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Abstract
The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 virus is error prone, 
with errors being corrected by the exonuclease (NSP14) proofreading mechanism. However, the mutagenesis and 
subsequent evolutionary trajectory of the virus is mediated by the delicate interplay of replicase fidelity and envir
onmental pressures. Here, we have shown that a single, distal mutation (F60S) in NSP14 can have a profound impact 
upon proofreading with an increased accumulation of mutations and elevated evolutionary rate being observed. 
Understanding the implications of these changes is crucial, as these underlying mutational processes may have im
portant implications for understanding the population-wide evolution of the virus. This study underscores the ur
gent need for continued research into the replicative mechanisms of this virus to combat its continued impact on 
global health, through the re-emergence of immuno-evasive variants.

Open Access
© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly 
cited. 

A
rticle 

Introduction
Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is the causative agent of the coronavirus dis
ease 2019 (COVID-19) global pandemic (Lu et al. 2020). 
SARS-CoV-2 is a single-strand positive sense RNA virus be
longing to the family Coronaviridae, genera 
Betacoronavirus, to which the other notable pathogenic 
human coronaviruses (OC43, HKU1, SARS-CoV-1, and 
MERS-CoV) also belong (Lu et al. 2020). One important as
pect of the behavior of all viruses is their capacity for gen
etic diversity through mutations. Mutations can arise from 
errors during the replication of the viral genome, and they 
have the potential to alter the properties of a virus in vari
ous ways. These changes can range from having no 
effect, through to altering the severity of the virus, 
rendering it resistant to antiviral drugs, or influencing its 
transmissibility.

RNA viruses, like SARS-COV-2, have an estimated muta
tion rate of between 10−5 and 10−2 substitutions/per site/ 
per year (s/s/y) (Duffy et al. 2008), which is significantly 
higher than that observed in DNA viruses which typically 
have mutation rates in the order of 10−8–10−6 s/s/y 
(Sanjuán et al. 2010; Peck and Lauring 2018). In comparison 
with organisms with DNA-based genomes, RNA viruses of 
the Coronaviridae family do not utilize high-accuracy poly
merases. Instead, they utilize the RNA-dependent RNA 
polymerase (RdRp), which, on its own, operates at a faster 
pace but with a significantly higher error rate compared 
with most viruses (Shannon et al. 2020). Therefore, corona
viruses employ an independent proofreading mechanism 

in the form of an exonuclease to correct errors introduced 
by the RdRp. The exonuclease of SARS-CoV-2 is housed 
within the nonstructural protein 14 (NSP14) coding seg
ment, along with an N7-guanine methyltransferase. This 
exonuclease serves a crucial function in maintaining the ac
curacy of the viral RNA genome by removing erroneous nu
cleotides during replication. This process helps reduce the 
rapid accumulation of mutations which could be deleteri
ous, ensuring that most virions generated are viable, and al
lows the virus to maintain its relatively large genome, 
which is ∼30 kb in size, while still functioning efficiently 
(Gorbalenya et al. 2006; Ogando et al. 2020; Jo et al. 
2021). Even with the proofreading capabilities of the exo
nuclease, SARS-CoV-2 has been able to adapt to the human 
host through the acquisition of mutations, exploring evo
lutionary space in a stepwise way. The rate of the emer
gence of variants/advantageous mutations is partly a 
function of the mutation rate of the virus, which is itself 
a function of the interaction of NSP14 and RdRp. It is 
also important to note that although mutations operate 
to generate new diversity in the population, coronaviruses 
are also able to undergo recombination, which serves to 
shuffle diversity within the wider population and has al
ready been seen in SARS-CoV-2 (Jackson et al. 2021). This 
diversity can further confer an advantage which can then 
spread through lateral gene transfer into other contexts. 
Therefore, it is crucial to comprehend and dissect the pro
cesses responsible for mutations in SARS-CoV-2 in order to 
gain a deeper insight into the factors contributing to the 
emergence of diversity within the virus.
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The exonuclease core of NSP14 within SARS-CoV-2 is a 
DEEDh enzyme and member of the DEED superfamily 
(Zuo and Deutscher 2001). The active site residues are 
comprised of two glutamic acid residues (E92 and E191), 
two aspartic acid residues (D90 and D273), and a single his
tidine residue (H268) which has been structurally con
firmed and is similar to the NSP14 of SARS-CoV-1 (Ma 
et al., 2015; Liu et al. 2021; Lin et al. 2021). The excision 
of mis-incorporated nucleotides which are introduced 
through replication is facilitated by two coordinated Mg2+ 

ions (fig. 1). Like other exonucleases, the first Mg2+ ion 
(which is coordinated by E92 and D273) activates a water 
molecule to initiate nucleophilic attack, whereas the second 
Mg2+ ion (coordinated by D90 and E191) helps to remove 
the erroneous nucleotides from the replication complex 
(Hwang et al. 2018). Thus, coordination of Mg2+ ions play 
a critical role in maintaining the accuracy of the viral RNA 
genome (Ma et al., 2015).

