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Abstract 

Background 

Clinical stage is the only routinely used marker of survival from colorectal cancer (CRC). 

Other factors thought to influence prognosis include the location of the primary tumour 

and the patient’s germline and the tumour’s somatic genetic profile. 

 

Aims of my thesis 

To examine inherited variation as a determinant of patient outcome with further analyses 

stratified by primary tumour site and mitogen-activated protein kinase (MAPK) activation 

status. To consider whether known somatic prognostic mutations might mask novel 

candidate loci. 

 

Materials and Methods 

I performed a genome-wide association study (GWAS), gene and gene-set analyses for 

survival in 1,926 patients with advanced CRC from the COIN and COIN-B clinical trials 

with replication in 5,675 patients from the Study of Colorectal Cancer in Scotland 

(SOCCS), 16,964 patients from the International Survival Analysis in Colorectal cancer 

Consortium and 5,078 patients with CRC from the UK Biobank. To understand underlying 

mechanism(s), I performed expression analyses both by variant and transcriptome-wide, 

and investigated the relationship between expression in colorectal tumours and survival 

in patients from The Human Protein Atlas. 



 

X 
 

 

 

Results 

In COIN and COIN-B, the most significant SNP associated with survival was rs79612564 

in ERBB4 (hazard ratio [HR]=1.24, 95% confidence interval [CI]=1.16–1.32, P=1.9x10−7) 

which was replicated in stage-IV patients from SOCCS (P=2.1x10−2); mechanistically, 

patients with high ERBB4 expression in their colon adenocarcinomas had worse survival 

(HR=1.50, 95% CI=1.1–1.9, P=4.6x10−2). When stratifying by primary tumour location, 

rs76011559 replicated in patients with proximal tumours (COIN, COIN-B and UK Biobank 

combined HR=1.53, 95% CI=1.19-1.86, P=7.5x10-7) and rs12273047 replicated in 

patients with rectal tumours (HR=1.27, 95% CI=1.09-1.46, P=4.1x10-7). PI4K2B 

associated with survival in patients with distal cancers (P=2.1x10-6) and increased 

PI4K2B expression in colorectal tumours was associated with improved survival 

(P=9.6x10-5). RASAL2, encoding a RAS GTPase-activating protein, was the most 

significant gene associated with survival in patients with MAPK-activated CRCs 

(P=2.0x10−5) with further analyses revealing pathway specificity. Finally, rs11062901 in 

PARP11 was a novel biomarker of survival when unmasked from known somatic 

prognostic factors (HR=1.99, 95% CI=1.5-2.5, P=4.5x10-8) and supported by gene 

(P=1.4x10-6) and transcriptome-wide (P=1.1x10-5) analyses. 

 

Conclusions 

My data identify novel loci potentially associated with survival from CRC, together with 

mechanistic insights, many of which were mediated by changes in gene expression. 
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Chapter 1: Introduction 

1.1 Colorectal cancer 

1.1.1 Incidence and mortality 

Colorectal cancer (CRC) is cancer of the colon or rectum. It is the 4th most common 

cancer in the UK accounting for 11% of all new cases diagnosed every year, nearly 120 

every day (years 2016-2018). CRC is most common in males (56%), people aged 75 and 

over (43%) and the white ethnic group (CancerResearchUK 2023). Globally, 61% of 

cases originate in the colon, with the remaining 39% in the rectum (Rawla et al. 2019). 

CRC is 3-4 times more common in developed than in developing countries, possibly due 

to differences in diet, physical exercise levels and ageing populations (Kuipers et al. 2015; 

Rawla et al. 2019).  

 

There are approximately 16,800 CRC deaths in the UK every year, 46 every day, 

accounting for 10% of total cancer deaths and making CRC the 2nd biggest cancer killer 

(years 2017-2019). From 2009 to 2019 CRC mortality reduced by 11% in the UK (9% in 

females and 13% in males) and are projected to fall by an additional 10% between 2025 

and 2040. The survival rate for CRC has approximately doubled in the last 40 years in 

the UK, with ~60% of patients surviving at least 5 years thanks to better therapeutics and 

public awareness (CancerResearchUK 2023). In Europe half of all cases will develop 

metastases, with half of those presenting with metastases at diagnosis (Haggar and 

Boushey 2009; Riihimäki et al. 2016). CRC can be difficult to diagnose early due to the 
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asymptomatic nature of the early stages of disease, initial symptoms such as blood in the 

stool, irregular bowel movements and weight loss can also be misdiagnosed as more 

common and less severe conditions.  

 

1.1.2 CRC staging 

Understanding disease stage is vital for determining prognosis and informing treatment 

approaches. For decades, the gold standard for tumour staging has been the American 

Joint Committee on Cancer (AJCC) staging manual (now in its 8th edition), which has 

been deployed globally by the AJCC and its partner, the Union for International Cancer 

Control (UICC) (Amin et al. 2017; Keung and Gershenwald 2018). This system allows 

solid tumours to be classified according to invasion depth (T stage), lymph node 

involvement (N stage) and the presence of distant metastases (M stage; Table 1.1). The 

staging system is widely accepted due to its simplicity and clinical utility due to its 

association with overall survival (OS) (Kattan et al. 2016). Stage IV metastatic CRC is 

hereby referred to as mCRC.  
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Stage 
TNM Staging 

Description Tumour Size 
(T) 

Lymph nodes 
(N) 

Metastasis 
(M) 

0  Tis N0 M0 Tumour restricted to mucosa 

I  T1/T2 N0 M0 Infiltration into submucosa or muscularis 
propria 

II A T3 N0 M0 Infiltration into subserosa or non-
peritonealised pericolic or perirectal tissue 

 B T4a N0 M0 Infiltration of the serosa 
 C T4b N0 M0 Infiltration of neighbouring tissues or organs 

III A T1-T2 N1 M0 
Infiltration into submucosa or muscularis 
propria. Cancer cells detectable in 1-3 
regional lymph nodes 

  T1 N2a M0 Infiltration into submucosa. Cancer cells 
detectable in 4-6 regional lymph nodes 

 B T3-T4a N1 M0 Infiltration up to serosa. Cancer cells 
detectable in 1-3 regional lymph nodes 

  T2-T3 N2a M0 

Infiltration into subserosa or non-
peritonealised pericolic or perirectal tissue. 
Cancer cells detectable in 4–6 regional 
lymph nodes 

  T1-T2 N2b M0 
Infiltration into submucosa or muscularis 
propria. Cancer cells detectable in 7 or more 
regional lymph nodes 

 C T4a N2a M0 Infiltration of the serosa. Cancer cells 
detectable in 4–6 regional lymph nodes 

  T3-T4a N2b M0 Infiltration up to serosa. Cancer cells 
detectable in 7 or more regional lymph nodes 

  T4b N1-N2 M0 
Infiltration of neighbouring tissues or organs. 
Cancer cells detectable in regional lymph 
nodes 

IV A Any Any M1a Metastasis to 1 distant organ or distant lymph 
nodes 

  B Any Any M1b 
Metastasis to more than 1 distant organ or 
set of distant lymph nodes or peritoneal 
metastasis 

 

Table 1.1. TNM staging of colorectal carcinoma and corresponding descriptions. 

Adapted from Brenner et al. (2014).  
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1.1.3 Colorectal tumourigenesis  

1.1.3.1 Risk factors 

CRC is a complex disease influenced by both lifestyle and genetic factors (Kuipers et al. 

2015) and unlike other common cancers no single factor accounts for the majority of 

cases (Brenner et al. 2014).  

 

Studies have estimated 16-71% of CRC cases in Europe and the United States are due 

to lifestyle factors (Platz et al. 2000; Aleksandrova et al. 2014; Erdrich et al. 2015) which 

could explain the socioeconomic and geographical differences in CRC incidence 

(Doubeni et al. 2012). The risk of CRC increases 2-3% with each unit of body mass index 

(Kuipers et al. 2015) with type II diabetes patients also having an increased risk (Guraya 

2015). An alcohol consumption of 2-3 units per day increases risk by 20%, with much 

higher consumption associated with an up to 50% increase (Fedirko et al. 2011). 

Prolonged heavy smoking of tobacco conveys an increase of similar magnitude (Botteri 

et al. 2008; Liang et al. 2009). Red and processed meat intake increases risk 16% per 

100g of daily intake, whereas risk is reduced 10% per daily intake of every 10g of fibre, 

200ml of milk or 300mg of calcium (Dahm et al. 2010; Song et al. 2015). Exercising for 

30 minutes a day has a similar magnitude of effect (Arem et al. 2014). Use of aspirin and 

other NSAIDs (Algra and Rothwell 2012), statin (Bardou et al. 2010; Liu et al. 2014) and 

hormone therapy in postmenopausal women (Limsui et al. 2012) may also reduce risk.  
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1.1.3.2 CRC genetic factors 

There are three common inherited CRC syndromes accounting for 2-5% (Jasperson et 

al. 2010) of all cases: familial adenomatous polyposis (FAP) (Fearnhead et al. 2001), 

MUTYH-associated polyposis (MAP) (Al-Tassan et al. 2002) and Hereditary Non-

Polyposis Colorectal Cancer (HNPCC, also known as Lynch syndrome) (Lynch and de la 

Chapelle 2003; Lynch et al. 2009).  

 

Rarer CRC syndromes include Peutz-Jeghers syndrome, an autosomal dominant 

disorder caused by germline mutations in the STK-11 gene. Patients develop 

hamartomatous polyps of the small bowel and carry a lifetime CRC risk of 39% and near 

90% for any malignancy (Kastrinos and Syngal 2011). Juvenile polyposis is another CRC 

syndrome characterised by multiple juvenile polyps throughout the gastrointestinal tract 

and a 40% lifetime risk of CRC; 40% of cases are attributed to autosomal dominant 

germline mutations in SMAD4 and BMPR1a, with the rest not yet understood (Kastrinos 

and Syngal 2011). MBD4-associated neoplasia syndrome is an extremely rare 

predisposition syndrome. Like MUTYH, MBD4 encodes a glycosylase of the DNA based 

excision repair system and germline mutations in MBD4 have shown an autosomal 

recessive mode of inheritance for predisposition to CRC, acute myeloid leukaemia, 

gastrointestinal polyposis, uveal melanoma and schwannoma (Terradas et al. 2023). 

Mixed polyposis syndrome is an autosomal dominant condition characterised by an 

increased risk of CRC, multiple histologic polyps, including adenomas, hamartomas, and 

serrated lesions. Some affected individuals have been found to have germline mutations 

in GREM1, which regulates organogenesis, body patterning, and tissue differentiation, 
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but the genetic basis in most families is unclear (Chen et al. 2022). Polymerase 

proofreading-associated polyposis is an autosomal dominant adenomatous polyposis 

syndrome caused by germline variants in the exonuclease domains of POLE and POLD1. 

Although the clinical presentation remains unclear, patients exhibit a high penetrant 

susceptibility to CRC, polyposis and other extracolonic tumours (Chen et al. 2022). The 

majority of other CRC cases are sporadic and occur via the accumulation of somatic 

mutations and epigenetic alterations. Two distinct types of genetic mutation initiate and 

drive colorectal tumourigenesis; Gain of function (GOF) of oncogenes and loss of function 

(LOF) of tumour-suppressor genes (TSGs) (Fearon 2011). 

 

Proto-oncogenes are a set of genes that when mutated cause normal cells to become 

cancerous. When mutated they are referred to as oncogenes and are most often involved 

in stimulating cell division, inhibiting cell differentiation, and preventing cell death, all 

necessary for tumour formation.  The activating mutations cause the gene to either be 

continually transcribed or the resultant protein to be more active than its analogous wild-

type. These mutations are often dominant in nature; they require only a single allele to be 

mutated for a cancerous phenotype (Torry and Cooper 1991; Knudson 1996; Fearon 

2011) (Table 1.2).   
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Gene or 
biomarker Chromosome Function Molecular lesion Frequency (%) Reference 

BRAF 7 Involved in the MAPK 
signalling pathway 

V600E-activating 
mutation 8–28 (Kalady et al. 2012) 

ERBB2 17 
Involved in the EGF–
MAPK signalling 
pathway 

Amplification 35 (Pectasides and 
Bass 2015) 

GNAS 20 Regulates G protein 
signalling Mutation 20 (Afolabi et al. 

2022) 

IGF2 11 Regulates the IGF 
signalling pathway 

Copy number gain 
and loss of 
imprinting 

7 (mutation);  
10 (methylation) 

(Kasprzak and 
Adamek 2019) 

KRAS 12 
Regulates intracellular 
signalling via the 
MAPK pathway 

Activating 
mutations in 
codons 12 or 13 
but rarely in 
codons 61, 117 
and 146 

40 (Allegra et al. 2009) 

MYC 8 Regulates proliferation 
and differentiation Amplification 2 (mutation);  

10 (CNV gain) 
(Strippoli et al. 
2020) 

NRAS 1 Regulates the MAPK 
pathway 

Mutation in 
codons 12 or 13 2 (Schirripa et al. 

2015) 

PIK3CA 3 Regulates the PI3K–
AKT pathway 

Mutations in the 
kinase (exon 20) 
and helical (exon 
9) domains 

20 (Kato et al. 2007) 

RSPO2 and 
RSPO3 

8 and 6, 
respectively 

Ligands for LGR family 
receptors, and activate 
the WNT signalling 
pathway 

Gene fusion and 
translocation 10 (Sveen et al. 2020) 

SOX9 17 Regulates apoptosis Copy number gain 9 (mutation);  
<5 (CNV gain) (Testa et al. 2018) 

TCF7L2 10 Regulates the WNT 
signalling pathway 

Gene fusion and 
translocation 10 (Wenzel et al. 

2020) 

Table 1.2. Proto-oncogenes involved in colorectal cancer development. Adapted 

from (Kuipers et al. 2015) 
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TSGs operate in the opposite way to oncogenes. LOF mutations, including protein 

truncations, insertions or deletions (indels), epigenetic silencing and missense mutations 

at critical residues lead to inactivation of genes responsible for DNA damage repair, cell 

cycle checkpoints, proliferation, cell death and cell microenvironment (Vogelstein and 

Kinzler 2004). Generally, these inactivating mutations are recessive and so must co-occur 

in both alleles (Knudson 1996; Fearon 2011). In sporadic CRC both mutations are 

somatic; in inherited CRC predisposition syndromes one germline mutation already exists 

and so only a single somatic mutation needs to occur on the second allele, this is known 

as the ‘two-hit’ hypothesis (Knudson 1996). An example of this is the germline APC 

mutation in FAP patients (Fearnhead et al. 2001) (Table 1.3).   

 

1.1.3.3 Genomic instability 

Among the other molecular alterations driving CRC shown in Table 1.4, genomic 

instability occurs because of mutations in proto-oncogenes and TSGs, and is a hallmark 

of all human cancers (Negrini et al. 2010; Sansregret et al. 2018). There are 2 major forms 

of genomic instability: Chromosomal instability (CIN) and microsatellite instability (MSI). 

 

CIN occurs in approximately 70% of CRCs resulting in large structural changes and 

alterations in the number of chromosomes (aneuploidy). If the changes to chromosomal 

number or structure occur around oncogenes or TSGs the rates of mutation are 

increased, which can drive colorectal tumourigenesis (Hoevenaar et al. 2020) and affect 

tumour aggressiveness (Orsetti et al. 2014).  
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MSI occurs in 15% of CRCs and is characterised by hypermutation of short segments of 

DNA (1-6 base-pairs) repeated up to 50 times, known as microsatellites (Richard et al. 

2008; Sinicrope and Sargent 2012). LOF mutations in mismatch repair genes lead to 

somatic changes in the microsatellites (Kawakami et al. 2015) and the MSI phenotype is 

a hallmark of the hereditary CRC predisposition disorder HPNCC (Lynch and de la 

Chapelle 2003). Strongly associated with MSI tumours is the CpG island methylator 

phenotype (CIMP). CIMP is characterised by aberrant methylation of promoter CpG 

islands resulting in epigenetic silencing of TSGs (Toyota et al. 1999; Ogino et al. 2006).  
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Table 1.3. Tumour suppressor genes involved in colorectal cancer development. 

Adapted from (Kuipers et al. 2015). LOH=Loss of heterozygosity.   

Gene or 
biomarker Chromosome Function Molecular lesion Frequency (%) Reference  

APC 5 Regulates the WNT 
signalling pathway Inactivating mutations 40–70 (Kwong and 

Dove 2009) 

ARID1A 1 

Member of the 
SWI/SNF family, 
and regulates 
chromatin structure 
and gene 
transcription 

Inactivating mutations 15 (Zhao et al. 
2022) 

DCC 18 

Netrin receptor; 
regulates apoptosis, 
is deleted but not 
mutated in 
colorectal cancer, 
and its role in 
primary cancer is 
still unclear 

Deletion or LOH 9 (mutation);  
70 (LOH) 

(Kudryavtse
va et al. 
2016) 

AMER1 X Involved in the WNT 
signalling pathway Inactivating mutations 10 (Kuipers et 

al. 2015) 

FBXW7 4 

Regulates 
proteasome-
mediated protein 
degradation 

Inactivating mutations 20 (Li et al. 
2015a) 

PTEN 10 Regulates the 
PI3K–AKT pathway 

Inactivating mutations 
and loss of protein 
(assessed by 
immunohistochemistry) 

10 (mutation);  
30 (loss of 
expression) 

(Salvatore et 
al. 2019) 

RET 10 
Regulates the 
GDNF signalling 
pathway 

Inactivating mutations 
and aberrant DNA 
methylation 

7 (mutation);  
60 (methylation) 

(Luo et al. 
2013) 

SMAD4 18 Regulates the TGFβ 
and BMP pathways 

Inactivating mutations 
and deletion 25 (Alhopuro et 

al. 2005) 

TGFBR2 3 Regulates the TGFβ 
pathway Inactivating mutations 20 (Tosti et al. 

2022) 

TP53 17 

Regulates the 
expression of target 
genes involved in 
cell cycle 
progression, DNA 
repair and apoptosis 

Inactivating mutations 50 
(Liebl and 
Hofmann 
2021) 
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Table 1.4. Other molecular alterations involved in colorectal cancer development. 

Adapted from (Kuipers et al. 2015). LOH=Loss of heterozygosity. 

 

1.1.3.4 Adenoma-carcinoma sequence 

Mutations in specific oncogenes and tumour suppressor genes are responsible for driving 

the step-wise formation of a colorectal adenoma from normal epithelial tissue, and its 

subsequent evolution into a carcinoma, known as the adenoma-carcinoma sequence 

(Leslie et al. 2002). During this process there is increasing genomic instability, reducing 

the mutational burden of the tissue (Pino and Chung 2010) (Figure 1.1).

Gene or biomarker Chromosome Function Molecular lesion Frequency 
(%) Reference 

Chromosome 
instability - - Aneuploidy 70 

(Pino and 
Chung 
2010) 

CpG island methylator 
phenotype - - 

Methylation of >40% of 
loci from a selected 
panel of markers 

15 (Toyota et 
al. 1999) 

Microsatellite 
instability - - 

Unstable microsatellite 
repeats in the 
consensus panel 

15 
(Sinicrope 
and Sargent 
2012) 

Mismatch-repair genes - 

Regulate 
DNA 
mismatch 
repair 

Loss of protein (as 
assessed by 
immunohistochemistry), 
methylation and 
inactivating mutations 

1–15 (Sinicrope 
2010) 

SEPT9 17 - Methylation >90 (Song and 
Li 2015) 

VIM, NDRG4 and BMP3 10, 16 and 4, 
respectively - Methylation 75 

(Müller and 
Győrffy 
2022) 

18qLOH 18 - Deletion of the long 
arm of chromosome 18 50 (Ogunbiyi 

et al. 1998) 
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Figure 1.1. The conventional adenoma-carcinoma model of colorectal tumourigenesis. Normal mucosa form an 

adenoma and then a carcinoma via molecular dysregulation in one of two distinct pathways: chromosomal or microsatellite 

instability. The hallmarks of cancer describes the fourteen major capabilities acquired during the multistep development of 

cancers. Adapted from (De Palma et al. 2019) and (Hanahan 2022).  
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As part of the CIN pathway of CRC formation, early adenomas are formed from the 

biallelic inactivation of the TSG APC. Germline mutations in APC define the CRC 

predisposition syndrome FAP and somatic mutations occur in 40-70% of all CRCs (Muzny 

et al. 2012). APC encodes a large protein that negatively regulates the Wnt-signalling 

pathway. It has been associated with many commonly dysregulated processes in CRC, 

including cell-cycle progression, apoptosis, proliferation, polarity, stabilization of the 

cytoskeleton and cell-cell adhesion (Fearnhead et al. 2001).  

 

1.1.3.5 Epidermal Growth Factor Receptor (EGFR) pathway 

The EGFR signalling pathway regulates cell survival, growth, proliferation and 

differentiation, it is named after the transmembrane receptor for the intercellular signalling 

molecule epidermal growth factor (EGF) (Oda et al. 2005). EGFR, encoded by the gene 

Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), is a member of the ErbB family of receptor 

tyrosine kinases, is upregulated in 60-80% of CRCs and is associated with poorer 

prognosis (Cohen 2003).   

