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Abstract

The National Health Service in the United Kingdom is under increasing pressure to
provide and deliver high-quality care to an ageing population with complex health
needs. This research project was funded by KESS2 in collaboration with the Aneurin
Bevan University Health Board in South East Wales.

This thesis investigates the potential of using predictive and prescriptive analytics
to optimise bed capacities and staffing requirements within Aneurin Bevan Univer-
sity Health Board. Homogeneous patient clusters are identified through the use of
classification and regression trees to predict the length of stay of the frail and elderly
population. Deterministic and two-stage stochastic optimisation models are devel-
oped to determine bed capacities and staffing requirements, taking into account
factors such as patient acuity, length of stay, and resource constraints.

The predictive and prescriptive models are then combined by using the classification
and regression tree models to determine demand values to be inputted into the
deterministic and two-stage stochastic models. To determine the benefit and cost
savings of using the stochastic implementation over traditional deterministic models,
the value of the stochastic solution is calculated.

Through the application of scenario analysis, the methods allow various case studies
to be modelled to provide insights into how the system would cope with fluctuations
in resources, demand or organisational changes. The findings of this thesis have
important implications for healthcare providers and policymakers, highlighting the
potential for the combination of predictive and prescriptive analytics to improve the
quality and efficiency of healthcare delivery. The study also provides a framework
for future research in this area, including the potential for applying these techniques
to other healthcare settings and populations.
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Chapter 1

Introduction

This research project has been conducted in collaboration with the Clinical Futures
team within the Aneurin Bevan University Health Board (ABUHB) [14] at NHS
Wales, UK, and is funded jointly by the Welsh Government’s European Social Fund
(ESF) convergence programme for East Wales and the Knowledge Economy Skills
Scholarship (KESS2) [15]. Clinical Futures is the health board’s plan for sustainable
health and care services for the NHS across South East Wales [16]. The organisa-
tional structure of bed capacity and personnel resource planning within ABUHB is
examined in this thesis, specifically for the frail and elderly patient demography.

In the United Kingdom (UK), the National Health Service (NHS) is a publicly
funded healthcare system [17]. Founded in 1948, the principle was that services
should be comprehensive, universal and free at the point of delivery, with the basis
for health care being clinical need rather than financial capability. It is the second
largest single-payer healthcare system in the world and in 2021 accounted for £229
billion of the UK Government’s annual spending [18].

1.1 Frail and Elderly Patient Demographics

Due to declining fertility and mortality rates as well as increased life expectancy,
many countries are dealing with an ageing population. Additionally, those who were
born during the post World War Two baby boom, are now aged 60 or older. These
factors are among the key causes behind the United Nations (UN) prediction that
by 2050, one in six people worldwide, and one in four in Europe, will be aged over
65. According to the UN [19], in 2018 there were more people aged 65 and older
than children aged under five worldwide for the first time in history. In healthcare
research, elderly patients are commonly defined as individuals who are aged 65 and
older [20, 21, 22, 23]. This definition will be applied throughout this thesis.
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Within the UK in 2022, 18.65% of residents are aged 65 and over (approximately,
12.5 million), of which 8.63% are aged 75 and over [24]. The population’s share
of those aged 90 and older is thought to be around 0.91%. With 21.09% of the
population over the age of 65, Wales has a proportionally larger elderly population
than the rest of the UK. Those aged 75 and older account for 9.68% with 0.97% of the
population being aged 90 and over. Figure 1.1 displays the population pyramids for
the Welsh population from the 2001 and 2021 censuses, together with the estimated
population for 2031. The 2011 pyramid demonstrates stationary growth, which is
defined as the population remaining constant in different age groups. The 2021 and
2031 pyramids depict the start of a constrictive pyramid, in which the number of
new births are low, and the population is ageing. Between 2020 and 2030, the Welsh
Government projects a 16.1% growth in the population aged 65 and over. This rises
to an increase of 23.9% for those aged 75 and over between 2020 and 2030 [25].

(a) 2011 (b) 2021 (c) 2031

Figure 1.1: Observed population pyramids for the years 2011 (a) and 2021 (b), as
well as the expected projected population pyramid for the year 2031 (c). The graphs
were generated by data gathered from [4] and [5].

Frailty is described as having a high risk of falling into dependency as a result of a
negative event, such as an accident, fall or disability. Despite the fact that frailty is
more common as people get older, it develops independently from ageing [26]. Since
there is no international standard of measurement for frailty, this is challenging to
categorise and monitor [27]. This means that determining whether or not a person
is frail frequently depends on clinical judgement. Even in the UK, there are various
ways to determine frailty, such as the clinical frailty score [28] and the electronic
frailty score [29]. According to estimates from Age UK [30], 10% of those over 65
live with frailty, and the percentage rises to between 25% and 50% for those over
85.

Within this research, a frailty score was created using a combination of two methods
([31, 32]), on the hospital disease codes, also known as the International Statisti-
cal Classification of Diseases and Related Health Problems - 10th revision (ICD10)
[10, 33]. The ICD10 code, which was first mandated for use in the UK in 1995,
provides descriptions of all recognised diseases and injuries. Each condition is de-
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tailed with diagnostic characteristics and given a unique identifier that is used to
code morbidity data from patient and clinician records as well as mortality data on
death certificates. The ICD10 has a minimum of three characters, and a maximum
of four characters can be added to provide more information about the diagnosis.
An example of the breakdown of an example ICD10 code is shown in Table 1.1:

Category Subcategory Extension
Description 1st 2nd 3rd 4th 5th 6th 7th

Fracture of shoulder and upper arm S 4 2
Fracture of upper end of humerus S 4 2 . 2
Unspecified fracture of upper end of humerus S 4 2 . 2 0
Unspecified fracture of upper end of right
humerus

S 4 2 . 2 0 1

Unspecified fracture of upper end of right
humerus - initial encounter for closed frac-
ture

S 4 2 . 2 0 1 A

Table 1.1: S42.201A - Example ICD10 code that shows the categorisation of each
sublevel of ICD10. The first three characters provide a high level description of the
category, where each additional character increases the diagnostic complexity [10].

Gilbert et al. [31] developed a hospital frailty risk score, where certain ICD10 codes
were more than twice as likely to be present in a frail patient compared to a non-
frail patient. This scoring system has a range of 0.1 to 7.1, where a higher score
suggests a higher proportion of frail patients within the groupings. Soong et al.
[32] generated a list of syndromes which were more common within frailty patients,
where if a syndrome is present then a score of one is given. To assure coverage
of all frailty syndromes, the two score measures were combined because they each
contained different ICD10 codes. This yields a range from 0 (where there is no
frailty syndrome present) to 8.1, the highest scoring frailty syndrome.

1.2 Aneurin Bevan University Health Board

The Aneurin Bevan University Health Board (ABUHB) was established in 2009
and serves 650,000 residents located in five counties: Blaenau Gwent, Caerphilly,
Monmouthshire, Newport and Torfaen, as well as some areas of South Powys (Figure
1.2). Two-thirds of the health board’s 14,000 personnel work directly with patients
[34]. The health board has direct links with applying Operational Research (OR)
and modelling to improve healthcare decisions with a team of analysts embedded
within the organisation forming the Aneurin Bevan Continuous Improvement team
(ABCi) [35].

Clinical Futures is the health board’s plan for sustainable health and care services for
the NHS across the Gwent area. General practitioners (GP) practices, emergency
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Figure 1.2: Aneurin Bevan University Health Board (ABUHB).

rooms, and longer wait times for services that a large number of people require, such
as orthopaedic and ophthalmology care, are dramatically putting greater strain on
the whole healthcare system. Their aim is to deliver effective and efficient care in
hospitals while planning across all services to keep people out of hospital. Clinical
Futures is reforming the organisation to provide more centralised hospital treatment
for individuals in need, as well as care closer to home, in order to satisfy these
demands and succeed in ‘The Wellbeing of Future Generations Act (2015)’ [36]
(Figure 1.3).

The health board comprises of 11 hospitals providing different levels of care. A
specialised critical care centre called The Grange University Hospital (GUH) opened
earlier than expected in November 2020 to offer more assistance during the Covid-19
pandemic. Inpatient stays at GUH will not have been included because the primary
emphasis of this study is on data collected before the Covid-19 epidemic. The model
developed within this thesis will have the ability to be adapted to changing services
throughout the health board in the future, including the addition of GUH. There are
four minor injury units (MIU’s), one acute hospital and five community hospitals
(Table 1.2).

These hospitals are spread throughout the health board, with one major accident
and emergency (A&E) unit or MIU in each county (Figure 1.4 shows major A&E
unit in red and MIU’s in blue). Figure 1.4 depicts the community hospitals, which
are dispersed around the health board and are shown in purple.

Each hospital offers patients different inpatient services. There are a total of 29
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Figure 1.3: Clinical Futures future healthcare plan, where specialist hospital care
is provided in one central location, with emphasis being put on care closer to home
and healthy lifestyle choices [6].

Hospital Type Hospital Name

Major A&E Unit The Grange University Hospital (GUH)
Minor Injury Unit (MIU) Nevill Hall Hospital (NHH), Royal Gwent Hospital (RGH),

Ysbyty Aneurin Bevan (YAB), Ysbyty Ystrad Fawr (YYF)
Acute Hospitals St. Woolos Acute Hospital (STWAH)
Community Hospitals Chepstow Community Hospital (CCH), County Hospital (CH),

Monnow Vale Health & Social Care Facility (MVHSCF),
St. Woolos Community Hospital (STWCH),
Rhymney Integrated Health & Social Care Centre (RIHSC)

Table 1.2: Type and names of the 11 hospitals located in ABUHB.

specialisations offered by the area. How specialties are currently organised in each
of these hospitals is shown in Figure 1.5 (as of March 2020). There are 98 unique
hospital and specialty pairings in total. More specialties are found in larger, more
acute hospitals, such as RGH, which has 25, as opposed to fewer specialties in
smaller hospitals like County Hospital (CH). Appendix A has a complete list of
hospitals, along with a summary of the specialties that each one offers.

1.3 Bed Planning and Staff Allocation

Figure 1.6 shows a patient’s journey after being admitted to an acute ward. Patients
may be admitted as elective or emergency patients. Patients who are unexpectedly
and quickly admitted to the hospital are considered emergency admissions. These
patients may be accepted through GPs or consultants in ambulatory clinics, as
well as A&E units. According to Steventon et al. [37], the number of emergency
admissions is rising at an average of 3.2% year. Elective patients receive scheduled
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Figure 1.4: Map of hospital locations in ABUHB. Major A&E units are shown in
red, MIU’s are shown in blue and acute and community hospitals are shown in
purple.

Figure 1.5: Hospitals and specialties in ABUHB. A ‘1’ indicates a specialty is present
in a given hospital and ‘0’ indicates a specialty is not present.

care, frequently involving expert clinical treatment or surgery, and are typically
referred by a GP or other community health provider.

Patients who are admitted to the hospital, whether on an elective or emergency
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basis, remain there until they are deemed to be ‘medically fit to be discharged’.
Patient discharges can frequently be delayed for a variety of reasons, such as waiting
for home care, waiting for a permanent bed in a nursing or care facility or awaiting a
medical decision and full discharge summary. The home first approach [38], strives
to discharge patients with long-term care needs to an appropriate setting, where
assessments of what care they require and how it will be financed take place (Care
and nursing homes in the UK are typically funded by the patient). This approach is
crucial for maximising health outcomes. Most patients leave hospital and go home
without any more assistance. However, the majority of patients who encounter
delays to discharge require community care and typically, these patients are older
adults.

Figure 1.6: Conceptual overview of the patient journey and the role of bed man-
agement. Patients arrive into the system via elective and emergency routes and are
assigned a bed. Patients remain in hospital for treatment, and are discharged when
are classified as ‘medically fit’ [7].

The Nuffield Trust analysed the most common causes for patients to be bed blocked
across hospitals within England [8, 9]. Figure 1.7 illustrates the primary reasons
causing delays in patient discharges, prominently centring on limited access to es-
sential services. Notably, home care contributes to 24% of delays, followed closely
by short-term rehabilitation at 22%, and care/nursing homes at 15%. These figures
underscore the critical constraint faced by community services, impeding their abil-
ity to accommodate new patients while occupied beds await discharge, leading to
the phenomenon known as “bed blocking”. Consequently, this pressing issue calls
for attention and intervention to alleviate the strain on healthcare facilities and
ensure efficient patient flow.

Elective patient operations are cancelled to make way for priority emergency ad-
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Figure 1.7: Common reasons for delayed discharge for patients with a length of stay
(LOS) longer than a week within English hospitals [8, 9].

missions when the capacity is insufficient and the beds are full. Similarly, planned
admissions are frequently cancelled and wards are altered in order to securely meet
ward criteria if there are insufficient nursing staff. The Nurse Staffing Levels (Wales)
Act 2016 [39], was the first law passed in the UK requiring that health boards pro-
vide sufficient nursing staff so all patients receive compassionate care. This requires
a designated individual to determine the number of nurses necessary to provide care
to patients that satisfies all reasonable requirements in each situation. Additionally,
they must take all responsible steps to maintain the nurse staff level. This relies
on one individual to utilise expert judgement and can be problematic when decid-
ing on the final personnel levels. Staff planning must take into account uplift, and
capacity should accommodate anticipated and planned changes in the number of
nursing staff members available (e.g., annual leave, training, study leave).

Equation 1.1 displays the method of allocating ward nursing staff in order to calcu-
late the typical nursing staff demand for a 24 hour period [40].

Average Requirement =(Average Hours Per Patient × Average Daily Bed Utilisation)

+ Additional Workload in Nursing Hours Per Day (1.1)

The main challenges faced by healthcare managers are the hundreds of beds and staff
to manage, which creates an excessive number of options for decisions. Demand and
capacity are further complicated because no two patients are exactly alike. Because
bed capacity planning typically relies on averages, it fails to take into consideration
the stochastic nature of the healthcare industry [41]. By utilising OR approaches,
this thesis seeks to enhance planning for both beds and staff.

1.4 Research Aims

To address the organisational needs within the NHS, four research questions were
established in partnership with senior staff from Clinical Futures and ABUHB.
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1. How do the clinical and demographical attributes of frail and elderly patients
effect their length of stay within hospital?

2. How best can specialties be organised among a network of hospitals to ensure
staffing and bed costs are minimised, whilst still meeting the demand for frail
and elderly patients?

3. Can linking predictive and prescriptive analytics provide improvements for
decision making for frail and elderly services?

4. How can deterministic and two-stage stochastic models be used to plan hos-
pital services for frail and elderly patients within Aneurin Bevan University
Health Board

1.5 Thesis Structure

This thesis consists of eight chapters, together seeking to answer the four research
questions described in Section 1.4. The structure of the thesis is as follows:

• Chapter 1 has contextualised four main research questions of this thesis. Back-
ground into the ABUHB has been discussed, with the major problems in the
planning of beds and staffing for frail and elderly patients.

• Chapter 2 contains two literature reviews: The first comprising of [42] dis-
cusses the application of OR techniques within frail and elderly patient care
and the second discusses hierarchical prediction models for patients’ length of
stay (LOS). These literature reviews provide an insight into the type of OR
models that are currently used in this field of study and the opportunities
available for researchers to conduct future study.

• Chapter 3 discusses the theory on the predictive modelling techniques that will
be applied to health board data in Chapter 5. The concept of classification and
regression trees are introduced with an explanation into how these methods
can be implemented within Python. Discussion into the application of bed
and staff planning is also given.

• Chapter 4 considers the theory of prescriptive modelling. Deterministic and
two-stage stochastic models are developed which aims to minimise overall costs
by optimally planning bed and nursing resources. This theory will be applied
to a case study of frail and elderly in ABUHB within Chapter 5.

• Chapter 5 discuses the current trends within ABUHB. This chapter will also
determine the results of the predictive and prescriptive algorithms when ap-
plied to the case study of ABUHB. The results will discuss the benefits of
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using more sophisticated modelling techniques over ones traditionally used
within healthcare modelling.

• Chapter 6 will link the predictive and prescriptive paradigms discussed in
previous chapters together. The predictive models will be used as a demand
input for the prescriptive models. Various scenario analysis will take place to
investigate the impact on the healthcare system and the requirements needed
to put in place for the health board in the future.

• Chapter 7 provides a tutorial on how to use the deterministic and two-stage
stochastic modelling tools that were developed in both Microsoft Excel’s Open-
Solver add-in and Python’s PuLP package.

• Chapter 8 concludes the thesis with a summary of the research, discussing how
each research aim has been met and outlining future research possibilities.
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Chapter 2

Literature Review

2.1 Introduction

This chapter aims to provide insight into the existing operational research and
management science (OR/MS) literature and its application to planning patient
care for frail and elderly patients. By identifying gaps within the literature, this
will enable avenues for future research. Additionally, it will also make it possible
to define the motivation for this research and establish the significance of the issues
currently being faced within healthcare. Two main literature reviews are provided
within this chapter. The first literature review, presented in Section 2.2, comprises
of the research paper, ‘A survey of OR/MS models on care planning for frail and
elderly patients’ which was published within Operations Research for Health Care
[1]. This initial review provided a broad and foundational understanding of the area,
determining various strategies and methodologies utilised in healthcare planning for
the elderly and frail population. The focus of the review identifies different methods
to examine, forecast or improve the current care planning. A subsequent and more
targeted literature review, detailed in Section 2.3, has been conducted focusing
on LOS prediction through the utilisation of hierarchical prediction models within
healthcare settings. Section 2.4 will discuss the overlap between the two reviews.
Finally, Section 2.5 will summarise the important findings from both literature
reviews and discuss common research gaps.

2.2 A Survey of OR/MS Models on Care Plan-
ning for Frail and Elderly Patients

This section focuses on the research, ‘A survey of OR/MS models on care planning
for frail and elderly patients’ [1]. The section is structured as follows: Section 2.2.1



CHAPTER 2. LITERATURE REVIEW 12

introduces the methods used to identify the papers and discusses related literature
reviews identified through this search. Section 2.2.2 analyses and provides a classifi-
cation of the results. Section 2.2.3 considers gaps within the research, with Section
2.2.4 discussing the findings of the review. For the figures which discuss a classi-
fication result, a respective table within the Appendix has been included detailing
the reference numbers for each paper. Table B.1 within the Appendix provides a
comprehensive list of the 62 papers including each classification category.

2.2.1 Methods

2.2.1.1 Data Sources

To identify major research streams in the literature, a structured search was per-
formed following Webster and Watson’s methodology [43]. The search engine, Sco-
pus, was used to identify relevant journal articles and conference proceedings papers,
from January 2000 to December 2020 restricting the search to English results.

2.2.1.2 Inclusion Criteria

Webster and Watson [43] highlighted that a literature search should not be confined
to one research methodology, one journal or one region. To provide a complete
search, the search string contained at least one of the following terms found within
each column of Table 2.1: One OR/MS method phrase, one patient flow term
and one age category, mentioned in the article title, abstract or given keywords.
The Boolean operators: ‘AND’ and ‘OR’ were used to concatenate different terms
among different categories. For each category, the terms within the string were
concatenated with an ‘OR’ command, whilst the overall categories were connected
with an ‘AND’ command. For terms such as ‘Integer program*’ an * was used
to signify multiple endings, e.g., ‘integer program’ or ‘integer programming’. For
phrases with multiple endings with only one character, such as ‘Heuristic$’, a $
sign was used to indicate this, i.e., ‘Heuristic’ or ‘Heuristics’. This is similar to the
methods Hulshof et al. [44] performed within their taxonomy.

To allow multiple OR methods to be investigated, the search terms were identified
within Hulshof et al. [44] and Palmer et al’s. [45] review of OR methods for
modelling patient flow and outcomes. Soft OR methods were investigated including
systems thinking, problem structuring and Delphi methods, however, these did not
increase the number of publications. This suggests that soft OR methods are under-
represented within the field and highlights potential future research. To include a
range of techniques, overall classification terms were used such as ‘Metaheuristic$’ as
well as common methods encompassed within this technique such as ‘Tabu search’
and ‘Genetic algorithm’.
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OR Method Patient Flow Classification of People
Agent based model* Network analysis Appointment Elderly
Branch and bound Neural network$ Capacity allocation Elderly care
Branch and price Optimi* Capacity management Frail*
Clustering Quadratic program* Capacity planning Geriatr*
Column generation Queuing Care access Home care
Computer simulation Queueing Care pathway Long term care
Constraint program* SCA Clinical pathway Nurs* care
Discrete event simulation Scatter search Critical pathway Old people
Discrete optimi* Scheduling Demand forecasting Older people
Dynamic program* Simulation Demand management Palliative care
Genetic algorithm SSM Demand prediction >65
Goal program* Strategic Choice Analysis Flow of care
Heuristics$ Strategic Options Development and Analysis Flow of patients
Integer program* Stochastic analysis Integrated pathway
Linear program* Stochastic modelling Patient flow
Logistics Stochastic processes Patient pathway
Markov chain Stochastic program* Patient process
Markov decision SODA Patient route
Markov model Soft OR Patient throughput
Mathematical model Soft Systems Methodology Process flow
Mathematical program* System dynamics Scheduling
Metaheuristic$ Tabu search Whole-system$
Mixed integer program*

Table 2.1: Scopus search string terms for the care planning literature review to
include at least one ‘OR Method’, one ‘Patient Flow’ term and one ‘Classification
of People’ term.

Patient flow terms were identified through multiple sources (Table 2.1). Firstly,
Palmer et al.’s [45] review on patient flow within community care allowed demand
and capacity terms such as “demand management” and “capacity allocation” to be
incorporated. Secondly, De Luc et al. [46] found 17 phrases which encompassed
pathways of patients with the most prominent terms within the literature: “inte-
grated care pathway” and “critical pathway”. These terms all loosely follow the
same three main stages: the development process to design the pathway; the ap-
plication and use of the pathway; and the ongoing review of the pathway to learn
from the practical experience and to continuously apply improvements [46, 47].

To ensure a variety of journal sets were used, the search focused on five categories
in the Clarivate Journal Citation Report (JCR). The five categories were as follows:
Geriatrics and Gerontology (GG), Health Policy and Services (HPS), Industrial
Engineering (IE), Medical Informatics (MI) and Operations Research and Manage-
ment Sciences (OR/MS). The rationale to select these five journal categories was
because they contain journals in which OR/MS methods are applied to healthcare.
A number of upcoming journals were also incorporated as they do not belong to a
JCR category and these were appropriately assigned to one of the five categories.
These journals were as follows: Health Systems, IISE Transactions on Healthcare
Systems Engineering (formally known as IIE Transactions on Healthcare Systems
Engineering), Operations Research for Health Care and Proceedings of the Winter
Simulation Conference. A brief description of each journal category is as follows
with the four additional journals added to the most appropriate JCR category:
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• Geriatrics and Gerontology (GG) - Captures a subgroup of medical journals
which focus on clinical problems in the treatment of elderly patients (e.g., Age
and Ageing).

• Health Policy and Services (HPS) - Captures journals covering policy and ser-
vice improvements within healthcare systems (e.g., Health Care Management
Science and Journal of Health, Organisation and Management).

• Industrial Engineering (IE) - Includes papers that focus on systems that inte-
grate people, materials and equipment to provide a service (e.g., International
Journal of Simulation Modelling and IISE Transactions on Healthcare Systems
Engineering).

• Medical Informatics (MI) - Captures papers which focus on healthcare in-
formation in clinical studies and medical research (e.g., Health Information
Management Journal).

• Operations Research and Management Sciences (OR/MS) - Includes papers
focusing on advanced analytical methods to solve complex problems (e.g.,
Journal of Operations Management, Health Systems, Operations Research for
Health Care and Proceedings of the Winter Simulation Conference).

2.2.1.3 Study Selection and Data Extraction

The initial search resulted in 437 papers being identified and these underwent anal-
ysis by abstract to determine the papers which met the inclusion criteria. A pub-
lication was excluded if the abstract was not relevant to frail and elderly patients
and their planning of care. These exclusions reduced the number of papers to 39.
As advised within Webster and Watson’s paper [43], a forward and backward search
was conducted after the initial analysis to ensure related papers that had not met
all the key search criteria were included. In total 65 publications were found to be
relevant, including three literature reviews. The three reviews are discussed sepa-
rately within Section 2.2.1.5, with the remainder of this paper focusing on the other
62 papers. The PRISMA diagram showing a visual representation of this process is
shown within Figure 2.1.
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Figure 2.1: The PRISMA flow diagram for the care planning literature review detailing the Scopus searches, the number of abstracts
screened, the reason for exclusion and the number of full texts retrieved.
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2.2.1.4 Study Protocol

To classify and analyse the papers the following protocol was set up to ensure
the objectives of the literature review were met. Firstly, a general classification
is provided demonstrating the characteristics of the papers including geographical
location, JCR category and publication year. Secondly, the papers’ medical context
is established with discussion around the care locations and diseases suffered by the
frail and elderly. Finally, the research aims, the planning decisions and the types of
OR/MS methods utilised within the papers are discussed.

2.2.1.5 Previous Literature Reviews

This subsection aims to provide a brief overview of the three literature reviews
identified through the Scopus search, followed by a discussion of how our review
aims to fill the gaps in the literature not covered by these reviews.

Firstly, Berntsen et al. [48] used their research to provide evidence for a patient
pathway for the frail and elderly to be generated using Digi-PIP (digitally support
person-centred, integrated and proactive care) methods. Through a systematic
search, 10 papers were identified as focusing on Digi-PIP care on population health,
patient experience and cost-effectiveness. The results showed that despite the belief
that a Digi-PIP approach was the key to sustainable care, research has not been
able to provide sufficient evidence.

Secondly, Freeman et al. [49] focused on patients aged over 65 and the factors
affecting the transition from long-term care facilities (LTCFs) to the community.
LTCFs were distinguished as care institutions that provided 24-hour nursing care,
personal care or other services, whereas community was defined as home care pro-
grammes, retirement homes, assisted living facilities or patient’s own home, where
24-hour care is not provided. They identified 36 articles and recommended that
further understanding was needed due to the complexity of the discharge process
with more evidence in the factors and barriers that influence the discharge. The
authors concluded that it was unclear of the combination of multidisciplinary team
members and institutional factors that best support discharge planning.

The third and final review identified was Gaugler et al.’s [50] paper on the research fo-
cusing on admission predictors of community care specifically within nursing homes
in the USA. The review identified 77 papers which encompassed 12 data sources.
After analysing different methods, such as logistic regression and Cox regression
models, on a variety of different care factors, including gender and medical con-
dition, their results identified a number of predictors, e.g., cognitive impairment.
The work highlights the opportunity for future research to develop tools using the
strongest predictors to estimate nursing home admissions, potentially adapting and
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applying these methods to predict demand for nursing homes and other long-term
care facilities.

The three reviews either focused on specific locations within the pathway; [49] with
the movement from LTCFs to the community, [50] with nursing home care or they
focused on analysing specific OR/MS methods [48]. Whilst these reviews provide
beneficial contributions to their areas, we aim to consolidate literature on a wider
scale. Instead of analysing one OR/MS technique, [48], 44 different OR/MS meth-
ods have been incorporated into the search criteria to cover a wider range of meth-
ods. There has also been expansion across different patient groups and treatment
settings, (e.g., nursing homes and palliative care), to ensure each aspect of the path-
way and its care planning can be investigated. As multiple settings were analysed,
this allowed further investigation into how different settings were applying different
OR/MS methods. Additionally, there was analysis on how different settings are
working collaboratively to ensure successful care planning. This review will serve
as a guide on how to conduct further research on the future challenges in frail and
elderly care planning.

2.2.2 Results

After highlighting the focus of previous literature reviews, it was identified that
there was a need for the research on OR/MS methods for frail and elderly care
planning to be summarised. This would then allow for gaps within the present
literature to be determined and a research agenda to be developed enabling these
gaps to be filled. The following results analysed the findings of the initial, forward
and backward searches and classified the literature by general, medical and method-
ological contents. Each section provides summary statistics discussing the results.
Research gaps and discussion of results will take place in Sections 2.2.3 and 2.2.4,
respectively.

2.2.2.1 General Classification

Table 2.2 highlights the divide between the location of the research conducted, with
the majority of papers being published within Europe and North America. Ker-
pershoek et al.’s [51] study focused on eight different European countries analysing
access to dementia care and is denoted as ‘Multi-national’ within Table 2.2. It is
worth highlighting that no other papers were found to be multi-national.

English only papers were analysed which may explain why mainly European and
North American publications met the inclusion criteria. Further categorisation
shows there was a disparity between these continents and the work within this
field that is being published. Table 2.2 also displays the JCR categories for each
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Country UK Canada USA Italy Australia France Hong Kong Ireland

GG 2 1 2 2 2 0 0 0
HPS 6 3 3 1 0 1 0 0
IE 0 1 1 1 0 1 1 0
MI 2 1 0 1 0 0 0 0

OR/MS 5 3 3 0 0 1 1 1
Other 3 1 1 1 1 0 0 1
Total 18 10 10 6 3 3 2 2

Country China Japan Netherlands Norway Poland Sweden Spain Multi-national Total

GG 0 1 0 0 1 0 0 1 12
HPS 0 0 1 1 0 0 0 0 16
IE 0 0 0 0 0 0 0 0 5
MI 0 0 0 0 0 0 0 0 4

OR/MS 0 0 0 0 0 1 0 0 15
Other 1 0 0 0 0 0 1 0 10
Total 1 1 1 1 1 1 1 1 62

Table 2.2: Number of papers which fall into each JCR category and the location of
where the research was conducted.

country.

The final column in Table 2.2 shows the quantity of papers published within each
of the JCR categories as discussed within Section 2.2.1. Within the backward and
forward searches, there were 10 papers which did not have ISSNs related to the five
JCR categories (Figure 2.2), so these papers have been attributed to the ‘Other’
category. HPS and OR/MS were the leading journal categories with 16 and 15
papers respectively.

2 5 1 3 7

10 11 4 2 11

1 1 1 3

Backward
Scopus Search

Original
Scopus Search

Forward
Scopus Search

GG HPS IE MI OR/MS Other

Figure 2.2: Number of publications broken down by JCR categories and Scopus
search type.

Although there were only four and five papers within the MI and IE categories
respectively, it is important to include these within the analysis as they are under-
represented areas and provide a different journal focus on patient pathways and
their application.

To show the general trend of the research in this field, Figure 2.3 displays the
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quantity of papers published every three years. Between 2000 and 2014, the number
of papers published remained fairly stable with an upward trend from 2015. Within
the last three years, 27% of papers were published, highlighting that this area is
becoming more widely researched.

6

6

8

6

7

12

17

0 5 10 15 20

2000 - 2002

2003 - 2005

2006 - 2008

2009 - 2011

2012 - 2014

2015 - 2017

2018 - 2020

Number of papers

Figure 2.3: Bar chart of the 62 papers identified through the Scopus search, by
publication year.

2.2.2.2 Medical Context

This subsection will analyse the medical context of the papers broken down into
the medical setting and the condition area. The medical setting of a patient is the
location where their care takes place, e.g., a hospital ward or nursing home. The
condition area focuses on the medical condition of the patient in the study and
whether this was long-term such as dementia or acute, e.g., heart attack. Successful
care planning should consider the entire pathway of a patient across multiple set-
tings. It is often necessary to consider the next steps a patient will take to ensure
appropriate resources and available capacity to avoid delays in discharge. It is also
important to know the condition type of the patient as this will likely affect their
discharge destination or the time required to stay within the care setting.

2.2.2.2.1 Medical Setting
The medical setting of the paper was important to understand how care settings can
work together for the planning of care for frail and elderly patients. The research
focused on three main areas:

• Single Hospital

• Multiple Hospitals
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• Community Care

The community care grouping encompassed: Home care, long-term care, nursing
care and hospice care, to meet the wide range of healthcare services that do not
take place in a hospital setting. Figure 2.4 shows a Venn diagram which breaks
down the publications into the type of care settings. The numbers reveal there was
a clear focus on both community care and single hospital settings.

4 9 23 7 19

Community Care

Multiple
Hospitals Single Hospital

Figure 2.4: Venn diagram of the 62 papers identified through the Scopus search, by
medical setting.

In total, there were 16 papers (26%), which used care planning in a holistic manner.
These papers were particularly interesting as they focused on the cross over between
community care and either single or multiple hospitals. Papers [52, 53, 54, 55, 56,
57, 58, 59, 60] focused on the intersection between community care and multiple
hospitals whilst papers [61, 62, 63, 64, 65, 66, 67] focused on single hospitals and
community care.

A brief overview of Patrick [57] and Taylor et al. [67] is provided as these works are
examples of community care with multiple hospitals and single hospital settings.

Patrick [57] developed a Markov decision model that determined the required bed
numbers in long-term care facilities in order to keep demand below a given thresh-
old. Patrick also developed a simulation model to incorporate both hospital and
community care demand to predict the impact of policy implementations. These
models have aided future capacity planning by comparing current practices against
proposed alternative models.

The work conducted by Taylor et al. [67] involved modelling the time geriatric pa-
tients spent in hospital and in community care. The authors generated a stochastic
compartmental Markov model with three hospital components: acute care; rehabil-
itative and long stay; two community components and an absorbing state. They
were able to successfully provide short-term estimates and a better understanding
of future bed usage within geriatric hospital settings.
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2.2.2.2.2 Illness/Disease Focused Papers
There were eight papers which focused on a specific illness/disease often suffered
by the frail and elderly. These illnesses were as follows: dementia [68], falls [69],
gastrointestinal [70], heart failure [71, 72, 73] and hip fractures [74, 75]. Seven
of the eight papers focused on a single hospital setting and the remaining paper
focused on community care [68]. There were a further eight papers which focused
on an inpatient department: an emergency department [57, 76, 77, 78] or a geriatric
ward [79, 80, 81, 82]. Interestingly, none of these 16 papers used care planning
across multiple settings. The recovery times for frail and elderly patients is usually
longer than the general population. Often, they will require further care within the
community once they are ready to be discharged. If there are insufficient resources
or a lack of availability within the community, then these patients may have to
remain in the hospital, causing bed blocking.

2.2.2.2.3 Community Care Focused Papers
There were 23 papers which had community care as the only setting. Six of these
papers concentrated on the overlap and movement between settings in community
[83, 84, 85, 86, 87, 88]. Lin et al. [89] focused on day care whilst [90, 91, 92, 93]
studied home care. The remaining papers focused on either nursing care [94, 95, 96]
or long-term/aged related care facilities [51, 68, 97, 98, 99, 100, 101, 102, 103]. This
showed that within the grouping of community care, there was a wide range of
different settings being analysed.

For frail and elderly care mapping to be successful, the journey of a patient should
be documented, which will depend on the type of illness or condition they are
suffering from. Therefore it is important for more research to be conducted into
specific medical conditions and healthcare settings. Monitoring the journey of a
patient from admittance through to discharge, may become a valuable tool in order
to predict long-term demands and capacity planning.

2.2.2.2.4 Condition Area
A classification which has been commonly used within healthcare literature reviews
is the condition area of the patient [104, 105]. These condition areas are often
categorised as either: acute or chronic.

• Acute - Medical conditions that are brought on unexpectedly, e.g., heart fail-
ure, or patients undergoing or recovering from a surgical procedure, e.g., femur
fracture.

• Chronic - Medical conditions that are prolonged and rarely cured, e.g., de-
mentia.
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Often chronic conditions can develop and cause an acute condition, and likewise, if
untreated an acute condition can often become chronic. It is therefore important
for research to be focused on both strands of conditions, especially when considering
frail and elderly patients. These patients often have many chronic conditions which
require long-term care, however, they can easily become more serious conditions
requiring immediate care.

Figure 2.5 displays the quantity of papers in each condition category.
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Figure 2.5: Bar chart of the 62 papers identified through the Scopus search, by
‘Acute’ or ‘Chronic’ medical conditions.

Within the elderly population, there are many people who have multiple long-term
conditions (MLTC), which may explain why there were several papers that focus
on chronic conditions. There were 11 papers focused on the acute care setting
[69, 70, 71, 72, 73, 75, 76, 77, 78, 106, 107]. This was surprising given frail and
elderly patients are more likely to suffer from acute conditions as a result of chronic
illness. The 11 papers were all based in a single hospital setting with no overlap
between community care (Figure 2.6).
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Figure 2.6: Cross analysis of medical setting and condition area of the 62 papers
identified through the Scopus search.

2.2.2.3 Methodological Content

This subsection will analyse the technical side of the research. Firstly, discussing the
research aims, then moving on to the planning decision levels discussed in Hulshof
et al.’s taxonomy [44]. Finally, the different OR/MS methods used within frail and
elderly care planning are identified.

2.2.2.3.1 Research Aims
The literature, in terms of care planning, can be grouped into three main aims:
examining, forecasting and improving. These categories indicate the direction of
the research and the main interest to the authors.

• Examining - Using OR methods to determine how a care plan was performing,
e.g., characteristics of patients who move within community care [84], hospital
outcomes following an updated care pathway [75].

• Forecasting - Predicting future scenarios with the current care plan in place,
e.g., forecasting LOS in hospital and community care [65], capacity planning
in community care settings [86].

• Improving - Improvements were made or suggested to enhance the quality of
care planning, e.g., improve elderly care in hospital [58], improving quality
and efficiency in home care [90].

Figure 2.7 displays the quantity of papers in each research aim category.
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Figure 2.7: Bar chart of the 62 papers identified through the Scopus search, by
research focus.

There were three papers which considered a multiple combination of the research
aims. Abe et al. [70] examined how polypharmacy affected gastrointestinal surgery
patients, whilst also identifying the effects on LOS if measures reducing polyphar-
macy were implemented. Garg et al. [63] and Patrick [57] both have improving
and forecasting aims: Garg et al. focused on improving admission scheduling with
resource forecasting and Patrick focused on improving waiting times along with
capacity planning. All three of these papers, focused on a single hospital setting.

The results showed most papers aim to forecast frail and elderly patients in the
system. Out of the 28 papers, 16 focused on predicting future demands and how
the corresponding departments would be required to adapt to this change [52, 54,
57, 66, 79, 81, 83, 85, 86, 88, 91, 95, 97, 99, 101, 108]. A further nine papers aimed
to predict the LOS of patients in hospitals or within community care [65, 67, 70,
73, 82, 103, 109, 110, 111]. Surprisingly, of these nine, one author was co-author on
five of these papers, suggesting that the research within this field is limited to a few
research teams [65, 73, 82, 110, 111].

There were 14 papers focused on making improvements to an aspect of the path-
way. Five of these aimed to improve the flow of patients [76, 78, 107, 112, 113].
Only three papers had the primary focus on improving patient care [58, 77, 90].
Their results highlighted the importance of appropriate care to the elderly, which
in Rossille et al.’s [77] paper can be achieved by successfully scheduling patients in
an emergency department and not categorising these patients by their symptoms.
Ragab et al. [58] used simulation modelling to improve the management of frail pa-
tients by introducing intermediate care beds for those admitted to acute hospitals.
Eveborn et al. [90] used the vehicle routing problem to improve quality for patients
receiving home care.

2.2.2.3.2 Planning Decisions
Hulshof et al’s. [44] research on taxonomic classification in healthcare systems
highlighted a hierarchy of decision-making techniques. There were three different
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decision levels discussed: strategic, tactical and operational. A brief description is
given as follows:

• Strategic planning focuses on structural decision-making such as determin-
ing the locations of facilities or resource capacities, these often have a long
planning time.

• Tactical planning addresses the execution of strategic plans on the mid-horizon
planning time, e.g., staffing levels.

• Operational planning analyses short-term decisions and focuses on the indi-
vidual patient and resources. Patient appointment scheduling would be an
example of this.

Figure 2.8 displays the breakdown of publications by planning decision level.
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Figure 2.8: Bar chart of the 62 papers identified through the Scopus search, by
planning decision level.

The majority of papers focused on strategic planning, with a high concentration on
capacity planning and placement policy. Xie et al. [103] used strategic planning
and created a Markov model to represent the LOS of the elderly moving within
and between residential and nursing homes. By developing this model, it aimed to
assist planning authorities to fully understand the pattern of resource usage within
their local area. Further work included an extension of their model to incorporate
particular attributes of patients, e.g., age, gender and physical conditions, to predict
differences in survival by treatment locations.

The number of papers (two) on the operational planning level was smaller than the
number of papers (six) that had no planning decision level. The results showed
that care planning for frail and elderly pathways was being addressed on some scale
across all three decision levels; day-to-day; mid-level planning; long-term, wider
policy decisions. However, as there were substantially fewer papers in the tactical
and operational decision levels it would suggest these areas are more difficult to
plan in frail and elderly healthcare.
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Two of the four operational planning papers focused on staff scheduling [90, 91]
and the other two focused on readmission of patients [64] and treatment outcomes
[72]. Kul et al. [72] evaluated the effect of the heart failure care pathway on
geriatric patients. Logistic regression showed positive results supporting the use of
care pathways, highlighting reduced mortality and readmission rates along with no
increase in hospital costs.

Figure 2.9 displays the cross analysis between the planning decision and the medical
setting. To some degree, tactical planning levels were addressed in each setting,
although the operational papers had only been addressed within community care
and single hospital settings.
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Figure 2.9: Cross analysis of planning decision and medical setting of the 62 papers
identified through the Scopus search.

Hulshof et al. [44] analysed the taxonomy for papers within the OR/MS JCR
category. This has been further extended to include four additional JCR categories.
The cross analysis can be seen within Figure 2.10.
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Figure 2.10: Cross analysis of JCR category and planning decision level of the 62
papers identified through the Scopus search.

Figure 2.10 shows there is a spread of decision levels against each JCR category. It
demonstrates that the decision level taxonomy discussed within Hulshof et al. [44]
can be successfully applied to JCR categories other than OR/MS.

2.2.2.3.3 OR/MS Methods
The final area for analysis was investigating the OR/MS methods that have been
utilised within these studies. There has been a variety of different OR/MS tech-
niques which have been used to demonstrate the effectiveness of care planning de-
signed specifically for the frail and elderly. Figure 2.11 demonstrates the quantity
of each of these methods, with statistical analysis encompassing a wide range of
traditional statistical/operational analysis techniques, including Cox’s regression
analysis [109], mixed exponential distributions [114] and time survival analysis [96].
Optimisation included mixed integer programming [52] and quadratic programming
[102]. Simulation included discrete event simulation [88] and system dynamics [68].
There were two papers which focused on multiple methods.
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Figure 2.11: Bar chart of the 62 papers identified through the Scopus search, by
mathematical method.

Patrick [57] as discussed in Section 2.2.2.2.1 used discrete event simulation along
with a Markov decision process model to predict demand for long-term care.

Mohammadi Bidhandi et al. [86] used both simulation and queueing theory meth-
ods to plan demand capacities within community care. They focused on six services
and ran their optimised queueing model through a simulation to determine transient
behaviours of the system. By combining these two methods, capacities were opti-
mised over the entire network at one time, instead of considering them as separate
isolated units.

Table 2.3 shows the breakdown of each OR/MS method and its corresponding set-
ting. The seven papers which looked at the overlap between single hospitals and
community care all used Markov methods. This may suggest that Markov methods
are the most applicable to this setting, particularly for frail and elderly individuals.
The data available may also lend itself well to fit into a Markov model. Expand-
ing upon this, when analysing both single and multiple hospitals with community
care, only Markov, simulation and statistical analysis methods were used, suggest-
ing these methods were useful when applied to multiple services at the same time.
This leaves room in these settings for further research using alternative OR/MS
methods to the Markov model.

Community care settings used the widest range of methods, 13 in total, for care
planning. This showed the data available within community care can accommodate
a variety of methods. There is potential for further investigation and expansion into
the methods utilised as an area for future research.
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Single Hospital Single Hospital and Community Community Care Multiple Hospitals and Community Multiple Hospitals Total

Markov [69, 73, 79, 110, 111, 113] [61, 62, 63, 64, 65, 66, 67] [103] [56, 57] [82] 17
Simulation [76, 106, 108] [68, 83, 86, 88, 99, 100, 101] [57, 58, 59] [80] 14

Statistical Analysis [71, 74, 75, 107] [92, 95, 96] [109, 114] 9
Machine Learning [70, 72, 77, 78] [84, 87, 97] 7

Optimisation [94, 98, 102] [52, 53, 54] 6
Queueing models [81, 112] [86] 3

Metaheuristic [89, 91] 2
Routing [93] [55] 2

Anderson Model [51] 1
Fluid model [60] 1
Heuristics [90] 1

Newsvendor type model [85] 1
Total 19 7 24 10 4 64

Table 2.3: Number of papers which fall into each medical setting and OR/MS method within the published research.

Note: Mohammadi Bidhandi et al. [86] and Patrick [57] utilise two methods and therefore appear twice in the table. This resulted in a total
of 64 publications.
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Figure 2.11 and Table 2.3 highlight that Markov models were the most frequent
method used, followed by simulation and statistical analysis. Within these 17
papers, there were a variety of Markovian methods utilised, however these were
subgrouped into continuous and discrete time models. Figure 2.12 shows the break-
down of the Markov category from Figure 2.11. Continuous time Markov models
were more often used with a total of 14 papers [56, 61, 62, 64, 65, 67, 69, 73, 79,
82, 103, 110, 111, 113]. There were a variety of different types of continuous time
models with many focusing on Coxian phase-type Markov models. There were three
papers which used discrete time [57, 63, 66] to model frail and elderly patients.
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Figure 2.12: Bar chart of the 17 papers using a Markov model identified through
the Scopus search, classified by ‘Continuous’ or ‘Discrete’ time.

2.2.2.4 Common Themes

Section 2.2.2 has provided an overview of the work on care planning for frail and el-
derly. Markov models were the most common method applied to healthcare settings.
In more recent years, there has been the emergence of newer techniques being applied
to healthcare, i.e., metaheuristics, the Anderson Model and fluid models. Strategic
planning remained the most common planning decision level across the OR/MS
methods, showing research was being accomplished in longer term care planning.
There has been a wider spread of research aims across the papers, although, the
majority tend to focus on forecasting future scenarios rather than improving the
current systems in place. Finally, the emphasis of these papers has been on single
settings, whether this be within a hospital or the community. The current research
provides a wide range of different techniques for readers to apply to their own hos-
pital or community care facility. However, there remains scope for future research
to be conducted in the frail and elderly patient setting.

2.2.3 Research Gaps

The literature found within this review covered a wide range of facilities, locations
and patient types within frail and elderly care planning. Despite this variety, the
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majority of papers fit into a few groupings as discussed previously, with a heavy
focus on certain methods and locations.

2.2.3.1 Gaps in terms of Methodology

Across 62 papers, there were 12 different methods utilised, with a heavy focus on
Markov and simulation. Research conducted between 1990 and 2015 has shown that
the most common OR methods used in hospital applications were discrete event
simulation and deterministic modelling (optimisation) [115, 116]. It was interesting
to see the disparities between methods within frail and elderly care and general
hospital applications. In the simulation method category (Table 2.3), only five
papers used discrete event as their simulation method [80, 88, 101, 106, 108] and
papers focusing on optimisation techniques were embedded within other methods
[62, 83, 86, 89, 93, 102, 107, 108].

Within Abe et al.’s paper [116], the statement was made that the introduction of the
Patient Protection and Affordable Care Act in 2010 (USA), has led to hospitals being
required to improve quality of care and alongside this, there has also been an increase
in the demand of services in USA hospitals. The seven papers that were based on
data from the USA post 2010, focused on capacity planning and improving outcomes
[60, 75, 83, 84, 85, 92, 94]. This suggests that the implementation of Government
policy provides another avenue for research topics and should be closely monitored
when identifying new areas to study.

Although healthcare data may lend itself well to some OR/MS methods explain-
ing their higher frequency of papers (Markov, simulation, statistical analysis and
machine learning), the remaining eight methods highlight the potential for further
exploration into these fewer applied techniques. Soft OR methods, even though
included in the search criteria, did not result in any papers being identified. This
leaves potential for research using these techniques, such as soft systems methodol-
ogy, and applying this to frail and elderly healthcare.

2.2.3.2 Gaps on the Intersection between Research Aims and Decision
Levels

Successful care planning should consider long-term and day-to-day planning. The
work has highlighted a large number of papers with strategic decision levels (long-
term), with only 14 papers analysing tactical and operational approaches, 10 and
four combined. Reviewing the 23 community care papers, three focused on tactical
planning [93, 95, 100], and two on operational planning [90, 91]. Despite being
long-term care facilities, the day-to-day planning of staff, resources and occupancy
demands should be investigated for improving care planning. Such investigation
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could provide an interesting avenue to explore further, by comparing how factors
vary day-to-day for private care companies compared to government funded elderly
care services. Operational planning levels were addressed in single and not multiple
hospital settings. One potential reason for this could be that when addressing
multiple hospitals, the authors are more interested in strategic developments within
care planning.

Another area examined was the research aims, which were able to be grouped into
three streams for care planning: examining (23 papers), forecasting (28 papers) and
improving (14 papers). The most popular aim, forecasting, mainly used simulation
and Markov methods. Potentially the data required for forecasting techniques lends
itself well to these methods, however, there were 11 papers that showed forecasting
techniques can be used alongside different methods and therefore should be further
explored [52, 54, 55, 70, 81, 86, 91, 93, 94, 95, 99].

2.2.3.3 Shortcomings on the Intersections between Medical Settings

Within the community care setting, there were only six papers which focused on the
overlap between settings in the community [83, 84, 85, 86, 87, 88]. The remaining
papers from this setting focused their research on a variety of settings including
long-term care facilities, nursing homes, home care and day care.

When studying the application of the methods, the common research focus has been
on capacity planning for community care services. This is important, as bed blocking
often occurs when patients are medically fit to be discharged from hospital but there
are insufficient places available within community care settings [101]. However, there
has been little research into capacity planning for care of the elderly wards within
hospitals. Patient flows [112], occupancy levels [79] and the LOS [82] are the main
focus of research based in geriatric wards. These papers do not address future
demands or predictions. This leaves the potential for capacity planning research
within the care of the elderly wards, incorporating both short-term and long-term
predicted demands. If capacities within these wards remain constant over time, with
increased demand, these wards are likely to reach maximum capacity at a quicker
rate. It is therefore important for research to focus on hospitals and how they
feed into community care services. This overlap, between hospital and community
care, will allow a successful integrated care system, similar to these nine papers
[52, 53, 54, 55, 56, 57, 58, 59, 60].

2.2.3.4 Limitations of the Study

This review has provided a consolidation of care planning for frail and elderly across
the care pathway, identifying gaps in research. A reproducible approach was given in
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relation to the search strategy in Table 2.1. We acknowledge that searching papers
by keyword criteria can fail to identify relevant papers, which could be identified
through other approaches. The keywords used were not an exhaustive list of all
OR/MS approaches, patient flow terms or classification of patients, however, they
provided a broad range of terms. To mitigate the number of papers excluded,
reference lists and forward references of the initial 39 papers were included in the
search. Similarly, only one search database was used (Scopus) to allow the results to
be reproducible, however, this may have resulted in a small number of papers being
excluded. To only include recent developments in OR/MS methods, this review
restricted the literature to papers published in English between 2000 to 2020. The
quality of the papers was not a factor in whether they should be included within the
analysis. Despite the limitations of the study, the results have yielded some valuable
findings which will be beneficial to both researchers and healthcare managers.

2.2.4 Literature Review Findings

This section has provided a categorisation framework for general, medical and
methodological aspects of frail and elderly care planning literature, classifying 21
years’ worth of research accordingly. The importance of bridging the gap between
care of the elderly journals (GG) with HPS, IE, MI and OR/MS journals to consoli-
date papers with the focus of care planning for frail and elderly has been highlighted.
As a result, we identified three overarching research possibilities:

1. When analysing the 12 methods utilised, nearly half of the papers focused on
either Markov or simulation models. Although there were variations within
the type of Markov model used, such as non-homogeneous discrete time and
Coxian phase-type distributions, this leaves potential for further research to
expand on the other methods discussed such as queueing models or routing.
This could be further developed by combining multiple methods to create a
more diverse model, as this review only identified two papers using this ap-
proach (Markov and simulation, and queueing theory with simulation). The
features of the data which is routinely collected within community or hospi-
tal care settings might impact which OR/MS method is chosen. A further
research possibility is the use of soft OR methods, which although included
within the search terms discussed in Section 2.2.1 did not produce any relevant
results.

2. More research would be beneficial in care planning across the care pathway
for frail and elderly. Only nine papers were identified where the focus was
on the combination of multiple hospitals and community care. Community
care had the highest setting focus followed by single hospital settings. Whilst



CHAPTER 2. LITERATURE REVIEW 34

it is important to consider these separately for improvements in efficiency,
they may not be able to be implemented successfully without consideration
for one another. There were eight papers identified that concentrated on a
specific illness and tended to focus on general wards for care of the elderly.
Hospitalised frail and elderly patients can be admitted to specialised wards
for a specific medical condition or general geriatric wards. This means it can
be difficult to plan for the next step of the pathway when they are medically
fit to be discharged. To predict future demands and assist capacity planning
in both hospitals and community care, it would be valuable to understand the
complete patient journey from the first point of contact to discharge. Many
frail and elderly care pathways do not differ from other patient pathways, and
as a result, these groups are included in more general studies. However, frail
and elderly patients suffer from more age-related issues, often with longer
recovery times, so it is important to consider frail and elderly patient care
planning separately for a successful healthcare system.

3. There was only one paper with research conducted on how systems would
manage if a sudden rise in frail and elderly patients were to occur [98]. Sudden
increase in demand is not a novel area to healthcare modelling with a high
quantity of papers investigating this issue, e.g., intensive care units [42, 117,
118]. The Covid-19 pandemic has demonstrated why research is important to
help healthcare providers meet increasing and sudden changes within demand
[119]. Future research could investigate the effect Covid-19 has had within
long-term care settings and the effectiveness of different Governmental policies
for frail and elderly patients.

2.3 Hierarchical Prediction Models for Elderly and
Frail Patients’ Lengths of Stay

Hierarchical prediction models expand the flexibility of prediction models by ac-
commodating grouped data. According to Luna [120], the term “hierarchical” is
a general term for group structured models and describes a relationship in which
the entities are grouped. In the literature, these are often referred to as multilevel,
mixed effect or random effects models and are frequently used interchangeably.

The format of this section is as follows: The search criteria used to identify pub-
lications are introduced in Section 2.3.1. Section 2.3.2 systematically classifies the
identified papers into general, medical and methodological contents. The research
gaps discovered from the classification of the papers are described in Section 2.3.3.
The findings of the review are then discussed in Section 2.3.4. Similar to the previ-
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ous literature review, an appendix table has been supplied that lists the references
for each figure that discusses a categorisation result. A complete list of the 90 papers
that have been identified, together with each classification category, is provided in
Table B.8 of the Appendix.

2.3.1 Methods

The Webster and Watson’s [43] methodology, which was previously discussed in
Section 2.2, was utilised to find relevant literature. To maintain consistency across
the two literature reviews, the same methodology was applied. Scopus was also
utilised to locate journal and conference proceedings articles of English-language
publications.

Further to the previous literature review, an additional two years of papers were
included in the criteria, therefore the search was performed from January 2000 to
December 2022. Five Clarivate Journal Citation Report (JCR) categories were used:
GG, HPS, IE, MI and OR/MS, along with upcoming journals not included in a JCR
category, again similar to Section 2.2.

The same procedure as before was used to create a search string to ensure the
search was not limited to a single methodology, journal or geographical area [43].
Therefore, at least one OR/MS prediction method, one length of stay (LOS) phrase
and one age category, were included in the search string. The classification of people
listed in Table 2.4 and those listed in Table 2.1 are identical, however, the other two
columns are different.

The search string parameters used to find published studies on LOS modelling for
frail and elderly patients are shown in Table 2.4.

2.3.1.1 Study Selection and Data Extraction

The initial search produced 943 papers. In order to eliminate publications that
did not focus on frail and elderly patients, the papers underwent abstract analysis.
Therefore, if within the abstract the papers did not mention the age of the patients
within the study or if the age of the patients were not classified as elderly, the paper
was excluded. Additionally, if the papers did not discuss the OR/MS method used,
it was excluded. As a result of this, the number of papers were reduced to 66 papers.
As discussed within Webster and Watson’s research [43], and within Section 2.2.1,
a forward and backward search was conducted. This resulted in a total number
of 90 publications that were found to be relevant, including one literature review.
A PRISMA flow diagram has been created and can be visualised in Figure 2.13.
The study protocol remains the same as the first literature review, with a general
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Prediction Method Length of Stay Classification of People
CART Length of Stay Elderly
Classification LOS Elderly care
Clustering Patient Stay Frail*
Data Mining Geriatr*
Decision Tree$ Home care
Forecast* Long term care
Hierarchical Nurs* care
Linear Regression Old people
Logistic Regression Older people
Multilevel Palliative care
Mixed Effect >65
Naive Bayesian
Neural Network$
Predictive Model*
Random Effect$
Random Forest$
Regression
Support Vector Machine$
SVM
Time Series Analy*
XGBoost

Table 2.4: Scopus search terms for hierarchical prediction literature search to include
at least one ‘Prediction Method’, one ‘Length of Stay’ term and one ‘Classification
of People’ term .

classification being provided, the medical context discussed and then the planning
decisions and types of OR/MS methods applied.
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Figure 2.13: The PRISMA flow diagram for the hierarchical prediction literature review detailing the Scopus searches, the number of
abstracts screened, the reason for exclusion and the number of full texts retrieved.
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Through the search parameters, no literature reviews were identified. Through an
additional separate search, Hunt-O’Connors et al. [121] literature review was iden-
tified. It should be noted that because the Journal of Nursing Management is not
listed in one of the five chosen JCR categories, this was not found in the Scopus
search. Additionally, it does not focus specifically on frail and elderly patients. In
their assessment of 181 studies, Hunt-O’Connors et al. [121] examined the impact
discharge planning on LOS and readmission rates of older adults in acute hospitals.
Interestingly, the authors findings suggest that discharge planning did not have a
statistically significant difference on LOS. One study, Pellett [122], revealed that
medical and nursing teams in the UK had a strong commitment in promoting dis-
charge planning. This ultimately led to a small reduction in LOS. One conclusion
Hunt-O’Connor et al. [121] alluded to was that because of heterogeneity, studies
could not be easily replicated. As a result, the methodology and findings in this
thesis will be straightforward to replicate and modify.

In the following section, the 90 papers identified through the search string will be
subjected to the same study protocol as previously outlined.

2.3.2 Results

The 90 papers that were found to be relevant can be divided into general, medical,
and methodological themes to help determine what the gaps in the current body of
literature are. Summary statistics outlining the results are provided in the sections
that follow.

2.3.2.1 General Classification

The country and JCR category where the research was conducted are shown in Table
2.5. Despite the inclusion of five JCR categories, only four categories yielded results.
The categories’ sizes differed by varying degrees, with the GG category accounting
for 72% of publications. This would imply that instead of other healthcare journals,
this topic of study typically tends to be published in specialised journals for the
frail and elderly journals. The ‘Other’ category is generated from papers from the
forward and backward, which did not have the JCR category as a limitation.

The findings demonstrate the variety of places where this research has been pub-
lished. However, even in nations where English is not the first language (such as
Italy, Japan, and Germany), English-language publications are still produced.

Similar to the previous literature review, IE and MI JCR categories had the fewest
articles (with the exception of OR/MS which yielded zero results). These publica-
tions should still be considered in the analysis because they offer different aspects
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Country UK USA Australia Italy France Canada China Japan Finland Germany

GG 8 8 6 8 4 4 6 5 5 3
HPS 3 0 1 0 0 0 0 1 0 0
IE 0 0 0 0 1 0 0 0 0 0
MI 0 0 0 0 0 0 1 0 0 0

Other 2 2 1 0 2 2 0 0 0 1
Total 13 10 8 8 7 6 6 6 5 4

Country Ireland Brazil Israel Singapore South Korea Sweden Netherlands Jordan Spain Total

GG 2 1 2 0 1 1 2 0 0 65
HPS 1 0 0 0 1 0 0 0 0 7
IE 0 0 0 0 0 0 0 0 0 1
MI 0 0 0 0 0 0 0 1 0 2

Other 0 1 0 2 0 1 0 0 1 15
Total 3 2 2 2 2 2 2 1 1 90

Table 2.5: Number of papers which fall into each JCR category and the location of
the where the research was conducted.

of LOS modelling with different focuses.

Figure 2.14 illustrates the number of papers published broken down into three year
intervals. The period 2018 to 2020 yielded the highest number of papers with 32% of
research being published within this time frame. The data shows varying numbers of
papers published during each period, with a consistent level of 13 papers published
between 2009-2011, 2012-2014 and 2015-2017.

Figure 2.14: Bar chart of the 90 papers identified through the Scopus search, by
publication year.

2.3.2.2 Medical Context

This subsection examines the articles medical background, which can be grouped
into two categories: the patient’s condition area and the treatment’s medical envi-
ronment. Recall the definition of medical setting, which refers to the site where care



CHAPTER 2. LITERATURE REVIEW 40

is being provided, and condition area, which refers to whether a patient’s medical
condition was short-term or long-term.

To understand where these individuals were receiving care, three medical settings
were examined. These are listed below:

• Single Hospital

• Multiple Hospitals

• Community Care

Figure 2.15 displays the results for the number of publications within each care
setting. Single hospital settings were the most common with 54 papers (60%).
These papers concentrated on hospital wards, such as cardiac wards [123], emergency
departments (EDs) [124] and geriatric wards [125]. Only five papers, [87, 126, 127,
128, 129], were based in the community. Cai et al. [126], Hoben et al. [127] and
Welberry et al. [87] evaluated the LOS in nursing homes based on several factors,
such as prior home care and policy variations. Johnson et al. [128] discussed the
differences in location before being admitted to hospices and the effect this has on
LOS. Park et al. [129] determined the effects of race and ethnicity in the LOS within
hospice care.

Interestingly, there were only three papers which explored hospital and commu-
nity care settings simultaneously. Fan et al. [130] used frailty as a predictor to
determine the usage of healthcare, including LOS inside hospitals. Gordon et al.
[65] applied Coxian phase-type distributions to predict patient LOS in hospital and
across community care. Walsh et al. [131] analysed whether formal home care
decreased LOS in hospitals. There was no overlap between multiple hospitals and
community care. It is important for this area to be considered to create a robust
and holistic pathway. This therefore suggests a possible direction for further study
by using prediction models to calculate LOS across various services.

Another aspect to investigate is the condition area of a patient. There are three
types of conditions included in this group: acute, chronic, and surgical. There are
studies based on surgery in addition to the literature review covered in Section 2.2.
Surgery papers are characterised as, medical disorders for which particular surgical
procedures are used.

Figure 2.16 displays the quantity of papers in each medical condition category.

Chronic conditions were the most populous area of research yielded 38 papers of
relevance. Since elderly and frail patients suffer with more chronic conditions than
the general adult population, the higher number of chronic papers compared to
acute is expected. ED’s [124], strokes [132], hip fractures [133], and other acute
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Figure 2.15: Venn diagram of the 90 papers identified through the Scopus search,
by medical setting.

Figure 2.16: Bar chart of the 90 papers identified through the Scopus search, by
‘Acute’, ‘Chronic’, and ‘Surgical’ medical conditions.

medical conditions were the second most common condition area with 36 papers. If
these conditions are not treated, they can frequently lead to more serious medical
problems. Finally, there were 16 surgical articles focusing on various sub-specialties
of surgery were included: Abdominal [134], cancer [135], cardiac [123, 136, 137, 138],
colorectal [139], hip [140, 141] and the combination of hip and knee [142]. In six
of the publications [143, 144, 145, 146, 147, 148], the surgical specialty was not
specifically addressed.

2.3.2.3 Methodological Content

This subsection will analyse the technical aspect of the papers such as the goals of
the research, the planning decision and the various LOS prediction techniques.
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2.3.2.3.1 Research Aims
The papers can be categorised to define the direction of the research using the three
main categories of research aim: examining, forecasting, and improving.

Figure 2.17: Bar chart of the 90 papers identified through the Scopus search, by
research focus.

Figure 2.17 displays the quantity of papers in each of the research aim categories.
Abe et al. [70] using both examining and forecasting research aims by determining
the effects of reducing polypharmacy on LOS on gastrointestinal surgery patients.

The findings indicate that, with 50% of publications, forecasting is the most preva-
lent study goal. In these 45 studies, 25 were only concerned with LOS prediction
[65, 70, 111, 123, 127, 132, 134, 138, 141, 148, 149, 150, 151, 152, 153, 154, 155,
156, 157, 158, 159, 160, 161, 162, 163]. The remaining 20 articles predicted other
variables in addition to LOS such as cost [164, 165], healthcare utilisation [130],
mortality [124, 164, 166] and hospital readmission [124, 133, 167].

Only three publications examined how to improve LOS [113, 131, 168]. According
to Basic and Khoo [168], the discovery of novel medical diagnoses would have an
impact on funding models based on diagnosis-related groups (DRGs), but it might
also improve patient care and their associated LOS. Hamdani et al. [113] examined
the use of Markov chains to model a hospital and the flow of elderly patients. Their
model is then used to assess the effectiveness of intra-hospital care and predicting
LOS.

2.3.2.3.2 Planning Decisions
Within Hulshof et al’s. [44] research on the taxonomic classification in healthcare
systems, three different decision levels were discussed: strategic, tactical and oper-
ational.
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Figure 2.18 displays the number of publications by planning decision level.

Figure 2.18: Bar chart of the 90 papers identified through the Scopus search, by
planning decision level.

The majority of papers focused on operational planning, the day-to-day running
of units. This is primarily due to the fact that the publications’ main study goals
involve predicting a patient’s LOS in the hospital, and the authors do not elaborate
on this information to aid with long-term planning.

There were only 12 articles that made long-term planning decisions (strategic plan-
ning). This suggests that prediction modelling is more suited to short-term, day-to-
day decisions rather than long-term, wider policy decisions. The research by Hoben
et al. [127] is an illustration of a strategically categorised paper. The authors
focused on LOS in nursing homes across three distinct Canadian regions. They
investigated how LOS varied based on various regional policies as well as different
characteristics of patients.