Inactivation of the exonuclease enzyme of HCoV-229E 
and MERS-CoV through site-directed mutagenesis of key 
catalytic residues has previously been shown to prevent 
the successful generation of replication competent, viable 
virions (Minskaia et al. 2006; Ogando et al. 2020). However, 
although site-directed mutagenesis experiments of the 
DEEDh core of HCoV-229E and MERS-CoV rendered these 
viruses inviable, similar experiments conducted upon 
SARS-CoV-1 and murine hepatitis virus (MHV) produced vi
able virions, but with their fidelity greatly compromised, with 
progenitors displaying a significantly increased burden of 
mutations with an accompanying fitness cost (Eckerle et al. 
2007, 2010; Graepel et al. 2017). Elsewhere, others have recog
nized that general mutations within the exonuclease are as
sociated with an increased burden of mutations upon the 
SARS-CoV-2 viral genome (Eskier et al. 2020), but the under
lying functional cause was not explored. In addition to its 
proofreading ability, the exonuclease has also been shown 
to be crucial for native recombination, as its inactivation re
sulted in a significant decrease in recombination frequency 
within MHV (Gribble et al. 2021), further highlighting the di
verse roles of this enzyme.

In vitro reverse genetics experiments have shown that 
the SARS-CoV-1 exonuclease activity is mediated by its 
interaction with NSP10 (Bouvet et al. 2014). This work illu
strated how conserved mutations of residues at the inter
face of the exonuclease and NSP10 within SARS-CoV-1 not 
only reduced exonuclease activity but were also capable of 
rendering the virus severely attenuated or nonviable. 
Enzymatic characterization experiments have recognized 
the significance of the NSP14/NSP10 interaction in modu
lating exonuclease activity, with the complex showing a 
>35-fold increase in activity compared with the NSP14 
alone (Bouvet et al. 2012). This modulation of replication 
fidelity was further observed in vitro within a MHV model, 
where mutations at the NSP14/NSP10 interface led to an 
inability to excise the nucleotide analogues 5-azacytidine 
and ribavirin (Smith et al. 2015).

Considering the above, this investigation sought to ex
plore whether mutations at the interface of the NSP14 

and NSP10 resulted in demonstrable effects upon the evo
lutionary trajectory of the SARS-CoV-2 virus. Already, the 
global SARS-CoV-2 sequence data sets provide an unpre
cedented resource of genome sequence data that enables 
the identification of clusters of cases, variants of concern 
(VoC), and an estimation of their observed evolutionary 
rates. The large, global data set provides an opportunity 
to examine the generation of diversity in the SARS- 
CoV-2 population at unprecedented resolution. Building 
on the efforts of the global scientific community has al
lowed us to identify a cluster of SARS-CoV-2 cases that 
possess an interface mutation and to quantify that these 
viruses exhibit an elevated evolutionary rate. Using these 
mutations as a starting point, we undertook further in si
lico investigations to determine their potential impact on 
exonuclease function through predictive modeling, mo
lecular dynamics (MD), and residue interaction network 
analyses, which have emerged as powerful tools in the in
vestigation of the effect of mutations on replicase en
zymes, including exonuclease function (Berger and 
Cisneros 2023). By modeling the structural dynamics of 
the exonuclease, we were able to determine whether 
mutations could lead to a distal allosteric effect on the 
catalytic residues of the enzyme, contributing to the ob
served higher mutation rate. The in-depth examination 
provided by these simulations offered crucial insights 
into the complex interaction between the mutations 
and the protein structure, corroborating our evolutionary 
findings and providing a more comprehensive understand
ing of the underlying mechanisms.

Results
Identifying Sequences with Mutations at the NSP14/ 
NSP10 Interface
An examination of the NSP14/NSP10 interface through 
network analysis (as shown in supplementary fig. 1, 
Supplementary Material online) uncovered interactions 
between 29 residues from NSP10 and 32 residues from 
NSP14. These interactions mainly consisted of Van der 
Waals forces (40 in total), with additional contributions 
from 8 hydrogen bonds, 4 Pi–Pi interactions, and 1 ionic 
bond. Prior research has noted two specific Pi–Pi interac
tions, between F16 of NSP10 and Y64 of NSP14 and F60 of 
NSP14 and F19 of NSP10, which have been considered as a 
possible therapeutic target due to their potential allosteric 
impact upon the catalytic core (Saramago et al. 2021) (fig. 
2 shows the localization of NSP10 residues with NSP14). 
After identifying all the residues at the interface, a search 
was conducted on the Global Initiative on Sharing All 
Influenza Data (GISAID) (Shu and McCauley 2017) data
base to find SARS-CoV-2 sequences with mutations at 
those sites. As a result, 14 groups of SARS-CoV-2 sequences 
with mutations at the interface were discovered. Groups 
are subsequently named by the interface mutation they 
possessed. Additionally, two control lineages were ob
tained that did not posess any mutations at the NSP14/ 
NSP10 interface. The complete list of data sets generated 
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for this study, along with the final number of samples in 
each, is presented in supplementary table S1, 
Supplementary Material online.