 

Of the 8 EGFR ligands, EGF and transforming growth factor α (TGF-α) are the main focus 

of CRC research (Henriksen et al. 2013). Upon ligand binding and receptor dimerization, 

several signal transduction pathways are activated including the PI3K-AKT-mTOR and 

the MAPK/ERK (also known as RAS-RAF-MEK-ERK) pathways (Figure 1.2). EGFR can 

also be activated in a ligand-independent manner (Guo et al. 2015).  
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To reduce the pro-carcinogenic signalling from the binding of EGF and upregulated 

EGFR, several anti-EGFR therapies have been developed. Cetuximab was the first 

monoclonal antibody (MAb) that directly binds to the extracellular domain of EGFR 

inducing its internalization and degradation (Mendelsohn et al. 2015). When combined 

with FOLFIRI in the phase III CRYSTAL trial, there was a significant improvement in 

progression free survival (PFS) when compared to FOLFIRI alone (8.9 vs. 8 months, 

hazard ratio [HR]=0.85, P=0.048), however, there was no improvement in OS (HR=0.93, 

P=0.31). The apparent lack of cetuximab efficacy was later attributed to mutations in RAS; 

in the combined cetuximab treatment group samples with wild-type RAS showed a 

significant improvement in OS (HR=0.69, 95% confidence interval [CI]=0.54-0.88, 

P=2.4x10-3, any RAS mutation HR=1.05, 95% CI=0.86-1.28, P=0.64) and PFS (RAS wild-

type HR=0.56, 95% CI 0.41-0.76, P<0.001 any RAS mutation HR=1.10, 95% CI=0.85-

1.42, P=0.47) (Van Cutsem et al. 2015). Activating mutations in RAS cause downstream 

activation of its associated pathway regardless of EGFR status, rendering EGFR 

inhibitors ineffective (Karapetis et al. 2008a). A 2017 meta-analysis of clinical trials 

involving KRAS wild-type mCRC patients showed that cetuximab administration was 

significantly associated with improved PFS (HR=0.63, 95% CI=0.50–0.79, P<0.0001) and 

OS (HR=0.74, 95% CI=0.55–0.98, P=0.04) (Lv et al. 2017).  

 

Another MAb, panitumumab, also targeting EGFR was developed as an alternative to 

cetuximab as a fully humanized antibody which, unlike cetuximab, bares no risk of 

triggering antibody-dependent cell mediated cytotoxicity (Yarom and Jonker 2011). 

Panitumumab efficacy was assessed in the PRIME trial in a combination therapy with 
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FOLFOX chemotherapy; compared to FOLFOX alone the combination regimen in KRAS 

Wild-type patients showed a significant improvement in PFS (8.6 vs. 10 months, 

respectively; HR=0.80, 95% CI=0.66-0.97, P=0.02) but not OS (19.7 vs. 23.9 months; 

HR=0.83, 95% CI=0.67-1.02, P=0.072) (Douillard et al. 2010). However, OS was 

significant when stratified by mCRC (HR=0.83, 95% CI=0.70-0.98, P=0.03) (Douillard et 

al. 2014). No significant differences in the efficacy of cetuximab vs. panitumumab was 

identified in the phase III ASPECCT study (HR=0.97, P<0.0007 for non-inferiority) and 

both drugs are used as first-line mCRC treatments today.    

Figure 1.2. Epidermal Growth Factor Receptor (EGFR) pathway. Binding of 
intracellular signalling molecules such as epidermal growth factor (EGF) and transforming 
growth factor α (TGF-α) to EGFR triggers a cellular signalling cascade through several 
pathways, including the MAPK/ERK and PI3K-AKT-mTOR pathways. Resultant pro-
carcinogenic behaviours include proliferation, angiogenesis, and inhibition of apoptosis.  
Adapted from Fang et al. (2014).  
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1.1.4 Prognostic biomarkers  

1.1.4.1 Clinicopathological factors  

 

There are many established clinicopathological factors that are predictive of CRC patient 

prognosis (Table 1.5). Females have a more favourable prognosis overall (Schmuck et 

al. 2020) but when analysed by age, women over 45 have a similar prognosis (i.e. 

statistically no significant difference) to men of the same age (Majek et al. 2013). Patients 

who present with a later AJCC stage at diagnosis have a significantly worse prognosis 

(Joachim et al. 2019). Older patients have a reduced OS (van Eeghen et al. 2015); one 

study showed the 5-year OS to be 0.67, 0.55 and 0.33 for patients aged <45, 45-79 and 

80+ years old, respectively (McKay et al. 2014). The proximal colon (classified as the 

hepatic flexure, transverse colon, cecum, and ascending colon) grows from portions of 

the midgut and is morphologically different from both the distal (descending colon, 

sigmoid colon, and splenic flexure) and rectum (including the rectosigmoid junction), 

which grow from portions of the hindgut. Patients presenting with primary tumours in the 

proximal colon have a significantly worse prognosis than distal colon or rectal cancer 

patients (Wang et al. 2019; Bingmer et al. 2020). Patients with a greater number of 

metastatic sites or those whose tumours are obstructing or perforating the bowel have a 

worse outlook (Chen and Sheen-Chen 2000; Köhne et al. 2002). Venous invasion of 

cancer cells occurs in ~30% of patients, is a negative prognostic factor and can influence 

the decision to administer adjuvant therapies in earlier stage patients (Muller et al. 1989; 

Dawson et al. 2014). Several blood tests exist to screen for heightened alkaline 

phosphatase, platelet, and carcinoembryonic antigen levels, all of which are negative  
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 prognostic factors (Saif et al. 2005; Stelzner et al. 2005; Wan et al. 2013).   

Table 1.5. Clinicopathological factors associated with CRC prognosis. OS=overall 
survival, CFS=cancer-free survival, U/L=units per litre.  

Clinicopathological 
factor 

Study size 
(n affected) 

Effect on 
prognosis HR 95% CI P Reference 

Sex 164,996 (78,292 
female) 5-year relative 

survival for females 
- - <0.0001 (Majek et al. 2013) 

185,967 (85,685 
female) OS for females 0.86 0.84-

0.86 
<0.0001 (Schmuck et al. 

2020) 

Stage at diagnosis 779 (486 stage 
III/IV) OS stage III/IV 3.70 2.89-

4.99 
<0.0001 (Joachim et al. 

2019) 
Age at diagnosis 1529 (1,459 45-

79 years old) OS compared to 
under 45 group  

1.29 0.85-
1.97 

<0.0001 

(McKay et al. 
2014) 1529 (557 80+ 

years old) OS compared to 
under 45 group 

1.95 1.27-
3.01 

<0.0001 

 621 OS in older 
patients 

1.02 1.01-
1.04 

<0.05 (van Eeghen et al. 
2015) 

Primary tumour 
location  

1911 (1047 
distal) OS compared to 

Proximal 
0.72 0.62-

0.83 
<0.001 

(Bingmer et al. 
2020) 1228 (364 

rectal) OS compared to 
Proximal 

0.75 0.61-
0.92 

0.006 

1,508 (915 
distal) OS compared to 

Proximal 
0.57 0.44-

0.74 
<0.001 (Wang et al. 2019) 

Number of metastatic 
sites 

3825 OS greater 
number of sites 

- - <0.0001 (Köhne et al. 
2002) 

Primary tumour 
resection status 

810 (478 
resected)  OS compared to 

unresected 

0.63 0.53-
0.75 

<0.001 (Faron et al. 2015) 

Alkaline phosphatase 
levels 

105 survival >160 U/L 4.4 1.0-
19.1 

- (Saif et al. 2005) 

 survival >300 U/L - - <0.0001 (Köhne et al. 
2002) 

Bowel obstruction or 
perforation 

1837 (155 
obstructed or 
perforated) 

CFS - - <0.001 (Chen and Sheen-
Chen 2000) 

Platelet count 1,513 
(231 clinically 
high count) 

OS for clinically 
high count 

1.66 1.34-
2.05 

2.6x10-6 (Wan et al. 2013) 

Venous invasion 34 (6 venous 
invasion)  survival - - <0.005 (Muller et al. 1989) 

WHO performance 
status 

284 (74 
performance 
status>2) 

OS - - <0.001 (Strandberg Holka 
et al. 2018) 

Carcinoembryonic 
antigen levels 

168 OS in 
pretherapeutic stage 
IV patients 

2.26 1.46-
3.49 

0.0003 (Stelzner et al. 
2005) 
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1.1.4.2 Somatic mutations  

Most CRC biomarker research has revolved around the acquired somatic mutations of 

the tumour, with many being predictive of patient survival and response to treatment 

(Table 1.6). Occurring in approximately 40% of CRCs, KRAS mutations are predictive of 

both patient prognosis (Andreyev et al. 1998; Richman et al. 2009; Eklof et al. 2013; 

Cremolini et al. 2015b) and response to anti-EGFR treatments (Allegra et al. 2009) due 

to their downstream activation of the EGFR pathway (Section 1.1.3.5).  Neuroblastoma 

RAS Viral Oncogene Homolog (NRAS) mutations are a negative prognostic factor, have 

shown a reduction in median OS from 42.7 to 25.6 months and could also be predictive 

of resistance to anti-EGFR therapies (Schirripa et al. 2015). B-Raf Proto-Oncogene, 

Serine/Threonine Kinase (BRAF) mutations confer a poor prognosis (Richman et al. 

2009; Kalady et al. 2012); Tran et al. (2011b)  reported a median reduction in OS from 

34.7 months to 10.4 months in BRAF mutants. However, approximately 90% of those 

BRAF mutation are missense mutations resulting in the V600E amino acid substitution 

and other BRAFnon-V600E mutations are conversely associated with a better clinical 

outcome (Cremolini et al. 2015a; Schirripa et al. 2019). Phosphatidylinositol-4,5-

Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA), encoding PI3K, is a critical part 

of the PI3K-AKT-mTOR pathway (Section 1.1.3.5). Mutations in PIK3CA are predictive of 

shorter survival time (Kato et al. 2007) but is also a promising biomarker of resistance to 

anti-EGFR therapies due to being a downstream effector of EGFR (Cathomas 2014; Li et 

al. 2017). However, this treatment resistance could be restricted to exon 20 PIK3CA 

mutations (De Roock et al. 2010).  
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Chromosomal instability is a negative prognostic factor (Walther et al. 2008), but the 

prognostic role of other genomic instabilities are less clear. In contradiction to other 

studies (Barault et al. 2008; Kim et al. 2017), Ogino et al. (2009) reported a better cancer-

specific survival rate for CIMP-high patients. MSI is predictive of a significantly worse 

survival time in mCRC patients (Tran et al. 2011b; Smith et al. 2013) but a more 

favourable outcome in earlier stage patients (Lochhead et al. 2013). Allelic loss at 

chromosome 18q, most frequently at 18q21.1, occurs in approximately 70% of CRCs and 

is a marker of poor prognosis (Ogunbiyi et al. 1998). Located at this locus, the TSG SMAD 

Family Member 4 (SMAD4) is commonly under expressed in CRC, resulting in a worse 

prognosis (Alhopuro et al. 2005). 

 

1.1.4.3 Germline variation  

Currently the only prognostic germline variant that has been robustly validated in several 

cohorts is the CRC-risk associated single nucleotide polymorphism (SNP; Section 

1.2.1.2) rs9929218, intronic to the gene CDH1 at 16q22.1 (Table 1.7). Patients 

homozygous for the minor A allele have a significantly worse prognosis compared to 

those with a copy of the major G allele, indicating a recessive model of effect (Abuli et al. 

2013; Smith et al. 2015; Song et al. 2018). The variant has been shown to regulate CDH1 

expression (Han et al. 2016); CDH1 encodes E-cadherin which controls cell polarity, 

adhesion, tissue morphology, cell migration and invasion of tumour cells (Takeichi 1991). 

Other promising prognostic germline variants include those that show primary tumour site 

specificity, such as rs189655236 and rs144717887 in proximal colon cancers and 

rs698022 in distal colon cancers (Labadie et al. 2022).  
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Table 1.6. Somatic biomarkers associated with CRC prognosis. OS=Overall survival; 
CSS=cancer-specific survival; DSS=disease-specific survival; PFS=progression-free 
survival; DFS=disease-free survival; WT=wild-type 

Somatic 
factor 

Study size 
(n with 
mutation) 

Effect on prognosis HR 95% CI P Reference 

KRAS 
mutation 

689 (300) OS 1.24 1.06-1.24 8.0x10-3 (Richman et al. 2009) 

411 (80) CSS 1.48 1.02-2.16 2.0x10-3 (Eklof et al. 2013) 

329 (236) OS 1.49 1.11–1.99 <1.0x10-4 (Cremolini et al. 2015b) 

2,050 (777) OS 1.22 1.07-1.40 4.0x10-3 (Andreyev et al. 1998) 

NRAS 
mutation 321 (47) OS 1.75 1.13-2.72 1.3x10-2 (Schirripa et al. 2015) 

BRAF 
mutation 
 

692 (54) OS 1.82 1.36-2.43 <1.0x10-4 (Richman et al. 2009) 

322 (56) OS 1.79 1.05-3.05 3.0x10-2 (Kalady et al. 2012) 

524 (57)  OS - - <1.0x10-3 (Tran et al. 2011b) 

PIK3CA 
mutation 

158 (18) DSS - - 3.6x10-2 (Kato et al. 2007) 

160 (14) PFS - - 3.0x10-2 
(Li et al. 2017) 

OS - - 2.0x10-3 

MSI (mCRC) 
1,565 (66) OS 1.60 1.14-2.24 6.6x10-3 

(Smith et al. 2013) 
PFS 1.66 1.21-2.27 1.6x10-3 

350 (40) OS - - 1.7x10-2 (Tran et al. 2011b) 

MSI (early 
stages) 1,071 (92) CSS in BRAF-WT 

patients 
0.25 0.12-0.52 <1.0x10-3 (Lochhead et al. 2013) 

CIMP-high 

649 (126) colon-CSS 0.44 0.22-0.88 Significant (Ogino et al. 2009) 

277 (37) 5-year survival in 
MSS patients 

2.90 1.53-5.49 <1.0x10-3 (Barault et al. 2008) 

157 (50) 5-year DFS 2.01 1.03-3.94 4.2x10-2 (Kim et al. 2017) 

CIN 10,146 
(6,088) survival 1.45 1.35-1.55 <1.0x10-3 (Walther et al. 2008) 

Reduced 
SMAD4 
Protein and 
mRNA levels 

75 (10) DFS 

- - 
Protein= 
3.0x10-2 
 

(Alhopuro et al. 2005) 
- - mRNA= 

3.0x10-3 

Loss of 
hetero-
zygosity at 
18q 

126 (67) 
DFS 

 
- - 1.0x10-2 

 
(Ogunbiyi et al. 1998) 

DSS - - 3.0x10-3 
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Table 1.7. Germline biomarkers associated with CRC prognosis. rs9929218, 

rs10161980, rs7495132 were analysed under a recessive model. rs189655236 and 

rs144717887 were significantly associated in proximal colon cancers and rs698022 in 

distal colon cancers. OS=Overall survival, CSS=CRC-specific survival, DSS=disease-

specific survival. 

  

Germline SNP Study 
size 

Effect on 
prognosis HR 95% CI P Reference 

Validated 

rs9929218  2,083  OS 1.43 1.20-1.71 5.8x10-5 (Smith et al. 2015) 

  5,552 OS 1.18 1.01-1.37 3.2x10-2 (Smith et al. 2015) 

  1,374 OS 2.09 1.18-3.71 1.0x10-2 (Song et al. 2018) 

  1,235 OS 1.54 1.06-2.22 1.8x10-2 (Abuli et al. 2013) 

Unvalidated 

rs209489  7,258 OS 1.8 1.5-2.1 3.7x10-9 (Phipps et al. 2016) 

rs10161980  5,675 OS 1.24 1.10-1.39 3.4x10-4 (He et al. 2021) 

rs7495132  5,675 CSS 1.97 1.41-2.74 6.1x10-5 (He et al. 2021) 

rs698022  16,964 DSS 1.48 1.30-1.69 8.47x10-9 (Labadie et al. 2022) 

rs189655236  16,964 DSS 2.14 1.65-2.77 9.19x10-9 (Labadie et al. 2022) 

rs144717887  16,964 DSS 2.01 1.57-2.58 3.14x10-8 (Labadie et al. 2022) 
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1.2 Genome wide association studies 

The genome wide association study (GWAS) is now a well-established methodology in 

the search for germline associations with disease phenotypes. Unlike a candidate gene 

study, GWAS allow for an unbiased and comprehensive scan of the whole genome (often 

excluding the X and Y chromosomes) without the need for prior knowledge of a particular 

genomic loci or biological mechanism. They allow researchers to understand complex 

phenotypes underlying biology, identify genetic correlations, calculate heritability, and 

make risk predictions. GWAS can consider sequence variations or copy-number variants 

but most often look for associations with SNPs (Uffelmann et al. 2021). For example, a 

recent GWAS meta-analysis listed 205 SNPs associated with susceptibility to CRC 

(n=100,204 cases and 154,587 controls of European and east Asian ancestry) 

(Fernandez-Rozadilla et al. 2023). 

 

1.2.1 Underlying concepts of the GWAS design 

1.2.1.1 The ‘common disease, common variant’ hypothesis 

The ‘common disease, common variant’ (CD/CV) hypothesis asserts that common 

disorders are likely caused by genetic variants that exist in a high frequency in the 

population. If a common variant influences disease, then it likely has a small effect size 

relative to rare variants that affect rare disorders. Therefore, allele frequency and disease 

prevalence are inversely correlated (Manolio et al. 2009; Parikshak and Geschwind 

2013). We would also expect common heritable conditions to be caused by the 

cumulative effect of many common variants; they are polygenic. Unrelated individuals 
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who are affected by a disease would share a large proportion of these low-penetrance 

alleles (Wang et al. 2005). In a GWAS approach to variant identification it is difficult to 

find rare variants with small effect sizes and these studies are often restricted to analysing 

common variants above a minor allele frequency (MAF) of 0.01. There are also very few 

examples of disease variants that are common but with high effect sizes (Manolio et al. 

2009) (Figure 1.3).  

 

Figure 1.3. Relation of Minor Allele Frequency (MAF), effect size and feasibility of 
identifying risk variants by common genetic tests. The common disease, common 

variant hypothesis suggests that common disorders are caused by the cumulative effect 

of many low-penetrance variants and are studied more easily by an association analysis, 

such as a GWAS. Rare disorders are more likely the result of high-penetrance, rare 

variants identified by linkage analysis. Adapted from (Manolio et al. 2009) and (Tatijana 

and Vesna 2011).   
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1.2.1.2 Single nucleotide polymorphisms 

SNPs are variations at a single position of the genome that occur in more than 1% of the 

population (MAF>0.01). SNPs can be a single base substitution or indel and each is 

assigned a unique identifier, referred to as an rsID. Approximately 90% of sequence 

variation in humans can be attributed to SNPs. Most SNPs are intergenic and do not 

impact on the structure or expression of any genes (Hunt et al. 2009). They are used in 

a GWAS as genetic markers of a genomic loci’s association with a phenotype. 

 

1.2.1.3 Linkage disequilibrium 

During meiosis, recombination events cause exchange of genetic variants between 

homologous chromosomes. If two variants lie close to each other on a chromosome, then 

the likelihood of them being separated is reduced and they are inherited together and are 

in linkage disequilibrium (LD). LD is therefore a population-based parameter that 

describes the non-random association of two alleles (Slatkin 2008). Two measures of LD 

are commonly used in genetic studies, D’ (used in population genetics) and r2 (used in 

association studies). D’ values range from -1 to 1 and are derived by dividing the 

coefficient of disequilibrium (D; the measure of linkage between two variants) by the 

theoretical maximum difference between the observed and expected allele frequencies 

(Lewontin 1964). r2 values range from 0 to 1 and measure the statistical correlation 

between two alleles. A high r2 value suggests that an allele for one SNP is often observed 

with one allele of the second SNP, meaning the two alleles are in high LD. When 

genotyping an individual it is therefore feasible to only genotype one of the SNPs and still 
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capture the allelic variation of both, allowing genotyping arrays to be a lot smaller and 

cheaper (Li et al. 2009).  

 

1.2.1.4 Genotyping and imputation 

GWAS most often use SNP data produced by chip-based microarrays. These arrays are 

cost effective and can directly genotype a few thousand to a few million SNPs. Imputation 

then allows for the prediction of missing SNPs, up to tens of millions, using LD information 

from sequenced or more densely genotyped reference populations, such as the HapMap 

or 1000 genomes populations (Figure 1.4). By imputing missing SNPs a greater coverage 

of the genome is achieved, increasing the statistical power and resolution to detect 

phenotype associations (Li et al. 2009; Howie et al. 2011). The most used imputation 

software is IMPUTE v2 which assigns imputed SNPs an information score between 0 and 

1 indicating the likelihood that the SNP has been imputed with high certainty (Howie et 

al. 2009). A minimum information score threshold of 0.4 is used to filter imputed SNPs 

during GWAS quality control (QC) but many modern studies prefer a more stringent 

threshold of >0.8 to ensure the accuracy of imputed data.  
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Figure 1. 4. Genotype imputation. The genotyped sample (SG) contains untyped SNPs, 

using the directly genotyped SNPs it is phased with a reference population (Xn) and 

reference haplotypes are used to impute the untyped SNPs (SI). Adapted from Das et al. 

(2018).   

 

1.2.2 GWAS study design 

1.2.2.1 Case-control, quantitative and time-to-event 

When a trait of interest is dichotomous, a chi-squared test or logistic regression is used 

to compare a case group against a control group as a binary encoded phenotype. 

Quantitative phenotypes can also be compared under a linear model. Time-to-event 

phenotypes, such as survival time or time to metastatic disease, are most often analysed 
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using a Cox-proportional hazards model. Covariates can be added to regression models 

to adjust for the confounding effects of other factors, such as age and sex and reduce 

false-positive associations.  