Figure 2.19 displays the cross analysis between the planning decision and the medical
setting. Despite having the fewest number of papers, strategic and tactical planning
methods were the only planning decision to be addressed across all medical settings.
Operational planning was divided into papers based on single hospitals (47%) and
papers based in multiple hospitals (21%). Only one paper [65], had an operational
planning level across hospital and community settings. These findings demonstrate
the applicability of prediction modelling in a variety of care settings, including
short-term and long-term care planning.

2.3.2.3.3 Prediction Methods
The final area to investigate was the prediction methods that have been utilised.

Figure 2.20 displays the quantity of each of the OR/MS methods. The methods
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Figure 2.19: Cross analysis of planning decision and medical setting of the 90 papers
identified through the Scopus search.

shown vary from those discussed in the first literature review (Section 2.3.2.3.3, as
due to the variety of approaches within the first, larger grouping categories were
created. For instance, the machine learning category encompassed logistic and linear
regressions, however, because these were the most popular techniques in the second
literature review these were classified separately. Similarly, Cox regression was
grouped within the statistical analysis, however, produced 15 papers of relevance in
the second review and therefore was included as its own category.

Linear and Logistic regressions were the most prevalent techniques with 18 and
36 studies, respectively. Four articles, [160, 169, 170, 171], used both linear and
logistic regression models in their research. Only two publications employed tra-
ditional hierarchical OR methods such as decision trees and CART [149, 161]. In
order to ascertain whether there was a relationship between LOS and preventable
readmissions, Alyahya et al. [149] developed decision trees. The authors discovered
a direct correlation. Within the field of internal medicine, the authors were able
to advise clinical decision-makers on the recommended length of hospitalisation for
patients. Nishino et al’.s [161] research involved building CART models to forecast
long LOS’s. Systolic blood pressure (155 mmHg) and serum albumin (3.4 g/dL,
a blood protein present in albumin) readings were identified as lower bounds into
predicting long LOS’s.

There were three papers that used regression techniques that did not involve Cox,
linear or logistic regression models. Multivariate multilevel regression was utilised by
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Figure 2.20: Bar chart of the 90 papers identified through the Scopus search, by
mathematical method.

Chung et al. [172] to identify the variables that affected patients LOS in psychiatric
wards. The type of medical institution, patient diagnosis, type of health insurance
provider, and patient makeup of medical institutions were all shown to be significant
determinants by the authors. Negative binomial hurdle regression models were used
by Motzek et al. [173] to establish that longer hospital stays in Germany were caused
by greater hospitalisation rates for dementia patients. Using unconditional quantile
regression, Walsh et al. [131] identified a relationship between hospital LOS and
formal home care.

Beauchet et al. [152] utilised three methods within their research: cox and logistic
regression with Kaplan-Meier models. The impact of several characteristics, such as
a history of falls and temporal disorientation, on long hospital LOS’s was examined
by the authors.

Table 2.6 refers to the prediction method used by each paper against its correspond-
ing care setting. Since seven papers make use of various approaches, there are a
total of 67 papers. Amongst the methods where there are five or greater papers
published, a range of different care settings are used for the research. This demon-
strates that, regardless of the situation, numerous strategies can be used in LOS
modelling for frail and elderly patients. CART models are only used within single
hospitals, and provides potential for research to focus on other care settings when
using CART. Seven different methodologies were used in both single and multiple
hospital settings, therefore having the most variety of approaches.
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Single Hospital Single Hospital and Community Community Care Multiple Hospitals Total

Logistic Regression [70, 140, 144, 146, 147, 148, 151, 152, 155, 156,
159, 165, 169, 174, 175, 176, 177, 178, 179]

[130] [128] [133, 137, 139, 142, 143, 150, 160, 163, 170, 171,
180, 181, 182, 183, 184]

36

Linear Regression [123, 135, 136, 138, 140, 141, 169, 185, 186, 187,
188]

[160, 170, 171, 189, 190, 191, 192] 18

Cox Regression [132, 145, 152, 168, 174, 193, 194, 195] [87, 126, 127, 129] [166, 196, 197] 15
Statistical Analysis [125, 134, 154, 198, 199, 200, 201, 202] [203] 10

Kaplan-Meier [124, 152, 162, 167] [128] [164] 6
Markov Chain [111, 113, 204] [65] [205] 5

Multivariate Regression [206] [172] 2
CART [149, 161] 2

Unconditional Quantile Regression [131] 1
ROC Curve [207] 1

Neural Networks [158] 1
Negative Binomial Hurdle Regression [173] 1

Multi Dimensional Analysis [153] 1
Gradient Boosting [157] 1

Total 59 3 6 31 99

Table 2.6: Number of papers which fall into each medical setting and OR/MS method within the published research.

Note: Adamis et al. [169], Basic et al. [174], Beauchet et al. [152], Johnson et al. [128], Lisk et al. [160], Motohashi et al. [170], Naouri et
al. [171], all utilise multiple methods and therefore appear multiple times within the table. This resulted in a total of 99 publications.
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2.3.2.4 Common Themes

Section 2.3.2 provided an overview of prediction modelling for frail and elderly pa-
tients LOS in both hospitals and community care. Logistic regression was the most
widely utilised method, with 36 papers developing these types of models. The last
five years have seen the publication of more sophisticated techniques like CART,
which are frequently derived from logistic and linear regression models. Operational
planning was the most popular form of planning, indicating that prediction mod-
elling is simpler to implement for daily operations of units and patient care. The
papers include a variety of research objectives, with forecasting approaches being
the most prevalent and frequently used to forecast patients LOS. Finally, hospitals
have served as the primary environment for these publications, either based in a
single hospital ward or analysed across multiple hospitals. The research identified
through the Scopus search has demonstrated that a wide variety of OR/MS tech-
niques can be applied to the care of frail and elderly LOS prediction modelling.
Section 2.3.3 will discuss the areas for future research.

2.3.3 Research Gaps

Within ageing prediction modelling, the 90 studies found in this study addressed a
wide range of facilities, regions, and patient types. Three significant gaps still exist
in the literature, which could be the subject of future study.

2.3.3.1 Gaps in terms of Methodology

The 90 publications used 14 distinct techniques, with a significant emphasis on
linear and logistic regression. This is perhaps because the data lends itself nicely to
these prediction techniques. There were in total eight approaches that accounted for
11% of the paper methods, which used alternative prediction methods, indicating
the potential for further research into these less commonly used techniques. The
topic of frail and elderly prediction modelling underutilised more sophisticated and
complex techniques like CART. In comparison to linear and logistic regression,
CART models provide a deeper understanding into the data. Neural networks only
produced one relevant study, [158], and clustering produced no relevant results in
spite of being included in the Scopus search string in Table 2.4. Future studies may
choose to concentrate on these hierarchical techniques, such as CART, clustering,
and neural networks.

Patients with long LOS’s typically account for a high proportion of overall bed days
[208]. There are no laws or regulations regarding patient LOS, and it should be
determined by when the patient is clinically fit for discharge. Bed occupancy has
consistently exceeded 91% in Canada [209], 85% in England [210] and 66% in the
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USA [211]. There were only 17 papers which specifically addressed predicting the
longer LOS in hospitals [70, 123, 126, 136, 142, 152, 153, 155, 158, 159, 170, 178,
182, 185, 194, 199, 201, 203]. Since trends in bed occupancy rates are still rising,
particularly following the Covid-19 outbreak, projecting lengthy hospital LOS’s and
enacting policies to shorten them may lead to a decrease in occupancy rates.

2.3.3.2 Gaps on the Intersection between Research Aims and Decision
Levels

Both the long-term and day-to-day planning scenarios should be taken into account
for effective care planning. Only 28 publications examined the strategic and tactical
decision levels, compared to the 62 papers that concentrated on the operational
decision level. Decision-makers do not take into account how to best plan for the
future because they are primarily concerned with day-to-day planning. Future,
increased needs would not be satisfied as a result of this. All three locations for
care, as well as the overlap between hospital wards and community care, were taken
into account when determining strategic planning levels. On some level, this does
indicate that all care facilities are being taken into account and analysed for the
long-term horizon of LOS prediction modelling for frail and elderly patients. Policy
makers will be able to make educated decisions based on these research papers
regarding how to adapt units to future clinical and demographic changes.

The research’s objectives were also evaluated and divided into three groups: exam-
ining (43 papers), forecasting (45 papers) and improving (3 papers). In total 13 of
the 14 different methods were used to achieve the most popular study goal, forecast-
ing. With 25 publications, forecasting was primarily employed to predict only LOS,
with 20 papers demonstrating how LOS prediction can support care planning by
working in conjunction with other predictors. Only three studies, all of which took
place in a single hospital, were related to the improving research aim [113, 131, 168].
Although it does open up a new line of inquiry for researchers, it may also imply
that the study methods these publications examined were simpler to apply to single
settings.

2.3.3.3 Shortcomings on the Intersections between Medical Settings

There were only eight studies that addressed LOS prediction modelling in the con-
text of community care [65, 87, 126, 127, 128, 129, 130, 131]. This shows that LOS
prediction modelling may not be well adapted to community care settings, given
that patients are often unlikely to return to their own homes after being admitted
to a nursing or care facility. Fan et al’s. [130] and Walsh et al.’s [131] research using
a single hospital and community care setting were the sole crossovers between com-
munity and hospital settings. This presents an opportunity to examine if patients
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who receive some form of community care have different LOS’s when admitted.
Two potential hypotheses could be tested: whether patients are discharged sooner
because they have a home to return to in the community and do not bed block, or
because these patients are typically more unwell and take longer to recover as they
are already receiving care and hence stay in hospital for longer.

In total, 28 studies addressed multiple hospital settings. Although being able to
forecast LOS at the time of admission can help with resource allocation for a pa-
tient’s hospital stay, none of the publications were found to do more than merely
investigate the variables that influence LOS. The development of these LOS predic-
tion models and their use in resource planning would fill a significant research gap.
There were 11 of the 28 multiple hospital papers, [160, 166, 171, 180, 181, 184, 190,
191, 192, 197, 205], did not concentrate on a particular disease but instead analysed
the elderly admission and were able to compare LOS based on various illnesses.
These publications do not, however, examine or make forecasts for the future on
a bigger scale. This leaves open the possibility for future studies to examine the
effects of various medical conditions on patient demands and LOS, as well as how
these factors may alter over time based on clinical and demographic changes.

2.3.4 Literature Review Findings

This section has established a framework for categorising general, medical, and
methodological components of prediction modelling for frail and elderly patients.
The literature on healthcare has been categorised for a total of 23 years. The sig-
nificance of bridging the gap between GG journals and more conventional health
mathematics journals (HPS, IE, and MI) has been emphasised, similar to the liter-
ature review in Section 2.2. As a consequence, the same three overarching research
opportunities, as Section 2.2, have been identified.

1. The use of linear and logistic regression was the focus of 55% of the publi-
cations. Despite the fact that they were employed in conjunction with other
techniques, this leaves potential for further study to build on other meth-
ods techniques such as CART. Given that our study only found six publica-
tions utilising this strategy, it might be further developed by integrating other
strategies to produce a more diverse model. The type of prediction method
employed may vary depending on the environment and types of data that
are regularly collected. Another avenue for investigation is the application of
other hierarchical techniques, such as neural networks or clustering, which,
despite being part of the Scopus search term, only yielded one outcome.

2. Predicting LOS for frail and elderly patients across the care pathway would
benefit from more research. Only three studies with a single hospital and
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community care as their primary settings were identified. Due to the bed
blockage issue that many healthcare facilities are experiencing, it is crucial
that hospitals and community care are integrated. When a patient is medically
fit for release but cannot be transferred because there is nowhere for them to
go, this is known as bed blocking. This frequently happens as a result of the
time it takes to arrange for people who need home care or who need to be
admitted to a nursing or care facility. As a result, this leads to longer LOS in
hospitals and this cannot be resolved without adequate care in the community.
This is supported by the discovery of just nine studies with a specific focus on
predicting longer LOS’s within hospitals.

3. The final research possibility focuses on the increased demands and pressures
that healthcare facilities are currently experiencing. None of the publications
addressed the possibility that hospital LOS would rise in response to rising
demand for admissions of frail and elderly patients. First of all, if there is a
greater influx of patients, staff would have to care for more patients and as
a result become overworked, which might significantly affect patients recov-
ery times. Additionally, because there would be more demand for inpatient
treatments like radiology or pathology, patients would have to wait longer for
these examinations, extending their LOS.

2.4 Overlap Between the Two Literature Reviews

Two literature reviews were studied for this research. Firstly, by conducting a broad
literature review in Section 2.2, we gained a comprehensive understanding of the
OR/MS methods applied to frail and elderly patient care planning. This founda-
tional knowledge allowed us to better contextualise and appreciate the specific hier-
archical approaches examined in Section 2.3 for predicting LOS for these patients.
The second review, with its more in-depth analysis, allowed us to delve deeper into
the predictive methodologies, enabling us to identify key insights and nuances that
may have been overlooked in a single, all-encompassing review. Due to the nature
of the studies, there was an overlap of the OR/MS methods and therefore there was
cross over between the two reviews.

There were four papers which appeared in both literature reviews: Abe et al. [70],
Hamdami et al. [113], Marshall and McClean [111] and Welberry et al. [87]. Abe
et al. [70] focused on investigating the influence of polypharmacy on LOS for gas-
trointestinal surgery patients. Their study employed logistic regression to analyse
the relationship. Hamdani et al. [113] utilised Markov chains to track and predict
the movement through the Hospital Center of Roanne in France, offering valuable
insights into patient flow and LOS dynamics. Marshall and McClean [111] also em-
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ployed Markov chains to explore the characteristics of patients that affect their LOS
within hospitals, providing a deeper understanding of LOS variability. In a different
context, Welberry et al. [87] discussed the impact on prior home care on the LOS for
dementia patients in residential care. To achieve this, they utilised Cox’s regression
analysis, yielding valuable findings on the subject. This cross-referencing provided
an additional layer of validation for their significance and reinforced the relevance
of their contributions to the field.

Furthermore, exploring the OR/MS methods from different angles and within var-
ious contexts allowed connections to be made. By doing so, a more comprehensive
understanding of the literature could be built, ultimately contributing to a more
well-rounded and informed research study that can offer practical implications for
improving the planning and care of frail and elderly patients in healthcare settings.

2.5 Summary

The practice of OR/MS approaches in the planning of care for the frail and elderly
was the main topic of this chapter’s literature reviews. The underutilisation of
OR/MS techniques, the absence of comprehensive holistic care planning, and the
implications of increases in demand on healthcare systems have all been noted as
gaps in the literature. Within this thesis, we seek to address all three aspects by
using underutilised OR/MS methods and applying them to multiple hospitals in
Chapter 5 and discussing growing demand in Chapter 6 using scenario analysis.

The application of OR/MS methods to frail and elderly patients literature review
(Section 2.2) included a higher quantity of strategic level publications, hence the two
literature reviews did dispute in terms of planning decisions. There was a stronger
emphasis on operational planning choices in the literature review for the hierarchical
prediction models for patients’ LOS literature review (Section 2.3). Therefore, all
three planning decisions will be examined in this research, including how to plan the
day-to-day running of units while also taking into consideration long-term demands
and predictions for frail and elderly patients.

In the following chapter, Chapter 3, we discuss a number of the predictive analytical
methods identified within the literature reviews. Through a realistic, simplified
example illustrating the procedures and outcomes, the methods will be applied to
the case of frail and elderly patients.
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Chapter 3

Predictive Analytics to Support
Capacity Planning for Frail and
Elderly Patients

3.1 Introduction

Within industry today, OR and predictive analytics are allowing companies to make
more informed decisions about their businesses, with the effects of new policies
to be understood prior to their implementation. The use of analytics has also
developed rapidly within healthcare in the 21st century, and with the NHS being
one of the UK’s and Europe’s largest employers, many individuals are now active
as healthcare consumers or healthcare providers [212]. The need for new, more
sophisticated technologies and recent demographical changes, such as an ageing
population, are the main causes of the rising expenses associated with healthcare
treatment [213]. Patients, as consumers, are no longer prepared to accept subpar
services and expect: shorter waiting times, increased appointment availability and
faster treatment times [214]. By using predictive analytics within healthcare, it
allows costs to be minimised and performance to be optimised within the NHS.
Predictive analytics uses statistics and modelling techniques to make predictions
about future events [215]. The analysis of both recent and historical data can
help healthcare systems become more dynamic and proactive by looking forward to
detect patterns or behaviour.

Research Aim - This chapter will identify predictive techniques which will be ap-
plied to the frail and elderly case study within ABUHB, to determine LOS
within hospitals. The theory discussed in this chapter will be applied to ad-
dress the following research aim, ‘How do the clinical and demographical at-
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tributes of frail and elderly patients affect their length of stay within hospital?’
to be addressed later in this thesis.

Predictive and forecasting techniques were the most frequent study objectives within
the healthcare literature, as discussed in Chapter 2. The studies, however, tended
to accomplish this via more traditional OR/MS techniques, such as simulation and
Markov chains. The goal of this thesis is to use predictive approaches that are not
typically used in healthcare to see if similar patient groups can be found for the frail
and elderly.

The chapter is structured as follows: Section 3.2 will go through the prediction
techniques utilised in this thesis, while Section 3.3 will discuss classification and
regression trees (CART), as well as the extension of random forest metrics. Then,
in Section 3.4 we will determine how these analytical methods can be implemented
within Python. A practical example will be demonstrated throughout the chapter
to provide a greater understanding of the theory.

3.2 Predictive Techniques

Predictive analytics extracts information from existing data using algorithms and
machine learning to forecast future events. Predictive analytics can be divided into
two subcategories: supervised learning and unsupervised learning.

3.2.1 Differences Between Supervised and Unsupervised Learn-
ing

To train algorithms for data classification or outcome prediction, supervised learning
makes use of labelled data sets. During a ‘training phase’, when data is inputted into
the model, patterns within the data are identified and connections between depen-
dent and independent variables are found. In order to demonstrate this relationship,
a mathematical equation is created. The training process can produce more accu-
rate outcomes if more data and information are fed into it. Cross-validation then
occurs on a ‘testing’ data set which the model has not been trained upon, to assess
the accuracy and reliability of the model.

Table 3.1, contains a collection of the most often used supervised learning methods
applied within healthcare, along with relevant healthcare references.

Using supervised learning has various advantages, including improved accuracy lev-
els because the desired result is already known. Supervised approaches are very
simple for practitioners without a mathematical background to comprehend and
apply in the context of healthcare. However, supervised learning models always re-
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Method Healthcare Examples

Regression Heart Failure Outcomes [72], LOS Prediction [70, 87]
Classification Ambulance Delay [216], Blood Testing & Donation [217, 218]
Naive Bayesian Model Diabetes Prediction [219], Heart Disease Detection [220, 221]
Random Forest Model Cancer Prediction [222], Diabetes Detection [223, 224]
Neural Networks Biomedicine [225, 226], Healthcare Access [227]
Support Vector Machines Dementia Prediction [228], Stroke Patients [229, 230]

Table 3.1: Supervised learning methods and their applications across healthcare.

quire updating in order to keep up with evolving data. The model must repeat the
training and validation phases whenever new data variables are added in order to
retrain with the new variables. These models can take a long time to compute, espe-
cially when employing large amounts of data. If there is unnecessary data included,
efficiency may also suffer.

Unsupervised learning, in contrast to supervised learning, does not use labelled
data to learn from, instead, the algorithm identifies clusters of similar patterns or
groupings. The algorithm will choose the optimal number of classes the data should
be divided into because it is unlabelled, therefore it does not need to go through
the training and testing stages that supervised learning requires.

The most popular unsupervised learning techniques are shown in Table 3.2, along
with real-world healthcare applications. Each technique may incorporate a variety
of techniques, for instance, clustering may include, ‘K-Means’, ‘hierarchical’ and
‘probabilistic’ techniques.

Method Healthcare Examples

Anomaly Detection Heart Rate Anomalies [231, 232], Lung Cancer [233]
Clustering Breast Cancer Recurrence [234], Heart Disease [235], Thyroid Cancer [236]
Dimensionality Reduction Alzheimer’s Diagnosis [94, 237], Diabetic Retinopathy Detection [238]

Table 3.2: Unsupervised learning methods and their applications across healthcare.

When used in the healthcare industry, unsupervised learning offers a host of advan-
tages, particularly for data that naturally lends itself to labelling. By deciding on
the groupings, the unsupervised learning algorithm can save clinicians critical time.
Due to the dynamic nature of healthcare data, it is possible to use the algorithms
to track how clusters change over time. However, because there is no expectation
of labelled results, it is uncertain whether the yielded results will be useful. As a
result, accuracy levels frequently fall short of those of supervised methods.

Five predictive approaches will be used within this research. The first two, lin-
ear and logistic regressions, were the most common methods identified through the
literature search in Section 2.3.2.3.3. However, since these methods are prone to
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over fitting or over simplifying problems [239], more advanced techniques should
be investigated. When investigating other more complex predictive algorithms, lit-
erature suggests that with support vector machines performance goes down with
large data sets due to the increase in training time [239]. Näıve Bayesian models
have the assumption that all features are independent [240] and neural networks
have a limited ability to explicitly identify causal relationships [241]. Therefore
these three methods would not be suitable for this research. Classification and re-
gression tree (CART) models offer a more notable advantage in healthcare due to
their interpretability [239]. By generating a visual decision tree, they simplify the
understanding of model outcomes, making it accessible even to healthcare practi-
tioners with limited mathematical knowledge. The final method investigated will
be random forests, which are developed from classification and regression trees.

Within this research, supervised learning approaches will be examined and applied
to the case study of frail and elderly patients. Prescriptive approaches will be used
in conjunction with models for regression, classification, and random forests. Dis-
cussion into the application of unsupervised methods will take place within Chapter
8.

3.2.2 General Model Formulation

The following section will analyse the general formulation of each of the predictive
methods. Each method will be accompanied by a worked example to demonstrate
it can be effectively applied to a simplified patient data set. This approach will
enable healthcare professionals to quickly implement these techniques in their own
data analysis.

3.2.2.1 Linear Regression

Linear regression is used to establish the relationship between a continuous depen-
dent variable and either continuous or discrete independent variables. There are
two types of linear regression; simple linear regression in which there is only one
independent variable, and multiple linear regression in which there are two or more
independent variables.

In a regression problem, the key quantity is the mean value of the outcome, given
the value of the independent variable or variables. This quantity is known as the
conditional mean, expressed as ‘E(Y |x)’ where Y denotes the outcome variable and
x denotes a value for the independent variable. In simple linear regression, it is
assumed that the conditional mean may be expressed as a linear equation in x as
follows [242, 243]:

E(Y |x) = β0 + β1x (3.1)
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where β0 is the y-intercept and β1 is the gradient of the line. It is also required for an
error term to be included within the equation, denoted ϵ. This error term expresses
an observation’s deviation from the conditional mean. It is therefore assumed that
an observation outcome of the variable may be expressed as [242, 243]:

y = E(Y |x) + ϵ (3.2)

where ϵ is the error term.

For multiple linear regression, where multiple independent variables are used to
predict the dependent variable, Equation (3.1) can be modified to include these
additional variables [242].

E(Y |x) = β0 + β1x1 + β2x2 + ... + βnxn (3.3)

Therefore:
y = E(Y |x) + ϵ (3.4)

The findings demonstrate that the dependent variable will increase or decrease by
a specific amount for every unit increase in the independent variables. There are
four primary assumptions regarding the error value that must be met when using
linear regression [244]:

• The error term values have a mean equal to zero

• The error terms have constant variance

• The error terms are normally distributed

• Each error term is independent from other error terms

According to the first three assumptions, the population of potential error term
values for each given value of 4x has a normal distribution with a mean of zero and
a variance of σ2. The final assumption implies that the error terms do not follow a
pattern and hence most likely to be independent of one another.

To establish the eligibility for linear regression, the null hypothesis must first be
rejected, indicating that there is a relationship to be modelled. For a simple linear
regression, the hypotheses are as follows:

H0 = There is no linear relationship (i.e., β1 = 0) (3.5)
H1 =There is a linear relationship (i.e., β1 , 0) (3.6)
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These hypotheses can be extended for multiple linear regression:

H0 = There is no linear relationship (i.e., all β1...n = 0) (3.7)
H1 = There is a linear relationship (i.e., at least one β1...n , 0) (3.8)

where n is the sample size.

In order to estimate the parameters of the β terms, the method of ordinary least
squares (OLS) is used. When calculating these terms, OLS first calculates the sum
of the squared standard deviations of the observed values of Y before minimising
the outcome.

3.2.2.1.1 Worked Example Linear regression can be used to find the relation-
ship connection between a patient’s LOS and the dependent variables. This worked
example will utilise a data set of 10 patients to illustrate the practical application of
linear regression. Two case studies will be demonstrated, highlighting the difference
between categorical and continuous independent variables. Table 3.3 displays the
10 patients used within the analysis.

Patient Number Age Hospital LOS Specialty Admission Method Admission Source Frailty Level

Patient 1 95 RGH 5 COTE Emergency Own Home 3
Patient 2 82 RGH 3 COTE Emergency Own Home 2
Patient 3 89 RGH 4 T&O Emergency Own Home 2
Patient 4 87 RGH 4 T&O Elective Own Home 2
Patient 5 85 NHH 3 COTE Elective Transferred 1
Patient 6 76 NHH 1 COTE Elective Transferred 1
Patient 7 71 NHH 1 T&O Emergency Transferred 1
Patient 8 96 RGH 5 T&O Emergency Own Home 3
Patient 9 70 NHH 1 COTE Emergency Transferred 1
Patient 10 67 NHH 1 T&O Elective Own Home 1

Table 3.3: Data set of 10 patients that will be used for the first worked example.

Age, with a range of 29 years, is one of the continuous independent variables. We
can ascertain the relationship between LOS and age using linear regression. The
outcomes of the linear regression are shown in Equation (3.9). It should be observed
that the equation lacks a constant term. The LOS rises by 0.1494 days for every
unit increase in age (Figure 3.1).

y = 0.1578x − 10.1052 (3.9)

where x is the age of the patient. Therefore, if the age of a person was 70, their
predicted LOS would be 0.9408 days.

For categorical variables, one-hot encoding is used which results in Equation (3.10),
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Figure 3.1: Worked example of linear regression model where the dependent variable
y represents the Length of Stay (LOS) and the independent variable x is the age of
the patient.

if using the variable hospital for prediction.

y = 1.6667 − 0.6667x1 + 2.3333x2 (3.10)

where x1 is equal to hospital NHH, and x2 is equal to hospital RGH. Therefore, if
NHH is attended, then the predicted LOS is 1 day, otherwise RGH is attended and
the LOS is 4 days.

3.2.2.2 Logistic Regression

Dichotomous data is data that has two possible outcomes, data with a binary re-
sponse in which each participant can only belong to one of the two categories.
Applying the conditional mean to dichotomous data requires that it be higher than
or equal to zero and less than or equal to one, i.e., 0 ≤ E(Y |x) ≤ 1. In order to fore-
cast this binary result, logistic regression is applied. The quantity π(x) = E(Y |x)
is used to denote the conditional mean, simplifying the notation. This form of the
logistic regression model can be seen within Equation (3.11) [242, 243].

π(x) = eβ0+β1x

1 + eβ0+β1x
(3.11)

In order for a linear regression to be fit, a logit transformation of the dependent
variable is required to be performed, defined in terms of π(x) as follows [242]:

g(x) = ln
[

π(x)
1 − π(x)

]
(3.12)

g(x) = β0 + β1x (3.13)
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This transformation is important since g(x) is linear in its parameters which may
be continuous and range from −∞ to +∞, depending on the range of x. Similar to
linear regression, logistic regression also requires an error term for the observation
value outcome of the variable, expressed as:

y = π(x) + ϵ (3.14)

In order to determine the suitability for logistic regression, the null hypothesis is
first required to be rejected, suggesting that there is a relationship. The first of these
hypotheses is that if y = 1 then ϵ = 1−π(x) with probability π(x). Otherwise, y = 0
and therefore ϵ = −π(x) with probability 1 − π(x). Thus, ϵ has a distribution with
a mean of zero and variance of equal to π(x)[1−π(x)]. The conditional distribution
of the outcome variable follows a binomial distribution with probability given by
the conditional mean, π(x).

The hypotheses for logistic regression are as follows:

H0 =All coefficients are zero (i.e., all β1...n = 0) (3.15)
H1 =All coefficients are zero (i.e., at least one β1...n , 0) (3.16)

where n is the sample size.

3.2.2.2.1 Worked Example A case study of 15 patients was used (an addi-
tional five rows compared to the previous worked example), to avoid the case of
perfect separation. For the remainder of this section, the linear regression will be
performed using the initial 10 patient table (Table 3.3), while the logistic regression
will be performed with the following additional rows added (Table 3.4).

Patient Number Age Hospital LOS Specialty Admission Method Admission Source Frailty Level

Patient 1 95 RGH 5 COTE Emergency Own Home 3
Patient 2 82 RGH 3 COTE Emergency Own Home 2
Patient 3 89 RGH 4 T&O Emergency Own Home 2
Patient 4 87 RGH 4 T&O Elective Own Home 2
Patient 5 85 NHH 3 COTE Elective Transferred 1
Patient 6 76 NHH 1 COTE Elective Transferred 1
Patient 7 71 NHH 1 T&O Emergency Transferred 1
Patient 8 96 RGH 5 T&O Emergency Own Home 3
Patient 9 70 NHH 1 COTE Emergency Transferred 1
Patient 10 67 NHH 1 T&O Elective Own Home 1
Patient 11 89 RGH 4 COTE Elective Transferred 3
Patient 12 70 NHH 1 COTE Elective Own Home 2
Patient 13 75 NHH 4 T&O Elective Transferred 3
Patient 14 72 NHH 2 COTE Elective Transferred 3
Patient 15 87 RGH 5 COTE Emergency Own Home 2

Table 3.4: Data set of 15 patients that will be used for the second worked example.

Given that logistic regression requires a grouped variable to predict outcomes, LOS
can be divided into groups of ‘< 4 days’ and ‘≥ 4 days, to identify the groupings of
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patients who have longer LOS’s in hospital.

Performing the logistic regression with age as a continuous variable, Equation (3.17)
is generated.

y = 0.2661x − 21.7946 (3.17)

Therefore, for a patient who was aged younger than 82, they would fall into category
‘0’ and their LOS would be predicted to be less than 4 days. Otherwise, for those
aged 82 and over, they would be predicted to fall into the category of ‘1’ and have
a LOS equal to or greater than 4 days.

Performing with hospital as a categorical variable, results in the following:

y = 2.8904xRGH − 1.7918 (3.18)

Within this calculation, the intercept did not have a significant p-value (0.097) and
therefore can be considered as zero.

This means, for patients who attend NHH hospital, the predicted grouping would
be ‘0’ and therefore have a LOS of less than 4 days. RGH patients would result in
y ≥ 1 and would therefore fall into group ‘1’.

3.2.3 Evaluation Metrics

In order to determine the success of using models against the data, traditional
scoring techniques will be used for both the linear and logistic regressions.

Whilst there is no universal standard for scoring metrics, the rule of thumb is
that the higher values indicate better performance. Typically, what defines a good
accuracy level in machine learning is subjective to the type of data, field of study
and the intended application of the model.

According to Ozili [245], a regression score ranging from 0.1 to 0.5 is considered
acceptable when a considerable number of explanatory variables exhibit statistical
significance. Conversely, the model must be rejected if all the explanatory variables
lack statistical significance. A score value between 0.5 and 0.99 is acceptable when
most of the explanatory variables demonstrate statistical significance. However, it is
crucial to avoid the possibility of multicollinearity among the explanatory variables,
as these factors could potentially inflate the value and lead to misleading conclusions.
All of the evaluation metrics covered in this chapter will utilise the same score ranges.

For linear regression, two scoring measures will be used for the evaluation of the
models:

1. R2 Value
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2. Adjusted R2 Value

The theory behind these two scoring methods are discussed below.

3.2.3.1 R2 Value

The R2 is the coefficient of determination and calculates how good a model’s fit is
compared to a given data set. It indicates how close the predicted values are to the
actual values.

R2 = 1 − SSRES

SST OT

= 1 −
∑

i(yi − ŷi)2∑
i(yi − ȳ)2 (3.19)

where SSRES is the sum of square of the residuals and SST OT is the total sum of
squares. Further expanding into the formula for SSRES, yi is the observed variable
value and ŷi is the value estimated by the regression line. Similarly for SST OT , yi

is the observed variable value and ȳ is the mean value. The range for the R2 value
is between -∞ to 1, where a negative value indicated the best fit line is performing
worse than the average fit line.

3.2.3.1.1 Worked Example When calculating the R2 value for the linear re-
gressions performed in the worked example, we can use Equation (3.9). Starting
with patient 1 who is aged 95, their recorded LOS was 5 with a predicted LOS of
4.8858 days. SSRES can be calculated as follows:

ŷ = − 10.1052 + 0.1578x (3.9 revisited)
ŷ = − 10.1052 + (0.1578 ∗ 95) ≈ 4.8858 (3.20)

(yi − ŷi)2 =(5 − 4.8858)2 = 0.0013 (3.21)

This process is performed for all 10 patients, resulting in an SSRES value of 1.3674.

∑
(yi − ŷi)2 = 1.3674 (3.22)

Then we can calculate the SST OT , by using the equation ȳ =
∑

y

n
. Since there are

10 samples within the data, and the total LOS sums to 29, our ȳ value is 2.9.

(yi − ȳ)2 =(5 − 2.9)2 = 4.41 (3.23)

Similarly, this process continues for all 10 patients:

∑
(yi − ȳ)2 = 25.7 (3.24)
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Therefore, using Equation (3.19), we can calculate the R2 value to be:

R2 = 1 − 1.3674
25.7 = 0.9468 (3.25)

Therefore, age accounts for 94.68% of the variation in the LOS.

Categorical variables follow a similar process using Equation (3.10)

ŷ = 1.6667 − 0.6667x1 + 2.3333x2 (3.10 revisited)

For each patient, either x1 or x2 will be given a value of 1, with the other being zero
to calculate ŷ.

ŷ = 1.6667 − 0.6667(0) + 2.3333(1) = 4 (3.26)
(yi − ŷi)2 = (5 − 4)2 (3.27)

To compute SSRES, this procedure can be repeated for all 10 cases.

∑
(yi − ŷi)2 = 4 (3.28)

Since the value of the SST OT remains unchanged from the previous calculation, R2

is determined as follows:

R2 = 1 − 4
25.7 = 0.8444 (3.29)

3.2.3.2 Adjusted R2 Value

The adjusted R2 value is a modification of R2 value that accounts for variables that
are not significant in the model. The adjusted R2 determines the extent of the
variance of the dependent variable which is explained by the independent variable.

R2
adj = 1 −

[
(1 − R2)(n − 1)

n − k − 1

]
(3.30)

where n is the number of points in the sample and k is the number of independent
variables in the model.

3.2.3.2.1 Worked Example The calculated R2 for the worked example was
0.9468. This value can be entered into the Equation (3.30), to calculate the adjusted
R2 value.
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R2
adj = 1 −

[
(1 − 0.9468)(10 − 1)

10 − 1 − 1

]
= 0.9401 (3.31)

Therefore, the adjusted R2 value is 94.01%.

Similarly, the adjusted R2 value for the hospital attended can be determined using
the following formula:

R2
adj = 1 −

[
(1 − 0.8444)(10 − 1)

10 − 1 − 1

]
= 0.8249 (3.32)

To evaluate how well the model fits the data in logistic regression, error measures
are also required. The following are the four primary evaluation metrics in logistic
regression that are used to determine accuracy and error rates and are as follows:

1. Confusion Matrix

2. Classification Report

3. Accuracy Score

4. Receiver Operating Characteristic Curve (ROC curve)

The data utilised in this thesis will be subjected to these four measurement method-
ologies.

3.2.3.3 Confusion Matrix

The number of values that are successfully or incorrectly predicted is determined
from the confusion matrix. True positives (TP), occur when the model correctly
predicts the outcome as positive. True negatives (TN), are when the model correctly
predicts the outcome as negative. There are two types of errors where the model
incorrectly predicts the outcome, type I and type II errors (Table 3.5).

Predicted Value
Positive Negative

Actual Value Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 3.5: General form of a confusion matrix consisting of actual values against
predicted values.

False positives (FP), also known as type I errors, occur when a result that should
be negative turns out to be positive. As patients who are not diagnosed may be
discharged from the care pathway, these errors are frequently considered worse in
the application of healthcare. As a result, individuals can be denied access to
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treatment. False negatives (FN), or type II errors, occur when a result is projected
to be positive however, really turns out to be negative. Patients may experience
anxiety due to misdiagnosis, but this would be detected and corrected further along
the care pathway.

3.2.3.3.1 Worked Example With 15 patients, we may analyse the aggregated
LOS against age using logistic regression. The findings are displayed in Table 3.6
and demonstrate that the model correctly predicts the majority of situations since
there is only one type I error and two type II errors.

An identical confusion matrix is produced when the logistic regression is performed
for the categorical variable hospital, (Table 3.6), allowing the same conclusions to
be drawn.

Predicted Value
Positive Negative

Actual Value Positive 6 2
Negative 1 6

Table 3.6: Confusion matrix for the logistic regression model used in the second
worked example with the data set of 15 patients.

3.2.3.4 Classification Report

The second set of metrics focuses on three parameters, which are derived using
Table 3.5. These are the precision, recall and F1 scores [246].

Precision = TP

TP + FP
(3.33)

Recall = TP

TP + FN
(3.34)

F1 Score = 2 ∗
( T P

T P +F P
) ∗ ( T P

T P +F N
)

( T P
T P +F P

) + ( T P
T P +F N

)
(3.35)

Or equivalently:
F1 Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(3.36)

The precision is defined by the number of positive results correctly predicted by the
total number within the predicted positive class. The recall score is calculated by
dividing the total number of correctly predicted positive results by the number of
real positive results. The F1 Score is defined as the harmonic mean between the
precision and recall values.
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3.2.3.4.1 Worked Example The following precision, recall and F1 score will
be the same because the confusion matrix produced by the linear and logistic re-
gressions (Table 3.6) was the same.

We may infer the following values from the confusion matrix: TP = 6, FP = 2,
FN = 1 and TN = 6. Consequently, the following are the precision, recall and F1
scores:

Precision = 6
6 + 2 = 0.75 (3.37)

Recall = 6
6 + 1 = 0.8571 (3.38)

F1 Score = 2 ∗
6
8 ∗ 6

7
6
8 + 6

7
= 0.8 (3.39)

All three results are greater than 70%, demonstrating the model’s strong ability to
forecast the LOS categories.

3.2.3.5 Accuracy Score

The proportion of correctly classified predictions over all of the predictions is known
as accuracy. Equation (3.40) can be used to express this [246].

Accuracy = TN + TP

TN + FP + TP + FN
(3.40)

A balanced distribution of the data is important when considering accuracy as
a scoring criterion. When there is an imbalance in the data set, the prediction
frequently skews the findings significantly so that they fall into one of the predicted
categories. A high accuracy result would be the outcome of this.

3.2.3.5.1 Worked Example The accuracy can be determined once more by
using the confusion matrix from the previous calculation.

Accuracy = 6 + 6
6 + 2 + 1 + 6 = 0.8 (3.41)

An accuracy score of 80% shows that patients are appropriately assigned to the LOS
group 80% of the time.
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Figure 3.2: ROC curve for continuous
age and LOS prediction.

Figure 3.3: ROC curve for categorical hos-
pital and LOS prediction.

3.2.3.6 ROC Curve

The ROC curve, which displays the TP rate against the FP rate at various classi-
fication thresholds, is the final metric. The area under the curve (AUC) represents
the probability that a randomly chosen positive example will be ranked higher by
the model than a randomly chosen negative example. The model receives a score
between 0 and 1, with the higher the AUC value, the greater the percentage of
properly predicted values.

3.2.3.6.1 Worked Example In Figures 3.2 and 3.3, the ROC curves are dis-
played. The AUC for the age example was 80.36%, which indicates that a large
percentage of projected values are successfully predicted. The higher AUC value of
94.64% implies that the hospital variable is more effective at predicting the LOS
group when directly compared to the age example.

This subsection has described the scoring criteria for both linear and logistic re-
gressions and shown how these models function with worked examples of 10 and 15
patients, respectively. Chapter 5 of this thesis will further apply these predictive
analytics to a data set of frail and elderly patients.

3.3 Classification and Regression Trees

Classification and regression trees (CART) are a data mining technique in which
variables predict an outcome. The parameters that make up the final groups are
visually represented by a decision tree. The decision tree asks a series of questions
that decide the groups into which the data is sorted. CART models are a form of
binary recursive partitioning, where each node is split into two groups.

In data mining, a decision tree is a prediction model that may be applied to both
classifiers and regression models in data mining. In contrast, the term ‘decision
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tree’ in operations research refers to the hierarchical model of decisions and their
consequences.

CART is comprised of four main components. The dependent variable that the
algorithm seeks to predict is the first element. The second component is the inde-
pendent variables that are related to and used to predict the dependent variable.
The third component is the training data set, a subset of the main data set that
includes both the dependent and independent variables. This is used to train and
allow the algorithm to learn. The testing data set, which is the final component,
will assess the precision and reliability of the algorithm’s predictions.

The decision tree illustrates the clinical judgements required to reach the final clas-
sification grouping. It is composed of root, decision and terminal nodes. The tree’s
root node, which symbolises the whole population, is at the top of the structure.
The population is then divided up into decision or terminal nodes based on certain
criteria. The tree’s terminal nodes, which hold the information indicating to which
grouping the data belongs, are located at its very end.

Depending on the maximum tree depth or the maximum number of leaves (terminal
nodes) in the model, the tree’s size will vary. Figure 3.4 displays a decision tree
with a max depth of one or two maximum leaves.

Root Node

Terminal Node Terminal Node

Yes No

Figure 3.4: Example of a decision tree with one root node and two terminal nodes.

The depth or maximum number of leaves can be increased to allow the potential
for more splits (see Figure 3.5). From this, the following rules can be deduced:

1. If (Root-Node = True) AND (Decision-Node-1 = True) THEN Terminal-
Node-1 = True

2. If (Root-Node = True) AND (Decision-Node-1 = False) THEN Terminal-
Node-2 = True

3. If (Root-Node = False) AND (Decision-Node-2 = True) THEN Terminal-
Node-3 = True

4. If (Root-Node = False) AND (Decision-Node-2 = False) AND (Decision-Node-
3 = True) Then Terminal-Node-4 = True
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5. If (Root-Node = False) AND (Decision-Node-2 = False) AND (Decision-Node-
3 = False) Then Terminal-Node-5 = True

Root Node

Decision Node 1

Terminal Node
1

Terminal Node
2

Decision Node 2

Terminal Node
3 Decision Node 3

Terminal Node
5

Terminal Node
4

Yes No

Yes No Yes No

NoYes

Figure 3.5: Example of a decision tree with one root node, three decision nodes and
five terminal nodes.

The algorithm determines the most important splitting criteria in order to gain the
most information.

3.3.1 Generalised Formulation

Within both regression and classification trees, categorical variables are present
within the data. Because of the nature of the algorithm, the variables have to
undergo preprocessing to change these to numerical data. Since there is no ordinal
relationship in the categorical data, one-hot encoding must be used instead of integer
encoding. Each distinct integer value is represented by a brand-new binary variable,
which replaces the categorical variable.

The newly one-hot encoded variables can then be run with the numerical variables
into the CART algorithm.

3.3.1.1 Regression Trees

A continuous outcome variable is predicted via regression trees. The regression
algorithm known as ‘DecisionTreeRegressor’ is part of the machine learning toolkit
called ‘Scikit-Learn’ [247] in Python. Regression trees can be created and developed
as a result.

The decision-making process of the algorithm is based on the mean square error
(MSE), which also helps to establish the final groupings of data. The MSE informs
the user as to how much their prediction deviates from the original target (Equation
(3.42)) [248]. Since regression trees are aiming to predict a continuous variable,
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once the final groupings are determined, the average of the dependent variable is
calculated.

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2 (3.42)

where Y is the actual value and Ŷ is the prediction. The R2 value determines the
coefficient of determination of the prediction, given in Equation (3.45).

The process of creating a regression tree is described by Algorithm 1.

Algorithm 1: Regression Tree
Determine stopping criteria:
max depth, min samples split, min samples leaf, min weight fraction leaf,
max leaf nodes, min impurity decrease
Start with a single node n containing all points.
Calculate MSEn

while MSEn >0 or stopping criterion not met do
k = number of binary splits
for a = 1 to k do

Calculate MSEn
a

xa = MSEn - MSEn
a

end
Set MSEn = Max( xa)
Create two new nodes, n’ and n” and calculate new MSEn for each

end

A decision tree of the regression algorithm can then be constructed to provide the
user with a visual representation of the clinical decisions.

3.3.1.1.1 Worked Example Reverting to the prior example, we apply Algo-
rithm 1 to forecast the continuous LOS for the 15 hospitalised patients.

Figure 3.6 shows a regression tree with a test set size of 20% and a maximum of
four leaf nodes. For the leaf nodes where the MSE is equal to zero, Yi − Ŷi is also
equal to zero and therefore there is a perfect prediction. The figure also shows that
the most crucial element in deciding a patient’s LOS is whether they are 86 years
old or younger. The LOS is represented by colours, and the shorter the LOS, the
lighter the colour. The node with the value 4.5, is the one with the darkest colour,
indicating that this has the longest LOS prediction in the model.

3.3.1.2 Classification Trees

When the dependent variable is categorical and the tree algorithm seeks to predict
the class, classification trees are utilised. The classification technique, ‘Decision-
TreeClassifier’, can be used with the Scikit-Learn [247] Python library. Although
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Figure 3.6: Regression tree of the first worked example consisting of four terminal
nodes. Note that a darker colour of the node indicates a longer LOS.

classification trees adopt a methodology very similar to that of regression trees,
MSE should not be applied because they forecast a categorical outcome variable.
Instead, the optimum splitting choice is determined using the Gini Index or Gini
impurity. The Gini Index yields a number between 0 and 1, with a smaller value
indicating greater sample homogeneity. The Gini Index is calculated using Equation
(3.43), which involved subtracting the sum of the squared probabilities of each class
from one [249].

Gini Index = 1 −
n∑

i=1
p2

i (3.43)

where i is the number of classes and pi is the probability of an object that is being
classified to a particular class.

Algorithm 2 illustrates the steps involved in creating a classification tree and has
been extended from Algorithm 1.

Algorithm 2: Classification Tree
Determine stopping criteria:
max depth, min samples split, min samples leaf, min weight fraction leaf,
max leaf nodes, min impurity decrease
Start with a single node n containing all points.
Calculate Gini-Indexn

while Gini-Indexn >0 or stopping criterion not met do
k = number of binary splits
for a = 1 to k do

Calculate Gini-Indexn
a

xa = Gini-Indexn - Gini-Indexn
a

end
Set Gini-Indexn = Max (xa)
Create two new nodes, n’ and n” and calculate new Gini-Index for each

end
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3.3.1.2.1 Worked Example For the classification tree, patients were split into
two groups based on their LOS: those admitted for four days or less and those
admitted for four days or more. Once more, a test set of 20% was used.

The classification tree is depicted in Figure 3.7, where the maximum number of leaf
nodes is set to four. Using the training data, perfect prediction occurs since all four
end nodes have a Gini Index of zero. The regression tree’s findings (Figure 3.6)
showed that a patient’s age was the primary determinant in identifying the LOS
group. The rest of the tree breaks differently, though. The number of patients that
fit into a certain node is indicated by the colour depth in the diagram. White nodes
show an equal distribution of patients inside that node.

Figure 3.7: Classification tree for second worked example consisting of four terminal
nodes. Note that blue indicates the class of ≥ 4 days, and orange indicates the class
of < 4 days.

3.3.2 Extension of Random Forests

Random forests can be derived from CART models. Random forests are a bagging
method which constructs decision trees on several samples, using the majority vote
for classification and the mean results for regression models. The more trees there
are in the forest, the more accurate the model is likely to be and the likelihood of
overfitting is reduced. The algorithm’s operation is shown in Figure 3.8.

The individual trees are constructed using bootstrap samples as opposed to the
original sample (Algorithm 3). When it comes to classification and regression trees,
the splits of the tree depend on the MSE or Gini Index, respectively. Similarly,
random forests employ the Scikit-Learn library [247] and uses the classes ‘Ran-
domForestRegressor’ and ‘RandomForestClassifier’ for regression and classification
trees, respectively.

3.3.2.0.1 Worked Example The working example may be used with both the
random forest’s regression and classification versions. Due to their nature, random
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Training Data 2Training Data 1 Training Data n

Decision Tree 1 Decision Tree 2 Decision Tree n

Voting/averaging using
training data

Prediction

. . .

. . .

Figure 3.8: Generic example of a random forest consisting of n decision trees and n
training data sets.

Algorithm 3: Random Forests - Adapted from [250]
Determine stopping criteria:
B = Number of subtrees
while MSE or Gini-Indexn >0 or stopping criterion not met do

for i = 1 to B do
Draw a bootstrap sample of size N from the training data
while node size != minimum node size do

randomly select a subset of m predictor variables from total p
for j = 1 to m do

if jth predictor optimises splitting criterion then
split internal node into two child nodes
break;

end
end

end
end

end
return the ensemble tree of all B subtrees generated in the outer for loop;

forests often perform better when there is more data available, as it allows them to
sample more decision trees. However, random forests can become difficult to visu-
alise. The number of decision trees will be displayed in accordance with the number
of decision tree iterations selected, although with large numbers of iterations, this
can become too computationally expensive.
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3.3.3 Feature Parameters

There are parameters and attributes within each of the four cases; ‘DecisionTreeRe-
gressor’, ‘DecisionTreeClassifier’, ‘RandomForestRegressor’ and ‘RandomForestClas-
sifier’, that can be changed to increase the accuracy of the predictions. Tables 3.7
and 3.8 display the parameter and attribute options for each of the methods, with
the default entry for each shown in blue. The best parameter or value to select in
order to obtain the highest accuracy score can be determined by subjecting these
parameters to parameter optimisation.

All four methods, share 11 of the same parameters used within the model. The
criterion is a function that assesses the split’s quality and ultimately determines
where the split occurs. The splitter is the process used to decide whether the best
split will be employed at each node, or if a random split will be selected. The max-
imum depth of the tree is determined by its max depth; if no parameter is chosen,
the node expands until all of its leaves are pure or until all of its leaves include
fewer than the min samples split. The min samples split is the minimum number
of samples required to split an internal node. Similarly, the min samples leaf is
the minimum number of samples required to be at a leaf node. Only split points
that will leave two nodes with at least min samples leaf training samples will be
taken into consideration. The min weight fraction leaf is the fraction of the input
samples required to be at a leaf node. The max features determines the number of
features to consider when looking for the best split. If auto, sqrt, log2 or None are
selected, then max features will be equal to the attribute n features. The param-
eter random state controls the randomness of the estimator and the features are
always randomly permuted at each split, even if ‘splitter’ is set to ‘best’. To obtain
deterministic behaviour during fitting, random state has to be fixed to an integer.
Max leaf nodes set the maximum number of end nodes that will be constructed in
the model, if no value is selected then there will be an unlimited number of leaf
nodes. Min impurity decrease causes a node to be split if the split induces a de-
crease of the impurity greater than or equal to its value. The following equation
calculates the min impurity decrease:

Nt

N
∗ (impurity − NtR

Nt

∗ right impurity − NtL

Nt

∗ left impurity) (3.44)

where N is the total number of samples, Nt is the number of samples at the current
node, NtL

is the number of samples in the left child node and NtR
are the number

of samples in the right child node. In essence, the formula accounts for the parent
nodes contribution to the whole tree Nt

N
. The ccp alpha complexity parameter,

which selects the subtree with the largest cost complexity that is smaller than the
ccp alpha value, is the final parameter that is shared by all four models.
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Additionally, the ‘DecisionTreeClassifier’ and ‘RandomForestClassifier require
the parameter class weight. This parameter can be used to account for unbalanced
classes and gives a class with a high population greater weight.

The random forest algorithms require further parameters. Firstly, n estimators
tells the user the number of trees within the model. Bootstrap determines whether
samples of the data are used within the model or if the whole data set is used.
Following on, if bootstrap = True, then there is the option for oob score which
uses out-of-bag samples to evaluate its performance. The n jobs parameter controls
how many jobs will run concurrently, and how many processors will be available.
Warm start allows parts of the model that were learned from previous parameter
values to be reused, which ultimately saves time. Finally, max samples requires the
user to select the number of samples to draw from to train each base estimator, only
if bootstrap = True.
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Parameter DecisionTreeRegressor DecisionTreeClassifier

criterion “squared error”, “friedman mse”, “absolute error”, “poisson” “gini”,“entropy”,“log less”
splitter “best”, “random” “best”,“random”
max depth integer, (None) integer, (None)
min samples split integer, float, (2) integer, float, (2)
min samples leaf integer, float, (1) integer, float, (1)
min weight fraction leaf Float (0) Float (0)
max features integer, float, “auto”, “sqrt”, “log2”, (None) integer, float, “auto”, “sqrt”, “log2”, (None)
random state integer, “random state”, (None) integer, “random state”, (None)
max leaf nodes integer, (None) integer, (None)
min impurity decrease float, (0) float, (0)
class weight (N/A) dict, list of dicts, “balanced”, (None)
ccp alpha non-negative float, (0) non-negative float, (0)
Attributes DecisionTreeRegressor DecisionTreeClassifier

classes (N/A) ndarray of shape or list of ndarray
feature importances ndarray of shape ndarray of shape
max features integer integer
n classes (N/A) integer, list of integers
n features integer integer
n features in integer integer
feature names in ndarray of shape ndarray of shape
n outputs integer integer
tree Tree instance Tree instance

Table 3.7: ‘DecisionTreeRegressor’ and ‘DecisionTreeClassifier’ associated parameters and attributes the user can select. The default variable
is highlighted in blue. For variables which are an integer, float or there is no default, this is listed in brackets.
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Parameter RandomForestRegressor RandomForestClassifier

n estimators integer, (100) integer, (100)
criterion “squared error”, “absolute error”, “poisson” “gini”,“entropy”,“log less”
max depth integer, (None) integer, (None)
min samples split integer, float, (2) integer, float, (2)
min samples leaf integer, float, (1) integer, float, (1)
min weight fraction leaf Float (0) Float (0)
max features integer, float, “sqrt”, “log2”, (None) integer, float, “sqrt”, “log2”, (None)
random state integer, “RandomState instance”, (None) integer, “RandomState instance”, (None)
max leaf nodes integer, (None) integer, (None)
min impurity decrease float, (0) float, (0)
bootstrap bool, (True) bool, (True)
oob score bool, (False) bool, (False)
n jobs integer, (None) integer, (None)
warm start bool, (False) bool, (False)
ccp alpha non-negative float, (0) non-negative float, (0)
max samples integer, float, (None) integer, float, (None)
class weight (N/A) dict, list of dicts, “balanced”,“balanced subsample”, (None)
Attributes RandomForestRegressor RandomForestClassifier

base estimator DecisionTreeRegressor DecisionTreeClassifier
estimators list of DecisionTreeRegressor DecisionTreeClassifier
classes (N/A) ndarray of shape, list of such arrays
feature importances ndarray of shape ndarray of shape
n features integer integer
n features in integer integer
feature names in ndarray of shape ndarray of shape
n outputs integer integer
oob score float float
oob prediction ndarray of shape ndarray of shape

Table 3.8: ‘RandomForestRegressor’ and ‘RandomForestClassifier’ associated parameters and attributes the user can select. The default
variable is highlighted in blue. For variables which are an integer, float or there is no default, this is listed in brackets.
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3.3.4 Evaluation Metrics

To ascertain the success and how well the model predicts LOS, a series of evaluation
measures can be applied to each of the different CART and random forest models.

3.3.4.1 Regression Models

The same coefficient of determination (R2) metric can be used to compare the
regression tree and random forest regression models.

Recall the linear regression equation, Equation (3.19). This equation can be modi-
fied to create an equation for calculating success when using regression trees (Equa-
tion (3.45)) [251].

R2 = 1 −
∑n

i=1(Yi − Ŷi)∑n
i=1(Yi − Ȳi)

(3.45)

where Yi represents the true y value, Ŷi is the value of the predicted y value, Ȳi

represents the mean of all values and n is the total number of observations. The
higher the R2 value, the more reliable the model is.

To calculate the R2 for the random forest, the average R2 is calculated (Equation
(3.46))

R2
average = 1

k

k∑
i=1

R2
k (3.46)

where k is the number of decision trees selected to combine to the random forest.

3.3.4.1.1 Worked Example A test set of 20%, or three patients, was included
in the regression example so that the accuracy could be assessed. Three patients
were chosen at random, and their LOS’s were three days, one day and one day. The
predicted values for each of these variables were three days, one day and one day,
respectively. Therefore, the u term is equal zero when computing R2 from Equation
(3.45) and as a result, R2 is equal to one.

The random forest regression model generated a negative R2 score. This would
imply that the model is not a very good predictor for LOS. The negative score is
caused by ∑n

i=1(Yi − Ŷi) >
∑n

i=1(Yi − Ȳi).

3.3.4.2 Classification Models

Some of the same metrics used for logistic regression analysis can also be used to
analyse the classification tree and random forest (classification) models.
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The TP, FP, TN and FN rates will be obtained from Table 3.5, which will then be
used to calculate the precision, recall and accuracy as follows [246]:

Precision = TP

TP + FP
(3.33 revisited)

Recall = TP

TP + FN
(3.34 revisited)

Accuracy = TN + TP

TN + FP + TP + FN
(3.40 revisited)

The accuracy scoring method will be the primary one employed because it takes
into account both the TP and TN values to determine how accurate the prediction
is. When all decision trees are performed on the testing set, the answer that appears
the most frequently is chosen as the final result.

Using CART models for prediction has several benefits because they can automat-
ically identify key variables and the order in which they should be prioritised. The
algorithm also generates a visual representation of the decision tree which simplifies
and clarifies the final result. The tree structure, however, might become unstable
and introduce variance if the data set experiences even a slight shift. If some classes
are unbalanced, it is also possible to produce under or over fitted trees.

Due to the averaging of the outcome, using random forests might increase accuracy
by eliminating under or over fitting. However, the larger size challenge necessitates
more computational time and resources.

3.3.4.2.1 Worked Example A test set consisting of 20% of the original data,
or three patients, was created for the classification tree. Due to the seed within
the code being set to 0 to guarantee findings are reproducible, the three selected
patients were the same as those in the regression tree example. The patients LOS
was three, one and one days. All three patients were predicted to be in the ‘<4
days’ category. As a result, TN, FP and FN rates are all equal to zero, while the TP
rate is equal to three. Consequently, the values for precision, recall and accuracy
are all equal to one.

A maximum of four leaf nodes were used in the random forest classification algo-
rithm’s analysis of the data. It is interesting to note that the TP rate and FN
rates were both calculated to be two, while the TN and FP rates were both zero.
The model’s recall therefore stands at 0.67. This would imply that utilising the
straightforward classification tree yields superior outcomes in this instance.
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3.4 Python Development

The development of the linear regression, logistic regression, and random forest
models was executed within Python (Version 3.8.9). It is advantageous to utilise
Python, an open source programming software, for data analysis and data visuali-
sation when there are large amounts of data.

Using the Pandas library [252] (Version 1.2.0), the hospital admission data may
be imported into Python as a dataframe. Additionally the library, statsmodels.api
[253] (Version 0.12.2), was utilised to create statistical models. There is a list of
additional libraries that are needed in the corresponding code. Data can then be
subjected to analysis to identify patterns within the data.

3.4.1 Linear Regression

Depending on whether the independent variables are continuous or categorical, there
are two coding strategies that can be used for linear regression models.

3.4.1.1 Linear Regression - Continuous Independent Variable

The following gives an illustration of how the linear regression model can be built
with a continuous independent variable:

1 import pandas as pd
2 import statsmodels .api as sm
3 x = df['Age '] # Independent variable
4 y = df['LOS '] # Dependent variable
5 x=sm. add_constant (x) # Ensures there is a constant term
6 model = sm.OLS(y, x).fit () #Using Ordinary Least Squares method
7 print(model. summary ())

Figure 3.9 presents the relevant outputted results. According to Equation (3.1),
the ‘coef’ term specifies how much an increase in one unit will increase the total
dependent variable. To confirm that the results are statistically significant, it is also
crucial to look at the p value, which is shown in Figure 3.9 as ‘P> |t|’. The R2 and
the adjusted R2 values can also be extracted directly from this table.

3.4.1.2 Linear Regression - Categorical Independent Variable

Similar coding methods can be applied for those variables which are categorical,
with the addition of one-hot encoding.

1 import pandas as pd
2 import statsmodels .api as sm
3 x = df['Hospital '] # Independent variable
4 x = pd. get_dummies (data=x) # Applying one -hot encoding
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Figure 3.9: Excerpt of the OLS results for continuous linear regression showing the
R2 value, the coefficient values, and their corresponding p-values.

5 y = df['LOS '] # Dependent variable
6 model = sm.OLS(y, x).fit () #Using Ordinary Least Squares method
7 print(model. summary ())

Figure 3.10 contains the outputted findings. The fundamental distinction between
categorical and continuous coefficients is that, if one exists, the constant term is
increased by a value of either “-0.6667” or “2.3333” depending on which of the
categorical coefficients is present.

Figure 3.10: Excerpt of the OLS results for categorical linear regression showing the
R2 value, the coefficient values, and their corresponding p-values.

3.4.2 Logistic Regression

Depending on whether the independent variables are continuous or categorical, two
coding strategies for the logistic regression models can be used, adapting from the
prior linear regression models.
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3.4.2.1 Logistic Regression - Continuous Independent Variable

The following gives an illustration of how the logistic regression model might be
used with a continuous independent variable:

1 import statsmodels . formula .api as smf
2 import numpy as np
3 import matplotlib . pyplot as plt
4 import pandas as pd
5 from statsmodels . formula .api import logit
6 from sklearn . metrics import roc_auc_score , roc_curve
7

8 conditions = [(df['LOS '] <4) ,(df['LOS '] >=4)] # Creating grouped LOS
9 values = [0 ,1] # Assigning values to the new groups

10 df['LOS_group '] = np. select (conditions , values ) # Creating LOS_group
column

11 model = smf.logit(" LOS_group ∼ Age", data = df)
12 results = model. fit_regularized ()
13 results . summary ()
14

15 results . pred_table () # Prints confusion matrix
16

17 def plot_roc_curve (Y_test , model_probs ): # Create ROC curve function
18 random_probs = [0 for _ in range(len( Y_test ))]
19 model_auc = roc_auc_score (Y_test , model_probs ) # Calculate AUC
20 random_fpr , random_tpr , _ = roc_curve (Y_test , random_probs ) #

Calculate ROC Curve for Random Model
21 model_fpr , model_tpr , _ = roc_curve (Y_test , model_probs ) #Plot

ROC curves
22 plt.plot(random_fpr , random_tpr , linestyle ='--', label ='Random '

)
23 plt.plot(model_fpr , model_tpr , marker ='.', label='Model ')
24 plt.plot(model_auc , label= 'AUC =%.4f' % model_auc )
25 plt. xlabel ('False Positive Rate ') #Plot x axis label
26 plt. ylabel ('True Positive Rate ') # Plot y axis label
27 plt. legend ()
28 plt.show ()
29 y_pred = results . fittedvalues # Determine predicted values
30 plot_roc_curve (df['LOS_group '], y_pred ) #Plot the ROC curve

The associated outputted results are given in Figure 3.11. The ‘coef’ term, which is
also used in linear regression, estimates how much an increase in one unit will result
in an overall rise in the dependent variable (from Equation (3.17)). As previously
stated, it is crucial to verify the p value, represented by the notation ‘P> |t|’, to
make sure the results are statistically significant. The confusion matrix and ROC
curve generation instructions are also included in the code above.
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Figure 3.11: Excerpt of the Logit regression results for continuous logistic regression
showing the pseudo R2 value, the coefficient values, and their corresponding p-
values.

3.4.2.2 Logistic Regression - Categorical Independent Variable

The logistic regression Python code for categorical variables is identical to the coding
for the continuous variables, since the ‘logit’ function can determine the type of
variable inputted and act accordingly.

Furthermore, the findings of the output are very similar to those of the continuous
logistic regression. The outcomes for the worked example are shown in Figure 3.12.
The number of variables contained within the independent variable, minus one, is
displayed in the results. Since there was only one alternative hospital choice in this
particular example, the value would simply be the intercept (i.e., -1.79 or category
‘0’) if the hospital attended was not RGH.

3.4.3 Regression Trees

For regression trees, both the R2 score and visualisation can be demonstrated within
Python. From the original data set entered into the notebook, the following code
generates testing and training data sets. Different parameters can be entered into
the ’DecisionTreeRegressor’ function within this model, as detailed in Table 3.7.

1 import pandas as pd
2 import numpy as np
3 import matplotlib . pyplot as plt
4 from sklearn .tree import DecisionTreeRegressor
5 from sklearn import tree
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Figure 3.12: Excerpt of the Logit regression results for categorical logistic regression
showing the pseudo R2 value, the coefficient values, and their corresponding p-
values.