Temporal Signal and Bayesian Evolutionary Analysis
As an initial assessment of a temporal signal resembling a 
molecular clock within the identified control and mutant 
lineages, a linear root-to-tip regression was performed 
using TempEst v1.5.3 (Rambaut et al. 2016). This step 
was taken to verify that the data sets were suitable for fur
ther Bayesian analysis. Maximum likelihood phylogenies 
were created for each data set, highly divergent genomes 
were removed, and data set was rebuilt. A temporal signal 
was observed in all data sets tested, with rates ranging from 
1.86 × 10−4 to 2.63 × 10−3 (supplementary table S2, 
Supplementary Material online). The R2 value, which indi
cates the degree to which a sample is “clocklike,” also 
showed variability. For example, R2 for the M62I mutant 
was 0.83, whereas F60S had a much lower R2 of 0.007, indi
cating a departure from clocklike behavior and a more vari
able rate of evolution. A root-to-tip regression for the F60S 
data set is shown in figure 3A, whereas a complete data set 
of root-to-tip results is presented in supplementary table 
S2, Supplementary Material online. Having detected an ini
tial temporal signal in all data sets, they were all subjected 
to further Bayesian analysis using BEAST v.1.10.4 (Suchard 
et al. 2018) to estimate their evolutionary rates. The most 
appropriate clock model for each data set was first deter
mined through path sampling and stepping stone (SS) ana
lysis (supplementary table S3, Supplementary Material
online). All other priors were kept consistent across data 
sets, including the tree prior, as it was believed to have lim
ited effect on the final molecular clock estimates (Ritchie et 

al. 2017). Once the best model for each data set was iden
tified, an additional and more robust test of temporal sig
nal was conducted. A Bayesian evaluation of temporal 
signal (BETS) (Duchene et al. 2020) was performed on 
each data set, where the aforementioned BEAST analysis 
was repeated; however, sampling dates were removed. 
This analysis revealed that data sets H26N, M57I, M57V, 
and M62V possessed either a weak or no temporal signal, 
with a Bayes factor <1, and consequently, any downstream 
inference of these data sets would not be reliable and were 
removed from the study (supplementary table S6, 
Supplementary Material online). Evolutionary rates of 
SARS-CoV-2 are commonly estimated to be within the 
range of 7.0 × 10−4 s/s/y (Ghafari et al. 2022). In this study, 
we found the evolutionary rate of our two comparator, 
nonmutant groups to also reside within or close to this es
timate; we subsequently name these groups controls. 
Control group 1 (B.1.1 lineage) resulted in an s/s/y rate of 
5.27 × 10−4 [95% highest posterior density (HPD) 3.72 ×  
10−4–6.92 × 10−3), and Control group 2 (B.1.1.41) dis
played an s/s/y rate of 7.71 × 10−4 (95% HPD 5.35 ×  
10−4–1.02 × 10−3). In comparison, certain data sets con
taining mutations at the NSP14/NSP10 interface deviated 
strongly from this expected rate, particularly the F60S 
and C39F data sets, which resulted in s/s/y rates of 
2.37 × 10−2 (95% HPD 8.03 × 10−3–3.83 × 10−2) and 
4.06 × 10−3 (95% HPD 7.55 × 10−4–8.57 × 10−3), respect
ively. The posterior distribution of the evolutionary rates 
from the BEAST analyses is shown in figure 3B. 
Furthermore, both data sets showed a coefficient of vari
ation which had departed from and was no longer abutting 
zero, exemplifying how the evolutionary rate of both sets of 
genomes have departed from clocklike behavior, exhibiting 
variation between branch rates. We recognize that data 

FIG. 1. Structure of SARS-CoV-2 NSP14/NSP10 complex with dsRNA. This derives from the high-resolution crystal structure PDB:7N0C, with the 
E191A mutation reverted. The zoomed-in view of the catalytic core depicts the two Mg2+ ions that coordinate with the residues of the enzyme, 
providing insight into the key elements that facilitate the exonuclease activity of the NSP14. This figure provides a visual representation of the 
critical components of the complex and its interaction with dsRNA (PDB:7N0C).
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sets containing fewer sequences tend to align with broader 
95% HPD intervals, implying a reduced level of certainty in 
the estimates—as expected. Table 1 presents the results of 
the Bayesian analysis for all data sets.

Detection of Previous Recombination Event within 
the F60S Lineage
Although the C39F mutant exhibited a notably elevated 
evolutionary rate, the rate observed in the F60S data set 
was considerably higher and became the focus in 

downstream analyses. To elucidate the possible cause for 
this dramatic elevation in the observed evolutionary 
rate, a test of recombination was performed. Using RDP5 
(Martin et al. 2021), an initial analysis was conducted with
in the F60S data set, which did not yield any evidence of 
recombination. Following this, a second analysis was 
undertaken where 3,000 genomes from throughout the 
pandemic were obtained from GISAID. For computational 
efficiency, this data set was split into 10 tranches (∼300 se
quences per tranche) with the F60S data set being added 
to each tranche followed by another test of recombination 

FIG. 2. NSP10 and NSP14 interaction in SARS-CoV-2—a representation of the localization of NSP10 residues to the surface model of NSP14 
(PDB:7N0C ).

