Additional file 1

Regions	Features	Total
Subcortical regions (45)	Volume; normalized intensity: mean, standard deviation, minimum, maximum and range	270
	Area, volume, average thickness, thickness standard deviation,	
Cortical regions left and right hemispheres (31x2)	White matter gray matter contrast: mean, standard deviation, minimum maximum and range	806
White matter left and Volume; normalized intensity: mean,	384	
right hemispheres (32x2)	standard deviation, minimum, maximum and range	

Subcortical regions			
1	Left \& Right Lateral-Ventricle	17	5th-Ventricle
2	$\begin{gathered} \text { Left \& Right } \\ \text { Inferior-Lateral-Ventricle } \end{gathered}$	18	WM-hypointensities
3	Left \& Right Cerebellum-White-Matter	19	non-WM-hypointensities
4	$\begin{gathered} \text { Left \& Right } \\ \text { Cerebellum-Cortex } \end{gathered}$	20	Optic-Chiasm
5	Left \& Right Thalamus-Proper	21	Corpus Callosum Posterior
6	Left \& Right Caudate	22	Corpus Callosum Mid Posterior
7	Left \& Right Putamen	23	Corpus Callosum Central
8	Left \& Right Pallidum	24	Corpus Callosum MidAnterior
9	Left \& Right Hippocampus	25	Corpus Callosum Anterior
10	Left \& Right Amygdala	26	3rd-Ventricle
11	Left \& Right Accumbens-area	27	4th-Ventricle
12	Left \& Right VentralDC	28	Brain-Stem
13	Left \& Right Vessel	29	CSF
14	Left \& Right choroid-plexus		
15	Left \& Right WM-hypointensities		
16	$\begin{gathered} \text { Left \& Right } \\ \text { non-WM-hypointensities } \end{gathered}$		

Cortical Regions			
1	Caudalanteriorcingulate	17	Parsorbitalis
2	Caudalmiddlefrontal	18	Parstriangularis
3	Cuneus	19	Pericalcarine
4	Entorhinal	20	Postcentral
5	Fusform	21	Posteriorcingulate
6	Inferiorparietal	22	Precentral
7	Inferiortemporal	23	Precuneus
8	Isthmuscingulate	24	Rostralanteriorcingulate
9	Lateraloccipital	25	Rostralmiddlefrontal
10	Lateralorbitofrontal	26	Superiorfrontal
11	Lingual	27	Superiorparietal
12	Medialorbitofrontal	28	Superiortemporal
13	Middletemporal	29	Supramarginal
14	Parahippocampal	30	Transversetemporal
15	Paracentral	31	Insula
16	Parsopercularis	32	UnsegmentedWhiteMatter

Supplementary Material Figure 1: Segmentation example from case 110033 of the CamCAN database. On the left a), the segmentation is shown without the white matter segmentation. Subcortical and cortical regions are divided. On the right b) the segmentation includes white matter segmentation.

$\mathbf{1}$	Brain Segmentation Volume
$\mathbf{2}$	Left hemisphere cortical gray matter volume
$\mathbf{3}$	Right hemisphere cortical gray matter volume
$\mathbf{4}$	Subcortical gray matter volume
$\mathbf{5}$	Total gray matter volume
$\mathbf{6}$	Supratentorial volume
$\mathbf{7}$	Mask Volume
$\mathbf{8}$	Number of defect holes in lh surfaces prior to fixing
$\mathbf{9}$	Number of defect holes in rh surfaces prior to fixing
$\mathbf{1 0}$	Estimated Total Intracranial Volume
$\mathbf{1 1}$	Left Hemisphere White Surface Total Area
$\mathbf{1 2}$	Right Hemisphere White Surface Total Area
$\mathbf{1 3}$	Left Hemisphere Cortex Mean Thickness
$\mathbf{1 4}$	Right Hemisphere Cortex Mean Thickness
$\mathbf{1 5}$	Total cortical gray matter volume
$\mathbf{1 6}$	Volume of ventricles and choroid plexus
$\mathbf{1 7}$	Left hemisphere cerebral white matter volume
$\mathbf{1 8}$	Right hemisphere cerebral white matter volume
$\mathbf{1 9}$	Total cerebral white matter volume
$\mathbf{y y y}$	

Supplementary Material Table 2: Features extracted from the whole brain.