6 from sklearn . model_selection import train_test_split
7 from sklearn .tree import plot_tree
8 from sklearn . metrics import confusion_matrix
9

10 x = df.drop('LOS ',axis = 1).copy () # Removing dependent variable
from analysis

11 x = pd. get_dummies (x, columns = ['Hospital ',
12 'Specialty ',
13 'Admission Method ',
14 'Admission Source '
15 ]) # Applying one -hot encoding
16 df['LOS '] =df['LOS ']. astype (float)
17 y = df['LOS ']. copy () # Ensuring dependent variable is in own

dataframe
18 X_train , X_test , Y_train , Y_test = train_test_split (x,y, test_size

=0.2 , random_state =0) # Creating training and testing data
19 clf_dt = DecisionTreeRegressor ( random_state =0, max_leaf_nodes =4)
20 clf_dt .fit(X_train , Y_train ) # Determines fit of the algorithm
21 Y_predict = clf_dt . predict ( X_test )
22 print( clf_dt .score(X_test , Y_test )) # Prints R- squared score
23

24 plt. figure ( figsize =(60 ,20))
25 plot_tree (clf_dt ,
26 filled =True ,
27 rounded =True ,
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28 feature_names = x. columns ); #Code to plot regression tree
visual

29 plt.show ()

3.4.4 Classification Trees

To choose the optimum splitting node, classification trees generate the Gini Index
at each level using the Python class ‘DecisionTreeClassifier’. The following code pro-
duces testing and training data sets similar to regression trees and uses parameters
from Table 3.8 to establish the stopping criterion.

1 import pandas as pd
2 import numpy as np
3 import matplotlib . pyplot as plt
4 from sklearn import tree
5 from sklearn .tree import DecisionTreeClassifier
6 from sklearn import metrics
7 from sklearn . model_selection import train_test_split
8 from sklearn . metrics import classification_report
9 from sklearn .tree import plot_tree

10 from sklearn . metrics import confusion_matrix
11

12 conditions = [(df['LOS '] <4) ,(df['LOS '] >=4)] # Creating categories
to predict

13 values = [0 ,1]
14 df['LOS_group '] = np. select (conditions , values )
15 x = df.drop('LOS_group ', axis =1).copy () # Removing dependent

variable from analysis
16 x =pd. get_dummies (x, columns =['Hospital ',
17 'Specialty ',
18 'Admission Source ',
19 'Admission Method '
20 ]) # Applying one -hot encoding
21 df['LOS_group ']=df['LOS_group ']. astype (float)
22 y = df['LOS_group ']. copy () # Ensuring dependent variable is in own

dataframe
23

24 X_train , X_test , Y_train , Y_test = train_test_split (x,y, test_size
=0.2 , random_state =0) # Creating training and testing data

25

26 clf_dt = DecisionTreeClassifier ( random_state =0, max_leaf_nodes =4) #
Applying the algorithm

27 clf_dt .fit(X_train , Y_train ) # Determines fit of algorithm
28 Y_predict = clf_dt . predict ( X_test )
29 print(" Accuracy :", metrics . accuracy_score (Y_test , Y_predict )) #

Prints accuracy score
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30 print( classification_report (Y_test , Y_predict )) # Prints Precision ,
Recall and F1 Scores

31 print( confusion_matrix (Y_test , Y_predict )) # Prints confusion matrix
32

33 plt. figure ( figsize =(60 ,20))
34 plot_tree (clf_dt ,
35 filled =True ,
36 rounded =True ,
37 class_names = [' <4 days ', ' >=4 days '],
38 feature_names = x. columns ); #Code to plot classification

tree visual
39 plt.show ()

3.4.5 Random Forests - Regression

The following code is adapted from the regression tree with the class changed to
‘RandomForestRegressor’. Due to the difficulty in visualising these trees as was
previously mentioned in Section 3.3.2, there is no code to plot the random forest.
To assess the model’s fit, the R2 is also outputted.

1 import pandas as pd
2 import numpy as np
3 from sklearn . metrics import accuracy_score
4 from sklearn . ensemble import RandomForestRegressor
5 from sklearn . model_selection import train_test_split
6 from sklearn . metrics import confusion_matrix
7

8 df['LOS '] = np. select (conditions , values )
9 x = df.drop('LOS ', axis =1).copy () # Removing dependent variable

from analysis
10 x =pd. get_dummies (x, columns =['Hospital ',
11 'Specialty ',
12 'Admission Source ',
13 'Admission Method ' ]) #

Applying one -hot encoding
14

15 df['LOS ']=df['LOS ']. astype (float)
16 y = df['LOS ']. copy () # Storing dependent variable in own dataframe
17

18 X_train , X_test , y_train , y_test = train_test_split (x, y,
random_state =0, test_size =0.2) # Creating training and testing
data

19

20 forest = RandomForestRegressor ( n_estimators = 10, max_leaf_nodes =4)
# Applying the algorithm

21 forest .fit(X_train , y_train ) # Determine fit of algorithm
22
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23 print( forest .score(X_test , y_test ))

3.4.6 Random Forests - Classification

Adapting the code from the regression to the classification random forest is shown
below. To assess the random forest’s fit, the score metrics are also printed.

1 import pandas as pd
2 import numpy as np
3 from sklearn . metrics import accuracy_score
4 from sklearn . ensemble import RandomForestClassifier
5 from sklearn . model_selection import train_test_split
6 from sklearn . metrics import confusion_matrix
7

8 conditions = [(df['LOS '] <4) ,(df['LOS '] >=4)] # Creating categories
for prediction

9 values = [0 ,1]
10 df['LOS_group '] = np. select (conditions , values )
11 x = df.drop('LOS_group ', axis =1).copy () # Removing dependent

variable from analysis
12 x =pd. get_dummies (x, columns =['Hospital ',
13 'Specialty ',
14 'Admission Source ',
15 'Admission Method ' ]) #

Applying one -hot encoding
16

17 df['LOS_group ']=df['LOS_group ']. astype (float)
18 y = df['LOS_group ']. copy () # Storing dependent variable in own

dataframe
19

20 X_train , X_test , y_train , y_test = train_test_split (x, y,
random_state =0, test_size =0.2) # Creating training and testing
data

21

22 forest = RandomForestClassifier ( n_estimators = 10, max_leaf_nodes
=4) # Applying the algorithm

23 forest .fit(X_train , y_train ) # Determine fit of algorithm
24

25 y_pred_test = forest . predict ( X_test )
26 print( forest .score(X_test , y_pred_test )) # Calculates the R squared

value

3.5 Summary

This chapter has provided a comprehensive introduction to the theory underlying
the most popular predictive analytical techniques presently used in healthcare. Since
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this chapter covered general OR approaches, a step-by-step practical example has
also been included so that healthcare professionals can quickly apply these strategies
to their own departments and data. To enable model adaptation and parameter
optimisation, detailed executable Python code has been provided. This allows the
code to be applied to any healthcare database. The theory covered in this chapter
will be applied to a case study of frail and elderly patient admissions within ABUHB,
later on in this thesis.

In the following chapter, Chapter 4, the use of prescriptive analytics within health-
care is discussed, namely deterministic and two-stage stochastic modelling.
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Chapter 4

Prescriptive Analytics to Support
Capacity Planning for Frail and
Elderly Patients

4.1 Introduction

Data analytics is categorised into three main paradigms, each with a correspond-
ingly varying degree of complexity: descriptive analytics, predictive analytics and
prescriptive analytics. In both industry and healthcare analytics, the first two stages
have been extensively studied and documented. The third paradigm, prescriptive
analytics, eliminates the planning risk by bridging the gap between the data that
an organisation has and the consequences of implementing new policy. Decision-
makers can gain a deeper understanding of how to seize an opportunity or alleviate
a problem in the future as a result. As the related work section revealed, there are
research gaps in the prescriptive healthcare analytics work which is concerned with
mathematical modelling of healthcare services. Literature reviews in this area of
OR have only recently been published, making it a relatively new and developing
discipline [254, 255, 256]. In all three articles, the application of prescriptive ana-
lytics is discussed, with Lopes et al. [255] arguing that successful optimisation of
current healthcare resources will, in turn, decrease existing waiting lines and allow
a greater ability to treat individuals in need effectively. Islam et al. [254] discovered
that just 9% of the publications analysed within their review focused on prescrip-
tive analytics, demonstrating that this is a new and emerging area of healthcare
research.

Research Aim - This chapter will present the theory in order to address two of the
research’s objectives: ‘How best can specialties be organised among a network
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of hospitals to ensure staffing and bed costs are minimised whilst, whilst still
meeting the demand for frail and elderly patients?’ and ‘How can deterministic
and two-stage stochastic models be used to plan hospital services for frail and
elderly patients?’. These research aims will be answered in Chapter 5.

This research project was funded and carried out in collaboration with Clinical
Futures in ABUHB [6]. The organisation are restructuring and organising hospital
services in order to improve patient care. One of their primary issues is determining
the number of beds required to meet the existing demands for their frail and elderly
population. Wards in the UK have minimal staff to patient ratios that are typically
computed based on ward bed counts. We can extend this model to incorporate
workforce planning and the number of nursing staff the health board should have
available by determining the number of beds for each specialty within each hospital
to fulfil demand. Hospital admissions are the most utilised resources by frail and
elderly, with many inpatient services such as surgical theatres, relying on sufficient
hospital beds to be planned.

Two-stage stochastic programming lends itself well to this type of problem because
bed numbers and staff must be planned in advance. Only when the demand for both
elective and emergency patients is known can it be established whether sufficient
beds and staff have been planned. If not, additional beds and staff are needed to
meet this demand safely. Because this is not planned in advance, there are typically
additional charges, such as relocating patients to different hospitals, opening new
wards, and contacting agency and bank personnel. Before deciding on two-stage
stochastic modelling for this project, a variety of other stochastic models were con-
sidered, However, due to the nature of the problem, this method was found to be
the most suitable.

To identify the most cost-effective way to arrange specialised beds and nurses in
hospitals, deterministic and two-stage stochastic modelling can be used. The health
board has historically planned the number of beds and nursing staff using aver-
ages (deterministic). Due to emergency admissions, cancellations, and fluctuating
admission LOS’s, bed planning can be challenging. Stochastic modelling can help
overcome this challenge and provide more informed outcomes. We present a two-
stage stochastic model that takes system unpredictability into consideration when
scheduling nursing staff and beds. Similar to the chapter on predictive analytics,
a worked example will be provided to show how each method operates. Recall the
worked example from Chapter 3, where 15 patients with various attributes attended
one of two hospitals in South East Wales. Following is a table of these patients:

To ascertain whether there is a benefit to employing the two-stage stochastic model
as opposed to the deterministic counterpart, the work by Maggioni and Wallace [257]
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Patient Number Age Hospital LOS Specialty Admission Method Admission Source Frailty Source

Patient 1 95 RGH 5 COTE Emergency Own Home 3
Patient 2 82 RGH 3 COTE Emergency Own Home 2
Patient 3 89 RGH 4 T&O Emergency Own Home 2
Patient 4 87 RGH 4 T&O Elective Own Home 2
Patient 5 85 NHH 3 COTE Elective Transferred 1
Patient 6 76 NHH 1 COTE Elective Transferred 1
Patient 7 71 NHH 1 T&O Emergency Transferred 1
Patient 8 96 RGH 5 T&O Emergency Own Home 3
Patient 9 70 NHH 1 COTE Emergency Transferred 1
Patient 10 67 NHH 1 T&O Elective Own Home 1
Patient 11 89 RGH 4 COTE Elective Transferred 3
Patient 12 70 NHH 1 COTE Elective Own Home 2
Patient 13 75 NHH 4 T&O Elective Transferred 3
Patient 14 72 NHH 2 COTE Elective Transferred 3
Patient 15 87 RGH 5 COTE Emergency Own Home 2

Table 4.1: Data set of 10 patients that will be used for the worked example.

will be utilised. Within their paper, the authors discuss the quality of the expected
value solution in stochastic programming and apply their models to four case studies:
A single-sink transportation problem, a production problem, a location routing
(network design) problem and a mobile ad-hoc network problem. The authors
outline four experiments in which they determine the factors that contributed to
the expected value solution. Their work will be expanded upon by applying the
theory to a different case study of bed and resource planning. Three of the four
experiments (due to relevancy), will be applied to healthcare services for frail and
elderly patients. This in turn will determine the factors that contribute to the
expected value solution.

Using the deterministic and two-stage stochastic optimisation paradigms this chap-
ter will examine how to effectively organise bed and staffing resources for hospitals.
With these models, a user can modify the model to account for the number of hospi-
tals and medical specialisations involved in their particular case. The remainder of
the chapter is set out as follows: The prescriptive methods employed in this research
and their current use in healthcare are covered in Section 4.2. The development of
the deterministic model is shown in Section 4.3, whereas Section 4.4 provides a sim-
ilar analysis using a two-stage stochastic model. The two approaches are combined
in Section 4.5 to assess the performance of the stochastic or deterministic models.
Throughout the chapter, a condensed practical example will be given.

4.2 Prescriptive Techniques

Prescriptive analytics is the process of using data and applying it to determine an
optimal course of action. It builds upon the work of descriptive and predictive
analytics and can be broken down into three approaches:

• Bridging the gap between potential and recommend outcomes



CHAPTER 4. PRESCRIPTIVE ANALYTICS TO SUPPORT CAPACITY
PLANNING FOR FRAIL AND ELDERLY PATIENTS 92

• Turning data into practical strategies

• Providing a clear path forward even with messy data

Prescriptive analytics incorporates large amounts of structured and unstructured
data to determine the consequences of making decisions and how the future would
be impacted. Furthermore, it can measure the repercussions of a decision based
on different possible future scenarios. Organisations will increasingly need to find
ways to take advantage of their data, especially as it continues to grow. Prescriptive
analytics benefits organisations by allowing them to get the most out of their data
and automate key procedures.

Utilising prescriptive analytics allows the user to make more informed, data-driven
decisions and eliminates prejudice. It can also determine the likelihood of an organ-
isation’s chances of success, which will in turn lower risk and boost productivity.
Worst-case scenarios can also be predicted more accurately, enabling organisations
to plan accordingly. Implementing these strategies, though, may be challenging and
necessitates that organisations have a clear understanding of both the questions to
ask and how to respond. If the input assumptions are incorrect, the results will not
be reliable. Additionally, prescriptive analytics may be expensive in terms of both
time and financial commitment.

4.2.1 Basic Notation

Birge and Louveaux [258] provide a comprehensive introduction to stochastic pro-
gramming. The authors cover a wide range of topics including the formulation
of stochastic programming problems, the theory of stochastic optimisation, and
algorithms for solving stochastic programmes. It also includes case studies and ap-
plications in finance, inventory management, transportation, and energy systems.
Two-stage stochastic modelling has been applied to the area of healthcare previously,
with Mestre et al.’s [259] research into location-allocation strategies for hospital net-
work planning, given the uncertain nature of factors such as demand, capacity, and
cost. More recently, Maggioni and Wallace [257] evaluated the traditional methods
with a series of experiments to demonstrate the effectiveness of their approach. This
research will follow the framework as used by Mestre et al. [259] and Maggioni and
Wallace’s [257]. The following notation and theory are taken from Maggioni and
Wallace [257].

Two-stage stochastic modelling uses two stages in order to optimise a solution.
Within the first stage, a decision is made without knowledge of what the future is
to bring. The second stage sees the realisation of the stochastic elements of the
problem. However, we are able to make further decisions to avoid the constraints
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of the problem becoming infeasible. In other words, to maintain feasibility in the
second stage, we have recourse to a further degree of flexibility but at a cost. The
second stage decisions will be dependent upon the stochastic elements observed,
which can be implemented in standard notation form.

As previously discussed, a decision must be made about some random events prior
to the experiment (without complete information). These are referred to as the
first stage decision and are denoted by the vector x. Subsequently, we receive the
experiment’s results after taking into account some random factors ξ(ω), where ω

is the outcome of an uncertain random experiment. The second stage decisions can
then be calculated using the vector y(ω), which assumes that both x and ξ(ω) are
fixed [258, 260, 261]. The remainder of this thesis will refer to ξ(ω) as ξ.

Let us define the two-stage stochastic problem, where a decision maker takes the
decision x of solution space X to minimise expected costs:

min
x∈X

Eξz(x, ξ) = min
x∈X

{f1(x) + Eξ [h2(x, ξ)]} (4.1)

where x is the first-stage decision variable which is restricted to the set X ⊂ Rn

and f1(x) is the value of the first stage problem. Eξ indicates the expectation with
respect to a random vector denoted ξ defined on the probability space (Ω, A , p),
where Ω ∈ Rn and probability distribution p on the σ-algebra A .

The function h2(x, ξ) is the value function of the second stage of the stochastic
problem, defined as follows:

h2(x, ξ) = min
y∈Y (x,ξ)

f2(y : x, ξ) (4.2)

where y is the second-stage solution which is restricted to the set Y ∈ Rn.

Equation (4.2) reflects the costs associated with the information being revealed
through the realisation of ξ from the random vector ξ. The term [h2(x, ξ)], is
known as the recourse function.

The solution obtained is defined as the ‘here and now solution’ (RP) and is the
optimal value of the objective function:

RP = Eξz(x∗, ξ) (4.3)

Equation (4.1) can be considered where the decision maker replaces the random
variables with their expected values and in turn, solves a deterministic model. This
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is also known as the expected value problem.

EV = min
x∈X

z(x, ξ̄) (4.4)

where ξ̄ = E(ξ), which is the expected value of the random vector ξ and z is the
objective value.

4.2.2 Evaluation of Measures

Within prescriptive analytics, it is widely recognised that the expected value solution
(EV) can behave poorly in the stochastic domain. Traditional evaluation tests can
be carried out in order to determine how each of the EV, RP and EEV performs
and determine their robustness. Maggioni and Wallace [257] set out four tests in
their research to determine the success of their models. Within this research, only
the first three tests will be considered, since the fourth test is a generalisation of
the second and does not provide any additional benefits. Similar to the previous
subsection, the following notation is taken from Maggioni and Wallace [257].

4.2.2.1 Test A

The first traditional evaluation measure is to determine the value of the stochastic
solution (VSS).

If we let x̄(ξ̄) be the optimal solution to Equation (4.4), we can take values and fix
these as the first stage, and then allow the second stage of the stochastic model to
be performed.

EEV = Eξ(z(x̄(ξ̄), ξ)) (4.5)

To determine the VSS, the difference between the EEV and RP can be calculated,
measuring the expected increase in value from solving the stochastic solution to the
simple deterministic one:

V SS = EEV − RP (4.6)

The VSS measures expected loss when using the deterministic solution. If we have
hard constraints, the expected cost of the deterministic solution is often ∞. Whereas
if we use soft constraints we can make the expected cost using the deterministic
solution arbitrarily bad by setting penalties high. If the VSS is large, this could
mean the wrong choice of variables have been chosen or the wrong values have been
entered.
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4.2.2.2 Test B

The second test involves fixing the first stage variables which are at zero (or at their
lower bound) to zero (or their lower bound) in the EV problem and then solving
the stochastic programme. This will determine if the deterministic model produced
the correct non-zero variables.

If the original problem is a linear programme, then Test B leads to solving a linear
programme but one that is of smaller size. If it is a mixed binary programme, the
test calls for fixing all the binary variables to either zero or one, and solving an
easier linear programme. When a mixed integer programme (MIP) is involved, a
smaller dimension MIP is solved.

Let J be the set of indices for which the components of the expected value solution
x̄(ξ̄) are at zero or at their lower bound. Then let x̂ be the solution of:

min
x∈X

Eξz(x, ξ)

s.t. xj = x̄j(ξ̄), j ∈ J (4.7)

We can then compute the expected skeleton solution value (ESSV):

ESSV = Eξ(z(x̂, ξ)) (4.8)

This can then be compared to the RP by means of loss using skeleton solution
(LUSS):

LUSS = ESSV − RP (4.9)

If the LUSS value is close to zero this means that the variables selected by the
deterministic solution are good, however their values may be off. Therefore, we
have:

RP ≤ ESSV ≤ EEV (4.10)

and as a result the following is true:

EEV − EV ≥ V SS ≥ LUSS ≥ 0 (4.11)

In the case where LUSS = 0 (i.e., ESSV = RP), this corresponds to the perfect
skeleton solution as the condition xj = x̄j(ξ̄), j ∈ J , is satisfied by the stochastic
solution x∗ even without being enforced by a constraint (i.e., x̂ = x∗). However, if
there exists j ∈ J such that x∗

j then 0 < LUSS < V SS. LUSS = VSS occurs if
the stochastic programme, when not allowed to use the variables in J , chooses not
to change the value of any of the remaining variables, i.e., x̂ = x̄(ξ̄).
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4.2.2.3 Test C

The third test involves taking the EV solution (x̄(ξ̄)) as a starting point to the
stochastic model (4.1) and then comparing, in terms of the objective functions,
to Equation (4.1) without such input. This determines whether the EV solution
is upgradeable to become good (if not optimal) in the stochastic setting. This is
equivalent to adding in an additional constraint, x ≥ x̄(ξ̄), to Equation (4.1). As a
result, the following problem is solved with solution x̃:

min
x∈X

Eξz(x, ξ) (4.12)

s.t. x ≥ x̄(ξ̄) (4.13)

Then the expected input value (EIV) can be calculated:

EIV = Eξ(z(x̃, ξ)) (4.14)

This is then compared to the RP, by means of the loss of upgrading the deterministic
solution (LUDS):

LUDS = EIV − RP (4.15)

Therefore,
RP ≤ EIV ≤ EEV (4.16)

and the following is true:

EEV − EV ≥ V SS ≥ LUDS ≥ 0 (4.17)

In the case where LUDS = 0, and hence EIV = RP, this corresponds to perfect
upgradeability of the deterministic solution. This occurs when the conditions x ≥
x̄(ξ̄) are satisfied by the stochastic solution x∗ without the need to be enforced
by the constraints, x̃ = x∗, (under the assumptions that the stochastic first-stage
decision is unique). If there exists a component i ∈ {1, .., n} such that x∗

i < x̄i, then
x̃i = x̄i (case of partial upgradeability) and therefore, 0 < LUDS < V SS. When
LUDS = VSS, this corresponds to the non-upgradeability, in which the condition
x ≥ x̄(ξ̄) is no longer satisfied by any of the components of the solution x∗ and then
x̃ = x̄(ξ̄) (i.e., EIV = EEV).

4.3 Deterministic Model Development

Within this section, the deterministic version of the model will be developed. The
aim is to determine the number of beds and nursing staff required to satisfy a given
demand, across different specialties within hospitals. All hospital beds and staffing
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resources are planned based on a fixed demand. If the number of beds within the
hospital are insufficient to satisfy the demand and there is no option to open wards
or transfer patients to other hospitals, then this results in a non optimal solution
given. The number of beds in total must not exceed the bed capacity for that
hospital and additionally, satisfactory levels of staff must be deployed to sufficiently
open beds.

4.3.1 Sets

Within the deterministic model, we have four sets as given in Table 4.2.

Set Range Definition

B b = 1,..., B Set of nursing bands
S s = 1,..., S Set of specialties
H h = 1,..., H Set of hospitals
R r = 1,..., R Set of regions

Table 4.2: The sets used within the deterministic model where (B, S, H, R) rep-
resent the maximum number of nursing bands, specialties, hospitals and regions,
respectively.

Each of the specialties must appear in at least one of the hospitals (S ∈ H). Sim-
ilarly, each of the hospitals must appear in one of the regions (H ∈ R). Therefore
|H| ≤ |R| is true. The set of nursing bands correspond to different skill levels and
experience of nurses [262].

4.3.2 Parameters

Table 4.3 denotes the eight parameters used within the deterministic formulation,
along with a brief definition.

4.3.3 Decision Variables

There are two decision variables for the model to calculate, as shown in Table 4.4.

The first decision variable determines the number of hospital beds to be planned
for each specialty within each hospital. The second decision variable determines the
number of staff required of each band for each specialty within each hospital.

4.3.4 Model

These sets, parameters and decision variables can be utilised within the following
deterministic model with the objective function given in Equation (6.8) and the
constraints listed between Equations (4.19) to (4.23).
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Parameter Definition

cbed
s,h Cost of bed per day for specialty s ∈ S, in hospital h ∈ H

cstaff
b Cost of nursing staff per day of band b ∈ B

Ds,r Average daily bed demand for each specialty s ∈ S,
arriving from region r ∈ R

Rs,b Ratio of nursing staff of band b ∈ B to patient for specialty s ∈ S
Ks,h Maximum number of beds available to open in each specialty s ∈ S,

in hospital h ∈ H

UBmax, bed
h Upper bound of the number of beds that are able to be deployed in

hospital h ∈ H

UBmax, staff
b Upper bound of the number of staff that can be deployed

Table 4.3: The parameters used within the deterministic model where b, s, h, r rep-
resent the variable number of nursing bands, specialties, hospitals and regions, re-
spectively.

Decision Variable Definition

xbed
s,h ∈ N Number of beds planned for specialty s ∈ S, in hospital h ∈ H

xstaff
s,b,h ∈ N Number of staff planned for band b ∈ B, for specialty s ∈ S,

in hospital h ∈ H

Table 4.4: The decision variables used within the deterministic model where b, s, h
represent the variable number of nursing bands, specialties and hospitals, respec-
tively.

min
∑
h∈H

∑
s∈S

(cbed
s,h xbed

s,h +
∑
b∈B

cstaff
b xstaff

s,b,h) (4.18)

subject to:

∑
h∈H

xbed
s,h ≥ Ds,r ∀s ∈ S, r ∈ R (4.19)

∑
b′∈B:b′≥b

xstaff
s,b′,h ≥ Rs,b · xbed

s,h ∀s ∈ S, b ∈ B, h ∈ H (4.20)

xbed
s,h ≤ Ks,h ∀s ∈ S, h ∈ H (4.21)

0 ≤
∑
s∈S

xbed
s,h ≤ UBmax, bed

h ∀h ∈ H (4.22)

0 ≤
∑
s∈S

∑
h∈H

xstaff
s,b,h ≤ UBmax, staff

b ∀b ∈ B (4.23)

The first constraint (4.19), ensures the demand for each specialty and region is met
by the number of hospital beds deployed. Constraint (4.20) ensures the staff to pa-
tient bed ratio is met. Constraint 4.21 requires the number of beds to be deployed to
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each specialty within each hospital to not exceed the capacity for that specialty and
hospital. Equations (4.22) and (4.23) define the bounds for the decision variables
of the problem.

4.3.5 Worked Example

Using the matrix defined earlier in the chapter (Table 4.1), we can use these pa-
rameters. Recall there are two hospitals within an area, each serving the same two
specialties. There is only one region in which patients can arrive from, and each
specialty bed in each hospital has a different cost. We assume there are two nursing
staff band levels required on the wards for the specialties, with differing staff/bed
ratios depending on the specialty. Table 4.5 displays the values of the parameters
used within the illustrative example.

Parameters Values

Bed Costs (cbed
s,h )

[
20 30
30 40

]

Ratio (Rs,b)
[
0.29 0.14
0.14 0.29

]

Maximum Specialty Capacity (Ks,h)
[
20 25
20 25

]
Staff Costs (cstaff

b ) [£50, £60]

Upper bed limit (UBmax,bed
h ) [20,25]

Upper staff limit (UBmax,staff
b ) [15,25]

Table 4.5: The parameter values that will be used within the deterministic model
specifically for the worked example.

The matrices are stored in row-major order. The first index of the parameter refers
to the row of the matrix. For the parameter cbed

s,h , specialty one corresponds to row
one, i.e., [20 30], while specialty two corresponds to the second row, i.e., [30 40].
The column of the matrix is referenced by the second index. Accordingly, for the
parameter cbed

s,h , hospital one refers to column one, i.e.,
[

20
30

]
, and hospital two refers

to column two, i.e.,
[

30
40

]
. Therefore cbed

1,2 denotes the top-right corner of the two by
two matrix and the value of 30.

The demand from the matrix can be calculated as follows to determine the average
daily bed demand, i.e., Ds,r:

Average daily bed demands,h = Average LOSs,h × Average daily number of admissionss,h (4.24)
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Ds,r = Average daily bed demands,r =
∑
h∈R

Average daily bed demands,h (4.25)

The model can be run with this as the medium daily bed demand - we can also
artificially create a low (-10%) and high level (+10%) daily bed demand to determine
how robust the model is.

Table 4.6 displays the average daily bed demand for the worked example. The
average daily bed demands were calculated using Equations (4.24) and (4.25). The
high and low demands were then artificially created.

Low Daily Bed Demand Average Daily Bed Demand High Daily Bed Demand

D0,0 15.00001 16.66668 18.33333
D1,0 17.10000 19.00002 20.90000

Table 4.6: The daily bed demand figures for each region and specialty (Ds,r), cate-
gorised by low, average and high.

Inputting these parameters into the model, we can determine the value of the deter-
ministic model, for the high, average and low daily bed demand cases. Within Table
4.7, the values for each of the decision variables, xbed

s,h and xstaff
s,b,h, and the objective

function are displayed.

Decision Variable Low Daily Bed Demand Average Daily Bed Demand High Daily Bed Demand

xbed
0,0 13 0 19

xbed
0,1 3 17 0

xbed
1,0 6 20 0

xbed
1,1 12 0 21

xstaff
0,0,0 4 0 6

xstaff
0,0,1 1 5 0

xstaff
0,1,0 2 0 3

xstaff
0,1,1 1 3 0

xstaff
1,0,0 1 3 0

xstaff
1,0,1 2 0 3

xstaff
1,1,0 2 6 0

xstaff
1,1,1 4 0 7

Objective £1,950.00 £2,050.00 £2,270.00

Table 4.7: The deterministic results for each of the decision variables xbed and xstaff

categorised by the low, average and high daily bed demands.

The EV values for the low, average and high daily bed demands were £1,950.00,
£2,050.00 and £2,270.00 respectively. The results show there was a larger increase
when comparing the average to high demand than the low to average demand (Fig-
ure 4.1).

When comparing the low to average level daily bed demands, there is an increase of
10% in the daily demands. In turn, this increases the total costs by 5.12%. Similarly,
the average to high level demand increase of 10% shows there is an increase of 10.73%
in the objective function. The low to high daily demands cause an additional 20%
in demand, with a total increase of 16.41% in costs.
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Figure 4.1: Line graph showing the objective function for the deterministic imple-
mentation against the different daily demand levels, where -10% indicated the low
daily bed demand and +10% indicates the high daily bed demand.

4.4 Two-Stage Stochastic Model Extension

The two-stage stochastic model is an extension of the deterministic model built
in Section 4.3. Since this is a two-stage model, Equations (4.1) and (4.2) can be
adapted in order to apply these to the case of bed and staffing capacity planning.

All hospital beds are planned in advance before the demand for each specialty
and hospital is known. Similarly, nursing staff are deployed to specialties within
the hospitals. When the demand is known, there is the option to change some
specialty beds to alternative specialty beds with a cost. The two-stage version
of this model enables various scenarios to be determined; if either the demand is
changed, maximum capacities are changed or costs are changed. If the number of
beds within the hospital is insufficient to satisfy the demand, then a patient may
be transferred to another hospital with availability, or a new ward will be opened
within the original hospital location, with additional associated costs. Ultimately,
the total number of beds must not exceed the bed capacity for each individual
hospital. Additionally, sufficient nursing staff must be deployed to open beds and
maintain the staff/bed ratios, otherwise, bank staff would have to be used, increasing
costs.

Recall, the ultimate objective of the model is to determine, for each hospital, the
number of beds and staff required for each specialty in order to minimise the to-
tal costs, given by the sum of opening specialty beds within the hospital and the
transportation costs of moving patients between hospitals.
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4.4.1 Sets

In addition to the sets within the deterministic model, there is also the set of
scenarios in which different demands and situations can be run through the model.

Parameter Range Definition

B b = 1,..., B Set of nursing bands
S s = 1,..., S Set of specialties
H h = 1,..., H Set of hospitals
R r = 1,..., R Set of regions
K k = 1,..., K Set of scenarios

Table 4.8: The sets used within the two-stage stochastic model where (B, S, H, R,
K) rep- resent the maximum number of nursing bands, specialties, hospitals, regions
and scenarios, respectively

4.4.2 Parameters

Table 4.9 denotes the parameters used within the two-stage stochastic model, along
with a definition for each parameter.

Parameter Definition

cbed, 1st
s,h Cost of the first stage bed per day for specialty s ∈ S, in hospital h ∈ H

cbed, 2nd
s,h Cost of the second stage bed per day for specialty s ∈ S, in hospital h ∈ H

cstaff, 1st
b Cost of the first stage staff per day of band b ∈ B

cstaff, 2nd
b Cost of the second stage staff per day of band b ∈ B

pk Probability of scenario k ∈ K
Ds,r,k Average daily bed demand for each specialty s ∈ S

arriving from region r ∈ R, for scenario k ∈ K
Rs,b Ratio of nursing staff of band b ∈ B to patient for each specialty s ∈ S
Ks,h Maximum number of beds available to open in each specialty s ∈ S

in hospital h ∈ H

UBmax, bed, 1st
h Upper bound of the number of beds that are able to be deployed

in hospital h ∈ H in the first stage

UBmax, bed, 2nd
h Upper bound of the number of beds that are able to be deployed

in hospital h ∈ H in the second stage

UBmax, staff, 1st
b Upper bound of the number of staff that can be deployed in the 1st stage

UBmax, staff, 2nd
b Upper bound of the number of staff that can be deployed in the 2nd stage

Table 4.9: The parameters used within the two-stage stochastic model where
(b, s, h, r, k) represent the maximum number of nursing bands, specialties, hospi-
tals, regions and scenarios, respectively
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4.4.3 Decision Variables

The decision variables that were listed in Table 4.4 can be extended to include the
second stage decision variables, given in Table 4.10.

Decision Variable Definition

xbed
s,h ∈ N Number of beds planned in the 1st stage for specialty s ∈ S,

in hospital h ∈ H
xstaff

s,b,h ∈ N Number of staff planned in the 1st stage for specialty s ∈ S,
of band b ∈ B, in hospital h ∈ H

ubed
s,r,h,k ∈ N Additional number of beds needed in the 2nd stage

for specialty s ∈ S, for patients arriving from region r ∈ R
in hospital h ∈ H, for scenario k ∈ K

ustaff
s,b,h,k ∈ N Additional number of staff needed in the 2nd stage

for specialty s ∈ S, of band b ∈ B, in hospital h ∈ H,
for scenario k ∈ K

Table 4.10: The sets used within the two-stage stochastic model where (b, s, h, r, k)
represent the value number of nursing bands, specialties, hospitals, regions and
scenarios, respectively

4.4.4 Model

The following two-stage stochastic model can be determined, adapted from Equa-
tions (6.8) - (4.23), resulting in the Equations (4.26) - (4.35).

min
∑
h∈H

∑
s∈S

(cbed, 1st
s,h xbed

s,h +
∑
b∈B

cstaff, 1st
b xstaff

s,b,h)

+
∑
k∈K

∑
h∈H

∑
s∈S

pk(cbed, 2nd
s,h ubed

s,h,k +
∑
b∈B

cstaff, 2nd
b ustaff

s,b,k,h) (4.26)
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subject to:

∑
h∈H

(xbed
s,h + ubed

s,h,k) ≥ Ds,r,k ∀s ∈ S, r ∈ R, k ∈ K (4.27)
∑

b′∈B:b′≥b

xstaff
s,b′,h ≥ Rs,b · xbed

s,h ∀s ∈ S, b ∈ B, h ∈ H (4.28)

∑
b′∈B:b′≥b

ustaff
s,b′,k,h ≥ Rs,b · ubed

s,h,k ∀s ∈ S, b ∈ B, h ∈ H, k ∈ K (4.29)

xbed
s,h ≤ Ks,h ∀s ∈ S, h ∈ H (4.30)

ubed
s,h,k ≤ Ks,h ∀s ∈ S, h ∈ H, k ∈ K (4.31)

0 ≤
∑
s∈S

xbed
s,h ≤ UBmax, bed, 1st

h ∀h ∈ H (4.32)

0 ≤
∑
s∈S

∑
h∈H

xstaff
s,b,h ≤ UBmax, staff, 1st

b ∀b ∈ B (4.33)

0 ≤
∑
s∈S

ubed
s,h,k ≤ UBmax, bed, 2nd

h ∀h ∈ H, k ∈ K (4.34)

0 ≤
∑
s∈S

∑
h∈H

ustaff
s,b,k,h ≤ UBmax, staff, 2nd

b ∀b ∈ B, k ∈ K (4.35)

The first sum in the objective function (4.26) is the cost of deploying both beds and
staff to specialties within each hospital. The second sum represents the additional
beds and staff within the same hospital or a different hospital in the region. The
first constraint, (4.27), assures the demand for each specialty and region is met
by the number of hospital beds deployed. Constraint (4.28) ensures the number
of staff deployed meets the minimum requirements for staff on each specialty ward
in the first stage, whilst Constraint (4.29) ensures this requirement is met in the
second stage. Constraints (4.30) and (4.31) assures the beds deployed do not exceed
the maximum number of beds available for each specialty within each hospital.
Equations (4.32) - (4.35) define the maximum bounds on the first and second stage
decision variables of the problem.

4.4.5 Worked Example

Using the 15 patients discussed previously, these can be applied to the two-stage
stochastic model. Table 4.5 can be extended to generate Table 4.11 to include the
second stage model parameters.

The matrices are stored in row-major order. For the terms with two indices, the
first index of the parameter refers to the row of the matrix, and the second refers
to the column of the matrix.

Similarly, Equations (4.24) and (4.25) can be used to determine the average daily
bed demand. Three scenarios are studied:
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Parameters Values

1st Stage Bed Costs (cbed,1st
s,h )

[
20 30
30 40

]

2st Stage Bed Costs (cbed,2nd
s,h )

[
22 33
33 44

]

Ratio (Rs,b)
[
0.29 0.14
0.14 0.29

]

Maximum Specialty Capacity (Ks,h)
[
20 25
20 25

]

1st Stage Staff Costs (cstaff, 1st
b ) [£50, £60]

2nd Stage Staff Costs (cstaff, 2nd
b ) [£55, £66]

Upper 1st bed limit (UBmax,bed,1st
h ) [20,25]

Upper 2nd bed limit (UBmax,bed,2nd
h,k )

[
20 20 20
25 25 25

]

Upper 1st staff limit (UBmax,staff,1st
b ) [15,25]

Upper 2nd staff limit (UBmax,staff,2nd
b.k )

[
15 15
25 25

]
Probability of Scenarios (pk) [0.4,0.3,0.3]

Table 4.11: The parameter values that will be used within the two-stage stochastic
model specifically for the worked example

• Average demand with a probability of 40%

• Demand increasing by 20% with a probability of 30%

• Demand decreasing by 20% with a probability of 30%

The model is additionally run with low demand (-10%) and high demand (+10%)
with the same scenario percentages. These values can be represented in a matrix.

Low Demand Average Demand High Demand
k=0 k=1 k=2 k=0 k=1 k=2 k=0 k=1 k=2

D0,0,k 15.001 18.002 12.001 16.660 19.992 13.328 18.33 21.996 14.664
D1,0,k 17.100 20.520 13.680 19.001 22.80 15.200 20.900 25.080 16.720

Table 4.12: The daily bed demand figures for each region and specialty Ds,r,k,
categorised by low, average and high.

For example the average demand Ds,r,k matrix would be represented as:[[16.660, 19.992, 13.328]]
[[19.000, 22.800, 15.200]]
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The demand term is stored as a three-dimensional array (Ds,r,k). The first index
refers to the row and the second index corresponds to the column. In this case, we
only have one region, so only one matrix column is shown. The third index refers
to the column inside the sub-matrix. To illustrate, if we refer to the first hospital
and region (D0,0,k), then, if k = 0, we refer to the first element inside the [0,0]
matrix, i.e., 16.660. If k = 1, we refer to the second element inside the [0,0]
matrix, i.e., 19.000.

Table 4.12 displays the demands for each scenario of the low, average and high
demands for the two-stage stochastic problem.

These demands can be input into the two-stage stochastic model to obtain the
objective function for each case. Table 4.13 shows the values for each of the
decision variables, xbed

s,h , xstaff
s,b,h, xbed

s,r,h,k and ustaff
s,b,h,k, is displayed.
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1st Stage Decision Variables Low Demand Average Demand High Demand

xbed
0,0 13 0 6

xbed
0,1 0 0 0

xbed
1,0 6 20 13

xbed
1,1 6 0 0

xstaff
0,0,0 4 0 2

xstaff
0,0,1 0 0 0

xstaff
0,1,0 2 0 1

xstaff
0,1,1 0 0 0

xstaff
1,0,0 1 3 2

xstaff
1,0,1 1 0 0

xstaff
1,1,0 2 6 4

xstaff
1,1,1 2 0 0

2nd Stage Decision Variables Low Demand Average Demand High Demand
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

ubed
0,0,k 3 4 3 17 20 14 13 17 10

ubed
0,1,k 0 5 0 0 1 0 0 0 0

ubed
1,0,k 6 4 0 0 4 0 8 13 4

ubed
1,1,k 0 3 0 0 0 0 0 0 0

ustaff
0,0,0,k 1 3 0 5 6 5 4 5 3

ustaff
0,0,1,k 0 0 0 0 1 0 0 0 0

ustaff
0,1,0,k 1 1 0 3 3 2 2 3 2

ustaff
0,1,1,k 0 0 0 0 1 0 0 0 0

ustaff
1,0,0,k 1 2 1 0 1 0 2 2 1

ustaff
1,0,1,k 0 0 0 0 0 0 0 0 0

ustaff
1,1,0,k 2 3 1 0 2 0 3 4 2

ustaff
1,1,1,k 0 0 0 0 0 0 0 0 0

Objective Function Value £1,996.40 £2,185.20 £2,351.60

Table 4.13: The two-stage stochastic results for each of the decision variables xbed, xstaff, ubed and xstaff, categorised by low, average and
high daily bed demands.
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The RP values for the three demand levels are £1,996.40, £2,185.20, and
£2,351.60 for the low, average and high levels of demand. All three results show
that there is a linear relationship, with the increases being almost directly
proportional (Figure 4.2).

Figure 4.2: Line graph showing the objective function for the two-stage stochastic
implementation against the different daily demand levels, where -10% indicates the
low daily bed demand and +10% indicated the high daily bed demand.

The low to average level demands show a 9.46% increase which is similar to the
10% increase in demand. Similarly, average to high level demands yield a 7.61%
increase. The low to high daily demands cause an additional 20% in costs, with a
total increase of 17.79% in demands.

4.5 Evaluation of Measures

This section looks at applying the three tests discussed in Sections 4.2.2.1, 4.2.2.2
and 4.2.2.3 to the worked example of frail and elderly patient services.
Furthermore, it will determine how the results can be evaluated and determine
where the model is under performing.

4.5.1 Test A

Test A involves calculating the VSS to determine the expected loss when using the
deterministic solution. If we recall Equations (4.5) and (4.6), which calculates the
EEV and VSS respectively.

EEV = Eξ(z(x̄(ξ̄), ξ)) (4.5 revisited)

V SS = EEV − RP (4.6 revisited)
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Tables 4.14 - 4.16 display the results for calculating the VSS for the worked
example, with low, average and high demand respectively. The deterministic
model deploys fewer beds and nursing staff than the stochastic model in each of
the three cases, leading to an EV solution that costs approximately two-thirds of
the RP. However, the EEV is larger in all cases and this results in the following
VSS scores:

V SSLow = 2, 140.80 − 1, 996.40 = £144.40 (7.23%) (4.36)
V SSAverage = 2, 240.80 − 2, 185.20 = £55.60 (5.4%) (4.37)

V SSHigh = 2, 668.40 − 2, 351.60 = £316.80 (13.47%) (4.38)

This demonstrates that utilising the stochastic model rather than the
deterministic, can save between 5.4% and 13.47% in bed and staffing costs.

s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(6), (2, 1)] [(10), (3, 2)] [(13), (2, 4)] [(5), (1, 2)] 1,950.00 = EV
Stochastic [(20), (7, 3)] [(0), (0, 0)] [(16), (3, 5)] [(6), (1, 2)] 1,996.40 = RP
Test A [(17), (6, 3)] [(3), (1,1)] [(10), (2,4)] [(12), (2,4)] 2,140.80 = EEV

Table 4.14: Test A results for the worked example using low daily bed demand
values, with results recorded in the form [(beds), (staff)].

s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(0), (0,0)] [(17), (5, 3)] [(20), (3, 6)] [(0), (0, 0)] 2,050.00= EV
Stochastic [(20), (6, 3)] [(1), (1, 1)] [(24), (4, 8)] [(0), (0, 0)] 2,185.20= RP
Test A [(4), (2, 1)] [(17), (5, 3)] [(24), (4, 8)] [(0), (0, 0)] 2,240.80 = EEV

Table 4.15: Test A results for the worked example using average daily bed demand
values, with results recorded in the form [(beds), (staff)].

s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(19), (6, 3)] [(0), (0, 0)] [(0), (0, 0)] [(21), (3, 7)] 2,270.00 = EV
Stochastic [(23, (7, 4)] [(0), (0, 0)] [(14), (4, 8)] [(0), (0, 0)] 2,351.60 = RP
Test A [(22), (7, 4)] [(0), (0, 0)] [(14), (2, 3)] [(21), (3, 7)] 2,668.40 = EEV

Table 4.16: Test A results for the worked example using high daily bed demand
values, with results recorded in the form [(beds), (staff)].

To determine the exact reason why the deterministic model performed poorly,
further tests were conducted.

4.5.2 Test B

Test B takes the skeleton solution from the deterministic model. Since the
deterministic model did not result in any zero values being produced, the lower
bound values instead will be used.
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We calculate the ESSV as follows:

ESSV = Eξ(z(x̂, ξ)) (4.8 revisited)

and then use this information to calculate the LUSS:

LUSS = ESSV − RP (4.9 revisited)

Tables 4.17 - 4.19, present the results after the ESSV calculations have been
calculated. For each case, the ESSV is larger than the RP and therefore the LUSS
is as follows:

LUSSLow = 1, 996.40 − 1, 996.40 = £0 (4.39)
LUSSAverage = 2, 240.80 − 2, 185.20 = £55.6 (4.40)

LUSSHigh = 2, 408.40 − 2, 351.60 = £56.80 (4.41)

Since the model is fixed by how many beds it can deploy in the first stage, the
demand is not satisfied within the first stage. The model reacts by opening beds in
the second stage, in the facilities where this is restricted in the first stage. This
occurs because the second stage costs for some bed specialties are in fact less
expensive than first stage costs in other bed specialties.

s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(6), (2, 1)] [(10), (3, 2)] [(13), (2, 4)] [(5), (1, 2)] 1,950.00 = EV
Stochastic [(20), (7, 3)] [(0), (0, 0)] [(16), (3, 5)] [(6), (1, 2)] 1,996.40 = RP
Test A [(17), (6, 3)] [(3), (1,1)] [(10), (2,4)] [(12), (2,4)] 2,140.80 = EEV
Test B [(20), (7, 3)] [(0), (0, 0)] [(16), (3, 5)] [(6), (1, 2)] 1,996.40 = ESSV = RP

Table 4.17: Test B results for the worked example using low daily bed demand
values, with results recorded in the form [(beds), (staff)].

s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(0), (0,0)] [(17), (5, 3)] [(20), (3, 6)] [(0), (0, 0)] 2,050.00= EV
Stochastic [(20), (6, 3)] [(1), (1, 1)] [(24), (4, 8)] [(0), (0, 0)] 2,185.20= RP
Test A [(4), (2, 1)] [(17), (5, 3)] [(24), (4, 8)] [(0), (0, 0)] 2,240.80 = EEV
Test B [(4), (2, 1)] [(17), (5, 3)] [(24), (4, 8)] [(0), (0, 0)] 2,240.80 = ESSV = EEV

Table 4.18: Test B results for the worked example using average daily bed demand
values, with results recorded in the form [(beds), (staff)].

4.5.3 Test C

Test C determines the upgradeability of the model. The number of beds and staff
deployed in the deterministic solution are added as constraints, where these
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s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(19), (6, 3)] [(0), (0, 0)] [(0), (0, 0)] [(21), (3, 7)] 2,270.00 = EV
Stochastic [(23, (7, 4)] [(0), (0, 0)] [(14), (4, 8)] [(0), (0, 0)] 2,351.60 = RP
Test A [(22), (7, 4)] [(0), (0, 0)] [(14), (2, 3)] [(21), (3, 7)] 2,668.40 = EEV
Test B [(23), (7,4)] [(0), (0, 0)] [(9), (2, 3)] [(17), (3, 5)] 2,408.40 = ESSV

Table 4.19: Test B results for the worked example using high daily bed demand
values, with results recorded in the form [(beds), (staff)].

minimum numbers have to be met in the first stage. Equation (4.14) calculates
the expectant result from this test:

EIV = Eξ(z(x̃, ξ)) (4.14 revisited)

LUDS = EIV − RP (4.15 revisited)

The LUDS values for each case are as follows:

LUDSLow = 2, 235.40 − 1, 996.40 = £239 (4.42)
LUDSAverage = 2, 240.80 − 2, 185.20 = £55.6 (4.43)

LUDSHigh = 2, 565.40 − 2, 351.60 = £213.80 (4.44)

Tables 4.20 - 4.22 display the results for the EIV. For all cases, the LUDS value is
greater than zero but less than the VSS. This demonstrates partial upgradeability.

s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(6), (2, 1)] [(10), (3, 2)] [(13), (2, 4)] [(5), (1, 2)] 1,950.00 = EV
Stochastic [(20), (7, 3)] [(0), (0, 0)] [(16), (3, 5)] [(6), (1, 2)] 1,996.40 = RP
Test A [(17), (6, 3)] [(3), (1,1)] [(10), (2,4)] [(12), (2,4)] 2,140.80 = EEV
Test B [(20), (7, 3)] [(0), (0, 0)] [(16), (3, 5)] [(6), (1, 2)] 1,996.40 = ESSV = RP
Test C [(17), (6, 3)] [(3), (1,1)] [(9), (2,3)] [(13), (2,3)] 2,235.40 = EIV

Table 4.20: Test C results for the worked example using low daily bed demand
values, with results recorded in the form [(beds), (staff)].

s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(0), (0,0)] [(17), (5, 3)] [(20), (3, 6)] [(0), (0, 0)] 2,050.00= EV
Stochastic [(20), (6, 3)] [(1), (1, 1)] [(24), (4, 8)] [(0), (0, 0)] 2,185.20= RP
Test A [(4), (2, 1)] [(17), (5, 3)] [(24), (4, 8)] [(0), (0, 0)] 2,240.80 = EEV
Test B [(4), (2, 1)] [(17), (5, 3)] [(24), (4, 8)] [(0), (0, 0)] 2,240.80 = ESSV = EEV
Test C [(4), (2, 1)] [(17), (5, 3)] [(24), (4, 8)] [(0), (0, 0)] 2,240.80 = EIV = ESSV = EEV

Table 4.21: Test C results for the worked example using average daily bed demand
values, with results recorded in the form [(beds), (staff)].

4.5.4 Worked Example Conclusion

The worked example provided three low, average and high demand scenarios to
determine how beds and staff can be planned for two specialties within two



CHAPTER 4. PRESCRIPTIVE ANALYTICS TO SUPPORT CAPACITY
PLANNING FOR FRAIL AND ELDERLY PATIENTS 112

s=0, h=0 s=0, h=1 s=1, h=0 s=1, h=1 Objective Value (£)

Deterministic [(19), (6, 3)] [(0), (0, 0)] [(0), (0, 0)] [(21), (3, 7)] 2,270.00 = EV
Stochastic [(23, (7, 4)] [(0), (0, 0)] [(14), (4, 8)] [(0), (0, 0)] 2,351.60 = RP
Test A [(22), (7, 4)] [(0), (0, 0)] [(14), (2, 3)] [(21), (3, 7)] 2,668.40 = EEV
Test B [(23), (7,4)] [(0), (0, 0)] [(9), (2, 3)] [(17), (3, 5)] 2,408.40 = ESSV
Test C [(23), (7, 4)] [(0), (0, 0)] [(5), (1, 2)] [(21), (3, 7)] 2,565.40 = EIV

Table 4.22: Test C results for the worked example using high daily bed demand
values, with results recorded in the form [(beds), (staff)].

hospitals. To replicate both real world planning and real world events, these cases
were performed in both a deterministic and stochastic environment.

Figure 4.3 provides a visual for the results, showing the differences between the
deterministic and stochastic models for all three cases.

Figure 4.3: Clustered bar chart showing the objective function value for the deter-
ministic and two-stage stochastic models. Included within this is the EEV, ESSV
and EIV results for the low, average and high daily bed demands.

The results show the deterministic solution does not perform well in a stochastic
environment, because of the too low number of beds and staff deployed at the first
stage. By performing Test A, this showed there may be value in considering the
deterministic solution as a lower bound for the stochastic case. Test B has shown
that the deterministic solution performed poorly because it deployed the incorrect
number of beds and staff. Finally, Test C, showed that even if some beds and staff
are planned using the deterministic model, the stochastic model provides options
on how to upgrade or improve the solution. It also informed as to where shortages
are likely to be expected.
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4.6 Summary

Prescriptive analytics offer healthcare professionals the opportunity to optimise
outcomes by recommending the best course of action for patients or providers.
Often, healthcare decisions are made using simple tools or are based on staff
intuition, potentially leading to less than ideal outcomes by subjecting patients to
unnecessary risks. Using more evidence-based and unbiased approaches,
prescriptive analytics can be driven by real-time data which is routinely collected.
Due to the ability to perform numerous scenario analysis, the impact of selecting
different actions can be evaluated prior to implementation.

This chapter has provided an introduction into two prescriptive methodologies,
deterministic and two-stage stochastic modelling. Expanding on the two-stage
stochastic programming paradigm and building on the tests introduced by
Maggioni and Wallace [257], this chapter has gone further by creating
two-dimensional decision variables which are dependent on each other along with
the application to a different field of research, namely healthcare. To demonstrate
the procedure and the robustness of the models, a simplified worked example
including two hospitals and two specialties was used. The tests discussed in [257],
have also been employed, applied and evaluated to each of the examples.

In the following chapter, Chapter 5, the theory from both this and the previous
chapter will be applied to a case study of frail and elderly patients. The deterministic
and two-stage stochastic models developed will be expanded to a case of 14 hospitals
and 29 specialties, to determine how to effectively organise bed numbers and staffing
requirements to fulfil current and future demands, whilst being mindful of increasing
medical costs.



CHAPTER 4. PRESCRIPTIVE ANALYTICS TO SUPPORT CAPACITY
PLANNING FOR FRAIL AND ELDERLY PATIENTS 114



115

Chapter 5

Experimental Analysis of the
Predictive and Prescriptive
Models

5.1 Introduction

The field of data science and OR has witnessed a significant evolution in recent
years, with the development of predictive and prescriptive models emerging as an
important aspect of the discipline. Predictive models aim to forecast future events
or trends based on historical data, while prescriptive models focus on providing rec-
ommendations for actions to be taken based on the predictions made by predictive
models. Both types of models have been widely adopted across various domains,
including business, healthcare, and social media. This chapter discusses the exper-
imental results for the predictive and prescriptive theory discussed in Chapters 3
and 4 respectively.

Research Aim - This chapter will utilise the methods discussed in the previous
two chapters to apply to data from ABUHB in order to answer the following
two research questions:

1. How do the clinical and demographical attributes of frail and elderly
patients effect their length of stay within hospital? - Section 5.3

2. How best can specialties be organised among a network of hospitals to
ensure staffing and bed costs are minimised whilst, whilst still meeting
the demand for frail and elderly patients? - Section 5.4

The remainder of the Chapter is structured as follows: Section 5.2 introduces three
years’ worth of data from ABUHB used within this research, highlighting key in-
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sights. Section 5.3 applies predictive analytics to the ABUHB data, discussing linear
and logistic regression and CART models. Section 5.4 will develop the determinis-
tic and two-stage stochastic models within Microsoft Excel OpenSolver and Python
PuLP.

5.2 Data Introduction

This section provides an overview of the data received from ABUHB, to gain a
deeper understanding into the current practice and trends within ABUHB. Three
years’ worth of data was analysed ranging from April 2017 to March 2020, with two
data sets being amalgamated to show an insight into the overall pathway. The first
data set is from Myrddin [263], the patient administration system (PAS). Myrddin
stores all patient contact details, outpatient appointments, generates letters for
patients, and specifically for this research, inpatient information. The second data
set is the Welsh Radiological Information System (RadIS), [263]. The RadIS IT
system records and keeps track of which patients have received scans as well as the
data that is gathered in conjunction with this.

Prior to any data analysis occurring, data cleansing was performed to ensure that
all incorrect and incomplete entries were removed. Additionally, to make sure the
patients were pertinent to the study, additional criteria were established. The fol-
lowing criteria were set:

1. Only complete patient information files were included i.e., no missing entries.
If a patient did not have an NHS number or they had a missing admission
and or discharge date, these were removed as the patient could not be tracked
across multiple attendances and LOS could not be calculated. Diagnosis was
excluded from this, since patients could be admitted to hospital and discharged
with no formal diagnosis.

2. Patients were only included if they were aged 65 and over, in accordance with
our elderly definition [264].

3. For the RadIS data set, patients were required to be admitted within hospital.

In total, 165,118 patients, having met the admission criteria, were included within
the study. There were 15,483 scan records present from the admitted patients.
Figure 5.1 provides an overview of the data cleansing process for both data sets.

Within the data there was a total of 24 different data headings Table 5.1 provides
a brief definition of the column headings within the data. A full list of data items
with data types and attributes can be found within Table C.1 of the appendix.
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Data Item Definition
Admission Date The exact date on which a patient is formally admitted to a healthcare facility,

marking the beginning of their stay for medical evaluation, treatment, or other
necessary healthcare services.

Admission Method The process or means by which patients are admitted to a healthcare facility.
These are national codes as defined in [265].

Admission Source The origin or specific location from which a patient comes to the healthcare
facility. These are national codes as defined in [266]

Admission Time The exact time of day when a patient is formally admitted to a healthcare facility.
Borough The specific area within a region where a patient resides, providing geographical

information that is relevant for healthcare planning, resource allocation, and de-
mographic analysis.

Date of Birth The date of birth of the patient.
Diagnosis Categorisation of a patient’s medical condition or illness, which is determined

through medical examinations, tests, and evaluations carried out by healthcare
professionals, enabling appropriate treatment and care planning.

Discharge Date The specific date on which a patient is formally released or discharged from a
healthcare facility, marking the end of their stay.

Discharge Destination The specific location or facility to which a patient is transferred or sent upon
being formally discharged from a healthcare facility.

Discharge Time The exact time of day when a patient is formally discharged from a healthcare
facility.

Hospital The hospital in which a patient has been admitted to.
NHS Number A unique number which enables healthcare staff and service providers to identify

you correctly and match your details to your health records.
Postcode The specific geographical area or location used to identify the patient’s residential

address.
Registered GP The primary healthcare provider or family doctor with whom the patient is for-

mally registered.
Registered GP Practice The specific geographical area or location where the patient’s primary healthcare

provider or registered GP’s practice is situated.
Scan Attendance Date The specific date on which a patient undergoes a medical scan or diagnostic

imaging procedure.
Scan Attendance Time The specific time of day when a patient undergoes a medical scan or diagnostic

imaging procedure.
Scan Exam The specific type of diagnostic imaging procedure to be performed and its corre-

sponding location.
Scan Exam Code A unique code assigned to a specific type of diagnostic imaging procedure to be

performed.
Scan Location Name The specific name of the healthcare facility or imaging centre where a medical

scan or diagnostic imaging procedure was conducted.
Scan Procedure Group A categorisation or grouping of related diagnostic imaging procedures based on

certain criteria, such as the body system or medical condition being investigated,
the imaging technology used, or the purpose of the scan

Scan Requested Date The specific date on which a medical scan or diagnostic imaging procedure is
requested by a healthcare professional.

Scan Specialty Code The referring consultant’s specialty which has requested the scan.
Specialty The type of ward a patient is admitted to, referring to the specific area of medicine

of the patient’s medical condition or illness. These are national codes as defined
in [267].

Table 5.1: Definitions for each of the data items within the merged ABUHB data
set.
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2019-2020
135,513

2017-2018
131,896

2018-2019
138,128

Myrddin Data

405,537

405,144

405,118

165,118 Patients
in Admission Data

393 Removed
No NHS Number

73 Removed
No Admission/Discharge

240,000 Removed
Under 65

2017-2018
81,020

2018-2019
83,109

2019-2020
81,158

RadIS Data

245,287

244,869

140,509

15,483 Patients
in RadIS Data

418 Removed
No NHS Number

104,360 Removed
Under 65

125,026 Removed
Not an inpatient

Figure 5.1: Flow chart of data cleansing process resulting in 165,118 patient admis-
sions and 15,483 patient scans within ABUHB for the period April 2017 to March
2020.

5.2.1 Data Trends

Three years’ worth of data was analysed to gain an understanding as to the demands
faced by the elderly population within ABUHB. Figure 5.2 displays the daily count
of admissions into ABUHB over this time period. The fluctuations within the data
suggest seasonality is present as is often found within healthcare data [268]. Analysis
on a year-to-year basis (running from April to March, also known as the fiscal year),
showed the number of patients remained fairly consistent over the three years:

• 2017-2018: 53,256 (32.25%)

• 2018-2019: 56,050 (33.95%)

• 2019-2020: 55,812 (33.80%)

Due to the Covid-19 pandemic and the skewed effects it would have had on admission
statistics, data from April 2020 was excluded from the study [269]. The effect of
Covid-19 can be seen from March 2020, where admissions for patients aged 65 and
older started to decrease.
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Figure 5.2: Line graph showing the trend of the number of patients admitted per
day into ABUHB, split by fiscal year.

Within the data there were 66,289 unique NHS numbers, meaning 98,829 stays
were either part of a care spell or independent admissions. The data did not give
any indication regarding patient care spells, i.e., where they had been transferred
between hospitals. Therefore, it was decided that if a patient had been discharged
and subsequently readmitted on the same day, then this would fall into the ‘care
spell’ category. In total, there were 8,826 care spell episodes. Table 5.2 displays the
breakdown of the number of transfers.

No. of Transfers 1 2 3 4 5 6 7

Total 8,435 313 50 22 4 1 1

Table 5.2: The total number of readmissions/transfers for the 9,332 care spell
episodes within the ABUHB data set. Number of patient transfers in ABUHB.

The patient who underwent seven transfers and readmissions, spent a total of 219
days in hospital, primarily moving between Royal Gwent Hospital (RGH) and
County Hospital before being discharged to a non-NHS care home. This is also
known as step-up and step-down care.

Within ABUHB there are 29 different specialties offered by the health board. The
specialty relates to the ward a patient has been admitted to and is directly related
to their treatment required. The most common specialty is general surgery with
nearly 12% of admissions (Table 5.3). The top 11 specialties accounted for a total
of 81.49% of admissions. In order to account for at least 95% of admissions, the top
15 specialties should be included.

The age of patients had a lower bound of 65, with the oldest being 107 years old.
The mean age was calculated to be 77 years with a standard deviation of eight
years. Due to the 42 year age range, patients were also grouped into five-year age
categories to determine if this would be a more accurate predictor (Figure 5.3).

The highest frequency of admissions occurred on a Tuesday (18.04%), followed by
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Specialty Count Proportion
General Surgery 19,782 11.98%
Care of the Elderly 18,797 11.38%
Gastroenterology 16,499 9.99%
Trauma & Orthopaedic 16,471 9.98%
General Medicine 12,913 7.82%
Urology 12,574 7.62%
Ophthalmology 11,557 6.99%
Dermatology 9,466 5.73%
Rehabilitation 8,466 5.12%
Respiratory 8,039 4.86%

Table 5.3: The top 11 admitting specialties by count within the ABUHB data set.

Figure 5.3: Bar chart showing the number of patients within the ABUHB data set,
falling into each of the seven age groups.

a Thursday (17.84%) (Figure 5.4). Patients who were admitted over a weekend
accounted for 14.08% of total admissions. Weekday admissions peaked between
7am and 10am, with a secondary peak between 12pm and 1pm.

The admission source of a patient determined where a patient was directly prior to
admission. Although there are 25 different admission sources listed in total, the top
six admission sources accounted for 98.63% of admissions (Table 5.4). If this were
to be extended to include the top 10, 99.88% of admissions would be accounted for.
The top two admission sources, ‘Usual Place of Residence’ and ‘Own Home’ have a
combined patient count of 147,294 (89.21%).

The admission method followed a similar trend to the admission source, with a
small number of methods accounting for the majority of patients. Although there
were 16 distinct methods, 99.23% of patients were accounted for through the top
seven (Table 5.5). ‘Elective - waiting list’ was the most common admission method
and is one that had been arranged in advance of admission. The patient had been
admitted via a waiting list, where at the point of being put onto the waiting list,
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Figure 5.4: Line graph showing the number of admissions per day by hourly interval,
for the ABUHB data set.

Admission Source Count Proportion

Usual Place of Residence 99,464 60.24%
Own Home 47,830 28.97%
Same Trust-General or young phys.disabled 7,711 4.67%
Patient transfer within the same health board/trust 4,350 2.63%
Non NHS (other than L.A.) run res.care home 1,755 1.06%
Non NHS (other than L.A.) run nursing home 1,314 0.80%

Table 5.4: The top six admitting methods by count within the ABUHB data set.

did not know their date of admission. The period in which the patient had to wait
was dependant on the demand for hospital resources and facilities.

Admission Method Count Proportion

Elective - waiting list 73,482 44.50%
Emergency - casualty 39,437 23.88%
Emergency - GP 28,169 17.06%
Other - transferred from another hospital 13,460 8.15%
Elective - booked 5,950 3.60%
Elective - planned 1,696 1.02%
Emergency - other means 1,658 1.04%

Table 5.5: The top seven admission methods by count within the ABUHB data set.
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The LOS of the patient was determined by the time between admission and hospital
discharge. There was a large range of LOS’s, from 0 to 413 days. The LOS can be
modelled in two ways, in hours or in days. The first method of calculating LOS,
used the number of hours that patients had been admitted for. It was determined
using the admission and discharge dates as well as specific times. The average LOS
was calculated to be 155.23 hours (6.47 days). The second method of calculating
LOS, meant that if a patient was admitted overnight, an additional day was added
to their LOS i.e., if admitted Monday evening and discharged Tuesday morning,
their LOS was one. Additional analysis of LOS in hours revealed the mean to be
6.47 days and a 75th percentile of seven days. The 90th percentile was 18 days
increasing to 30 days with the 95th percentile. This implies that some long LOS’s
are skewing the mean. Patients were released from the hospital in 81,538 (49.38%)
cases within 24 hours and 114,015 (69.05%) cases within five days. A LOS longer
than 30 days was present in 5% of patients.