FIG. 3. (A) Root-to-tip regression plot of the 55 F60S sequences showing genetic distance versus time (in dd/mm/yy). (B) Posterior distribution of 
the evolutionary rate (s/s/y) of each data set analyzed under the best ranking model using BEAST.
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using RDP5. From this analysis, results indicated that a re
combination event was likely present within the F60S gen
omes, which was supported by 6/9 methods deployed in 
RDP5 (supplementary table S4, Supplementary Material
online); these included MaxChi (P = <0.05), 3Seq (P =  
<0.01), RDP (P = <0.001), GENECOV (P = <0.001), and 
BootScan (P = <0.0001). The recombination breakpoints 
were suggested to be at nucleotides 21,742 and 23,666 (co
dons 61–705 of the spike protein), with the inferred (un
known) major parent being from the B.1.1.529 lineage 
(Omicron) and minor parent being from the B.1.1 lineage, 
suggesting the B.1.1 minor parent had donated its S1 do
main of the spike protein during this recombination event 
(supplementary fig. 2, Supplementary Material online). 
Although the F60S genomes were recombinant, this was 
not considered to be the cause of the elevated rate, as 
this event was basal to data set that was examined using 
BEAST, and therefore, it would have no bearing upon 
this analysis. However, this does highlight that these gen
omes, with a higher detectable rate of mutation, do have 
a history of recombination, pointing to the potential for 
these two mechanisms to combine to generate significant 
diversity within the population.

MD Simulations of F60S and Wild-Type NSP14/ 
NSP10 Complexes
Having established that there was no evidence pointing to
ward intra-dataset recombination as a cause of the elevated 
rate, we sought to specifically examine if the F60S mutation 
had any effect upon the NSP14/NSP10 protein complex of 
SARS-CoV-2. To examine whether F60S may influence its 
behavior, MD simulations were performed. The source 
structure for the MD was PDB:7N0C. This structure pos
sessed the mutation E191A at the catalytic core for experi
mental purposes; this mutation was reverted to wild-type 
glutamate using CHARMM-GUI (Jo et al. 2008), which 
was also used to introduce the F60S mutation to the 
mutant starting structure. Simulations were ran for 100 ns 
with three repeats. Root mean squared deviation 
(RMSD) analysis suggested all simulations were stable 
(supplementary fig. 3, Supplementary Material online). An 

analysis of the F60S NSP14/NSP10 complex revealed the 
N-terminus of NSP10 that interacts with double-stranded 
RNA, and NSP10 was more flexible, but the stability be
tween wild-type and mutant RNA was comparable. 
Within NSP14, although changes in root mean squared fluc
tuation (RMSF) were observed, particularly an increase in 
flexibility between residues 221 and 231, no significant 
changes were observed at the catalytic core 
(supplementary fig. 4, Supplementary Material online).

Changes in the Residue Interaction Networks at the 
F60S Mutation Site
To better illustrate the changes in the local interactions 
within the proximity of the F60S mutation, the three sep
arate 100 ns trajectories were concatenated to single 
300 ns simulation for both the wild-type and mutant. Six 
hundred frames (20% of total) from each concatenated 
simulation were then extracted, and a residue interaction 
network was created using RING3.0 (Clementel et al. 
2022). This network analysis clearly illustrates the local 
changes between the wild-type and mutant structures 
(fig. 4), where the F60S mutation led to the loss of seven 
out of the ten residue interactions seen in the wild-type 
and a dramatic decrease in the frequency of the remaining 
interactions.

Predicting the Effect of F60S Mutation on the Binding 
Affinity of NSP14/NSP10 and Interface Surface Size
To determine the impact of the F60S mutation on the 
binding strength of NSP14 with NSP10, multiple structure- 
based tools including I-mutant, DynaMut2, CUPSAT, 
mCSM-PPI2, and mCSM were used. By utilizing these dif
ferent methods, a consensus can be reached on the calcu
lation of this change in binding affinity. All methods 
predicted that the NSP14/NSP10 complex would be 
destabilized because of this mutation, with ΔΔG (differ
ence in Gibbs free energy) ranging between −1.12 and 
−3.32 kcal/mol (supplementary table S5, Supplementary 
Material online). This change in affinity may disrupt com
munication networks across the complex, resulting in a 

Table 1. Results of BEAST Analysis.

Data Set Number of Sequences Clock Model Mean Rate (s/s/y) 95% HPD (s/s/y)

Q22H 100 E relaxed 9.38 × 10−4 6.42 × 10−4–1.25 × 10−3

T25L 24 E relaxed 5.98 × 10−4 4.17 × 10−5–1.40 × 10−3

H26Y 100 LN relaxed 1.26 × 10−3 7.24 × 10−4–1.91 × 10−3

C39F 54 LN relaxed 4.06 × 10−3 7.55 × 10−4–8.57 × 10−3

F60S 55 E relaxed 1.36 × 10−2 8.51 × 10−3–3.83 × 10−2

M62I 102 LN relaxed 1.58 × 10−3 7.11 × 10−4–2.84 × 10−3

M62T 100 E relaxed 6.07 × 10−4 3.25 × 10−4–9.16 × 10−4

M195I 54 E relaxed 1.01 × 10−3 5.36 × 10−4–1.53 × 10−3

M195T 55 E relaxed 6.34 × 10−4 2.40 × 10−4–1.08 × 10−3

I201M 112 E relaxed 6.28 × 10−4 2.91 × 10−4–1.00 × 10−3

Control 1 B.1.1 100 Strict 5.27 × 10−4 3.72 × 10−4–6.92 × 10−3

Control 2 B.1.1.41 77 Strict 7.71 × 10−4 5.35 × 10−4–1.02 × 10−3
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disruption of allosteric signaling. The interface surface size 
was calculated using the Protein Interfaces, Surfaces and 
Assemblies (PISA) tool (Krissinel and Henrick 2007) which 
revealed a surface interface size of 2,256 Å2 and energy of 
−24.3 kcal/mol.