 

1.2.2.2 Genetic analysis models 

Under an additive model of inheritance, each copy of a SNPs minor allele has an additive 

effect on the phenotype. In this case SNPs are recorded as ‘0’, ‘1’ or ‘2’ for the number of 

copies of the minor allele. In a recessive model, only individuals homozygous for the minor 

allele would have an affected phenotype and so are encoded as a ‘1’, homozygous-

majors or heterozygotes are recorded as a ‘0’. Dominant alleles only require a single copy 

of the minor allele to have the full effect on the phenotype, this model is tested by 

encoding the heterozygotes and homozygous-minor samples as a 1 and the homozygous 

majors as a ‘0’ (Setu and Basak 2021).   

 

1.2.2.3 Sample size, statistical power, and multiple testing 

The CD/CV hypothesis proposes that common diseases are caused by SNPs with small 

effect sizes, as a result GWAS require very large sample sizes to be able to detect 

statistically significant associations. Statistical power is a measure of this ability, it is 

defined as the likelihood of a hypothesis test detecting a true effect if there is one and is 

positively linked to the sample size. It has been established that statistically significant 

associations from smaller, less powered studies are more likely to be false-positive 

findings than those identified via larger studies (Sham and Purcell 2014).  
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Testing millions of associations between individual SNPs and a trait of interest requires a 

stringent multiple testing burden to avoid false positive results. Studies such as the 

International HapMap Project (Altshuler et al. 2005) have shown that on average there 

are approximately 1 million independent common variants across the human genome, 

this suggests a Bonferroni corrected threshold of P<5.0x10-8 to be suitable for GWAS and 

has become the de facto standard. However, when reducing the minimum MAF threshold 

for inclusion of rarer variants the threshold for statistical significance should be made 

more stringent due to the lack of LD between rare and common variants effectively 

increasing the number of independent tests (Uffelmann et al. 2021). More recently a 

second threshold for suggestive significance (P<1.0x10-5) has been commonly accepted 

to identify SNPs with a potential association with the trait of interest.   

 

1.2.3 Quality-control 

1.2.3.1 Sample quality 

There are stringent QC practices to remove any genetic variants or samples that may 

potentially bias GWAS results and lead to false-positive findings. Turner et al. (2011) 

outlined a QC protocol for GWAS data. Samples are first filtered from analysis if they 

contain discordant sex information (genetic sex not matching reported sex) or any large 

chromosomal anomalies, indicative of poor sample handling or genotyping quality. Most 

GWAS study designs are reliant upon the independence of the allele distributions across 

the study population; related samples harbour large numbers of similar genetic variants 

and thus bias the analyses. Commonly used tests for cryptic relatedness between 

samples are based on identity by descent values. In PLINK (Purcell et al. 2007) pairwise 
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relatedness is expressed using Pi_Hat values, a common threshold of Pi_Hat>0.1 (the 

minimum threshold for first cousins) is used to remove one individual from each pair. In 

study populations that are known to be related, genomic-relationship matrices can be 

calculated and incorporated in mixed model regression analyses (Widmer et al. 2014). 

Population stratification occurs when the study population contains different groupings of 

individuals of differing genetic ancestry, this can lead to the non-random assortment of 

alleles due to the LD structures of these sub-populations (Marchini et al. 2004). For 

example, if a particularly high number of individuals of a particular genetic ancestry are 

by chance clustered into one of the case or control groups, then all the alleles in their 

shared haplotype would be falsely associated with the tested phenotype. Often studies 

are restricted to individuals of the same genetic ancestry, identified via principal 

component analysis (PCA) of the genotyping data against a reference population of 

known ancestry, such as the 1000 genomes project (Altshuler et al. 2015). The first few 

genetic principal components are also often added as covariates to the regressions to 

further adjust for population stratification. Samples with a low genotyping call rate are also 

removed from analysis as this is indicative of poor-quality genotyping. The threshold used 

varies by study but is often >5% ungenotyped SNPs. Individuals with large deviations in 

genome-wide heterozygosity levels are removed; high levels indicate sample 

contamination and low signify inbreeding, which would bias the analysis (Marees et al. 

2018a).  
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1.2.3.2 SNP quality 

If imputed, individual SNPs are first filtered by information score (Section 1.2.1.4). SNPs 

that have a low call rate (more than a few percent missing) are removed, indicative of 

poor genotyping quality. SNPs with a MAF below 0.05 in the study population are filtered 

out, although many larger studies reduce this threshold to 0.01. This decreases the 

multiple testing burden as the power to detect an association in rare SNPs at modest 

effect sizes is extremely low. Rarer SNPs are also more prone to genotyping errors. 

Finally, variants that deviate from the Hardy-Weinberg Equilibrium (HWE) are removed 

as they are likely to contain genotyping errors, this is achieved using the HWE-exact test 

(Marees et al. 2018a).  

 

1.2.4 GWAS visualisation 

The results of the primary GWAS analysis are presented in a Manhattan plot. SNPs are 

ordered by chromosome then position and plotted against the association -log10(P). Lines 

for genome wide and suggestive significance are drawn, most often at P=5.0x10-8 and 

P=1.0x10-5, respectively (Figure 1.5a). Quantile-quantile (QQ) plots are used to test for 

systematic inflation of P-values because of poor QC or model overfitting. The observed 

P-values for each SNP are ordered and plotted against expected values from a theoretical 

χ2-distribution (Figure 1.5b). If the observed values fit the expected distribution, then all 

points will lie along the Y=X line between the X and Y axes. Any significant SNPs 

observed in the study will deviate from this line but an early separation of expected from 

observed values may indicate QC issues, such as population stratification or cryptic 

relatedness (Ehret 2010). QQ plots are often accompanied by the genomic inflation factor 
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(λ) statistic, which is a measure of this deviation. A λ value between 1 and 1.10 is 

generally considered acceptable (Yang et al. 2011). Regional association plots (hereby 

referred to as LocusZoom plots) allow for visualisation of GWAS summary statistics at 

individual loci of interest. SNPs at a particular locus are plotted against their -log10(P), 

overlapping genes are shown, as well as recombination rates and LD structure.  
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Figure 1.5. Visualisation of GWAS summary statistics. (A) Manhattan plot. SNPs are ordered by chromosome position 

and plotted against the -log10(P) for their association with gout. The top dashed line represents the threshold for genome 

wide significance (P=5.0x10-8) and the bottom dashed line is the threshold for suggestive significance (P=1.0x10-5). Adapted 

from (Matsuo et al. 2016) (B) Quantile-quantile plot: expected -log10(P-value), under the null hypothesis of no association 

between genotype and OS, plotted against observed -log10(P-value). 
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1.3 Transcriptome-wide association study  

GWAS results can be difficult to interpret since strongly associated SNPs most often lie 

in intergenic regions of the genome and their direct effect on the phenotype of interest is 

unclear. These variants may regulate gene expression for nearby (cis) or more distant 

(trans) genes, referred to as genetically regulated gene expression (GReX). If a SNP is 

associated with the variance of a gene’s expression (cis or trans) it is referred to as an 

expression quantitative trait loci (eQTL) (Nica and Dermitzakis 2013). Utilising genome-

wide genotyping data and measures of gene expression (such as RNA-sequencing) there 

exists databases of associations between eQTLs and the tissue-specific expression of 

individual genes. The most commonly used databases include the Genotype-Tissue 

Expression (GTEx) project (Chapter 2, Section 2.3.7) and eQTLGen (Urmo et al. 2018).  

 

Transcriptome-Wide Association Study (TWAS) is a gene-based association approach 

first developed by Gamazon et al. (2015a). Due to the limited availability of samples with 

directly measured transcriptome-wide gene expression levels, TWAS methods were 

developed to integrate genotyping or GWAS summary statistic data with reference eQTL 

information to identify transcriptionally regulated genes associated with a phenotype of 

interest. A TWAS can therefore work as an extension or alternative to a traditional GWAS 

approach (Li and Ritchie 2021). By aggregating the effects of many individual genetic 

variants into the GReX for a single gene, the multiple testing burden is reduced by orders 

of magnitude and significant associations are more easily interpreted as a biological 

mechanism of effect. TWAS approaches have previously shown success in identifying 
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genes whose expression is associated with CRC susceptibility (Fernandez-Rozadilla et 

al. 2023).  

 

1.3.1  GWAS summary statistic-based vs individual-level data-based  

TWAS first impute the transcriptome wide GReX levels using a reference panel of eQTLs 

and then test their association with a phenotype. What differentiates TWAS studies is the 

model used in the imputation of GReX levels. The two broad methods involve either the 

individual-level genome-wide genotyping data or summary-statistic data from a GWAS of 

the phenotype of interest (Figure 1.6). The software tool PrediXcan (Gamazon et al. 

2015a) was first developed to incorporate the former but was soon followed by FUSION, 

developed by Gusev et al. (Gusev et al. 2016). FUSION was developed for use with 

summary-statistic level data due to the limited availability of genotyping-level data in 

published GWAS studies. eQTL information is highly tissue-specific and so TWAS 

analysis requires prior biological insight into the affected tissues of interest. More recently 

techniques have been developed for cross-tissue TWAS. MultiXcan by Barbeira et al. 

(2019) uses individual-level genotyping data to predict GReX in each tissue and then fits 

the predictions in a statistical model against the phenotype of interest. It utilises a PCA 

based approach to avoid inflation of results due to the correlation of cross-tissue gene 

expression (Li and Ritchie 2021).  
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Figure 1.6. An overview of strategies for identifying disease-related genes 

following or parallel to GWAS. Path 1 highlights a TWAS using individual level 

genotyping data and path 2 a GWAS summary statistics-based TWAS. Adapted from Li 

and Ritchie (2021). 
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1.4   Hypothesis and aims 

Hypothesis:  

Novel germline biomarkers of survival time for CRC exist and are yet to be identified.  

 

Aims:   

• To perform a GWAS of OS in the combined COIN and COIN-B mCRC cohorts and 

identify novel prognostic germline alleles. 

• To perform further GWAS in sub-populations grouped by primary tumour 

anatomical site and identify site-specific prognostic germline alleles. 

• Identify potential treatment targets and germline prognostic germline alleles in 

MAPK-activated CRCs.  

• Unmasking of novel prognostic germline alleles by excluding known somatic 

prognostic markers. 

 

Figure 1.9 shows the overall structure of the thesis. 
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Figure 1.7. CONSORT diagram for this thesis.  
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Chapter 2: Materials and methods 

2.1 Resources used in this thesis 

2.1.1 Hardware 

Local compute analyses were performed on a 2019 Apple (Cupertino, USA) MacBook 

Pro Retina (15”, 2.4GHz 8-core Intel Core i9 processor, 32GB 24000 MHz DDR4 

memory) using the macOS Monterey operating system. Analyses requiring advanced 

compute were completed via command line-based remote access of the Hawk high-

performance cluster (HPC) located at the Advanced Research Computing at Cardiff 

(ARCCA) facility.  

 

2.1.2 Software 

The statistical programming language R, version 4.1.1 (R_Core_Team 2018), 

downloaded from http://www.r-project.org, was used for data processing and analysis. 

The general-purpose language Python version 3.10 was used also for data 

manipulation (Van Rossum and Drake 2009). The integrated development 

environments (IDE) used were RStudio version 2022.02.3+492 (Orange Blossom 

release, RStudio, Inc., Boston, MA) downloaded from https://www.rstudio.com/ and 

Visual Studio Code version 1.67 (Microsoft, Redmond, WA), downloaded from 

https://code.visualstudio.com/. Linear and logistic GWAS analyses, LD-based SNP 

clumping and management of the binary genotyping files were completed using PLINK  

versions 1.9 (Purcell et al. 2007) and 2.0 (Chang et al. 2015), downloaded from 

http://pngu.mgh.harvard.edu/purcell/plink/. Gene and gene-set level association 

http://www.r-project.org/
https://www.rstudio.com/
https://code.visualstudio.com/
http://pngu.mgh.harvard.edu/purcell/plink/
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analyses were completed using Multi-marker Analysis of GenoMic Annotation 

(MAGMA) (de Leeuw et al. 2015) versions 1.07b (Chapter 3) and 1.09b (Chapters 4, 

5 and 6), downloaded from https://ctg.cncr.nl/software/magma. SNPTEST version 2 

(Marchini and Howie, Oxford, UK) was used to calculate SNP INFO scores, 

downloaded from https://www.well.ox.ac.uk/~gav/snptest/. GTOOL (Genomics 

Software Suite, University of Oxford) was used to convert genotype files, downloaded 

from https://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html. The UK Biobank 

phenotypic and clinical dataset was decompressed and converted into tab delimited 

text files using the ukbunpack and ukbconv software. The genotypic data was 

downloaded using the gfetch software, all available from the UK Biobank website 

https://biobank.ndph.ox.ac.uk/showcase/download.cgi. PrediXcan (Gamazon et al. 

2015b), part of the MetaXcan tool set (downloaded from 

https://github.com/hakyimlab/MetaXcan) was used to impute individual-level gene 

expression levels from genotype data.  

 

2.1.3 Packages and Modules 

Packages for R were downloaded from the Comprehensive R Archive Network 

(CRAN, https://cran.r-project.org/), Bioconductor (https://www.bioconductor.org/) 

repositories and  individual Git (https://github.com/) repositories. Python modules were 

downloaded from the conda package management system (Anaconda_inc. 2020). All 

modules and packages used for this thesis are listed in Table 2.1.  

  

https://ctg.cncr.nl/software/magma
https://www.well.ox.ac.uk/~gav/snptest/
https://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html
https://biobank.ndph.ox.ac.uk/showcase/download.cgi
https://github.com/hakyimlab/MetaXcan
https://cran.r-project.org/
https://www.bioconductor.org/
https://github.com/
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Package/module Software Purpose Reference 

Base R Basic data manipulation R Core Team (2018) 

BiocManager R 
Used to access the 
Bioconductor repository of 
packages 

Gentleman et al. (2004) 

car R Function for recoding of 
variables Fox and Sanford (2019) 

data.table R Data import and export Dowle and Srinivasan 
(2019) 

gwasurvivr R 
Genome wide association 
analysis of time-to-event 
variables 

Rizvi et al. (2019) 

NumPy Python Mathematical functions Harris et al. (2019) 

Pandas Python Data manipulation and 
analysis McKinney (2010) 

Psych R Functions for Principal 
component analysis Revelle (2021) 

qqman R Generating Quantile-Quantile 
and Manhattan plots Turner (2018) 

qvalue  R Functions to adjust P-values 
for false discovery rate Storey et al. (2021) 

survival R Functions for time-to-event 
data analysis Therneau (2022) 

survminer R Functions for time-to-event 
data visualisation  Kassambara (2021) 

survSNP R 
Power calculations for SNP 
association studies with time-
to-event data 

Owzar (2012) 

tidyverse R 

Collection of packages 
designed for data science, 
including ggplot2, dplyr and 
tibble.  

Wickham et al. (2019) 

 

Table 2.1. Packages and modules used in this thesis. 
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2.1.4 Web Links 

Web based packages used for further analyses included LocusZoom (Willer et al. 

2010a), for visualisation of GWAS summary statistics and SNP LD information, 

available at http://locuszoom.org.  

 

2.2 My contribution and others contributions 

Sample collection, genotyping and some QC measures were completed by others 

prior to the beginning of this project, all other analyses and the study design were 

completed by myself unless stated otherwise (Figure 1.7).  

 

2.3 Datasets used in this thesis 

2.3.1 COIN and COIN-B 

2.3.1.1 COIN 

The COIN trial (NCT00182715) was a phase III randomised clinical trial in mCRC 

patients for the anti-cancer drug cetuximab, a monoclonal antibody targeting EGFR 

(Chapter 1, Section 1.1.3.5) (Adams et al. 2011; Maughan et al. 2011). Two thousand, 

four hundred and forty-five patients with locally advanced or metastatic colorectal 

adenocarcinoma were randomised 1:1:1 into three arms. Arm A (n=815) received 

continuous chemotherapy (intravenous 5-FU, folinic acid (leucovorin) and oxaliplatin 

(FOLFOX) or orally administered capecitabine and intravenous oxaliplatin (XELOX)), 

Arm B (n=815) received continuous chemotherapy plus continuous cetuximab and 

Arm C (n=815) received intermittent chemotherapy (Figure 2.1). Oxaliplatin plus 

http://locuszoom.org/
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fluorouracil and folinic acid was given as a 2-weekly regimen of intravenous L-folinic 

acid 175 mg or D,L-folinic acid 350 mg over 2h given concurrently with oxaliplatin 85 

mg/m² over 2h, followed by intravenous bolus fluorouracil 400 mg/m², and finally 

fluorouracil 2400 mg/m² infusion over 46h via an ambulatory pump. Oxaliplatin plus 

capecitabine was given as a 3-weekly regimen of intravenous oxaliplatin 130 mg/m² 

over 2 h followed by oral capecitabine 1000 mg/m² twice a day for 2 weeks (Adams et 

al. 2011). Inclusion criteria comprised of patients being at least 18 years old, primary 

adenocarcinoma of the colon or rectum, inoperable metastatic or locoregional 

measurable disease according to Response Evaluation Criteria In Solid Tumours 

(RECIST, version 1.0), good end-organ function and World Health Organisation 

(WHO) performance status of maximum 2. Patients were excluded if they had a history 

of malignant disease, an uncontrolled medical comorbidity likely to interfere with the 

trial, previous chemotherapy treatment or metastases in the brain. Patients gave 

informed consent for bowel cancer research (approved by REC [04/MRE06/60]).  

 

The aims of the COIN study were to (I) assess the effect on OS of the addition of 

cetuximab to first-line continuous chemotherapy and (II) determine if intermittent 

chemotherapy was inferior to continuous chemotherapy in terms of OS. In terms of 

OS or PFS, there was no statistically significant superiority of cetuximab addition to 

continuous chemotherapy versus continuous chemotherapy alone (Figure 2.2), even 

in patients with KRAS wild-type CRC (OS HR=1.04, 95% CI=0.87-1.23, P=0.67; PFS 

HR=0.96, 95% CI=0.82-1.12, P=0.60) (Maughan et al. 2011). Intermittent 

chemotherapy did not show non-inferiority to continuous chemotherapy in terms of OS 

(median OS 19.6 months Arm A, 18.0 months Arm C; HR=1.05, 95% CI=0.85-1.29, 

P=0.66). However, subgroup analyses did show that patients with normal baseline 
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platelet counts could have intermittent chemotherapy, and all its associated benefits, 

with no detriment in survival. Patients with raised platelet counts require continuous 

chemotherapy to increase their survival time and quality of life (Adams et al. 2011).  