A patient’s LOS changed depending on the day they were admitted (Table 5.6).
Again, patients who were admitted on a weekend have a different variation to those
patients admitted during the week. If hospitalised on a weekend, the average LOS
was at least an additional day longer.

Day of week Mean LOS Standard Deviation

Monday 6.22 12.77
Tuesday 6.12 13.54
Wednesday 6.11 13.25
Thursday 5.97 13.02
Friday 6.78 12.97
Saturday 7.88 13.78
Sunday 8.10 12.97

Table 5.6: The mean and standard deviation of patient LOS in hospital by the
admission day.

As discussed in Section 1.1, two approaches, each employing ICD10 codes, were
used to determine the frailty score. Regarding the patient’s diagnosis and the cause
for admission, there were 2,758 unique codes in total. The average frailty score was
0.5, with a standard deviation of 0.98. The maximum score was 8.1, with the lowest
score being zero.

Depending on their health and course of treatment, patients who were admitted to
the hospital may undergo a number of scans. In total, 12,350 patient scans were
recorded, of which 9,863 patients had just one scan (Table 5.7). There were 2,487
patients who had at least two scans, of which 1,957 patients only had two scans.
One patient had a total of eight scans.
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Scan Number 1 2 3 4 5 6 8

Count 9,863 1,957 437 77 11 4 1

Table 5.7: The total number of scans for patients who had a scan during their
inpatient admission within the ABUHB data set.

The data set comprised of a diverse range of scans, encompassing various modalities,
including MRI and ultrasound. Figure 5.5 displays the frequency of each of the
procedure codes, showing that X-ray (R) is the most common scan type, with
63.76% of all scans. For patients who have multiple scans, there are duplications
of the same scan in the same region, however, this can be due to different angles
required to be taken. Additionally there are different scan types on the same body
region as well as different scans on different body regions.

Figure 5.5: Bar chart showing the number of patients undertaking each type of scan
within the ABUHB data set.

5.2.2 Data Insights

The information from the merged data sets was comprised of 165,118 patient records
over a three year period, with admissions remaining constant throughout this time.
There were more arrivals from South East Wales’ more populated towns and cities,
like Caerphilly and Newport, than from the region’s more rural parts. The acute
hospitals with 24/7 services in the area, which are similarly situated in Caerphilly
and Newport, tended to have greater patient attendance rates. Peak admissions
occurred on a Tuesday, with admissions generally being greater during the week.
For all arrivals, there were typically peaks in the late morning, early afternoon,
and a smaller peak in the evening. The patient demographics were varied amongst
all hospitals, however, the LOS varied by age and hospital attended. The trends
indicated that shorter LOS were more typical in acute hospitals while longer LOS
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were more prevalent in community-based hospitals. The patients ages range widely,
although the majority are between 65 and 85. The frailty scores of the patients
provide some indication of the severity of the illness. Higher frailty scores were
correlated with longer hospital stays and older patient populations in some hospitals.
Among the admitted patients, there was a small subset who required at least one
scan.

5.3 Predictive Analytics Results

This section will examine how the patient data from ABUHB can be used to apply
the notion of predictive analytics covered in Chapter 3 in order to ascertain how
clinical and demographic factors affect hospital LOS.

5.3.1 Linear Regression

Linear regression was performed on the 14 variables to determine the highest influ-
ence on LOS. The LOS was converted into how many nights the patient spent in
hospital, for example, if admitted on 1st January 2020 and discharged on the 3rd

January 2020, the LOS would be two. This produced a higher R2 value for linear
regression for all cases than using the continuous hourly LOS. The R2 and adjusted
R2 values for each variable against this LOS are shown in Table 5.8.

Continuous Variables R2 Value Adjusted R2 Value

Age 0.050 0.050
Frailty Score 0.028 0.028
No. of Scans 0.003 0.003
Categorical Variables R2 Value Adjusted R2 Value

Age Group 0.051 0.051
Admission Method 0.282 0.282
Admission Source 0.195 0.195
Day of Admission 0.002 0.002
Diagnosis 0.273 0.261
Frailty Group 0.028 0.028
Hospital 0.182 0.181
ICD10 - First Letter 0.092 0.092
Scan Y/N 0.002 0.002
Month of Admission 0.000 0.000
Specialty 0.288 0.288

Table 5.8: The results for the linear regression when run against the continuous and
categorical variables within the ABUHB data set. The R2 and Adjusted R2 values
are given.
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The variables can be considered as two different data types, continuous and cate-
gorical. Within the continuous variables, age produced the highest R2 value of 0.05.
This means 5% of the LOS variation is explained by age. The model can be denoted
by:

Y = 0.375x − 22.635 (5.1)

where x is the age of the patient. Therefore, for each one year increment in age,
the LOS will increase by 0.375 days. Table C.2 within the Appendix displays the
equations for the three continuous variables.

Similarly, we can calculate the linear regression model for categorical variables
within Table 5.8. The month of admission produced an R2 value of zero, which
indicates that the month does not account for any variation in the response data
around its mean. Specialty provided the largest R2 value of 0.288. There are 29
subcategories of different specialties within the specialty category. We can further
analyse each variable to be able to forecast LOS. The corresponding linear regres-
sion values for specialty are shown in Table 5.9. When one x variable is selected,
the corresponding value is the LOS. For instance, if the specialty of A&E is chosen,
the LOS will be 2.2673 days. This can be directly compared to other disciplines; for
instance, the LOS in anaesthetics is 6.5 times greater than that in A&E. The value
column displays the variation in the average LOS between each of the specialties.
For all categorical variables, excluding diagnosis, the coefficients can be seen in Ta-
ble C.2 within the Appendix. Diagnosis was excluded due to the large number of
variables.
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Specialty Type x Variable Value
Accident & Emergency (A&E) x1 2.2673
Anaesthetics x2 14.9517
Cardiology x3 4.6470
Care of the Elderly x4 12.1101
Community Medicine x5 34.235
Dermatology x6 0.2616
Diabetes & Endocrinology x7 11.6161
Ear, Nose & Throat x8 2.7500
GP Other x9 39.2603
Gastroenterology x10 2.1382
General Medicine x11 8.4519
General Surgery x12 3.7149
Gynaecology x13 1.6536
Haematology x14 0.7974
Infectious Diseases x15 11.6289
Intermediate Care x16 14.3725
Maxillo-Facial x17 0.6018
Neurology x18 5.6131
Ophthalmology x19 0.1307
Pain x20 0.0080
Plastic Surgery x21 0.1128
Radiology x22 0.3548
Radiotherapy & Oncology x23 13.6667
Rehabilitation x24 28.7732
Respiratory x25 7.7985
Restorative Dentistry x26 0.0000
Rheumatology x27 2.3333
Trauma & Orthopaedic x28 6.6658
Urology x29 0.9932

Table 5.9: The linear regression results for the specialty variable, where each x has
a corresponding LOS value.

5.3.2 Logistic Regression

Logistic regression was performed to determine the effect of grouping LOS. Grouped
LOS categories were determined by grouping patients into whether they were dis-
charged on the same day as arrival or admitted overnight. This was investigated
as it was a particular interest of managers within ABUHB, as they wanted to de-
termine the characteristics of patients who should be discharged on the same day
but ultimately required overnight admission. This resulted in 75,216 patients falling
into the ‘0’ category (45.55%), where they were discharged the same day and 89,902
patients who fell into the ‘1’ category (54.45%) where their LOS was at least two
days. This is beneficial for bed and staff planning to determine the turnaround time
of patients.
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Table 5.10 displays the four scoring measures against each of the variables. In three
cases, precision is given the value ‘N/A’, this is due to both the TP and FP rates
being zero (i.e., the model only predicted negative results). Therefore, a result
cannot be calculated. Similarly, because the precision cannot be calculated, then
the F1 score cannot be calculated.

Continuous Variables Accuracy Precision Recall F1 Score

Age 0.6037 0.5721 0.5164 0.5428
Frailty Score 0.5860 0.5283 0.8503 0.6517
No. of Scans 0.5445 N/A 0.0 N/A
Categorical Variables Accuracy Precision Recall F1 Score

Admission Method 0.8764 0.8378 0.9036 0.8694
Admission Source 0.5829 1.0 0.0844 0.1557
Age Group 0.6037 0.5721 0.5164 0.5428
Day of Admission 0.5474 0.5085 0.1991 0.2862
Diagnosis 0.8496 0.8360 0.8607 0.8481
Frailty Group 0.5871 0.5291 0.8498 0.6522
Hospital 0.6171 0.6923 0.2871 0.4059
ICD10 - First Letter 0.7554 0.7813 0.6430 0.7055
Scan Y/N 0.4555 N/A 0.0 N/A
Month of Admission 0.4555 N/A 0.0 N/A
Specialty 0.8008 0.7645 0.8131 0.7881

Table 5.10: The results for the logistic regression when run against the continuous
and categorical variables within the ABUHB data set. The accuracy, precision,
recall and F1 scores are given.

We can determine the likelihood of falling into one of the two LOS groupings us-
ing the logit function. Equation (5.2) displays the general formula using age, a
continuous variable, as an example.

logit(π(x)) = ln
[

π(x)
(1 − π(x))

]
= −5.0746 + (0.0681 × Age) (5.2)

If the age is set to be 80, then the conditional logit of being admitted overnight is:

ln
[

π(x)
(1 − π(x))

]
(Age = 80) = −5.0746 + (0.0681 × 80) (5.3)

Then the effect of a one-unit increase in age can be examined. When the age of a
patient is 81, the following is calculated:

ln
[

π(x)
(1 − π(x))

]
(Age = 81) = −5.0746 + (0.0681 × 81) (5.4)
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Taking the difference of the two equations, we are left with the following result:

ln
[

π(x)
(1 − π(x))

]
(Age = 81) − ln

[
π(x)

(1 − π(x))

]
(Age = 80) = 0.1381 (5.5)

Therefore, the coefficient for age is the difference in the log odds, and as such, for
one unit increase in age, the expected change in log odds is 0.1381. Exponentiating
both sides, results in a value of 1.1481:

eln[ π(x)
(1−π(x)) ](Age=81)−ln[ π(x)

(1−π(x) ](Age=80) = e0.1381 = 1.1481 (5.6)

Therefore, we can say for one-unit increase in age, there is a 14.81% increase in the
likelihood of being admitted overnight. The 14.81% of increase is not dependent
on the value age is held at. For the logit(π(x)) equations for all three continuous
variables, see Table C.4 in the Appendix.

Similarly, we can calculate the log odds for a categorical variable, e.g., age group.
Table 5.11 describes the relationship between the LOS group and age group.

Age Group Log Odds Ratio Odds compared to 65-69

Intercept -0.3582 -
70-74 0.1263 13.46%
75-79 0.4389 55.10%
80-84 0.7609 114.02%
85-89 1.2366 244.39%
90-94 1.8219 518.36%
95+ 2.2298 829.80%

Table 5.11: The log odds ratios for age group category after running the logistic
regression model. The odds compared to the 65-69 age group are also provided.

The intercept is also known as the reference category, which in this instance is the
age group ‘65-69’. If we compare the reference group to the ‘70-79’ category and
perform, e0.1263, a result of 1.1346 is produced. This shows that patients in the
‘70-74’ age group have a 13.46% higher chance of being admitted overnight. There
is an 829.80% higher chance of 95+ year old patient being admitted compared to
those aged between 65 and 69. Table C.5 in the Appendix contains the log odds
ratios for all categorical variables with the exception of diagnosis due to the large
number of variables.

5.3.3 Classification and Regression Trees

The variables analysed within subsections 5.3.1 and 5.3.2 can then be inputted into
CART models to predict patients LOS within hospitals. Diagnosis will be used
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instead of the ‘ICD10 - first letter’ since both linear and logistic regression results
produced a higher result. Similarly, the number of scans rather than whether a
person had a scan (Scan Y/N), will be used. Age and age group will be investigated
for their impact on the CART model. To determine the effect of using a frailty
measure, continuous and grouped frailty will be compared against not using a frailty
score within the model.

5.3.3.1 Regression Trees

This section will look at the development and results of the regression trees, analysing
continuous LOS. A total of nine variables will be used within the model, listed as
follows:

• Admission Method

• Admission Source

• Age (Continuous and Grouped)

• Day

• Diagnosis

• Frailty (None, Continuous and
Grouped)

• Hospital

• Number of Scans

• Specialty

Month was excluded from the regression model since in the linear regression model
the R2 was calculated to be zero and therefore did not account for any of the
variability in patients LOS.

A 20% test set was used, meaning the data is trained on 80% of the data. Using
the Python algorithm discussed in Section 3.4.3, Table 5.12 displays the parameters
inputted into the model. The parameters ‘min samples leaf’ and ‘max leaf nodes’
will undergo testing to determine the trade off between R2 score and computation
time.

Parameters DecisionTreeRegressor

criterion “squared error”
splitter “best”
max depth None
min samples split 2
min weight fraction leaf 0
max features None
random state None
min impurity decrease 0
ccp alpha 0

Table 5.12: The parameters used within the regression tree model using the ‘Deci-
sionTreeRegressor’ algorithm within Python.

Tables 5.13a - 5.18b display the R2 score and computation time for a range of
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‘max leaf nodes’ and ‘min samples leaf’ variables. The variable ‘max leaf nodes’
was evaluated on a range from five to 30 leaf nodes. Larger values were not selected
to ensure a usable number of groups were identified. The variable ‘min samples leaf’,
was investigated from one sample to 500 samples. By having a minimum number of
samples per leaf, in theory, will reduce the likelihood of overfitting. Computation
time was also collected to determine if there was a trade off between R2 and time
to run the model.

The highest R2 score of 34.28% was attained in the regression tree using grouped age
and continuous frailty (Table 5.17a). This was achieved using 100 minimum samples
per leaf and 30 maximum leaf nodes. However, in comparison to other models,
it produced a longer computation run time of 26.9786 seconds (Table 5.17b). If
analysing the grouped age and continuous frailty models, by reducing R2 by 0.05%,
approximately 6.9 seconds can be saved by increasing the number of minimum
samples per leaf to 200.

Within Table 5.18a, 30 maximum leaf nodes and 100 minimum samples per leaf
also produced an R2 score of 34.23%, with a computational time of 18.5107 seconds.
This combination was selected as the optimum and will be used going forward as it
produces a large R2 score with low computation time.

The R2 scores all range between 29.25% to 34.28%, due to the large range of LOS’s
within the data. The range of LOS was between zero days and 417 days, and an R2

score of 34%, shows 34% of the time we are able to correctly assign patients to the
correct node, despite this large range. These leaf nodes will be able to be used to
group patients accordingly to LOS.
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min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.2925 0.2925 0.2925 0.2925 0.2925 0.2925
10 0.3224 0.3224 0.3224 0.3190 0.3190 0.3190
15 0.3328 0.3328 0.3328 0.3322 0.3322 0.3250
20 0.3362 0.3384 0.3384 0.3374 0.3374 0.3286
25 0.3377 0.3408 0.3408 0.3393 0.3392 0.3301
30 0.3375 0.3416 0.3410 0.3395 0.3407 0.3304

(a) R2 score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 9.5668 9.8238 9.7276 8.5625 8.5016 8.8017
10 13.9514 12.0725 11.9836 11.9235 13.9066 12.6438
15 14.4875 14.2050 16.7100 14.2829 14.5327 14.8251
20 16.7751 17.9756 16.5835 15.8724 15.6849 14.9515
25 17.8356 18.2084 16.8472 16.8951 17.8183 18.5711
30 19.5540 19.1484 19.1552 18.5376 19.4121 19.6245

(b) Computational time in seconds (s)..

Table 5.13: The regression tree results for the R2 (a) and computational time (b) for continuous age and no frailty.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.2925 0.2925 0.2925 0.2925 0.2925 0.2925
10 0.3224 0.3224 0.3224 0.3190 0.3190 0.3190
15 0.3328 0.3328 0.3328 0.3322 0.3322 0.3250
20 0.3362 0.3381 0.3381 0.3381 0.3381 0.3294
25 0.3389 0.3412 0.3412 0.3391 0.3396 0.3308
30 0.3383 0.3420 0.3422 0.3393 0.3410 0.3308

(a) R2 score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 8.9660 9.1705 8.7471 8.4058 8.7663 8.4657
10 12.9853 12.1247 11.7582 11.6642 15.0279 12.1618
15 13.4786 13.3782 16.3377 14.3459 15.3793 17.0997
20 16.8013 18.5770 17.1018 15.8003 16.1066 20.7639
25 18.3142 17.3414 17.3936 17.6433 25.1619 17.0871
30 19.5150 18.2041 19.6589 18.7183 20.5239 19.4184

(b) Computational time in seconds (s).

Table 5.14: The regression tree results for the R2 (a) and computational time (b) for continuous age and continuous frailty.
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min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.2925 0.2925 0.2925 0.2925 0.2925 0.2925
10 0.3224 0.3224 0.3224 0.3190 0.3190 0.3190
15 0.3328 0.3328 0.3328 0.3322 0.3322 0.3250
20 0.3362 0.3384 0.3384 0.3379 0.3379 0.3291
25 0.3387 0.3409 0.3409 0.3394 0.3393 0.3305
30 0.3380 0.3416 0.3421 0.3395 0.3408 0.3306

(a) R2 score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 9.5461 13.3577 10.0347 14.3069 15.3515 10.3998
10 12.8929 17.2952 13.9642 13.3573 19.6081 17.3906
15 15.0100 20.8186 15.0045 14.3649 17.6949 19.1605
20 18.6414 17.8904 17.3192 18.0861 18.5902 15.8897
25 24.3819 19.3318 18.1902 19.8152 19.1655 17.1851
30 30.6406 24.9834 19.9453 27.4008 24.1919 19.1556

(b) Computational time in seconds (s).

Table 5.15: The regression tree results for the R2 (a) and computational time (b) for continuous age and grouped frailty.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.2925 0.2925 0.2925 0.2925 0.2925 0.2925
10 0.3208 0.3208 0.3208 0.3194 0.3194 0.3194
15 0.3320 0.3208 0.3320 0.3320 0.3320 0.3236
20 0.3347 0.3379 0.3379 0.3369 0.3369 0.3292
25 0.3360 0.3407 0.3407 0.3392 0.3388 0.3297
30 0.3364 0.3418 0.3420 0.3403 0.3400 0.3309

(a) R2 score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 11.6459 10.0844 12.8503 11.3010 12.5443 9.3685
10 14.0654 17.3290 12.4793 17.8037 17.7200 14.2252
15 15.5847 19.5658 13.5358 19.3913 15.1067 18.1730
20 22.4814 27.2284 20.0218 24.0735 19.1546 19.2974
25 20.0251 22.6745 23.6449 23.4709 24.0338 22.2256
30 23.8315 24.2733 23.7499 26.3434 20.2900 23.4050

(b) Computational time in seconds (s).

Table 5.16: The regression tree results for the R2 (a) and computational time (b) for grouped age and no frailty.
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min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.2925 0.2925 0.2925 0.2925 0.2925 0.2925
10 0.3208 0.3208 0.3208 0.3194 0.3194 0.3194
15 0.3320 0.3208 0.3320 0.3320 0.3320 0.3236
20 0.3286 0.3384 0.3384 0.3377 0.3377 0.3294
25 0.3321 0.3417 0.3417 0.3403 0.3397 0.3309
30 0.3314 0.3428 0.3423 0.3402 0.3409 0.3322

(a) R2 score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 10.3076 13.7601 13.3941 10.3015 10.1157 10.4414
10 18.1097 18.2357 20.2272 21.7858 12.6390 13.9807
15 21.0192 23.0711 22.7380 18.9120 17.9297 23.8506
20 21.2881 28.4333 23.5638 18.9010 20.4316 25.3724
25 22.5401 25.8047 25.5739 22.0894 20.1581 23.0146
30 28.5686 26.9786 20.1018 20.8679 22.5167 25.4133

(b) Computational time in seconds (s).

Table 5.17: The regression tree results for the R2 (a) and computational time (b) for grouped age and continuous frailty.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.2925 0.2925 0.2925 0.2925 0.2925 0.2925
10 0.3208 0.3208 0.3208 0.3194 0.3194 0.3194
15 0.3320 0.3208 0.3320 0.3320 0.3320 0.3236
20 0.3342 0.3381 0.3381 0.3374 0.3374 0.3291
25 0.3318 0.3414 0.3414 0.3399 0.3393 0.3306
30 0.3311 0.3423 0.3421 0.3401 0.3405 0.3313

(a) R2 score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 11.4307 16.4057 12.4373 15.8219 15.7179 9.3838
10 13.6344 18.4423 24.6463 12.5033 19.6957 18.3607
15 16.6546 19.4606 20.0820 13.6390 19.6694 15.4206
20 18.2777 22.8429 23.1844 16.9840 25.4143 16.9038
25 20.9142 19.2554 24.9062 18.5972 20.5371 17.8328
30 25.1081 18.5107 27.9524 26.3307 20.3707 23.5998

(b) Computational time in seconds (s).

Table 5.18: The regression tree results for the R2 (a) and computational time (b) for grouped age and grouped frailty.
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Figure 5.6 displays the regression tree visualisation with R2 of 34.23%. The results
display the most important determination of LOS is ‘admission method Other -
transferred from another hospital’. Due to the one-hot encoding of variables, if this
value is zero, the patient had a different admission method and the reader would
move to the left hand side of the tree. The ‘value’ on the nodes denotes the predicted
LOS in days.

The model produced a total of 30 leaf nodes and therefore contains 30 groupings
of patients with different LOS’s. The LOS’s are given in days, with the number of
samples that fall into this category. The average demand can then be calculated
using Equation (5.7):

Average daily bed demand = Average LOS × count
Total number of days (5.7)

For example, if we take the patients who have the admission method of being trans-
ferred from another hospital and are admitted to NHH. To determine how a patient’s
LOS varies, the specialty rehabilitation results in a difference of 17.835 days. Using
Equation (5.7), an average of 6.2 beds should be available per day. For the remain-
ing specialties offered by NHH, 5.94 beds should be planned in total per day. This
highlights the small but important difference in bed numbers. It should be noted
that additional beds will be added to NHH, through the left hand side of the tree.
However, adding these individual nodes together will create a more precise picture
of the actual demands faced by the health board.
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Is admission_method ≠ Other - transferred from another hospital? 

mse = 174.76

samples = 132094
LOS = 6.378

Is admission_method ≠ Elec�ve_wai�ng list?
mse = 96.783

samples = 121320
LOS = 4.682

Is hospital ≠ Ysbyty Ystrad Fawr?
mse = 25.221

samples = 7620
LOS = 3.016

Is specialty ≠ Trauma & Orthopaedic?
mse = 10.043

samples = 58766
LOS = 0.742

mse = 6.897
samples = 51146

LOS = 0.403

mse = 28.158
samples = 6391

LOS = 3.563

mse = 0.282

samples = 1229
LOS = 0.168

Is hospital ≠ Ysbyty Aneurin Bevan?

mse = 701.327
samples = 8182

LOS = 29.559

Is hospital ≠ Nevill Hall Hospital?
mse = 687.722
samples = 8967

LOS = 28.455

Is admission_method ≠ Elec�ve - booked?
mse = 149.985

samples = 62554

LOS = 8.383

mse = 4.19
samples = 4779

LOS = 0.246

Is specialty ≠ Accident & Emergency?

mse = 156.116
samples = 57775

LOS = 9.056

mse = 98.555
samples = 6784

LOS = 7.353

Is hospital ≠ Ysbyty Ystrad Fawr?
mse = 163.568

samples = 52102
LOS = 9.847

Is FrailtyGroup ≠2?
mse = 449.943

samples = 3710
LOS = 15.391

Is Age_group ≠ 90-94?

mse = 370.747
samples = 2889

LOS = 13.981

mse = 696.998
samples = 821

LOS = 20.353

mse = 425.075

samples = 281
LOS = 19

mse = 361.887

samples = 2608
LOS = 13.44

Is Age_group ≠ 65-69?
mse = 139.076

samples = 48392
LOS = 9.422

Is Age_group ≠ 70-74?
mse = 144.872

samples = 41608
LOS = 9.759

Is specialty ≠ Trauma & Orthopaedic?
mse = 150.088

samples = 33011

LOS = 10.259

mse = 120.194
samples = 8597

LOS = 7.839

mse = 128.379
samples = 8464

LOS = 8.831

Is Age_group ≠ 75-79?
mse = 144.654

samples = 29507
LOS = 9.901

Is specialty ≠ Care Of The Elderly?
mse = 150.554

samples = 21043
LOS = 10.331

mse = 162.806

samples = 6917
LOS = 11.393

mse = 143.732

samples = 14126
LOS = 9.811

Is hospital ≠ St Woolos Acute Hospital?
mse = 25.221

samples = 7620
LOS = 3.016

Is hospital ≠ Royal Gwent Hospital?
mse = 655.588

samples = 10774

LOS = 25.479

mse = 103.244
samples = 233

LOS = 6.906

Is specialty ≠ General Surgery?

mse = 250.859
samples = 1574

LOS = 11.27

Is specialty ≠ Trauma & Orthopaedic?
mse = 220.962
samples = 1407

LOS = 10.475

mse = 187.372
samples = 1257

LOS = 9.714

mse = 456.912
samples = 150
LOS = 16.853

mse = 452.621

samples = 167
LOS = 17.964

Is specialty ≠ Care Of The Elderly?
mse = 762.617
samples = 5666

LOS = 32.113

mse = 515.518
samples = 2516

LOS = 23.806

Is hospital ≠ County Hospital?
mse = 707.576

samples = 774
LOS = 24.873

Is specialty ≠ Diabetes And Endocrinology?
mse = 761.721
samples = 4892

LOS = 33.258

mse = 688.961
samples = 249

LOS = 30.084

mse = 697.418
samples = 525

LOS = 22.402

mse = 521.829
samples = 250

LOS = 20.428

Is specialty ≠ Rehabilita�on?
mse = 765.298

samples = 4642
LOS = 33.949

mse = 1055.614

samples = 2912
LOS = 38.633

Is hospital ≠ Chepstow Community Hospital?
mse = 687.64

samples = 3730

LOS = 32.804

Is hospital ≠ Ysbyty Ystrad Fawr?

mse = 654.353
samples = 3358

LOS = 33.293

Is admission_source ≠ Same Trust-General or young phys.diasbled?
mse = 617.484

samples = 2607
LOS = 31.45

mse = 964.432

samples = 372
LOS = 37.422

mse = 771.313
samples = 751
LOS = 35.218

mse = 705.509

samples = 961
LOS = 33.485

mse = 562.263
samples = 1646

LOS = 30.262

mse = 185.667
samples = 3504

LOS = 13.276

mse = 2.2428
samples = 1340

LOS = 0.192

Is specialty ≠ Rehabilita�on?
mse = 400.98

samples = 785
LOS = 16.955

mse = 193.606
samples = 555

LOS = 11.73

mse = 676.481

samples = 230
LOS = 29.565

Is admission_method ≠ Elec�ve - planned?

mse = 161.807
samples = 53442

LOS = 9.605

mse = 36.414

samples = 4333
LOS = 2.288

mse = 28.158

samples = 6391
LOS = 3.563
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Figure 5.6: Regression tree with an R2 of 34.23% for predicting continuous LOS for patients within ABUHB, consisting of 30 terminal nodes.
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5.3.3.2 Classification Trees

This section discusses the development and results of the classification trees, analysing
grouped LOS into patients who are discharged on the same day as arrival and those
who are admitted overnight. A total of 10 variables will be used within the model,
listed as follows:

• Admission Method

• Admission Source

• Age (Continuous and Grouped)

• Day

• Diagnosis

• Frailty (None, Continuous and
Grouped)

• Hospital

• Month

• Number of Scans

• Specialty

Unlike regression trees, the month was included within the model as the accuracy
score produced was greater than zero and could provide some benefit in being used
within the model.

Again, an 80% training set and a 20% test set were used to build and develop the
model. Using the ‘DecisionTreeClassifier’ algorithm within Python as discussed in
Section 3.4.4, the following parameters were selected for the model (Table 5.19).
The parameters ‘min samples leaf’ and ‘max leaf nodes’ will be investigated to de-
termine the combination which yields the highest accuracy, precision and recall
scores against the computational time.

Parameters DecisionTreeClassifier

criterion “gini”
splitter “best”
max depth None
min samples split 2
min weight fraction leaf 0
max features None
random state None
min impurity decrease 0
class weight None
ccp alpha 0

Table 5.19: The parameters used within the classification tree using the ‘Decision-
TreeClassifier’ algorithm within Python.

The accuracy scores for each of the six experiments range from 88.46% to 89.89%, a
difference between 1.43% (Tables 5.20a - 5.25d). This shows regardless of frailty and
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age classification, the difference is minimal between a range of different minimum
samples per leaf and the maximum number of leaf nodes. The precision has a
range of 4.41%, from 84.75% to 89.16%. Comparing the accuracy to precision
result, the highest values for each do not occur in the same ‘min samples leaf’ and
‘max leaf nodes’ combination. For example, comparing Table 5.20a with Table
5.20b, accuracy yielded the highest result with one minimum sample per leaf and 30
maximum leaf nodes. The highest precision results were recorded with 15 maximum
leaf nodes and either 400 or 500 minimum samples per leaf. The recall scores
produced the largest result in the same combination as the accuracy scores (largest
maximum leaf nodes and smallest minimum samples per leaf), however, it produced
the lowest score in the same location as the precision. Comparing the 400 minimum
samples per leaf and 15 maximum leaf nodes suggests that FN > FP. In terms of
healthcare, this means patients are predicted to have short LOS’s whereas, in reality,
they have longer LOS’s. Therefore, even though more costly as extra resources will
be planned, it is beneficial to plan beds and not require them. This means the
optimal solution should prioritise the recall score over the precision.

The optimum combination was selected to be one minimum sample per leaf with 30
maximum leaf nodes, using continuous age and continuous frailty (Tables 5.21a -
5.21d). This produced the highest accuracy and recall score, whilst also producing
the lowest computational time out of the combination.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846
10 0.8913 0.8913 0.8913 0.8913 0.8913 0.8913
15 0.8950 0.8950 0.8950 0.8950 0.8925 0.8925
20 0.8956 0.8956 0.8950 0.8950 0.8936 0.8936
25 0.8977 0.8976 0.8962 0.8963 0.8936 0.8939
30 0.8989 0.8987 0.8968 0.8968 0.8939 0.8937

(a) Accuracy score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8475 0.8475 0.8475 0.8475 0.8475 0.8475
10 0.8645 0.8645 0.8645 0.8645 0.8645 0.8645
15 0.8643 0.8643 0.8643 0.8643 0.8916 0.8916
20 0.8641 0.8641 0.8643 0.8643 0.8844 0.8844
25 0.8637 0.8617 0.8598 0.8594 0.8844 0.8804
30 0.8570 0.8617 0.8611 0.8635 0.8804 0.8731

(b) Precision score.
min samples leaf

1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944
10 0.8941 0.8941 0.8941 0.8941 0.8941 0.8941
15 0.8941 0.9019 0.9019 0.9019 0.8755 0.8755
20 0.9033 0.9033 0.9019 0.9019 0.8829 0.8829
25 0.9080 0.9094 0.9081 0.9088 0.8829 0.8865
30 0.9163 0.9117 0.9083 0.9061 0.8865 0.8919

(c) Recall score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 9.1109 8.3105 8.2769 8.7439 13.1439 10.0509
10 11.5346 11.6610 11.6360 12.0482 18.4817 13.7823
15 14.8981 13.3688 14.2424 14.0589 16.0018 17.7209
20 17.1809 16.0233 16.2691 21.6318 18.7793 19.5191
25 17.3070 17.6209 17.1829 22.8581 21.2422 20.4255
30 18.0397 17.7756 18.9454 21.1663 21.4531 22.0665

(d) Computational time in seconds (s).

Table 5.20: The classification tree results for accuracy score (a), precision score (b),
recall score (c) and computational time (d) for continuous age and no frailty.

Figure 5.7 displays the classification tree visualisation with an accuracy score of
89.89%, a precision score of 85.70% and a recall score of 91.63%. The tree shows
the most important factor to determine whether a patient will be admitted overnight
is the ‘admission method elective - waiting list’. If a patient was admitted via this
method, then they are more likely to be discharged on the same day. The class
displayed on the node represents the highest quantity of patients. The colours
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min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846
10 0.8913 0.8913 0.8913 0.8913 0.8913 0.8913
15 0.8950 0.8950 0.8950 0.8950 0.8925 0.8925
20 0.8956 0.8956 0.8950 0.8950 0.8925 0.8925
25 0.8977 0.8976 0.8962 0.8963 0.8936 0.8939
30 0.8989 0.8987 0.8968 0.8968 0.8941 0.8939

(a) Accuracy score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8475 0.8475 0.8475 0.8475 0.8475 0.8475
10 0.8645 0.8645 0.8645 0.8645 0.8645 0.8645
15 0.8643 0.8643 0.8643 0.8643 0.8916 0.8916
20 0.8641 0.8641 0.8643 0.8643 0.8916 0.8916
25 0.8637 0.8617 0.8598 0.8594 0.8844 0.8804
30 0.8570 0.8617 0.8611 0.8635 0.8812 0.8804

(b) Precision score.
min samples leaf

1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944
10 0.8941 0.8941 0.8941 0.8941 0.8941 0.8941
15 0.9019 0.9019 0.9019 0.9019 0.8755 0.8755
20 0.9033 0.9033 0.9019 0.9019 0.8755 0.8755
25 0.9080 0.9094 0.9081 0.9088 0.8829 0.8865
30 0.9163 0.9117 0.9083 0.9061 0.8863 0.8865

(c) Recall score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 7.8660 7.8724 7.9036 10.9756 7.9045 8.0315
10 10.7175 11.0817 10.9410 13.6632 11.7000 11.1358
15 12.9169 12.8437 12.6717 16.5188 13.4148 12.7473
20 15.1352 14.7659 14.7613 16.1299 15.6667 14.9961
25 16.1773 15.0654 15.7308 16.7057 18.3250 16.5215
30 16.7448 16.9692 17.1850 17.7688 16.7887 17.6103

(d) Computational time in seconds (s).

Table 5.21: The classification tree results for accuracy score (a), precision score
(b), recall score (c) and computational time (d) for continuous age and continuous
frailty.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846
10 0.8913 0.8913 0.8913 0.8913 0.8913 0.8913
15 0.8950 0.8950 0.8950 0.8950 0.8925 0.8925
20 0.8956 0.8956 0.8950 0.8950 0.8925 0.8925
25 0.8977 0.8976 0.8962 0.8963 0.8936 0.8936
30 0.8989 0.8987 0.8968 0.8968 0.8941 0.8941

(a) Accuracy score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8475 0.8475 0.8475 0.8475 0.8475 0.8475
10 0.8645 0.8645 0.8645 0.8645 0.8645 0.8645
15 0.8643 0.8643 0.8643 0.8643 0.8916 0.8916
20 0.8641 0.8641 0.8643 0.8643 0.8916 0.8916
25 0.8637 0.8617 0.8598 0.8594 0.8844 0.8844
30 0.8570 0.8617 0.8611 0.8635 0.8810 0.8844

(b) Precision score.
min samples leaf

1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944
10 0.8941 0.8941 0.8941 0.8941 0.8941 0.8941
15 0.9019 0.9019 0.9019 0.9019 0.8755 0.8755
20 0.9033 0.9033 0.9019 0.9019 0.8755 0.8755
25 0.9080 0.9094 0.9081 0.9088 0.8829 0.8829
30 0.9163 0.9117 0.9083 0.9061 0.8865 0.8829

(c) Recall score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 8.3217 8.5695 8.8101 8.8153 11.3366 25.3592
10 11.3205 11.6050 11.8029 12.3844 14.7207 17.2309
15 13.5908 13.5596 13.6742 13.7826 20.0681 16.4461
20 15.5900 15.6141 15.9532 15.9093 20.6382 20.5908
25 16.5625 16.1451 16.9353 17.2625 19.2398 19.6446
30 17.8176 17.5732 18.1772 19.2464 25.3592 22.3077

(d) Computational time in seconds (s).

Table 5.22: The classification tree results for accuracy score (a), precision score (b),
recall score (c) and computational time (d) for continuous age and grouped frailty.

of the node symbolise the weighting within the group, with the darkest orange
representing discharge on the same day (<1) and the darkest blue representing
admittance overnight (≥1). There are 16 leaf nodes representing the ‘≥ 1’ class,
with one node generating a gini of zero, and therefore is a perfect classification.

The model produced 30 leaf nodes, displaying the class of patient, the majority fall
into. The user is then able to analyse the individual results within the nodes to
determine the average LOS’s. They are able to achieve this by taking the individual
patient clusters from the nodes and analysing them separately. Additionally, when
new patients are admitted to a ward, they are able to determine at the point of
arrival with their characteristics, what their expected LOS should be. This is also
beneficial to determine where targets of being discharged on the same day of ad-
mission are not being met, for example, surgical cases. It also displays influencing
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min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846
10 0.8913 0.8913 0.8913 0.8913 0.8913 0.8913
15 0.8950 0.8950 0.8950 0.8950 0.8925 0.8925
20 0.8956 0.8956 0.8956 0.8956 0.8936 0.8939
25 0.8977 0.8976 0.8962 0.8963 0.8936 0.8939
30 0.8989 0.8987 0.8968 0.8968 0.8939 0.8937

(a) Accuracy score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8475 0.8475 0.8475 0.8475 0.8475 0.8475
10 0.8645 0.8645 0.8645 0.8645 0.8645 0.8645
15 0.8643 0.8643 0.8643 0.8643 0.8916 0.8916
20 0.8641 0.8641 0.8643 0.8643 0.8944 0.8944
25 0.8637 0.8617 0.8598 0.8594 0.8844 0.8804
30 0.8570 0.8617 0.8611 0.8635 0.8804 0.8731

(b) Precision score.
min samples leaf

1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944
10 0.8941 0.8941 0.8941 0.8941 0.8941 0.8941
15 0.9019 0.9019 0.9019 0.9019 0.8755 0.8755
20 0.9033 0.9033 0.9019 0.9019 0.8829 0.8829
25 0.9080 0.9094 0.9081 0.9088 0.8829 0.8865
30 0.9163 0.9117 0.9083 0.9061 0.8865 0.8819

(c) Recall score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 9.0003 9.1338 8.0463 7.9693 8.0229 7.9960
10 11.8935 12.6970 11.2224 11.1074 11.3092 11.2887
15 13.8198 13.0589 13.0067 13.5755 13.3384 13.1068
20 16.3988 15.6034 14.9843 15.0497 15.4588 15.3504
25 20.8890 15.9613 16.0429 17.0717 16.3030 16.8512
30 24.0505 18.3618 17.5238 17.6762 17.7605 17.3051

(d) Computational time in seconds (s).

Table 5.23: The classification tree results for accuracy score (a), precision score (b),
recall score (c) and computational time (d) for grouped age and no frailty.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846
10 0.8913 0.8913 0.8913 0.8913 0.8913 0.8913
15 0.8950 0.8950 0.8950 0.8950 0.8925 0.8925
20 0.8956 0.8956 0.8950 0.8950 0.8925 0.8925
25 0.8977 0.8976 0.8962 0.8963 0.8936 0.8939
30 0.8989 0.8987 0.8968 0.8968 0.8941 0.8939

(a) Accuracy score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8475 0.8475 0.8475 0.8475 0.8475 0.8475
10 0.8645 0.8645 0.8645 0.8645 0.8645 0.8645
15 0.8643 0.8643 0.8643 0.8643 0.8916 0.8916
20 0.8641 0.8641 0.8643 0.8643 0.8916 0.8916
25 0.8637 0.8617 0.8598 0.8594 0.8844 0.8804
30 0.8570 0.8617 0.8611 0.8635 0.8812 0.8804

(b) Precision score.
min samples leaf

1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944
10 0.8941 0.8941 0.8941 0.8941 0.8941 0.8941
15 0.9019 0.9019 0.9019 0.9019 0.8755 0.8755
20 0.9033 0.9033 0.9019 0.9019 0.8755 0.8755
25 0.9080 0.9094 0.9081 0.9088 0.8829 0.8865
30 0.9163 0.9117 0.9083 0.9061 0.8863 0.8865

(c) Recall score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 9.0269 8.7352 9.0878 8.5125 8.1122 8.6958
10 12.0635 12.2949 12.1766 11.5033 12.1410 12.7141
15 13.8758 14.2554 14.4314 13.3940 14.7385 15.0438
20 16.0829 15.9826 15.1769 15.3548 17.0093 17.0980
25 16.9550 17.4665 16.3701 16.8606 18.1321 20.0174
30 18.0005 18.0719 18.6015 18.0826 18.6726 19.3604

(d) Computational time in seconds (s).

Table 5.24: The classification tree results for accuracy score (a), precision score (b),
recall score (c) and computational time (d) for grouped age and continuous frailty.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8846 0.8846 0.8846 0.8846 0.8846 0.8846
10 0.8913 0.8913 0.8913 0.8913 0.8913 0.8913
15 0.8950 0.8950 0.8950 0.8950 0.8925 0.8925
20 0.8956 0.8956 0.8950 0.8950 0.8925 0.8925
25 0.8977 0.8976 0.8962 0.8963 0.8936 0.8936
30 0.8989 0.8987 0.8968 0.8968 0.8941 0.8936

(a) Accuracy score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8475 0.8475 0.8475 0.8475 0.8475 0.8475
10 0.8645 0.8645 0.8645 0.8645 0.8645 0.8645
15 0.8643 0.8643 0.8643 0.8643 0.8916 0.8916
20 0.8641 0.8641 0.8643 0.8643 0.8916 0.8916
25 0.8637 0.8617 0.8598 0.8594 0.8844 0.8844
30 0.8570 0.8617 0.8611 0.8635 0.8810 0.8844

(b) Precision score.
min samples leaf

1 100 200 300 400 500

m
ax

le
af

no
de

s 5 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944
10 0.8941 0.8941 0.8941 0.8941 0.8941 0.8941
15 0.9019 0.9019 0.9019 0.9019 0.8755 0.8755
20 0.9033 0.9033 0.9019 0.9019 0.8755 0.8755
25 0.9080 0.9094 0.9081 0.9088 0.8829 0.8829
30 0.9163 0.9117 0.9083 0.9061 0.8865 0.8829

(c) Recall score.

min samples leaf
1 100 200 300 400 500

m
ax

le
af

no
de

s 5 8.9117 8.9096 10.8248 9.9785 8.8351 10.1257
10 12.1086 12.1666 13.6021 14.9230 12.3419 12.3234
15 14.0532 17.2649 16.1410 16.0983 14.5993 13.8329
20 16.5178 17.3444 21.1871 17.1917 17.0247 15.6259
25 17.5062 19.6158 19.7483 17.1917 17.5036 16.7736
30 17.9821 20.0913 19.3814 19.3519 18.2937 17.5289

(d) Computational time in seconds (s).

Table 5.25: The classification tree results for accuracy score (a), precision score (b),
recall score (c) and computational time (d) for grouped age and grouped frailty.
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factors in LOS. For example, a patient who is admitted through the elective waiting
list to the specialty gynaecology, will have their LOS dependent on the day they
are admitted. If they are admitted on a Monday, they fall into the ‘≥ 1’ class,
otherwise, they fall into the ‘< 1’ class. This can be used to help practitioners plan
elective admission and when they should be admitted in order to reduce unexpected
and prolonged LOS’s.
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Is admission_method ≠ Elec�ve - wai�ng list?
gini = 0.496

samples = 132094
value = [60128, 71966]

class = ≥1 day

Is admission_method ≠ Elec�ve - booked?
gini = 0.267

samples = 73328

value = [11613, 61715]

class = ≥1 day

Is admission_method ≠ Elec�ve - planned?
gini = 0.184

samples = 68549

value = [7036, 61513]
class = ≥1 day

Is specialty ≠ Accident & Emergency?
gini = 0.156

samples = 67209
value = [5742, 61467]

class = ≥1 day

Is specialty ≠ General Medicine?

gini = 0.116
samples = 62861

value = [3894, 58967]
class = ≥1 day

gini = 0.096
samples = 52520

value = [2652, 49868]
class = ≥1 day

gini = 0.211
samples = 10341

value = [1242, 9099]

class = ≥1 day

gini = 0.489

samples = 4348
value = [1848, 2500]

class = ≥1 day

Is specialty ≠ Trauma & Orthopaedic?
gini = 0.066

samples = 1340
value = [1294, 46]

class = <1 day

gini = 0.026

samples = 1306
value = [1289, 17]

class = <1 day

Is specialty ≠ Trauma & Orthopaedic?
gini = 0.081

samples = 4779
value = [4577, 202]

class = <1 day

gini = 0.058
samples = 4696

value = [4555, 141]
class = <1 day

gini = 0.39
samples = 83

value = [22, 61]
class = ≥1 day

gini = 0.251
samples = 34

value = [5, 29]
class = ≥1 day

Is specialty ≠ Trauama & Orthopaedic?
gini = 0.288

samples = 58766
value = [48515, 10251]

class = <1 day

Is specialty ≠ General Surgery?
gini = 0.199

samples = 51146
value = [45410, 5736]

class = <1 day

Is specialty ≠ Urology?
gini = 0.147

samples = 41127
value = [37838, 3289]

class = <1 day

Is specialty ≠ Ear, Nose & Throat?

gini = 0.098
samples = 34748

value = [32968, 1786]

class = <1 day

Is specialty ≠ Gynaecology?
gini = 0.082

samples = 34154

value = [32696, 1458]
class = <1 day

Is specialty ≠ Respiratory?
gini = 0.055

samples = 32669
value = [31745, 924]

class = <1 day

Is Day ≠ 1 

gini = 0.461
samples = 1485

value = [951, 534]
class = <1 day

gini = 0.494
samples = 594

value = [264, 330]
class = ≥1 day

Is hospital ≠ Royal Gwent Hospital?

gini = 0.36
samples = 6379

value = [4878, 1501]
class = <1 day

gini = 0.051
samples = 1078

value = [1050, 28]
class = <1 day

Is Day ≠ 5?

gini = 0.401
samples = 5301

value = [3828, 1473]
class = <1 day

Is diagnosis ≠ Malignant neoplasm: Bladder, unspecified?
gini = 0.447

samples = 3646

value = [2418, 1228]
class = <1 day

gini = 0.252
samples = 1655

value = [1410, 245]
class = <1 day

Is diagnosis ≠ Hyperplasia of prostate?
gini = 0.427

samples = 3344
value = [2312, 1032]

class = <1 day

gini = 0.403

samples = 3065
value = [2209, 856]

class = <1 day

gini = 0.466

samples = 279
value = [103, 176]

class = ≥1 day

gini = 0.44

samples = 1413
value = [951, 462]

class = <1 day

gini = 0.0

samples = 72
value = [0, 72]
class = ≥1 day

gini = 0.043

samples = 31651
value = [30951, 700]

class = <1 day

gini = 0.343

samples = 1018
value = [794, 224]

class = <1 day

gini = 0.456
samples = 302

value = [106, 196]
class = ≥1 day

Is diagnosis ≠ Calculus of gallbladder with other cholecys��s?
gini = 0.369

samples = 10019
value = [7572, 2447]

class = <1 day

Is No_Scans <= 0.5?

gini = 0.353
samples = 9717

value = [7493, 2224]

class = <1 day

Is diagnosis ≠ Diver�cular disease of large 
intes�ne without perfora�on or abscess?

gini = 0.49
samples = 9599

value = [7475, 2124]
class = <1 day

Yes

Is hospital ≠ Ysbyty Ystrad Fawr?
gini = 0.366

samples = 8756

value = [6641, 2115]
class = <1 day

Is diagnosis ≠ Malignant neoplasm: Breast, unspecified?

gini = 0.395
samples = 7355

value = [5359, 1996]

class = <1 day

Is diagnosis ≠ Unilateral or unspecified inguinal 

hernia, without obstruc�on or gangrene?
gini = 0.387

samples = 7177
value = [5297, 1880]

class = <1 day

gini = 0.373
samples = 6807

value = [5121, 1686]

class = <1 day

gini = 0.499
samples = 370

value = [176, 194]

class = ≥1 day

gini = 0.454
samples = 178

value = [62, 116]
class = ≥1 day

gini = 0.155
samples = 1401

value = [1282, 119]
class = <1 day

gini = 0.021
samples = 843

value = [834, 9]
class = <1 day

gini = 0.259
samples = 118

value = [18, 100]
class = ≥1 day

gini = 0.386
samples = 302

value = [79, 223]
class = ≥1 day

Is hospital ≠ Ysbyty Ystrad Fawr?
gini = 0.483

samples = 7620

value = [3105, 4515]
class = ≥1 day

Is diagnosis ≠ Gonarthrosis, unspecified?
gini = 0.434

samples = 6391
value = [2032, 4359]

class = ≥1 day

Yes

Is diagnosis ≠ Coxarthrosis, unspecified?
gini = 0.485

samples = 4740
value = [1958, 2782]

class = ≥1 day

Is diagnosis ≠ Carpal tunnel syndrome?
gini = 0.5

samples = 3602
value = [1850, 1752]

class = <1 day

Is diagnosis ≠ Palmar fascial fibromatosis [Dupuytren]?
gini = 0.49

samples = 9599
value = [7475, 2124]

class = ≥1 day

gini = 0.494
samples = 3105

value = [1379, 1726]
class = ≥1 day

gini = 0.179
samples = 171

value = [154, 17]

class = <1 day

gini = 0.054

samples = 326
value = [317, 9]
class = <1 day

gini = 0.172

samples = 1138
value = [108, 1030]

class = ≥1 day

gini = 0.086
samples = 1651

value = [74, 1577]

class = ≥1 day

gini = 0.222
samples = 1229

value = [1073, 156]
class = <1 day
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Figure 5.7: Classification tree with an accuracy score of 89.89% for predicting grouped LOS for patients within ABUHB, consisting of 30
terminal nodes.
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5.3.3.3 Random Forests

The CART model parameters that yielded the best results, were then implemented
into a random forest model to determine if there was an improvement in these scores.
The highest scoring CART model parameters were used, as these CART models will
be used for the remainder of the research and therefore a direct comparison could
be made in terms of accuracy and computational time.

Parameter RandomForestRegressor RandomForestClassifier

criterion “squared error” “gini”
max depth None None
min samples split 2 2
min samples leaf 100 1
min weight fraction leaf 0 0
max features None None
random state None None
max leaf nodes 30 30
min impurity decrease 0 0
bootstrap True True
oob score False False
n jobs None None
warm start False False
ccp alpha 0 0
max samples None None
class weight N/A None

Table 5.26: The parameters used within the random forests using the ‘Random-
ForestRegressor’ and ‘RandomForestClassifier’ algorithms within Python.

The variable ‘n estimators’ underwent hyperparameter tuning to determine the
value that produced the highest scores. This variable determines the number of
trees to be used within the model. Typically in random forests, the larger the num-
ber of trees, the better the result produced, however, the higher the computational
cost [270]. A range from 10 to 50 estimators were investigated, in increments of 10,
to determine R2 and accuracy against computational time.

n estimators 10 20 30 40 50

Regression R2 Score 0.342912 0.342917 0.343148 0.343291 0.343171
Computational Time (s) 130.80 260.13 390.63 535.95 655.92

Classification Accuracy 0.883539 0.887809 0.8892296 0.890443 0.890928
Computational Time (s) 16.58 19.37 27.72 36.87 37.88

Table 5.27: The accuracy and R2 score for the regression and classification ran-
dom forest models, measured against the n estimator parameter, respectively. Each
model’s computational runtime was additionally provided.

Table 5.27 displays the random forest results for the regression and classification
experiments. The regression random forest increased the regression tree R2 by
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0.0491% from 34.28%. This was achieved by setting ‘n estimators’ to 40, in a
computational time of 535.95 seconds. Since there is only an increase of 0.0491%
and a computational increase of 508.9714 seconds, the trade off is not worth the
additional increase in accuracy.

Additionally, the classification random forest did not improve the accuracy of the
model compared to the classification tree. There is a difference of 0.8% in accuracy
levels. One explanation for this phenomenon could be the optimal parameters for
the random forest are not the same as those for the classification tree.

5.3.4 Predictive Analytics Summary

This section has discussed the application of predictive analytics to data within
ABUHB. Linear and logistic regressions were firstly performed, detailing the influ-
ence of a variable for the variability in the LOS. Admission method, diagnosis and
specialty categories were the most influencing factors in the LOS.

Regression trees were developed to identify groupings of patients in order to predict
continuous LOS. Figure 5.6 displays the different groupings and classifications of
patients LOS, with the average LOS for each group. A total of 30 groups were
identified due to the ‘max leaf nodes’ being equal to 30. This resulted in an R2

value of 34.23%.

Classification trees were then built with the groupings of discharged on the day
of arrival or admitted overnight (Figure 5.7). The best trade off solution between
accuracy, precision, recall and computational time, was 30 ‘max leaf nodes’ and one
‘min samples leaf’, yielding an accuracy score of 89.89%. Comparing the classifica-
tion to regression trees showed there to be a 55.66% improvement by grouping LOS
into two groups.

CART models excel in face validity and usefulness, primarily due to their inter-
pretability compared to other prediction methods [271, 272]. The tree structure
allows straightforward visualisation of decision-making pathways, making it easier
for healthcare practitioners and managers to comprehend and trust the model’s
output. Furthermore, CART offers the advantage of forced splits, allowing collab-
oration with healthcare practitioners to jointly determine clinical and statistically
meaningful groupings. This ensures the model aligns with real-world scenarios and
policy levers. Another benefit of CART is the ability to create targeted groupings,
providing valuable insights into specific demographics. If the user wanted fewer
numbers of patient groupings to work with, the technique of pruning could be used
to selectively remove branches or nodes from the initial tree to simplify its structure.

CART was utilised as a predictive tool by applying it solely to historical data. In
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this context, the model was designed to predict outcomes based on patterns and
relationships found within the past data. By using the historical data as the training
set, the CART model identified decision rules and splits that best separated different
groups or categories, enabling it to make predictions of LOS for new instances in
the future. This approach ensured that the CART model served as a valuable
predictive tool for understanding and anticipating events based on past trends.
Chapter 6 will involve future scenario analysis, where the CART LOS prediction
tool will be utilised to assess the impact of potential increases in certain patient
grouping demands on LOS, bed requirements, and staffing. By applying the CART
model to project future patient groupings and LOS, the study aims to evaluate how
changing demands could influence resource needs within the healthcare system.

The consideration of runtime in building a CART model is justified by the need for
computational efficiency, especially when the model is intended for frequent use or
real-time decision-making scenarios. By prioritising faster run times, organisations
can obtain timely predictions and optimise resource allocation efficiently, which is
crucial in time-sensitive applications, such as healthcare. The runtime of a CART
model can be compared to more complex models, i.e., random forests. While ran-
dom forests can often achieve higher accuracy due to their ensemble nature, they
come at the cost of increased computational requirements. Random forests consist
of multiple decision trees, and the process of building and combining these trees can
be computationally intensive, particularly for large data sets. This computational
issue has the implication that they are less suitable for real-time or repeated use
applications. The random forests performed in this section were both computation-
ally heavier in performance time and did not cause a large enough increase in the
overall accuracy and R2 scores, compared to the CART models.

The CART models showed improvement in the simple linear and logistic regressions
and therefore highlighted the benefits of using these techniques to predict patient
classifications. The CART models will be linked with the prescriptive models (in-
troduced in Section 5.4), in Chapter 6. Here, an evaluation will take place into the
benefits of using CART models over traditional averages.

5.4 Prescriptive Analytics Results

This section will look at the deterministic and two-stage stochastic models developed
in Chapter 4. The demographics of ABUHB will be used in order to determine the
most efficient way to organise specialties and nursing staff amongst a network of
hospitals.



CHAPTER 5. EXPERIMENTAL ANALYSIS OF THE PREDICTIVE AND
PRESCRIPTIVE MODELS 145

5.4.1 Model Data

The deterministic and two-stage stochastic models require user inputs to generate
results. In total, the deterministic model requires 11 variables, whereas the two-
stage stochastic model requires 17 variables. The collaboration with senior and
clinical partners within ABUHB has provided justification around the assumptions
and values used within these examples. Discussion around the selection of these
variables will take place in Sections 5.4.1.1 to 5.4.1.3. A complete list of the variables
used within the models can be found in Table C.6 for the deterministic model and
Table C.7 for the two-stage stochastic model in the Appendix.

5.4.1.1 Hospitals and Regions

Within ABUHB, there are 10 hospitals located within the five regions as discussed in
Section 1.2. In addition, the data contained an additional four medical sites where
patients receive treatment. It is important to include patients attending these sites
within the model to ensure the entire demand is included and sufficient beds and
staff are planned. Table 5.28 displays the six regions included in the model and
their associated hospitals.

Region Hospitals

Region 1 (Newport) Royal Gwent Hospital (RGH), St Woolos Acute Hospital (STWAH),
St Woolos Community Hospital (STWCH)

Region 2 (Caerphilly) Ysbyty Ystrad Fawr (YYF),
Rhymney Integrated Health and Social Care Centre (RIHSC)

Region 3 (Blaenau Gwent) Ysbyty Aneurin Bevan (YAB)
Region 4 (Torfaen) County Hospital (CH)

Region 5 (Monmouthshire) Nevill Hall Hospital (NHH), Chepstow Community Hospital (CCH),
Monnow Vale Integrated Health and Social Care Centre (MVHSCF)

Other University Hospital of Wales, Offsite, Outsource, Outsource - CareUK

Table 5.28: List of the 14 care locations within ABUHB and their associated regions.

The parameter UBmax, bed, 1st
h was determined from online publicly available data

recorded by the Welsh Government [273]. The Welsh Government record, over a
year period, the average daily beds available for each specialty in each hospital.
Within the 10 main hospitals, a total of 1,704 beds were available per day to the
entire population. Therefore, the maximum number of beds available will be scaled
to represent the proportion of elderly admitted. For the four additional hospitals,
which are either not at a hospital site or outside the trust, a fixed value of 20 was
given. For the second stage maximum number of beds, UBmax, bed, 2nd

h , an additional
10% of beds will be able to be made available, either by opening additional wards,
transferring patients to other hospitals in the region, or to temporarily have patients
waiting in corridors for permanent beds.
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5.4.1.2 Hospitals and Specialties

ABUHB provides 29 different specialties among the 14 hospital and care locations,
resulting in a combination of 406 unique hospital and specialty combinations. How-
ever, in practice, there are 90 combinations of hospital and specialty locations, as
shown in Figure 1.5 and Appendix A. These locations will determine the value
of Ks,h. If a specialty is able to open in a hospital, then the value will be equal
to the UBmax,bed

h , otherwise the value is zero. This therefore has the assumption
that if a specialty can open, the hospital can choose to open all their beds to that
specialty. This assumption was derived from the current practice within certain
ABUHB hospitals. For example, the hospitals, Rhymney Integrated Health and So-
cial Care (RIHSC) and Monnow Vale Health and Social Care Facility (MVHSCF),
only provide beds for the specialty ‘GP Other’. Looking forward, the health board
could consider an innovative approach to enhance its services by consolidating the
locations where they offer care, leading to the establishment of specialty-focused
hospitals. This strategic revamp would enable them to streamline their resources
and provide more targeted and specialised medical care to the community. Within
the specialties, some may not conventionally be viewed as distinct ones. However,
within ABUHB, these areas are recognised as having their unique capacity to admit
patients and provide dedicated care with their own dedicated beds and staff, e.g.,
GP and anaesthetics [273], and therefore will be included in the overall list of 29
specialties.

Online publicly available data was used for the costings per specialty from Public
Health Scotland. This data can be viewed within ‘Table 3: Hospital cost break-
down R040 - Specialty costs and activity - inpatients in all specialties (excluding
long stay), by specialty (Excel file, 269KB)’ [11]. Within the Excel spreadsheet, the
‘Direct Cost per Case’ is given, and to make this comparable to all entries, only the
‘Medical and Dental’ costs will be included. The assumption was made that this
was the daily cost per specialty. It has been assumed that the cost of scans required
whilst an inpatient has been absorbed into these costs. For pain specialty, a different
data set was utilised from Public Health Scotland, namely, ‘Table 3: Hospital cost
breakdown R040LS - Specialty costs and activity - day cases, by specialty (Excel
file, 201KB)’ [11]. The cost is listed as the ‘Direct Cost per Case’ and the same
‘Medical and Dental’ column was taken. As this file specifically mentions daycases,
it is assumed that this is the daily specialty cost. The Scottish population follows
a similar demographic to those in Wales and has similar operational running costs
within hospitals. Additionally, the health boards in Scotland contain a variety of
community and acute hospitals. Table 5.29 displays the minimum, maximum and
weighted average cost for each specialty in the 2019-2020 financial year. In order
to determine similar costings for hospitals within ABUHB, specialty cost values per
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hospital were randomly generated within the range of the Scottish data. Addition-
ally, the values produced the same weighted average as the Scottish data. One
limitation of using the Scottish data over Welsh data is that it is not representative
of the current practice within ABUHB. Scottish data was chosen because it is lo-
cated within the UK and costing values are expected to be similar. The availability
of more specific data tailored to ABUHB could potentially yield more reliable and
accurate results. There is a large range of costs between hospitals potentially due
to a number of reasons such as the type of diagnosis and care required [274]. Our
objective is to introduce variation into ABUHB by utilising randomly generated
values within the range of minimum and maximum costs observed in the NHS Scot-
land data. This approach enables us to capture diverse scenarios and account for
potential fluctuations in costs within ABUHB’s context while maintaining the same
average cost as observed in the NHS Scotland data. In general in the NHS, there is
no fixed tariff for bed days for specific specialties. Some specialties in ABUHB did
not overlap with the Scottish data, and therefore the category, ‘Medical Other’, was
selected for these specialties (anaesthetics, community medicine, diabetes and en-
docrinology and radiology). To determine the second stage hospital costs, cbed, 2nd

s,h ,
an additional 20% was added to each of the cbed, 1st

s,h values. This percentage was
fixed across all specialties and hospitals and was selected to provide a significant
penalty for not having sufficient demand.

5.4.1.3 Staffing

Within the NHS, there are different levels of experience among nursing staff [262].
Typically on a ward, there will be a mixture of different bands of nurses to make
up the team of nurses. It is also important to ensure there is a mixture of different
skill sets on a ward at a time [275]. Within the NHS there are different nurse to
patient ratios, ranging from 1:1 to 1:10 [276]. The most critical patients require
more direct care from nurses, i.e., intensive care units often have required ratios of
one nurse to either one or two patients [277]. Within general inpatient wards this
ratio varies. The ratio of nurses to patients will vary between different specialties,
with the more acute specialties requiring more nurses to patients. It was decided
for more low-need based wards, e.g., community medicine, a ratio of 1:10 would
be required. For more acute wards, a ratio of 1:4 would be necessary, e.g., A&E.
Finally, the remaining wards would be assigned a required ratio of 1:8. It will be
assumed that an equal number of nurses across the bands will be required on the
wards, with each band required to meet a given ratio.

After discussion with the senior staff in the health board, two NHS nursing bands
would be considered since this is their core members of staff required on a ward,
namely bands five and six nurses [278]. These nursing bands are crucial in ensuring
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Specialty Minimum Cost (£) Weighted Average (£) Maximum Cost (£)

Accident & Emergency 22 247 924
Anaesthetics 34 1,021 2,370
Cardiology 4 614 1,513
Care of the Elderly 131 577 6,021
Community Medicine 34 1021 2,370
Dermatology 203 1,381 2,446
Diabetes & Endocrinology 34 1,021 2,370
Ear, Nose & Throat 77 491 1,436
Gastroenterology 112 656 1,472
General Medicine 2 290 1,418
General Surgery 11 541 1,517
GP Other 6 325 1,117
Gynaecology 180 517 2,526
Haematology 411 1,208 5,214
Infectious Diseases 438 711 1,188
Intermediate Care 0 118 361
Maxillo-Facial 96 1,410 8,637
Neurology 620 1,273 3,260
Ophthalmology 166 729 10,895
Pain 6 128 865
Plastic Surgery 179 902 1,399
Radiology 34 1,021 2,370
Radiotherapy and Oncology 48 1,089 2,182
Rehabilitation 58 1,455 30,305
Respiratory 75 448 1,818
Restorative Dentistry 1 140 178
Rheumatology 155 596 1,256
Trauma and Orthopaedic 4 703 1,633
Urology 77 379 17,899

Table 5.29: Specialty cost data displaying the minimum, weighted average and the
maximum daily bed cost per specialty, taken from NHS Scotland [11].

efficient and quality patient care, making them a priority for staffing considerations.
The hourly pay for each band varies with experience, with Table 5.30 displaying the
intermediate salary [12]. When there are insufficient staffing levels, bank or agency
staff are required. These nurses have a higher hourly wage, due to the unreliability
of shifts [13].

Band 5 Band 6

cstaff,1st
b £14.21 £17.48

cstaff,2nd
b £18.95 £23.36

Table 5.30: Hourly nursing staffing costs per nursing band level within the NHS [12,
13].

As of June 2022, ABUHB employed approximately 1,935 registered adult and gen-
eral nurses [279]. This value includes all bands of nurses across all specialties. For
the purpose of the model, it will be assumed that 400 nurses are available, 200 for
each band. Similarly, for the variable UBmax, staff, 2nd

b , it will be assumed that up to
200 additional nurses for each can be requested from the bank for each band.
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5.4.2 Model Development

These variables will be implemented into models developed in both Microsoft Ex-
cel using the OpenSolver add-in and Python using the PuLP packages as a solver.
Microsoft Excel was selected as a primary tool since it is familiar with the health
board and open-source. The OpenSolver add-in was used over the built in Excel
solver, due to the limitations on the number of decision variables and constraints.
OpenSolver has previously been used within healthcare planning for both bed plan-
ning [280] and staff allocation [281]. A Python tool was additionally developed as
it allows for flexibility within the number of hospitals, specialties and band levels of
nurses. This adaptability ensures the model is dynamic to the changing needs and
demographics of the health board. Python is also open-source, adaptable and easy
to learn [282], which will enable future development by senior staff at ABUHB.