Mapping of Eigenvector Centrality and Changes in 
Catalytic Residue Interactions to Illuminate Allosteric 
Effects
Identifying the pathways responsible for allosteric commu
nication in biomolecules is a difficult task, partly due to the 

FIG. 5. (A) Eigenvector centralities projected onto wild-type (bottom) and mutant (top) NSP14/NSP10 complexes. Here, the centrality of each 
residue is depicted by color, with blue showing low centrality and red showing high centrality. CC depicts the catalytic core, whereas AS identifies 
a possible allosteric site. The silver sphere is the F60S mutation site. The green line is the between NSP14 and NSP10. (B) Change in contact 
frequencies between residues within 4.5 Å of catalytic residues.

FIG. 4. The interaction of the PHE60 of NSP14 in the wild-type (A) structure and SER60 in the mutant structure (B) and their respective inter
action networks. Types of interactions are labeled, with the color of the dotted lines depicting the frequency of those interactions averaged over 
the MD simulations (VDW, Van der Waals interactions; HBONDS, hydrogen bonds; PIPISTACK, Pi–Pi stacking; IONIC, ionic bond; PICATION, Pi– 
cation interaction).
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intricate nature of these systems and the absence of effect
ive characterization methods. However, this was previously 
achieved through exploiting eigenvector centrality, which 
in essence is a measure of the importance of, or contribu
tion of, information from a node (in this instance a resi
due) to the remainder of the network (Negre et al. 
2018). From MD simulations, nodes and edges can be de
rived from residues and interactions with well-connected/ 
interacting nodes associated with high eigenvector cen
tralities. Changes in these centralities can provide insight 
to system-wide changes which may have been brought 
about by mutations. Here, the correlationplus software 
(Tekpinar et al. 2021) was used to perform this analysis 
and identify eigenvector centralities within the wild-type 
and mutant NSP14 structures. Results for the wild-type 
show a focused eigenvector centrality within the NSP10 
(fig. 5A), with weaker signals being detected at the catalyt
ic core of the NSP14. However, within the mutant struc
ture, the eigenvector centrality is now focused within 
the catalytic core of the NSP14, evidencing a reverse in 
eigenvector centrality. The shift in eigenvector centrality 
from the middle of the NSP10 protein to the catalytic 
core in the mutant structure suggests the interaction be
tween NSP10 and NSP14 has altered in such way that af
fects the connectivity of distal regions of the complex. 
Differences were also observed between the wild-type 
and mutant structures in terms of residue contact fre
quencies at the catalytic core (fig. 5B). Here, we show 
that numerous residue–residue interactions throughout 
the catalytic core had changed in frequency, with in
creased interactions between E92, D273, and H268 and re
duced interactions between E92, L149, and F146, further 
exemplifying changes at the network level within the 
system.

Characterizing Structural Changes to Catalytic 
Residues
Considering the intensification of eigenvector centrality with
in the catalytic core of NSP14 and changes to the residue 
interaction network, we next sought to determine whether 
any structural changes that might impede function could 
be elucidated by further analyzing the MD data. It has previ
ously been shown that the stability and flexibility of catalytic 
residues can be characterized through RMSD analysis, which 
can then show the population distribution of rotamer confor
mations (Riziotis et al. 2022). This investigation revealed that 
the distribution of catalytic residue conformations for D90, 
E191, D273, and H268 was similar between the wild- 
type and mutant structures across the 3 × 100 ns MD simula
tions (supplementary fig. 5, Supplementary Material online). 
However, the distribution of rotamer conformations for E92 
in the mutant structure showed a significant departure 
from the wild-type distribution (fig. 6). The wild-type showed 
three distinct populations of conformations (wild-type con
formations A, B, and C), but analysis showed that E92 of 
the F60S mutant structure primarily resided in a single con
formation (F60S conformation B) with very brief periods in 
conformation A. Conformation A of the F60S simulation is 
comparable with conformation B of the wild-type simulation; 
however, conformation B of the F60S simulation is unique and 
not observed in the wild-type simulation, which sees the carb
oxyl group of E92 rotate 180 degrees. This may indicate that 
the intrinsic flexible and dynamic quality of the wild-type E92 
is no longer present within the mutant structure.

Discussion
The exonuclease within the NSP14/NSP10 complex plays 
an important role in maintaining the accuracy of 

FIG. 6. Comparison of the rotamer conformation distributions in the wild-type (left) and F60S mutant (right) structures, with representative 
frames from MD trajectory (top).
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replication by removing erroneous nucleotides introduced 
by RdRp. Examining the global SARS-CoV-2 genomic data 
set, we were able to identify clusters of cases which shared 
a mutation in NSP14 exonuclease that exhibited a detect
able increase in evolutionary rate compared with other 
contemporaneous lineages.