 

 

2.3.1.2 COIN-B 

The follow up phase II COIN-B clinical trial (NCT00640081) recruited a further 226 

patients, with the same inclusion/exclusion criteria as COIN to determine the efficacy 

of intermittent cetuximab against cetuximab maintenance. Following the emergence 

of data showing the resistance of KRAS-mutant tumours to anti-EGFR therapies 

(Chapter 1, Section 1.1.3.5) trial recruitment was suspended in May 2008 and 

recommenced in January 2009 recruiting only KRAS wild-type patients. Arm D 

(n=112) received intermittent FOLFOX chemotherapy plus intermittent cetuximab and 

Arm E (n=114) received intermittent FOLFOX chemotherapy plus continuous 

cetuximab (Wasan et al. 2014) (Figure 2.1). In the analysis of 169 KRAS wild-type 

patients, continuous cetuximab showed superiority to intermittent treatment in terms 

of PFS (median PFS intermittent cetuximab 3.1 months, 95% CI=2.8-4.7; continuous 

cetuximab 5.8 months, 95% CI=4.9-8.6) and failure-free survival (FFS) (FFS 

intermittent cetuximab 16.8 months, 95% CI=14.5-22.6; continuous cetuximab 22.2 

months, 95% CI=18.4-28.9). Clinicopathological data of patients by trial arm can be 

seen in Table 2.2.  
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Figure 2.1. COIN and COIN-B trial design



Chapter 2 

46 
 

Figure 2.2. Kaplan-Meier survival analyses from the COIN and COIN-B trials. Time in days is plotted against overall survival 

probability for (A) patients from trial arms A-E and (B) patients who did and did not receive cetuximab. The number of patients still 

at risk at each time point is shown beneath and P-values are shown for log-rank tests.    
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  COIN COIN-B 

Trial and arm   A B C D E 
Patients  Total 815 815 815 112 114 

Genotype and 
passed QC 

579 (71)  616 (76)  583 (72)  85 (76)  85 (75)  
       
Sex  Male 390 (67)  410 (67)  376 (64) 48 (56)  46 (54)  

Female 189 (33)  206 (33)   207 (36)  37 (44)  39 (46)         

Mean Age  
 

62.3 62.9 63.2 61.8 61.9        
Chemotherapy 
received  

FOLFOX 200 (35)  212 (34)  212 (36)  85 (100)  85 (100)  
XELOX 379 (65)  404 (66)  371 (64)  0 (0)  0 (0)         

Cetuximab 
administered  

Yes 0 (0) 616 
(100)  

0 (0) 85 (100)  85 (100)  

No 579 
(100)  

0 (0)  583 
(100)  

0 (0)  0 (0)  
       
Primary tumour 
location  

Colon 390 (67)  408 (66)   405 (70)   52 (61)   69 (81)  
Rectum 187 (32)  208 (34) 177 (30) 33 (39) 16 (19)  
n/k 2 (<1)  0 (0)  1 (<1)  0 (0)  0 (0)         

Number of 
metastatic sites  

0–1  197 (34)  239 (39)  208 (36)  30 (35)  32 (38)  
≥ 2 382 (66)  377 (61)  375 (64)  55 (65)  53 (62)         

Liver-only 
metastases  

Yes 432 (75) 462 (75)  440 (75)  0 (0) 0 (0) 
No  147 (25)  154 (25)  143 (25)  0 (0) 0 (0) 
n/k 0 (0)  0 (0)  0 (0)  85 (100)  85 (100)         

Synchronous 
metastases  

Yes 393 (68)  426 (69)  411 (70)  61 (72)  67 (79)  
No 180 (31)  187 (30)  167 (29) 23 (27)  18 (21)  
n/k 6 (1)  3 (<1)   5 (1)  1 (1)  0 (0)         

WHO 
performance 
status  

0-1 537 (93)  575 (93)  535 (92)  80 (94)  76 (89)  
≥ 2 42 (7)  41 (7)  48 (8)  5 (6)  9 (11)  

       

White blood cell 
count  

<10000 (per L) 404 (70)  442 (72)  399 (68)  73 (86)  63 (74)  
≥ 10000 (per L) 175 (30)  174 (28)  183 (31)  12 (14)  21 (25)  
n/k 0 (0)  0 (0)  1 (<1)  0 (0)  1 (1)         

Response at 12 
weeks  

Yes 277 (48)  300 (49)  289 (46)  49 (58)  39 (46)  
No 218 (38)  223 (36)  210 (36)  21 (25)   23 (27)  
no data  84 (14)  93 (15)  84 (14)  15 (17) 23 (27)         

Median OS 
(days)  

 
503 496 461 509 527 

       
KRAS status  Mutant 268 (33) 297 (36) 259 (32) 24 (21) 15 (13)  

Wild-type 367 (45) 362 (44) 396 (49)  78 (70) 91 (80)   
no data 180 (22) 156 (19) 160 (20) 10 (9) 8 (7)        

NRAS status Mutant 18 (2) 32 (4) 19 (2) 7 (6) 8 (7)  
Wild-type 613 (75) 627 (77) 630 (77) 62 (55) 76 (67)  
no data 184 (23) 156 (19) 166 (20) 43 (38) 30 (26)        
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BRAF status  Mutant 44 (8)  29 (5)  52 (9)  6 (7)  12 (14)   
Wild-type 426 (74)  480 (78)  435 (75)  46 (54)  51 (60)   
no data 109 (19)  107 (17)  96 (16)  33 (39)  22 (26)         

PIK3CA status Mutant 58 (10) 67 (11) 64 (11) 0 (0) 0 (0)  
Wild-type 400 (69) 432 (70) 419 (72) 2 (2) 0 (0)  
no data 121 (21) 118 (19) 101 (17)  83 (98) 85 (100)        

Microsatellite  stable 392 (68) 400 (65) 400 (69) 2 (2) 0 (0)  
instable 11 (2) 19 (3) 15 (2) 0 (0) 0 (0) 

  no data 176 (30) 198 (32) 169 (29) 83 (98) 85 (100) 
Table 2.2. Clinicopathological data of patients by trial arm. Data shown for 

patients that were genotyped and passed quality control. Percentages shown in 

parentheses. Response defined as complete or partial response as outlined in 

RECIST 1.0 guidelines. Non-response defined as stable or progressive disease. 

OS=overall survival, QC=quality control, Age=age at randomisation, n/k=not known, 

FOLFOX=oxaliplatin and intravenous 5-FU, folinic acid (leucovorin), 

XELOX=intravenous oxaliplatin and orally administered capecitabine.  

 

2.3.1.3 Germline DNA analyses 

DNA was extracted from blood samples from 2,244 patients by conventional methods 

and genotyped using Affymetrix Axiom Arrays (Al-Tassan et al. 2015). The genotyping 

quality was tested using duplicate DNA samples with >99% concordance. Prediction 

of untyped SNPs was carried out using IMPUTE2 v2.3.0 (Howie et al. 2009) based on 

data from the 1000 Genomes Project as reference (Howie et al. 2011; Altshuler et al. 

2015) (total number of SNPs following imputation = 47,368,871).  

 

2.3.1.4 Germline genotyping quality control 

Pre-GWAS QC of the genotyping data was completed in line with current 

recommendations (Marees et al. 2018b). Individuals were excluded from analysis if 

they failed one or more of the following thresholds: overall successfully genotyped 

SNPs <99% (n=122), discordant sex information (n=8), low heterozygosity (inbreeding 
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coefficient >0.2, n=0), classed as out of bounds by Affymetrix (n=30), duplication or 

cryptic relatedness (proportion identical by descent >0.1, n=4), and evidence of non-

white European ancestry by PCA-based analysis (n=130). After QC, genotype data 

was available on 1,950 patients (Figure 1.7). SNPs that reside in established long 

range LD regions, such as the major histocompatibility complex region, were removed 

as they can bias the results of PCA. SNPs were removed if they had INFO score 

(calculated in SNPTEST) <0.8 (n=29,116,015), missingness >2% (n=3,534,993) or 

HWE exact test (Wigginton et al. 2005) P<1.0x10-6 (n=47), leaving 14,717,816 SNPs 

for analysis. MAF filtering was considered based upon the available sample size for 

each particular analysis.  

 

2.3.1.5 Somatic tumour DNA analyses 

Two thousand one hundred and eighty-four formalin-fixed, paraffin embedded (FFPE) 

tumour samples were screened for KRAS (codons 12, 13 and 61), NRAS (codons 12 

and 61), BRAF (codons 594 and 600) and PIK3CA (codons 542, 545, 546 and 1,047) 

mutations using Pyrosequencing and Sequenom technologies (Smith et al. 2013). 

Microsatellite instability (MSI) status in tumours was determined using the markers 

BAT-25 and BAT-26 (Table 2.2).  

 

Overall, KRAS mutations (G12A, G12C, G12D, G12V, G12R, G12S, G13C, G13D, 

G13S, G13R, Q61H, Q61L, Q61R and 5 remained uncharacterised) were identified in  

863/2157 (40.0%), NRAS mutations (G12C, G12D, G12V, G13D, G13R, Q61H, Q61K, 

Q61L, Q61H, Q61R and one remained uncharacterised) in 84/2092 (4.0%), BRAF 

mutations (D594G and V600E) in 143/1581 (9.0%) and PIK3CA mutations (E542K, 
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E545K, Q546K, H1047L and H1047R) in 189/1442 (13.1%) CRCs. MSI was detected 

in 45/1239 (3.6%) CRCs. 

 

2.3.1.6 Survival outcomes 

Patients from COIN and COIN-B are combined for survival analyses since there was 

no evidence of heterogeneity in OS between patients when analysed by trial arm 

(P=0.40; Cochran Q test: P=1.0, I2 test: P=0.74), trial (P=0.49), cetuximab use 

(P=0.41) or type of chemotherapy received (P=0.60; Figure 2.2). 

 

2.3.1.7 Response to treatment 

Assessment of response was performed at 12 weeks; response was defined as 

complete or partial response using RECIST 1.0 guidelines and no response was 

defined as stable or progressive disease.  

 

 

2.3.2 Study of Colorectal Cancer in Scotland (SOCCS) 

The SOCCS trial (1999-current) (Theodoratou et al. 2007; He et al. 2019) aims to 

recruit 10,000 people from Scotland with CRC by 2026 (ethics approval number 

MREC/01/0/5 obtained from the MultiCentre Research Ethics committee for Scotland). 

All patients have a confirmed diagnosis of adenocarcinoma of large bowel epithelium, 

are genotyped using Illumina HumanHap300,  HumanHap240S or Illumina iSelect 

custom panel arrays and imputed using the 1000 Genomes Project (Howie et al. 2011) 

as reference (imputation score >0.3 used to select SNPs for analysis) (Tenesa et al. 

2008; Theodoratou et al. 2018). Following QC, 5,675 patients (1,358 CRC specific 
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deaths) of which 784 had stage IV CRC (522 deaths) were made available for this 

study. 

 

2.3.3 International Survival Analysis in Colorectal cancer Consortium (ISACC) 

16,964 patients (4,010 deaths) of which 1,847 had stage IV CRC (1,448 deaths) were 

made available from ISACC which comprised of 15 studies: the Cancer Prevention 

Study-II (CPS-II) (Calle et al. 2002), the German Darmkrebs: Chancen der Verhutung 

durch Screening Study (DACHS) (Brenner et al. 2011; Brenner et al. 2012), the Diet 

Activity and Lifestyle Study (DALS) (Slattery et al. 1997; Slattery et al. 2003), the Early 

Detection Research Network (EDRN) (Srivastava and Wagner 2020), the Swedish 

population of the European Prospective Investigation into Cancer (EPIC) (Riboli and 

Kaaks 1997), the Health Professionals Follow-up Study (HPFS) (Rimm et al. 1991), 

the Melbourne Collaborative Cohort Study (MCCS) (Giles and English 2002), the 

Nurses’ Health Study (NHS) (Belanger et al. 1980; Colditz et al. 1997), the N9741 

clinical trial (Goldberg et al. 2004), the Physician’s Health Study (PHS) (Steering-

Committee 1989), the Prostate, Lung, Colorectal, and Ovarian Study (PLCO) 

(Gohagan et al. 2000; Prorok et al. 2000), the UK Biobank (UKB; Section 2.3.5), the 

VITamins And Lifestyle Study (VITAL) (White et al. 2004), the Women’s Health 

Initiative (WHI) (Anderson et al. 1998), and four Colon Cancer Family Registry (CCFR) 

sites: Seattle, Ontario, Australia, and the Mayo Clinic (Newcomb et al. 2007). Study 

participants included individuals of European genetic ancestry diagnosed with CRC 

and with available genotyping and CRC-specific survival data. All participants provided 

informed consent for genetic testing, and all studies were approved by their respective 

Institutional Review Boards. 
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2.3.4 The UK Biobank 

The UK Biobank (UKB) is a prospective cohort study providing deep genetic and 

phenotypic data on approximately 500,000 individuals (Bycroft et al. 2018). 

Participants were all from the United Kingdom and aged between 40 and 69. The 

phenotypic and medical databases are linked to electronic health records as well as 

the death and cancer registers. Patients also gave blood, urine, and saliva samples, 

underwent physical activity monitoring, heart and lung function tests, physical 

measurements, various imaging procedures and completed extensive questionnaires 

to collect socio-demographic and lifestyle information. UKB participants were selected 

for this study if their earliest cancer diagnosis (fields 40005.0.0 to 40005.16.0) was an 

ICD10 code for tumours in the colon or rectum (fields 40006.0.0 to 40006.16.0). 

Survival time was calculated as time from diagnosis of CRC to date of death (fields 

40000.0.0/40000.1.0). The censoring date for survival time was the 28th of February 

2021 (the date the death registry data was collected by UKB and later distributed to 

researchers in August 2021).  

 

2.3.4.1 Genetic data 

Whole-genome germline genotyping was completed for 488,377 participants using 

two closely related arrays, the UK BiLEVE array (807,411 markers) and the UK 

Biobank Axiom array (825,927 markers) which had a 95% content overlap. SNPs were 

imputed to >90 million using the Haplotype Reference Consortium (McCarthy et al. 

2016), UK10K + 1000 genomes project (Chou et al. 2016) reference panels. Our work 
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was carried out under project application number 65833 and used participants from 

both genotyping arrays. 

 

2.3.4.2 Germline genotyping quality control 

Following the UK Biobank’s own QC procedures for genotyping quality, 487,409 

participants had genotyping data available for download. Pre-GWAS QC of the 

genotyping data was completed in line with current recommendations (Marees et al. 

2018b) using the Hawk HPC. Individuals were excluded from analysis if they failed 

one or more of the following thresholds: overall successfully genotyped SNPs <99% 

or low heterozygosity (inbreeding coefficient >0.2, n=377), duplication or cryptic 

relatedness (KING-kinship coefficient >0.0442 for up to third degree cousins, 

n=73,321), and evidence of non-white European ancestry by PCA-based analysis 

(n=78,312). After QC, genotype data was available on 335,399 participants. SNPs 

were removed if they had INFO score (calculated in SNPTEST) <0.8 or MAF<0.01 

(n=83,530,907), missingness >5% (n=637,144) or Hardy-Weinberg equilibrium exact 

test (Wigginton et al. 2005) P<1.0x10-6 (n=73,522), leaving 8,854,050 SNPs for 

analysis. Further MAF filtering was considered per analysis.  

 

2.3.5 The Genotype-Tissue Expression (GTEx) project 

The GTEx project version 8 database (Carithers and Moore 2015; null et al. 2020), 

was used to identify cis eQTL. The database includes expression data for individual 

genes from 49 tissues linked to genotype for 838 donors aged 20-79 years old. Of 

these, 84.6% were white, 12.9% African American, 1.3% Asian, 0.2% American Indian 

with the remaining donors having unknown heritage. eQTL were annotated by 
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inputting SNP rs ID’s into the ‘By variant or rs ID’ field on the GTEx portal 

(https://gtexportal.org/home/). Further information on the GTEx project sequencing 

and eQTL identification methodologies can be found in their documentation: 

https://gtexportal.org/home/documentationPage. 

 

2.3.6 The Cancer Genome Atlas (TCGA) 

The TCGA dataset (Cancer Genome Atlas Research et al. 2013), available at 

https://portal.gdc.cancer.gov/, contains molecular characterisation for over 20,000 

primary cancer samples across 33 cancer types, including genomic, epigenomic, 

transcriptomic, and proteomic data. Methylation array data collected using the Illumina 

human methylation 450 platform was downloaded from the TCGA data repository, 

containing beta coefficients for methylation levels at each of 485,578 CpG islands 

across the genome.  

 

2.3.7 The Human Protein Atlas (THPA) 

THPA (Uhlen et al. 2015) pathology section contains association information between 

the survival of approximately 8000 cancer patients (across 17 major cancer types) and 

genome wide RNA expression levels (Uhlen et al. 2017). Anonymised tissue samples 

and survival data were collected from the TCGA project from the initial release of 

Genomic Data Commons (GDC) on June 6, 2016. RNA-seq data for 20,090 genes 

were reported as a median number of fragments per kilobase of exon per million reads 

(FPKM) generated by TCGA. Available at https://www.proteinatlas.org/. 

 

https://gtexportal.org/home/
https://gtexportal.org/home/documentationPage
https://portal.gdc.cancer.gov/
https://www.proteinatlas.org/
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2.4 Statistical analyses 

2.4.1 Survival analyses 

Survival outcomes were assessed by univariate and multivariate Cox proportional-

hazards models or log-rank test. Visualisation of survival data included Kaplan-Meier 

and forest plots produced by the R packages survminer and ggplot2.  

 

2.4.2 Dimensionality reduction of regression covariates 

With a small sample size there is a risk of overfitting in the regression models when 

including many prognostic clinicopathological factors as covariates. To capture the 

information observed in each of the prognostic clinicopathological factors whilst 

reducing the dimensionality of the data, PCA was performed using the psych R 

package. A threshold of 70% total variance of the factors explained by their first 

principal components was used to select the number of principal components to 

include as covariates per analysis (Jolliffe and Cadima 2016) (Figure 2.3).  

 

2.4.3 Genome wide association study 

Linear and binary variables were analysed using linear (--linear command) and logistic 

(--logistic command) regressions, respectively, in PLINK version 2.0 (Chang et al. 

2015). Censored time-to-event variables, including OS, were analysed using the 

plinkCoxSurv command from the gwasurvivr R package (Rizvi et al. 2019). 

Univariate models consisted of SNP genotype, recorded as 0,1 or 2 for number of 

copies of the genotyped or imputed allele and the continuous or binary outcome 
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variable. Multivariate models also included linear and binary variables as covariates 

recorded directly or as principal components (Section 2.4.2).  

Genome wide significance threshold was P<5.0x10-8, and the threshold for suggestive 

significance was P<1.0x10-5. GWAS summary statistics were visualised using the 

qqman  R package (Turner 2018). 

 

2.4.4 Power considerations 

Statistical power to detect a significant association between survival time variables 

and SNP genotype was calculated using the survSNP R package (Owzar et al. 2012). 

The effect size, MAF and significance threshold used in the calculation was defined 

per analysis (Figure 2.4). 
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Figure 2.3. Variance of the prognostic clinicopathological factors explained (%) by their first principal components in 
different cohorts used in this Thesis. (A) 514 patients from COIN and COIN-B with proximal colon tumours, (B) 493 patients 
with distal colon tumours, (C) 892 patients with rectal tumours, (D) 694 patients with MAPK-activated CRC and (E) 581 
patients with wild-type CRC. To capture the information of the clinicopathological factors whilst reducing dimensionality of the 
regression models a cumulative variance explained (labelled above each point) threshold of 70% was set for inclusion of principal 
components in the models (annotated in blue). See Chapters 3-6 for details on the clinicopathological factors included in each 
analysis.
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Figure 2.4. Observable hazard ratio per SNP against statistical power for Cox proportional-hazards models in different cohorts used in 
this thesis: (A) 1926 patients form COIN and COIN-B, (B) 514 patients with proximal colon tumours, (C) 493 patients with distal colon 
tumours, (D) 892 patients with rectal tumours, (E) 694 patients with MAPK-activated CRC and (F) 581 patients with wild-type CRC. The 

statistical power can be seen for SNPs at minor allele frequencies ranging from 0.01 to 0.30. 
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2.4.5 Gene-based and gene-set analyses  

Gene and gene-set analyses were performed using MAGMA (de Leeuw et al. 2015) 

versions 1.07 and 1.09b (https://ctg.cncr.nl/software/magma). SNPs were annotated 

to genes (including those 35 kilobases before the genes transcription zone and 10 

kilobases after) using the --annotate command and the gene locations from hg19 build 

37.3. SNP P-values, taken from the GWAS summary statistics, were assessed with 

the LD between them using the multi=snp-wise and --gene-model commands. This 

model takes advantage of the sum of the -log(P) for all SNPs, as well as the top SNP 

associations within each gene, to assess the association of their constituent genes. A 

Bonferroni corrected P-value threshold of P<2.5x10-6 was used to account for 20,000 

independent tests (Kiezun et al. 2012).  

 

Genes were annotated to approximately 8000 sets by gene-ontology terms (Ashburner 

et al. 2000). A competitive model (--set-result command) was used to assess each 

gene-set’s association with the outcome variable. The null hypothesis for a competitive 

test states that each gene in a given gene-set is not more associated with the outcome 

variable than the other genes in the dataset and is therefore more conservative than 

a self-contained test. P-values were adjusted for false discovery rate (FDR) to produce 

adjusted q-values using the qvalue R package (Storey et al. 2021) and significance 

set at q<0.05.  

2.4.6 Transcriptome wide association study (TWAS) 

Imputation of GReX was completed using the GTEx v8 whole-blood MASHR-based 

model (downloaded from https://predictdb.org/post/2021/07/21/gtex-v8-models-on-

https://ctg.cncr.nl/software/magma
https://predictdb.org/post/2021/07/21/gtex-v8-models-on-eqtl-and-sqtl/
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eqtl-and-sqtl/) and ‘Predict.py’ script available in the PrediXcan software (Gamazon et 

al. 2015b). The MASHR-based eQTL models used fine-mapped variants with 

biological evidence of potential effects on gene expression levels and estimated their 

effect size in 49 tissues using the GTEx v8 dataset as reference (Barbeira et al. 2021). 

Individual-level GReX levels were then tested for associations with OS using Cox 

proportional-hazards models in R.  

 

2.5 Other bioinformatic analyses 

2.5.1 LocusZoom plots 

LocusZoom (Willer et al. 2010a) was used to produce regional association plots of 

GWAS summary statistics. The LD of SNPs adjacent to the sentinel SNP (expressed 

as an r2 value), recombination rate (in centimorgans per magabase) and genes in the 

area (relative to hg19) are plotted.  

 

2.6 Study design 

All analyses were performed retrospectively with sample size determined by 

recruitment of patients into the individual study cohorts.  No stratification for disease 

stage was made in either the COIN or COIN-B trial cohort, due to all patients having 

advanced CRC (stage IV), or the UK Biobank cohort due to missing data on disease 

stage.  

  

https://predictdb.org/post/2021/07/21/gtex-v8-models-on-eqtl-and-sqtl/
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Chapter 3: Genome-wide search for determinants of 

survival in 1,926 patients with advanced colorectal cancer 

with follow-up in over 22,000 patients 

 

3.1 Introduction 

Clinical stage, which combines depth of tumour invasion, nodal status and distant 

metastasis (Walther et al. 2009), is currently the only routinely used marker of survival 

from CRC. Other factors thought to influence patient prognosis include lifestyle 

(Haydon et al. 2006; Reeves et al. 2007), systemic inflammatory response (Leitch et 

al. 2007), immunologic microenvironment (Galon et al. 2006) and the patient’s 

germline and the tumour’s somatic profile (Popat et al. 2005; Walther et al. 2008). The 

search for inherited prognostic factors has primarily focussed on candidate genes and 

SNPs that function in pharmacological pathways (Marcuello et al. 2004; Dotor et al. 

2006), influence tumour progression (Kim et al. 2008) or alter disease risk (Dai et al. 

2012; Phipps et al. 2012; Abuli et al. 2013; Garcia-Albeniz et al. 2013; Takatsuno et 

al. 2013; Morris et al. 2015). However, apart from rs9929218 in CDH1, most reported 

SNP associations have not been independently replicated (Smith et al. 2015). 