Regressors	Hyperparameters
SVR	kernel='linear', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200
	n_estimators=100, criterion='squared_error', max_depth=None, bootstrap=True, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, oob_score=False, ccp_alpha=0.0
MLP	epochs=500, lr=0.01, weigth_decay=0.01, validation_size=0.2, criterion=L1, optimizer=Adam, early_stopping=20 epochs

Supplementary Material Table 3: Hyperparameters of the regressors trained for the study.

Database	Escaner	Acquisition protocol
The Open Access Series of Imaging Studies 1 (OASIS-1)	1.5T Siemems Vision, Washington University, Saint Louis, Misuri, United States	```MPRAGE; RT = 9.7 ms, ET =4.0 ms, Flip Angle = 10 DT =200 ms, Orientation: Sagittal, thickness = 1.25 mm, n}\mp@subsup{}{}{0}\mathrm{ slices = 128, Resolution = 256 × 256 (}1\times1\textrm{mm}```
Information eXtraction from Images (IXI) initiative	3T Philips Medical Systems Intera, Hammersmith Hospital, London, England, United Kingdom 1.5T Philips Medical Systems Gyroscan Intera, Guy's Hospital, London, England, United Kingdom Institute of Psychiatry, London, England, United Kingdom	$\mathrm{RT}=9.6 \mathrm{~ms}, \mathrm{ET}=4.6 \mathrm{~ms}$, Flip Angle $=8^{\circ}$ Number of Phase Encoding Steps $=208$, Echo Train Length $=208$, Reconstruction Diameter $=240.0$, AcquisitionMatrix $=208 \times 208$, RT $=9.8 \mathrm{~ms}, \mathrm{ET}=4.6 \mathrm{~ms}$, Flip Angle $=8^{\circ}$, Number of Phase Encoding Steps $=192$, Echo Train Length $=0$, Reconstruction Diameter $=240$, Not available
NeuroCognitive Aging Data Release (NeuroCog)	3T GE Discovery, Cornell Magnetic Resonance Imaging Facility, New York, New York, United States 3T Siemens TimTrio, York University Neuroimaging Center, Toronto, Ontario, Canada	MPRAGE; RT $=2530 \mathrm{~ms}, \mathrm{ET}=3.4 \mathrm{~ms}$, Flip Angle $=7^{\circ}$, voxel size $=1 \mathrm{~mm}$ isotropic, acquisition time $=5 \mathrm{~m} 25 \mathrm{~s}, 176$ slices MPRAGE; RT $=1900 \mathrm{~ms}, \mathrm{ET}=2.52 \mathrm{~ms}$, Flip Ange $=9^{\circ}$, voxel size $=1 \mathrm{~mm}$ isotropic, acquisition time $=4 \mathrm{~m} 26 \mathrm{~s} ; 192$ slices
Cambridge Center of Aging and Neuroscience (Cam-CAN)	3 T Siemens TimTrio, University of Cambridge, Cambridge, England, United Kingdom	MPRAGE; RT $=2250 \mathrm{~ms}$, ET $=2.99 \mathrm{~ms}$, IT $=900 \mathrm{~ms}$, Flip Angle $=9^{\circ}$, FOV $=256 \times 240 \times 192 \mathrm{~mm}$, resolution: 1 mm isotropic; GRAPPA $=2$; acquisition time $=4 \mathrm{mins} 32 \mathrm{~s}$
Southwest University Adult Lifespan Dataset (SALD)	3T MRI Siemens TimTrio, The Brain Imaging Center of Southwest University, Beibei, Chongqing, China	MPRAGE; RT $=1.90 \mathrm{~ms}, \mathrm{ET}=2.52 \mathrm{~ms}, \mathrm{TI}=900 \mathrm{~ms}$, Flip Angle $=90^{\circ}$, resolution matrix $=256 \times 256$, slices $=176$, thickness $=1,0 \mathrm{~mm}$ y voxel size $=1 \times 1 \mathrm{~mm} 3$
Dallas Lifespan Brain Study (DLBS)	3T Philips Achieva, Park aging mind Laboratory, Dallas, Texas, United States	MPRAGE; RT $=8.1 \mathrm{~ms}, \mathrm{ET}=3.7 \mathrm{~ms}$, Flip Angle $=12^{\circ}$. Voxel size $1 \times 1 \times 1 \mathrm{~mm} 3$, slices $=160$, matriz dimension $204 \times 256 \times 160$
Consortium for reliability and reproducibility (CoRR)	35 different scaners from different institutions	Check parameters for each protocol at: https://www.nature.com/articles/sdata201449/tables/3

Supplementary Material Table 4: Acquisition parameters for each scanner employed in every database used to construct the Brain Age model.