The formation of the NSP10/NSP14 complex is known 
to promote exonuclease activity (Bouvet et al. 2014) and 
plays a key role in maintaining fidelity during viral RNA 
replication. The NSP10/NSP14 interface is relatively ex
tended covering ∼2,250 Å2 and a predicted interface en
ergy of −24.3 kcal/mol. Thus, a single mutation like F60S 
with a predicted interface energy loss of −1.1 to 
−3.2 kcal/mol is unlikely to lead to total complex 
disassembly.

The F60S mutation is anticipated to influence the exo
nuclease activity and evolutionary pace of the SARS-CoV-2 
virus via an allosteric mechanism triggered by modifica
tions in the interaction network within the NSP14/ 
NSP10 interface. Although it is probable that this complex 
will stay structurally intact, the mutation is expected to 
modify the surface area and perturb the allosteric commu
nication between the interface of the complex and the ac
tive site of NSP14. Figure 1 provides a visual representation 
of the active site’s positioning in relation to the NSP14/ 
NSP10 interface.

Our modeling suggests that the NSP14 F60S mutation 
results in a significant reduction in the number of resi
due–residue interactions within itself and NSP10. 
Although the latter is to be expected given its site at the 
interface and this is borne out in a slight reduction in pre
dicted affinity, the reduction in interactions within NSP14 
is likely to be more significant due to the extensive number 
of reduced contacts. Additionally, there was a notable 
transference in eigenvector centrality following the intro
duction of the F60S mutation. This became focused within 
the catalytic core of the mutant NSP14 as opposed to the 
wild-type NSP10, signifying a change in the in the epicenter 
of the communication network across the complex. 
Furthermore, an altered coordination of the catalytic 
core of the F60S mutant was characterized by the dramatic 
change in the distribution of rotamer conformations of the 
critical catalytic residue E92.

Simulations of the wild-type structure showed three 
distinct populations of conformations for E92, whereas 
the mutant structure primarily resided in a single conform
ation with only a brief period in one other conformation. 
This departure from the wild-type conformation distribu
tion suggests that the intrinsic flexibility and dynamic 
quality of the wild-type E92 is no longer present in the mu
tant structure.

The change in the distribution of rotamer conforma
tions for E92 of the catalytic core within the NSP14 would 
likely impact the function of the exonuclease, as one of the 
key roles of E92 is the accurate coordination of an Mg2+ 

ion, essential for the exonucleolytic reaction (Hwang et 
al. 2018). The catalytic core plays a critical role in the 
RNA hydrolysis process, and any changes to its stability 

and flexibility could have consequences on the efficiency 
of its exonucleolytic reaction.

Mutations in the catalytic core of NSP14 have previous
ly been linked to an increased accumulation of mutations 
in certain coronaviruses (Eckerle et al 2010; Graepel et al. 
2017; Niu et al. 2021). Similarly, our study has demon
strated that the F60S mutant displays an increase in the 
rate with which it acquires mutations, a potential indica
tion of a nonoptimal exonuclease.

The NSP14/NSP10 complex’s function may be signifi
cantly impacted by the decrease in the number of residue 
interactions and binding strength at the interface, as well 
as the suggestive shift in the allosteric network and 
changes in rotamer conformation. If the binding affinity 
and/or the coupled residue interaction network between 
NSP14 and NSP10 decrease, the complex’s allosteric com
munication networks could be disrupted, leading to a dis
ruption of the exonuclease’s proper functioning.

Moreover, it’s worth noting that the observed evolu
tionary rates in this study are quite remarkable, surpassing 
those documented in other research efforts identifying 
lineages with heightened evolutionary rates (Hill et al. 
2022; Tay et al. 2022). Although the mechanisms leading 
to an increased rate varies between these studies and 
the analysis of the F60S mutant in question, it is probable 
that selective host pressures exert an influence in all cases.

Here, we suggest that the F60S lineage experienced mu
tational meltdown, leading to its extinction within 22 days 
of detection. However, prior to its demise, the high muta
tion rate allowed these viruses to explore the sequence 
space and acquire mutations associated with improved fit
ness and increased virulence. Through an analysis using 
USHER (Turakhia et al. 2021) (supplementary table S7, 
Supplementary Material online). We identified several 
spike protein mutations, uncluding 11 nonsynonymous 
mutations known to evade immune responses, improve 
receptor binding, or enhance transmissibility. Forty-four 
other nonsynonymous mutations were also detected with
in this lineage; though their significance remains uncertain, 
they could be of no effect or detrimental. We suggest that 
the F60S mutant eventually crossed a fitness threshold 
where the negative impact of detrimental mutations sur
passed the benefits gained from advantageous mutations, 
resulting in cessation due to mutational meltdown.