GWAS have been used successfully to identify 205 CRC-susceptibility alleles in the 

European and east Asian populations, with a further 53 risk loci identified from 

transcriptomic and methylomic analyses (Fernandez-Rozadilla et al. 2023). To-date, 

the application of GWAS-based strategies for the identification of alleles influencing 

survival from CRC has been limited. SNPs near to ELOVL5 and DCC have been 



Chapter 3 

63 
 

associated with survival in a restricted discovery analysis but not replicated in follow-

up (Phipps et al. 2016) and SNPs in FHIT, EPHB1 and MIR7515 have been associated 

with time to metastasis but await independent replication (Penney et al. 2019). Here, 

I report a GWAS of survival in 1,926 patients with advanced CRC from COIN and 

COIN-B with follow-up of promising SNP-associations in over 22,000 CRC patients 

from clinical trial and population-based studies. 
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3.2 Materials and methods 

3.2.1 Patients and samples 

Of the 2,671 patients recruited to COIN and COIN-B, 1,948 had germline genotyping 

and survival data available. The minimum SNP MAF was set at 5% leaving 2.9 million 

SNPs for analysis. See Chapter 2, Section 2.3 for full details on patients, DNA 

extraction, genotyping and QC. 

  

3.2.2 Statistical analyses 

Somatic and clinicopathological factors available in COIN and COIN-B (trial, trial arm, 

cetuximab status, sex, age, mutation status at KRAS, BRAF, NRAS and PIK3CA,  MSI 

status, WHO performance status, resection status of the primary tumour, site of 

primary tumour, surface area, white blood cell [WBC] count, alkaline phosphatase 

level, platelet count, chemotherapy regimen, chemotherapy dose, radiotherapy, 

number of metastatic sites, metastases in the liver, lung, lymph nodes, peritoneum 

and other sites, time to metastases, synchronous or metachronous metastases, 

creatinine clearance, glomerular filtration rate and carcinoembryonic antigen [CEA] 

level) were analysed for their effects on OS using either linear or logistic models. For 

those shown to be prognostic after Bonferroni correction (P<1.6x10-3, n=31 tests), we 

performed a GWAS for each factor to identify potential SNPs with pleiotropic effects 

on survival. Lead SNPs at credible independent loci (those with multiple SNPs in the 

linkage block and that reached the threshold for suggestive significance) were tested 

for their effects on OS. 
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We carried out a multivariate GWAS of OS under an additive model for patients in 

COIN and COIN-B using prognostic covariates that were available in the majority of 

patients (22 patients excluded, leaving 1,926 for analysis). The covariates included 

were WHO performance status, resection status of the primary tumour, WBC count, 

platelet count, alkaline phosphatase levels, number of metastatic sites, metastases in 

the liver, site of primary tumour (encoded as 7 binary variables), surface area of 

primary tumour, time from diagnosis to metastases, and metachronous versus 

synchronous metastases. For any SNPs that reached suggestive significance we 

conducted a sensitivity analysis replacing OS (considered left-truncated at 

randomisation since randomisation is conditional upon survival from diagnosis) with 

time from diagnosis to death or end of trial using Cox regressions. To test for 

differences in association between the two measures of survival, for each SNP we 

calculated differences in beta-coefficients and standard errors to produce a chi-

squared distribution with 1 degree of freedom; from this P-values were determined. 

See Chapter 2, Section 2.3.2.1 for details on measurement of response to treatment.  

Gene and gene-set analysis was completed on the summary statistics from the 

association analysis to identify genes containing significant numbers of highly 

associated SNPs and significantly enriched gene-sets (Chapter 2, Section 2.4.5). 

 

3.2.3 Bioinformatic analyses 

See Chapter 2, Sections 2.4.3, 2.5.1 and 2.3.5 for details on GWAS analysis, 

LocusZoom plots and eQTL analyses, respectively. THPA (Chapter 2, Section 2.3.7) 

was used to find associations between ERBB4 expression levels in colorectal tumours 



Chapter 3 

66 
 

and survival in 438 patients with colon adenocarcinomas. Samples were classified as 

high expression using a threshold of FPKM>0 as per THPA recommendations.   

 

3.2.4 Replication series 

Independent replication of lead SNPs at 17 loci showing suggestive evidence of an 

association with OS in COIN and COIN-B was performed in two independent patient 

series:  

(i) SOCCS (Chapter 2, Section 2.3.2) - 5,675 patients (1,358 CRC specific deaths) of 

which 784 had stage IV CRC (522 deaths). We considered CRC-specific survival, 

assigned as time from diagnosis to death from CRC and applied a Cox proportional-

hazards model and corrected for age, sex and AJCC stage.  

(ii) ISACC (Chapter 2, Section 2.3.3) - 16,964 patients (4,010 deaths) of which 1,847 

had stage IV CRC (1,448 deaths).  We considered disease-specific survival, applied 

a Cox-proportional hazards model and corrected for age at diagnosis, sex, genotyping 

batch, study and the first 5 principal components of genetic ancestry. 

 

3.2.5 Meta-analyses of the follow-up cohorts 

Meta-analyses were performed using the inverse variance based method in the 

METAL software package (Willer et al. 2010b). P<0.05 was considered significant for 

replication of the findings in the discovery cohort.  
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3.3 Results 

3.3.1 Effect of clinicopathological factors on OS 

We determined the influence of clinicopathological factors and somatic mutation status 

on OS in 1,948 patients from COIN and COIN-B. We found that KRAS and BRAF 

mutation status, MSI status, platelet count, CEA levels, WHO performance status, 

resection status of the primary tumour, WBC count, alkaline phosphatase levels, 

number of metastatic sites, metastases in the liver, lymph nodes and peritoneum, site 

and surface area of the primary tumour, time from diagnosis to metastases and 

metachronous versus synchronous metastases were all associated with OS after 

Bonferroni correction (Table 3.1).  

 

3.3.2 GWAS of significant clinicopathological factors 

We considered whether SNPs associated with these factors might influence OS and 

conducted independent GWAS for each factor (n=16). One SNP was associated with 

WBC count (rs142358223 at 16p13.3, beta coefficient [beta]=1.36, standard error 

[SE]=0.25, P=3.5x10-8) and two SNPs with CEA levels (rs17418475 at 1p21.2, 

beta=932.53, SE=163.05, P=1.3x10-8 and rs72870425 at 2q24.2, beta=1196.53, 

SE=211.27, P=1.8x10-8). We tested rs142358223, rs17418475, rs72870425 and 133 

lead SNPs from other suggestive loci for their effects on OS, however, none were 

significant after adjustment for multiple testing (P<3.7x10-4). 
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Table 3.1. Clinicopathological factors associated with overall survival in COIN and 
COIN-B (univariate analyses). Significant P-values after Bonferroni correction (P<1.6x10-3) 

are highlighted in bold.

Clinicopathological 
factor Description No. 

genotyped 
Overall 
survival 
P 

Trial COIN or COIN-B 1948 0.49 

Arm Trial arm (A to E) 1948 0.41 

Cetuximab Cetuximab use (yes/no) 1948 0.41 

Sex Sex of patient 1948 2.9x10-3 

Age Age of patient at recruitment (years) 1948 0.76 

KRAS Somatic KRAS mutation (yes/no) 1625 7.1x10-6 

BRAF Somatic BRAF mutation (yes/no) 1581 1.5x10-13 

NRAS Somatic NRAS mutation (yes/no) 1594 0.49 

MSI Somatic microsatellite instability (yes/no) 1301 1.9x10-5 

PIK3CA Somatic PIK3CA mutation (yes/no) 1478 0.25 
WHO Performance 
Status WHO Performance Status rating (0 to 5) 1948 3.1x10-23 

Resection Status Primary tumour resected (yes/no/local recurrence) 1948 1.8x10-21 

Site of Primary Tumour Primary tumour location 1948 9.1x10-9 

Surface Area Surface area of primary tumour 1945 1.1x10-5 

White Blood Cell Count White blood cell count (x109/Litre of blood) 1946 1.2x10-31 

Alkaline Phosphatase Alkaline Phosphatase levels (International 
Units/Litre of blood) 1947 1.5x10-27 

Platelet Count Platelet count (x109/Litre of blood) 1943 1.7x10-29 

Chemotherapy Regimen XELOX or FOLFOX based chemotherapy  1948 0.60 

Chemotherapy Dose Intermittent or continuous chemotherapy 1948 0.27 

Radiotherapy Patient received radiotherapy (yes/no) 1948 0.52 

Metastatic Sites Number of separate sites containing metastases 1948 1.7x10-13 

Liver Metastases Presence of metastases in the liver (yes/no) 1948 1.3x10-4 

Lung Metastases Presence of metastases in the lung (yes/no) 1948 0.53 

Nodal Metastases Presence of metastases in the lymph nodes 
(yes/no) 1948 1.5x10-3 

Peritoneal Metastases Presence of metastases in the peritoneum (yes/no) 1948 1.6x10-7 

Other Metastases Presence of metastases elsewhere in the body 
(yes/no) 1948 3.4x10-5 

Time to Metastases Time from primary diagnosis to metastases (days)  1933 1.7x10-7 
Synchronous or 
Metachronous  Synchronous or metachronous metastases 1933 6.0x10-8 

Creatinine Clearance Volume of blood plasma that is cleared 
of creatinine per unit time (mL/min) 1744 0.49 

Glomerular Filtration Rate Volume of blood that passes through the glomeruli 
per unit time (mL/min) 1945 0.32 

Carcinoembryonic 
Antigen Test 

Mass of carcinoembryonic antigen per unit of blood 
(ng/mL) 1518 2.9x10-5 
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3.3.3 Multivariate GWAS of OS 

We carried out a multivariate GWAS for OS in 1,926 patients from COIN and COIN-B 

adjusting for all 11 prognostic covariates (Figure 3.1). No detectable genomic inflation 

was observed (λ=1.08). We had >80% power to detect a HR of 1.3 for SNPs with 

MAFs ≥0.20 (Chapter 2, Section 2.4.4). 
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Figure 3.1. Single nucleotide polymorphism (SNP) associations with overall survival (OS) (n=1,926 patients with advanced CRC from COIN 
and COIN-B). (A) Manhattan plot: SNPs are ordered by chromosome position and plotted against the -log10(P) for their association with OS. The red 
line represents the threshold for genome wide significance (P=5.0x10-8) and the blue line is the threshold for suggestive significance (P=1.0x10-5). 

Covariates included: World Health Organisation performance status, resection status of the primary tumour, white blood cell count, platelet count, 
alkaline phosphatase levels, number of metastatic sites, metastases within or outside of the liver, site of primary tumour, surface area of primary tumour, 

time from diagnosis to metastases and metachronous versus synchronous metastases. (B) Quantile-quantile plot: expected -log10(P-value), under the 
null hypothesis of no association between genotype and OS, plotted against observed -log10(P-value). 
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No SNPs reached genome-wide significance. The most significant SNP associated 

with OS was rs79612564 in ERBB4 (HR=1.24, 95% CI=1.16-1.32, P=1.9x10-7). 

Median survival for patients in COIN and COIN-B carrying one minor allele was 

reduced by 46 days and for those homozygous for the minor allele by 81 days 

(Figure 3.2, Table 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Kaplan-Meier plot for rs79612564 genotype in patients with advanced 
CRC from COIN and COIN-B (n=1,912 patients). Time in days plotted against 
survival probability for patients homozygous for the major allele (TT), heterozygous 
(TC) and homozygous for the minor allele (CC). The number of patients still at risk at 
each time point is shown beneath. 
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Copies of the minor 
allele 

Median 
survival 95% CI 

0 518 496-572 

1 472 441-509 

2 437 396-476 

Table 3.2. Median survival (days) by rs79612564 genotype for patients in COIN 

and COIN-B. Copies of the minor allele (C), median survival in days and 95% 

confidence intervals (CI) for the median are shown.  

 

rs79612564 was not influenced by cetuximab treatment regardless of KRAS status 

(Figure 3.3). The prognostic effect appeared to be independent of KRAS status and 

patients carrying at least one rs79612564 minor allele and KRAS mutant CRCs had 

the greatest effect on survival (HR=1.51, CI=1.29-1.77, P=3.7x10-7) (Figure 3.4). 

In terms of response to oxaliplatin and fluoropyrimidine-based chemotherapy, patients 

carrying one or more rs79612564 minor alleles showed less response (55.5% for 

heterozygotes and 55.9% for homozygotes) as compared to patients carrying both 

major alleles (60.2%), although this did not reach statistical significance (P=0.06) 

(Table 3.3). rs79612564 was not an eQTL.  
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Figure 3.3. Kaplan-Meier plots for rs79612564 genotype in patients treated with 

and without cetuximab, and by somatic KRAS status. Time in days plotted against 
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survival probability for patients who were homozygous for the major allele (TT), 

heterozygous (TC) and homozygous for the minor allele (CC) and who (A) received 

cetuximab and (B) did not receive cetuximab, irrespective of their KRAS status, and 

who received cetuximab and had KRAS WT (C) and mutant (D) CRCs, and did not 

receive cetuximab and had KRAS WT (E) and mutant (F) CRCs. P-values for the 

difference in beta coefficients between multivariate Cox-proportional hazards models 

for rs79612564 against survival time were calculated. WT – wild type. 

Figure 3.4. Forest plot showing the relationship between KRAS mutation status 

and rs79612564 genotype in patients with advanced CRC from COIN and COIN-

B. Hazard ratios, 95% confidence intervals and P-values are relative to the reference 

population who were wild type (WT) for KRAS and homozygous for the rs79612564 

major allele (TT). Subpopulations had somatically mutated (Mut) KRAS +/- 

rs79612564 minor allele(s).   
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 rs79612564 genotype 

 TT TC CC 

Responders 459 391 85 

Non-Responders 303 313 67 

% Responders 60.2 55.5 55.9 

 

Table 3.3. Relationship between response to oxaliplatin and fluropyrimidine-

based chemotherapy in patients from COIN and COIN-B, and rs79612564 

genotype. 

 

rs79612564 had an INFO score of 0.99. We sought independent confirmation of the 

quality of genotyping and predictive score for this SNP by genotyping rs79612564 

directly via KASPar technology. For those samples with both KASPar genotyping and 

an imputed genotype, we had >99% (1,687/1,703) genotype concordance (Figure 

3.5). 

 

3.3.4 Other loci of suggestive significance 

In total, we identified SNPs at 17 independent loci with suggestive associations with 

OS (Table 3.4, Figure 3.1). We conducted a sensitivity analysis for lead SNPs at all 

17 loci replacing OS with an alternative measure of survival - time from diagnosis to 

death or end of trial. There were no significant differences between the two measures 

of survival for any of the 17 SNPs (P=0.46-0.95). rs6568761 at 6q21 (in a gene desert) 

passed the threshold for genome wide significance with diagnosis to death (HR=0.88, 

95% CI=0.78-0.98, P=4.5x10-8). 
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We did not find any significantly associated genes (Table 3.5), or gene-sets under 

competitive analyses (Table 3.6) for OS after correction for multiple testing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Independent assessment of rs79612564 genotyping using KASPar. 

For those samples with both KASPar genotyping and an imputed genotype, we had 

>99% (1,687/1,703) genotype concordance: 98.7% (156/158) of samples imputed as 

homozygous for the minor allele matched that genotype (red), 98.7% (733/743) of 

samples imputed as heterozygous matched that genotype (green), and 99.5% 

(798/802) of samples imputed as homozygous for the major allele matched that 

genotype (blue).  
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Table 3.4. Lead single nucleotide polymorphisms (SNPs) from independent loci that reached suggestive significance in 
multivariate analysis of overall survival (OS) in COIN and COIN-B. Cytogenic band, minor allele, P-value, hazard ratio and 95% 

confidence intervals are shown for OS (time from trial recruitment to death or end of study) and time from diagnosis to death or end 

of trial. Only rs6568761 reached the threshold for genome-wide significance (P<5.0x10-8, highlighted in bold). Genes overlapping 

with the SNPs attributed to each locus are listed. 

SNP Locus Minor 
Allele Genes 

Overall survival  Diagnosis to death 
HR 95% CI P  HR 95% CI P 

rs79612564 2q34 C ERBB4 1.24 1.16-1.32 1.9x10-7  1.08 1.00-1.16 4.7x10-5 
rs9356458 6q27 A  0.82 0.75-0.90 9.1x10-7  0.92 0.85-1.00 1.1x10-5 
rs9744647 15q14 T C145orf51 1.29 1.18-1.39 2.0x10-6  1.11 1.03-1.20 4.3x10-6 
rs6568761 6q21 G  0.78 0.67-0.88 2.0x10-6  0.88 0.78-0.98 4.5x10-8 
rs244509 5q22.1 C CAMK4 0.81 0.73-0.90 2.0x10-6  0.91 0.83-0.99 1.0x10-6 
rs1400673 3p25.1 G  1.35 1.23-1.48 2.1x10-6  1.13 1.01-1.25 1.4x10-5 
rs4653255 1p34.3 A  0.84 0.76-0.91 2.6x10-6  0.94 0.86-1.02 1.1x10-4 
rs2473571 6p21.1 G LRFN2 1.19 1.12-1.27 3.1x10-6  1.06 0.98-1.14 3.5x10-4 
rs9594035 13q31.1 T  0.82 0.73-0.90 5.4x10-6  0.92 0.84-1.00 5.4x10-6 

rs3103204 4p13 T ATP8A1, 
SHISA3 0.76 0.64-0.88 5.4x10-6  0.89 0.78-1.01 2.5x10-5 

rs11605969 11q24.1 T SORL1 1.26 1.16-1.36 6.3x10-6  1.08 0.98-1.18 3.3x10-4 
rs4411363 13q12.12 G TNFRSF19 1.19 1.12-1.27 7.8x10-6  1.06 0.98-1.14 1.1x10-3 
rs1352374 4p15.2 C  0.82 0.73-0.91 8.4x10-6  0.92 0.80-1.03 1.8x10-5 

rs6983214 8q13.1 T 

C8orf44, 
C8orf44-
SGK3, 

VCPIP1 

0.83 0.75-0.91 8.8x10-6  0.92 0.84-1.00 4.9x10-6 

rs11744800 5q33.3 C ADAM19 0.82 0.74-0.91 8.8x10-6  0.93 0.85-1.01 3.5x10-4 
rs2050337 10q25.1 G  1.19 1.11-1.26 9.0x10-6  1.07 0.99-1.15 6.5x10-5 
rs7145600 14q21.1 T  0.79 0.69-0.90 9.5x10-6  0.91 0.81-1.01 5.2x10-5 
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Gene Name Chromosome Start Stop P 

VCPIP1 8 67532488 67614452 8.7x10-6 

C8orf44 8 67544787 67607797 1.2x10-5 

SHISA3 4 42364856 42414504 1.5x10-5 

MYBL1 8 67464410 67560484 1.5x10-5 

C8orf44-SGK3 8 67544787 67784257 1.9x10-5 

LRFN2 6 40349373 40590126 2.1x10-5 

SGK3 8 67589653 67784257 2.9x10-5 

SORL1 11 121287912 121514471 3.1x10-5 

C15orf41 15 36836812 37112449 7.2x10-5 

 

Table 3.5. Results for MAGMA gene analysis. All genes with P<1.0x10-4 as well as 

their chromosome, start and stop positions are shown. None reached statistical 

significance (P<2.5x10-6). 

 

GO Term Gene-Set Name P q 

GO:0008219 cell death 3.0x10-5 0.076 

GO:0012501 programmed cell death 4.3x10-5 0.076 

GO:0046133 pyrimidine ribonucleoside catabolic process 3.9x10-5 0.076 

GO:0035774 
positive regulation of insulin secretion 

involved in cellular response to glucose 
stimulus 

4.7x10-5 0.076 

GO:0071071 regulation of phospholipid biosynthetic 
process 

2.3x10-5 0.076 

GO:0060390 regulation of SMAD protein signal 
transduction 

6.8x10-5 0.092 

 

Table 3.6. Results for MAGMA gene-set enrichment analysis. Gene-ontology (GO) 

term, full descriptive name, P-value, and corrected P-value (q) are shown. Only sets 

with q<0.10 are presented; none reached statistical significance (q<0.05). 
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3.3.5 Replication analyses 

We analysed lead SNPs at all 17 loci in 5,675 patients with CRC from SOCCS and 

16,964 patients with CRC from ISACC (Table 3.7, Figure 3.6). Together, we had 

>98% power to replicate all 17 SNPs (alpha=0.05). After meta-analysis, no lead SNPs 

were independently replicated and only rs1352374 and rs2050337 reached nominal 

significance in SOCCS (Table 3.7). 