Two optimiser engines were used within the project: COIN-OR (Computational In-
frastructure for Operations Research) and Gurobi. COIN-OR is a project managed
by the COIN-OR Foundation with the aim to provide an “open-source commu-
nity for operations research software” [283, 284]. The COIN-OR project consists
of numerous smaller initiatives, including the development of various software for
a variety of problems, methods, and coding languages. The COIN-OR community
has developed two main linear programming solvers: CLP (COIN-OR Linear Pro-
gramming), which primarily uses the simplex method as its core algorithm, and
CBC (COIN-OR Branch and Cut), a mixed integer linear program-based (MILP)
branch and cut library that also makes use of CLP. Although both of these solvers
are designed in C++, they can be used with different languages through readily
available packages such as PuLP. Since the deterministic and two-stage stochastic
models developed require the decision variables to be integer, the CBC solver is the
most suitable choice.

COIN-OR solvers are free and open source which is vital for ABUHB as the min-
imisation of cost is a necessity for the organisation. There exists more advanced
commercial software including CPLEX [285] and Gurobi [286]. Gurobi is a widely
used optimization solver that provides powerful tools for solving various mathe-
matical optimization problems. The Gurobi Optimization, Inc. company focuses
on delivering high-performance solvers for a range of applications in operations re-
search and related fields. One of the distinguishing features of Gurobi is its ability
to handle complex optimization models with speed and precision. Gurobi’s inter-
face supports multiple programming languages, including Python, C++, Java, and
MATLAB, making it accessible to a broad audience of developers and researchers.
A free academic license was obtained for Gurobi and provided us with unrestricted
access to the solver’s optimisation tools. This enabled the model to be solved quickly
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and efficiently, whilst also validating the CBC results.

Within both the OpenSolver and implementations offer the flexibility to adjust spe-
cific parameters, enabling users to enhance accuracy and control the execution time
of their models. The first is the maximum length of time in which the programme
is allowed to run before the model is stopped. Within Excel, this is denoted as
‘Maximum Solution Time (seconds)’ and within Python as ‘maxSeconds’. Prior to
applying any restrictions, these models would execute indefinitely until the optimal
solution was discovered. However, by setting the appropriate value, users can now
limit the runtime of the program, ensuring efficient execution and timely results
while still achieving the best possible solution. For the purpose of this research, no
restriction on runtime was set. The second option is the relative gap tolerance for
the solver to stop, i.e., the solver will stop if it has found a feasible integer solution
whose objective function is within the given percentage of the true integer optimal
solution. In Excel, this is denoted as the ‘Branch and Bound Tolerance (%)’ and
the ‘fracGap’ value in Python. In order to reach optimal values, this was set to
0, and the solvers will always reach the optimal values. Within Excel, there is the
option to change the maximum number of iterations, which determines how many
iterations the solver will use, however, this was left unbounded. The PuLP package
does not have this built in as default.

The Microsoft Excel OpenSolver and the Python PuLP tools have been provided on
Github [287], to allow the models to be usable by other researchers and healthcare
specialists. As the parameters previously discussed are consistent between the Excel
and Python models, the same objective function and decision variables are achieved.
As a result, users have the flexibility to opt for either implementation as the same
results will be achieved. This aspect highlights the interchangeability of the models,
empowering users to utilise the most suitable platform while achieving identical
outcomes.

5.4.3 Results

The following subsection will look at implementing the ABUHB data into the de-
terministic and two-stage stochastic optimisation models. Either Microsoft Excel
or Python implementations can be used. Traditionally, the health board plan using
averages, and therefore the deterministic model is meant to replicate their current
planning process within ABUHB.

5.4.3.1 Experiment 1 - Three Years’ Worth of Data

The first experiment examined the entire three years’ worth of data from April 2017
to March 2020, to determine the daily average number of beds and staff required.
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Recall the following equations discussed in Chapter 4, which were used to calculate
the daily demand for each region.

Average daily bed demands,h = Average LOSs,h × Average daily number of admissionss,h

(4.24 revisited)
Ds,r = Average daily bed demands,r =

∑
h∈R

Average daily bed demands,h (4.25 revisited)

Using these equations against the whole data set, resulted in Table 5.31 which
displayed the average daily demand for each specialty in each of the six regions.
The demands were rounded to four decimal places, however, since beds have to be
integer, the model would round these to the nearest integer.

Specialty Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Accident & Emergency 2.1081 0 0 0 9.1846 0
Anaesthetics 4.6079 0 0 0 0 0
Cardiology 16.0947 0 0 0 9.8809 0.0002
Care of the Elderly 94.5387 57.7380 0.7489 8.7416 46.4786 0
Community Medicine 0 6.9952 0 0.3121 12.9756 0
Dermatology 2.4192 0 0 0 0 0
Diabetes & Endocrinology 14.5635 21.2838 0 0 17.2387 0
Ear Nose & Throat 3.2480 0.0041 0 0 0 0
Gastroenterology 13.0208 0.6065 0 0 20.1331 0.0725
General Medicine 84.9712 0.9846 0.0115 0 14.1695 0
General Surgery 46.5808 0.5390 0 0 21.8943 0.0006
GP Other 0 9.8734 0 0 15.2880 0
Gynaecology 2.1194 0.1222 0 0 1.1716 0.0002
Haematology 3.0718 0.0320 0 0 1.8339 0.0002
Infectious Diseases 7.1817 0 0 0 0 0
Intermediate Care 0 0 0.3426 0.3248 0 0
Maxillo-Facial 1.1831 0 0 0 0.0243 0
Neurology 1.5828 0 0 0 0 0
Ophthalmology 2.5538 0.0028 0 0 0.1968 0.5232
Pain 0.0586 0.0055 0 0.0037 0.0131 0
Plastic Surgery 0 0 0 0 0.0336 0.0002
Radiology 0.0146 0 0 0 0.0026 0
Radiotherapy & Oncology 0.2265 0 0 0 0 0
Rehabilitation 62.8610 32.9653 68.9710 31.9917 24.4659 0
Respiratory 29.8010 0 0 0 27.8372 0
Restorative Dentistry 0.0001 0 0 0 0 0
Rheumatology 0.0004 0.001 5 0 0 0.0128 0
Trauma & Orthopaedic 60.3126 0.6665 0 0 41.5186 0
Urology 12.3397 0.0521 0 0 0.2034 0.0702

Table 5.31: The daily bed demands for each specialty grouped by regions within
ABUHB for three years’ worth of patient admissions, rounded to four decimal places.

5.4.3.1.1 Deterministic Model
In order to meet the demand and satisfy the constraints, the deterministic model
utilised the first stage variables only (Table C.6). The results yielded a daily cost
of £904,280.80. In total, 1,026 beds across the health board were deployed with
Figure 5.8 displaying the precise locations of these beds. In order to satisfy demand
a total of 414 NHS nurses across a 24 hour period were required. The maximum
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total number of beds available to deploy across the health board is 1,510, showing
that the elderly and frail patients would be running at a 68% occupancy level, with
the demand level being 974.78 beds. The number of staff deployed is larger than
the maximum 1:4 ratio of nurses to patients. This is due to the requirement of an
integer number of nursing staff and therefore the model is rounding up.

Figure 5.8: Heatmap of bed locations for each specialty within each hospital for the
deterministic model for Experiment 1. Note that a darker colour indicates a larger
number of beds are deployed.

5.4.3.1.2 Two-Stage Stochastic Model
The two-stage stochastic model was considered with three different scenarios. Table
5.32 displays each of the three scenarios and their associated probabilities. The
average of all scenarios is equal to the deterministic daily demands (Table 5.31).
The variable values can be seen within Table C.7.

Scenario Probability

Demand remains the same 33.33̇%
Demand increases by 20% 33.33̇%
Demand decreases by 20% 33.33̇%

Table 5.32: The three scenarios and their associated probabilities of occurring which
will be used within the two-stage stochastic model.

Table 5.33 compares the results for the deterministic and two-stage stochastic mod-
els.
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The two-stage stochastic model deployed an additional 197 beds compared to the
deterministic model, deploying 862 in the first stage and a maximum of 361 in the
second stage. Similarly, 70 additional nurses were deployed. The objective value
increased by 4.56%, to a daily cost of £945,500.48.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 1,026 - 414 - 904,280.80 = EV
Stochastic 862 361 348 136 945,500.48 = RP

Table 5.33: The EV and RP values for the xbed, xstaff, ubed and ustaff decision
variables and the objective function value for Experiment 1.

The location of each of the 1,223 beds can be seen within Figure 5.9.

Figure 5.9: Heatmap of bed locations for each specialty within each hospital for the
two-stage stochastic model for Experiment 1. Note that a darker colour indicates a
larger number of beds are deployed.

5.4.3.1.3 Test A
The first test as discussed in Section 4.2.2.1 involved using the results from the
deterministic model and fixing these as the first stage variables in the two-stage
stochastic model. Table 5.34 displays the results for the VSS.

The VSS can be calculated to be 3.38%, equating to £31,956.24 per day. Whilst a
value of 3.38% is low, the saving over a year period equates to £11,664,027.60. This
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Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 1,026 - 414 - 904,280.80 = EV
Stochastic 862 361 348 136 945,500.48 = RP

Test A 1,026 194 414 98 977,456.72 = EEV

Table 5.34: The EV, RP and EEV values for the xbed, xstaff, ubed and ustaff decision
variables and the objective function value for Experiment 1.

showed that there is a benefit in using the stochastic solution over the deterministic
solution.

To understand why the deterministic solution was performing poorly, we calculated
the LUSS and LUDS values. This would determine whether the model was too
optimistic or the locations of beds and staff were incorrect.

5.4.3.1.4 Test B
The second test discussed in Section 4.2.2.2, involved fixing the first stage variables
which are at zero or the lower bound in the deterministic problem, and then to
compute in the stochastic programme. In this case, there were hospitals, which
even though beds could be deployed, the value was zero. This would determine if
the deterministic model produced the correct, non-zero variables.

Recalling Equation (4.9), the RP result can then be compared to the ESSV.

LUSS = ESSV − RP (4.9 revisited)

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 1,026 - 414 - 904,280.80 = EV
Stochastic 862 361 348 136 945,500.48 = RP

Test A 1,026 194 414 98 977,456.72 = EEV
Test B 862 361 348 136 945,500.48 = ESSV

Table 5.35: The EV, RP, EEV and ESSV values for the xbed, xstaff, ubed and ustaff

decision variables and the objective function value for Experiment 1.

The results in Table 5.35 show that LUSS value was calculated to be £0 since
the ESSV and RP values are equal. Therefore this equates to the perfect skeleton
solution and suggests the variables selected by the first stage of the solution are
robust.
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5.4.3.1.5 Test C
The final test determined the upgradeability of the model by adding the number of
beds and staff deployed in the deterministic model as a constraint, for the stochastic
model (Section 4.2.2.3).

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 1,026 - 414 - 904,280.80 = EV
Stochastic 862 361 348 136 945,500.48 = RP

Test A 1,026 194 414 98 977,456.72 = EEV
Test B 862 361 348 136 945,500.48 = ESSV
Test C 1,035 185 414 84 976,601.16 = EIV

Table 5.36: The EV, RP, EEV, ESSV and EIV values for the xbed, xstaff, ubed and
ustaff decision variables and the objective function value for Experiment 1.

The LUDS value was calculated by the difference between EIV and RP, which
using Table 5.36, determined this value to be £31,100.68. Since LUDS < VSS, this
demonstrated partial upgradeability and additional beds and staff were deployed in
the first stage compared to the deterministic solution.

5.4.3.1.6 Experiment 1 Summary
This section has analysed bed and staffing requirements based on three years’ worth
of data, using the daily demand average. The VSS has shown that there is a 3.38%
saving per day using costings from NHS Scotland [11], equalling £7,681,877.60 per
year. Any additional potential benefits that can be utilised by the NHS are critically
important.

In conclusion, the deterministic solution did not perform well in a stochastic en-
vironment because too few beds and staff were deployed (1,026 beds and 414 staff
compared to 1,223 beds and 484 staff). As the LUSS was equal to zero meaning
the deterministic solution has the perfect skeleton solution, but plans on deploying
too many beds and staff for the demand. Within ABUHB, planning currently takes
place based on averages, i.e., the deterministic model. Although ABUHB costing
figures have not been used, the differences between the deterministic and two-stage
stochastic model have been shown, with the VSS being calculated to demonstrate
the benefit of the second method. Therefore, this has shown there is evidence for the
NHS to move away from simply planning on averages and use more sophisticated
techniques.
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5.4.3.2 Experiment 2

The second experiment analysed the beds on a year-to-year basis, to determine if
there were yearly differences in the number of beds and staff that should be deployed.
Since the yearly demand of patients contained little variation (Section 5.2.1), from
a high level, it could be assumed that the beds and staff required would contain
little variation. This experiment would therefore determine if there was a need to
plan on a smaller scale horizon.

Tables 5.37 and 5.38 display the regional demands for each specialty for each year.
The same first stage (Table C.6) and second stage (Table C.7) variables would be
used as those in Experiment 1 to allow direct comparisons.
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Specialty Region 1 Region 2 Region 3

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 2.2703 2.2025 1.8524 0 0 0 0 0 0
Anaesthetics 4.5049 4.4998 4.8186 0 0 0 0 0 0
Cardiology 17.2662 14.6579 16.3594 0 0 0 0 0 0
Care of the Elderly 76.9707 88.5761 118.0052 55.7326 58.4843 58.9937 0 0.3977 1.8461
Community Medicine 0 0 0 7.1593 6.0895 7.7349 0 0 0
Dermatology 2.8287 2.1355 2.2939 0 0 0 0 0
Diabetes & Endocrinology 16.7264 11.5043 15.4574 24.7432 19.8417 19.2722 0 0 0
Ear, Nose & Throat 3.0791 3.7301 2.9358 0.0084 0.0027 0.0013 0 0 0
Gastroenterology 12.1823 10.4803 16.3906 0.6416 0.5303 0.6478 0 0 0
General Medicine 106.1909 96.5455 52.2668 0.2873 1.1528 1.5126 0 0 0.0344 0
General Surgery 48.8745 46.5117 44.3624 0.4163 0.521 0.6794 0 0 0
GP Other 0 0 0 9.6797 10.1153 9.8254 0 0 0
Gynaecology 2.5425 1.8482 1.968 0.1391 0.1231 0.1046 0 0 0
Haematology 3.4524 2.6894 3.0736 0 0 0.0959 0 0 0
Infectious Diseases 8.1529 6.4296 6.9635 0 0 0 0 0 0
Intermediate Care 0 0 0 0 0 0 0 0.0078 1.0184
Maxillo-Facial 1.2256 1.0697 1.2539 0 0 0 0 0 0
Neurology 1.4497 1.565 1.7336 0 0 0 0 0 0
Ophthalmology 2.5831 2.4957 2.5828 0 0 0.0086 0 0 0
Pain 0.0555 0.066 0.0545 0 0.0118 0.0047 0 0 0
Plastic Surgery 0 0 0 0 0 0 0 0 0
Radiology 0.0102 0.0196 0.0142 0 0 0 0 0 0
Radiotherapy & Oncology 0.0031 0.0023 0.673 0 0 0 0 0 0
Rehabilitation 64.5703 62.9902 61.0276 34.7587 34.72 29.427 69.5287 64.8741 72.5009
Respiratory 30.1523 30.7641 28.4902 0 0 0 0 0 0
Restorative Dentistry 0.0002 0 0.0002 0 0 0 0 0 0
Rheumatology 0 0 0.0011 0 0.0044 0 0 0 0
Trauma & Orthopaedic 57.1547 61.7714 62.0072 0.7173 0.6536 0.6288 0 0 0
Urology 11.4221 13.5649 12.033 0.057 0.0541 0.0455 0 0 0

Table 5.37: The daily bed demands for each specialty within regions one, two and three of ABUHB for three individual years’ worth of
patient admissions, rounded to four decimal places.
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Specialty Region 4 Region 5 Region 6

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 0 0 0 8.5642 10.0826 8.9078 0 0 0
Anaesthetics 0 0 0 0.423 0.7812 1.1152 0 0 0
Cardiology 0 0 0 10.7899 10.2858 8.5707 0 0 0.0008
Care of the Elderly 12.3557 6.4882 7.3849 53.7813 44.1656 41.5028 0 0 0
Community Medicine 0.3653 0.1386 0.4321 16.6726 13.9982 8.2691 0 0 0
Dermatology 0 0 0 0 0 0 0 0 0
Diabetes & Endocrinology 0 0 0 17.8653 18.4154 15.4405 0 0 0
Ear, Nose & Throat 0 0 0 0 0 0 0 0 0
Gastroenterology 0 0 0 18.3652 21.7402 20.2937 0.0006 0 0.0008
General Medicine 0 0 0 12.0771 11.8051 18.6143 0 0 0
General Surgery 0 0 0 21.656 23.1851 20.8447 0.0003 0.0003 0.0008
GP Other 0 0 0 14.7579 13.86 17.2409 0 0 0
Gynaecology 0 0 0 1.2598 1.5459 0.7105 0 0 0.0008
Haematology 0 0 0 1.8601 1.7505 1.8911 0.0003 0 0
Infectious Diseases 0 0 0 0 0 0 0 0 0
Intermediate Care 0 0.6014 0.3729 0 0 0 0 0 0
Maxillo-Facial 0 0 0 0.0271 0.0141 0.0319 0 0 0
Neurology 0 0 0 0 0 0 0 0 0
Ophthalmology 0 0 0 0.1748 0.2065 0.2093 0 0.0003 0.0012
Pain 0.0086 0.0008 0.0016 0.0145 0.0156 0.0094 0 0 0
Plastic Surgery 0 0 0 0.0212 0.0199 0.06 0 0 0.0008
Radiology 0 0 0 0.006 0.0003 0.0017 0 0 0
Radiotherapy & Oncology 0 0 0 0 0 0 0 0 0
Rehabilitation 29.5590 32.9368 33.4754 18.3286 25.2346 29.8199 0 0 0
Respiratory 0 0 0 30.7903 29.5149 23.2192 0 0 0
Restorative Dentistry 0 0 0 0 0 0 0 0 0
Rheumatology 0 0 0 0 0.0386 0 0 0 0
Trauma & Orthopaedic 0 0 0 42.5161 41.2805 40.7614 0 0 0
Urology 0 0 0 0.1685 0.1933 0.2485 0.0028 0.0027 0.0035

Table 5.38: The daily bed demands for each specialty within regions four, five and six of ABUHB for three individual years’ worth of patient
admissions, rounded to four decimal places.
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5.4.3.2.1 Deterministic Model
Using the average daily demands as the minimum number of beds that were required
to be met, the deterministic model ran on each of the three years investigated. Table
5.39 displays the number of beds and staff required each year with the expected daily
cost per year. The years 2017-2018, had the largest expected cost, planning the
largest number of beds and staff. By planning year-by-year, this had the potential
for up to £13,312.60 to be saved per day.

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 1,031 - 396 - 898,254.20 = EV17−18
2018-2019 1,015 - 396 - 890,968.20 = EV18−19
2019-2020 1,010 - 396 - 893,712.20 = EV19−20

Table 5.39: The EV values for the xbed, ubed, xstaff and ustaff decision variables and
the objective function value per year for Experiment 2.

In order to visualise how these beds should be planned, Figure 5.10 displays each
of the three heatmaps for hospital and specialty locations. For the majority of
locations, if hospital beds are opened then in the following years the beds remain
open. The results also display, the number of patients who are required to be
transferred to other non NHS site locations or hospitals in other health boards
through the “Other” category. Therefore if hospital managers wanted to limit the
number of patients falling into the “Other’ category, they could determine how much
additional demand they need to make available. In all three cases, a maximum of
one additional bed was required per day for three to six specialties.
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(a) 2017-2018

(b) 2018-2019
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(c) 2019-2020

Figure 5.10: Heatmaps of bed locations for each specialty within each hospital for
the deterministic model for the years 2017-2018 (a), 2018-2019 (b) and 2019-2020
(c), for Experiment 2. Note that a darker colour indicates a larger number of beds
are deployed.

5.4.3.2.2 Two-Stage Stochastic Model
The two-stage stochastic model was considered with the same four scenarios as in
Table 5.32. Table 5.40 shows that in the first stage, fewer beds and staff were
deployed compared to the deterministic result for all three years. This in turn,
increased the objective value ranging from 4.64% to 4.97%, with a maximum of 218
and 72 additional beds and staff deployed respectively.

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 1,031 - 396 - 898,254.20 = EV17−18
2018-2019 1,015 - 396 - 890,968.20 = EV18−19
2019-2020 1,010 - 396 - 893,712.20 = EV19−20

Stochastic
2017-2018 849 379 326 142 941,764.64 = RP17−18
2018-2019 847 362 330 136 935,335.28 = RP18−19
2019-2020 852 350 336 134 935,171.84 = RP19−20

Table 5.40: The EV and RP values for the xbed, ubed, xstaff and ustaff decision
variables and the objective function value per year for Experiment 2.

Figure 5.11 presents the locations of bed deployment for each specialty in each year.
The largest differences can be seen when planning beds for RGH in the COTE and
general medicine wards. A total of 93 and 107 beds are each planned for COTE
wards in 2017-2018 and 2018-2019 respectively, however, the daily demand increased
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(a) 2017-2018

(b) 2018-2019

to 142 beds in the 2019-2020 period. Conversely, the general medicine daily bed
requirement decreased from 128 and 116 in 2017-2018 and 2018-2019 respectively,
to 63 in 2019-2020.
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(c) 2019-2020

Figure 5.11: Heatmaps of bed locations for each specialty within each hospital for
the two-stage stochastic model for the years 2017-2018 (a), 2018-2019 (b) and 2019-
2020 (c), for Experiment 2. Note that a darker colour indicates a larger number of
beds are deployed.

5.4.3.2.3 Test A
Test A calculates the VSS to determine the benefit of using the stochastic solution
over the deterministic solution. Table 5.41 displays the EEV, for each year. By fixing
the deterministic variables, the stochastic nature of healthcare can be realised and
the model can determine the additional number of beds that would be required if
the deterministic values were used.

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 1,031 - 396 - 898,254.20 = EV17−18
2018-2019 1,015 - 396 - 890,968.20 = EV18−19
2019-2020 1,010 - 396 - 893,712.20 = EV19−20

Stochastic
2017-2018 849 379 326 142 941,764.64 = RP17−18
2018-2019 847 362 330 136 935,335.28 = RP18−19
2019-2020 852 350 336 134 935,171.84 = RP19−20

Test A
2017-2018 1,031 197 396 106 973,265.64 = EEV17−18
2018-2019 1,015 190 396 92 964,969.40 = EEV18−19
2019-2020 1,010 192 396 104 968,081.36 = EEV19−20

Table 5.41: The EV, RP and EEV values for the xbed, ubed, xstaff and ustaff decision
variables and the objective function value per year for Experiment 2.
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The VSS ranges from between 3.17% to 3.52%, showing that the total cost is in-
creasing by up to 3.52% by implementing the deterministic solution.

VSS17−18 = EEV17−18 − RP17−18 = £31, 501.00 (3.34%) (5.8)
VSS18−19 = EEV18−19 − RP18−19 = £29, 634.12 (3.17%) (5.9)
VSS19−20 = EEV19−20 − RP19−20 = £32, 909.52 (3.52%) (5.10)

There were a number of reasons why the deterministic solution was considered poor.
The model may be too optimistic on the randomness leading to insufficient beds
and staff being deployed or the model could be planning the wrong beds and staff.
This could be determined by calculating the LUSS and LUDS values.

5.4.3.2.4 Test B
The ESSV was calculated by fixing the zero variables produced in the deterministic
result and allowing the stochastic model to run. After performing the experiments,
it was determined that the ESSV was equal to the EEV in all cases (Table 5.42).

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 1,031 - 396 - 898,254.20 = EV17−18
2018-2019 1,015 - 396 - 890,968.20 = EV18−19
2019-2020 1,010 - 396 - 893,712.20 = EV19−20

Stochastic
2017-2018 849 379 326 142 941,764.64 = RP17−18
2018-2019 847 362 330 136 935,335.28 = RP18−19
2019-2020 852 350 336 134 935,171.84 = RP19−20

Test A
2017-2018 1,031 197 396 106 973,265.64 = EEV17−18
2018-2019 1,015 190 396 92 964,969.40 = EEV18−19
2019-2020 1,010 192 396 104 968,081.36 = EEV19−20

Test B
2017-2018 849 379 326 142 941,764.64 = ESSV17−18
2018-2019 847 362 330 136 935,335.28 = ESSV18−19
2019-2020 852 355 336 134 935,171.84 = ESSV19−20

Table 5.42: The EV, RP, EEV and ESSV values for the xbed, ubed, xstaff and ustaff

decision variables and the objective function value per year for Experiment 2.

The LUSS was calculated to be £0 for all three cases. The LUSS was equal to the
RP and therefore corresponded to the perfect skeleton solution. This suggested that
the variables selected by the first stage variables of the solution are robust.

LUSS17−18 = ESSV17−18 − RP17−18 = £0 (5.11)
LUSS18−19 = ESSV18−19 − RP18−19 = £0 (5.12)
LUSS19−20 = ESSV19−20 − RP19−20 = £0 (5.13)
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5.4.3.2.5 Test C
The final test involved taking the decision variables determined by deterministic
solution and adding this as a minimum constraint. These results can be seen within
Table 5.43.

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 1,031 - 396 - 898,254.20 = EV17−18
2018-2019 1,015 - 396 - 890,968.20 = EV18−19
2019-2020 1,010 - 396 - 893,712.20 = EV19−20

Stochastic
2017-2018 849 379 326 142 941,764.64 = RP17−18
2018-2019 847 362 330 136 935,335.28 = RP18−19
2019-2020 852 350 336 134 935,171.84 = RP19−20

Test A
2017-2018 1,031 197 396 106 973,265.64 = EEV17−18
2018-2019 1,015 190 396 92 964,969.40 = EEV18−19
2019-2020 1,010 192 396 104 968,081.36 = EEV19−20

Test B
2017-2018 849 379 326 142 941,764.64 = ESSV17−18
2018-2019 847 362 330 136 935,335.28 = ESSV18−19
2019-2020 852 355 336 134 935,171.84 = ESSV19−20

Test C
2017-2018 1,038 190 396 96 972,719.84 = EIV17−18
2018-2019 1,019 190 396 92 964,786.08 = EIV18−19
2019-2020 1,021 181 396 86 967,397.44 = EIV19−20

Table 5.43: The EV, RP, EEV, ESSV and EIV values for the xbed, ubed, xstaff and
ustaff decision variables and the objective function value per year for Experiment 2.

LUDS17−18 = EIV17−18 − RP17−18 = £31, 006.24 (5.14)
LUDS18−19 = EIV18−19 − RP18−19 = £29, 450.80 (5.15)
LUDS19−20 = EIV19−20 − RP19−20 = £32, 225.60 (5.16)

Therefore, EEV − EV ≥ V SS ≥ LUDS ≥ 0 is satisfied. This result corresponds
to partial upgradeability, where the deterministic results are upgraded in first stage
results by the stochastic model.

5.4.3.2.6 Experiment 2 Summary
This section has analysed the bed and staffing requirements based on a year-to-year
basis and determined where there was variation in the system. The largest VSS of
3.52% showed the benefit of using the two-stage stochastic model for planning in
the first instance rather than using the deterministic implementation. Similar to the
previous experiment, the deterministic solution did not perform well in a stochastic
environment since insufficient beds and staff were deployed across all three years.
This showed the deterministic model was too optimistic in terms of the demand.
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5.4.3.3 Prescriptive Analytics Summary

Microsoft Excel OpenSolver and Python PuLP are two optimisation tools generated
for this research, both of which have been able to be applied to generate the given
results.

The results from the two experiments can be compared to determine whether
ABUHB should plan on a year-to-year basis, or plan on a three-year horizon. Al-
though the Public Health Scotland data are not accurate to ABUHB, the values
given will still provide insight into the potential savings that could be made. Table
5.44 presents the VSS results per year and the total savings if implemented over the
three years. The third year (2019-2020), was a leap year with 366 days and there-
fore impacts the difference in VSS. The findings indicate minimal variation in VSS,
suggesting that planning on a year-to-year basis might not be necessary. Instead, it
may be more beneficial to focus on longer-term horizons for planning purposes.

Experiment 1 Experiment 2

Year 1 £11,664,027.60 £11,497,865.00
Year 2 £11,664,027.60 £10,816,453.80
Year 3 £11,695,983.84 £12,044,884.32

Total Saving £35,024,039.04 £34,359,203.12

Table 5.44: The total yearly VSS values for each of the three years by experiment.
Note that year 3 was a leap year and therefore contains 366 days which accounts
for the variation between years.

This section has discussed the research aims, ‘How best can specialties be organised
among a network of hospitals to ensure staffing and bed costs are minimised, whilst
still meeting the demand for frail and elderly patients?’. The heatmaps produced
visualised the number of beds to locate across different specialties in order to min-
imise costs. The models also determined the number of staff to deploy based on
the number of beds. These models work under the assumption of current hospital
locations, where a hospital cannot open wards if they do not have the resources
for these specialties. The models perform by deploying beds to the least expensive
location first, determining the trade off between different combinations. Tradition-
ally, ABUHB has planned on averages (deterministic solution), using historic data
to determine the locality and quantity of these beds. By implementing a two-stage
stochastic model, with different levels of demand, it provides savings for the NHS
from approximately 3.52% per day. This saving has the potential to impact pa-
tient care by reallocating this money to additional resources, more staff training or
improving community care schemes to reduce the pressures on hospitals. Whilst
costing figures from ABUHB were not available, the model’s utility and ability to
provide cost savings have been demonstrated using NHS Scotland values [11].
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5.5 Summary

This section has presented the findings of the predictive and prescriptive analytical
models. Section 5.2 provided an overview of the current data and trends within
ABUHB and within the frail and elderly community. Section 5.3 has considered
the improved results by using CART models over traditional linear and logistic
regression methods. These CART models have also enabled patient groupings of
similar attributes to be generated, as shown in Appendices C.2 and C.3. Section 5.4
has applied the deterministic and two-stage stochastic models generated in Chapter
4 to ABUHB data determining how beds should be organised and staff deployed
based on figures from Public Health Scotland.

Predictive and prescriptive models are increasingly being used in healthcare to im-
prove patient outcomes and optimise resource utilisation. Predictive models can
be used to identify patients who are at high risk of longer LOS and put in place
appropriate interventions to reduce this. Prescriptive models can be used to de-
termine capacity planning and staff requirements in order to reduce the likelihood
of not having sufficient capacity. By applying predictive and prescriptive models,
healthcare organisations can improve patient outcomes while also maximising the
value of healthcare resources. The following chapter will discuss the ability to link
the predictive and prescriptive methods together.
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Chapter 6

Linking Predictive and
Prescriptive Analytics for
Healthcare Services

6.1 Introduction

Predictive and prescriptive modelling are two powerful techniques in OR that have
the ability to extract insights and guide decision-makers. Predictive models are used
to forecast future outcomes based on historical data and patterns, while prescrip-
tive models provide recommendations on how to optimise those outcomes based on
certain constraints and objectives. While both techniques are valuable in their own
right, they become even more powerful when linked together. By integrating pre-
dictive and prescriptive models, organisations can predict future outcomes and also
make informed decisions on how to optimise those outcomes in the most effective
and efficient ways possible. This can lead to more accurate and impactful decision
making, and ultimately improve business and healthcare performance. The concept
of linking these two methods is still relatively novel, [3, 255], especially within the
healthcare field and has great potential to drive significant value for organisations
across a wide range of industries.

Research Aim - This Chapter aims to link the CART results with deterministic
and two-stage stochastic models together to ensure the results are consistent.
It will seek to present the results in order to address the following two research
objectives:

1. Can linking predictive and prescriptive analytics provide improvements
for decision making for frail and elderly services? - Section 6.2

2. How can deterministic and two-stage stochastic models be used to plan
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hospital services for frail and elderly patients within Aneurin Bevan Uni-
versity Health Board? - Section 6.3

The remainder of the Chapter is structured as follows: Section 6.2 discusses linking
the predictive and prescriptive paradigms together. Section 6.3 determines the
robustness of the models by applying a number of different scenarios. Section 6.4
discusses the flexibility within the models which allows users to apply them to other
healthcare situations.

6.2 Linking Paradigms

To investigate linking these two paradigms, two methods have been explored and
applied to both the classification tree and regression tree results. The first method
calculated the number of patients of each specialty and the overall average LOS
for each end node. The second method used each end node and the specific LOS
for each specialty and hospital within the node. These were then summed together
to form the Ds,r parameter. These two methods were run on both the regression
and the classification trees, using the Microsoft Excel implementation. The results
have been compared on a year-to-year basis, as well as the three year range. The
VSS was calculated using the deterministic and two-stage stochastic models. For
each example, a deterministic and two-stage stochastic heatmap has been provided
within the Appendix D.

Using the predicted LOS from the CART models to work out demands can be
more beneficial than simply using average demands due to several reasons. Firstly,
predicted LOS accounts for individual patient characteristics and medical histo-
ries, allowing for more personalised estimates of resource demands, unlike average
demands that treat all patients the same. Secondly, CART models can capture
complex relationships between variables, resulting in more accurate predictions com-
pared to simplistic average calculations that might overlook the impact of specific
patient attributes on resource requirements. Moreover, predicted LOS adapts to
changes in patient profiles and other factors affecting LOS, providing more up-to-
date and flexible estimates. The model can handle outliers and extreme cases more
effectively, ensuring robust capacity planning. By incorporating various patient fea-
tures and clinical parameters, CART offers valuable data-driven insights into factors
influencing resource demands, aiding healthcare providers in identifying areas for
improvement.
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6.2.1 Regression Tree and Average LOS

The first method utilised the regression tree generated in Section 5.3.3.1 (Figure
5.6). This tree generated 30 patient groupings determined by the 30 leaf nodes.
The average LOS determined by each node was used to calculate the demand for
each node. Using Equation (6.1), the average demand was calculated as follows:

Ds,r =
∑
h∈r

Ds,h = Number of Patientss,h ∗ Node Average LOS
Total Number of Days in Data Set (6.1)

The procedure for calculating the average bed demand for node two is shown in
Table 6.1. For reference, in Figure 5.3.3.1, node two is the second left leaf node,
and it indicates if a patient meets the 11 criteria listed below:

1. Admission method , Other - transferred from another hospital

2. Admission method , Elective - waiting list

3. Admission method , Elective - booked

4. Specialty , Accident & Emergency

5. Admission method , Elective - planned

6. Hospital , Ysbyty Ystrad Fawr

7. Age Group , 65 - 69

8. Age Group , 70 - 74

9. Specialty , Trauma & Orthopaedic

10. Age Group , 75 - 79

11. Specialty = Care Of The Elderly

For this node, there were three hospitals included, all of which were the COTE
specialty accounting for 8,776 patients. The final column of Table 6.1 refers to
the average daily bed demand across three years’ worth of data. Each node’s de-
mands are consolidated for each specialty and hospital and then used for the overall
demand, and are shown within Table D.1.

Hospital Specialty Count Average LOS Average Daily Demand

Nevill Hall Hospital Care Of The Elderly 2696 11.393 28.0251168
Royal Gwent Hospital Care Of The Elderly 6076 11.393 63.1604635
Ysbyty Aneurin Bevan Care Of The Elderly 4 11.393 0.0415803

Table 6.1: The count of admissions and the associated average LOS for each hospital
and specialty within the second node of the regression tree. The average daily bed
demand has additionally been calculated.
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Table 6.2 presents the results from the demands generated using the average LOS.
These demands can be found within Table D.1 in the Appendix. The same four
scenarios, as listed in Table 5.32, were applied to the demand figures. The VSS can
be calculated to be 3.34% with a saving of £31,052.04. In comparison to Table 5.34,
there was a difference in the deterministic solution of approximately 1.83%, with
the regression tree deploying fewer numbers of beds and nurses.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 997 - 406 - 887,845.20 = EV
Stochastic 836 359 342 130 929,725.40 = RP

Test A 997 192 406 106 960,777.44 = EEV

Table 6.2: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the regression tree and the average LOS
across all three years.

Regression tree nodes were also used to calculate the year-to-year planning to see
how the model performed annually. Equation (6.2) illustrates the process by which
each annual demand was produced.

Ds,r,year =
∑
h∈r

Ds,h,year =
Number of Patientss,h × Node Average LOSyear

Number of Days in Year (6.2)

Table 6.3 displays the EV, RP and EEV values for each year, with the demands given
in Tables D.2 and D.3. The results reveal that the model employing the average
LOS for the nodes predicted approximately the same number of beds and staff when
compared to Table 5.43. The deterministic difference, which ranged from 0.65% to
1.13 demonstrated that the average LOS for all three years produced results that
are comparable. The locations of the bed placements can be seen within Figures
D.1 and D.2.

The third and final experiment has taken the average LOS for each end node and
specialty, hospital and year combination. For the year 2019-2020, the total capacity
had to be increased for the YAB (by 10%), meaning additional beds would be
required from other age ranges in order to meet the demand. This was due to
YAB’s capacity being insufficient in the UBmax, bed

h constraint. This would suggest
the average LOS or the demand for the year 2019-2020, was larger for this hospital
compared to previous years. Equation (6.3) displays the formulation of the demands,
with the overall demands listed in Tables D.4 and D.5.
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Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 1,021 - 386 - 891,125.20 = EV17−18
2018-2019 1,006 - 392 - 896,754.40 = EV18−19
2019-2020 997 - 392 - 883,629.40 = EV19−20

Stochastic
2017-2018 852 368 326 140 935,847.92 = RP17−18
2018-2019 844 362 330 136 937,628.88 = RP18−19
2019-2020 851 340 334 128 926,433.28 = RP19−20

Test A
2017-2018 1,021 192 386 104 965,491.36 = EEV17−18
2018-2019 1,006 191 392 104 969,817.36 = EEV18−19
2019-2020 997 189 392 100 957,284.20 = EEV19−20

Table 6.3: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the regression tree and the yearly average
LOS.

Ds,r,year =
∑
h∈r

Ds,h,year =
Number of Patientss,h × Node Average LOSs,h,year

Number of Days in Year (6.3)

The results listed in Table 6.4 have objective function values which were comparable
to those in the initial experiment. The difference in the deterministic results differs
by a range of 0.72% to 0.94%. This highlights the possibility that by utilising the
yearly node average LOS, there is little difference between the results.

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 986 - 380 - 897,414.00 = EV17−18
2018-2019 1,015 - 392 - 882,601.40 = EV18−19
2019-2020 1,024 - 400 - 900,162.00 = EV19−20

Stochastic
2017-2018 826 356 316 138 893,038.64 = RP17−18
2018-2019 858 358 336 136 926,218.92 = RP18−19
2019-2020 871 358 342 132 945,905.68 = RP19−20

Test A
2017-2018 986 193 380 106 920,396.24 = EEV17−18
2018-2019 1,015 194 392 106 955,761.64 = EEV18−19
2019-2020 1,024 198 400 106 976,584.64 = EEV19−20

Table 6.4: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the regression tree and the yearly average
LOS for each hospital and specialty.

6.2.2 Regression Tree and Specific LOS

The second method also utilised the regression tree shown in Figure 5.6. Instead
of utilising the average LOS for each of the 30 end nodes, the specific LOS for
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each hospital and specialty inside that node was calculated. Each of the demands’
generation processes are shown in Equation (6.4).

Ds,r =
∑
h∈r

Ds,h =
Number of Patientss,h × Specific LOSs,h

1096 (6.4)

Table 6.5 presents the second node within the regression tree and determines how
each of the demands was produced within this node. These findings demonstrated
that employing particular hospital and specialty LOS, increased the demand for beds
overall in RGH by one bed when compared to Table 6.1. The generated demands
can be viewed in Table D.6.

Hospital Specialty Count Specific LOS Average Daily Demand

Nevill Hall Hospital Care Of The Elderly 2696 11.412 28.0729927
Royal Gwent Hospital Care Of The Elderly 6076 11.554 64.0510949
Ysbyty Aneurin Bevan Care Of The Elderly 4 6.250 0.0228102

Table 6.5: The count of admissions and the associated specific LOS for each hospital
and specialty within the second node of the regression tree. The average daily bed
demand has additionally been calculated.

The findings for the deterministic and two-stage stochastic models are shown in
Table 6.6, with the EEV also being calculated to determine the VSS.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 1,011 - 388 - 889,242.60 = EV
Stochastic 842 361 320 134 925,599.36 = RP

Test A 1,011 186 579 94 958,630.76 = EEV

Table 6.6: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the regression tree and the specific LOS across
all three years.

The specific LOS model had lower deterministic and two-stage stochastic objective
values as compared to the regression tree with average LOS findings. This shows
that if the exact LOS was used, rather than node averages, additional cost savings
would be produced. The VSS produced a saving of £33,031.40 per day (3.57%).
The specific LOS generated from each regression tree node could be used to analyse
these results on an annual basis (Tables D.7 and D.8). To calculate the demands
for each specialty and region for each year, Equation (6.5) could be applied.
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Ds,r,year =
∑
h∈r

Ds,h,year =
Number of Patientss,h × Specific LOSs,h,year

Number of Days in Year (6.5)

Table 6.14 presents the results after the tool had optimised the bed and staffing
numbers based on the demand values. The number of staff deployed in the first
two years remained constant before reducing in the third year. Each year saw a
reduction in the EV overall. The VSS ranged from 3.28% to 3.45%, once more
demonstrating the advantages of employing the stochastic approach.

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 1,009 - 370 - 874,693.00 = EV17−18
2018-2019 998 - 370 - 873,709.00 = EV18−19
2019-2020 988 - 364 - 869,959.80 = EV19−20

Stochastic
2017-2018 839 369 310 132 917,423.68 = RP17−18
2018-2019 832 363 308 132 914,315.56 = RP18−19
2019-2020 838 344 310 130 911,420.56 = RP19−20

Test A
2017-2018 1,009 194 370 100 947,517.00 = EEV17−18
2018-2019 998 189 370 100 945,583.80 = EEV18−19
2019-2020 988 189 364 100 942,856.60 = EEV19−20

Table 6.7: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the regression tree and the yearly specific
LOS.

6.2.3 Classification Tree and Average LOS

The third method utilised the classification tree displayed by Figure 5.7. The clas-
sification tree yielded 30 patient groupings, with patients falling into one of two
categories. Recall Equation (6.1) to create demands and to calculate the Ds,r vari-
able:

Ds,r =
∑
h∈r

Ds,h = Number of Patientss,h × Node Average LOS
1096 (6.1 revisited)

For patients who fell into a ‘<1’ node, meant the majority of patients were discharged
on the same day they were admitted. In spite of this, there were certain patients
in every case who were put in this category despite not meeting the criteria. As a
result, to take these individuals into consideration, the average LOS would not be
zero days.
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If a patient fulfilled all seven of the following criteria, they were grouped into the
ninth node of the CART tree.

1. Admission method = Elective - waiting list

2. Specialty , Trauma & Orthopaedic

3. Specialty , General Surgery

4. Specialty , Urology

5. Specialty , Ear, Nose & Throat

6. Specialty , Gynaecology

7. Specialty = Respiratory

For this node, the majority of patients were grouped into the ‘<1’ category, and the
average LOS was less than one (0.913918 days). The average daily demand required
for each specialty and hospital inside this node may subsequently be determined
using this value (Table 6.8). The associated demands are presented in Table D.9,
within the Appendix.

Hospital Specialty Count Average LOS Average Daily Demand

Nevill Hall Hospital Respiratory 690 0.913918 0.575368
Royal Gwent Hospital Respiratory 553 0.913918 0.461128

Table 6.8: The count of admissions and the associated average LOS for each hospital
and specialty within the ninth node of the classification tree. The average daily bed
demand has additionally been calculated.

The results using these demands are shown in Table 6.9. By deploying 1,015 beds
and 428 nurses, an EV value of £826,712.60 was produced. Similar to prior find-
ings, fewer beds were used than the averages produced in Chapter 5. A significant
reduction in the total objective function resulted from the deployment of beds to
different hospital locations. The location of these beds can be seen in Figure D.37
in the Appendix.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 1,015 - 428 - 826,712.60 = EV
Stochastic 862 352 360 138 866,576.52 = RP

Test A 1,015 190 428 102 892,880.68 = EEV

Table 6.9: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the classification tree and the average LOS
across all three years.
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The VSS was calculated to be 3.04%, demonstrating that there is a difference be-
tween the two models using this strategy even when classification trees are used to
generate the demand. In comparison to the earlier models, the results used a similar
number of beds, but the objective values were much lower. One explanation for this
would be that fewer beds were deployed in the more expensive units because their
LOS’s were shorter and their daily demands are consequently lower.

Equation (6.2) described how each of the demands was calculated after further
analysis on a year-to-year basis. The formulated demand was inputted into the
deterministic and two-stage stochastic models, (Tables D.10 and D.11) after being
summed up across each node.

Ds,r,year =
∑
h∈r

Ds,h,year =
Number of Patientss,h × Node Average LOSyear

Number of Days in Year
(6.2 revisited)

The EV, RP, and EEV values are shown in Table 6.10, demonstrating how the
objective value fluctuates from year-to-year. Although using a comparable number
of beds as in the prior experiment, the objective values obtained are lower. Figures
D.25 - D.30 show where these beds are located. The two-stage stochastic model’s
advantage is demonstrated by the VSS, which varies from 3.11% to 3.35%. These
findings demonstrate the advantages of yearly planning as opposed to preparing in
three year increments.

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 979 - 390 - 805,452.00 = EV17−18
2018-2019 1,002 - 398 - 834,264.60 = EV18−19
2019-2020 1,005 - 404 - 842,867.80 = EV19−20

Stochastic
2017-2018 819 350 324 136 843,654.48 = RP17−18
2018-2019 844 359 338 140 875,908.56 = RP18−19
2019-2020 842 363 346 134 882,667.16 = RP19−20

Test A
2017-2018 979 184 390 92 869,933.28 = EEV17−18
2018-2019 1,002 193 398 106 904,084.84 = EEV18−19
2019-2020 1,005 194 404 96 912,268.44 = EEV19−20

Table 6.10: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the classification tree and the yearly average
LOS.

Instead of utilising the node average for the model, these results were expanded
to include the average LOS per year. This applied Equation (6.3) to calculate the
demands for the model and the results can be seen in Tables D.12 and D.13. By em-
ploying this technique, it ensured that specialty LOS was taken into consideration,
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particularly for specialties which have longer LOS’s.

Ds,r,year =
∑
h∈r

Ds,h,year =
Number of Patientss,h × Node Average LOSs,h,year

Number of Days in Year
(6.3 revisited)

The results are presented within Table 6.11, and graphically illustrated in Figures
D.31 - D.36 in the Appendix. The results show that more beds and nurses were
deployed in 2017–2018 when compared against using the average node LOS. The
objective value was lower from 2018, as fewer beds and nurses were being deployed.

Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 993 - 398 - 815,342.60 = EV17−18
2018-2019 993 - 398 - 829,485.60 = EV18−19
2019-2020 995 - 400 - 837,880.00 = EV19−20

Stochastic
2017-2018 832 359 330 140 856,341.72 = RP17−18
2018-2019 838 352 338 140 870,815.16 = RP18−19
2019-2020 830 363 340 140 878,140.24 = RP19−20

Test A
2017-2018 993 192 398 100 883,441 = EEV17−18
2018-2019 993 191 398 104 899,117.12 = EEV17−18
2019-2020 995 192 400 102 907,630.08 = EEV19−20

Table 6.11: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the classification tree and the yearly average
LOS for each hospital and specialty.

6.2.4 Classification Tree and Specific LOS

The classification tree depicted in Figure 5.7 was used by the fourth and final
method. Instead of utilising the average LOS for each of the 30 end nodes, the
LOS was calculated for each hospital and specialty inside that node. The genera-
tion of each demand is shown in Equation (6.4).

Ds,r =
∑
h∈r

Ds,h =
Number of Patientss,h × Specific LOSs,h

1096 (6.4 revisited)

Table 6.12 presents the ninth node within the classification tree and determines how
each of the demands was generated within this node. These results in comparison
with Table 6.8, have shown that using specific hospital and specialty, LOS overall
did not increase the number of beds required in this node. The generated demands
can be viewed in Table D.14. At the deterministic stage, the required number of
beds decreased across all nodes from 1,015 beds to 1,011 beds (Table 6.13).
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Hospital Specialty Count Average LOS Average Daily Demand

Nevill Hall Hospital Respiratory 690 0.531884 0.3348540
Royal Gwent Hospital Respiratory 553 1.39057 0.7016423

Table 6.12: The count of admissions and the associated specific LOS for each hospi-
tal and specialty within the ninth node of the classification tree. The average daily
bed demand has additionally been calculated.

Table 6.13 presents the results for the deterministic and two-stage stochastic model,
with the EEV also being calculated to determine the VSS.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 1,011 - 388 - 889,242.60 = EV
Stochastic 842 361 320 134 925,599.36 = RP

Test A 1,011 186 388 94 958,624.36 = EEV

Table 6.13: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the classification tree and the specific LOS
across all three years.

Comparing to the regression tree with average LOS results, the deterministic and
two-stage stochastic objective values were higher in the specific LOS model. This
suggested that using node averages might not produce sufficient capacity for beds
and staff. The VSS produced a saving of £21,344.72 per day (2.09%).

The individual LOS generated from each regression tree node could be used to
analyse these results on an annual basis (Tables D.15 and D.16). Equation (6.5)
was used to determine the demands for each specialty and region for each year.

Ds,r,year =
∑
h∈r

Ds,h,year =
Number of Patientss,h × Specific LOSs,h,year

Number of Days in Year
(6.5 revisited)

The results have shown that the model optimised the bed and staff numbers based
on the demand data, as shown in Table 6.14. Over time the number of beds and
nurses deployed has declined. Although more beds are deployed in the first year,
the second and third years have larger objective values due to different specialty
beds being deployed.
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Year Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic
2017-2018 1,007 - 388 - 869,740.60 = EV17−18
2018-2019 1,004 - 386 - 875,147.20 = EV18−19
2019-2020 1,000 - 380 - 877,707.00 = EV19−20

Stochastic
2017-2018 836 367 318 136 911,555.20 = RP17−18
2018-2019 839 367 320 138 917,521.08 = RP18−19
2019-2020 848 351 328 136 922,334.40 = RP19−20

Test A
2017-2018 1,007 193 388 100 941,426.60 = EEV17−18
2018-2019 1,004 192 386 106 948,915.04 = EEV18−19
2019-2020 1,000 193 380 104 952,017.56 = EEV19−20

Table 6.14: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function using the classification tree and the yearly specific
LOS.

6.3 Scenario Analysis

Scenario analysis is a powerful tool used in strategic planning and decision making.
It involves developing and examining a variety of hypothetical future scenarios in
order to understand their potential effects on a given situation or system. This
approach allows decision-makers to investigate a range of possible outcomes and
uncertainties, which can be used to develop their strategies and plans. Scenario
analysis typically involves identifying the key drivers of change and uncertainty
in a particular situation or system. These drivers can include economic trends,
technological developments, political factors, and social changes. Following the
identification of these drivers, various scenarios are created by taking into account
how they could interact and change over time. The resulting scenarios provide
decision-makers with a range of plausible futures to consider, each with its own
set of opportunities and challenges. By exploring these various scenarios, decision-
makers can better understand the risks and opportunities associated with different
strategies and plans, and make more informed decisions about how to proceed.

This section will utilise the CART models to feed into the deterministic and two-
stage stochastic models. The underlying assumption with predictive models is that
the patterns observed in the historical data will continue to hold in the future
under similar circumstances. This might be particularly challenging in healthcare,
particularly for predicting LOS in hospitals. Moreover, historical data used for
training the predictive models may include instances of poor system performance
or inefficiencies that could impact the generalisability of the model’s predictions to
future scenarios.

When using a point estimate (i.e. average) for predicting hospital LOS, typically the
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mean LOS is calculated across the entire data set. This single average value is then
used as the prediction for all patients, regardless of their individual characteristics.
Consequently, this approach does not account for the diversity of patients, medical
conditions, and other factors that contribute to variations. By utilising CART,
patient subgroups based on characteristics are created and subgroup specific average
LOS values for predictions are created. This approach recognises the diversity in
patient profiles and medical conditions, providing more variation in the demand
values.

This section aims to utilise the methods of linking the predictive and prescriptive
models and apply a variety of scenarios to them. Specific scenarios in ABUHB have
been identified through collaboration with senior staff within the health board. The
health board raised four main concerns regarding future changes and how this may
impact bed and staffing requirements. These were as follows:

1. Addition of a new hospital

2. What if demand cannot be met?

3. Re-evaluating the current setup

4. Long-term predictions

The remainder of this section will discuss each of the above points.

6.3.1 Addition of a New Hospital

The Grange University Hospital (GUH), a new hospital with a focus on critical
care, opened within the health board in November 2020 with the goal of treating
the most seriously ill patients or those with significant injuries. It also serves as the
designated trauma centre for the area [288]. The hospital opened with 560 beds and
features a 24 hours acute assessment unit, A&E unit and provides 24/7 emergency
care for patients that need specialist and critical care. To help alleviate the strains
brought on by the second wave of Covid-19 and winter seasonal stresses, GUH
opened earlier than its planned date of March 2021. The hospital was designed to
treat patients who cannot be safely managed at one of the local general hospitals,
and as such required specialties to be relocated throughout the health board. As
of 2022, GUH catered for 18 specialties and as a result the number of specialties
offered by other hospitals was reduced. In total, the number of specialties locations
offered by the hospitals reduced from 98 to 92. An updated visual of specialty and
hospital locations can be seen within Figure 6.1.

In order to incorporate GUH into the model with the existing data, the assumption
has been made that patients will be admitted to any hospital within the health board
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Figure 6.1: An updated version of the hospitals and specialties in ABUHB, with a ‘1’
indicating a specialty is present in a given hospital. For cells with a red background,
displays where specialties have opened or closed since the opening of the Grange
University Hospital (GUH).

and the regional restrictions are lifted. This results in the following constraints,
where the Ds,r parameter is changed to Ds:
Deterministic Model ∑

h∈H
xbed

s,h ≥ Ds ∀s ∈ S (6.6)

Two-Stage Stochastic Model

∑
h∈H

xbed
s,h +

∑
h∈H

ubed
s,h,k ≥ Ds,k ∀s ∈ S, k ∈ K (6.7)

The cost for each Welsh specialty bed was calculated using open source data from
Public Health Scotland. The specialty average for the Welsh-generated data was the
same as the specialty average for the Scottish-generated data, and the Welsh data
also fell within the specified range of the Scottish-generated data. In order to match
the average of the Scottish data, new values had to be constructed because the num-
bers were originally created using the prior hospital/specialty location possibilities
without taking GUH into account. If a specialty remains in the same hospital, the
previous cost will remain the same. Nonetheless, in some circumstances, hospitals
no longer offer as many specialties as they once did, falling short of the Scottish
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average. As a result, these values are altered to conform to the average. Similarly,
since the opening of GUH, the number of available beds within existing hospitals has
decreased. GUH has 560 beds within the hospital available to all patients, however,
the number has been scaled down to 300 to take the age group into consideration.
Because fewer beds are available, this has an impact on the Ks,h, UBmax, bed, 1st

h and
UBmax, bed, 2nd

h variables.

To demonstrate how the model would perform with the addition of GUH and the
relaxation of the regional demand constraint, the regression tree with the specific
LOS over three years’ worth of data will be utilised (Table D.6 within the Appendix).
The model utilised the three scenarios previously discussed, where demand remains
constant, increases by 20% and decreases by 20%, all with equal probabilities of
a third. The deterministic model yielded an objective value of £669, 699.20 with
the deployment of 982 beds and 326 nursing staff (Table 6.15). In the case of
the two-stage stochastic model, this amount rises to £686,198.04. These findings
demonstrate that establishing GUH and redesigning the specialties within hospitals
resulted in a difference of approximately £200,000.00. This shows the benefit to
decision-makers of opening this hospital, and the potential savings if the ABUHB
costings resembled those of the NHS Scotland data. The VSS is calculated to be
5.20% demonstrating the benefits of utilising the two-stage stochastic model over
the traditional deterministic model.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 982 - 326 - £669,699.20 = EV
Stochastic 817 399 268 120 £686,198.04 = RP

Test A 982 188 326 76 £721,851.04 = EEV

Table 6.15: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function for Scenario 1 where the hospital GUH is added.

6.3.2 M-Penalty

The models so far have only considered hard constraints. Hard constraints are where
constraints must be satisfied by any feasible solution to produce an optimal solution.
However, in reality, if there is not sufficient capacity, patients cannot be admitted
into hospitals and are either treated at home or transferred to a neighbouring health
board for treatment. This situation would then result in an additional cost. The
penalty can be incorporated into the existing constraints by the addition of the
decision variable z, where z ∈ N. In order to account for this within the objective
function, a cost term of M is added, where M is a fixed cost regardless of hospital
or specialty. If this was to be made more specific to the specialty or hospital,
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the subscripts s,h could be added and a two-dimensional variable generated. The
objective function value and first constraint are thus formulated as follows.

Deterministic Model

min
∑
h∈H

∑
s∈S

(xbed
s,h cbed

s,h +
∑
b∈B

xstaff
s,b,hcstaff

b ) + Mz (6.8)

∑
h∈H

xbed
s,h ≥ Ds + z ∀s ∈ S (6.9)

Two-Stage Stochastic Model

min
∑
h∈H

∑
s∈S

(xbed
s,h cbed, 1st

s,h +
∑
b∈B

xstaff
s,b,hcstaff, 1st

b )+
∑
k∈K

∑
h∈H

∑
s∈S

pk(ubed
s,h,kcbed, 2nd

s,h +
∑
b∈B

ustaff
s,b,k,hcstaff, 2nd

b ) + Mz (6.10)

∑
h∈H

xbed
s,h +

∑
h∈H

ubed
s,h,k ≥ Ds,k + z ∀s ∈ S, k ∈ K (6.11)

These new objective functions and constraints can be inputted into the OpenSolver
model and solved with the regression tree nodes as demands. Since hard constraints
have been used previously, the model will produce the same results as those in Sec-
tion 6.3.1 and the objective function values shown in Table 6.15. However, if hospital
beds are reallocated to other patient age groups within the hospital, or decision-
makers decide to close hospitals, or specialties within certain hospitals, testing will
be necessary to ascertain the effects on overall costs and resource requirements.

If decision-makers decided to reduce the number of available beds within STWAH
to frail and elderly patients, then this would cause the services of dermatology
and T&O to close within this hospital. Although T&O services can be transferred
to RGH, GUH, NHH or YYF, no other hospital offers dermatology treatments.
Therefore if we make the assumption that dermatology patients would have to be
treated at home or at a different health board, this would be with an additional
cost of M .

If we define M as having a value of £2,500.00, this value exceeds all second stage
hospital costs throughout the health board. It was assumed that M is not scenario
dependant meaning that if in one scenario, a penalty occurred, it occurred for
all scenarios. Table 6.16 presents the results of the deterministic and two-stage
stochastic models. The health board received a deterministic outcome that allocated
982 beds and 326 nurses, yielding an EV of £669,699.20, which is equal to the
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previous example in Table 6.15. In this case, demand could always be met, and
therefore z = 0. The two-stage stochastic model involves the deployment of 816
beds in the first stage and a maximum of 407 beds in the second stage. This
increases the objective value to £706,437.68, an increase of 2.91% without using
the M-penalty method. The VSS can be calculated to be 2.19% with an additional
saving of £15,499.76 per day by using the stochastic solution over the deterministic.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 982 - 326 - £669,699.20 = EV
Stochastic 816 407 268 120 £706,437.68 = RP

Test A 982 188 326 76 £721,937.44 = EEV

Table 6.16: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision vari-
ables and objective function for Scenario 2 where the M-penalty method is added.

The greatest effects of the M-penalty can be seen within Section 6.3.4, where the
demands have been increased significantly to simulate the effects of a pandemic
similar to those of Covid-19 to determine the robustness of the healthcare system.

6.3.3 Re-evaluating the Current Setup

This section aims to re-evaluate the current arrangement of specialties bed sites
in the health board and to ascertain the most effective method of specialty reor-
ganisation. This operates under the assumption that a patient can be admitted
to any hospital within the health board and that every hospital has the capability
of having any specialty. Since the opening of GUH in 2020, specialties have been
rearranged around the health board. This work will determine the most efficient
way to organise beds and nursing staff in order to meet the current demand.

The models will operate under the premise that patients can be admitted into any
local hospital (Section 6.3.1) and that there is a penalty (Section 6.3.2) if demand
is not satisfied throughout the health board.

Previously, specialty bed costs from Public Health Scotland have been utilised for
the models (Table 5.29). As this scenario allows all hospitals to have all specialties,
the cost matrix for first and second stage beds requires modifying to incorporate
this. The prior costings will be recalculated using the new values for each hospital
and specialty that fall within the specified ranges, with the average being set at
the average of the Scottish data. If a hospital already has a specialty, the cost was
applied as in the preceding instance. Although the financial figures are not directly
correlated to ABUHB, this scenario test is still beneficial in terms of theory as to
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how the health board could go and implement this method. The results can then
be compared to Table 6.16 as to the difference in costings.

Table 6.17 displays the final figures once the model has been executed. Within this
model, 928 beds are deployed with 382 nursing staff required. In the majority of
cases, specialties are localised to one or two hospitals (Figure D.51). To deploy
the specialty of T&O, three hospitals are required and for the rehabilitation spe-
cialty, four hospitals are required. There is no overlap between these two specialties,
therefore if a hospital has a T&O ward, it would not have a rehabilitation ward.
The VSS is calculated to be 7%, showing once again, the benefit of utilising the
stochastic model over the deterministic model. Although the financial figures may
not be accurate, it can be recommended to ABUHB that further cost savings could
be made if they are able to consolidate their specialties into one or two hospitals
rather than providing a large number of specialties per hospital increasing resource
costs.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 982 - 328 - £552,898.60 = EV
Stochastic 809 403 270 118 £555,746.48 = RP

Test A 982 188 328 76 £594,651.64 = EEV

Table 6.17: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision vari-
ables and objective function for Scenario 3 where the hospital setup is re-evaluated.

6.3.4 Long-term Planning

Long-term planning decisions in healthcare are critical in determining how demand
will fluctuate and change in the future. There are four main reasons as to why
long-term planning is essential:

1. Anticipation of future needs: Long-term planning helps healthcare organisa-
tions to anticipate future needs and plan accordingly. Healthcare providers
can plan to extend certain services that are suited to the requirements of the
elderly, such as COTE if an area is experiencing an ageing population.

2. Financial stability: The NHS has a limited spending budget per year assigned
by the Government. By planning for future demand and capacity, decision-
makers can ensure they have the resources required, without overspending, to
continue to provide quality care.

3. Improved patient outcomes: Long-term planning can allow healthcare organ-
isations to focus on preventative measures and early intervention. By antici-
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pating future healthcare needs, organisations can develop strategies to address
them proactively, leading to better health outcomes for patients.

4. Resource allocation: Long-term planning allows healthcare organisations to
allocate resources effectively. With this planning, decision-makers can make
informed decisions about where to invest resources, such as building new
healthcare facilities, hiring additional staff or purchasing new equipment.

These reasons highlight how critical it is for the NHS to be able to adapt to change.
The demand and pressures on the NHS are expected to increase over future years
due to rising populations [289], Covid-19 recovery backlog [290] and lifestyle factors
that lead to increases in hospital admissions [291].

6.3.4.1 Number of Available Nursing Staff

The impact of a reduction in the number of nursing staff available is examined in
the following scenario. There are several reasons why this might happen, includ-
ing nurses leaving the profession after the Covid-19 pandemic [292], nurses taking
industrial action for fairer pay and working conditions [293] or due to sickness [294].

If we make the assumption the number of nursing staff available is reduced to 160
for each band in the first stage, and an additional 40 available within the second
stage, the EV produced a value of £673,093.00 (Table 6.18). Due to the reduced
availability of staff, it caused the z decision variable to be equal to three, as wards
could not open as they did not meet the safe staffing levels.

The VSS was calculated to be 3.50% with daily savings of £24,756.00. The location
of where beds should be deployed in this scenario can be seen in Figures D.51 and
D.52.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 979 - 320 - £673,093.00 = EV
Stochastic 891 290 304 80 £698,680.60 = RP

Test A 979 191 320 80 £723,436.60 = EEV

Table 6.18: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function for Scenario 4 where the nursing capacity is reduced.

The scenario analysis can use more complex scenarios by modifying the demand
through individual nodes by linking the predictive and prescriptive paradigms. This
is more realistic than the current practice of increasing and decreasing the demands
by a fixed percentage. The complete three years’ worth of data will be utilised.
Although more savings could be achieved by planning on a smaller time frame,
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such as annually, it would be impracticable for the health board to implement such
adjustments frequently. There will be two long-term prediction scenarios examined.
The first will investigate how the introduction of virtual wards could reduce demand,
while the second will analyse a sudden increase in demand.

6.3.4.2 Introduction of Virtual Wards

It is well-known within the medical community that patients who receive care at
home recover quicker [295]. This can be due to more support from family members
and care-givers or less risk of infection. A new development in healthcare are virtual
hospital wards, which came forth in response to the Covid-19 pandemic. With the
support of these wards, patients can obtain treatment and monitoring in the con-
venience of their own homes, lessening the strain on hospitals and lowering the risk
of contracting Covid-19. With the use of various digital technologies, virtual hos-
pital wards can offer patients remote monitoring, doctor consultations, and access
to medical supplies and medications. This approach to healthcare delivery has the
potential to revolutionise the way practitioners provide care to patients, particu-
larly those with chronic conditions, and enhancing patient outcomes while reducing
healthcare costs. Virtual wards can be used to discharge patients more quickly or
prevent them from being admitted at all [296].