In conclusion, this study has leveraged phylodynamic 
investigations to identify altered mutational rates within 
specific genotypes of SARS-CoV-2, which were then struc
turally assessed using MD approaches. Having identified 
F60S as a mutation of interest, our analysis then high
lighted the impact of the NSP14 F60S mutation on the 
structural and functional integrity of the NSP14/NSP10 
complex in SARS-CoV-2. The reduction in binding 
strength, shift in allosteric network, and changes in rota
mer conformation could result in a reduction in the effi
ciency of the exonucleolytic reaction and negatively 
impact the replication fidelity of the virus, potentially pro
viding an explanation for the increased evolutionary rate 
observed through the Bayesian analysis.
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The mechanisms by which SARS-CoV-2 and other 
Coronaviridae generate diversity remain an important puz
zle to decipher. The ability of SARS-CoV-2 to shuffle diver
sity via recombination has already been shown (Jackson et 
al. 2021), whereas the role of chronic carriers has also been 
identified as one mechanism by which SARS-CoV-2 may 
generate significant amounts of diversity, allowing “jumps” 
between variants (Hill et al. 2022). Furthermore, zooan
throponosis (reverse zoonotic) SARS-CoV-2 infections in 
white-tailed deer (Pickering et al. 2022) and mink (Porter 
et al. 2023) have also been associated with increased evo
lutionary rates of 3.7 × 10−3 and 6.59 × 10−3 respectively, 
most likely as a result of significant selective pressures 
brought about by novel host environments.

This work potentially identifies another route by which 
mutations can be generated rapidly, which, when com
bined with the ability of SARS-CoV-2 to recombine, may 
be of significance in the evolution of SARS-CoV-2 going 
forward. It also demonstrates an interesting and potential
ly important observation, but further studies are now 
needed to fully understand the impact of exonuclease mu
tations and their potential impact on the generation of di
versity in SARS-CoV-2 and other viruses.

Methods
Whole Genome Sequences Retrieval and Preparation
A search of the GISAID database was undertaken in 
November 2022 to identify clusters of SARS-CoV-2 viruses 
with mutations at the NSP14/NSP10 interface which were 
previously highlighted. Sequences with low coverage and 
missing collection date were excluded. Sequences were 
download and allocated a data set only when >20 se
quences could be attributed to a single PANGO lineage 
(O’Toole 2021). Each experimental data set was named 
in accordance with the mutation possessed at the 
NSP14/NSP10 interface. Two control lineages were also ob
tained from GISAID which did not contain mutations in 
either the catalytic core of the exonuclease or the 
NSP14/NSP10 interface. Each data set was checked for 
monophylogeny using USHER (Turakhia et al. 2021) to en
sure close clustering with outliers and genetically distant 
sequences being removed. A list of Spike protein muta
tions was also obtained from USHER (supplementary 
table S7, Supplementary Material online). Each data set 
was aligned to the SARS-CoV-2 reference genome 
MN908947.3 using MAFFT (Katoh and Standley 2013) 
with --keeplength --6merpair --addfragments options. 
Highly variable ends and troublesome sites were masked 
as described elsewhere (De Maio et al. 2020). The 
GISAID accession numbers for all sequence are available 
in supplementary materials.

Temporal Signal and Bayesian Analysis
Maximum likelihood phylogenies were constructed with 
IQ-TREE (Trifinopoulos et al. 2016) using the GTR model 
(Tavaré 1986). A temporal signal was determined using 

TempEst v.1.5.3 (Rambaut et al. 2016) with R2 and correl
ation coefficients being generated under the heuristic re
sidual mean squared function with a best fitting root 
applied. Evolutionary analysis was undertaken to deter
mine the number of s/s/y using BEAST v.1.10.4 (Suchard 
et al. 2018). Three different models were evaluated for 
each group. These models were composed of three differ
ent clock models: strict, lognormal uncorrelated relaxed, 
and exponential uncorrelated relaxed (Drummond et al. 
2006). In each model, an exponential coalescent tree prior 
was implemented (Drummond et al. 2002) which is not ex
pected to have an excessive impact on substitution rates 
while allowing the models to be more comparable 
(Ritchie et al. 2017). Each model also used a GTR+Γ4 sub
stitution model. Population size was set to an exponential 
distribution with a mean of 105, whereas for the growth 
rate, a Laplace distribution with a location of 0 and a scale 
of 100 was chosen. For the lognormal relaxed clock models, 
an exponential prior of 0.33 (mean) was set. A continuous- 
time Markov chain (CTMC) prior was set as the clock rate 
for each model (Ferreira and Suchard 2008). Each model 
was run in triplicate for chain lengths of 108, sampling 
every 103 iterations. The best model was identified follow
ing the comparison of log-marginal likelihood estimates 
generated by SS analysis (Baele et al. 2012, 2013). The SS 
analysis was performed for 200 steps with chain lengths 
being set to 106, and values were logged at every 1,000th 
iteration. 10% of results were discarded and considered 
burn in. Triplicate runs were combined using 
LogCombiner and Markov chain Monte Carlo (MCMC) 
traces were reviewed using Tracer v1.7.1 (Rambaut et al. 
2018) to check for convergence and that effective sample 
sizes were >200. The best model was reran for each data 
set without tip-dates as a formal test of temporal signal 
(Duchene et al. 2020), and log-marginal likelihoods of 
data sets containing tip-dates and those without were 
then directly compared. Where a Bayes factor <1 in favor 
of the tip-date containing data set was reported, that data 
set was regarded as having a weak temporal signal and 
was removed from the study as inference would be unre
liable. The data sets that were removed were H26M, M57I, 
M57V, and M62V (full BETS results are provided in 
supplementary table S6, Supplementary Material online). 
Finally, for those data sets with a strong temporal signal, 
an additional BEAST analysis was performed, sampling 
only from the prior. The results for this analysis are pre
sented in supplementary figure 6, Supplementary 
Material online. Considering difference between the pos
terior densities of the prior-only and fully informed runs, 
it can be assumed that the results are not solely derived 
from the influence of the predetermined priors.