We considered whether the lack of replication of the COIN and COIN-B data might be 

confounded by patients with differing stages of disease in the follow-up cohorts. We 

therefore tested the 17 lead SNPs in a subset of 784 patients from SOCCS and 1,847 

patients from ISACC with stage IV CRC (Table 3.8, Figure 3.7). We had >80% power 

to replicate 16 of the SNPs (for rs3103204 we had 62% power, alpha=0.05). 

rs79612564 was significant in stage IV patients from SOCCS (P=2.1x10-2) but not in 

stage IV patients from ISACC (P=0.89, Table 3.8). When SOCCS was combined with 

COIN and COIN-B, rs79612564 reached genome wide significance (HR=1.22, 95% 

CI=1.15-1.29, P=1.7x10-8), but not when ISACC was also included (HR=1.12, 95% 

CI=1.06-1.17, P=3.4x10-5). 

rs6983214 was significant in the meta-analysis of stage IV patients from SOCCS and 

ISACC (P=1.2x10-3), however, the direction of effect was opposite to that found in 

COIN and COIN-B (Table 3.8). rs1352374 reached nominal significance in SOCCS 

(P=3.3x10-2), but not in ISACC. rs2050337 reached nominal significance in the meta-

analysis (P=1.1x10-2, Table 3.8) with the same direction of effect in all cohorts tested 

(meta-analysis with COIN and COIN-B included HR=1.13, 95% CI=1.08-1.18, 

P=1.6x10-6).
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   Independent replication 

SNP 
COIN and COIN-B 

1,926 patients (1,435 deaths) 
 SOCCS 

5,675 patients (1,358 deaths) 
 ISACC 

16,964 patients (4,010 deaths) 
 Meta 

HR 95% CI  HR 95% CI P  HR 95% CI P  P 
rs79612564 1.24 1.16-1.32  1.06 0.98-1.15 0.15  1.01 0.96-1.05 0.77  0.34 
rs9356458 0.82 0.75-0.90  1.03 0.95-1.11 0.44  1.00 0.95-1.04 0.87  0.82 
rs9744647 1.29 1.18-1.39  1.02 0.90-1.14 0.70  1.02 0.96-1.09 0.45  0.73 
rs6568761 0.78 0.67-0.88  0.99 0.88-1.09 0.60  1.01 0.95-1.06 0.86  0.97 
rs244509 0.81 0.73-0.90  1.08 0.99-1.16 0.10  1.01 0.96-1.06 0.81  0.30 
rs1400673 1.35 1.23-1.48  0.98 0.84-1.12 0.78  1.00 0.92-1.07 0.97  0.87 
rs4653255 0.84 0.76-0.91  0.97 0.89-1.04 0.37  0.99 0.95-1.04 0.75  0.47 
rs2473571 1.19 1.12-1.27  1.01 0.93-1.09 0.76  0.99 0.95-1.04 0.76  0.91 
rs9594035 0.82 0.73-0.90  0.99 0.90-1.08 0.87  1.01 0.96-1.06 0.61  0.72 
rs3103204 0.76 0.64-0.88  0.98 0.86-1.10 0.75  0.99 0.93-1.06 0.79  0.70 
rs11605969 1.26 1.16-1.36  0.98 0.88-1.09 0.71  1.02 0.95-1.08 0.63  0.82 
rs4411363 1.19 1.12-1.27  0.99 0.91-1.07 0.84  1.01 0.96-1.05 0.72  0.84 
rs1352374 0.82 0.73-0.91  0.89 0.80-0.98 1.5x10-2  1.01 0.96-1.06 0.62  0.58 
rs6983214 0.83 0.75-0.91  1.07 0.98-1.15 0.13  1.00 0.95-1.05 0.91  0.39 
rs11744800 0.82 0.74-0.91  1.04 0.96-1.13 0.33  0.98 0.93-1.03 0.36  0.75 
rs2050337 1.19 1.11-1.26  1.09 1.02-1.17 2.4x10-2  1.01 0.97-1.06 0.60  0.11 
rs7145600 0.79 0.69-0.90  1.01 0.91-1.11 0.81  1.01 0.95-1.07 0.79  0.72 

Table 3.7. Independent replication of lead SNPs in SOCCS and ISACC. Hazard Ratio, 95% confidence intervals and P-value are 

listed for overall survival (time from trial recruitment to death or end of study) in COIN and COIN-B, and CRC-specific survival (time 

from diagnosis to death due to CRC) in SOCCS and ISACC. Nominally significant P-values are highlighted in bold. 
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Figure 3.6. Forest plots for lead SNPs at 17 loci identified in COIN and COIN-B 
and the independent replication cohorts (all stages). P-value, Hazard ratio and 

95% confidence intervals are listed. 
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   Independent replication 

SNP 
COIN and COIN-B 

1,926 patients (1,435 deaths) 
 SOCCS Stage IV 

784 patients (522 deaths) 
 ISACC Stage IV 

1,847 patients (1,448 deaths) 
 Meta 

HR 95% CI  HR 95% CI P  HR 95% CI P  P 
rs79612564 1.24 1.16-1.32  1.17 1.04-1.30 2.1x10-2  0.99 0.92-1.07 0.89  0.28 
rs9356458 0.82 0.75-0.90  1.09 0.96-1.21 0.19  - - -  - 
rs9744647 1.29 1.18-1.39  1.01 0.81-1.21 0.93  0.97 0.86-1.07 0.52  0.82 
rs6568761 0.78 0.67-0.88  1.02 0.86-1.17 0.62  1.03 0.93-1.12 0.58  0.56 
rs244509 0.81 0.73-0.90  1.08 0.94-1.21 0.30  1.00 0.92-1.09 0.96  0.56 
rs1400673 1.35 1.23-1.48  1.03 0.82-1.24 0.78  1.08 0.96-1.21 0.22  0.23 
rs4653255 0.84 0.76-0.91  1.00 0.88-1.12 0.97  1.04 0.96-1.11 0.35  0.41 
rs2473571 1.19 1.12-1.27  0.99 0.87-1.11 0.86  0.97 0.90-1.05 0.49  0.50 
rs9594035 0.82 0.73-0.90  0.96 0.82-1.10 0.57  0.96 0.88-1.05 0.36  0.28 
rs3103204 0.76 0.64-0.88  0.89 0.71-1.07 0.19  0.93 0.82-1.03 0.17  0.06 
rs11605969 1.26 1.16-1.36  1.12 0.95-1.29 0.18  1.05 0.95-1.15 0.35  0.14 
rs4411363 1.19 1.12-1.27  1.03 0.90-1.16 0.65  1.02 0.94-1.10 0.65  0.53 
rs1352374 0.82 0.73-0.91  0.85 0.71-0.99 3.3x10-2  1.00 0.91-1.08 0.99  0.59 
rs6983214 0.83 0.75-0.91  1.15 1.02-1.28 3.6x10-2  1.11 1.03-1.19 1.2x10-2  1.2x10-3* 
rs11744800 0.82 0.74-0.91  1.03 0.89-1.17 0.72  1.03 0.95-1.12 0.47  0.42 

rs2050337 1.19 1.11-1.26  1.08 0.96-1.20 0.22  1.09 1.01-1.17 2.7x10-2  1.1x10-2 
rs7145600 0.79 0.69-0.90  1.07 0.91-1.23 0.39  0.92 0.82-1.02 0.09  0.32 

Table 3.8. Independent replication of lead single nucleotide polymorphisms in patients from SOCCS and ISACC with Stage 
IV colorectal cancer (CRC). Hazard Ratio, 95% confidence intervals and P-value are listed for overall survival (time from trial 

recruitment to death or end of study) in COIN and COIN-B, and CRC-specific survival (time from diagnosis to death due to CRC) in 

SOCCS and ISACC. Nominally significant P-values are highlighted in bold. *Opposite direction of effect to COIN and COIN-B so not 

validated. Data for rs9356458, nor any proxies were available for stage IV patients from ISACC. 
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Figure 3.7. Forest plots for lead single nucleotide polymorphisms at 17 loci 

identified in COIN and COIN-B and the independent replication cohorts (stage IV 

disease). P-value, Hazard ratio and 95% confidence intervals are listed. 

 

3.3.6 Relationship between ERBB4 expression and survival 

We sought additional mechanistic data for a role for ERBB4 on survival by studying 438 

patients with colon adenocarcinomas from THPA. Patients with high ERBB4 expression 

in their tumours had worse survival (Cox-regression HR=1.50, 95% CI=1.10-1.90, 

P=4.6x10-2, Figure 3.8). 
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Figure 3.8. Kaplan-Meier plot for ERBB4 expression levels in tumours from 438 

patients with colon adenocarcinomas from the Human Protein Atlas. Time in days 

plotted against survival probability. High expression levels defined as median number of 

fragments per kilobase of exon per million reads >0. Cox-regression used to calculate P-

value for differences in survival between the groups. 
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3.4 Discussion 

3.4.1 No observed pleiotropic effects on survival 

Despite identifying 18 somatic and clinicopathological factors that significantly influenced 

survival in COIN and COIN-B, we found that SNPs associated with these factors did not 

themselves affect survival thereby excluding potential pleiotropic effects. To generate a 

comprehensive genome-wide analysis of survival, we included prognostic factors into our 

multivariate analyses and observed little genomic inflation supporting the validity of this 

approach. rs142358223, which showed a significant association with white blood cell 

count, was not identified by Astle et al. (2016) in their analysis of human blood cell trait 

variation in the UK Biobank and INTERVAL studies, nor was any SNPs in strong LD with 

rs142358223.  

 

3.4.2 Variation in ERBB4 may predict survival in advanced CRC 

The most significant SNP identified was rs79612564 which lies within intron 3 of ERBB4, 

a member of the EGFR subfamily. We confirmed the quality of the genotyping and 

imputation for this SNP via an independent assay. Patients carrying the minor allele had 

an additive effect on survival with a median decrease in life expectancy of approximately 

40 days per allele carried in the advanced disease setting. rs79612564 was also 

significant in stage IV patients from SOCCS and, combined with COIN and COIN-B, 

reached genome wide significance. Our genetic data was supported by mechanistic data 

for this gene and we found that patients with high ERBB4 expression in their colon 
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adenocarcinomas had worse survival. Furthermore, it has previously been shown that 

ERBB4 over-expression in experimental systems enhances the survival and growth of 

cells driven by Ras and/or Wnt signalling (Williams et al. 2015). 

However, rs79612564 was not replicated in stage IV patients from ISACC, nor in all 

patients from SOCCS and ISACC combined. This warrants further investigation, although 

it is noteworthy that overexpression and heterodimerization of ERBB4 and ERBB2 shows 

a significant association with late stage colorectal carcinomas (Lee et al. 2002). 

Therefore, it is possible that the association for rs79612564 can only be seen in patients 

with later stages of disease and survival in these patients is confounded by numerous 

clinical and pathological prognostic covariates which we accounted for in our GWAS but 

are, in general, not available in the population-based cohorts. 

 

3.4.3 Potential clinical implications 

In terms of clinical application, it should be noted that the effect size for rs79612564 is 

modest and will need to be combined with other prognostic factors to have any role in 

patient management. For example, our data suggests that this SNP acts independently 

of KRAS mutational status which itself is a prognostic factor. In isolation, rs79612564 has 

a HR of 1.24 but on a KRAS mutant background increases to 1.51. Although this effect 

size is still modest, it shows the potential for building germline, somatic and 

clinicopathological factors into a combined prognostic model. 
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3.4.4 Other independent loci  

Most of the other loci of interest failed to be replicated or their directions of effect were 

opposite to those found in our discovery cohort. However, rs2050337 at 10q25.1 reached 

significance in the stage IV replication meta-analysis with a consistent direction of effect 

to COIN and COIN-B and was also significant in all patients from SOCCS. It lies 

approximately 500Kb upstream of ADD3, which encodes γ-Adducin, one subunit of 

Adducin; a ubiquitously expressed membrane-skeletal protein responsible for 

stabilization of the membrane cytoskeleton, cell signalling, ionic transportation, cell 

motility and cell-cell adhesion. ADD3 has been associated with tumour growth and cell 

migration in breast (Yang et al. 2020), glioblastoma multiforme (Kiang et al. 2020) and 

lung cancer (Lechuga et al. 2019). In CRC, ADD3 and its splicing isoform ADD3-Ib show 

decreased expression compared with normal mucosa, possibly contributing to the tissue’s 

invasion ability (Luo and Shen 2017). However, even combined with COIN and COIN-B, 

rs2050337 still did not achieve genome-wide significance in patients with stage IV 

disease, suggesting that its effects, if genuine, are modest. 

 

3.4.5 Power considerations and further study 

Despite having 1,926 patients with advanced CRC (with a 75% event rate) in our GWAS, 

we lacked sufficient power to detect common alleles with low effect sizes (HR<1.3) at 

genome wide significance levels. Even by considering loci at suggestive significance 

levels, as we have done, we only had 33% power to detect common alleles with HRs of 

1.2. Future studies will therefore have to combine their datasets for meta-analyses to 
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provide sufficient power to identify low impact alleles for survival. For example, to achieve 

80% power to detect alleles with HRs of 1.2 and 1.1 would require 4,907 and 18,022 

patients with a 75% event rate, respectively. 
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Chapter 4: Relationship between inherited genetic 

variation and survival from colorectal cancer stratified by 

tumour location 

4.1 Introduction 

4.1.1 Pathobiology of proximal, distal and rectal CRCs 

Proximal and distal colonic cancers have distinct clinicopathological and molecular 

features, reflective of their embryological origin (Chapter 1, Section 1.1.4.1) and 

biology (Missiaglia et al. 2014) (Iacopetta 2002). Proximal colonic cancers are 

frequently KRAS (Rosty et al. 2013; Li et al. 2015b) and BRAF (Missiaglia et al. 2014; 

Li et al. 2015b) mutated, have MSI and a CpG island methylator phenotype (Sanz-

Pamplona et al. 2011). They are more common in women and older patients, and 

while having a poorer prognosis, tend have a better response to 5FU chemotherapy 

(Iacopetta 2002). Distal cancers are typified by chromosomal abnormalities and 

aneuploidy (Bufill 1990). Rectal cancers have higher rates of locoregional relapse, a 

preference for lung metastases and a lower frequency of KRAS and BRAF mutations 

(Meguid et al. 2007; Phipps et al. 2013; Yang et al. 2016). 

 

4.1.2 This study 

The prognosis for patients with the same stage of CRC can vary and, in addition to 

clinicopathological features and somatic mutations, it is being recognised that germline 

variation also influences outcome. In Chapter 3, I identified germline variants 
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associated with survival in patients with advanced CRC from COIN and COIN-B. Given 

the inherent differences in the pathobiology of proximal and distal cancers, here I 

report on the impact of germline variation on CRC prognosis by tumour anatomical 

site. 
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4.2 Materials and methods 

4.2.1 Patients and genotyping 

1,948 patients from COIN and COIN-B had germline genotyping and survival data 

available. The minimum MAF for SNPs was set at 5%, leaving 2.9 million SNPs for 

analysis. See Chapter 2, Section 3.1 for full details on patients, DNA extraction, 

genotyping and QC. 

 

I assigned patients to groups by location of their primary tumour (Labadie et al. 2022). 

Proximal tumours - those within the hepatic flexure, transverse colon, cecum and 

ascending colon (514 patients, 413 with events); Distal tumours - those within the 

descending colon, sigmoid colon and splenic flexure (n=493 patients, 358 with 

events); Rectal tumours - those within the rectosigmoid junction and rectum (892 

patients with 645 events) (Figure 4.1). For 49 patients, data on primary tumour 

location was missing.  

 

4.2.2 Replication cohort 

To replicate findings, I used UKB patient data (Chapter 2, Section 2.3.4). CRC patients 

were stratified according to the location of their tumour - 1,433 (473 with events) with 

proximal disease, 1,450 (420 events) with distal disease and 1,869 (495 events) with 

rectal disease (Figure 4.1). For 326 patients there was insufficient information to 

assign the anatomical site of the CRC. 
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Figure 4.1. Flow diagram depicting the genetic and survival analyses of patients from COIN and COIN-B by primary tumour 

location. 514 patients had primary tumours in the proximal colon, 493 in the distal colon and 892 in the rectum. Lead SNPs from 

independent loci suggestive of association with survival were tested for replication in participants from the UK Biobank with proximal 

colon (n=1,433), distal colon (n=1,450) and rectal cancers (n=1,869), respectively. 
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4.2.3 Statistical analyses 

I previously identified clinicopathological factors associated with survival (n=11) in 

patients from COIN and COIN-B (Chapter 3, Section 3.3.1). Dimensionality reduction 

was performed using PCA to reduce the risk of overfitting (Chapter 2, Section 2.4.2) - 

the first five were selected, explaining 78-80% of the total variance (Figure 2.1). I 

carried out GWAS for OS by location of the primary tumour under an additive model. 

For any SNPs suggestive of an association, I performed clumping and tested the lead 

SNPs at each independent locus (n=54) in replication cohorts from the UKB. P<0.05 

was used as the significance threshold for replication.  

 

Power to detect an effect of rs313566 on survival in UKB patients with proximal, distal, 

and rectal tumours was estimated using an additive model, HR=0.52 (observed in 

COIN and COIN-B), P=0.05 and sample sizes of 1433 (473 events), 1450 (420 events) 

and 1869 (495 events), respectively. 

 

To increase the power to detect associations, I also performed GWAS for survival in 

UKB patients by location of their colorectal tumour, using age and sex as covariates, 

followed by genome-wide meta-analysis with the COIN and COIN-B data using a fixed-

effects model implemented in PLINK v1.9.  

 

Gene and gene-set analysis was completed on the summary statistics from the 

association analysis to identify genes containing significant numbers of highly 

associated SNPs and significantly enriched gene-sets (Chapter 2, Section 2.4.5). 
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4.2.4 Bioinformatic analyses 

See Chapter 2, Sections 2.4.3, 2.5.1 and 2.3.5 for details on GWAS analysis, 

LocusZoom plots and eQTL analyses, respectively. 

 

I sought an association between Phosphatidylinositol 4-Kinase Type 2 Beta (PI4K2B) 

expression levels in colorectal tumours and survival in 597 CRC patients from THPA 

(Chapter 2, Section 2.3.7). Samples were classified as high expression using a 

threshold of FPKM>7.38 as per THPA recommendations. I also performed survival 

analysis using a linear Cox proportional-hazards model. 
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4.3 Results 

4.3.1 Clinicopathological features of patients stratified by tumour location 

1,899 patients from COIN and COIN-B had genotyping, survival, clinicopathological 

and primary tumour location data available (Figure 4.1). Patients with proximal CRC 

(n=514) had a higher frequency of KRAS (39.1%) and BRAF (16.0%) mutations and 

worse prognosis (median survival 397 days) compared to patients with distal CRC 

(n=493, 25.6%, 4.3% and 514 days, all P<1.0x10-4, respectively) and rectal cancers 

(n=892, 33.3%, P=1.2x10-2; 4.1%, P<1.0x10-4 and 520 days, P<1.0x10-4, respectively) 

(Table 4.1). 

 

4.3.2 Relationship between germline variation and survival by tumour location 

Genome-wide survival analyses of patients from COIN and COIN-B were stratified by 

primary tumour location. There was no detectable genomic inflation (λ=1.03-1.12). No 

SNPs passed genome-wide significance regardless of tumour location (Figure 4.2). 

 

SNPs at 15 independent loci were suggestive of an association with survival in patients 

with tumours in the proximal colon, 23 loci in those with tumours in the distal colon and 

16 loci in those with tumours in the rectum (Figure 4.2, Table 4.2). I sought 

independent replication of lead SNPs at each of these loci in 5,078 UKB participants. 

rs76011559 mapping to 7q36.1 (123kb upstream of CUL1) replicated in patients with 

proximal tumours (HR=1.31, 95% CI=1.03-1.66, P=2.8x10-2, Figure 4.3, Table 4.2). 

In the advanced disease setting, patients carrying at least one copy of the minor (C) 
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allele had a median reduction in survival of 121 days compared to patients 

homozygous for the major (A) allele (Figure 4.3). 

 

rs12273047 at 11p15.4 replicated in patients with rectal tumours (HR=1.19, 95% 

CI=1.03-1.38, P=1.6x10-2; Figure 4.4, Table 4.2). Patients carrying at least one copy 

of the minor (C) allele had a median reduction in survival of 132 days compared to 

patients homozygous for the major (T) allele (Figure 4.4). No other lead SNPs were 

replicated (Table 4.2). 
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Table 4.1. Clinicopathological features of COIN and COIN-B patients by tumour 
site. Data are n (%) or median. Differences between patients were analysed using a 

Clinicopathological 
factor 

 
Proximal 
tumour 

 Distal 
tumour 

 Rectum 
P (n = 514)  (n = 493)  (n = 892) 

n %  n %  n % 
Sex Male 307 59.7  312 63.3  625 70.1 2.2x10-4 

Female 207 40.3  181 36.7  267 29.9            
Age Median 

(years) 65 -  64 -  63 - - 
           
Overall survival Median days 

(95% CI) 
397 
(359-
444) 

-  
514 
(471-
556) 

-  
520 
(496-
581) 

- 
<1.0x10-4 

           
WHO performance 
status 

0 216 42.0  209 42.4  459 51.5 1.3x10-3 
1 251 48.8  249 50.5  375 42.0 
2 47 9.1  35 7.1  58 6.5            

Status of primary 
tumour 

Resected 316 61.5  270 54.8  421 47.2 <1.0x10-4 
Unresected 198 38.5  223 45.2  471 52.8            

Timing of metastases Metachronou
s 136 26.5  119 24.1  311 34.9 <1.0x10-4 

Synchronous 378 73.5  374 75.9  581 65.1            
Type of metastases Liver only 86 16.7  151 30.6  185 20.8 <1.0x10-4 

Liver plus 
others 272 52.9  255 51.7  474 53.3 

Non-liver 156 30.4  87 17.6  231 26.0            
Number of metastatic 
sites 

0 0 0.0  0 0.0  2 0.2 0.23 
1 175 34.0  196 39.8  310 34.8 
2 200 38.9  181 36.7  367 41.1 
≥3 139 27.0  116 23.5  213 23.9            

KRAS status Mutated 201 39.1  126 25.6  297 33.3 <1.0x10-4 
Wild-type 224 43.6  283 57.4  453 50.8 
n/k 89 17.3  84 17.0  142 15.9            

NRAS status Mutated 16 3.1  20 4.1  30 3.4 0.66 
Wild-type 397 77.2  373 75.7  699 78.4 
n/k 101 19.6  100 20.3  163 18.3            

BRAF status Mutated 82 16.0  21 4.3  37 4.1 <1.0x10-4 
Wild-type 332 64.6  373 75.7  695 77.9 
n/k 100 19.5  99 20.1  160 17.9            

PIK3CA status Mutated 62 12.1  45 9.1  79 8.9 0.065 
Wild-type 308 59.9  315 63.9  594 66.6 
n/k 144 28.0  133 27.0  219 24.6 
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Chi-squared test, Fisher’s exact test (for number of metastatic sites) or log rank test 

(for overall survival). *Non-liver metastases included those in the lungs, peritoneum 

and lymph nodes. n/k – not known - some data for somatic mutation status was not 

known due to the lack of availability of tumour tissue or failed amplification.
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Figure 4.2. Manhattan plots of single nucleotide polymorphism (SNP) associations with 
overall survival (OS) in patients from COIN and COIN-B with primary tumours in (A) the 
proximal colon (n=514), (B) the distal colon (n=493) and (C) the rectum (n=892). SNPs 
are ordered by chromosome position and plotted against the -log10(P) for their association with 
OS. The red line represents the threshold for genome-wide significance (P<5.0x10-8) and the 
blue line is the threshold for suggestive significance (P<1.0x10-5).  
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 Figure 4.3. Relationship between rs76011559 genotype and overall survival 

(OS) in patients from COIN and COIN-B with proximal colon tumours. 