		SVR		RF		MLP	
		MAE	r	MAE	r	MAE	r
Combined Feature Set	20 features	6.07 ± 0.29	0.82 ± 0.02	5.51 ± 0.25	0.84 ± 0.02	5.03 ± 0.29	0.86 ± 0.02
	30 features	5.94 ± 0.24	0.83 ± 0.02	5.54 ± 0.26	0.84 ± 0.02	4.92 ± 0.25	0.86 ± 0.02
	40 features	5.85 ± 0.22	0.83 ± 0.02	5.55 ± 0.27	0.84 ± 0.02	4.90 ± 0.21	0.87 ± 0.01
Morphological Feature Set	20 features	6.68 ± 0.43	0.78 ± 0.02	6.53 ± 0.54	0.76 ± 0.03	5.74 ± 0.47	0.80 ± 0.02
	30 features	6.52 ± 0.44	0.79 ± 0.02	6.54 ± 0.46	0.77 ± 0.03	5.66 ± 0.44	0.81 ± 0.02
	40 features	6.37 ± 0.39	0.80 ± 0.02	6.46 ± 0.42	0.77 ± 0.02	5.57 ± 0.27	0.81 ± 0.02
Intensity Feature Set	20 features	6.91 ± 0.41	0.75 ± 0.02	6.64 ± 0.40	0.75 ± 0.02	6.17 ± 0.40	0.77 ± 0.02
	30 features	6.87 ± 0.46	0.75 ± 0.02	6.67 ± 0.43	0.76 ± 0.02	6.13 ± 0.44	0.78 ± 0.03
	40 features	6.80 ± 0.38	0.76 ± 0.02	6.72 ± 0.41	0.75 ± 0.02	6.06 ± 0.35	0.78 ± 0.02

Supplementary Material Table 5: Validation results for the three regressors tested. Results are given as the average and the standard deviation of the values obtained from each fold of the 10 -fold cross-validation scheme before age bias correction. The values in bold show the combination with the best result.

		F	P-val	np2
ANCOVA HC-CM-EM	Brain Age Gap	2.969	0.053	0.240
	eTIV	14.666	<0.001	0.057
	Sex	0.213	0.645	<0.001
ANCOVA HC-EM	Brain Age Gap	1.734	0.019	0.001
	eTIV	9.900	0.002	0.005
	Sex	<0.001	0.997	<0.001
ANCOVA HC-CM	Brain Age Gap	6.796	0.010	0.043
	eTIV	4.744	0.031	0.030
	Sex	0.428	0.514	0.003
	Brain Age Gap	1.110	0.294	0.007
ANCOVA EM-CM	eTIV	15.749	<0.001	0.089
	Sex	0.175	0.676	0.001

Supplementary Material Table 6: ANCOVA complete results for Brain Age Gap calculated for the combined regressor. Normality and equality of variances were tested before applying the ANCOVA. Sex and eTIV were included as covariates.

			F	P-val
ANCOVA HC-EM-CM	Brain Age Gap	1.840	0.161	0.015
	eTIV	20.37	0.078	<0.001
	Sex	2.423	0.010	0.121
ANCOVA HC-EM	Brain Age Gap	0.102	0.750	0.001
	eTIV	11.49	<0.001	0.064
	Sex	3.878	0.051	0.022
ANCOVA HC-CM	Brain Age Gap	3.237	0.074	0.021
	eTIV	9.191	0.003	0.057
	Sex	0.659	0.418	0.004
	Brain Age Gap	1.924	0.167	0.012
ANCOVA EM-CM	eTIV	21.01	<0.001	0.115
	Sex	1.214	0.272	0.008

Supplementary Material Table 7: ANCOVA complete results for Brain Age Gap calculated for the intensity regressor. Normality and equality of variances were tested before applying the ANCOVA. Sex and eTIV were included as covariates.

		F	P-val	np2
ANCOVA HC-EM-CM	Brain Age Gap	2.156	0.118	0.018
	eTIV	0.999	0.319	0.004
	Sex	3.952	0.048	0.016
ANCOVA HC-EM	Brain Age Gap	1.802	0.181	0.011
	eTIV	0.074	0.786	<0.001
	Sex	2.794	0.096	0.016
	Brain Age Gap	4.094	0.045	0.026
	eTIV	0.707	0.402	0.005
ANCOVA EM-CM	Sex	1.844	0.176	0.012
	Brain Age Gap	0.336	0.563	0.002
	eTIV	3.280	0.072	0.020
	Sex	2.515	0.115	0.015

Supplementary Material Table 8: ANCOVA results for Brain Age Gap calculated for the morphological regressor. Normality and equality of variances were tested before applying the ANCOVA. ETIV was included as a covariate.