Detection of Recombination
In May 2022, a globally representative data set of ∼3,000 
SARS-CoV-2 whole genome sequences was obtained 
from GISAID. This data set was downloaded from the 
Genomic Epidemiology Portal which houses the 
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preselected sequences which were considered being glo
bally representative. Once downloaded, the ∼3,000 se
quence data set was separated to 10 tranches of ∼300 
sequences for computational efficiency. To each subset, 
the F60S mutant sequences were added, and as done pre
viously, each tranche was aligned to the SARS-CoV-2 refer
ence genome MN908947.3 using MAFFT (Katoh and 
Standley 2013) with --keeplength --6merpair 
--addfragments options. Again, highly variable ends and 
troublesome sites were masked as described elsewhere 
(De Maio et al. 2020). This produced 10 tranches of 
∼300 sequences of globally representative sequences com
bined with the F60S sequences. Each tranche was tested 
for recombination using RDP5 (Martin et al. 2021) with 
the following methods RDP, GENECOV, BootScan, 
MaxChi, Chimera, SiScan, PhyloPro, LARD, and 3Seq. All 
methods were used using default settings. The GISAID ac
cession numbers for the sequences from the recombinant 
positive tranche are provided in supplementary materials.

NSP14/NSP10 Interface Analysis
The 7N0C structure of the SARS-CoV-2 NSP14 bound to 
NSP10, and RNA (Liu et al. 2021) was downloaded from 
the protein databank (https://www.rcsb.org/). The struc
ture was uploaded to the RING3.0 server (Clementel et 
al. 2022), and using the default parameters for bond dis
tances, an interaction map was generated. The resulting 
JSON file was visualized and analyzed in Cystoscape 
(Shannon et al. 2003).

MD Analysis and RMSF Analysis
Again, using the 7N0C structure, two molecular systems 
were prepared for MD simulations with the 
CHARMM-GUI web interface (Jo et al. 2008). Except for 
introducing the F60S mutations to the mutant structure 
as mentioned previously, both systems were set up and 
ran in the same manner. A water box was made that 
was 10 Å from the protein edge, and 0.15 M of Na+ and 
Cl− ions were added to neutralize the system charge. 
Energy terms were derived from CHARMM36 forcefields 
(Huang and Mackerell 2013), whereas water molecules 
were represented by TIP3 potentials (Jorgensen et al. 
1983). A step size of 0.001 with a 12 Å cutoff was selected 
to consider nonbonded, distant interactions with a par
ticle mesh Ewald summation (Darden et al. 1993). 
Hydrogen within covalent bonds were constrained by 
LINCS, and the system temperature was maintained at 
310.15 K (37 °C). System pressure was maintained at 
1 bar with a compressibility value of 4.5 × 10−5 bar−1. 
Equilibration was performed with a step size of 0.001 ns 
for 125,000 steps. Minimization was performed with a 
steep descent integrator for 5,000 steps. The production 
runs were performed at 0.002 ns step sizes for 50,000,000 
steps (100 ns). All simulations were ran using GROMACS 
2021.2 (Abraham et al. 2015). RMSD analysis was per
formed using the gmx rms command with the residue 
being selected as a reference from a custom index file. 

RMSF analysis was performed with gmx rmsf using the car
bon alpha of the protein system.

Residue Interaction and Contact Frequency Analysis
The 3 × 100 ns simulations for the wild-type were concate
nated as were the simulations for the mutant. One thou
sand frames were then extracted from each of the 
concatenated simulations as PDB files. The files were 
then analyzed with RING3.0 (Clementel et al. 2022) locally. 
The resulting JSON file was visualized and analyzed in 
Cystoscape (Shannon et al. 2003). The concatenated PDB 
files were loaded to Cytoscape where SenseNet 
(Schneider and Antes 2022) was used to compare the 
change in contact frequency of residues within 4.5 Å of 
the catalytic residues.

Binding Affinity Analysis
Five different servers were used to determine the 
change in binding affinity: I-mutant (https://folding. 
biofold.org/i-mutant/i-mutant2.0.html) (Capriotti et al. 
2005), DynaMut2 (https://biosig.lab.uq.edu.au/dynam 
ut2/) (Rodrigues et al. 2021), CUPSAT (http://cupsat.tu- 
bs.de/) (Parthiban et al. 2006), mCSM (https://biosig.lab. 
uq.edu.au/mcsm/protein_protein) (Pires et al. 2014), and 
mCSM-PPI2 (https://biosig.lab.uq.edu.au/mcsm_ppi2/) 
(Rodrigues et al. 2019)

Calculating Eigenvector Centrality
Eigenvector centralities were calculated using the correla
tionplus software (Tekpinar et al. 2021). As described for 
the residue interaction analysis, the concatenated PDBs 
for both the wild-type and mutant structures were used 
as inputs for this analysis. Here, the dynamic cross correl
ation (DCC) approach was used with default parameters.

Structure Illustrations
Structures were illustrated using ChimeraX (Goddard et al. 
2018) and Pymol (Schrödinger and DeLano 2020).

Supplementary material
Supplementary data are available at Molecular Biology and 
Evolution online.
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