(A) Regional locus zoom plot shows results of the analysis for single nucleotide 

polymorphisms (SNPs) and recombination rates. −log10(P) (y axis) of the SNPs are 
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shown according to their chromosomal positions (x axis) for an area 400Kb 

upstream and downstream of rs76011559 (in purple). The colour intensity of each 

symbol reflects the extent of linkage disequilibrium with the sentinel SNP, deep blue 

(r2=0) through to dark red (r2=1.0). Genetic recombination rates, estimated using 1000 

Genomes Project samples, are shown with a blue line. Physical positions are based 

on NCBI build 37 of the human genome. Also shown are the relative positions of genes 

and transcripts mapping to the region of association. Genes have been redrawn to 

show their relative positions; therefore, maps are not to physical scale. (B) Kaplan-

Meier plot of the relationship between rs76011559 genotype and OS. Time in days 

plotted against survival probability for patients homozygous for the major allele (AA) 

and heterozygous (AC) or homozygous for the minor allele (CC). The number of 

patients still at risk at each time point is shown beneath. 
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Figure 4.4. Relationship between rs12273047 genotype and overall survival in 

patients from COIN and COIN-B with rectal tumours. (A) Regional locus zoom plot 

shows results of the analysis for single nucleotide polymorphisms (SNPs) and 
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recombination rates. −log10(P) (y axis) of the SNPs are shown according to their 

chromosomal positions (x axis) for an area 400Kb upstream and downstream 

of rs12273047 (in purple). The colour intensity of each symbol reflects the extent of 

linkage disequilibrium with the sentinel SNP, deep blue (r2=0) through to dark red 

(r2=1.0). Genetic recombination rates, estimated using 1000 Genomes Project 

samples, are shown with a blue line. Physical positions are based on NCBI build 37 of 

the human genome. Also shown are the relative positions of genes and transcripts 

mapping to the region of association. Genes have been redrawn to show their relative 

positions; therefore, maps are not to physical scale. (B) Kaplan-Meier plot of the 

relationship between rs12273047 genotype and overall survival. Time in days plotted 

against survival probability for patients homozygous for the major allele (TT) and 

heterozygous (TC) or homozygous for the minor allele (CC). The number of patients 

still at risk at each time point is shown beneath. 
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Primary tumour 
location SNP Locus Minor 

allele Genes COIN and COIN-B   UK Biobank 
HR 95% CI P   HR 95% CI P 

 rs12062055 1q32.3 G   2.02 1.53-2.67 8.2x10-7   0.90 0.68-1.19 0.46 
 rs4304342 8p23.2 C CSMD1 0.67 0.57-0.79 8.8x10-7  0.98 0.84-1.13 0.77 
 rs62135742 2p22.3 C LTBP1 1.80 1.42-2.29 1.4x10-6  0.97 0.78-1.20 0.75 
 rs147899046* 17q25.3 A DNAH17 1.43 1.23-1.65 1.7x10-6  1.11 0.97-1.27 0.14 
 rs76011559 7q36.1 C  1.78 1.40-2.25 1.7x10-6  1.31 1.03-1.66 2.8x10-2 
 rs10857917 1p13.2 G LOC643355 1.44 1.24-1.67 1.8x10-6  0.97 0.84-1.12 0.67 
 rs6460936 7p21.3 C TMEM106B, VWDE 1.57 1.30-1.90 2.2x10-6  1.00 0.83-1.21 0.99 

 rs35955655* 1p36.12 CTA 
CDA, DDOST, 
MIR6084, PINK1, 
PINK1-AS 

0.71 0.62-0.82 3.5x10-6 
 

1.05 0.92-1.19 0.47 

Proximal rs1388194 13q31.3 T  0.71 0.62-0.82 3.7x10-6  0.93 0.81-1.06 0.29 

 rs112651521 2q31.1 T BBS5, FASTKD1, 
KLHL41, PPIG 1.71 1.36-2.16 5.8x10-6 

 
0.99 0.80-1.24 0.96 

 rs1514081 11p14.3 C  0.73 0.63-0.83 6.1x10-6  0.97 0.85-1.10 0.64 
 rs10878838 12q15 T LOC100507195 1.64 1.32-2.03 6.9x10-6  1.09 0.88-1.35 0.44 
 rs148684057 9q21.32 GT LOC101927575 1.72 1.35-2.19 8.6x10-6  0.98 0.80-1.30 0.89 

 rs11048907 12p11.23 T 
ARNTL2, C12orf71, 
MED21, STK38L, 
TM7SF3 

1.71 1.35-2.16 9.3x10-6 
 

1.06 0.86-1.32 0.57 

  rs78738433 5q33.3 C ADAM19, CYFIP2, 
NIPAL4 1.90 1.43-2.52 1.0x10-5 

  
1.04 0.81-1.33 0.77 

 rs313566 4p15.2 A 

ANAPC4, PI4K2B, 
SEPSECS, 
SEPSECS-AS1, 
ZCCHC4 

0.52 0.41-0.67 1.8x10-7 

  

1.15 0.93-1.42 0.19 

 rs2837637* 21q22.2 A DSCAM 1.47 1.26-1.72 1.0x10-6  1.10 0.96-1.26 0.17 
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 rs7907707 10p14 C  1.63 1.33-1.99 1.8x10-6  1.04 0.86-1.26 0.70 
 rs10182527 2q14.1 T DPP10, DPP10-AS1 1.44 1.24-1.67 2.0x10-6  1.08 0.95-1.24 0.24 
 rs76041099 3q23 C LOC100507389 2.14 1.57-2.94 2.0x10-6  0.83 0.61-1.14 0.26 
 rs11159167 14q12 G  1.43 1.23-1.67 2.3x10-6  0.97 0.84-1.12 0.69 
 rs117589090 10p14 G  2.08 1.53-2.81 2.3x10-6  0.89 0.64-0.24 0.50 
 rs4718825 7q11.22 G  1.55 1.29-1.87 2.3x10-6  0.98 0.82-1.17 0.83 
 rs7656285 4q25 C LRIT3, RRH 1.42 1.22-1.64 3.0x10-6  0.93 0.81-1.07 0.34 
 rs6921841 6p12.2 A  1.62 1.32-1.98 3.2x10-6  1.05 0.88-1.26 0.56 
 rs10510552 3p24.2 T  1.45 1.24-1.69 3.4x10-6  0.88 0.76-1.00 0.06 
Distal rs34507557 1q42.13 CT CDC42BPA 1.66 1.34-2.07 4.9x10-6  1.10 0.91-1.34 0.33 
 rs28583014 4q25 A EGF, ELOVL6 1.73 1.37-2.20 5.0x10-6  0.93 0.74-1.17 0.53 
 rs2057331 6q14.1 G C6orf7 1.80 1.40-2.33 5.1x10-6  0.96 0.75-1.23 0.75 
 rs41268739 1q42.13 T CDC42BPA 2.04 1.50-2.78 5.4x10-6  0.90 0.65-1.25 0.54 
 rs9995789 4q25 T ELOVL6 1.52 1.27-1.83 5.6x10-6  0.98 0.82-1.17 0.84 
 rs7319699 13q12.12 G TNFRSF19 1.45 1.24-1.71 5.8x10-6  1.10 0.95-1.27 0.21 
 rs7826050 8q24.13 G DERL1 1.45 1.23-1.70 7.0x10-6  0.99 0.85-1.15 0.87 
 rs11842682 13q21.1 T  1.51 1.26-1.81 8.4x10-6  0.94 0.79-1.12 0.50 
 rs1033393 6q22.1 T  1.57 1.29-1.92 8.9x10-6  1.02 0.85-1.23 0.80 
 rs2796466 9q21.32 T TLE1 1.41 1.21-1.64 9.2x10-6  0.87 0.76-1.01 0.06 
 rs7660386 4q35.2 G  0.66 0.55-0.79 9.6x10-6  0.95 0.81-1.11 0.51 
  rs72702433 4q34.3 G   1.86 1.41-2.44 1.0x10-5   0.97 0.74-1.30 0.87 
 rs73011737 4q34.3 T   1.68 1.38-2.04 2.1x10-7   0.97 0.78-1.22 0.82 
 rs77984832 12q12 T  1.82 1.45-2.29 3.0x10-7  0.87 0.67-1.12 0.28 
 rs1562098 4p14 T  1.32 1.18-1.48 1.6x10-6  0.99 0.86-1.13 0.85 
 rs10067149 5p15.33 G  1.31 1.17-1.47 2.0x10-6  1.04 0.92-1.19 0.50 
 rs74602176 1q25.2 A BRINP2 1.72 1.38-2.15 2.1x10-6  0.91 0.69-1.21 0.53 
 rs2949938 17q24.2 A PITPNC1 1.69 1.36-2.10 2.2x10-6  0.98 0.71-1.34 0.90 
 rs60453441 1p36.13 G  0.69 0.59-0.81 2.9x10-6  1.02 0.87-1.20 0.81 
Rectal rs2822995 21q11.2 T NRIP1 1.37 1.20-1.56 3.8x10-6  1.13 0.97-1.33 0.12 
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 rs268872 2p14 T ACTR2 1.39 1.21-1.60 4.1x10-6  0.98 0.84-1.15 0.81 
 rs12273047 11p15.4 C  1.33 1.18-1.50 4.4x10-6  1.19 1.03-1.38 1.6x10-2 
 rs35066664 1p36.32 G  1.69 1.35-2.11 5.5x10-6  0.98 0.77-1.27 0.90 
 rs34529111 4p14 G  1.45 1.24-1.71 6.3x10-6  1.09 0.90-1.31 0.37 
 rs112063020 13q34 AGTTT CDC16, UPF3A 1.31 1.17-1.48 7.0x10-6  1.07 0.93-1.23 0.36 
 rs16878917 4p15.2 A  0.74 0.64-0.84 7.1x10-6  0.98 0.84-1.14 0.78 
 rs113230287 7p15.3 C STEAP1B 1.45 1.23-1.72 8.2x10-6  0.86 0.71-1.05 0.14 
  rs78745358 15q14 A C15orf41 1.63 1.31-2.02 9.7x10-6   1.01 0.72-1.34 0.93 

 

Table 4.2. Replication of loci suggestive of association with survival in COIN and COIN-B. Independent replication of lead 

single nucleotide polymorphisms was carried out using participants from the UK Biobank (UKB) with proximal colon, distal colon and 

rectal tumours. Tumour location, SNP location, minor allele, overlapping genes, Hazard Ratio, 95% confidence intervals and P-value 

are listed for survival (time from trial recruitment to death or end of study for COIN and COIN-B, and time from diagnosis to death or 

data distribution date for the UKB). rs76011559 replicated in patients with proximal tumours and rs12273047 replicated in patients 

with rectal tumours (highlighted in bold). *rs35955655, rs147899046 and rs2837637 were not available in the UKB and so were 

replaced with the proxies rs12021613 (1000 genomes project R2=1 and D’=1), rs4969218 (r2=0.99 and D’=1) and rs1012846 (r2=0.6 

and D’=1), respectively. 
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4.3.3 Gene and expression analyses 

In MAGMA gene analyses, only PI4K2B was significantly associated with survival in 

COIN and COIN-B patients with distal cancers, beyond the threshold for multiple 

testing (P=2.1x10-6; Figure 4.5). Patients carrying one copy of the minor (A) allele in 

the lead SNP, rs313566 in intron 1 of PI4K2B, had a median increase in survival of 

245 days compared to patients homozygous for the major (G) allele (HR=0.52, 95% 

CI=0.4-0.7, P=1.8x10-7, Figure 4.5). In contrast, rs313566 genotype was not 

associated with survival in patients with proximal cancers (HR=1.10, 95% CI=0.89-

1.36, P=0.37, PZ-test compared to distal cancers=6.5x10-6) or those with rectal cancers 

(HR=1.16, 95% CI=0.97-1.39, P=0.09, PZ-test compared to distal cancers=1.9x10-7). 

 

I sought further mechanistic understanding of rs313566. rs313566 was an eQTL for 

PI4K2B in several cell types (cultured fibroblasts, cerebellum, cerebellar hemisphere, 

sun exposed skin, tibial nerve, and spleen; P<3.8x10-5) with the A-allele associated 

with increased PI4K2B expression. I found that higher PI4K2B expression in tumour 

tissue was associated with improved survival in 597 unrelated patients with colorectal 

tumours from THPA (log rank P=9.6x10-5, Figure 4.6). This finding was replicated 

under a linear Cox-proportional hazards model (HR=0.94, 95% CI=0.9-1.0, P=7.0x10-

3). Despite this, I failed to replicate the association between rs313566 and survival in 

UKB patients with distal (HR=1.15, 95% CI=0.93-1.42, P=0.19), proximal (HR=1.03, 

95% CI=0.84-1.29, P=0.74) or rectal (HR=1.11, 95% CI=0.91-1.34, P=0.29) cancers, 

despite having over 99% power.
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Figure 4.5. Relationship between gene, genotype and survival in patients from COIN 
and COIN-B with primary tumours in the distal colon. (A) Manhattan plot of gene 
associations with overall survival (OS). Genes are ordered by chromosome position and 
plotted against the -log10(P) for their association with OS. The red line represents the threshold 
for genome-wide significance (P=2.5x10-6). (B) Regional locus zoom plot shows results of the 
analysis for single nucleotide polymorphisms (SNPs) and recombination rates. −log10(P) (y 
axis) of the SNPs are shown according to their chromosomal positions (x axis) for an area 
200Kb upstream and downstream of PI4K2B. The sentinel SNP (purple) is labelled by its rsID 
(rs313566). The colour intensity of each symbol reflects the extent of linkage disequilibrium 
with the sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0). Genetic recombination 
rates, estimated using 1000 Genomes Project samples, are shown with a blue line. Physical 
positions are based on NCBI build 37 of the human genome. Also shown are the relative 
positions of genes and transcripts mapping to the region of association. Genes have been 
redrawn to show their relative positions; therefore, maps are not to physical scale. (C) Kaplan-
Meier plot of the relationship between rs313566 genotype and OS. Time in days plotted 
against survival probability for patients homozygous for the major allele (GG) and 
heterozygous (GA) or homozygous for the minor allele (AA). The number of patients still at 
risk at each time point is shown beneath. 
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Figure 4.6. Kaplan-Meier plot for PI4K2B expression levels in colorectal tumours 

from 597 patients from the Human Protein Atlas. Time in days plotted against 

survival probability. High expression levels defined as median number of fragments 

per kilobase of exon per million reads >7.38. A log-rank test was used to calculate P-

value for differences in survival between the groups. 

 

4.3.4 Gene-set analyses 

Four gene-sets (negative regulation of phospholipid biosynthetic process, 

phosphatidic acid biosynthetic process, 1-acylglycerophosphocholine O-

acyltransferase activity and long-term memory) reached significance beyond multiple 

testing thresholds in patients from COIN and COIN-B with rectal cancers (Table 4.3). 
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Primary tumour 
location 

GO Term Gene-Set Name P q 

Rectal 

GO:0071072 

Negative regulation of 

phospholipid biosynthetic 

process 

6.7x10-11 6.6x10-7 

GO:0006654 
Phosphatidic acid biosynthetic 

process 
5.6x10-7 2.8x10-3 

GO:0047184 
1-acylglycerophosphocholine 

O-acyltransferase activity 
8.5x10-6 2.8x10-2 

GO:0007616 Long term memory 1.6x10-5 3.9x10-2 

 

Table 4.3. MAGMA gene-set analysis for survival in patients from COIN and 

COIN-B by tumour location. Statistically significant sets with q<0.05 are presented. 

Gene-ontology (GO) term, full descriptive name, P-value and corrected P-value 

(q) are shown.  

 

4.3.5 Meta-analysis of COIN, COIN-B and UKB by tumour location 

To increase our power to detect associations, I carried out GWAS for survival in UKB 

patients by tumour location and meta-analysed the data with COIN and COIN-B. No 

SNPs reached genome-wide significance although three SNPs were close to this 

threshold in patients with rectal tumours (rs3980660 at 2q14.3, HR=0.79, 95% 

CI=0.61-0.97, P=2.2x10-7; rs17237514 at 15q22.2, HR=0.73, 95% CI=0.50-0.97, 

P=2.9x10-7 and rs12273047 at 11p15.4, HR=1.27, 95% CI=1.09-1.46, P=4.1x10-7). No 

genes reached genome-wide significance. Three gene-sets reached significance in 

patients with rectal cancers (negative regulation of phospholipid biosynthetic process, 

P=9.6x10-12, q=9.5x10-8; phosphatidic acid biosynthetic process, P=8.2x10-8, 
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q=4.1x10-4 and positive regulation of response to endoplasmic reticulum stress, 

P=1.4x10-5, q=4.5x10-2). 

 

4.3.6 Relationship between previously reported prognostic SNPs and tumour 

location 

Three SNPs have been associated with CRC survival by tumour location (Labadie et 

al. 2022). rs698022 was not replicated in patients from COIN and COIN-B despite 

having 84% power. rs189655236 also failed replication but with more limited power 

(54%). However, rs144717887 (INFO score=0.92) was replicated and associated with 

improved survival in patients with proximal tumours under multivariate analyses 

(HR=0.56, 95% CI=0.32-0.97, P=3.7x10-2) (Table 4.4). Patients carrying the minor (A) 

allele had a median increase in survival of 153 days as compared to patients 

homozygous for the major (G) allele. 

 

SNP Allele Tumour 
location 

N Events MAF INFO HR 95% CI P 

rs189655236 T Proximal 514 413 0.0078 0.73 0.71 0.31-1.58 0.4 

rs144717887 A Proximal 514 413 0.016 0.92 0.56 0.32-0.97 3.7x10-2 

rs698022 T Distal 493 358 0.089 0.83 0.96 0.73-1.26 0.78 

 

Table 4.4. Replication of previously reported SNP associations with survival. 

Independent replication was carried out using patients from COIN and COIN-B. I had 

54, 71 and 84% power to replicate the associations for rs189655236, rs144717887 

and rs698022, respectively. Minor allele, tumour location, sample size, number of 

events, minor allele frequency (MAF) and imputation score (INFO) are shown for each 
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SNP as well as the Hazard ratio (HR), 95% confidence intervals (CI) and P-value for 

multivariate analyses.   
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4.4 Discussion 

4.4.1 Independent loci replicated in the UK Biobank 

I considered the relationship between inherited genetic variation and survival by 

location of the CRC. rs76011559 lies 123.5kb upstream of CUL1 and replicated as a 

prognostic biomarker in patients with proximal tumours. CUL1 encodes Cullin1 a 

member of the Cullin protein family which provides a scaffold for the ubiquitin ligase 

E3, mediating the degradation of proteins involved in signal transduction, transcription 

and cell cycle progression. As a consequence, Cullin1 regulates the cell cycle, cell 

proliferation, invasion, migration and metastasis (Wang et al. 2017a) and upregulation 

of Cullin1 in CRC tissue is a negative prognostic biomarker (Wang et al. 2015; Wang 

et al. 2017a; Wang et al. 2017b). However, rs76011559 was not an eQTL for CUL1 

so further studies are necessary to determine the regulatory mechanism for this SNP. 

 

rs12273047 at 11p15.4 was also replicated in patients with rectal tumours; however, 

this SNP was intergenic with no clear mechanisms of action. Studies have suggested 

that affected genes can be up to 2Mb away from the associated SNPs and that these 

intergenic SNPs can often be surrounded by large insertions/deletions and act as 

markers of large scale genomic changes (Brodie et al. 2016). As an example, one 

study of the CRC predisposition SNP rs6983267 at 8q24 implicated the gene MYC, 

335Kb downstream from rs6983267, via regulation of the transcription factor TCF4 

(Tuupanen et al. 2009).   
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4.4.2 PI4K2B expression may be a prognostic biomarker for distal CRC  

PI4K2B was associated with survival in patients with distal cancers beyond the 

threshold for multiple testing and the lead SNP rs313566 was not associated with 

survival in patients with proximal or rectal tumours – suggesting anatomical specificity. 

I sought further mechanistic understanding of this SNP. rs313566 was an eQTL for 

PI4K2B in several cell types with the A-allele associated with increased expression. 

Interestingly, I found that higher PI4K2B expression in tumour tissue was associated 

with improved survival in patients with colorectal tumours from THPA. PI4K2B 

encodes a member of the type II PI4 kinase protein family, responsible for overall PI4-

kinase activity of the cell and PI4KII beta depletion has been associated with a more 

invasive phenotype in minimally invasive cell lines (Alli-Baloguna et al. 2016). 