If ABUHB were to implement similar virtual wards as adopted in other regions of the
UK, this could provide numerous benefits. Cardiology and respiratory care are two
of the disciplines where the Croydon Health Services NHS Trust has implemented
virtual wards [297]. The trust found cost savings of approximately £1,080.00 per
patient, and only 20% of patients were required to be admitted to hospital. This
can be applied to ABUHB by decreasing the demand for cardiology and respiratory
services in one scenario by 10% and in another scenario by 30%.

The deterministic demand remains unchanged assuming there is no implementation
by decision-makers to add virtual wards to the hospitals. This results in the deter-
ministic model producing an objective value of £623,597.20 (Table 6.19). The two
scenarios within the stochastic model reduce the number of beds and staff required
to be deployed to a maximum of 973 beds and 324 staff, generating an objective
value of £653,397.64. The VSS was calculated to be 2.60% if the demand on car-
diology and respiratory admissions were to decline. This highlights the advantages
of virtual wards and enables decision-makers to assess its viability from a financial
and logistical standpoint.



CHAPTER 6. LINKING PREDICTIVE AND PRESCRIPTIVE ANALYTICS FOR
HEALTHCARE SERVICES 189

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 942 - 316 - £623,597.20 = EV
Stochastic 877 96 286 38 £653,397.64 = RP

Test A 942 36 316 14 £670,407.28 = EEV

Table 6.19: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function for Scenario 5 with the introduction of virtual wards.

6.3.4.3 Sudden Increase in Demand

In January 2020, Covid-19 was declared a Public Health Emergency of International
Concern, with this being characterised as a pandemic on the 11th March 2020 [119].
This caused sudden and extreme pressure on the NHS which was already under pre-
vious stress from inadequate planning and under-resourcing [298]. Within Chapter
2, it was discussed how there had been little planning within elderly and frail health-
care literature for sudden increases in demand within their modelling scenarios. The
next scenario will consider how the model will cope with another similar Covid-19
pandemic situation. The deterministic model will utilise the normal regression de-
mand, with the scenarios considering if demand across all specialties and hospitals
increased by 20% and 40%.

Table 6.20 presents the results if demand were to suddenly increase and appropriate
planning had not taken place. The objective value increases by 35.75% in the
stochastic model compared to the deterministic model. This is a large increase of
unexpected demand with the total number of beds increasing by up to 425. The
VSS produces a value of 4.96%, with the objective function almost a third higher
than the value of the deterministic model.

Total Beds Total Staff Objective Function Value (£)
xbed ubed xstaff ustaff

Deterministic 942 - 316 - £623,597.20 = EV
Stochastic 1089 278 350 100 £895,035.64 = RP

Test A 942 421 316 150 £939,386.84 = EEV

Table 6.20: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function for Scenario 6 with the sudden increase in demand.

6.3.4.4 Applying CART to Target Nodes

The CART tree presents a more sophisticated alternative to averaging. Since Covid-
19 there is now a backlog of patients waiting for inpatient treatment in hospital,
and hospital managers are under increasing pressure to provide more availability of
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appointments. One of these specialities under increasing pressure is the trauma and
orthopaedic service [299]. These patients’ health deteriorate over time whilst waiting
for appointments and therefore it is necessary for them to be seen quickly [300].
Instead of projecting a straightforward 10% increase in the expected demand for the
trauma and orthopaedic (T&O) specialty, obtained by multiplying the average LOS
by the count, the CART nodes can be skillfully employed. By selecting specific nodes
tailored to the T&O specialty, we can precisely adjust the count within those nodes.
This approach takes into account the diverse LOS values, resulting in a demand node
that goes beyond a simple average increase. When determining the average, there
are multiple options to consider. One option is to focus solely on nodes containing
the T&O specialty, ensuring a more targeted approach. Alternatively, one could
include all nodes offering T&O services, broadening the scope for calculation. The
benefit of using CART lies in its flexibility, as users have the freedom to handpick
nodes that align with their unique requirements, thus creating a more personalised
and refined demand projection.

The first of the following examples will analyse simply increasing the overall demand
by 10% of T&O services using the average demands from Table 5.31. The second
example will use the regression tree to target those which are specific T&O nodes
(Nodes four, 15 and 16 from Figure 5.6). The count will be increased by 10%.

The demand for the first example totals 972.4808 daily demand for beds compared
to the second where the sum is 979.2914. Even though within the second example,
not all the T&O nodes are increased (since only the nodes where T&O is the only
specialty are included), the daily bed demand is larger than in the first example.
This shows that by using the regression tree to generate the demand, more variation
has been included.

Table 6.21 displays the results for the two examples. The number of beds and
nursing staff deployed remains similar with the largest difference of four beds and
four nurses. The VSS solution was calculated to be 4.91% and 5.00% for the first and
second examples, respectively. This highlights the benefit of using the CART model
to deploy the demand, as higher VSS values can be generated, and more variation
within the demands is created. This enables a more realistic and representative of
the real-world problem. Through the utilisation of CART, the user can enhance
the model’s predictive capabilities, enabling it to cater to more specific and precise
future demands. This is achieved by fine-tuning each of the end nodes within the tree
structure, rather than just examining one specific specialty, effectively integrating
reliable future forecasts into the model’s decision-making process. As a result, the
model becomes better equipped to provide tailored and accurate predictions for
upcoming scenarios.
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Total Beds Total Staff Objective Value (£)
xbed ubed xstaff ustaff

Example 1
Deterministic 992 - 330 - £679,546.00 = EV

Stochastic 828 410 274 122 £697,705.96 = RP
Test A 992 190 330 78 £732,625.12 = EEV

Example 2
Deterministic 996 - 328 - £668,553.60 = EV

Stochastic 841 400 272 122 £689,015.92 = RP
Test A 996 196 328 84 £722,848.16 = EEV

Table 6.21: The EV, RP and EEV values for the xbed, ubed, xstaff, ustaff decision
variables and objective function for Scenario 7 with a 10% increase in demand for
T&O services. Example 1 is the case where the overall average demand is increased
by 10% and Example 2 is targeting T&O only nodes within the regression tree and
increasing the demand by 10%.

This section has provided an overview of a variety of scenarios that the models are
able to plan for. This can aid decision-makers when planning services by determining
how beds and staff would need to be deployed for future demands. Whilst tailored
to specific questions determined by ABUHB, the flexibility within the model allows
the user to apply this to other scenarios they may wish to investigate.

6.4 Generalisability of Results

Generalising results is a critical aspect of research that helps to ensure that the
findings of a study are relevant and applicable beyond the specific context in which
they were obtained. This makes it possible to guarantee that the study will be
beneficial and instructive for other academics, professionals, and policymakers who
could be working in other locations or with various populations. Also, generalising
findings contributes to a study’s external validity, which is crucial for creating a
solid body of scientific knowledge.

Both Microsoft Excel and Python implementations have been supplied, in Chapter
7 and are available on GitHub [287], in order to make the models flexible for use by
other researchers and healthcare specialists. Excel’s OpenSolver was adopted since
it can be utilised by staff at all levels within the ABUHB and does not require any
prior programming skills. The health board’s data is conveniently saved in Microsoft
Excel files, making it easy for users to enter their data into the model. The Python
model is also provided because it is flexible, allowing users to make changes quickly
and simply, in response to evolving data or requirements. Because of its versatil-
ity, the model can still make precise predictions as more data becomes available.
Furthermore, an adaptable Python model allows for more efficient experimentation
and testing, as it can be quickly adjusted and re-run with different parameters. To
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ensure users are able to apply this to their own work, Chapter 7 provides a tutorial
on how to utilise both models.

The deterministic and two-stage stochastic equations are able to be applied to any
healthcare scenario. Whilst this research particularly focused on frail and elderly
patients, due to the changing population demographics within the health board, the
equations can be applied to other age groupings. The benefit of using CART models
is that researchers and clinicians can apply the theory to their own patient types and
identify distinctive homogeneous clusters of patient features. As time passes and
the demographic of patients changes, these models can be rerun to determine new
patient clusters. The user can choose the number of hospitals in each region and
the range of specialties they may provide because of the equations’ structure, which
allows the models to be adjusted to fit any size health board. Whilst these models
were run with three levels of nursing bands, these can be increased or decreased
to suit the user. Additionally, if decision-makers wanted to determine the needs
for other hospital resources such as ventilators, these could be easily added into
the model. The models are adaptable and reliable to suit a variety of healthcare
situations.

6.5 Summary

By linking predictive and prescriptive analytics, decision-makers can obtain a com-
prehensive view of their data and use it to make better decisions. For example, if
predictive analytics indicates there is a high likelihood of a certain event occurring in
the future, prescriptive analytics can recommend specific actions that can be taken
to mitigate the risk or take advantage of the opportunity. Furthermore, this integra-
tion can also allow decision-makers to continuously improve their decision-making
processes over time. By tracking the effectiveness of their decisions and making
adjustments based on new data and insights, they can optimise their operations
and achieve better outcomes.

The analysis conducted has proven to be incredibly helpful for the healthboard on
various fronts. One key takeaway from the models is the clear demonstration of
the drawbacks of planning solely based on averages. This eye-opening insight has
underscored the importance of adopting more sophisticated and dynamic approaches
to resource planning, steering the health board away from potential pitfalls in their
decision-making process. Perhaps the most impactful aspect of this project lies in its
utilisation of predictive modelling. For a healthboard accustomed to simpler average
models, this project has showcased the true potential of mathematical modelling,
revealing its power in unravelling complexities, optimising operations, and delivering
data-driven insights into healthcare planning. Moreover, the scenario analysis has
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provided the healthboard with valuable revelations regarding potential structural
changes within the organisation. By delving into the intricate factors that influence
overall bed demand, they now have a comprehensive understanding of how different
variables can impact resource requirements. Armed with this knowledge, the health
board is better equipped to make informed and strategic choices in terms of resource
allocation and capacity planning.

This chapter has discussed how predictive and prescriptive analytics could be used in
combination for efficiently planning hospital specialty beds and staffing requirements
for a network of hospitals in South East Wales. By comparing the regression tree
and classification results to the averages, it allowed differences to be determined
and validation of the linked methods to take place. The results showed regression
trees produced closer results to the averages. The validation of these regression
trees paves the way for more complex scenario analysis. The addition of GUH,
adding a soft constraint penalty and determining future scenarios were the three
avenues explored. These results showed the potential and robustness of the models,
which enables them to be applied to future scenarios that the health board may
wish to investigate. The models are also generalisable so can be applied to any
age demographic or hospital region and therefore can be used in other aspects of
ABUHB and applied to worldwide healthcare organisations.

In the following chapter, Chapter 7, a tutorial is provided on how to use the Mi-
crosoft Excel OpenSolver and the Python PuLP tools.
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Chapter 7

Decision Support Tool for
Multi-Hospital Planning of Frail
and Elderly Resource Capacities

7.1 Introduction

This chapter will provide a tutorial guide on how to use the two tools discussed
within Chapters 5 and 6. These tools are adaptable so can be applied to other
health boards and scenarios or other patient groupings. Section 7.2 will discuss
the Microsoft Excel OpenSolver Tool which is specific to ABUHB. This model and
approach can be replicated and applied to any other health board. Section 7.3
discusses the Python PuLP implementation of the model, which can be generalised
to any health board situation.

7.2 Excel Implementation

Microsoft Excel is a widely used tool for data analysis and management, and Open-
Solver is a powerful optimisation engine that can be used to solve complex problems
within Excel. In this guide, we will provide step by step instructions on how to run
the OpenSolver model, from setting up your data and formulating your problem to
running the optimisation and analysing the results.

The OpenSolver model without the ABUHB data has been provided on GitHub
[287] to allow users to enter their own data and hospital specialties. Each type of
parameter has its own individual sheet and is clearly named to ensure the planners
can easily access data. Due to the limitations of the software, all decision variables
in the optimisation model must be on the same sheet. For visualisation purposes,



CHAPTER 7. DECISION SUPPORT TOOL FOR MULTI-HOSPITAL PLANNING
OF FRAIL AND ELDERLY RESOURCE CAPACITIES 196

the decision variables are automatically transferred into the model sheets after the
experiment has run.

Data

Figure 7.1 displays the data which is used by the model. This is stored within
the ‘Data’ tab and allows users to enter and change the parameters to suit their
model. The user is required to enter the hospital and specialty into which a patient is
admitted. The ‘Short LOS’ determines the number of nights spent in hospital, whilst
the ‘LOS hours’ determines the continuous time spent in hospital. Additionally, the
date column can be added if the user wishes to split their model by year, season,
month or days of the week. Finally, there is the NHS Patient Identifier which is
unique to the patient.

Figure 7.1: The data requirements for the Excel OpenSolver plugin where the user
is required to enter, as a minimum, the ‘Specialty’, ‘Hospital’ and either ‘Short LOS’
or ‘LOS hours’ for each patient.

Demand

The demand for each specialty is automatically generated from the data inputted
by the user and is stored in the ‘Demands’ tab within the Excel spreadsheet. The
average demand is calculated by determining if a specialty and hospital combination
is present, and if so, calculating the total. Similarly, if patients do fall within
these combinations then the average LOS, using ‘LOS hours’, is calculated for each
specialty and hospital. These values are then multiplied together and subsequently
divided by 24, as the LOS is given in hours, and then by the total number of days
in the data, to give a daily demand. This means if a user wants to determine a
monthly demand, the ‘Number of Days in Data’ can be changed to the number of
months within the data. This is then stored as a table shown in Figure 7.2.

Possible Hospital Locations

The tab entitled ‘Hospital-Specialty’ contains data regarding whether a hospital
is able to open a specialty. In order to restrict the number of beds that can be
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Figure 7.2: The average daily bed demand matrix automatically generated by Excel,
segmented by region and specialty. The user is required to enter the number of days
within the data.

deployed in a hospital’s location, the total bed capacity for the 1st and 2nd stages of
the model can be seen within Figure 7.3. As some hospitals may not be able to open
full capacity to one specialty, due to resource or space limitations, the user is able
to reduce these values whilst still being able to open up to the full capacity across
other specialties. If a value of zero is present, this means the hospital is unable to
open that specialty.

Hospital Costs

Within the ‘Hospital Costs’ tab in the spreadsheet, the user is able to enter the
average daily cost for each specialty. Similar to demands, if the user wants to work
in a different time frame; monthly, seasonally, or yearly, the cost figures can also be
adjusted. Figure 7.4 displays the 1st stage hospital costs, with an identical matrix
grid being found below in the spreadsheet for the 2nd stage costs.

Staffing

The ‘Staffing’ tab in the Excel worksheet contains all the necessary information for
the staffing requirement. Firstly, the staff to patient ratio can be altered depending
on the band level and the specialty (Figure 7.5). The hourly and daily cost per
member of staff can also be changed. This flexibility allows pay rises to be included
and flexibility in costings across other countries. Similarly, the cost of NHS bank
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Figure 7.3: The maximum number of beds that can be deployed to each hospital
location for each specialty. Additionally, the user is required to enter the total
capacity for the hospitals in the first and second stages.

Figure 7.4: The user is required to enter the first stage cost for each hospital and
specialty combination.

and agency staff was also included. Finally, the maximum number of staff that can
be deployed both in the first and second stages is detailed.
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One limitation of the Excel model is higher levels of staff cannot perform the role
of the lower band staff members. This is due to the non-linearity of the constraint
which the COIN-OR CBC (Linear solver) cannot handle.

Figure 7.5: The user is required to enter the ratio of nursing band staff to each
specialty. Additionally, the user is required to enter the cost per hour of the first
and second stage nurses staff, and the total capacity.

7.2.1 Deterministic Model

The deterministic model is stored within the ‘Deterministic’ tab, where the opti-
misation model can be run and the results analysed. With the OpenSolver add-in
installed, the model can be easily accessed through the Data ribbon and then select-
ing the Model on the OpenSolver toolbar. This brings up Figure 7.6, which depicts
the objective function cell, the type of problem (maximisation or minimisation), the
decision variables, the model’s constraints and the type of solver engine. Using the
options button; the maximum solution time, branch and bound tolerance and the
maximum number of iterations can also be changed. To solve the model, the ‘Solve’
button can be selected on the OpenSolver toolbar.

Once executed, the total cost of the model is shown within the sheet, along with
the total number of beds and staff to be deployed (Figure 7.7). The model shows
where each of these beds should be deployed across the specialties and hospitals,
and the overall number of beds within each hospital. Similarly, the number of staff
deployed for each band can be visualised within the same worksheet, as shown in
Figure 7.8.
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Figure 7.6: The OpenSolver objective cell, decision variable cells and constraints for
the deterministic implementation. The ‘Current Solver Engine’ can be changed to
Gurobi if a license is available.
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Figure 7.7: The output from the deterministic model once solved, displaying the number of beds to deploy to each hospital and specialty.
The total daily cost, beds and staff are also summarised.
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Figure 7.8: The staffing output from the deterministic model once solved, displaying
the number of nursing staff to deploy to each specialty and of which band level.

7.2.2 Two-Stage Stochastic Model

The two-stage stochastic model is stored within the ‘Stochastic’ tab. Due to the
large number of decision variables within the stochastic model (6,960 variables), the
model is stored within ‘SVariables’ and the results are automatically transferred
into the ‘Stochastic’ tab.

In addition to the deterministic model parameters, the scenarios and probabilities
for each scenario are required. The Excel tool can use up to four scenarios by
changing the values as demonstrated in Figure 7.9.

Figure 7.9: The scenario selector for the two-stage stochastic implementation. Users
are prompted to input the demand scalar and the corresponding probability of
occurrence.

Similar to the deterministic model, the stochastic model’s constraints can be seen
within the ‘Data’ ribbon and selecting the ‘Model’ option. Figure 7.10 shows the
objective function cell, as well as the decision variable locations. The stochastic
model contains 31 constraints, as well as the option to make unconstrained variable
cells non-negative. Once again, the COIN-OR CBC linear solver or the Gurobi can
be used.

Once the model has run, the output produced is similar to the one shown in Figure
7.11. The model determines how many beds and staff to deploy in the first and
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Figure 7.10: The OpenSolver objective cell, decision variables and constraints for the
two-stage stochastic implementation. The ‘Current Solver Engine’ can be changed
to Gurobi if a license is available.

second stages to ensure the minimum demand is met. A summary is provided
within rows 37 and 38 on the worksheet, but the full breakdown of the results can
be seen within the remainder of the worksheet.

7.2.3 Test A

Test A is stored in the ‘TestA’ tab, where the optimisation model can be run and the
results analysed. Similar to the stochastic model, due to the large number of decision
variables within the optimisation model, the model is stored within ‘OVariables’ and
the results are automatically transferred into the ‘TestA’ tab.

For Test A, the first stage of the model is required to be fixed to the results of the
deterministic model. The Excel spreadsheet has been setup in a way that requires
no additional user input is required for this Test. This is achieved by linking the
cells together, i.e., =Deterministic!B3, which would copy the first hospital and
specialty into the first stage of the model.
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Figure 7.11: The output from the two-stage stochastic model once solved, displayed
the number of beds to deploy to each hospital and specialty. The total daily cost,
first and second stage beds and nursing staff are also summarised.

Similar to the previous two models, the constraints can be seen within the ‘Data’
ribbon and selecting the ‘Model’ option. Figure 7.12 displays the output of the
model, showing a summary of the daily costing figures as well as the numbers of
beds and staff deployed in the first and second stages.

Figure 7.12: The output from Test A model implementation once solved, displayed
the number of beds to deploy to each hospital and specialty. The total daily cost,
first and second stage beds and nursing staff are also summarised.
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7.2.4 Test B

Test B is stored in the ‘TestB’ tab of the workbook, and its purpose is to determine
if the correct first stage variables have been chosen.

This test requires the zero or lowest value stage variables of the deterministic model
to be set to zero or the lower bound. As some specialties cannot open within certain
hospitals of ABUHB, this means there will always be zero variables, and therefore
the model is setup in a way to determine if zero beds are deployed in the determinis-
tic model, then it will return zero. Otherwise, it will return the maximum number of
beds that can be opened within the hospital. An example of how this is generated is
as follows: IF(Deterministic!B3=0, 0, ‘Hospital-Specialty’!B3), where cell
B3 is the first hospital/specialty combination. The formula checks the ‘Determinis-
tic’ tab to determine whether or not the B3 cell is 0, if so, then a zero is placed into
the cell. If not, the value from the corresponding cell in the ‘Hospital-Specialty’ tab
is taken.

If there was a scenario in which, all specialties in all hospitals had been opened, the
user would have to manually enter the lower bound.

The results of the ‘IF statement’ are then outputted into cells AB3:AM31 (Figure
7.14). As OpenSolver works with the linear programming add-in, the ‘IF statement’
causes this to become non-linear. To overcome this, the user is required to copy and
paste cells AB3:AM31 into O3:Z31 ensuring only the values and not the formulae are
copied over.

Figure 7.13 illustrates the additional constraint necessary for the model to run
successfully. To access this constraint, along with the other constraints, the user
can select the ‘Data’ ribbon and the ‘Model’ option. The output from the model,
showing the objective function and bed and staff totals can be seen in Figure 7.15.

Figure 7.13: The additional constraint required for Test B, where the zero variables
within the deterministic model are set as the lower bound for the first stage within
Test B.
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Figure 7.14: For Test B, an ‘if statement’ is required to be used to determine the zero bound of the decision variables from the Deterministic
output. As OpenSolver is a linear programming solver, the user is required to copy and paste the values only from cells AB3:AM31 to O3:Z31.



CHAPTER 7. DECISION SUPPORT TOOL FOR MULTI-HOSPITAL PLANNING
OF FRAIL AND ELDERLY RESOURCE CAPACITIES 207

Figure 7.15: The output from Test B model implementation once solved, displayed
the number of beds to deploy to each hospital and specialty. The total daily cost,
first and second stage beds and nursing staff are also summarised.

7.2.5 Test C

Test C is stored in the ‘TestC’ tab of the workbook and its purpose is to determine
the upgradeability of the model. Similar to Test A, the Excel spreadsheet has been
set up in a way that requires no additional user input. An example of how this is
achieved is as follows: =Deterministic!B3 which will copy the first hospital and
specialty.

This results in the following matrix to be inputted into cells O3:Z31, as shown in
Figure 7.16.

Therefore an additional constraint to the original two-stage stochastic model is
added into the constraint list to ensure the first stage variables meet the minimum
deterministic values. The constraint is shown in Figure 7.17.

The remainder of the model remains the same as the two-stage stochastic deploy-
ment and the output of the results can be seen as exampled in Figure 7.18.
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Figure 7.16: The minimum values which are required to be met within the first
stage of Test C. This will determine the upgradeability of the model.

Figure 7.17: The additional constraint required for Test C, where the deterministic
values are the minimum bound for the first stage of Test C.

Figure 7.18: The output from the deterministic model once solved, displaying the
number of beds to deploy to each hospital and specialty. The total daily cost, beds
and staff are also summarised.
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7.3 Python Implementation

Python is a high-level programming language that can be used for a wide range of
applications such as web development, data analysis, scientific computing, artificial
intelligence, and automation. In this guide, a step by step tutorial is provided and
the input requirements of the user will be discussed.

The deterministic and two-stage stochastic optimisation models have been provided
on GitHub [287] to enable users to apply this to their own scenario. The model
requires users to install the PuLP package [301], and these models were developed
using PuLP version 2.3. Python contains a library named ‘itertools’, which is also
required. If the user has a Gurobi license, then this also requires importing into
Python. For the models to run, these two libraries are required to be imported, as
follows:

1 import pulp
2 import itertools
3 import gurobipy

7.3.1 Deterministic Model

The Python models use functions to pass data through and stores variables until
later required. The first function initialises the problem and sets the decision vari-
ables. The ‘pulp.LpProblem’ class creates a new linear programming problem with
the name used within the output .lp file and the sense of the objective, whether this
be a minimisation or maximisation. The ‘Lp.Variable’ term creates the decision
variables and stores them within a dictionary. The lower bound of the variables is
set to zero to ensure there are no non-negative constraints, and the values are set to
integer. In this case, the ‘xbed’ variable is a two variable dictionary and the ‘xstaff’
is a three variable dictionary.

1 def initialise_deterministic_minimisation_problem (
2 specialties , hospitals , bands
3 ):
4 """
5 Initialise the mininmisation problem .
6 Set decision variables for the models .
7 """
8 sh = [(s,h) for s in specialties for h in hospitals ]
9 shb = [(s,h,b) for s in specialties for h in hospitals for b in

bands]
10

11 prob = pulp. LpProblem (" Deterministic ", pulp. LpMinimize )
12

13 xbed = pulp. LpVariable .dicts(
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14 "Xbed", ( specialties , hospitals ), lowBound =0, cat='Integer '
15 )
16 xstaff = pulp. LpVariable .dicts(
17 " Xstaff ", ( specialties , hospitals , bands), lowBound =0, cat='

Integer '
18 )
19 return prob , sh , shb , xbed , xstaff

Once the model is initialised, the deterministic constraints as listed in Section 4.3.4,
can be inputted into the model. The deterministic model in total contains 10
constraints. PuLP uses the assignment operator ‘+=’, to store the results of an
expression to the ‘prob’ term. The class ‘lp.Sum’ is used to sum the list of linear
expressions. For loops are used to cycle through all the elements in the list. This
can be seen as follows in the ‘add deterministic constraints’ function:

1 def add_deterministic_constraints (xbed , xstaff , UBbed , UBstaff , D,
K, R, sh , shb , prob):

2 """
3 Add the constraints that are required for the deterministic

model
4

5 - Constraints 1-6: Ensures demand is met across all specialties
and all regions

6 - Constraint 7: Ensures beds are only able to open in a ward if
the facilities are able to be opened

7 - Constraint 8: Ensures staffing ratios are met
8 - Constraint 9: Ensures beds deployed does not exceed maximum

capacity of hospital
9 - Constraint 10: Ensures staff deployed does not exceed maximum

staffing resources
10 """
11

12 for s in specialties :
13 prob += pulp.lpSum(xbed[s][h] for h in region1 ) >= pulp.

lpSum(D[s][0]) # Constraint 1
14 prob += pulp.lpSum(xbed[s][h] for h in region2 ) >= pulp.

lpSum(D[s][1]) # Constraint 2
15 prob += pulp.lpSum(xbed[s][h] for h in region3 ) >= pulp.

lpSum(D[s][2]) # Constraint 3
16 prob += pulp.lpSum(xbed[s][h] for h in region4 ) >= pulp.

lpSum(D[s][3]) # Constraint 4
17 prob += pulp.lpSum(xbed[s][h] for h in region5 ) >= pulp.

lpSum(D[s][4]) # Constraint 5
18 prob += pulp.lpSum(xbed[s][h] for h in region6 ) >= pulp.

lpSum(D[s][5]) # Constraint 6
19

20 for h in hospitals :
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21 prob += pulp.lpSum(xbed[s][h]) <= pulp.lpSum(K[s][h]) #
Constraint 7

22

23 for b in bands:
24 prob += pulp.lpSum( xstaff [s][h][b]) >= pulp.lpSum(R

[s][b]*( xbed[s][h])) # Constraint 8
25

26 for h in hospitals :
27 prob += pulp.lpSum(xbed[s][h] for s in specialties ) <=

UBbed[h] # Constraint 9
28

29 for b in bands:
30 prob += pulp.lpSum( xstaff [s][h][b] for (s,h) in sh) <=

UBstaff [b] # # Constraint 10
31

32 return prob

The final function solves the deterministic model by calling all the previous func-
tions. This is where the objective function of the model is defined and has to satisfy
the constraints, which are called from the previous function. The model is solved
using the ‘prob.solve()’ term, where the solver; COIN-OR CBC linear solver, is se-
lected. The ‘maxSeconds’ determines the maximum time for the solver in seconds,
whilst the ‘fracgap’ sets the tolerance for the solver to stop.

1 def solve_deterministic_minimisation_problem (
2 specialties ,
3 bands ,
4 hospitals ,
5 regions ,
6 D,
7 K,
8 R,
9 cbed ,

10 cstaff ,
11 UBbed ,
12 UBstaff ,
13 ):
14

15 """
16 Solves the deterministic problem , with the objective function

being minimised .
17 """
18 prob , sh , shb , xbed , xstaff =

initialise_deterministic_minimisation_problem (
19 specialties = specialties ,
20 hospitals =hospitals ,
21 bands=bands
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22 )
23

24 prob += (
25 pulp.lpSum (( xbed[s][h] * cbed[s][h]) for (s,h) in sh) +
26 pulp.lpSum (( xstaff [s][h][b]* cstaff [b]) for (s,h,b) in shb)
27 )
28

29 prob = add_deterministic_constraints (
30 xbed=xbed ,
31 xstaff =xstaff ,
32 UBbed=UBbed ,
33 UBstaff =UBstaff ,
34 D=D,
35 K=K,
36 R=R,
37 sh=sh ,
38 shb=shb ,
39 prob=prob ,
40 )
41 # The user can select one of the two optimisers :
42 # prob.solve(pulp. GUROBI ())
43 # prob.solve(pulp. PULP_CBC_CMD ())
44 return prob

The values for the parameters are then required to be entered by the user. The
total number of specialties, bands and regions can be entered manually and using
the itertools package, lists are created. For each region, the hospitals are inputted
into each array. For example, if region one had the first three hospitals the line
‘region1 = [0,1,2]’ would be displayed. All regions are then summed together to
determine the total number of hospitals within the health board. A two-dimensional
demand array, D, is required by the user. Each row represents a specialty and each
column represents the region. Similarly, the K value depicting how many beds can
be deployed within each specialty and each hospital can also be inputted. Again,
each row represents a specialty, with the column representing the hospital. Next,
the ratios of each band of staff to specialty is required. The row of the array is
representing specialty and the columns represent each band of nurse. The variable
‘cbed’ relates to the cost of a bed per specialty in each hospital. The structure of
this is identical to the K array. The ‘cstaff’ parameter is a one-dimensional matrix
where each entry relates to the cost of each band of nurse. Similarly, the ‘UBstaff’
parameter is the maximum number of nurses for each band that are able to be
deployed. Finally, the ‘UBubed’ is the maximum number of hospital beds that can
be deployed and each entry represents each hospital. The user can select one of the
two solvers, either the CBC CMD solver: prob.solve(pulp.PULP CBC CMD()) or
the Gurobi solver: prob.solve(pulp.GUROBI()).
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1 """
2 These values can be altered to the specific requirements of the

user
3 """
4 specialties = list( itertools .chain(range (0, ))) # Creates list

of specialties
5 bands = list( itertools .chain(range (0, ))) # Creates list of

nursing bands
6 regions = list( itertools .chain(range (0, ))) # Creates List of

regions
7

8 region1 = []
9 region2 = []

10 region3 = []
11 region4 = []
12 region5 = []
13 region6 = []
14 hospitals = region1 + region2 + region3 + region4 + region5 +

region6
15 D = [
16 [],
17 ]
18 K = [
19 [],
20 ]
21 R = [
22 [],
23 ]
24 cbed = [
25 [],
26 ]
27 cstaff = []
28 UBstaff = [
29 [],
30 ]
31 UBbed =[
32 [],
33 ]

In order for the optimisation to be solved, the user entered parameters are required
to be fed into the model. This is computed by the following code:

1 """
2 Feeds the parameters into the deterministic optimisation model
3 """
4 prob = solve_deterministic_minimisation_problem (
5 specialties ,
6 bands ,
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7 hospitals ,
8 regions ,
9 D,

10 K,
11 R,
12 cbed ,
13 cstaff ,
14 UBbed ,
15 UBstaff ,
16 )

In order to ensure the model has been solved, LpStatus, returns the status of the
problem, either suggesting an optimal solution has been found or the model is
infeasible. The total objective function can also be displayed using the ‘value’
parameter. To display all non-zero decision variables, a ‘for’ loop has been created
which prints out the decision variable name along with the number of beds or staff
to deploy.

1 print(" Solution Status = ", pulp. LpStatus [prob. status ])
2 print("Total price = ", pulp.value(prob. objective ))
3 for v in prob. variables ():
4 if v. varValue >= 0:
5 print(v.name , "=", v. varValue )

7.3.2 Two-Stage Stochastic Model

The two-stage stochastic model follows a similar structure to the deterministic model
with similar functions used to develop the model. Within this section, the differ-
ences between the two models will be discussed. The first function is named the
‘initialise stochastic minimisation problem’ where the first and second stage deci-
sion variables are set and the problem is initialised. The second stage variable ‘ubed’
is a three variable dictionary which includes specialties, hospitals and bands. The
‘ustaff’ decision variable is a four variable dictionary with parameters specialties,
hospitals, bands and scenarios.

1 def initialise_stochastic_minimisation_problem (
2 specialties , hospitals , bands , regions , scenarios
3 ):
4 """
5 Initialise the minimisation problem .
6 Set decision variables for the models .
7 """
8 sh = [(s,h) for s in specialties for h in hospitals ]
9 shb = [(s,h,b) for s in specialties for h in hospitals for b in

bands]
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10 shk = [(s,h,k) for s in specialties for h in hospitals for k in
scenarios ]

11 srhk = [(s,r,h,k) for s in specialties for r in regions for h
in hospitals for k in scenarios ]

12 sbhk = [(s,b,h,k) for s in specialties for b in bands for h in
hospitals for k in scenarios ]

13

14 prob = pulp. LpProblem (" Stochastic ", pulp. LpMinimize )
15

16 xbed = pulp. LpVariable .dicts(
17 "Xbed", ( specialties , hospitals ), lowBound =0, cat = 'Integer

'
18 )
19 xstaff = pulp. LpVariable .dicts(
20 " Xstaff ", ( specialties ,hospitals ,bands), lowBound =0, cat = '

Integer '
21 )
22 ubed = pulp. LpVariable .dicts(
23 "Ubed" ,( specialties ,hospitals , scenarios ), lowBound =0, cat='

Integer '
24 )
25 ustaff = pulp. LpVariable .dicts(
26 " Ustaff " ,( specialties ,hospitals ,bands , scenarios ), lowBound

=0, cat='Integer '
27 )
28 return prob , sh , shb , shk , srhk , sbhk , xbed , xstaff , ubed ,

ustaff

The two-stage stochastic modelling constraints as generated in Section 4.4.4, can
be initialised into the model. The two-stage stochastic model has a total of 14
constraints, an additional four compared to the deterministic model. Constraint
8 ensures the ‘ubed’ deployment is under capacity for each specialty ward in each
hospital. Constraint 10 enables the patient to nurse ratio to be met. Constraints 12
and 14 ensure the deployment of beds and staff are below the maximum capacity
for each.

1 def add_stochastic_constraints (
2 xbed , xstaff , ubed , ustaff , UBbed , UBstaff , UBubed , UBustaff , D

, R, K, prob , sh , shb , shk , srhk , sbhk
3 ):
4

5 """
6 Add the constraints that are required for the stochastic model
7

8 - Constraints 1-6: Ensures demand is met across all specialties
and all regions

9 - Constraint 7: Ensures beds are only able to open in a ward if



CHAPTER 7. DECISION SUPPORT TOOL FOR MULTI-HOSPITAL PLANNING
OF FRAIL AND ELDERLY RESOURCE CAPACITIES 216

the facilities are able to be opened - 1st stage
10 - Constraint 8: Ensures beds are only able to open in a ward if

the facilities are able to be opened - 2nd stage
11 - Constraint 9: Ensures staffing ratios are met in the first

stage
12 - Constraint 10: Ensures staffing ratios are met in the first

stage
13 - Constraint 11: Ensures beds deployed does not exceed maximum

capacity of hospital - 1st stage
14 - Constraint 12: Ensures beds deployed does not exceed maximum

capacity of hospital - 2nd stage
15 - Constraint 13: Ensures staff deployed does not exceed maximum

staffing resources - 1st stage
16 - Constraint 14: Ensures staff deployed does not exceed maximum

staffing resources - 2nd stage
17 """
18

19 for k in scenarios :
20 for s in specialties :
21 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region1 ) >= pulp.lpSum(D[s][0][k]) # Constraint 1
22 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region2 ) >= pulp.lpSum(D[s][1][k]) # Constraint 2
23 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region3 ) >= pulp.lpSum(D[s][2][k]) # Constraint 3
24 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region4 ) >= pulp.lpSum(D[s][3][k]) # Constraint 4
25 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region5 ) >= pulp.lpSum(D[s][4][k]) # Constraint 5
26 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region6 ) >= pulp.lpSum(D[s][5][k]) # Constraint 6
27

28 for s in specialties :
29 for h in hospitals :
30 prob += pulp.lpSum(xbed[s][h]) <= pulp.lpSum(K[s][h]) #

Constraint 7
31

32 for s in specialties :
33 for h in hospitals :
34 prob += pulp.lpSum(ubed[s][h][k] for k in scenarios ) <=

pulp.lpSum(K[s][h]) # Constraint 8
35

36 for b in bands:
37 prob += pulp.lpSum( xstaff [s][h][b]) >= pulp.lpSum(R

[s][b]*( xbed[s][h])) # Constraint 9
38

39 for k in scenarios :
40 prob += pulp.lpSum( ustaff [s][h][b][k]) >= pulp.
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lpSum(R[s][b]*( ubed[s][h][k])) # Constraint 10
41

42 for h in hospitals :
43 prob += pulp.lpSum(xbed[s][h] for s in specialties ) <=

UBbed[h] # Constraint 11
44

45 for k in scenarios :
46 for h in hospitals :
47 prob += pulp.lpSum(ubed[s][h][k] for s in specialties )

<= UBubed [h][k] # Constraint 12
48

49 for b in bands:
50 prob += pulp.lpSum( xstaff [s][h][b] for (s,h) in sh) <=

UBstaff [b] # Constraint 13
51

52 for k in scenarios :
53 prob += pulp.lpSum( ustaff [s][h][b][k] for (s,h) in sh)

<= UBustaff [b][k] # Constraint 14
54

55 return prob

The final stochastic function solves the two-stage stochastic model by calling the two
previous functions. The objective function is defined and stored within the prob vari-
able. The solver COIN-OR CBC linear solver or the Gurobi solver can once again be
selected using the prob.solve(pulp.PULP CBC CMD()) or prob.solve(pulp.GUROBI())
command, respectively.

1 def solve_stochastic_minimisation_problem (
2 specialties ,
3 bands ,
4 hospitals ,
5 regions ,
6 scenarios ,
7 pscenarios ,
8 D,
9 R,

10 K,
11 c1bed ,
12 c2bed ,
13 c1staff ,
14 c2staff ,
15 UBbed ,
16 UBstaff ,
17 ):
18 """
19 Solves the stochastic problem , with the objective function

being minimised .
20 """
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21 prob , sh , shb , shk , srhk , sbhk , xbed , xstaff , ubed , ustaff =
initialise_stochastic_minimisation_problem (

22 specialties = specialties ,
23 hospitals =hospitals ,
24 bands=bands ,
25 regions =regions ,
26 scenarios = scenarios
27 )
28 prob +=(
29 pulp.lpSum (( xbed[s][h]* c1bed[s][h]) for (s,h) in sh) +
30 pulp.lpSum (( xstaff [s][h][b]* c1staff [b]) for (s,h,b) in shb)

+
31 pulp.lpSum( pscenarios [k]*( ubed[s][h][k]* c2bed[s][h]) for (s

,h,k) in shk)+
32 pulp.lpSum( pscenarios [k]*( ustaff [s][h][b][k]* c2staff [b])

for (s,b,h,k) in sbhk)
33 )
34

35 prob = add_stochastic_constraints (
36 xbed=xbed ,
37 xstaff =xstaff ,
38 ubed=ubed ,
39 ustaff =ustaff ,
40 UBbed=UBbed ,
41 UBstaff =UBstaff ,
42 UBubed =UBubed ,
43 UBustaff =UBustaff ,
44 D=D,
45 R=R,
46 K=K,
47 sh=sh ,
48 shb=shb ,
49 shk=shk ,
50 srhk=srhk ,
51 sbhk=sbhk ,
52 prob=prob ,
53 )
54 # The user can select one of the two optimisers :
55 # prob.solve(pulp. GUROBI ())
56 # prob.solve(pulp. PULP_CBC_CMD ())
57 return prob

In addition to the deterministic model, an additional six parameters are required.
The second stage costs for beds (c2bed) and staff (c2staff) are generated with two-
dimensional and one-dimensional arrays, respectively. The upper bounds for beds
and staff are generated using two-dimensional arrays where a column represents
each scenario and the row represents either the hospital or nursing bands depending
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on the parameter. The number of scenarios can also be generated into an array and
then the probability of each of these scenarios occurring. The demand array requires
converting to a three-dimensional array since the demand is scenario dependent.
For this, each row represents a specialty, and each column represents a region. The
scenario is determined by the column inside each of the arrays.

1 """
2 These values can be altered to the specific requirements of the

user
3 """
4 specialties = list( itertools .chain(range (0, ))) # Creates list

of specialties
5 bands = list( itertools .chain(range (0, ))) # Creates list of

nursing bands
6 regions = list( itertools .chain(range (0, ))) # Creates List of

regions
7

8 region1 = []
9 region2 = []

10 region3 = []
11 region4 = []
12 region5 = []
13 region6 = []
14 hospitals = region1 + region2 + region3 + region4 + region5 +

region6
15 D = [
16 [[] ,[]] ,
17 ]
18 K = [
19 [],
20 ]
21 R = [
22 [],
23 ]
24 c1bed = [
25 [],
26 ]
27 c2bed = [
28 [],
29 ]
30 c1staff = []
31 c2staff = []
32 UBstaff = [
33 [],
34 ]
35 UBustaff = [
36 [],
37 ]
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38 UBbed = [
39 [],
40 ]
41 UBubed =[
42 [],
43 ]
44 scenarios = []
45 pscenarios = []

The optimisation model is then solved by feeding the parameters entered by the
user into the following function:

1 """
2 Feeds the parameters into the two -stage stochastic optimisation

model
3 """
4 prob = solve_stochastic_minimisation_problem (
5 specialties ,
6 bands ,
7 hospitals ,
8 regions ,
9 scenarios ,

10 pscenarios ,
11 D,
12 R,
13 K,
14 c1bed ,
15 c2bed ,
16 c1staff ,
17 c2staff ,
18 UBbed ,
19 UBstaff
20 )

As with the deterministic model, the results can then be outputted to the user, where
the status and overall objective functions are printed for the user. Additionally, the
non-zero decision variables are printed for the user.

1 print(" Solution Status = ", pulp. LpStatus [prob. status ])
2 print("Total price = ", pulp.value(prob. objective ))
3 for v in prob. variables ():
4 if v. varValue >= 0:
5 print(v.name , "=", v. varValue )

7.3.3 Test A

The Test A model follows an almost identical structure to the two-stage stochastic
model discussed in Section 7.3.2. This section will provide an updated code.
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1 def initialise_testa_minimisation_problem (
2 specialties , hospitals , bands , regions , scenarios
3 ):
4 """
5 Initialise the minimisation problem .
6 Set decision variables for the models .
7 """
8 sh = [(s,h) for s in specialties for h in hospitals ]
9 shb = [(s,h,b) for s in specialties for h in hospitals for b in

bands]
10 shk = [(s,h,k) for s in specialties for h in hospitals for k in

scenarios ]
11 srhk = [(s,r,h,k) for s in specialties for r in regions for h

in hospitals for k in scenarios ]
12 sbhk = [(s,b,h,k) for s in specialties for b in bands for h in

hospitals for k in scenarios ]
13

14 prob = pulp. LpProblem ("Test A", pulp. LpMinimize )
15

16 xstaff = pulp. LpVariable .dicts(
17 " Xstaff ", ( specialties ,hospitals ,bands), lowBound =0, cat = '

Integer '
18 )
19 ubed = pulp. LpVariable .dicts(
20 "Ubed" ,( specialties ,hospitals , scenarios ), lowBound =0, cat='

Integer '
21 )
22 ustaff = pulp. LpVariable .dicts(
23 " Ustaff " ,( specialties ,hospitals ,bands , scenarios ), lowBound

=0, cat='Integer '
24 )
25 return prob , sh , shb , shk , srhk , sbhk , xbed , xstaff , ubed ,

ustaff

Test A has a total of 12 constraints since the xbed dependent constraints have
been removed. The user could also remove the xstaff constraints and add this as a
separate variable, since these have already been predetermined. Due to the nature
of the code, the xstaff numbers will remain consistent regardless of the method
chosen. The remainder of the constraints remain the same.

1 def add_testa_constraints (
2 xbed , xstaff , ubed , ustaff , UBbed , UBstaff , UBubed , UBustaff , D

, R, K, prob , sh , shb , shk , srhk , sbhk
3 ):
4

5 """
6 Add the constraints that are required for the Test A model
7
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8 - Constraints 1-6: Ensures demand is met across all specialties
and all regions

9 - Constraint 7: Ensures beds are only able to open in a ward if
the facilities are able to be opened - 2nd stage

10 - Constraint 8: Ensures staffing ratios are met in the first
stage

11 - Constraint 9: Ensures staffing ratios are met in the second
stage

12 - Constraint 10 Ensures beds deployed does not exceed maximum
capacity of hospital - 2nd stage

13 - Constraint 11 Ensures staff deployed does not exceed maximum
staffing resources - 1st stage

14 - Constraint 12 Ensures staff deployed does not exceed maximum
staffing resources - 2nd stage

15 """
16

17 for k in scenarios :
18 for s in specialties :
19 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region1 ) >= pulp.lpSum(D[s][0][k]) # Constraint 1
20 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region2 ) >= pulp.lpSum(D[s][1][k]) # Constraint 2
21 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region3 ) >= pulp.lpSum(D[s][2][k]) # Constraint 3
22 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region4 ) >= pulp.lpSum(D[s][3][k]) # Constraint 4
23 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region5 ) >= pulp.lpSum(D[s][4][k]) # Constraint 5
24 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region6 ) >= pulp.lpSum(D[s][5][k]) # Constraint 6
25

26 for s in specialties :
27 for h in hospitals :
28 prob += pulp.lpSum(ubed[s][h][k] for k in scenarios ) <=

pulp.lpSum(K[s][h]) # Constraint 7
29

30 for b in bands:
31 prob += pulp.lpSum( xstaff [s][h][b]) >= pulp.lpSum(R

[s][b]*( xbed[s][h])) # Constraint 8
32

33 for k in scenarios :
34 prob += pulp.lpSum( ustaff [s][h][b][k]) >= pulp.

lpSum(R[s][b]*( ubed[s][h][k])) # Constraint 9
35

36 for k in scenarios :
37 for h in hospitals :
38 prob += pulp.lpSum(ubed[s][h][k] for s in specialties )

<= UBubed [h][k] # Constraint 10
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39

40 for b in bands:
41 prob += pulp.lpSum( xstaff [s][h][b] for (s,h) in sh) <=

UBstaff [b] # Constraint 11
42

43 for k in scenarios :
44 prob += pulp.lpSum( ustaff [s][h][b][k] for (s,h) in sh)

<= UBustaff [b][k] # Constraint 12
45

46 return prob

Similar to the prior examples, the final function solves the optimisation problem by
calling the two previous functions. The COIN-OR CBC linear solver or the Gurobi
solver can once again be selected using the prob.solve(pulp.PULP CBC CMD()) or
prob.solve(pulp.GUROBI()) command, respectively.

1 def solve_testa_minimisation_problem (
2 specialties ,
3 bands ,
4 hospitals ,
5 regions ,
6 scenarios ,
7 pscenarios ,
8 D,
9 R,

10 K,
11 c1bed ,
12 c2bed ,
13 c1staff ,
14 c2staff ,
15 UBbed ,
16 UBstaff ,
17 ):
18 """
19 Solves the Test A problem , with the objective function being

minimised .
20 """
21 prob , sh , shb , shk , srhk , sbhk , xbed , xstaff , ubed , ustaff =

initialise_testa_minimisation_problem (
22 specialties = specialties ,
23 hospitals =hospitals ,
24 bands=bands ,
25 regions =regions ,
26 scenarios = scenarios
27 )
28 prob +=(
29 pulp.lpSum (( xbed[s][h]* c1bed[s][h]) for (s,h) in sh) +
30 pulp.lpSum (( xstaff [s][h][b]* c1staff [b]) for (s,h,b) in shb)
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+
31 pulp.lpSum( pscenarios [k]*( ubed[s][h][k]* c2bed[s][h]) for (s

,h,k) in shk)+
32 pulp.lpSum( pscenarios [k]*( ustaff [s][h][b][k]* c2staff [b])

for (s,b,h,k) in sbhk)
33 )
34

35 prob = add_testa_constraints (
36 xbed=xbed ,
37 xstaff =xstaff ,
38 ubed=ubed ,
39 ustaff =ustaff ,
40 UBbed=UBbed ,
41 UBstaff =UBstaff ,
42 UBubed =UBubed ,
43 UBustaff =UBustaff ,
44 D=D,
45 R=R,
46 K=K,
47 sh=sh ,
48 shb=shb ,
49 shk=shk ,
50 srhk=srhk ,
51 sbhk=sbhk ,
52 prob=prob ,
53 )
54 # The user can select one of the two optimisers :
55 # prob.solve(pulp. GUROBI ())
56 # prob.solve(pulp. PULP_CBC_CMD ())
57 return prob

In addition to the two-stage stochastic model, the xbed values are required to be
entered in the form of a three-dimensional array, where the specialties are the rows
and the hospitals are the columns. These can either be manually entered or the
following code can be used to manipulate the results from the deterministic model:

1 import pandas as pd
2 import numpy as np
3 b = [] # Create an empty array
4 for v in prob. variables ():
5 if v.name [0:4] == "Xbed": # Filter xbed variables only
6 b. append (v. varValue ) # Assign values to b
7 df = pd. DataFrame (np.zeros ((29 ,12))) # Create a 3d array with

zeros
8 for j in range (0 ,29): # Iterate over each row
9 df.iloc[j] = b[j*12:(j+1) *12] # Assign columns

10 df = df [[0 ,1 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,2 ,3]] # Reorder the columns
11 df = df. reindex ([0 ,11 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,1 ,2



CHAPTER 7. DECISION SUPPORT TOOL FOR MULTI-HOSPITAL PLANNING
OF FRAIL AND ELDERLY RESOURCE CAPACITIES 225

12 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20]) # Reorder the
rows

13 df. replace (-0,0, inplace =True)
14 xbed = df. values

The xbed array can then be used within the following data requirements:
1 """
2 These values can be altered to the specific requirements of the

user
3 """
4 specialties = list( itertools .chain(range (0, ))) # Creates list

of specialties
5 bands = list( itertools .chain(range (0, ))) # Creates list of

nursing bands
6 regions = list( itertools .chain(range (0, ))) # Creates List of

regions
7

8 region1 = []
9 region2 = []

10 region3 = []
11 region4 = []
12 region5 = []
13 region6 = []
14 hospitals = region1 + region2 + region3 + region4 + region5 +

region6
15 D = [
16 [[] ,[]] ,
17 ]
18 K = [
19 [],
20 ]
21 R = [
22 [],
23 ]
24 c1bed = [
25 [],
26 ]
27 c2bed = [
28 [],
29 ]
30 c1staff = []
31 c2staff = []
32 UBstaff = [
33 [],
34 ]
35 UBustaff = [
36 [],
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37 ]
38 UBbed = [
39 [],
40 ]
41 UBubed =[
42 [],
43 ]
44 scenarios = []
45 pscenarios = []
46 xbed =[
47 [],
48 ]

The optimisation model is then solved by feeding the parameters entered by the
user into the following function:

1 prob = solve_testa_minimisation_problem (
2 specialties ,
3 bands ,
4 hospitals ,
5 regions ,
6 scenarios ,
7 pscenarios ,
8 D,
9 R,

10 K,
11 c1bed ,
12 c2bed ,
13 c1staff ,
14 c2staff ,
15 UBbed ,
16 UBstaff
17 )

As with the previous two implementations, the results can be outputted to the user
displaying the values for each of the decision variables and the overall objective
function.

1 print(" Solution Status = ", pulp. LpStatus [prob. status ])
2 print("Total price = ", pulp.value(prob. objective ))
3 for v in prob. variables ():
4 if v. varValue >=0:
5 print(v.name , "=", v. varValue )

7.3.4 Test B

Similar to Test A, Test B also follows a nearly identical structure to that of the
two-stage stochastic implementation. The function
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initialise stochastic minimisation problem is employed, as the same set of
four decision variables are utilised within the model.

The function add stochastic constraints, is changed since Test B requires an
additional constraint of the lowest stage variables are set to zero or their lower
bound. Therefore a new function called add testb constraints is generated, with
the additional constraint added:

1 def add_testb_constraints (
2 xbed , xstaff , ubed , ustaff , UBbed , UBstaff , UBubed , UBustaff , D

, R, K, prob , sh , shb , shk , srhk , sbhk , TESTB
3 ):
4

5 """
6 Add the constraints that are required for the Test B model
7

8 - Constraints 1-6: Ensures demand is met across all specialties
and all regions

9 - Constraint 7: Ensures beds are only able to open in a ward if
the facilities are able to be opened - 1st stage

10 - Constraint 8: Ensures beds are only able to open in a ward if
the facilities are able to be opened - 2nd stage

11 - Constraint 9: Ensures staffing ratios are met in the first
stage

12 - Constraint 10: Ensures staffing ratios are met in the first
stage

13 - Constraint 11: Ensures beds deployed does not exceed maximum
capacity of hospital - 1st stage

14 - Constraint 12: Ensures beds deployed does not exceed maximum
capacity of hospital - 2nd stage

15 - Constraint 13: Ensures staff deployed does not exceed maximum
staffing resources - 1st stage

16 - Constraint 14: Ensures staff deployed does not exceed maximum
staffing resources - 2nd stage

17 - Constraint 15: Ensures the xbed does not exceed the the lower
bound of the deterministic model

18 """
19

20 for k in scenarios :
21 for s in specialties :
22 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region1 ) >= pulp.lpSum(D[s][0][k]) # Constraint 1
23 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region2 ) >= pulp.lpSum(D[s][1][k]) # Constraint 2
24 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region3 ) >= pulp.lpSum(D[s][2][k]) # Constraint 3
25 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region4 ) >= pulp.lpSum(D[s][3][k]) # Constraint 4
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26 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in
region5 ) >= pulp.lpSum(D[s][4][k]) # Constraint 5

27 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in
region6 ) >= pulp.lpSum(D[s][5][k]) # Constraint 6

28

29 for s in specialties :
30 for h in hospitals :
31 prob += pulp.lpSum(xbed[s][h]) <= pulp.lpSum(K[s][h]) #

Constraint 7
32

33 for s in specialties :
34 for h in hospitals :
35 prob += pulp.lpSum(ubed[s][h][k] for k in scenarios ) <=

pulp.lpSum(K[s][h]) # Constraint 8
36

37 for b in bands:
38 prob += pulp.lpSum( xstaff [s][h][b]) >= pulp.lpSum(R

[s][b]*( xbed[s][h])) # Constraint 9
39

40 for k in scenarios :
41 prob += pulp.lpSum( ustaff [s][h][b][k]) >= pulp.

lpSum(R[s][b]*( ubed[s][h][k])) # Constraint 10
42

43 for h in hospitals :
44 prob += pulp.lpSum(xbed[s][h] for s in specialties ) <=

UBbed[h] # Constraint 11
45

46 for k in scenarios :
47 for h in hospitals :
48 prob += pulp.lpSum(ubed[s][h][k] for s in specialties )

<= UBubed [h][k] # Constraint 12
49

50 for b in bands:
51 prob += pulp.lpSum( xstaff [s][h][b] for (s,h) in sh) <=

UBstaff [b] # Constraint 13
52

53 for k in scenarios :
54 prob += pulp.lpSum( ustaff [s][h][b][k] for (s,h) in sh)

<= UBustaff [b][k] # Constraint 14
55 for s in specialties :
56 for h in hospitals :
57 prob += pulp.lpSum(xbed[s][h]) <= TESTB[s][h] #

Constraint 15
58 return prob

The final function solves the optimisation programme by calling the two previous
functions. The user can select the optimiser they wish to use for the calculations.
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1 def solve_testb_minimisation_problem (
2 specialties ,
3 bands ,
4 hospitals ,
5 regions ,
6 scenarios ,
7 pscenarios ,
8 D,
9 R,

10 K,
11 c1bed ,
12 c2bed ,
13 c1staff ,
14 c2staff ,
15 UBbed ,
16 UBstaff ,
17 TESTB
18 ):
19 """
20 Solves the deterministic problem , with the objective function

being minimised .
21 """
22 prob , sh , shb , shk , srhk , sbhk , xbed , xstaff , ubed , ustaff =

initialise_stochastic_minimisation_problem (
23 specialties = specialties ,
24 hospitals =hospitals ,
25 bands=bands ,
26 regions =regions ,
27 scenarios = scenarios
28 )
29 prob +=(
30 pulp.lpSum (( xbed[s][h]* c1bed[s][h]) for (s,h) in sh) +
31 pulp.lpSum (( xstaff [s][h][b]* c1staff [b]) for (s,h,b) in shb)

+
32 pulp.lpSum( pscenarios [k]*( ubed[s][h][k]* c2bed[s][h]) for (s

,h,k) in shk)+
33 pulp.lpSum( pscenarios [k]*( ustaff [s][h][b][k]* c2staff [b])

for (s,b,h,k) in sbhk)
34 )
35

36 prob = add_testb_constraints (
37 xbed=xbed ,
38 xstaff =xstaff ,
39 ubed=ubed ,
40 ustaff =ustaff ,
41 UBbed=UBbed ,
42 UBstaff =UBstaff ,
43 UBubed =UBubed ,
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44 UBustaff =UBustaff ,
45 D=D,
46 R=R,
47 K=K,
48 sh=sh ,
49 shb=shb ,
50 shk=shk ,
51 srhk=srhk ,
52 sbhk=sbhk ,
53 prob=prob ,
54 TESTB=TESTB
55 )
56 # The user can select one of the two optimisers :
57 # prob.solve(pulp. GUROBI ())
58 # prob.solve(pulp. PULP_CBC_CMD ())
59 return prob

A new three-dimensional array is required to be created, either manually or via
manipulation of the deterministic results to produce TESTB.

The following code produced a new array, TESTB from the deterministic model,
based on the fact that there will be at least one zero in the lower bound of the
model. If this is not the case, the user is required to manually enter the values into
the TESTB array instead:

1 import pandas as pd
2 import numpy as np
3 b = []
4 for v in prob. variables ():
5 if v.name [0:4] == "Xbed":
6 b. append (v. varValue )
7 df =pd. DataFrame (np.zeros ((29 ,12)))
8 K_array = pd. DataFrame (K, columns =df.columns , index=df.index) #

Turns the array K into a dataframe
9 for i, row in df. iterrows ():

10 for col in df. columns :
11 if df.at[i, col] > 0:
12 # Replace the value with the corresponding value from

dataset K
13 df.at[i, col] = K_array .at[i, col]
14 TESTB = df

The new three-dimensional array can then be implemented into the following data
requirements for the model.

1 """
2 These values can be altered to the specific requirements of the

user
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3 """
4 specialties = list( itertools .chain(range (0, ))) # Creates list

of specialties
5 bands = list( itertools .chain(range (0, ))) # Creates list of

nursing bands
6 regions = list( itertools .chain(range (0, ))) # Creates List of

regions
7

8 region1 = []
9 region2 = []

10 region3 = []
11 region4 = []
12 region5 = []
13 region6 = []
14 hospitals = region1 + region2 + region3 + region4 + region5 +

region6
15 D = [
16 [[] ,[]] ,
17 ]
18 K = [
19 [],
20 ]
21 R = [
22 [],
23 ]
24 c1bed = [
25 [],
26 ]
27 c2bed = [
28 [],
29 ]
30 c1staff = []
31 c2staff = []
32 UBstaff = [
33 [],
34 ]
35 UBustaff = [
36 [],
37 ]
38 UBbed = [
39 [],
40 ]
41 UBubed =[
42 [],
43 ]
44 scenarios = []
45 pscenarios = []
46 TESTB =[
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47 [],
48 ]

The following code will then solve the model by feeding in the created parameters
into the
solve testa minimisation problem function.

1 prob = solve_testc_minimisation_problem (
2 specialties ,
3 bands ,
4 hospitals ,
5 regions ,
6 scenarios ,
7 pscenarios ,
8 D,
9 R,

10 K,
11 c1bed ,
12 c2bed ,
13 c1staff ,
14 c2staff ,
15 UBbed ,
16 UBstaff ,
17 TESTB
18 )

As previously, the results can then be outputted for analysis and comparisons.
1 print(" Solution Status = ", pulp. LpStatus [prob. status ])
2 print("Total price = ", pulp.value(prob. objective ))
3 for v in prob. variables ():
4 if v. varValue >=0:
5 print(v.name , "=", v. varValue )

7.3.5 Test C

Similar to Test A and B, Test B also follows a nearly identical structure to that of
the two-stage stochastic implementation. The function
initialise stochastic minimisation problem is employed, as the same set of
four decision variables are utilised within the model.

The function add stochastic constraints, is changed since Test C requires an
additional constraint of the deterministic solution to act as a minimum value for
the first stage. A new function called add testc constraints is generated, with
an additional constraint added:

1 def add_testc_constraints (
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2 xbed , xstaff , ubed , ustaff , UBbed , UBstaff , UBubed , UBustaff , D
, R, K, prob , sh , shb , shk , srhk , sbhk , First_stage

3 ):
4

5 """
6 Add the constraints that are required for the Test C model
7

8 - Constraints 1-6: Ensures demand is met across all specialties
and all regions

9 - Constraint 7: Ensures beds are only able to open in a ward if
the facilities are able to be opened - 1st stage

10 - Constraint 8: Ensures beds are only able to open in a ward if
the facilities are able to be opened - 2nd stage

11 - Constraint 9: Ensures staffing ratios are met in the first
stage

12 - Constraint 10: Ensures staffing ratios are met in the second
stage

13 - Constraint 11: Ensures beds deployed does not exceed maximum
capacity of hospital - 1st stage

14 - Constraint 12: Ensures beds deployed does not exceed maximum
capacity of hospital - 2nd stage

15 - Constraint 13: Ensures staff deployed does not exceed maximum
staffing resources - 1st stage

16 - Constraint 14: Ensures staff deployed does not exceed maximum
staffing resources - 2nd stage

17 - Constraint 15: Deterministic values must be met as a minimum
for the first stage

18 """
19

20 for k in scenarios :
21 for s in specialties :
22 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region1 ) >= pulp.lpSum(D[s][0][k]) # Constraint 1
23 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region2 ) >= pulp.lpSum(D[s][1][k]) # Constraint 2
24 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region3 ) >= pulp.lpSum(D[s][2][k]) # Constraint 3
25 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region4 ) >= pulp.lpSum(D[s][3][k]) # Constraint 4
26 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region5 ) >= pulp.lpSum(D[s][4][k]) # Constraint 5
27 prob += pulp.lpSum(xbed[s][h] + ubed[s][h][k] for h in

region6 ) >= pulp.lpSum(D[s][5][k]) # Constraint 6
28

29 for s in specialties :
30 for h in hospitals :
31 prob += pulp.lpSum(xbed[s][h]) <= pulp.lpSum(K[s][h]) #

Constraint 7
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32

33 for s in specialties :
34 for h in hospitals :
35 prob += pulp.lpSum(ubed[s][h][k] for k in scenarios ) <=

pulp.lpSum(K[s][h]) # Constraint 8
36

37 for b in bands:
38 prob += pulp.lpSum( xstaff [s][h][b]) >= pulp.lpSum(R

[s][b]*( xbed[s][h])) # Constraint 9
39

40 for k in scenarios :
41 prob += pulp.lpSum( ustaff [s][h][b][k]) >= pulp.

lpSum(R[s][b]*( ubed[s][h][k])) # Constraint 10
42

43 for h in hospitals :
44 prob += pulp.lpSum(xbed[s][h] for s in specialties ) <=

UBbed[h] # Constraint 11
45

46 for k in scenarios :
47 for h in hospitals :
48 prob += pulp.lpSum(ubed[s][h][k] for s in specialties )

<= UBubed [h][k] # Constraint 12
49

50 for b in bands:
51 prob += pulp.lpSum( xstaff [s][h][b] for (s,h) in sh) <=

UBstaff [b] # Constraint 13
52

53 for k in scenarios :
54 prob += pulp.lpSum( ustaff [s][h][b][k] for (s,h) in sh)

<= UBustaff [b][k] # Constraint 14
55 for s in specialties :
56 for h in hospitals :
57 prob += pulp.lpSum(xbed[s][h]) >= First_stage [s][h]
58 return prob

The next function takes the previous two functions and optimises them based on
the objective function given.

1

2 def solve_testc_minimisation_problem (
3 specialties ,
4 bands ,
5 hospitals ,
6 regions ,
7 scenarios ,
8 pscenarios ,
9 D,

10 R,
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11 K,
12 c1bed ,
13 c2bed ,
14 c1staff ,
15 c2staff ,
16 UBbed ,
17 UBstaff ,
18 First_stage
19 ):
20 """
21 Solves the Test C problem , with the objective function being

minimised
22 """
23 prob , sh , shb , shk , srhk , sbhk , xbed , xstaff , ubed , ustaff =

initialise_stochastic_minimisation_problem (
24 specialties = specialties ,
25 hospitals =hospitals ,
26 bands=bands ,
27 regions =regions ,
28 scenarios = scenarios
29 )
30 prob +=(
31 pulp.lpSum (( xbed[s][h]* c1bed[s][h]) for (s,h) in sh) +
32 pulp.lpSum (( xstaff [s][h][b]* c1staff [b]) for (s,h,b) in shb)

+
33 pulp.lpSum( pscenarios [k]*( ubed[s][h][k]* c2bed[s][h]) for (s

,h,k) in shk)+
34 pulp.lpSum( pscenarios [k]*( ustaff [s][h][b][k]* c2staff [b])

for (s,b,h,k) in sbhk)
35 )
36

37 prob = add_testc_constraints (
38 xbed=xbed ,
39 xstaff =xstaff ,
40 ubed=ubed ,
41 ustaff =ustaff ,
42 UBbed=UBbed ,
43 UBstaff =UBstaff ,
44 UBubed =UBubed ,
45 UBustaff =UBustaff ,
46 D=D,
47 R=R,
48 K=K,
49 sh=sh ,
50 shb=shb ,
51 shk=shk ,
52 srhk=srhk ,
53 sbhk=sbhk ,
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54 prob=prob ,
55 First_stage = First_stage
56 )
57 # The user can select one of the two optimisers
58 # prob.solve(pulp. GUROBI ())
59 # prob.solve(pulp. PULP_CBC_CMD ())
60 return prob

The user is required to enter the deterministic results into the model as a three-
dimensional array. As previously discussed, this can be implemented either via
manipulation of the deterministic output or manually entering. The following pro-
vides the code to use alongside the deterministic model to generate the First stage
array.

