix of six machine learning models. The best correct classification (accuracy) of metastatic ocular in the test 
set for the XGB model was 0.978. AB, adaptive boosting; BAG, bootstrapped aggregating; GBM, gradient boosting machine; LR, logistic 
regression; MLP, multilayer perceptron; NOM, none-ocular metastatic; OM, ocular metastatic; XGB, extreme gradient boost.

F I G U R E  7   Radar plot of six machine 
learning methods. Among the six machine 
learning models, XGB showed the best 
performance in F1 score, AUC, accuracy, 
sensitivity, and specificity. AB, adaptive 
boosting; AUC, the area under the ROC 
curve; BAG, bootstrapped aggregating; 
GBM, gradient boosting machine; LR, 
logistic regression; MLP, multilayer 
perceptron; XGB, extreme gradient boost.
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number of data samples. ML has been closely integrated 
with medicine in recent years and gradually produces 
the cross direction of the medical industry. It is one of 
the important branches of data mining.31 Thus far, a va-
riety of ML models have been applied to the research of 
clinical prediction and the combination of computer vi-
sion technology and medical imaging. Ding et al collected 
multicenter data from HCC patients and developed a hy-
brid ML model based on semantic information combined 
with XGB to further optimize the treatment decision of 

early recurrence in these patients.32 Xu et al used the ML 
method to predict bone metastasis in renal cell carcinoma. 
The comparison of evaluation indexes among various ML 
methods showed that the XGB ML model had the high-
est AUC (0.891) in clinical prediction.33 In addition, Jiang 
et al used the XGB model combined with deep learning 
for early identification of preoperative microvascular in-
vasion in HCC patients, and the differential rate of the 
AUC could reach 0.906.34 In our study, because the prob-
ability of OM in PLC patients is low, even when the data 

F I G U R E  8   SHAP summary plot and SHAP model explanation of two typical predictions. (A) The features are ranked according to the 
sum of the SHAP values for all patients, and the SHAP values are used to show the distribution of the effect of each feature on the MLP 
model outputs. Each dot represents a case in the dataset. The color of a dot indicates the value of the feature, with blue indicating the lowest 
range and red the highest range. The horizontal axis shows the corresponding SHAP value of the feature. A positive SHAP value contributes 
to the prediction of rupture and vice versa. (B) Bar chart in descending order of the mean values of importance calculated according to the 
characteristic variables. (C) showed a low-risk SHAP interpretation model of ocular metastasis in patients with liver cancer; (D) showed a 
high-risk SHAP interpretation model. The base value was −16.60. AFP = 1 represented AFP >400 units. ALP, alkaline phosphatase; SHAP, 
Shapley additive explanations; TG, triglycerides.
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of PLC patients were collected for 14 years, the incidence 
of OM was only 1.3%. To reduce the impact of unbalanced 
data, we applied the SMOTE method of oversampling. 
After balancing the data, the AUC in the internal test set 
could reach 0.993, and the accuracy could reach 0.992. 
To prevent the occurrence of overfitting, we carried out 
10-fold cross-validation of six ML algorithms and fivefold 
cross-validation of the XGB ML model with the best per-
formance, and the AUC values were all above 0.990. Thus, 
it showed that the characteristic variables screened by LR 
could achieve excellent accuracy and clinical application 
value in the use of the XGB ML model for the prediction 
of OM in PLC patients.

However, although the ML model was more powerful 
and accurate than the traditional statistical model, the 
interpretability of the ML model is relatively more com-
plex, just like the black box. It limits their clinical applica-
tion and the interpretation of various clinical indicators. 
For this reason, we explain the characteristic variables 
and rank the importance of the optimal XGB ML model 
by using the SHAP library. SHAP is an independent ML 
model interpretation technique that can explain the black 
box ML model of global and individual samples and helps 
explain the relationship between predictors and results in 
the XGB model.35,36 Therefore, based on the optimal ML 
model, our study aimed to strengthen the global explana-
tion of the application of the XGB model to the predic-
tion of OM, which will help to enhance clinicians' trust 
in the clinical application of our ML model to provide 
personalized treatment plans in the process of diagnosis 

and treatment and technical support for clinical decision-
making. In our study, the ranking of the importance of 
SHAP ML feature variables was eliminated, and the top 
three were CA125, ALP, and AFP, respectively. It can be 
seen that among the various indicators affecting OM in 
PLC patients, these three indicators made the greatest con-
tribution. This also confirms the conclusions of our previ-
ous studies on patients with liver cancer and diabetes or 
hypertension. The levels of AFP in healthy adults are very 
low, and some primary tumors will have abnormally high 
levels of AFP. Therefore, this index can be used to screen 
for adult tumors, such as liver cancer, ovarian tumors, and 
other pathological changes.37,38 CA125 is also an effective 
tumor marker that can be used for early diagnosis and 
monitoring of chemotherapy response in epithelial ovar-
ian cancer, and it is an effective marker for the diagnosis of 
ovarian cancer.39 On the contrary, ALP is a good indicator 
of liver function in the clinic, and its elevation can be seen 
in many diseases such as extrahepatic biliary obstruction, 
liver cancer, and liver cirrhosis. ALP has been proven to be 
closely related to a variety of metastatic cancers, including 
metastatic gastric cancer40 and metastatic liver cancer,41 
and can be used as an independent prognostic indicator. 
The findings of this study are consistent with the above 
and, thus, show the clinical predictive value of ALP, AFP, 
and CA125 for OM in PLC patients.

However, there are still some limitations in this study. 
First, this study was a single-center retrospective study 
and lack external validation, and the performance of ML 
algorithms may vary according to patient characteristics 

F I G U R E  9   Web calculator for predicting metastatic ocular liver cancer based on extreme gradient boosting model. The URL was 
https://ml-cance​r-medic​ine-live-liver​cance​r-eyeme​tasti​s-zrbnzl.strea​mlit.app/.

https://ml-cancer-medicine-live-livercancer-eyemetastis-zrbnzl.streamlit.app/
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in different regions and the data sets of different insti-
tutions. Therefore, in our further research, we would 
try to obtain multicenter large sample data sets to verify 
the robustness and repeatability of our model. Second, 
there were relatively few characteristic variables in our 
ML algorithm. We would include more clinical indica-
tors in the follow-up research, carry on the prospective 
verification of larger sample size, continue to explore 
the key risk factors of OM, and further modify model 
parameters to improve the accuracy of the XGB predic-
tion model.
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