		$\begin{gathered} \text { ANCOVA } \\ \text { HC-EM } \end{gathered}$	$\begin{gathered} \text { ANCOVA } \\ \text { HC-CM } \end{gathered}$	$\begin{gathered} \text { ANCOVA } \\ \text { EM-CM } \end{gathered}$
Combined Feature Set	F-value	2.387	5.581	0.440
	Effect size (η_{p}^{2})	0.017	0.040	0.003
	p-value	0.125	0.020	0.508
Morphological Feature Set	F-value	0.218	2.373	0.968
	Effect size (η_{p}^{2})	0.002	0.018	0.007
	p-value	0.641	0.126	0.327
Intensity Feature Set	F-value	1.618	5.555	0.666
	Effect size (η_{p}^{2})	0.011	0.040	0.005
	p-value	0.205	0.020	0.416

Supplementary Material Table 9: ANCOVA results for Brain Age Gap calculated for the female subgroup. Normality and equality of variances were tested before applying the ANCOVA. Sex and eTIV were included as covariates.

		ANCOVA	ANCOVA	ANCOVA
		HC-EM	HC-CM	EM-CM
Combined Feature Set	F-value	0.950	6.789	0.509
	Effect size $\left(\eta_{p}^{2}\right)$	0.035	0.047	0.028
	p-value	0.339	0.388	0.485
Morphological Feature Set	F-value	0.638	0.746	1.239
	Effect size $\left(\eta_{p}^{2}\right)$	0.024	0.045	0.064
	p-value	0.432	0.400	0.280
	F-value	2.171	0.114	1.088
Intensity Feature Set	Effect size $\left(\eta_{p}^{2}\right)$	0.077	0.007	0.057
	p-value	0.153	0.740	0.311

Supplementary Material Table 10: ANCOVA results for Brain Age Gap calculated for the male subgroup. Normality and equality of variances were tested before applying the ANCOVA. Age and eTIV were included as covariates.

Supplementary Material Figure 2: Results of the Brain Age models on the external validation dataset (NKI-RS). The performance of the models is similar to that obtained on the healthy controls of the Application Dataset, thereby confirming the generalizability and reliability of the models.

Supplementary Material Figure 3: The outcomes derived from the integrated regression model for each gender are presented. While the findings do not indicate any statistically significant differences, they do suggest that females are the predominant factor contributing to the disparity between HC and CM. It is important to interpret these results cautiously, given the limited sample size of the male group.

Supplementary Material Figure 4: The sum of the absolute SHAP values of each feature for each member of the investigated groups, calculated for the regressor trained on the Combined Feature Set. The order of features varies between groups, but the 16 designated features are shared by the groups' most pertinent features.

Supplementary Material Figure 5: The sum of the absolute SHAP values of each feature for each member of the investigated groups, calculated for the regressor trained on the Morphological Feature Set. The order of features varies between groups, but the 17 designated features are shared by the groups' most pertinent features.

Supplementary Material Figure 6: The sum of the absolute SHAP values of each feature for each member of the investigated groups, calculated for the regressor trained on the Intensity Feature Set. The order of features varies between groups, but the 17 designated features are shared by the groups' most pertinent features.

Supplementary Material Figure 7: No correlations were found between Brain Age Gap calculated with the regressor trained on the Combined Feature Set and the clinical variables studied, a) Brain Age Gap change along with headache frequency, b) Brain Age Gap change along with migraine frequency, c) Brain Age Gap change along with migraine duration, and d) Brain Age Gap change along with chronic migraine duration.

Supplementary Material Figure 8: No statistically significant correlation was found between clinical variables and Brain Age Gap when calculated with the regressor trained on the Morphological Feature Set, a) Brain Age Gap change along with headache frequency, b) Brain Age Gap change along with migraine frequency, c) Brain Age Gap change along with migraine duration, and d) Brain Age Gap change along with chronic migraine duration.

Supplementary Material Figure 9: No statistically significant correlation was found between the clinical variables and the Brain Age Gap when calculated with the regressor trained on the Intensity Feature Set, a) Brain Age Gap change along with headache frequency, b) Brain Age Gap change along with migraine frequency, c) Brain Age Gap change along with migraine duration, and d) Brain Age Gap change along with chronic migraine duration.

Supplementary Material Figure 10: No statistically significant correlations were found between the selected key features during the model interpretation and the clinical variables of the CM and EM patients.