1 \begin{ lstlisting }[ language = python ]
2 import pandas as pd
3 import numpy as np
4 b = [] # Create an empty array
5 for v in prob. variables ():
6 if v.name [0:4] == "Xbed": # Filter xbed variables only
7 b. append (v. varValue ) # Assign values to b
8 df = pd. DataFrame (np.zeros ((29 ,12))) # Create a 3d array with

zeros
9 for j in range (0 ,29): # Iterate over each row

10 df.iloc[j] = b[j*12:(j+1) *12] # Assign columns
11 df = df [[0 ,1 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,2 ,3]] # Reorder the columns
12 df = df. reindex ([0 ,11 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,1 ,2
13 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20]) # Reorder the

rows
14 df. replace (-0,0, inplace =True)
15 First_stage = df. values

The First stage along with the other variables can be inputted into the model in
the following forms:

1 """
2 These values can be altered to the specific requirements of the

user
3 """
4 specialties = list( itertools .chain(range (0, ))) # Creates list

of specialties
5 bands = list( itertools .chain(range (0, ))) # Creates list of

nursing bands
6 regions = list( itertools .chain(range (0, ))) # Creates List of

regions
7

8 region1 = []
9 region2 = []
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10 region3 = []
11 region4 = []
12 region5 = []
13 region6 = []
14 hospitals = region1 + region2 + region3 + region4 + region5 +

region6
15 D = [
16 [[] ,[]] ,
17 ]
18 K = [
19 [],
20 ]
21 R = [
22 [],
23 ]
24 c1bed = [
25 [],
26 ]
27 c2bed = [
28 [],
29 ]
30 c1staff = []
31 c2staff = []
32 UBstaff = [
33 [],
34 ]
35 UBustaff = [
36 [],
37 ]
38 UBbed = [
39 [],
40 ]
41 UBubed =[
42 [],
43 ]
44 scenarios = []
45 pscenarios = []
46 First_stage =[
47 [],
48 ]

The variables are then called through the model into the model.
1 prob = solve_testc_minimisation_problem (
2 specialties ,
3 bands ,
4 hospitals ,
5 regions ,
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6 scenarios ,
7 pscenarios ,
8 D,
9 R,

10 K,
11 c1bed ,
12 c2bed ,
13 c1staff ,
14 c2staff ,
15 UBbed ,
16 UBstaff ,
17 First_stage
18 )

The final stage is for the model to output the results of the objective function along
with the values of each of the decision variables.

1 print(" Solution Status = ", pulp. LpStatus [prob. status ])
2 print("Total price = ", pulp.value(prob. objective ))
3 for v in prob. variables ():
4 if v. varValue >0:
5 print(v.name , "=", v. varValue )
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Chapter 8

Conclusions

KESS2 funded this research [15] in collaboration with the Clinical Futures [16],
within the Aneurin Bevan University Health Board (ABUHB). The aim of the
project was to produce a decision support tool, supporting the mathematical mod-
elling unit in bed and staffing resource requirements. The chapter serves as a sum-
mary of the research undertaken in this thesis. It provides a brief overview of the
research questions listed in Section 1 and the methods used to answer them. The
chapter also presents contributions of the thesis, limitations, impact in practice and
recommendations for future work.

8.1 Research Summary

Chapter 1 provided an introduction to the frail and elderly population within Wales.
The chapter discussed the demographic changes that are occurring within the pop-
ulation and the impact that these changes will have on the healthcare system. The
types of hospitals and specialties which the health board currently have were also
discussed. Current bed and staff planning methods were analysed with the following
four research questions being introduced:

1. How do the clinical and demographical attributes of frail and elderly patients
effect their length of stay within hospital?

2. How best can specialties be organised among a network of hospitals to ensure
staffing and bed costs are minimised, whilst still meeting the demand for frail
and elderly patients?

3. Can linking predictive and prescriptive analytics provide improvements for
decision making for frail and elderly services?

4. How can deterministic and two-stage stochastic models be used to plan hos-
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pital services for frail and elderly patients within Aneurin Bevan University
Health Board?

Chapter 2 provided two literature reviews of the practice of Operational Research
and Management Science (OR/MS) approaches in the planning of care for the frail
and elderly. The underutilisation of OR/MS techniques, the absence of comprehen-
sive holistic care planning, and the implications of increases in demand on healthcare
systems have all been noted as gaps in current literature. Within this thesis, these
gaps were addressed.

Chapter 3 addressed the theory underlying the most popular predictive analytical
techniques presently used in healthcare. The results demonstrated the benefit of
utilising more complex models, such as classification and regression trees (CART),
instead of simpler models, such as linear regression to predict the length of stay
(LOS) of frail and elderly patients. These results yielded a more accurate predic-
tion of LOS, which is important for planning purposes. A step by step practical
example was also included so that healthcare professionals could quickly apply these
strategies to their own departments and data. To enable model adaptation and pa-
rameter optimisation, detailed executable Python code was provided.

Chapter 4 provided an introduction to two prescriptive methodologies, determin-
istic and two-stage stochastic modelling. Expanding on the two-stage stochastic
programming paradigm and building on the tests introduced by Maggioni and Wal-
lace [257], this chapter went further by creating two-dimensional decision variables
which are dependent on each other along with the application to a different field of
research, namely frail and elderly patient planning. The equations generated allow
for the optimisation of the number of beds and staff required to meet demand. The
models created were robust in terms of working ability. Furthermore, the modelling
was shared with ABUHB, especially how the models work. The tests discussed in
[257], have also been employed, applied and evaluated to each of the examples.

Chapter 5 presented the findings of the predictive and prescriptive analytical models.
Section 5.2 provided an overview of the current data and trends within ABUHB and
within the frail and elderly community. Section 5.3 aimed to answer the first research
question by generating CART models to predict LOS of frail and elderly patients.
The models also compared the impact of frailty on LOS. The results highlighted
the improved R2 and accuracy scores when using CART models over traditional
linear and logistic regression methods. These CART models also enabled patient
groupings of similar attributes to be determined. Section 5.4 aimed to answer the
second research question by applying the deterministic and two-stage stochastic
models generated in Chapter 4 to ABUHB data. The models determined how beds
should be planned and staff deployed based on figures from Public Health Scotland
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and NHS Jobs, to ensure costings are minimised. Results showed the benefits of
utilising the two-stage stochastic model to plan their beds and staff over traditional
deterministic models. Any savings made by the NHS could be reinvested into other
areas of healthcare.

Chapter 6 discussed how predictive and prescriptive analytics could be used in com-
bination for efficiently planning hospital specialty beds and staffing requirements for
a network of hospitals in South East Wales. Research questions three and four were
answered by comparing the CART results to the traditional averages. The primary
aim of employing CART models was to explore the potential benefits of using pre-
scriptive methods for resource capacity planning in the healthcare context. By using
CART models, we aimed to gain a more comprehensive understanding of the factors
influencing LOS and its variations among patients. The predictive capabilities of
CART allowed us to identify non-linear relationships and interactions among various
patient characteristics and medical conditions, leading to more accurate and indi-
vidualised LOS predictions. The derived daily bed demand, informed by the CART
predicted LOS, provided a more realistic representation of the variation within hos-
pital LOS. Unlike traditional averages, which might overlook patient-specific factors
affecting LOS, the CART-based approach captured a wider range of LOS variations,
reflecting the diversity and complexity of patient care requirements.

Finally, Chapter 7 provided a tutorial on how to use the deterministic and two-stage
stochastic models generated. The models were implemented in Microsoft Excel using
the OpenSolver add-in, and in Python using the PuLP package. Both versions of
the models were included to reach a wider audience and subsequently uploaded to
GitHub for future use. These models are available from [287]. These tutorials aim
to provide a step by step guide on how to use the models and be applied to other
healthcare organisations. As future patient demographics change, the models can
be rerun with updated data to determine the most efficient way to plan beds and
staff.

8.2 Research Contributions

The findings presented within this thesis have provided a number of novel contribu-
tions to the literature on OR and healthcare applications. These contributions are
as follows:

• The literature reviews presented in Chapter 2 provided a comprehensive overview
of the current literature on frail and elderly care planning with OR/MS meth-
ods and hierarchical prediction models to predict LOS. This allowed themes
and methods to be identified and enabled gaps within the literature to be
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determined. The reviews focused specifically on frail and elderly patients,
showing the limited research published within this area.

• The development of the predictive models (Chapter 3) provided a novel method
to predict LOS of frail and elderly patients, instead of considering these pa-
tients within the adult population. This allowed for the impact of frailty on
LOS to be determined. This chapter has used sophisticated techniques which
are underutilised within the context of healthcare.

• Prescriptive models were developed to plan beds and staff for frail and elderly
patients (Chapter 4). These models expanded upon the work of Maggioni and
Wallace [257], by applying to the area of healthcare OR and analysing bed
and staff requirements. Instead of planning on a ward by ward basis, these
models enabled holistic planning to take place across the health board.

• By linking predictive and prescriptive analytics, decision-makers can achieve
a more comprehensive view of their data and use it to make more informed
decisions. Chapter 6 demonstrated how these methods could be linked, pro-
viding a number of examples of different methods. This allowed for scenario
analysis to be performed, using a combination of techniques to provide unique
insights into the ABUHB healthcare system.

8.3 Limitations of the Study

There are several limitations to this research. Firstly, the reliance on historical
activity data to predict future demands poses a significant constraint. One of the
primary concerns is the potential omission of unmet demand from the dataset.
Activity data typically capture the services that have been provided and recorded
in the system, but they may not fully represent the actual demand for healthcare
services. Unmet demand, or the demand that goes unaddressed due to capacity
constraints or other factors, is critical to consider in resource allocation to ensure the
system can meet the true needs of the population. Another challenge is the inclusion
of LOS which reflect poor historic system performance. When historical LOS’s are
incorporated into the model, they may inadvertently perpetuate inefficiencies or
suboptimal practices from the past.

Another limitation of the study is its reliance on pre-Covid-19 data for capacity allo-
cation modelling. As the Covid-19 pandemic has had a profound and unprecedented
impact on healthcare systems worldwide, using data prior to the pandemic might
not fully reflect the current and future resource allocation needs. The pandemic has
introduced unique challenges, such as surges in patient volumes, changes in patient
acuity, and shifts in healthcare priorities. The demand for resources, including beds,
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nursing staff, and other medical supplies, has been substantially affected during this
period.

A notable limitation of the model is its omission of ward sizes and the number of
beds or staff per ward in the resource allocation process. Instead, the model adopts
a more holistic approach, considering the healthcare facility as a whole entity. While
this simplification may offer practicality and ease of implementation, it overlooks
crucial ward-level variations in patient capacity and staffing requirements.

This research relied on the use of open source data from StatsWales [4] and Public
Health Scotland [11]. Therefore, there was potentially inaccurate or imprecise data
to populate the model. The accuracy of the model’s predictions heavily relies on
the quality and reliability of the data used as input.

Finally, both the Excel and Python tools, utilise various constraints and objective
functions that were presented in Sections 4.3 and 4.4 respectively. Whilst other
limitations can be alleviated by changing the data within the Excel worksheets and
Python scripts, if new constraints were needed to be added, this would require the
users to have knowledge and understanding of the formulation of the mathematical
constraints.

8.4 Impact in Practice

This research collaboration with the Clinical Futures team at ABUHB has signifi-
cantly influenced the development and direction of the project. ABUHB’s substan-
tial time and financial investment in the research reflect their interest in deriving
benefits from the outcomes. At the time when the thesis was finished, the plan-
ning team were aiming to share the results with the executive board using an SBAR.
This may lead to further support the Aneurin Bevan Continuous Improvement team
(ABCi), as the project continues with the support of the interim director of planning
and the lead of the mathematical modelling unit. They have shown interest in the
model’s potential and are expected to utilise it to craft a compelling case study for
senior decision-makers within the health board.

Moreover, the team at ABCi offers an engaging analytics program, providing in-
teractive training to front-line staff in data analysis and mathematical modelling
techniques [302, 303]. This presents an exciting opportunity to integrate these
models into their program, ensuring broader dissemination and impactful utilisa-
tion of the research findings. By being part of their curriculum, these models have
the potential to empower healthcare professionals with valuable insights, ultimately
driving informed decision-making and resource optimisation within the healthcare
domain.
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8.5 Future Work

The work presented in this research has provided a number of insights into the
ABUHB healthcare system, however, there are a number of areas that could be
further explored. The following areas for future study were identified:

• Chapter 3 and Chapter 5: The predictive models presented within this thesis
could be further developed to include other attributes detailing a patient’s
medical history. These may include the number of previous admissions, the
number of previous admissions to the same ward and the number of previous
admissions to the same specialty.

• Chapter 4 and Chapter 5: The prescriptive models presented within this thesis
could be further developed to include additional variables. Further work could
include planning specialties by specific wards rather than generalising across
specialties. Additionally, the demand for resources within the hospital such
as phlebotomists, radiographers and physiotherapists could be included.

• Chapter 5 and Chapter 6: The models were developed using either three years’
worth of data or splitting the data by year. This could be further developed
by using a time constraint to plan on specific time periods rather than on a
longer-term time scale. This would create a more dynamic model where the
health board would be able to adapt to seasonal demand changes or determine
how beds and nursing resources would change on a smaller time scale.

• Chapter 6: The linked predictive and prescriptive models presented within
this thesis could use sampling from the end nodes rather than using the aver-
age. This would provide a randomised solution to the problem, which could be
used for prediction purposes. Further investigation into population predictions
could also be used within the models as a separate input. This chapter also
investigated a range of various scenarios, including the addition of the Grange
University Hospital (GUH). Due to the limitation of the data received, i.e.,
pre-2020, the impact of the new hospital was unable to be determined, as
this opened in 2021, however, using the data prior to its opening, GUH could
still be investigated. Therefore, the model still provided useful results and
recommendations for bed planning and nursing staff. To determine how beds
should be planned, more recent data should be used and the effects on de-
mand following the Covid-19 pandemic can be visualised. The model could
be developed further to have real time updates of the demand entering the
system so planning can be conducted on a more operational scale.

Finally, further research could consider analysing other areas of the ABUHB health-
care system, as well as other age groups.
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Appendix A

List of Hospitals and Specialties
Within ABUHB

This Appendix contains a list of each of the specialties offered by ABUHB and the
hospitals in which they can be found within. These hospitals and specialties are
first discussed in Chapter 1, and are utilised within Chapters 5 and 6

Specialties Hospitals
Accident & Emergency Nevill Hall Hospital

Royal Gwent Hospital
Anaesthetics Nevill Hall Hospital

Royal Gwent Hospital
Cardiology Nevill Hall Hospital

Offsite
Royal Gwent Hospital

Care Of The Elderly Chepstow Community Hospital
County Hospital
Nevill Hall Hospital
Royal Gwent Hospital
St Woolos Community Hospital
Ysbyty Aneurin Bevan
Ysbyty Ystrad Fawr

Community Medicine Chepstow Community Hospital
County Hospital
Ysbyty Ystrad Fawr

Dermatology Royal Gwent Hospital
St Woolos Acute Hospital
St Woolos Community Hospital
Ysbyty Ystrad Fawr

Diabetes And Endocrinology Nevill Hall Hospital
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Royal Gwent Hospital
Ysbyty Ystrad Fawr

Ear Nose & Throat Royal Gwent Hospital
Ysbyty Ystrad Fawr

GP Other Chepstow Community Hospital
Monnow Vale Health and Social Care Facility
Rhymney Integrated Health & Social Care Centre

Gastroenterology Nevill Hall Hospital
Offsite
Outsource
Royal Gwent Hospital
St Woolos Acute Hospital
Ysbyty Ystrad Fawr

General Medicine Nevill Hall Hospital
Royal Gwent Hospital
Ysbyty Aneurin Bevan
Ysbyty Ystrad Fawr

General Surgery Chepstow Community Hospital
Nevill Hall Hospital
Offsite
Royal Gwent Hospital
Ysbyty Ystrad Fawr

Gynaecology Nevill Hall Hospital
Offsite
Royal Gwent Hospital
Ysbyty Ystrad Fawr

Haematology Nevill Hall Hospital
Offsite
Royal Gwent Hospital
St Woolos Acute Hospital
Ysbyty Ystrad Fawr

Infectious Diseases Royal Gwent Hospital
Intermediate Care County Hospital

Ysbyty Aneurin Bevan
Maxillo-Facial Nevill Hall Hospital

Royal Gwent Hospital
St Woolos Acute Hospital

Neurology Royal Gwent Hospital
Ophthalmology Nevill Hall Hospital

Offsite
Outsource
Outsource - CareUK
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Royal Gwent Hospital
Ysbyty Ystrad Fawr

Pain County Hospital
Nevill Hall Hospital
Royal Gwent Hospital
Ysbyty Ystrad Fawr

Plastic Surgery Nevill Hall Hospital
Offsite

Radiology Nevill Hall Hospital
Royal Gwent Hospital

Radiotherapy And Oncology Royal Gwent Hospital
Rehabilitation Chepstow Community Hospital

County Hospital
Nevill Hall Hospital
Royal Gwent Hospital
St Woolos Acute Hospital
St Woolos Community Hospital
Ysbyty Aneurin Bevan
Ysbyty Ystrad Fawr

Respiratory Nevill Hall Hospital
Royal Gwent Hospital

Restorative Dentistry Royal Gwent Hospital
Rheumatology Nevill Hall Hospital

Royal Gwent Hospital
Ysbyty Ystrad Fawr

Trauma & Orthopaedic Nevill Hall Hospital
Royal Gwent Hospital
St Woolos Acute Hospital
Ysbyty Ystrad Fawr

Urology Nevill Hall Hospital
Offsite
Royal Gwent Hospital
St Woolos Acute Hospital
University Hospital Of Wales
Ysbyty Ystrad Fawr

Table A.1: Hospital and Specialty Locations in ABUHB
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Appendix B

Literature Review Supplementary
Material

This appendix has been divided into two sections since two literature reviews were
completed within Chapter 2. Section B.1 refers to the literature review contained in
Section 2.2, whereas Section B.2 refers to the literature review contained in Section
2.3.

B.1 Application of OR/MS Methods to Frail and
Elderly Healthcare - Figures and Tables (Chap-
ter 2.2)
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Ref Authors JCR Country Research Aim Condition Method Planning Decision Setting

[70] Abe et al. GG Japan Examining and Forecasting Acute Machine Learning Strategic Single Hospital
[97] Ambagtsheer et al. GG Australia Examining Chronic Machine Learning Strategic Community Care
[94] Arling et al. HPS USA Forecasting Chronic Optimisation Strategic Community Care
[98] Arvelo et al. Other Spain Examining Chronic Optimisation Strategic Community Care
[71] Azad et al. GG Canada Examining Acute Statistical Analysis None Single Hospital
[83] Bae et al. OR/MS USA Forecasting Chronic Simulation Strategic Community Care
[74] Beaupre et al. Other Canada Examining Chronic Statistical Analysis None Single Hospital
[95] Borowiak et al. GG Poland Forecasting Chronic Statistical Analysis Tactical Community Care
[68] Cepoiu-Martin and Bischak MI Canada Examining Chronic Simulation Strategic Community Care
[112] Chaussalet et al. MI UK Improving Chronic Queuing Models Strategic Single Hospital
[79] Christodoulou and Taylor HPS UK Forecasting Chronic Markov Strategic Single Hospital
[52] Davari and Van Woensel OR/MS UK Forecasting Chronic Optimisation Strategic Multiple Hospitals and Community
[99] Desai et al. HPS UK Forecasting Chronic Simulation Strategic Community Care
[100] Eggink et al. HPS The Netherlands Forecasting Chronic Simulation Tactical Community Care
[90] Eveborn et al. OR/MS Sweden Improving Chronic Heuristics Operational Community Care
[61] Faddy and McClean MI UK Examining Chronic Markov Strategic Single Hospital and Community
[80] Franck et al. OR/MS France Examining Chronic Simulation Strategic Multiple Hospitals
[69] Franklin and Hunter GG UK Examining Acute Markov Strategic Single Hospital
[62] Garg et al. Other UK Examining Chronic Markov None Single Hospital and Community
[63] Garg et al. HPS UK Improving and Forecasting Chronic Markov Tactical Single Hospital and Community
[84] Gassoumis et al. Other USA Examining Chronic Machine Learning Strategic Community Care
[64] Gordon et al. MI Italy Examining Chronic Markov Operational Single Hospital and Community
[65] Gordon et al. HPS Italy Forecasting Chronic Markov Strategic Single Hospital and Community
[81] Gorunescu et al. HPS UK Forecasting Chronic Queuing Models Strategic Single Hospital
[91] Grenouilleau et al. IE Canada Forecasting Chronic Metaheuristic Operational Community Care
[92] Guo et al. Other USA Examining Chronic Statistical Analysis Strategic Community Care
[113] Hamdani et al. IE France Improving Chronic Markov Tactical Single Hospital
[66] Hare et al. HPS Canada Forecasting Chronic Markov Strategic Single Hospital and Community
[114] Harrison HPS USA Examining Chronic Statistical Analysis Tactical Multiple Hospitals
[109] Heggestad HPS Norway Forecasting Chronic Statistical Analysis Strategic Multiple Hospitals
[53] Intrevado et al. HPS Canada Examining Chronic Optimisation Strategic Multiple Hospitals and Community

Table B.1a: Summary of papers identified through the Scopus search in the first literature review, with a total of 62 papers.
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Ref Authors JCR Country Research Aim Condition Method Planning Decision Setting

[54] Johnson et al. OR/MS USA Forecasting Chronic Optimisation Strategic Multiple Hospitals and Community
[101] Katsaliaki et al HPS UK Forecasting Chronic Simulation Strategic Community Care
[51] Kerpershoek et al. GG European wide Examining Chronic Anderson Model Strategic Community Care
[72] Kul et al. GG Italy Examining Acute Machine Leaning Operational Single Hospital
[85] Li et al IE USA Forecasting Chronic Newsvendor Model Strategic Community Care
[55] Lim et al. OR/MS Hong Kong Improving Chronic Routing Tactical Multiple Hospital and Community
[89] Lin et al. IE Hong Kong Improving Chronic Metaheuristic Strategic Community Care
[110] Marshall and McClean HPS UK Forecasting Chronic Markov Strategic Single Hospital
[111] Marshall and McClean OR/MS UK Forecasting Chronic Markov Tactical Single Hospital
[82] Marshall et al. Other Italy Forecasting Chronic Markov Strategic Multiple Hospitals
[56] McClean and Millard OR/MS UK Examining Chronic Markov Strategic Multiple Hospitals and Community
[86] Mohammadi Bidhandi et al. OR/MS Canada Forecasting Chronic Queuing models and Simulation strategic Community Care
[96] Muramatsu et al. GG USA Examining Chronic Statistical Analysis Strategic Community Care
[106] Onggo et al. OR/MS UK Examining Acute Simulation None Single Hospital
[57] Patrick OR/MS Canada Examining and Forecasting Chronic Markov and Simulation Strategic Multiple Hospitals and Community
[58] Ragab et al. Other Ireland Improving Chronic Simulation Strategic Multiple Hospitals and Community
[76] Rashwan et al. OR/MS Ireland Improving Acute Simulation Strategic Single Hospital
[77] Rossille et al. HPS France Improving Acute Machine Leaning None Single Hospital
[73] Shaw and Marshall OR/MS UK Forecasting Acute Markov Strategic Single Hospital
[107] Silverster et al. GG UK Improving Acute Statistical Analysis Tactical Single Hospital
[102] Tao et al. Other China Improving Chronic Optimisation Strategic Community Care
[67] Taylor et al. Other UK Forecasting Chronic Markov Strategic Single Hospital and Community
[78] Trevisan et al. GG Italy Improving Acute Machine Learning Tactical Single Hospital
[59] Walker and Haslett Other Australia Examining Chronic Simulation None Multiple Hospitals and Community
[75] Wallace et al. GG USA Examining Acute Statistical Analysis Strategic Single Hospital
[87] Welberry et al. GG Australia Examining Chronic Machine Learning Strategic Community Care
[103] Xie et al. Other UK Forecasting Chronic Markov Strategic Community Care
[93] Yalçindağ et al. IE Italy Forecasting Chronic Routing Tactical Community Care
[88] Zhang and Puterman HPS Canada Forecasting Chronic Simulation Strategic Community Care
[108] Zhang et al. OR/MS Canada Forecasting Chronic Simulation Strategic Single Hospital
[60] Zychlinski et al. OR/MS USA Improving Chronic Fluid Model Strategic Multiple Hospitals and Community

Table B.1b: Summary of papers identified through the Scopus search in the first literature review, with a total of 62 papers.
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JCR Category Total

Geriatrics and Gerontology (GG) [51, 69, 70, 71, 72, 75, 78, 87, 95, 96, 97, 107] 12
Health Policy and Services (HPS) [53, 63, 65, 66, 77, 79, 88, 94, 99, 100, 101,

111, 114]
16

Industrial Engineering (IE) [85, 89, 91, 93, 113] 5
Medical Informatics (MI) [61, 65, 68, 112] 4
Operations Research and Management Sciences
(OR/MS)

[52, 54, 55, 56, 57, 60, 73, 76, 80, 83, 86, 90,
106, 108, 110]

15

Other [58, 59, 62, 67, 74, 82, 84, 98, 102, 103] 10

Table B.2: Number of papers that fall into each JCR category for the first literature
review.

Medical Setting Total

Community Care [51, 68, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103]

23

Community Care & Multiple Hospitals [52, 53, 54, 55, 56, 57, 58, 59, 60] 9

Single Hospital
[69, 70, 71, 72, 74, 76, 77, 79, 81, 106, 110, 111, 112, 113]

19
[73, 75, 78, 107, 108]

Single Hospital & Community Care [61, 62, 63, 64, 65, 66, 67] 7
Multiple Hospitals [80, 82, 109, 114] 4

Table B.3: Number of papers that fall into each hospital setting for the first litera-
ture review.

Condition Total

Acute [69, 70, 71, 72, 73, 75, 76, 77, 78, 106, 107] 10
Chronic [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,

74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103, 108, 109, 110, 111, 112, 113, 114]

51

Table B.4: Number of papers that fall into each condition area for the first literature
review.

Markov Method Total

Continuous time [56, 61, 62, 64, 65, 67, 69, 73, 79, 82, 103, 110, 111, 113] 14
Discrete time [57, 63, 66] 3

Table B.5: Number of Markov model papers identified in the first literature review.
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Research Aim Total

Examining [51, 53, 56, 59, 61, 62, 64, 68, 69, 70, 71, 72, 74, 75, 80, 84, 87, 92, 96, 97, 98,
106, 114]

23

Forecasting [52, 54, 57, 63, 65, 66, 67, 70, 73, 79, 81, 82, 83, 85, 86, 88, 91, 93, 94, 95, 99,
100, 101, 103, 108, 109, 110, 111]

28

Improving [55, 57, 58, 60, 63, 76, 77, 78, 89, 90, 102, 107, 112, 113] 14

Table B.6: Number of papers that fall into each research aim for the first literature
review.

Planning Decision Total

Strategic [51, 52, 53, 54, 56, 57, 58, 60, 61, 65, 66, 67, 68, 69, 70, 73, 75, 76, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 92, 94, 96, 97, 98, 99, 101, 102, 103,
108, 109, 111, 112]

42

Tactical [55, 63, 65, 78, 93, 95, 100, 107, 110, 113, 114] 10
Operational [64, 72, 90, 91] 4
No Decision [59, 62, 71, 74, 77, 106] 6

Table B.7: Number of papers that fall into each planning decision for the first
literature review.
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B.2 Hierarchical Prediction Models for Patients’
Lengths of Stay - Tables (Chapter 2.3).



A
PPEN

D
IX

B
.

LIT
ER

AT
U

R
E

R
EV

IEW
SU

PPLEM
EN

TA
RY

M
AT

ER
IA

L
255

Ref Authors JCR Country Research Aim Condition Method Planning Decision Setting

[70] Abe et al. GG Japan Examining and Forecasting Acute Machine Learning Strategic Single Hospital
[169] Adamis et al. GG Ireland Examining Chronic Linear and Logistic Regression Operational Single Hospital
[139] Agasi-Idenburg et al. GG The Netherlands Examining Surgical Logistic Regression Operational Multiple Hospitals
[149] Alyahya et al. MI Jordan Forecasting Acute Decision Tree Operational Single Hospital
[150] Antonelli et al. GG Italy Forecasting Chronic Logistic Regression Operational Multiple Hospitals
[124] Bahrmann et al. GG Germany Forecasting Acute Kaplan-Meier Operational Single Hospital
[151] Basic and Khoo HPS Australia Forecasting Acute Logistic Regression Operational Single Hospital
[168] Basic and Khoo GG Australia Improving Acute Cox Regression Tactical Single Hospital
[174] Basic and Shanley HPS UK Forecasting Chronic Cox and Logistic Regression Operational Single Hospital
[185] Beauchet et al. GG France Examining Acute Linear Regression Operational Single Hospital
[152] Beauchet et al. GG Canada Forecasting Chronic Regression and Kaplan-Meier Tactical Single Hospital
[198] Beauchet et al. GG Canada Examining Acute Statistical Analysis Tactical Single Hospital
[153] Bo et al. GG Finland Forecasting Chronic Multi-dimensional Analysis Operational Single Hospital
[154] Bo et al. GG Italy Forecasting Acute Statistical Operational Single Hospital
[123] Cacciatore et al. GG Italy Forecasting Surgical Linear Regression Operational Single Hospital
[126] Cai et al. Other USA Examining Chronic Cox and Logistic Regression Tactical Community Care
[203] Chen et al. GG China Examining Chronic Statistical Analysis Operational Multiple Hospitals
[186] Chua et al. GG UK Examining Chronic Linear Regression Operational Single Hospital
[172] Chung et al. HPS South Korea Examining Acute Multivariate Regression Operational Multiple Hospitals
[155] Curiati et al. Other Brazil Forecasting Acute Logistic Regression Operational Single Hospital
[130] Fan et al. GG China Forecasting Chronic Logistic Regression Strategic Single Hospital and Community
[156] Ferreira et al. GG Brazil Forecasting Chronic Logistic Regression Operational Single Hospital
[164] Feuerstadt et al. GG USA Forecasting Acute Kaplan-Meier Tactical Multiple Hospitals
[205] Garg et al. Other UK Examining Chronic Markov Operational Multiple Hospitals
[65] Gordon et al. HPS UK Forecasting Chronic Markov Operational Single Hospital and Community
[199] Greene et al. GG Ireland Examining Acute Statistical Operational Single Hospital
[113] Hamdani et al. IE France Improving Chronic Markov Tactical Single Hospital
[200] Harari et al. GG UK Examining Acute Statistical Analysis Operational Single Hospital
[193] Hartley et al. GG UK Examining Chronic Cox Regression Operational Single Hospital
[143] Harvey et al. GG Australia Forecasting Surgical Logistic Regression Strategic Multiple Hospitals
[189] Hasebe et al. GG Japan Examining Chronic Linear Regression Operational Multiple Hospitals
[127] Hoben et al. GG Canada Forecasting Chronic Cox Regression Strategic Community Care
[157] Hu et al. MI China Forecasting Chronic Gradient Boosting Strategic Multiple Hospitals
[180] Hubbard et al. GG Australia Forecasting Acute Logistic Regression Operational Multiple Hospitals
[128] Johnson et al. GG USA Examining Chronic Logistic Regression and Kaplan-Meier Strategic Community Care
[144] Jones et al. GG USA Examining Surgical Logistic Regression Operational Single Hospital
[140] Justo et al. GG Israel Examining Surgical Linear Regression Operational Single Hospital
[145] Kerr et al. GG UK Examining Surgical Cox Regression Operational Single Hospital
[196] Kidd et al. GG UK Examining Acute Cox Regression Operational Multiple Hospitals
[190] Kim and Lee GG South Korea Forecasting Acute Linear Regression Tactical Multiple Hospitals
[136] Kirfel et al. GG Germany Examining Surgical Linear Regression Operational Single Hospital
[181] Lang et al. GG France Examining Chronic Logistic Regression Strategic Multiple Hospitals
[182] Lang et al. GG Finland Examining Chronic Logistic Regression Strategic Multiple Hospitals
[194] Launay et al. Other France Examining Acute Cox Regression Tactical Single Hospital
[158] Launay et al. Other France Forecasting Acute Neural Networks Operational Single Hospital
[159] Launay et al. GG France Forecasting Acute Logistic Regression Operational Single Hospital

Table B.8a: Summary of papers identified through the Scopus search in the first literature review, with a total of 90 papers.
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Ref Authors JCR Country Research Aim Condition Method Planning Decision Setting

[204] Le et al. Other Singapore Examining Chronic Markov Tactical Single Hospital
[137] Lee et al. Other Canada Forecasting Surgical Logistic Regression Operational Multiple Hospitals
[191] Liotta et al. GG Italy Examining Acute Linear Regression Tactical Multiple Hospitals
[160] Lisk et al. GG UK Forecasting Chronic Linear and Logistic Regression Operational Multiple Hospitals
[175] Lisk et al. GG UK Examining Acute Logistic Regression Operational Single Hospital
[207] Lisk et al. Other UK Forecasting Acute ROC Curve Operational Single Hospital
[142] MacDonald et al. Other Canada Examining Surgical Logistic Regression Tactical Multiple Hospitals
[134] Marano et al. GG Italy Forecasting Surgical Statistical Analysis Operational Single Hospital
[201] Marin et al. Other Spain Examining Acute Statistical Analysis Operational Single Hospital
[110] Marshall and McClean HPS UK Forecasting Chronic Markov Strategic Single Hospital
[206] Möllers et al. Other Germany Examining Chronic Multivariate Regression Operational Single Hospital
[167] Morandi et al. GG USA Forecasting Chronic Kaplan-Meier Operational Single Hospital
[170] Motohashi et al. HPS Japan Examining Acute Linear and Logistic Regression Operational Multiple Hospitals
[173] Motzek et al. GG Germany Forecasting Chronic Regressions Tactical Multiple Hospitals
[171] Naouri et al. GG France Examining Acute Linear and Logistic Regression Operational Multiple Hospitals
[176] Nishida et al. GG Japan Examining Chronic Logistic Regression Operational Single Hospital
[161] Nishino et al. GG Japan Forecasting Acute CART Operational Single Hospital
[195] Ono et al. GG Finland Examining Chronic Cox Regression Operational Single Hospital
[129] Park et al. Other USA Examining Chronic Cox Regression Strategic Community Care
[197] Pilotto et al. GG Finland Examining Chronic Cox Regression Operational Multiple Hospitals
[138] Pustavoitau et al. GG USA Forecasting Surgical Linear Regression Operational Single Hospital
[135] Raab et al. GG USA Forecasting Surgical Linear Regression Operational Single Hospital
[133] Rajamaki et al. GG Finland Forecasting Acute Logistic Regression Operational Multiple Hospitals
[183] Rubens et al. GG USA Forecasting Acute Logistic Regression Operational Multiple Hospitals
[184] Shebeshi et al. GG Australia Forecasting Acute Logistic Regression Operational Multiple Hospitals
[177] Shen et al. GG China Examining Chronic Logistic Regression Operational Single Hospital
[187] Snowden et al. GG USA Examining Acute Linear Regression Operational Single Hospital
[162] Sommerfeld and Arbin Other Sweden Forecasting Acute Kaplan Meier Operational Single Hospital
[132] Sommerfeld et al. GG Sweden Forecasting Acute Cox Regression Tactical Single Hospital
[163] Takahashi et al. GG Japan Forecasting Acute Logistic Regression Operational Multiple Hospitals
[125] Tal GG Israel Examining Acute Statistical Analysis Operational Single Hospital
[178] Toh et al. Other Singapore Examining Chronic Logistic Regression Operational Single Hospital
[165] Tropea et al. GG Australia Forecasting Chronic Logistic Regression Strategic Single Hospital
[166] Volpato et al. GG Italy Forecasting Chronic Cox Regression Operational Multiple Hospitals
[179] Volpato et al. GG Italy Examining Chronic Logistic Regression Operational Single Hospital
[131] Walsh et al. HPS Ireland Improving Chronic Regressions Tactical Single Hospital and Community
[87] Welberry et al. GG Australia Examining Chronic Machine Learning Strategic Community Care
[141] Willems et al. GG The Netherlands Forecasting Surgical Linear Regression Operational Single Hospital
[192] Wong and Miller GG Canada Forecasting Acute Linear Regression Operational Multiple Hospitals
[202] Wright et al. GG UK Examining Acute Statistical Analysis Tactical Single Hospital
[188] Yu et al Other Australia Examining Chronic Linear Regression Operational Single Hospital
[146] Zattoni et al. GG Italy Forecasting Surgical Logistic Regression Operational Single Hospital
[147] Zhao et al. GG China Forecasting Surgical Logistic Regression Tactical Single Hospital
[148] Zhao et al. GG China Forecasting Surgical Logistic Regression Operational Single Hospital

Table B.8b: Summary of papers identified through the Scopus search in the first literature review, with a total of 90 papers.
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JCR Category Total

Geriatrics and Gerontology (GG) [70, 87, 123, 124, 125, 127, 128, 130, 132, 133, 134, 135, 136,
138, 139, 140, 141, 143, 144, 145, 146, 147, 148, 150, 152, 153,
154, 156, 159, 160, 161, 163, 164, 165, 166, 167, 168, 169, 171,
173, 175, 177, 179, 180, 181, 182, 183, 184, 185, 186, 187, 189,
190, 191, 192, 193, 195, 196, 197, 198, 199, 200, 202, 203]

65

Health Policy and Services (HPS) [65, 110, 131, 151, 170, 172, 174] 7
Industrial Engineering (IE) [113] 1
Medical Informatics (MI) [149, 157] 2
Other [123, 129, 137, 142, 155, 158, 162, 178, 188, 194, 201, 204, 205,

206, 207]
15

Table B.9: Number of papers that fall into each JCR category for the second liter-
ature review.

Medical Setting Total

Community Care [87, 126, 127, 128, 129] 5
Single Hospital [70, 110, 113, 123, 124, 125, 132, 134, 135, 136, 138, 140, 141,

144, 145, 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 158,
159, 161, 162, 165, 167, 168, 169, 174, 175, 176, 177, 178, 179,
185, 186, 187, 188, 193, 194, 195, 198, 199, 200, 201, 202, 204,
206, 207]

54

Single Hospital & Community Care [65, 130, 131] 3
Multiple Hospitals [133, 137, 139, 142, 143, 150, 156, 157, 160, 163, 164, 166, 170,

171, 172, 173, 180, 181, 182, 183, 184, 189, 190, 191, 192, 196,
197, 203]

28

Table B.10: Number of papers that fall into each hospital setting for the second
literature review.

Condition Total

Acute [70, 124, 125, 132, 133, 149, 151, 154, 155, 158, 159, 161, 162, 163, 164,
168, 170, 171, 172, 175, 180, 183, 184, 185, 187, 190, 191, 192, 194, 196,
198, 199, 200, 201, 202, 207]

36

Chronic [65, 87, 110, 113, 126, 127, 128, 129, 130, 131, 150, 152, 153, 156, 157,
160, 165, 166, 167, 169, 173, 174, 176, 177, 177, 178, 179, 181, 182, 186,
188, 189, 193, 195, 197, 197, 203, 204, 205, 206]

38

Surgical [123, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147,
148]

16

Table B.11: Number of papers that fall into each condition area for the second
literature review.
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Research Aim Total

Examining [70, 87, 125, 126, 128, 129, 136, 139, 140, 142, 144, 145, 169, 170, 171,
172, 175, 176, 177, 178, 179, 181, 182, 185, 186, 187, 188, 189, 191, 193,
194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206]

45

Forecasting [65, 70, 110, 123, 124, 127, 130, 132, 133, 134, 135, 137, 138, 141, 143,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 173, 174, 180, 183, 184, 190, 192, 207]

43

Improving [113, 131, 168] 3

Table B.12: Number of papers that fall into each research aim for the second liter-
ature review.

Planning Decisions Total

Strategic [70, 87, 110, 127, 128, 129, 130, 143, 157, 165, 181, 182] 12
Tactical [113, 126, 131, 132, 142, 147, 152, 164, 168, 173, 190, 191, 194, 198,

202, 204]
16

Operational [65, 123, 124, 125, 133, 134, 135, 136, 137, 138, 139, 140, 141, 144,
145, 146, 148, 149, 150, 151, 153, 154, 155, 156, 158, 159, 160, 161,
162, 163, 166, 167, 169, 170, 171, 172, 174, 175, 176, 177, 178, 179,
180, 183, 184, 185, 186, 187, 188, 189, 192, 193, 195, 196, 197, 199,
200, 201, 203, 205, 206, 207]

62

Table B.13: Number of papers that fall into each planning decision for the second
literature review.
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Appendix C

Experimental Analysis Further
Material

This appendix contains the material relating to Chapter 5. Section C.1 contains
the data relating to hospital admissions and scan information for patients admitted
between 1st April 2017 and 31st March 2020. Section C.2 contains the regression
tree output data.

C.1 ABUHB Admission and Scan Data - Attributes
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Attribute Data type Distinct attribute

values or bins
Documentation

at during at
admission admission discharge

Admission Date Ordinal 1,096 (e.g.
01/04/2017)

✓

Admission Method Nominal 17 (e.g. Elective wait-
ing list)

✓

Admission Source Nominal 26 (e.g. Usual place of
residence)

✓

Admission Time Continuous 1440 ({hh:mm}) ✓

Borough Nominal 174 (e.g. Newport
LHB, Monmouthshire
LHB)

✓

Date of birth Ordinal 12037 (e.g.
01/01/1940)

✓

Diagnosis Nominal 2758 (e.g. Fracture of
neck of femur, Conges-
tive heart failure)

✓

Discharge Date Ordinal 1154 (e.g.
01/04/2017)

✓
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Attribute Data type Distinct attribute
values or bins

Documentation

at during at
admission admission discharge

Discharge Destination Nominal 26 (e.g. Death, Own
home, Patient trans-
fer within same health
board/trust)

✓

Discharge Time Continuous 1306 ({hh:mm:ss}) ✓

Hospital Nominal 14 (e.g. Chepstow
Community Hospital)

✓

NHS Number Nominal 66251 (e.g.
4900000000)

✓

Postcode Nominal 13819 (e.g. CF72
8XR)

✓

Registered GP Nominal 1313 (e.g. G9041668) ✓

Registered GP Practice Nominal 618 (e.g. W93012 ) ✓

Scan Attendance Date Ordinal 1097 (e.g.
(01/04/2017)

✓

Scan Attendance Time Continuous 11417 ({hh:mm:ss}) ✓

Scan Exam Nominal 293 (e.g. CT Neck and
thorax)

✓
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Attribute Data type Distinct attribute

values or bins
Documentation

at during at
admission admission discharge

Scan Exam Code Nominal 295 (e.g. XCHES,
XABDO, CSKUH)

✓

Scan Location Name Nominal 74 (e.g. Medical
Assessment, Intensive
Care Unit)

✓

Scan Procedure Code Nominal 16 (e.g. R, CT, MR) ✓

Scan Requested Date Ordinal 1090 (e.g.
(01/04/2017)

✓

Scan Specialty Code Nominal 37 (e.g. Gastro,
Neuro)

✓

Specialty Nominal 30 (e.g. Care of the
Elderly, Neurology)

✓

Table C.1: List of attributes used for the CART analysis.
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Variable Equation

Age on Arrival Y = 0.3751x − 22.635
Frailty Score Y = 2.26961x + 5.2631
Number of Scans Y = 1.8414x + 6.2159

Table C.2: Linear regression results for continuous variables.

Variable Parameter Coefficient

A
dm

iss
io

n
M

et
ho

d

Elective - booked 0.2487
Elective - planned 0.1686
Elective - waiting list 0.7532
Emergency - GP 9.7958
Emergency - NHS Direct 15.0000
Emergency - bed bureau 15.3636
Emergency - casualty 8.7958
Emergency - consultant OP clinic 8.5536
Emergency - dom. visit by consultant 11.3774
Emergency - other means 10.6267
Maternity - ante-partum 10.5000
Maternity - post-partum 7.0000
Not applicable 0.0000
Not known 0.0000
Other - babies born outside hospital 75.0000
Other - transferred from another hospital 25.7189

A
dm

iss
io

n
So

ur
ce

Babies born in or on the way to hospital 1.5000
Babies born in or on the way to hospital (Baby Act 75.0000
Hospice 2.0000
L.A. Part3 residential acc. where care provided 10.9083
No fixed abode 0.0000
Non NHS (other than L.A.) run hospice 27.0000
Non NHS (other than L.A.) run nursing home 8.3851
Non NHS (other then L.A.) run res.care home 9.0758
Non-NHS run hospital 5.2308
Other NHS provider - general ward 25.2320
Other NHS provider - maternity ward 5.3333
Other NHS provider - mental health ward 1.5000
Own Home 4.6228
Patient transfer from non NHS hospital, includes p 19.0909
Patient transfer from other health board/ trust. 26.4283
Patient transfer within the same health board/trus 26.4740
Penal establishment 2.9333
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Variable Parameter Coefficient
A

dm
iss

io
n

So
ur

ce

Penal establishment or police custody suite 5.0000
Permanent residence at nursing home, residential c 10.0706
Same Trust- Mentally ill or learning disablilties 15.3571
Same Trust-General or young phys.disabled 25.3286
Same Trust-maternity/neonates 15.1429
Temporary place of residence 7.6400
Temporary residence at nursing home, residential c 7.5556
USUAL PLACE OF RESIDENCE 0.0000
Usual place of residence 4.8091

A
ge

G
ro

up

65-69 3.3561
70-74 3.9699
75-79 5.6214
80-84 7.6940
85-89 10.2833
90-94 12.8864
95+ 13.8917

D
ay

of
A

dm
iss

io
n

1 8.0375
2 6.1530
3 6.0376
4 6.0256
5 5.8866
6 6.7008
7 7.6869

Fr
ai

lty
G

ro
up

0 5.1121
1 8.8235
2 11.4974

H
os

pi
ta

l

Chepstow Community Hospital(CCH) 36.7876
County Hospital (CH) 29.3299
Monnow Vale Health and Social Care Facility (MVHSCF) 39.6596
Nevill Hall Hospital (NHH) 5.4669
Offsite 0.0667
Outsource 0.0000
Outsource - CareUK 0.0025
Rhymney Integrated Health & Social Care Centre (RIHSC) 38.7814
Royal Gwent Hospital (RGH) 5.1409
St Woolos Acute Hospital (STWAH) 1.2380
St Woolos Community Hospital (STWCH) 31.9553
University Hospital Of Wales (UHW) 0.6984
Ysbyty Aneurin Bevan (YAB) 23.7867
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Variable Parameter Coefficient

Ysbyty Ystrad Fawr (YYF) 7.1026
IC

D
10

-F
irs

t
Le

tt
er

0 10.9157
A 11.3868
B 7.2211
C 2.8919
D 1.3822
E 10.0316
F 16.5323
G 8.0823
H 0.2263
I 9.7608
J 9.5938
K 2.5100
L 2.5274
M 5.4658
N 5.7637
Q 3.4783
R 6.8832
S 13.5641
T 8.4221
Z 0.4610

Sc
an

Y
/N N 6.2178

Y 8.5000

M
on

th

1 6.4166
2 6.2411
3 6.2600
4 6.9825
5 6.4336
6 6.2120
7 6.3876
8 6.5247
9 6.4493
10 6.1330
11 5.8964
12 6.7994

Sp
ec

ia
lty

Accident & Emergency 2.2673
Anaesthetics 14.9517
Cardiology 4.6470
Care Of The Elderly 12.1101
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Variable Parameter Coefficient
Sp

ec
ia

lty

Community Medicine 34.2350
Dermatology 0.2616
Diabetes And Endocrinology 11.6161
Ear Nose & Throat 2.7500
GP Other 39.2603
Gastroenterology 2.1382
General Medicine 8.4519
General Surgery 3.7149
Gynaecology 1.6536
Haematology 0.7974
Infectious Diseases 11.6289
Intermediate Care 14.3725
Maxillo-Facial 0.6018
Neurology 5.6131
Ophthalmology 0.1307
Pain 0.0080
Plastic Surgery 0.1128
Radiology 0.3548
Radiotherapy And Oncology 13.6667
Rehabilitation 28.7732
Respiratory 7.7985
Restorative Dentistry 0.0000
Rheumatology 2.3333
Trauma & Orthopaedic 6.6658
Urology 0.9932

Table C.3: Linear regression results for categorical variables.
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Variable Equation

Age on Arrival (Age × 0.00681) - 5.0746
Frailty Score (Frailty score × 0.5490) - 0.0618
Number of Scans (No scans × 1.4368) + 0.0798

Table C.4: Logistic regression results for continuous variables.

Variable Parameter Log Odds Ratio

A
dm

iss
io

n
M

et
ho

d

Intercept -3.1303
Elective - planned -0.3037
Elective - waiting list 1.5800
Emergency - GP 5.4922
Emergency - NHS Direct 7.5391
Emergency - bed bureau 4.9504
Emergency - casualty 5.2280
Emergency - consultant OP clinic 5.4610
Emergency - dom. visit by consultant 32.8722
Emergency - other means 5.0776
Maternity - ante-partum 6.3958
Maternity - post-partum 3.1225
Not applicable -0.2002
Not known -0.2002
Other - babies born outside hospital 3.9658
Other - transferred from another hospital 7.3295

A
dm

iss
io

n
So

ur
ce

Intercept 2.1882
Babies born in or on the way to hospital (Baby Act 0.7221
Hospice 0.7221
L.A. Part3 residential acc. where care provided 0.2676
No fixed abode -3.7222
Non NHS (other than L.A.) run hospice 1.3450
Non NHS (other than L.A.) run nursing home -0.5895
Non NHS (other then L.A.) run res.care home -0.7584
Non-NHS run hospital 1.4362
Other NHS provider - general ward 1.9328
Other NHS provider - maternity ward 1.8957
Other NHS provider - mental health ward 1.3450
Own Home -2.1817
Patient transfer from non NHS hospital, includes p 4.9402
Patient transfer from other health board/ trust 1.9041
Patient transfer within the same health board/trus 2.2659
Penal establishment -1.7844
Penal establishment or police custody suite -0.6642
Permanent residence at nursing home, residential c -0.5487
Same Trust- Mentally ill or learning disablilties 0.4053
Same Trust-General or young phys.disabled 1.8935
Same Trust-maternity/neonates 3.6399



APPENDIX C. EXPERIMENTAL ANALYSIS FURTHER MATERIAL 268

Variable Parameter Log Odds Ratio
A

dm
iss

io
n

So
ur

ce
Temporary place of residence -0.4217
Temporary residence at nursing home, residential c -0.4128
USUAL PLACE OF RESIDENCE -27.3023
Usual place of residence -2.0817

A
ge

G
ro

up

Intercept -0.3582
70-74 0.1263
75-79 0.4389
80-84 0.7609
85-89 1.2366
90-94 1.8219
95+ 2.2298

D
ay

of
A

dm
iss

io
n Intercept 1.2226

2 -1.1597
3 -1.2003
4 -1.1932
5 -1.2565
6 -1.0601
7 -0.2626

Fr
ai

lty
G

ro
up

Intercept -0.1167
1 1.1179
2 1.3066

H
os

pi
ta

l

Intercept 6.7546
County Hospital (CH) -3.3521
Monnow Vale Health and Social Care Facility (MVHSCF) -0.7102
Nevill Hall Hospital (NHH) -6.3055
Offsite -9.4029
Outsource -17.5290
Outsource - CareUK -13.0346
Rhymney Integrated Health & Social Care Centre (RIHSC) -2.7499
Royal Gwent Hospital (RGH) -6.5426
St Woolos Acute Hospital (STWAH) -7.8409
St Woolos Community Hospital (STWCH) -0.1758
University Hospital Of Wales (UHW) -6.2012
Ysbyty Aneurin Bevan (YAB) -0.9729
Ysbyty Ystrad Fawr (YYF) -7.2621

IC
D

10
-F

irs
t

Le
tt

er

Intercept 1.0536
A 1.1059
B -0.2475
C -1.8016
D -2.6683
E 0.7074
F 1.3826
G -0.9233
H -4.2614



APPENDIX C. EXPERIMENTAL ANALYSIS FURTHER MATERIAL 269

Variable Parameter Log Odds Ratio

IC
D

10
-F

irs
t

Le
tt

er

I 0.1415
J 1.3383
K -1.8507
L -2.4526
M -0.3327
N -0.8702
Q -0.6577
R -0.3957
S 0.9451
T 0.1577
Z -3.6601

Sc
an

Y
/N Intercept 0.00772

Y 1.7035

M
on

th

Intercept 0.1607
2 -0.0254
3 0.0376
4 0.0978
5 0.0401
6 0.0230
7 0.0114
8 0.0370
9 0.0221
10 -0.0333
11 -0.0951
12 0.1176

Sp
ec

ia
lty

Intercept 0.3028
Anaesthetics 2.2258
Cardiology -0.0444
Care Of The Elderly 2.5741
Community Medicine 4.7692
Dermatology -4.0136
Diabetes And Endocrinology 2.5748
Ear Nose & Throat 0.5140
GP Other 4.3984
Gastroenterology -1.5574
General Medicine 1.6618
General Surgery -0.3303
Gynaecology -0.6350
Haematology -2.4446
Infectious Diseases 2.5972
Intermediate Care 4.9687
Maxillo-Facial -2.4471
Neurology 1.5312
Ophthalmology -4.0320
Pain -5.1595
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Variable Parameter Log Odds Ratio
Sp

ec
ia

lty

Plastic Surgery -5.8436
Radiology -1.7967
Radiotherapy And Oncology -2.7438
Rehabilitation 5.5195
Respiratory 1.2408
Restorative Dentistry -1.0784
Rheumatology -1.6581
Trauma & Orthopaedic 0.7239
Urology -1.3497

Table C.5: Logistic regression results for categorical variables.

C.2 Regression Tree Groupings
This section provides the regression groupings and the associated average LOS for each of the end
nodes. Comments are shown in blue, with average LOS in hours displayed in red.

if admission_method_Other - transferred from another hospital <= 0.5:
if admission_method_Elective - waiting list <= 0.5:

if admission_method_Elective - booked <= 0.5:
if specialty_Accident & Emergency <= 0.5:

if admission_method_Elective - planned <= 0.5:
if hospital_Ysbyty Ystrad Fawr <= 0.5:

if Age_group_65-69 <= 0.5:
if Age_group_70-74 <= 0.5:

if specialty_Trauma & Orthopaedic <= 0.5:
if Age_group_75-79 <= 0.5:

if specialty_Care Of The Elderly <= 0.5:
return [[9.81148237]]

else: # if specialty_Care Of The Elderly > 0.5
return [[11.39308949]]

else: # if Age_group_75-79 > 0.5
return [[8.83057656]]

else: # if specialty_Trauma & Orthopaedic > 0.5
return [[13.27625571]]

else: # if Age_group_70-74 > 0.5
return [[7.83854833]]

else: # if Age_group_65-69 > 0.5
return [[7.35347877]]

else: # if hospital_Ysbyty Ystrad Fawr > 0.5
if FrailtyGroup_2 <= 0.5:

if Age_group_90-94 <= 0.5:
return [[13.43980061]]

else: # if Age_group_90-94 > 0.5
return [[19.]]

else: # if FrailtyGroup_2 > 0.5
return [[20.35322777]]

else: # if admission_method_Elective - planned > 0.5
return [[0.19179104]]

else: # if specialty_Accident & Emergency > 0.5
return [[2.28825294]]

else: # if admission_method_Elective - booked > 0.5
return [[0.24649508]]

else: # if admission_method_Elective - waiting list > 0.5
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if specialty_Trauma & Orthopaedic <= 0.5:
return [[0.4027881]]

else: # if specialty_Trauma & Orthopaedic > 0.5
if hospital_Ysbyty Ystrad Fawr <= 0.5:

return [[3.56313566]]
else: # if hospital_Ysbyty Ystrad Fawr > 0.5

return [[0.16842962]]
else: # if admission_method_Other - transferred from another hospital > 0.5

if hospital_Royal Gwent Hospital <= 0.5:
if hospital_St Woolos Acute Hospital <= 0.5:

if hospital_Nevill Hall Hospital <= 0.5:
if hospital_Ysbyty Aneurin Bevan <= 0.5:

if specialty_Care Of The Elderly <= 0.5:
if specialty_Diabetes And Endocrinology <= 0.5:

if specialty_Rehabilitation <= 0.5:
return [[38.63267544]]

else: # if specialty_Rehabilitation > 0.5
if hospital_Chepstow Community Hospital <= 0.5:

if hospital_Ysbyty Ystrad Fawr <= 0.5:
if admission_source_Same Trust-General or
young phys.disabled <= 0.5:

return [[33.48491155]]
else: # if admission_source_Same Trust-General
or young phys.disabled > 0.5

return [[30.2618469]]
else: # if hospital_Ysbyty Ystrad Fawr > 0.5

return [[35.2183755]]
else: # if hospital_Chepstow Community Hospital > 0.5

return [[37.42204301]]
else: # if specialty_Diabetes And Endocrinology > 0.5

return [[20.428]]
else: # if specialty_Care Of The Elderly > 0.5

if hospital_County Hospital <= 0.5:
return [[22.40190476]]

else: # if hospital_County Hospital > 0.5
return [[30.08433735]]

else: # if hospital_Ysbyty Aneurin Bevan > 0.5
return [[23.80604134]]

else: # if hospital_Nevill Hall Hospital > 0.5
if specialty_Rehabilitation <= 0.5:

return [[11.72972973]]
else: # if specialty_Rehabilitation > 0.5

return [[29.56521739]]
else: # if hospital_St Woolos Acute Hospital > 0.5

return [[6.9055794]]
else: # if hospital_Royal Gwent Hospital > 0.5

if specialty_General Surgery <= 0.5:
if specialty_Trauma & Orthopaedic <= 0.5:

return [[9.71439936]]
else: # if specialty_Trauma & Orthopaedic > 0.5

return [[16.85333333]]
else: # if specialty_General Surgery > 0.5

return [[17.96407186]]

C.3 Classification Tree Groupings
This section provides the classification groupings and the LOS groupings for each of
the end nodes. Comments are shown in blue, with number of patients falling into
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each category denoted in red in a [<1,≥1] structure.
if admission_method_Elective - waiting list <= 0.5:

if admission_method_Elective - booked <= 0.5:
if admission_method_Elective - planned <= 0.5:

if specialty_Accident & Emergency <= 0.5:
if specialty_General Medicine <= 0.5:

return [[ 2652. 49868.]]
else: # if specialty_General Medicine > 0.5

return [[1242. 9099.]]
else: # if specialty_Accident & Emergency > 0.5

return [[1848. 2500.]]
else: # if admission_method_Elective - planned > 0.5

if specialty_Trauma & Orthopaedic <= 0.5:
return [[1289. 17.]]

else: # if specialty_Trauma & Orthopaedic > 0.5
return [[ 5. 29.]]

else: # if admission_method_Elective - booked > 0.5
if specialty_Trauma & Orthopaedic <= 0.5:

return [[4555. 141.]]
else: # if specialty_Trauma & Orthopaedic > 0.5

return [[22. 61.]]
else: # if admission_method_Elective - waiting list > 0.5

if specialty_Trauma & Orthopaedic <= 0.5:
if specialty_General Surgery <= 0.5:

if specialty_Urology <= 0.5:
if specialty_Ear Nose & Throat <= 0.5:

if specialty_Gynaecology <= 0.5:
if specialty_Respiratory <= 0.5:

return [[30951. 700.]]
else: # if specialty_Respiratory > 0.5

return [[794. 224.]]
else: # if specialty_Gynaecology > 0.5

if Day_1 <= 0.5:
return [[951. 462.]]

else: # if Day_1 > 0.5
return [[ 0. 72.]]

else: # if specialty_Ear Nose & Throat > 0.5
return [[264. 330.]]

else: # if specialty_Urology > 0.5
if hospital_Royal Gwent Hospital <= 0.5:

return [[1050. 28.]]
else: # if hospital_Royal Gwent Hospital > 0.5

if Day_5 <= 0.5:
if diagnosis_Malignant neoplasm: Bladder, unspecified <= 0.5:

if diagnosis_Hyperplasia of prostate <= 0.5:
return [[2209. 856.]]

else: # if diagnosis_Hyperplasia of prostate > 0.5
return [[103. 176.]]

else: # if diagnosis_Malignant neoplasm: Bladder, unspecified > 0.5
return [[106. 196.]]

else: # if Day_5 > 0.5
return [[1410. 245.]]

else: # if specialty_General Surgery > 0.5
if diagnosis_Calculus of gallbladder with other cholecystitis <= 0.5:

if No_Scans <= 0.5:
if diagnosis_Diverticular disease of large intestine without perforation
or abscess <= 0.5:

if hospital_Ysbyty Ystrad Fawr <= 0.5:
if diagnosis_Malignant neoplasm: Breast, unspecified <= 0.5:



APPENDIX C. EXPERIMENTAL ANALYSIS FURTHER MATERIAL 273

if diagnosis_Unilateral or unspecified inguinal hernia, without
obstruction or gangrene <= 0.5:

return [[5121. 1686.]]
else: # if diagnosis_Unilateral or unspecified inguinal hernia,
without obstruction or gangrene > 0.5

return [[176. 194.]]
else: # if diagnosis_Malignant neoplasm: Breast, unspecified > 0.5

return [[ 62. 116.]]
else: # if hospital_Ysbyty Ystrad Fawr > 0.5

return [[1282. 119.]]
else: # if diagnosis_Diverticular disease of large intestine without
perforation or abscess > 0.5

return [[834. 9.]]
else: # if No_Scans > 0.5

return [[ 18. 100.]]
else: # if diagnosis_Calculus of gallbladder with other cholecystitis > 0.5

return [[ 79. 223.]]
else: # if specialty_Trauma & Orthopaedic > 0.5

if hospital_Ysbyty Ystrad Fawr <= 0.5:
if diagnosis_Gonarthrosis, unspecified <= 0.5:

if diagnosis_Coxarthrosis, unspecified <= 0.5:
if diagnosis_Carpal tunnel syndrome <= 0.5:

if diagnosis_Palmar fascial fibromatosis [Dupuytren] <= 0.5:
return [[1379. 1726.]]

else: # if diagnosis_Palmar fascial fibromatosis [Dupuytren] > 0.5
return [[154. 17.]]

else: # if diagnosis_Carpal tunnel syndrome > 0.5
return [[317. 9.]]

else: # if diagnosis_Coxarthrosis, unspecified > 0.5
return [[ 108. 1030.]]

else: # if diagnosis_Gonarthrosis, unspecified > 0.5
return [[ 74. 1577.]]

else: # if hospital_Ysbyty Ystrad Fawr > 0.5
return [[1073. 156.]]

C.4 Deterministic Parameters
This section contains the deterministic parameters that are used within the pre-
scriptive models discussed in Chapter 5.

Parameter Deterministic Parameters

Bands (B) b = [band5, band6]

Specialties (S) s = [Accident and Emergency, Anaesthetics, Cardiology, Care of the Elderly, Community
Medicine, Dermatology, Diabetes and Endocrinology, Ear, Nose and Throat, Gastroen-
terology, General Medicine, General Surgery, GP Other, Gynaecology, Haematology, Infec-
tious Diseases, Intermediate Care, Maxillo-Facial, Neurology, Ophthalmology, Pain, Plastic
Surgery, Radiology, Radiotherapy and Oncology, Rehabilitation, Respiratory, Restorative
Dentistry, Rheumatology, Trauma and Orthopaedic, Urology]

Hospitals (H) h = [Royal Gwent Hospital, St Woolos Acute Hospital, St Woolos Community Hospital,
Ysbyty Ystrad Fawr, Rhymney Integrated Health and Social Care Centre, Ysbyty Aneurin
Bevan, County Hospital, Nevill Hall Hospital, Chepstow Community Hospital, Monnow Vale
Integrated Health and Social Care Centre, University Hospital of Wales, Offsite, Outsource,
Outsource - CareUK]

Regions (R) r = [Region1, Region2, Region3, Region4, Region5, Region6]

cstaff, 1st
b

[£338.88, £419.52]
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UBmax, bed, 1st
h

[588, 28, 75, 163, 12, 80, 73, 309, 26, 16, 90]

UBmax, staff, 1st
s [400,400]

cbed, 1st
s,h



345 0 0 0 0 0 0 0 149 0 0 0
526 0 0 0 0 0 0 0 1516 0 0 0
396 0 0 0 0 0 0 0 895 0 0 551
457 0 755 493 0 542 0 472 743 577 0 0
0 0 0 942 0 0 0 1100 0 1021 0 0

1672 216 1232 2404 0 0 0 0 0 0 0 0
296 0 0 1270 0 0 0 0 1497 0 0 0
481 0 0 501 0 0 0 0 0 0 0 0
448 402 0 639 0 0 0 0 959 0 0 832
390 0 0 94 0 65 0 0 611 0 0 0
472 0 0 304 0 0 0 0 539 541 0 849
0 0 0 0 172 0 0 0 0 325 443 360

1007 0 0 528 0 0 0 0 292 0 0 241
1299 1277 0 1218 0 0 0 0 1070 0 0 1176
711 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 39 0 197 0 0 0 0

2026 1940 0 0 0 0 0 0 264 0 0 0
1273 0 0 0 0 0 0 0 0 0 0 0
957 0 0 369 0 0 0 0 1416 0 0 174
124 0 0 111 0 0 0 134 143 0 0 0
0 0 0 0 0 0 0 0 1308 0 0 496

945 0 0 0 0 0 0 0 1097 0 0 0
633 0 0 0 0 0 0 0 0 0 0 1545
1973 1274 972 975 0 1021 0 1983 1987 1455 0 0
330 0 0 0 0 0 0 0 566 0 0 0
141 0 0 139 0 0 0 0 0 0 0 0
631 0 0 621 0 0 0 0 536 0 0 0
678 651 0 610 0 0 0 0 873 0 0 0
102 214 0 79 0 0 0 0 378 0 0 1122
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Rs,b



0.250 0.25
0.250 0.25
0.125 0.125
0.1 0.1
0.1 0.1
0.1 0.1

0.125 0.125
0.125 0.125
0.125 0.125
0.25 0.25
0.25 0.25
0.1 0.1

0.125 0.125
0.125 0.125
0.125 0.125
0.1 0.1

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125
0.1 0.1

0.125 0.125
0.125 0.125
0.125 0.125
0.25 0.25
0.125 0.125



Ks,h



588 0 0 0 0 0 0 309 0 0 0
588 0 0 0 0 0 0 309 0 0 0
588 0 0 0 0 0 0 309 0 0 80
588 0 75 163 0 80 73 309 26 0 0
588 0 0 163 0 0 73 0 26 0 0
0 28 75 163 0 0 0 0 0 0 0

588 0 0 163 0 0 0 309 0 0 0
588 0 0 163 0 0 0 0 0 0 0
588 28 0 163 0 0 0 309 0 0 80
588 0 0 163 0 80 0 309 0 0 0
588 0 0 163 0 0 0 309 26 0 80
0 0 0 0 10 0 0 0 26 16 80

588 0 0 163 0 0 0 309 0 0 80
588 28 0 163 0 0 0 309 0 0 80
588 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 80 73 0 0 0 0

588 28 0 0 0 0 0 309 0 0 0
588 0 0 0 0 0 0 0 0 0 0
588 0 0 163 0 0 0 309 0 0 80
588 0 0 163 0 0 73 309 0 0 0
0 0 0 0 0 0 0 309 0 0 80

588 0 0 0 0 0 0 0 0 0 0
588 0 0 0 0 0 0 309 0 0 80
588 28 75 163 0 80 73 309 26 0 0
588 0 0 0 0 0 0 309 0 0 0
588 0 0 163 0 0 0 0 0 0 0
588 0 0 163 0 0 0 309 0 0 0
588 28 0 163 0 0 0 309 0 0 0
588 28 0 163 0 0 0 309 0 0 80
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Table C.6: Data and parameters used within the deterministic model.

C.5 Two-Stage Stochastic Parameters

This section contains the two-stage stochastic parameters that are used within the
prescriptive models discussed in Chapter 5.
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Table C.7: Data and parameters used within two-stage stochastic model.

Parameter Two-Stage Stochastic Parameters

Bands (B) b = [band5, band6]

Specialties (S) s = [Accident and Emergency, Anaesthetics, Cardiology, Care of the Elderly, Community Medicine, Dermatology, Diabetes and
Endocrinology, Ear, Nose and Throat, Gastroenterology, General Medicine, General Surgery, GP Other, Gynaecology, Haematology,
Infectious Diseases, Intermediate Care, Maxillo-Facial, Neurology, Ophthalmology, Pain, Plastic Surgery, Radiology, Radiotherapy
and Oncology, Rehabilitation, Respiratory, Restorative Dentistry, Rheumatology, Trauma and Orthopaedic, Urology]

Hospitals (H) h = [Royal Gwent Hospital, St Woolos Acute Hospital, St Woolos Community Hospital, Ysbyty Ystrad Fawr, Rhymney Integrated
Health and Social Care Centre, Ysbyty Aneurin Bevan, County Hospital, Nevill Hall Hospital, Chepstow Community Hospital,
Monnow Vale Integrated Health and Social Care Centre, University Hospital of Wales, Offsite, Outsource, Outsource - CareUK]

Regions (R) r = [Region1, Region2, Region3, Region4, Region5, Region6]

Scenarios (S) s = [Scenario1, Scenario2, Scenario3, Scenario 4]

pk [0.33̇, 0.33̇, 0.33̇]

cstaff, 1st
b

[£338.88, £419.52]

cstaff, 2nd
b

[£454.80, £560.64]

UBmax, bed, 1st
h

[588, 28, 75, 163, 12, 80, 73, 309, 26, 16, 20, 20, 20, 20]

UBmax, bed, 2nd
h

[177, 9, 28, 49, 4, 24, 22, 93, 8, 5, 6, 6, 6, 6]

UBmax, staff, 1st
s [400,400]

UBmax, staff, 2nd
s [200,200]
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cbed, 1st
s,h



345 0 0 0 0 0 0 0 149 0 0 0
526 0 0 0 0 0 0 0 1516 0 0 0
396 0 0 0 0 0 0 0 895 0 0 551
457 0 755 493 0 542 0 472 743 577 0 0
0 0 0 942 0 0 0 1100 0 1021 0 0

1672 216 1232 2404 0 0 0 0 0 0 0 0
296 0 0 1270 0 0 0 0 1497 0 0 0
481 0 0 501 0 0 0 0 0 0 0 0
448 402 0 639 0 0 0 0 882 0 0 823
390 0 0 94 0 65 0 0 611 0 0 0
472 0 0 304 0 0 0 0 539 541 0 849
0 0 0 0 172 0 0 0 0 325 443 360

1007 0 0 528 0 0 0 0 292 0 0 241
1299 1277 0 1218 0 0 0 0 1070 0 0 1176
711 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 39 0 197 0 0 0 0

2026 1940 0 0 0 0 0 0 264 0 0 0
1273 0 0 0 0 0 0 0 0 0 0 0
957 0 0 369 0 0 0 0 1416 0 0 174
124 0 0 111 0 0 0 134 143 0 0 0
0 0 0 0 0 0 0 0 1308 0 0 496

945 0 0 0 0 0 0 0 1097 0 0 0
633 0 0 0 0 0 0 0 0 0 0 1545
1973 1274 972 975 0 1021 0 1983 1987 1455 0 0
330 0 0 0 0 0 0 0 566 0 0 0
141 0 0 139 0 0 0 0 0 0 0 0
631 0 0 621 0 0 0 0 536 0 0 0
678 651 0 610 0 0 0 0 873 0 0 0
102 214 0 79 0 0 0 0 378 0 0 1122
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cbed, 2nd
s,h



414 0 0 0 0 0 0 0 178.80 0 0 0
631.20 0 0 0 0 0 0 0 1819.20 0 0 0
475.20 0 0 0 0 0 0 0 1074 0 0 661.20
548.40 0 906 591.60 0 650.40 0 566.40 891.60 692.40 0 0

0 0 0 1130.40 0 0 0 1320 0 1225.20 0 0
2006.40 259.20 1478.40 2884.80 0 0 0 0 0 0 0 0
355.20 0 0 1524 0 0 0 0 1796.40 0 0 0
577.20 0 0 601.20 0 0 0 0 0 0 0 0
537.60 482.40 0 766.80 0 0 0 0 1150.80 0 0 998.40

468 0 0 112.80 0 78 0 0 733.20 0 0 0
566.40 0 0 364.80 0 0 0 0 646.80 649.20 0 1018.80

0 0 0 0 206.40 0 0 0 0 390 531.60 432
1208.40 0 0 633.60 0 0 0 0 350.4 0 0 289.20
1558.80 1532.40 0 1461.60 0 0 0 0 1284 0 0 1411.20
853.20 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 46.80 0 236.40 0 0 0 0
2431.20 2328 0 0 0 0 0 0 316.80 0 0 0
1527.60 0 0 0 0 0 0 0 0 0 0 0
1148.40 0 0 442.80 0 0 0 0 1699.20 0 0 208.80
148.80 0 0 133.20 0 0 0 160.80 171.60 0 0 0

0 0 0 00 0 0 0 1569.60 0 0 595.20
1134 0 00 0 0 0 0 1316.40 0 0 0

759.60 0 00 0 0 0 0 0 0 0 1854
2367.60 1528.80 1166.40 1170 0 1225.20 0 2379.60 2384.40 1746 0 0

396 0 00 0 0 0 0 679.20 0 0 0
169.20 00 166.80 0 0 0 0 0 0 0 0
757.20 00 745.20 0 0 0 0 643.20 0 0 0
813.60 781.20 0 7320 0 0 0 1047.60 0 0 0
122.40 256.80 0 94.80 0 0 0 0 453.60 0 0 1346.40
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Rs,b



0.250 0.25
0.250 0.25
0.125 0.125
0.1 0.1
0.1 0.1
0.1 0.1

0.125 0.125
0.125 0.125
0.125 0.125
0.25 0.25
0.25 0.25
0.1 0.1

0.125 0.125
0.125 0.125
0.125 0.125
0.1 0.1

0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125
0.125 0.125
0.1 0.1

0.125 0.125
0.125 0.125
0.125 0.125
0.25 0.25
0.125 0.125
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Ks,h



588 0 0 0 0 0 0 309 0 0 0
588 0 0 0 0 0 0 309 0 0 0
588 0 0 0 0 0 0 309 0 0 80
588 0 75 163 0 80 73 309 26 0 0
588 0 0 163 0 0 73 0 26 0 0
0 28 75 163 0 0 0 0 0 0 0

588 0 0 163 0 0 0 309 0 0 0
588 0 0 163 0 0 0 0 0 0 0
588 28 0 163 0 0 0 309 0 0 80
588 0 0 163 0 80 0 309 0 0 0
588 0 0 163 0 0 0 309 26 0 80
0 0 0 0 10 0 0 0 26 16 80

588 0 0 163 0 0 0 309 0 0 80
588 28 0 163 0 0 0 309 0 0 80
588 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 80 73 0 0 0 0

588 28 0 0 0 0 0 309 0 0 0
588 0 0 0 0 0 0 0 0 0 0
588 0 0 163 0 0 0 309 0 0 80
588 0 0 163 0 0 73 309 0 0 0
0 0 0 0 0 0 0 309 0 0 80

588 0 0 0 0 0 0 0 0 0 0
588 0 0 0 0 0 0 309 0 0 80
588 28 75 163 0 80 73 309 26 0 0
588 0 0 0 0 0 0 309 0 0 0
588 0 0 163 0 0 0 0 0 0 0
588 0 0 163 0 0 0 309 0 0 0
588 28 0 163 0 0 0 309 0 0 0
588 28 0 163 0 0 0 309 0 0 80
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Appendix D

Linking Predictive and
Prescriptive Paradigms Further
Material

This section provides additional information and visual aids to supplement the anal-
ysis presented in the Section 6.2. Specifically, this appendix includes demand tables
and heatmaps that provide a more detailed breakdown of the data used in the
analysis and its results.

The demand tables are presented in a tabular format and provide detailed informa-
tion on the level of demand for each specialty and region. These tables are generated
using the CART model result end nodes. The heatmaps provide a visual represen-
tation of the data used in the analysis. Heatmaps are a graphical representation of
data that use colour-coding to indicate the intensity of a particular variable. In the
case of the heatmaps included in this appendix, the intensity of the colour represents
the number of beds to be deployed to each hospital and specialty. The heatmaps
are presented in a visual format that allows for quick and easy interpretation of the
data.

D.1 Regression Trees - Average LOS
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Figure D.1: Heatmap of bed locations for each specialty within each hospital for
the deterministic model using the regression tree and average LOS over three years’
worth of data.
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Figure D.2: Heatmap of bed locations for each specialty within each hospital for
the two-stage stochastic model using the regression tree and average LOS over three
years’ worth of data.
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Specialty Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Accident & Emergency 2.9774 0.0000 0.0000 0.0000 8.5806 0.0000
Anaesthetics 2.6186 0.0000 0.0000 0.0000 0.4500 0.0000
Cardiology 17.4979 0.0000 0.0000 0.0000 11.6617 0.0004
Care of the Elderly 88.9469 58.0161 0.9593 8.6464 43.2786 0.0000
Community Medicine 0.0000 7.0858 0.0000 0.3525 13.1956 0.0000
Dermatology 2.9698 1.0093 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 12.6673 21.6499 0.0000 0.0000 16.3229 0.0000
Ear Nose & Throat 4.2248 0.0051 0.0000 0.0000 0.0000 0.0000
Gastroenterology 11.7004 1.9326 0.0000 0.0000 19.8421 0.1022
General Medicine 87.7316 0.9656 0.0217 0.0000 16.1179 0.0000
General Surgery 40.9970 0.8121 0.0000 0.0000 20.7664 0.0011
GP Other 0.0000 7.9065 0.0000 0.0000 13.9381 0.0000
Gynaecology 1.6257 0.1061 0.0000 0.0000 0.8319 0.0004
Haematology 3.9436 0.0651 0.0000 0.0000 1.7608 0.0004
Infectious Diseases 5.4554 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.2191 0.2345 0.0000 0.0000
Maxillo-Facial 1.2359 0.0000 0.0000 0.0000 0.0926 0.0000
Neurology 2.4671 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 4.0402 0.0123 0.0000 0.0000 0.4399 0.7538
Pain 0.1110 0.0110 0.0000 0.0151 0.0452 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0483 0.0004
Radiology 0.0233 0.0000 0.0000 0.0000 0.0109 0.0000
Radiotherapy and Oncology 0.0048 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 61.4494 23.7536 67.9427 32.8620 24.2661 0.0000
Respiratory 26.5202 0.0000 0.0000 0.0000 28.8608 0.0000
Restorative Dentistry 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0004 0.0491 0.0000 0.0000 0.0072 0.0000
Trauma & Orthopaedic 57.7847 0.3512 0.0000 0.0000 39.6777 0.0000
Urology 15.2014 0.1453 0.0000 0.0000 0.5106 0.0202

Table D.1: The daily bed demands for each specialty grouped by regions within
ABUHB for three years’ worth of patient admissions, using the regression tree and
average LOS.
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Figure D.3: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
average LOS for 2017-2018.
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Figure D.4: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
average LOS for 2017-2018.
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Figure D.5: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
average LOS for 2018-2019.
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Figure D.6: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
average LOS for 2018-2019.
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Figure D.7: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
average LOS for 2019-2020.
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Figure D.8: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
average LOS for 2019-2020.
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Specialty Region 1 Region 2 Region 3

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 3.2770 3.3545 2.2635 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Anaesthetics 2.8343 2.3643 2.6502 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Cardiology 17.0891 16.0723 19.2765 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Care of the Elderly 77.4710 87.2786 111.2406 55.8412 58.6116 58.0388 0.0000 0.2651 2.3439
Community Medicine 0.0000 0.0000 0.0000 6.6472 6.8756 7.8004 0.0000 0.0000 0.0000
Dermatology 3.1669 3.0209 2.8880 0.8694 1.2436 0.9720 0.0000 0.0000 0.0000
Diabetes and Endocrinology 14.1400 10.1330 13.5358 25.2148 20.3217 19.6372 0.0000 0.0000 0.0000
Ear Nose & Throat 4.6569 4.1676 3.8168 0.0104 0.0034 0.0022 0.0000 0.0000 0.0000
Gastroenterology 11.7496 9.1171 14.1127 2.0305 1.8778 1.9677 0.0000 0.0000 0.0000
General Medicine 104.7935 98.2893 59.7662 0.3669 0.8641 1.6425 0.0000 0.0000 0.0577
General Surgery 41.4285 41.4115 39.3531 0.5347 0.7045 1.2181 0.0000 0.0000 0.0000
GP Other 0.0000 0.0000 0.0000 8.0565 8.3022 7.5475 0.0000 0.0000 0.0000
Gynaecology 1.6483 1.3811 1.8413 0.1985 0.0748 0.0530 0.0000 0.0000 0.0000
Haematology 4.3233 3.3572 4.2947 0.0000 0.0000 0.1845 0.0000 0.0000 0.0000
Infectious Diseases 6.3557 5.0486 4.9143 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0267 0.6029
Maxillo-Facial 1.3805 1.3863 0.9831 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Neurology 2.9267 2.2129 2.2365 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 4.0896 4.1329 4.0669 0.0000 0.0000 0.0360 0.0000 0.0000 0.0000
Pain 0.1175 0.1290 0.0938 0.0000 0.0235 0.0099 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiology 0.0069 0.0311 0.0313 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0083 0.0053 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 64.8212 60.5454 60.3122 34.5884 34.4483 29.0229 69.0037 64.8684 72.0949
Respiratory 28.3691 26.0232 24.8722 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Restorative Dentistry 0.0012 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0011 0.0000 0.1473 0.0000 0.0000 0.0000 0.0000
Trauma and Orthopaedic 57.1085 59.2144 57.0404 0.3574 0.4668 0.2350 0.0000 0.0000 0.0000
Urology 14.0047 15.9501 15.2457 0.1520 0.1991 0.0735 0.0000 0.0000 0.0000

Table D.2: The daily bed demands for each specialty for regions one, two and three within ABUHB for three individual years’ worth of
patient admissions, using the regression tree and average LOS.
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Specialty Region 4 Region 5 Region 6

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 0.0000 0.0000 0.0000 7.6197 8.9913 8.8694 0.0000 0.0000 0.0000
Anaesthetics 0.0000 0.0000 0.0000 0.3226 0.3526 0.7021 0.0000 0.0000 0.0000
Cardiology 0.0000 0.0000 0.0000 14.1081 11.6193 9.3513 0.0000 0.0000 0.0011
Care of the Elderly 12.4192 6.5233 7.4180 50.9444 42.2170 40.9048 0.0000 0.0000 0.0000
Community Medicine 0.4653 0.1991 0.4240 15.5867 14.5410 9.9916 0.0000 0.0000 0.0000
Dermatology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 0.0000 0.0000 0.0000 16.6930 17.3699 14.6714 0.0000 0.0000 0.0000
Ear Nose & Throat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gastroenterology 0.0000 0.0000 0.0000 18.6975 21.2773 19.2673 0.3178 0.0000 0.0022
General Medicine 0.0000 0.0000 0.0000 14.0661 13.7832 20.0969 0.0000 0.0000 0.0000
General Surgery 0.0000 0.0000 0.0000 20.4384 21.0748 20.5769 0.0012 0.0011 0.0011
GP Other 0.0000 0.0000 0.0000 15.5313 12.5077 14.4248 0.0000 0.0000 0.0000
Gynaecology 0.0000 0.0000 0.0000 0.9696 0.8862 0.6536 0.0000 0.0000 0.0011
Haematology 0.0000 0.0000 0.0000 1.8745 1.7164 1.5286 0.0012 0.0000 0.0000
Infectious Diseases 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.3300 0.3561 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maxillo-Facial 0.0000 0.0000 0.0000 0.1129 0.0761 0.0971 0.0000 0.0000 0.0000
Neurology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Opthamology 0.0000 0.0000 0.0000 0.4120 0.4688 0.4645 0.0000 0.9782 1.2986
Pain 0.0173 0.0112 0.0177 0.0541 0.0449 0.0397 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0548 0.0471 0.0463 0.0000 0.0000 0.0011
Radiology 0.0000 0.0000 0.0000 0.0099 0.0011 0.0223 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 29.8605 35.5390 33.8379 18.3697 25.2679 28.8564 0.0000 0.0000 0.0000
Respiratory 0.0000 0.0000 0.0000 32.6054 28.9470 24.7762 0.0000 0.0000 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0214 0.0000 0.0000 0.0000 0.0000
Trauma and Orthopedic 0.0000 0.0000 0.0000 37.1555 40.9789 40.7325 0.0000 0.0000 0.0000
Urology 0.0000 0.0000 0.0000 0.5282 0.5165 0.4400 0.0219 0.0181 0.0184

Table D.3: The daily bed demands for each specialty for regions four, five and six within ABUHB for three individual years’ worth of patient
admissions, using the regression tree and average LOS.
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Figure D.9: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
average year LOS for 2017-2018.
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Figure D.10: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
average year LOS for 2017-2018.
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Figure D.11: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
average year LOS for 2018-2019.
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Figure D.12: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
average year LOS for 2018-2019.
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Figure D.13: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
average year LOS for 2019-2020.
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Figure D.14: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
average year LOS for 2019-2020.
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Specialty Region 1 Region 2 Region 3

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 3.2862 3.1969 2.4505 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Anaesthetics 2.7907 2.3695 2.6954 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Cardiology 16.9908 15.9287 19.5686 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Care of the Elderly 86.2987 101.7951 124.1676 56.7726 59.3095 57.9663 0.0000 0.2609 2.6423
Community Medicine 0.0000 0.0000 0.0000 6.2182 7.2636 7.7736 0.0000 0.0000 0.0000
Dermatology 2.9946 3.0185 2.8964 0.8336 1.2245 0.9701 0.0000 0.0000 0.0000
Diabetes and Endocrinology 13.8852 10.2042 13.9090 23.7736 20.7721 20.4075 0.0000 0.0000 0.0000
Ear Nose & Throat 4.5786 4.1889 3.9077 0.0099 0.0033 0.0022 0.0000 0.0000 0.0000
Gastroenterology 11.5280 9.1310 14.4347 1.9533 1.8463 1.9979 0.0000 0.0000 0.0000
General Medicine 102.9001 99.0452 61.3219 0.3693 0.8681 1.6574 0.0000 0.0000 0.0650
General Surgery 40.7516 42.1739 40.0680 0.5145 0.6929 1.2279 0.0000 0.0000 0.0000
GP Other 0.0000 0.0000 0.0000 7.3663 8.8037 7.5505 0.0000 0.0000 0.0000
Gynaecology 1.6100 1.3820 1.8843 0.1921 0.0735 0.0529 0.0000 0.0000 0.0000
Haematology 4.1320 3.3443 4.3536 0.0000 0.0000 0.1950 0.0000 0.0000 0.0000
Infectious Diseases 6.2340 5.0822 5.0511 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0269 0.6293
Maxillo-Facial 1.3366 1.3814 0.9905 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Neurology 2.8786 2.2274 2.2958 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 3.9421 4.0835 4.0948 0.0000 0.0000 0.0367 0.0000 0.0000 0.0000
Pain 0.1126 0.1268 0.0936 0.0000 0.0232 0.0099 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiology 0.0066 0.0313 0.0318 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0061 0.0049 0.0033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 64.1492 56.7391 63.4545 24.5786 25.2688 21.4197 58.7946 63.8572 81.1403
Respiratory 27.8692 26.1755 25.5186 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Restorative Dentistry 0.0011 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0011 0.0000 0.1473 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 54.3186 62.5405 56.4987 0.3162 0.4968 0.2410 0.0000 0.0000 0.0000
Urology 13.6899 15.8597 16.0522 0.1457 0.1941 0.0963 0.0000 0.0000 0.0000

Table D.4: The daily bed demands for each specialty for regions one, two and three within ABUHB for three individual years’ worth of
patient admissions, using the regression tree and the year specific average LOS.
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Specialty Region 4 Region 5 Region 6

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 0.0000 0.0000 0.0000 7.6680 8.6804 9.9681 0.0000 0.0000 0.0000
Anaesthetics 0.0000 0.0000 0.0000 0.4638 0.4268 0.9722 0.0000 0.0000 0.0000
Cardiology 0.0000 0.0000 0.0000 16.1539 14.2806 11.1400 0.0000 0.0000 0.0011
Care of the Elderly 12.5281 6.5938 6.8223 52.3094 45.1508 41.2107 0.0000 0.0000 0.0000
Community Medicine 0.4234 0.2117 0.4222 14.1831 15.4549 9.9576 0.0000 0.0000 0.0000
Dermatology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 0.0000 0.0000 0.0000 16.6698 17.8823 15.3511 0.0000 0.0000 0.0000
Ear Nose & Throat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gastroenterology 0.0000 0.0000 0.0000 18.7998 21.9374 19.9778 0.3047 0.0000 0.0022
General Medicine 0.0000 0.0000 0.0000 13.9936 14.0130 20.9445 0.0000 0.0000 0.0000
General Surgery 0.0000 0.0000 0.0000 20.4583 21.6905 21.4020 0.0011 0.0011 0.0011
GP Other 0.0000 0.0000 0.0000 14.1544 13.2848 14.3738 0.0000 0.0000 0.0000
Gynaecology 0.0000 0.0000 0.0000 0.9738 0.9246 0.6943 0.0000 0.0000 0.0011
Haematology 0.0000 0.0000 0.0000 1.8249 1.7582 2.0842 0.0011 0.0000 0.0000
Infectious Diseases 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.3333 0.3699 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maxillo-Facial 0.0000 0.0000 0.0000 0.1061 0.0747 0.0969 0.0000 0.0000 0.0000
Neurology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 0.0000 0.0000 0.0000 0.3948 0.4613 0.4636 0.0000 0.9640 1.2960
Pain 0.0166 0.0110 0.0176 0.0519 0.0442 0.0396 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0521 0.0464 0.0462 0.0000 0.0000 0.0011
Radiology 0.0000 0.0000 0.0000 0.0091 0.0011 0.0225 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 29.5478 33.4318 35.5989 10.7206 16.2437 23.0764 0.0000 0.0000 0.0000
Respiratory 0.0000 0.0000 0.0000 32.7445 29.8673 25.8748 0.0000 0.0000 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0215 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 0.0000 0.0000 0.0000 36.3659 44.0053 41.3888 0.0000 0.0000 0.0000
Urology 0.0000 0.0000 0.0000 0.5179 0.4967 0.5494 0.0210 0.0169 0.0226

Table D.5: The daily bed demands for each specialty for regions four, five and six within ABUHB for three individual years’ worth of patient
admissions, using the regression tree and the year specific average LOS.
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D.2 Regression Trees - Specific LOS

Specialty Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Accident & Emergency 2.1168 0.0000 0.0000 0.0000 9.1761 0.0000
Anaesthetics 4.5894 0.0000 0.0000 0.0000 0.7719 0.0000
Cardiology 15.5265 0.0000 0.0000 0.0000 9.7901 0.0000
Care of the Elderly 93.9772 57.7354 0.7573 8.7856 46.4398 0.0000
Community Medicine 0.0000 7.0073 0.0000 0.3139 13.0137 0.0000
Dermatology & Endocrinology 2.2591 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes 14.4489 21.2409 0.0000 0.0000 17.2290 0.0000
Ear, Nose & Throat 3.1104 0.0009 0.0000 0.0000 0.0000 0.0000
Gastroenterology 12.3120 0.0985 0.0000 0.0000 19.7765 0.0009
General Medicine 84.4854 0.9818 0.0119 0.0000 14.1013 0.0000
General Surgery 45.5192 0.2318 0.0000 0.0000 21.3011 0.0000
GP Other 0.0000 9.8723 0.0000 0.0000 15.3102 0.0000
Gynaecology 2.0046 0.0721 0.0000 0.0000 1.0766 0.0000
Haematology 2.7792 0.0265 0.0000 0.0000 1.1332 0.0000
Infectious Diseases 7.1195 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.3449 0.3239 0.0000 0.0000
Maxillo-Facial 1.0547 0.0000 0.0000 0.0000 0.0027 0.0000
Neurology 1.5620 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 1.3704 0.0027 0.0000 0.0000 0.0009 0.0036
Pain 0.0018 0.0000 0.0000 0.0018 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0137 0.0000
Radiology 0.0100 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.2245 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 63.0173 33.0922 69.4863 32.1077 24.5538 0.0000
Respiratory Dentistry 29.4717 0.0000 0.0000 0.0000 27.7290 0.0000
Restorative 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0128 0.0000
Trauma 59.1807 0.2956 0.0000 0.0000 40.6989 0.0000
Urology 11.3257 0.0036 0.0000 0.0000 0.0255 0.0401

Table D.6: The daily bed demands for each specialty grouped by regions within
ABUHB for three years’ worth of patient admissions, using the regression tree and
specific LOS.
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Figure D.15: Heatmap of bed locations for each specialty within each hospital for
the deterministic model using the regression tree and specific LOS over three years’
worth of data.
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Figure D.16: Heatmap of bed locations for each specialty within each hospital for
the two-stage stochastic model using the regression tree and specific LOS over three
years’ worth of data.
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Specialty Region 1 Region 2 Region 3

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 2.2932 2.2000 1.8579 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Anaesthetics 4.4932 4.4712 4.8033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Cardiology 16.7918 14.0630 15.7240 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Care of the Elderly 76.4575 88.0658 117.3443 55.8247 58.4877 58.8907 0.0000 0.4000 1.8689
Community Medicine 0.0000 0.0000 0.0000 7.1671 6.1014 7.7514 0.0000 0.0000 0.0000
Dermatology 2.6877 1.9918 2.0984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 16.5863 11.4356 15.3224 24.7041 19.8055 19.2186 0.0000 0.0000 0.0000
Ear Nose & Throat 2.9616 3.6192 2.7514 0.0027 0.0000 0.0000 0.0000 0.0000 0.0000
Gastroenterology 11.4438 9.8219 15.6612 0.1260 0.0219 0.1475 0.0000 0.0000 0.0000
General Medicine 105.6712 96.0603 51.8142 0.2877 1.1479 1.5082 0.0000 0.0000 0.0355
General Surgery 47.9068 45.3479 43.3087 0.2000 0.2301 0.2650 0.0000 0.0000 0.0000
GP Other 0.0000 0.0000 0.0000 9.6795 10.1151 9.8224 0.0000 0.0000 0.0000
Gynaecology 2.4301 1.7233 1.8607 0.0795 0.0740 0.0628 0.0000 0.0000 0.0000
Haematology 3.1096 2.4384 2.7896 0.0000 0.0000 0.0792 0.0000 0.0000 0.0000
Infectious Diseases 8.0767 6.3918 6.8907 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0082 1.0246
Maxillo-Facial 1.1068 0.9178 1.1393 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Neurology 1.4301 1.5534 1.7022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 1.4712 1.2685 1.3716 0.0000 0.0000 0.0082 0.0000 0.0000 0.0000
Pain 0.0000 0.0000 0.0055 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiology 0.0055 0.0164 0.0082 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0000 0.0000 0.6721 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 64.7671 63.1151 61.1749 34.9123 34.8384 29.5355 69.9671 65.3863 73.0956
Respiratory 29.8658 30.4137 28.1393 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 56.0082 60.6164 60.9126 0.3808 0.2712 0.2350 0.0000 0.0000 0.0000
Urology 10.3671 12.5726 11.0383 0.0027 0.0055 0.0027 0.0000 0.0000 0.0000

Table D.7: The daily bed demands for each specialty for regions one, two and three within ABUHB for three individual years’ worth of
patient admissions, using the regression tree and the year specific LOS.
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Specialty Region 4 Region 5 Region 6

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 0.0000 0.0000 0.0000 8.5452 10.0630 8.9208 0.0000 0.0000 0.0000
Anaesthetics 0.0000 0.0000 0.0000 0.4247 0.7753 1.1148 0.0000 0.0000 0.0000
Cardiology 0.0000 0.0000 0.0000 10.6603 10.2137 8.5000 0.0000 0.0000 0.0000
Care of the Elderly 12.4192 6.5233 7.4180 53.7178 44.1726 41.4426 0.0000 0.0000 0.0000
Community Medicine 0.3671 0.1397 0.4344 16.7151 14.0466 8.2923 0.0000 0.0000 0.0000
Dermatology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 0.0000 0.0000 0.0000 17.8575 18.4000 15.4344 0.0000 0.0000 0.0000
Ear Nose & Throat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gastroenterology 0.0000 0.0000 0.0000 18.0164 21.3781 19.9344 0.0000 0.0000 0.0027
General Medicine 0.0000 0.0000 0.0000 11.9644 11.7342 18.5929 0.0000 0.0000 0.0000
General Surgery 0.0000 0.0000 0.0000 21.1041 22.6219 20.1803 0.0000 0.0000 0.0000
GP Other 0.0000 0.0000 0.0000 14.7781 13.8740 17.2732 0.0000 0.0000 0.0000
Gynaecology 0.0000 0.0000 0.0000 1.1753 1.4438 0.6120 0.0000 0.0000 0.0000
Haematology 0.0000 0.0000 0.0000 1.2932 1.0438 1.0628 0.0000 0.0000 0.0000
Infectious Diseases 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.6000 0.3716 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maxillo-Facial 0.0000 0.0000 0.0000 0.0000 0.0000 0.0082 0.0000 0.0000 0.0000
Neurology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0027 0.0000 0.0055 0.0055
Pain 0.0055 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0000 0.0410 0.0000 0.0000 0.0000
Radiology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 29.6877 33.0521 33.5792 18.3918 25.3288 29.9262 0.0000 0.0000 0.0000
Respiratory 0.0000 0.0000 0.0000 30.6411 29.4301 23.1284 0.0000 0.0000 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0384 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 0.0000 0.0000 0.0000 41.8192 40.3178 39.9617 0.0000 0.0000 0.0000
Urology 0.0000 0.0000 0.0000 0.0110 0.0192 0.0464 0.0384 0.0384 0.0437

Table D.8: The daily bed demands for each specialty for regions four, five and six within ABUHB for three individual years’ worth of patient
admissions, using the regression tree and the year specific LOS.
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Figure D.17: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
specific LOS for 2017-2018.
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Figure D.18: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
specific LOS for 2017-2018.
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Figure D.19: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
specific LOS for 2018-2019.
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Figure D.20: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
specific LOS for 2018-2019.
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Figure D.21: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the regression tree and
specific LOS for 2019-2020.
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Figure D.22: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the regression tree and
specific LOS for 2019-2020.
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D.3 Classification Trees - Average LOS

Specialty Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Accident & Emergency 2.9437 0.0000 0.0000 0.0000 8.3492 0.0000
Anaesthetics 4.1522 0.0000 0.0000 0.0000 0.6332 0.0000
Cardiology 24.9347 0.0000 0.0000 0.0000 16.8229 0.0001

Care of the Elderly 119.0511 46.6365 0.5724 3.8356 58.7402 0.0000
Community Medicine 0.0000 3.1172 0.0000 0.1218 4.6880 0.0000

Dermatology 1.6374 0.3027 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 18.8983 17.7172 0.0000 0.0000 24.1221 0.0000

Ear Nose & Throat 6.9407 0.0178 0.0000 0.0000 0.0000 0.0000
Gastroenterology 15.9809 0.6828 0.0000 0.0000 27.8963 0.0307
General Medicine 83.8888 0.4873 0.0077 0.0000 15.2006 0.0000
General Surgery 64.0241 0.3538 0.0000 0.0000 33.8609 0.0025

GP Other 0.0000 3.3973 0.0000 0.0000 5.1629 0.0000
Gynaecology 2.8824 0.2171 0.0000 0.0000 1.4492 0.0008
Haematology 5.4136 0.0635 0.0000 0.0000 2.1941 0.0001

Infectious Diseases 8.1705 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.2922 0.3288 0.0000 0.0000

Maxillo-Facial 1.2233 0.0000 0.0000 0.0000 0.0288 0.0000
Neurology 3.6535 0.0000 0.0000 0.0000 0.0000 0.0000

Ophthalmology 2.4715 0.0122 0.0000 0.0000 0.1323 0.2449
Pain 0.0335 0.0033 0.0000 0.0045 0.0136 0.0000

Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0146 0.0001
Radiology 0.0262 0.0000 0.0000 0.0000 0.0135 0.0000

Radiotherapy and Oncology 0.0026 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 26.2528 13.1021 38.7217 14.1127 10.8981 0.0000
Respiratory 39.6264 0.0000 0.0000 0.0000 42.5619 0.0000

Restorative Dentistry 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0001 0.0487 0.0000 0.0000 0.0122 0.0000

Trauma & Orthopaedic 64.6427 0.2885 0.0000 0.0000 44.6021 0.0000
Urology 22.2711 0.0411 0.0000 0.0000 0.1389 0.0043

Table D.9: The daily bed demands for each specialty grouped by regions within
ABUHB for three years’ worth of patient admissions, using the classification tree
and average LOS.
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Figure D.23: Heatmap of bed locations for each specialty within each hospital for
the deterministic model using the classification tree and average LOS over three
years’ worth of data.
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Figure D.24: Heatmap of bed locations for each specialty within each hospital for
the two-stage stochastic model using the classification tree and average LOS over
three years’ worth of data.
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Specialty Region 1 Region 2 Region 3

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 3.2363 3.1680 2.4283 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Anaesthetics 4.4607 3.7660 4.2297 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Cardiology 24.2501 22.6507 27.8952 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Care of the Elderly 99.2695 117.1490 140.6756 45.0459 48.8485 46.0167 0.0000 0.1463 1.5683
Community Medicine 0.0000 0.0000 0.0000 3.1079 2.9616 3.2817 0.0000 0.0000 0.0000
Dermatology 1.5668 1.8460 1.4996 0.2500 0.3673 0.2910 0.0000 0.0000 0.0000
Diabetes and Endocrinology 20.5858 15.1737 20.9300 19.0863 17.3310 16.7370 0.0000 0.0000 0.0000
Ear Nose & Throat 7.4638 6.8977 6.4620 0.0344 0.0115 0.0076 0.0000 0.0000 0.0000
Gastroenterology 15.5449 12.0964 20.2896 0.7179 0.6021 0.7282 0.0000 0.0000 0.0000
General Medicine 97.5751 94.9051 59.2536 0.2090 0.4413 0.8107 0.0000 0.0000 0.0232
General Surgery 63.3663 66.2451 62.4650 0.2488 0.3001 0.5120 0.0000 0.0000 0.0000
GP Other 0.0000 0.0000 0.0000 3.0713 3.5466 3.5734 0.0000 0.0000 0.0000
Gynaecology 3.0095 2.4954 3.1416 0.3757 0.1601 0.1158 0.0000 0.0000 0.0000
Haematology 5.7301 4.5135 5.9957 0.0000 0.0000 0.1902 0.0000 0.0000 0.0000
Infectious Diseases 9.3236 7.5686 7.6208 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0366 0.8387
Maxillo-Facial 1.3817 1.3665 0.9226 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Neurology 4.2779 3.2917 3.3918 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 2.4465 2.5135 2.4547 0.0000 0.0000 0.0365 0.0000 0.0000 0.0000
Pain 0.0338 0.0388 0.0281 0.0000 0.0070 0.0030 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiology 0.0020 0.0379 0.0388 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0042 0.0025 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 28.3000 24.9361 25.5243 13.5650 13.8940 11.8506 33.5651 36.2707 46.3084
Respiratory 42.2210 39.5059 38.5387 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Restorative Dentistry 0.0003 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0003 0.0000 0.1463 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 59.6046 71.7496 62.5797 0.2491 0.3731 0.2435 0.0000 0.0000 0.0000
Urology 20.1980 23.1760 23.4361 0.0136 0.0981 0.0116 0.0000 0.0000 0.0000

Table D.10: The daily bed demands for each specialty for regions one, two and three within ABUHB for three individual years’ worth of
patient admissions, using the classification tree and the node average LOS.
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Specialty Region 4 Region 5 Region 6

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 0.0000 0.0000 0.0000 7.6680 8.6804 9.9681 0.0000 0.0000 0.0000
Anaesthetics 0.0000 0.0000 0.0000 0.4638 0.4268 0.9722 0.0000 0.0000 0.0000
Cardiology 0.0000 0.0000 0.0000 16.1539 14.2806 11.1400 0.0000 0.0000 0.0011
Care of the Elderly 12.5281 6.5938 6.8223 52.3094 45.1508 41.2107 0.0000 0.0000 0.0000
Community Medicine 0.4234 0.2117 0.4222 14.1831 15.4549 9.9576 0.0000 0.0000 0.0000
Dermatology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 0.0000 0.0000 0.0000 16.6698 17.8823 15.3511 0.0000 0.0000 0.0000
Ear Nose & Throat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gastroenterology 0.0000 0.0000 0.0000 18.7998 21.9374 19.9778 0.3047 0.0000 0.0022
General Medicine 0.0000 0.0000 0.0000 13.9936 14.0130 20.9445 0.0000 0.0000 0.0000
General Surgery 0.0000 0.0000 0.0000 20.4583 21.6905 21.4020 0.0011 0.0011 0.0011
GP Other 0.0000 0.0000 0.0000 14.1544 13.2848 14.3738 0.0000 0.0000 0.0000
Gynaecology 0.0000 0.0000 0.0000 0.9738 0.9246 0.6943 0.0000 0.0000 0.0011
Haematology 0.0000 0.0000 0.0000 1.8249 1.7582 2.0842 0.0011 0.0000 0.0000
Infectious Diseases 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.3333 0.3699 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maxillo-Facial 0.0000 0.0000 0.0000 0.1061 0.0747 0.0969 0.0000 0.0000 0.0000
Neurology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 0.0000 0.0000 0.0000 0.3948 0.4613 0.4636 0.0000 0.9640 1.2960
Pain 0.0166 0.0110 0.0176 0.0519 0.0442 0.0396 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0521 0.0464 0.0462 0.0000 0.0000 0.0011
Radiology 0.0000 0.0000 0.0000 0.0091 0.0011 0.0225 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 29.5478 33.4318 35.5989 10.7206 16.2437 23.0764 0.0000 0.0000 0.0000
Respiratory 0.0000 0.0000 0.0000 32.7445 29.8673 25.8748 0.0000 0.0000 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0215 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 0.0000 0.0000 0.0000 36.3659 44.0053 41.3888 0.0000 0.0000 0.0000
Urology 0.0000 0.0000 0.0000 0.5179 0.4967 0.5494 0.0210 0.0169 0.0226

Table D.11: The daily bed demands for each specialty for regions four, five and six within ABUHB for three individual years’ worth of
patient admissions, using the classification tree and the node average LOS.
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Figure D.25: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
average LOS for 2017-2018.
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Figure D.26: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
average LOS for 2017-2018.
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Figure D.27: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
average LOS for 2018-2019.
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Figure D.28: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
average LOS for 2018-2019.
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Figure D.29: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
average LOS for 2019-2020.
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Figure D.30: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
average LOS for 2019-2020.
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Specialty Region 1 Region 2 Region 3

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 3.2546 3.3498 2.2753 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Anaesthetics 4.5748 3.6941 4.2057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Cardiology 24.8467 22.1565 27.8232 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Care of the Elderly 101.8083 114.9121 139.8770 46.1980 47.9158 45.7555 0.0000 0.1435 1.5595
Community Medicine 0.0000 0.0000 0.0000 3.1874 2.9051 3.2631 0.0000 0.0000 0.0000
Dermatology 1.5243 1.6713 1.7106 0.2269 0.2859 0.3767 0.0000 0.0000 0.0000
Diabetes and Endocrinology 21.1122 14.8840 20.8111 19.5744 17.0001 16.6421 0.0000 0.0000 0.0000
Ear Nose & Throat 7.8616 6.8260 6.1524 0.0430 0.0120 0.0054 0.0000 0.0000 0.0000
Gastroenterology 15.8905 11.7729 20.3049 0.6772 0.4819 0.8694 0.0000 0.0000 0.0000
General Medicine 103.9455 95.2600 53.5851 0.2227 0.4430 0.7331 0.0000 0.0000 0.0209
General Surgery 64.8113 65.3150 61.9319 0.3083 0.2920 0.4636 0.0000 0.0000 0.0000
GP Other 0.0000 0.0000 0.0000 3.1499 3.4789 3.5531 0.0000 0.0000 0.0000
Gynaecology 2.9168 2.5419 3.1850 0.3355 0.1718 0.1331 0.0000 0.0000 0.0000
Haematology 5.9642 4.4035 6.0321 0.0000 0.0000 0.1848 0.0000 0.0000 0.0000
Infectious Diseases 9.5621 7.4241 7.5776 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0359 0.8339
Maxillo-Facial 1.4029 1.3015 0.9645 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Neurology 4.3873 3.2286 3.3727 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 2.4090 2.2876 2.7137 0.0000 0.0000 0.0363 0.0000 0.0000 0.0000
Pain 0.0307 0.0305 0.0363 0.0000 0.0054 0.0038 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiology 0.0018 0.0369 0.0392 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0060 0.0024 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 29.0237 24.4600 25.3794 13.9119 13.6287 11.7833 34.4235 35.5782 46.0456
Respiratory 42.8309 38.2732 37.8883 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Restorative Dentistry 0.0003 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0004 0.0000 0.1435 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 61.4394 70.5687 61.4178 0.2786 0.3522 0.2350 0.0000 0.0000 0.0000
Urology 20.3556 23.2087 23.0969 0.0141 0.0950 0.0083 0.0000 0.0000 0.0000

Table D.12: The daily bed demands for each specialty for regions one, two and three within ABUHB for three individual years’ worth of
patient admissions, using the classification tree and the yearly average LOS.
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Specialty Region 4 Region 4 Region 6

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 0.0000 0.0000 0.0000 7.6680 8.6804 9.9681 0.0000 0.0000 0.0000
Anaesthetics 0.0000 0.0000 0.0000 0.4638 0.4268 0.9722 0.0000 0.0000 0.0000
Cardiology 0.0000 0.0000 0.0000 16.1539 14.2806 11.1400 0.0000 0.0000 0.0011
Care of the Elderly 12.5281 6.5938 6.8223 52.3094 45.1508 41.2107 0.0000 0.0000 0.0000
Community Medicine 0.4234 0.2117 0.4222 14.1831 15.4549 9.9576 0.0000 0.0000 0.0000
Dermatology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 0.0000 0.0000 0.0000 16.6698 17.8823 15.3511 0.0000 0.0000 0.0000
Ear Nose & Throat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gastroenterology 0.0000 0.0000 0.0000 18.7998 21.9374 19.9778 0.3047 0.0000 0.0022
General Medicine 0.0000 0.0000 0.0000 13.9936 14.0130 20.9445 0.0000 0.0000 0.0000
General Surgery 0.0000 0.0000 0.0000 20.4583 21.6905 21.4020 0.0011 0.0011 0.0011
GP Other 0.0000 0.0000 0.0000 14.1544 13.2848 14.3738 0.0000 0.0000 0.0000
Gynaecology 0.0000 0.0000 0.0000 0.9738 0.9246 0.6943 0.0000 0.0000 0.0011
Haematology 0.0000 0.0000 0.0000 1.8249 1.7582 2.0842 0.0011 0.0000 0.0000
Infectious Diseases 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.3333 0.3699 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maxillo-Facial 0.0000 0.0000 0.0000 0.1061 0.0747 0.0969 0.0000 0.0000 0.0000
Neurology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 0.0000 0.0000 0.0000 0.3948 0.4613 0.4636 0.0000 0.9640 1.2960
Pain 0.0166 0.0110 0.0176 0.0519 0.0442 0.0396 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0521 0.0464 0.0462 0.0000 0.0000 0.0011
Radiology 0.0000 0.0000 0.0000 0.0091 0.0011 0.0225 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 29.5478 33.4318 35.5989 10.7206 16.2437 23.0764 0.0000 0.0000 0.0000
Respiratory 0.0000 0.0000 0.0000 32.7445 29.8673 25.8748 0.0000 0.0000 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0215 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 0.0000 0.0000 0.0000 36.3659 44.0053 41.3888 0.0000 0.0000 0.0000
Urology 0.0000 0.0000 0.0000 0.5179 0.4967 0.5494 0.0210 0.0169 0.0226

Table D.13: The daily bed demands for each specialty for regions four, five and six within ABUHB for three individual years’ worth of
patient admissions, using the classification tree and the yearly average LOS.
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Figure D.31: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
average year LOS for 2017-2018.
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Figure D.32: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
average year LOS for 2017-2018.
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Figure D.33: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
average year LOS for 2018-2019.
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Figure D.34: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
average year LOS for 2018-2019.
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Figure D.35: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
average year LOS for 2019-2020.
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Figure D.36: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
average year LOS for 2019-2020.
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D.4 Classification Trees - Specific LOS

Specialty Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Accident & Emergency 2.1168 0.0000 0.0000 0.0000 9.1761 0.0000
Anaesthetics 4.5894 0.0000 0.0000 0.0000 0.7719 0.0000
Cardiology 15.5265 0.0000 0.0000 0.0000 9.7901 0.0000
Care of the Elderly 93.9772 57.7354 0.7573 8.7856 46.4398 0.0000
Community Medicine 0.0000 7.0073 0.0000 0.3139 13.0137 0.0000
Dermatology 2.2591 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 14.4489 21.2409 0.0000 0.0000 17.2290 0.0000
Ear Nose & Throat 3.1104 0.0009 0.0000 0.0000 0.0000 0.0000
Gastroenterology 12.3120 0.0985 0.0000 0.0000 19.7765 0.0009
General Medicine 84.4854 0.9818 0.0119 0.0000 14.1013 0.0000
General Surgery 45.5192 0.2318 0.0000 0.0000 21.3011 0.0000
GP Other 0.0000 9.8723 0.0000 0.0000 15.3102 0.0000
Gynaecology 2.0046 0.0721 0.0000 0.0000 1.0766 0.0000
Haematology 2.7792 0.0265 0.0000 0.0000 1.1332 0.0000
Infectious Diseases 7.1195 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.3449 0.3239 0.0000 0.0000
Maxillo-Facial 1.0547 0.0000 0.0000 0.0000 0.0027 0.0000
Neurology 1.5620 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 1.3704 0.0027 0.0000 0.0000 0.0009 0.0036
Pain 0.0018 0.0000 0.0000 0.0018 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0137 0.0000
Radiology 0.0100 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.2245 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 63.0173 33.0922 69.4863 32.1077 24.5538 0.0000
Respiratory 29.4717 0.0000 0.0000 0.0000 27.7290 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0128 0.0000
Trauma & Orthopaedic 59.1807 0.2956 0.0000 0.0000 40.6989 0.0000
Urology 11.3257 0.0036 0.0000 0.0000 0.0255 0.0401

Table D.14: The daily bed demands for each specialty grouped by regions within
ABUHB for three years’ worth of patient admissions, using the classification tree
and specific LOS.
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Figure D.37: Heatmap of bed locations for each specialty within each hospital for
the deterministic model using the classification tree and specific LOS over three
years’ worth of data.
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Figure D.38: Heatmap of bed locations for each specialty within each hospital for
the two-stage stochastic model using the classification tree and specific LOS over
three years’ worth of data.
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Specialty Region 1 Region 2 Region 3

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 2.2932 2.2000 1.8579 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Anaesthetics 4.4932 4.4712 4.8033 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Cardiology 16.7918 14.0630 15.7240 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Care of the Elderly 76.4575 88.0658 117.3443 55.8247 58.4877 58.8907 0.0000 0.4000 1.8689
Community Medicine 0.0000 0.0000 0.0000 7.1671 6.1014 7.7514 0.0000 0.0000 0.0000
Dermatology 2.6877 1.9918 2.0984 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 16.5863 11.4356 15.3224 24.7041 19.8055 19.2186 0.0000 0.0000 0.0000
Ear Nose & Throat 2.9616 3.6192 2.7514 0.0027 0.0000 0.0000 0.0000 0.0000 0.0000
Gastroenterology 11.4438 9.8219 15.6612 0.1260 0.0219 0.1475 0.0000 0.0000 0.0000
General Medicine 105.6712 96.0603 51.8142 0.2877 1.1479 1.5082 0.0000 0.0000 0.0355
General Surgery 47.9068 45.3479 43.3087 0.2000 0.2301 0.2650 0.0000 0.0000 0.0000
GP Other 0.0000 0.0000 0.0000 9.6795 10.1151 9.8224 0.0000 0.0000 0.0000
Gynaecology 2.4301 1.7233 1.8607 0.0795 0.0740 0.0628 0.0000 0.0000 0.0000
Haematology 3.1096 2.4384 2.7896 0.0000 0.0000 0.0792 0.0000 0.0000 0.0000
Infectious Diseases 8.0767 6.3918 6.8907 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0082 1.0246
Maxillo-Facial 1.1068 0.9178 1.1393 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Neurology 1.4301 1.5534 1.7022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 1.4712 1.2685 1.3716 0.0000 0.0000 0.0082 0.0000 0.0000 0.0000
Pain 0.0000 0.0000 0.0055 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiology 0.0055 0.0164 0.0082 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0000 0.0000 0.6721 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 64.7671 63.1151 61.1749 34.9123 34.8384 29.5355 69.9671 65.3863 73.0956
Respiratory 29.8658 30.4137 28.1393 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 56.0082 60.6164 60.9126 0.3808 0.2712 0.2350 0.0000 0.0000 0.0000
Urology 10.3671 12.5726 11.0383 0.0027 0.0055 0.0027 0.0000 0.0000 0.0000

Table D.15: The daily bed demands for each specialty for regions one, two and three within ABUHB for three individual years’ worth of
patient admissions, using the classification tree and the yearly specific LOS.
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Specialty Region 4 Region 5 Region 6

2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020 2017-2018 2018-2019 2019-2020

Accident & Emergency 0.0000 0.0000 0.0000 7.6680 8.6804 9.9681 0.0000 0.0000 0.0000
Anaesthetics 0.0000 0.0000 0.0000 0.4638 0.4268 0.9722 0.0000 0.0000 0.0000
Cardiology 0.0000 0.0000 0.0000 16.1539 14.2806 11.1400 0.0000 0.0000 0.0011
Care of the Elderly 12.5281 6.5938 6.8223 52.3094 45.1508 41.2107 0.0000 0.0000 0.0000
Community Medicine 0.4234 0.2117 0.4222 14.1831 15.4549 9.9576 0.0000 0.0000 0.0000
Dermatology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Diabetes and Endocrinology 0.0000 0.0000 0.0000 16.6698 17.8823 15.3511 0.0000 0.0000 0.0000
Ear Nose & Throat 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gastroenterology 0.0000 0.0000 0.0000 18.7998 21.9374 19.9778 0.3047 0.0000 0.0022
General Medicine 0.0000 0.0000 0.0000 13.9936 14.0130 20.9445 0.0000 0.0000 0.0000
General Surgery 0.0000 0.0000 0.0000 20.4583 21.6905 21.4020 0.0011 0.0011 0.0011
GP Other 0.0000 0.0000 0.0000 14.1544 13.2848 14.3738 0.0000 0.0000 0.0000
Gynaecology 0.0000 0.0000 0.0000 0.9738 0.9246 0.6943 0.0000 0.0000 0.0011
Haematology 0.0000 0.0000 0.0000 1.8249 1.7582 2.0842 0.0011 0.0000 0.0000
Infectious Diseases 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Intermediate Care 0.0000 0.3333 0.3699 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Maxillo-Facial 0.0000 0.0000 0.0000 0.1061 0.0747 0.0969 0.0000 0.0000 0.0000
Neurology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ophthalmology 0.0000 0.0000 0.0000 0.3948 0.4613 0.4636 0.0000 0.9640 1.2960
Pain 0.0166 0.0110 0.0176 0.0519 0.0442 0.0396 0.0000 0.0000 0.0000
Plastic Surgery 0.0000 0.0000 0.0000 0.0521 0.0464 0.0462 0.0000 0.0000 0.0011
Radiology 0.0000 0.0000 0.0000 0.0091 0.0011 0.0225 0.0000 0.0000 0.0000
Radiotherapy and Oncology 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rehabilitation 29.5478 33.4318 35.5989 10.7206 16.2437 23.0764 0.0000 0.0000 0.0000
Respiratory 0.0000 0.0000 0.0000 32.7445 29.8673 25.8748 0.0000 0.0000 0.0000
Restorative Dentistry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rheumatology 0.0000 0.0000 0.0000 0.0000 0.0215 0.0000 0.0000 0.0000 0.0000
Trauma & Orthopaedic 0.0000 0.0000 0.0000 36.3659 44.0053 41.3888 0.0000 0.0000 0.0000
Urology 0.0000 0.0000 0.0000 0.5179 0.4967 0.5494 0.0210 0.0169 0.0226

Table D.16: The daily bed demands for each specialty for regions four, five and six within ABUHB for three individual years’ worth of
patient admissions, using the classification tree and the yearly specific LOS.



A
PPEN

D
IX

D
.

LIN
K

IN
G

PR
ED

IC
T

IV
E

A
N

D
PR

ESC
R

IPT
IV

E
PA

R
A

D
IG

M
S

FU
RT

H
ER

M
AT

ER
IA

L
314

RG
H

SW
A

SC
C

YY
F

RI
HS

C

YA
B CH NH
H

CC
H

M
VH

SC
F

Ot
he

r

Hospitals

Accident and Emergency
Anaesthetics

Cardiology
Care of the Elderly

Community Medicine
Dermatology

Diabetes and Endocrinology
Ear, Nose and Throat

Gastroenterology
General Medicine
General Surgery

GP Other
Gynaecology
Haematology

Infectious Diseases
Intermediate Care

Maxillo-Facial
Neurology

Opthamology
Pain

Plastic Surgery
Radiology

Radiotherapy and Oncology
Rehabiltation

Respiratory
Restorative Dentistry

Rheumatology
Trauma and Orthopedic

Urology

Sp
ec

ia
lti

es

3 0 0 0 0 0 0 8 0 0 0
5 0 0 0 0 0 0 1 0 0 0
17 0 0 0 0 0 0 17 0 0 0
77 0 0 56 0 0 13 53 0 0 0
0 0 0 8 0 0 1 0 15 0 0
0 3 0 0 0 0 0 0 0 0 0
17 0 0 25 0 0 0 17 0 0 0
3 0 0 1 0 0 0 0 0 0 0
0 12 0 1 0 0 0 19 0 0 1

106 0 0 1 0 0 0 14 0 0 0
48 0 0 1 0 0 0 21 0 0 1
0 0 0 0 10 0 0 0 0 15 0
3 0 0 1 0 0 0 1 0 0 0
4 0 0 0 0 0 0 2 0 0 1
9 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0 0 0
2 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 65 35 0 70 30 0 11 0 0
30 0 0 0 0 0 0 33 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
46 11 0 1 0 0 0 37 0 0 0
11 0 0 1 0 0 0 1 0 0 1 0

20

40

60

80

100

120

Nu
m

be
r o

f B
ed

s D
ep

lo
ye

d

Figure D.39: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
specific LOS for 2017-2018.
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Figure D.40: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
specific LOS for 2017-2018.
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Figure D.41: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
specific LOS for 2018-2019.
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Figure D.42: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
specific LOS for 2018-2019.
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Figure D.43: Heatmap of bed locations for each specialty within each
hospital for the deterministic model using the classification tree and
specific LOS for 2019-2020.
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Figure D.44: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model using the classification tree and
specific LOS for 2019-2020.
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D.5 Scenario Heatmaps

This section contains the heatmaps produced from performing various scenario analysis within Chapter 6.3.
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Figure D.45: Heatmap of bed locations for each specialty within each
hospital for the deterministic model for Scenario 1 where GUH is added.
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Figure D.46: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model for Scenario 1 where GUH is added.
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Figure D.47: Heatmap of bed locations for each specialty within each
hospital for the deterministic model for Scenario 2 where the
M-penalty method is added.
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Figure D.48: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model for Scenario 2 where the
M-penalty method is added.
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Figure D.49: Heatmap of bed locations for each specialty within each
hospital for the deterministic model for Scenario 3 where the
hospital setup is re-evaluated.
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Figure D.50: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model for Scenario 3 where the
hospital setup is re-evaluated.
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Figure D.51: Heatmap of bed locations for each specialty within each
hospital for the deterministic model for Scenario 4 where the
nursing capacity is reduced.
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Figure D.52: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model for Scenario 4 where the
nursing capacity is reduced.
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Figure D.53: Heatmap of bed locations for each specialty within each
hospital for the deterministic model for Scenario 5 with the
introduction of virtual wards.
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Figure D.54: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model for Scenario 5 with the
introduction of virtual wards.
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Figure D.55: Heatmap of bed locations for each specialty within each
hospital for the deterministic model for Scenario 6 with the
sudden increase in demand.
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Figure D.56: Heatmap of bed locations for each specialty within each
hospital for the two-stage model for Scenario 6 with the
sudden increase in demand.
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Figure D.57: Heatmap of bed locations for each specialty within each
hospital for the deterministic model for Scenario 7 with an
overall increase in T&O services of 10%.
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Figure D.58: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model for Scenario 7 with an
overall increase in T&O services of 10%.
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Figure D.59: Heatmap of bed locations for each specialty within each
hospital for the deterministic model for Scenario 7 with targetting
T&O specific nodes in the regression tree with a 10% increase.
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Figure D.60: Heatmap of bed locations for each specialty within each
hospital for the two-stage stochastic model for Scenario 7 with targetting
T&O specific nodes in the regression tree with a 10% increase.
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[90] P. Eveborn, M. Rönnqvist, H. Einarsdóttir, M. Eklund, K. Lidén, and M. Alm-
roth. Operations research improves quality and efficiency in home care. In-
terfaces, 39(1):18–34, 2009.

[91] F. Grenouilleau, N. Lahrichi, and L.-M. Rousseau. New decomposition meth-
ods for home care scheduling with predefined visits. Computers and Operations
Research, 115:104855, 2020.

[92] J. Guo, R. T. Konetzka, and W. G. Manning. The causal effects of home
care use on institutional long-term care utilization and expenditures. Health
Economics (United Kingdom), 24(S1):4–17, 2015.
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[206] T. Möllers, L. Perna, P. Ihle, I. Schubert, J. Bauer, and H. Brenner. Factors
associated with length of stay in hospital patients with and without dementia.
Journal of Alzheimer's Disease, 67(3):1055–1065, feb 2019.

[207] R. Lisk, K. Yeong, D. Fluck, C. H. Fry, and T. S. Han. The Ability of
the Nottingham Hip Fracture Score to Predict Mobility, Length of Stay and
Mortality in Hospital, and Discharge Destination in Patients Admitted with
a Hip Fracture. Calcified Tissue International, 107(4):319–326, jul 2020.

[208] M. P. Quinn, A. E. Courtney, D. G. Fogarty, D. O'Reilly, C. Cardwell, and
P. T. McNamee. Influence of prolonged hospitalization on overall bed occu-
pancy: a five-year single-centre study. QJM, 100(9):561–566, 2007.

[209] Organisation for Economic Cooperation and Development (OECD). Hos-
pital beds and occupancy. Available online at: “https://www.oecd-
ilibrary.org/sites/e5a80353-en/index.html?itemId=/content/
component/e5a80353-en”. Last Accessed 22 March 2023, 2023.

[210] British Medical Association. NHS hospital beds data analysis. Avail-
able online at: “https://www.bma.org.uk/advice-and-support/nhs-
delivery-and-workforce/pressures/nhs-hospital-beds-data-
analysis#:˜:text=Since%202010%2C%20average%20bed%20occupancy,
and%20efficiency%20are%20at%20risk”. Last Accessed 22 March 2023,
2023.

[211] Centers for Disease Control and Prevention. Hospitals, beds, and occupancy
rates, by type of ownership and size of hospital: United states, selected
years 1975–2015. Available online at “https://www.cdc.gov/nchs/data/
hus/2017/089.pdf.” Accessed 6 January 2023, 2017.

[212] NHS Jobs. Working in the NHS. Available online at: “https://www.jobs.
nhs.uk/about_nhs.html”. Last Accessed 22 March 2023, 2022.

[213] Office for National Statistics. Overview of the UK population: 2020. Avail-
able online: “https://www.ons.gov.uk/peoplepopulationandcommunity/
populationandmigration/populationestimates/articles/
overviewoftheukpopulation/2020”. Last Accessed 22 March 2023, 2022.

[214] L. H. Aiken, D. M. Sloane, J. Ball, L. Bruyneel, A. M. Rafferty, and P. Grif-
fiths. Patient satisfaction with hospital care and nurses in England: an obser-
vational study. BMJ Open, 8(1):e019189, 2021.

[215] V. Kumar and M. L. Garg. Predictive Analytics: A Review of Trends and
Techniques. International Journal of Computer Applications, 182(1):31–37,
2018.

[216] M. Li, P. Vanberkel, and X. Zhong. Predicting ambulance offload delay using
a hybrid decision tree model. Socio-Economic Planning Sciences, 80:101146,
2022.

[217] R. Healey, C. Naugler, L. de Koning, and J. L. Patel. Leukemia & Lymphoma,
title = A classification tree approach for improving the utilization of flow cy-
tometry testing of blood specimens for B-cell non-Hodgkin lymphoproliferative
disorders, 56(9):2619–2624, 2015.

https://www.oecd-ilibrary.org/sites/e5a80353-en/index.html?itemId=/content/component/e5a80353-en
https://www.oecd-ilibrary.org/sites/e5a80353-en/index.html?itemId=/content/component/e5a80353-en
https://www.oecd-ilibrary.org/sites/e5a80353-en/index.html?itemId=/content/component/e5a80353-en
https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/nhs-hospital-beds-data-analysis#:~:text=Since%202010%2C%20average%20bed%20occupancy,and%20efficiency%20are%20at%20risk
https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/nhs-hospital-beds-data-analysis#:~:text=Since%202010%2C%20average%20bed%20occupancy,and%20efficiency%20are%20at%20risk
https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/nhs-hospital-beds-data-analysis#:~:text=Since%202010%2C%20average%20bed%20occupancy,and%20efficiency%20are%20at%20risk
https://www.bma.org.uk/advice-and-support/nhs-delivery-and-workforce/pressures/nhs-hospital-beds-data-analysis#:~:text=Since%202010%2C%20average%20bed%20occupancy,and%20efficiency%20are%20at%20risk
https://www.cdc.gov/nchs/data/hus/2017/089.pdf
https://www.cdc.gov/nchs/data/hus/2017/089.pdf
https://www.jobs.nhs.uk/about_nhs.html
https://www.jobs.nhs.uk/about_nhs.html
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/overviewoftheukpopulation/2020
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/overviewoftheukpopulation/2020
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/overviewoftheukpopulation/2020


BIBLIOGRAPHY 340

[218] C. Salazar-Concha and P. Ramı́rez-Correa. Predicting the Intention to Donate
Blood among Blood Donors Using a Decision Tree Algorithm. Symmetry,
13(8):1460, 2021.

[219] K. Shah, R. Punjabi, P. Shah, and M. Rao. Real Time Diabetes Predictionus-
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