However, I failed to replicate the association between rs313566 and survival in UKB 

patients with distal tumours, possibly due to the lack of clinicopathological factors 

available for inclusion in the regression models and the mixed staging of CRC patients 

in the UKB dataset; further studies are therefore necessary to substantiate our 

observations. 

 

4.4.3 Replication of a previously reported prognostic SNP 

Labadie et al. (2022) reported on a genome wide search for prognostic SNPs in the 

ISACC cohort (Chapter 2, Section 2.3.3). No loci were significantly associated with 

disease specific survival in the full cohort or stage-stratified analyses. However, 3 

independent variants showed a significant association when stratified by location of 

the primary tumour. I found that rs144717887 at 14q31.3 replicated with the same 

direction of effect in a multivariate analysis of COIN and COIN-B and represents a 
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potential prognostic biomarker for proximal CRCs. However, rs144717887 sits in a 

low-LD intergenic region with no clear mechanism of action, so further study of 

potential long-range mechanisms is required.  

 

4.4.4 Significant gene-sets  

The gene-sets ‘negative regulation of phospholipid biosynthetic process’ and 

‘phosphatidic acid biosynthetic process’ remained significant in our meta-analyses in 

patients with rectal cancers. Phospholipids have a wide range of physiological 

functions, including forming the cell membrane, regulating apoptosis and 

mitochondrial physiology, and phospholipid-derived messenger molecules are 

involved in intra and extra-cellular signalling. Interestingly, total amount of 

phospholipids in the cell membrane has been associated with cancer transformation 

of the cell, with differences in phospholipid composition being predictive of CRC 

metastases (Dobrzynska et al. 2005). Phosphatidic acid (PA) is the smallest and 

simplest phospholipid. PA is an important molecule for the stability and activity of the 

mTOR complex, a protein kinase that suppresses apoptotic signals in cancer cells 

(Foster 2009). These associations are intriguing given their probable biology and are 

candidates that warrant further investigation. 
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Chapter 5: Germline variation in RAS Protein Activator Like 

2 may predict survival in patients with RAS-activated 

colorectal cancer 

5.1 Introduction 

5.1.1 Treatments for RAS mutant CRC 

Monoclonal antibodies against EGFR, such as cetuximab, have shown benefit in 

KRAS and RAS, wild-type advanced CRC when either used as a monotherapy 

(Karapetis et al. 2008b; Guren et al. 2017) or in combination with chemotherapy 

(Khattak et al. 2015; Stintzing et al. 2016; Li et al. 2020) (Chapter 1, Section 1.1.3.5). 

In contrast, targeted treatments for patients with RAS mutant disease are only just 

emerging (Porru et al. 2018; Meng et al. 2021). Given that around half of all CRCs are 

RAS mutant, this represents a clear unmet clinical need. AMG 510 (Sotorasib), an 

inhibitor of KRAS G12C, traps mutant KRAS in its inactive GDP-bound state (Lito et 

al. 2016) and has shown effectiveness in a phase 2 trial of non-small cell lung cancer 

(Skoulidis et al. 2021). MRTX849 (Adagrasib) also binds KRAS G12C and inhibits 

intercellular signalling (Hallin et al. 2020), and has shown promising efficacy in patients 

with colorectal, non-small cell lung, endometrial, pancreatic and ovarian cancers 

(Sabari et al. 2021). However, both treatments are only effective in cancers harbouring 

G12C, which occurs in just 1-3% of CRCs. Identifying drug targets for improved 

survival in patients with RAS mutant CRC therefore remains challenging. 
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5.1.2 This study 

Relating germline variation to outcome in patients with RAS mutant cancers offers the 

prospect of identifying novel therapeutic targets. To explore this possibility, I analysed 

GWAS and survival data on patients with advanced CRC from COIN and COIN-B 

(Chapter 2, Section 3.1). Patients’ tumours were profiled for mutations in the mitogen-

activated protein kinase (MAPK) and Akt pathways, to help stratify my survival 

analyses by MAPK pathway activation status. 
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5.2 Materials and Methods 

5.2.1 Patients and samples 

Of the 2,671 patients recruited to COIN and COIN-B, 1,948 had germline genotyping 

and survival data available. The minimum MAF for SNPs was set at 5% leaving 2.9 

million SNPs for analysis. See Chapter 2, Section 2.3 for full details on patients, DNA 

extraction, genotyping and QC. See Chapter 2, Section 2.3.1.5 for details on 

measurements for response to treatment.   

 

5.2.2 Somatic genotyping 

Tumour samples were not available, or were of insufficient quantity, in 301 of the 1,948 

patients (Chapter 2, Section 3.1.5). Overall, KRAS mutations were identified in 

637/1589 (40.1%), NRAS mutations in 54/1546 (3.5%), BRAF mutations in 143/1554 

(9.2%) and PIK3CA mutations in 212/1448 (14.6%) CRCs. MSI was detected in 

45/1237 (3.6%) CRCs (Smith et al. 2013). Of those also tested for BRAF mutations, 

13/45 (28.9%) CRCs with MSI carried BRAF V600E as compared with 93/1185 (7.8%) 

without MSI (P=3.1x10-6), consistent with their sporadic nature (Lao and Grady 2011). 

 

5.2.3 Patients with MAPK-activated CRC 

MAPK-activated CRCs were assigned as those carrying KRAS, BRAF or NRAS 

mutations. In total, 829 patients with MAPK-activated CRCs had corresponding GWAS 

data. I excluded patients with potentially Akt-activated tumours (those with PIK3CA 

mutations, n=108), MSI (n=20) and those in whom covariate data was lacking (n=7 for 
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platelet count, primary tumour surface area, time to metastases or synchronous/ 

metachronous metastases). Of the remaining 694 patients, 521 (75.1%) carried KRAS 

mutations, 44 (6.3%) NRAS mutations, 120 (17.3%) BRAF mutations and 9 (1.3%) 

had combinations of these mutations (Figure 5.1, Table 5.1). For comparison, I 

analysed 760 patients without MAPK-activated tumours (i.e. those with KRAS, NRAS 

and BRAF wild-type CRC) and a further subset whose CRCs carried PIK3CA 

mutations as a marker of Akt-activation (n=87 patients with covariate data).  

 

5.2.4 Statistical analyses 

I previously identified clinicopathological factors associated with survival in patients 

from COIN and COIN-B (Chapter 3, Section 3.1). Dimensionality reduction was 

performed using PCA to reduce the risk of overfitting (Chapter 2, Section 4.2) the first 

five were selected (but only 4 were necessary to reach the 70% variance explained 

threshold when analysing patients with NRAS mutations). I carried out the GWAS for 

OS under an additive model. All analyses performed by MAPK gene mutation status 

were multivariate. 

 

Gene and gene-set analysis was completed on the summary statistics from the 

association analysis to identify genes containing significant numbers of highly 

associated SNPs and significantly enriched gene-sets (Chapter 2, Section 2.4.5). 

 

5.2.5 Bioinformatic analyses 

See Chapter 2, Sections 2.4.3, 2.5.1 and 2.3.5 for details on GWAS analysis, 

LocusZoom plots and eQTL analyses, respectively. 
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5.2.6 The Cancer Genome Atlas (TCGA) analyses 

The TCGA database (Chapter 2, Section 2.3.6) was used to find CRC patients with 

LOF in RASAL2 due to the presence of somatic RASAL2 truncating mutations or 

hypermethylation of the RASAL2 locus. Data was accessed via the TCGA data portal 

(https://portal.gdc.cancer.gov/exploration) and the TCGA definition of LOF simple 

somatic mutations (SSMs) was used. Methylation array data collected using the 

Illumina human methylation 450 platform was downloaded from the TCGA data 

repository for 345 CRC samples, containing beta coefficients for methylation levels at 

each of 485,578 CpG islands across the genome.  

 

To find samples with hypermethylated RASAL2, a mean beta coefficient was 

calculated for the eight CpG islands mapping to the promoter region of RASAL2 

(chr1:178,092,729-178,093,729). Due to the distribution of the mean beta coefficient 

being right skewed the median absolute deviation (MAD) was chosen as a suitable 

statistic for extracting hypermethylated samples, these were defined as those more 

than 2*scaling factor (1.4826; used to approximate a normal distribution)*MAD above 

the median beta coefficient for the population.  

 

Truncated RASAL2 and hypermethylated RASAL2 samples tested for SSMs, were 

screened for co-occurring oncogenic KRAS and NRAS mutations (those within codons 

12, 13, 59, 61, 117 or 146) (Zheng et al. 2019).  

 

  

https://portal.gdc.cancer.gov/exploration
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5.3 Results 

5.3.1 Clinicopathological factors in patients with and without MAPK-activated 

CRCs 

Patients with MAPK-activated CRCs were defined as those carrying KRAS, NRAS or 

BRAF mutations and that did not have Akt-activating mutations (n=108) or MSI (n=20). 

After QC, 694 patients had MAPK-activated CRCs (Figure 5.1). Patients with MAPK-

activated CRCs had more right sided primary tumours, worse response at 12-weeks 

and poorer survival (median OS 433 days) as compared to patients without MAPK-

activated CRCs (KRAS, NRAS and BRAF wild-type, n=760, median OS 611 days; 

HR=1.57, 95% CI=1.39-1.77, P=2.6x10-13) (Table 5.1). 

 

5.3.2 Genome-wide analysis and power considerations 

Genome-wide SNP, gene and gene-set analyses were performed to identify 

determinants of survival in patients with MAPK-activated CRCs using the first five 

principal components as covariates, which explained 71.7% of the total variance for 

previously established prognostic factors (Chapter 2, Section 2.4.2). I had >80% 

power to detect a hazard ratio of 1.61 for SNPs with MAF>0.2 (Chapter 2, Section 

2.4.4). No detectable genomic inflation was observed (λ=1.08). No SNPs passed the 

threshold for genome-wide significance. 

 

Following LD based clumping, SNPs at eight independent loci passed the threshold 

for suggestive significance. The lead SNPs, summary statistics and any genes they 

overlap are listed in Table 5.2. 
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Figure 5.1. CONSORT diagram of patients with MAPK-activated colorectal 

cancers. Of the 1,948 patients with germline genotyping and survival data, 694 had 

MAPK-activated tumours without somatic PIK3CA mutations (no Akt activation) or 

microsatellite instability and had covariate data. Nine patients had CRCs with two 

MAPK-activating mutations (eight with KRAS and NRAS mutations and one with 

KRAS and BRAF mutations). 760 patients did not have MAPK-activated tumours, 

defined as KRAS, NRAS and BRAF wild-type. 
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Clinicopathological 
factor 

 
Patients with 

MAPK-activated 
CRCs 

(n=694) 
 

Patients without 
MAPK-activated 

CRCs 
(n=760) 

P-value 

  n %  n %  

Sex Male 436 62.8  535 70.4 2.2x10-3 Female 258 37.2  225 29.6 
        

Age Median (years) 64 -  64 - - 
        

Response at 12-
weeks 

Responders 295 50.2  452 69.0 
1.9x10-11 Non-responders 293 49.8  203 31.0 

No data 106   105  
        

Overall survival Median 
(95% CI) (days) 

433 
(397-465) -  611 

(569-659) - 2.6x10-13 
        

WHO performance 
status 

0 330 47.6  356 46.8 
4.7x10-2 1 301 43.4  359 47.2 

2 63 9.1  45 6 
        

Site of primary 
tumour 

Left colon 137 19.7  235 30.9 

2.1x10-12 

Right colon 233 33.6  127 16.7 
Rectosigmoid 

junction 94 13.5  133 17.5 

Rectum 219 31.6  253 33.3 
Unknown colon 3 0.4  2 0.3 
Multiple sites 8 1.2  10 1.3 

        
Status of primary 

tumour 
Resected 400 57.6  411 54.1 0.19 Unresected 294 42.4  349 45.9 

        
Surface area of 
primary tumour 

Median (cm) 1.85 -  1.88 - - Range (cm) 1.29-2.66 -  1.26-2.80 - 
        

Timing of 
metastases 

Metachronous 206 29.7  241 31.7 0.44 Synchronous 488 70.3  519 68.3 
        

Type of metastases 
Liver only 120 17.3  199 26.2 

2.3x10-4 Liver + others 394 56.8  386 50.8 
Non-liver* 180 25.9  175 23 

        

Number of 
metastatic sites 

1 220 31.7  290 38.2 
5.9x10-3 2 275 39.6  301 39.6 

≥3 199 28.7  169 22.2 
        

MAPK-activated  694 100  0 0 - 

Mutation status 

KRAS mutation 521 75.1  0 0 - 
NRAS mutation 44 6.3  0 0 - 
BRAF mutation 120 17.3  0 0 - 

multiple mutations 9 1.3  0 0 - 
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Table 5.1. Clinicopathological features of stage IV patients with and without 

MAPK-activated tumours. Data are n (%) or median. Differences between patients 

with and without MAPK-activated CRCs were analysed using a Chi-squared test, Cox 

regression (for overall survival) and Fisher’s exact test (for stage). Response was 

defined as complete or partial response using RECIST 1.0 guidelines and non-

response was defined as stable or progressive disease. *Non-liver metatases included 

those in the lungs, peritoneum and lymph nodes. 

 

SNP Locus Minor 
allele HR 95% CI P  Genes 

rs7008272 8q13.1 T 1.44 1.3-1.7 4.7x10-7  LINC01299 

rs78154513 6q21 T 1.50 1.3-1.8 1.2x10-6  - 

rs9592365 13q21.32 A 1.53 1.3-1.8 1.5x10-6  - 

18-56679242 18q21.31 AT 1.46 1.3-1.7 2.6x10-6  - 

rs3794586 15q14 A 0.65 0.5-0.8 5.0x10-6  RYR3 

rs6981227 8p23.2 G 0.69 0.6-0.8 5.2x10-6  - 

rs72623200 2q31.1 C 0.51 1.3-1.8 5.5x10-6  CCDC173 

rs17282574 11q21 G 1.44 1.2-1.7 6.2x10-6  - 

 

Table 5.2. Lead single nucleotide polymorphisms (SNPs) from independent loci 

that reached suggestive significance in a multivariate analysis of overall 

survival in patients with MAPK-activated advanced CRC (n=694). Cytogenic band, 

minor allele, P-value, hazard ratio and 95% confidence intervals are shown for overall 

survival. Genes overlapping with the SNPs attributed to each locus are listed. The 

SNP at locus 18q21.31 has yet to be assigned an rs ID and so is named by 

Chromosome-base pair.  
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5.3.3 Gene level association analysis 

In MAGMA gene analysis, RAS Protein Activator Like 2 (RASAL2) at 1q25.2, was the 

most significant gene associated with survival in patients with MAPK-activated CRCs 

(P=2.0x10-5) (Figure 5.2), although it did not achieve formal genome-wide 

significance. Patients carrying the minor (A) allele in the lead SNP, rs12028023 in 

intron 1 of RASAL2, had a median increase in survival of 167 days as compared to 

patients carrying the major (G) allele (HR=0.63, 95% CI=0.5-0.8, P=1.3x10-5, Figure 

5.3). In contrast, rs12028023 genotype was not associated with survival in patients 

without MAPK-activated tumours (HR=1.00, 95% CI=0.81-1.23, P=0.98) nor a subset 

whose CRCs carried PIK3CA mutations as a marker of Akt-activation (HR=1.72, 95% 

CI=0.87-3.37, P=0.12); the difference in the relationship between patient groups was 

significant (PZ-test=2.1x10-3 and 5.3x10-3, respectively). Cetuximab administration did 

not influence the prognostic effect of rs12028023, regardless of the MAPK-activation 

status (MAPK-activated PZ-test=0.29, non-activated PZ-test=0.49). 

 

The rs12028023 A-allele was also associated with improved response at 12-weeks in 

patients with MAPK-activated cancers (77/128, 60.2% of patients carrying the A allele 

responded compared to 212/447, 47.4% with the G allele, OR=1.62, 95% CI=1.11-

2.36, P=1.2x10-2). This relationship was not seen in patients without MAPK activated 

cancers (93/134, 69.4% versus 352/513, 68.6%, OR=0.98, 95% CI=0.70-1.51, 

P=0.91). 
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Figure 5.2. Relationship between gene, genotype and survival in 694 patients with MAPK-
activated colorectal cancers. (A) Manhattan plot of gene associations with overall survival (OS). 
Genes are ordered by chromosome position and plotted against the -log10(P) for their association 
with OS. The red line represents the threshold for genome-wide significance (P=2.5x10-6). (B) 
Regional locus zoom plot shows results of the analysis for single nucleotide polymorphisms (SNPs) 
and recombination rates. −log10(P) (y axis) of the SNPs are shown according to their chromosomal 
positions (x axis) for an area 200Kb upstream and downstream of RASAL2. The sentinel SNP 
(purple) is labelled by its rsID. The colour intensity of each symbol reflects the extent of linkage 
disequilibrium with the sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0). Genetic 
recombination rates, estimated using 1000 Genomes Project samples, are shown with a blue line. 
Physical positions are based on NCBI build 37 of the human genome. Also shown are the relative 
positions of genes and transcripts mapping to the region of association. Genes have been redrawn 
to show their relative positions; therefore, maps are not to physical scale. 
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Figure 5.3. Kaplan-Meier plot of the relationship between rs12028023 genotype 

and overall survival in patients with MAPK-activated colorectal cancers. Time in 

days plotted against survival probability for patients homozygous for the major allele 

(GG) and heterozygous (GA) or homozygous for the minor allele (AA). The number of 

patients still at risk at each time point is shown beneath.  
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5.3.4 Analysis of RASAL2 by MAPK gene mutation status 

I dissected the prognostic role of RASAL2 by MAPK gene mutation status. The 

rs12028023 A-allele was associated with improved survival in patients with KRAS 

(median increase of 191 days, HR=0.63, 95% CI=0.5-0.8, P=1.0x10-4) and NRAS 

(median increase of 407 days, HR=0.22, 95% CI=0.05-0.9, P=3.8x10-2) mutant CRCs 

(combined RAS mutant - median increase of 186 days, HR=0.62, 95% CI=0.5-0.8, 

P=3.4x10-5), but not in patients with BRAF mutant CRCs (HR=1.05, 95% CI=0.6-1.8, 

P=0.87) (Table 5.3, Figure 5.4). Although there was a trend for a predictive effect on 

RAS compared to RAF mutant backgrounds, this did not reach statistical significance 

(for KRAS versus BRAF mutant, PZ-test=0.097, NRAS versus BRAF mutant, PZ-

test=4.6x10-2, combined RAS versus BRAF mutant, PZ-test=0.085). 

 

5.3.5 Analyses of rs12028023 as a biomarker of proliferation 

I determined whether rs12028023 was associated with cell proliferation. The 

rs12028023 A-allele was associated with reduced surface area of the primary tumour 

(Beta=-0.037, SE=0.017, P=3.2x10-2) in patients with MAPK-activated CRCs. This 

association was not observed in patients without MAPK-activated tumours (Beta= 

0.016, SE= 0.017, P=0.36; PZ-test=2.4x10-2). 
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Group N HR 95% CI P 
Median 

increase in 
OS (days) 

MAPK-activated 694 0.63 0.5-0.8 1.3x10-5 167 

KRAS mutant 521 0.63 0.5-0.8 1.0x10-4 191 

NRAS mutant 44 0.22 0.05-0.9 3.8x10-2 407 

BRAF mutant 120 1.05 0.6-1.8 0.87 - 
 

Table 5.3. Association of the rs12028023-A allele with overall survival in patients 

with MAPK-activated CRC (n=694) and by somatic mutation status. Hazard ratio, 

95% confidence intervals, P-value, and median increase in OS (days) are shown.  
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Figure 5.4. Relationship between inherited genetic variation in RASAL2 and 
survival by MAPK gene mutation status. Regional Locus zoom plots for single 
nucleotide polymorphism (SNP) associations with overall survival in patients with 
colorectal cancers carrying (A) KRAS mutations (n=521), (B) NRAS mutations 
(n=44) and (C) BRAF mutations (n=120). Plots show results of the analysis for 
SNPs and recombination rates. −log10(P) (y axis) of the SNPs are shown according 
to their chromosomal positions (x axis) for an area 200Kb upstream and 
downstream of RASAL2. The sentinel SNP (purple) is labelled by its rsID. The 
colour intensity of each symbol reflects the extent of linkage disequilibrium with the 
sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0). Genetic recombination 
rates, estimated using 1000 Genomes Project samples, are shown with a blue line. 
Physical positions are based on NCBI build 37 of the human genome. Also shown 
are the relative positions of genes and transcripts mapping to the region of 
association. Genes have been redrawn to show their relative positions; therefore, 
maps are not to physical scale. Hazard ratio (HR), 95% confidence intervals (CI) 
and P-values are given for rs12028023. 
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5.3.6 Relationship between rs12028023 and RASAL2 expression 

rs12028023 was an eQTL for RASAL2 in cultured fibroblasts from the GTEx project 

v8 database (P=1.6x10-11) with the A-allele associated with decreased RASAL2 

expression (Figure 5.5). No significant association with expression was observed in 

the transverse (P=0.2) or sigmoid (P=1.0) colon. 

 
 

5.3.7 Investigating the relationship between somatic RASAL2 inactivation and 

oncogenic RAS mutations 

I sought a (negative) correlation between RASAL2 inactivation and RAS oncogenic 

mutations in colorectal tumours to determine whether these were mutually exclusive 

mechanisms for pathway activation. I considered LOF SSMs (defined by TCGA) and 

hypermethylation of the RASAL2 promoter region as mechanisms of RASAL2 

inactivation. 

 

Six hundred and sixty-nine patient CRCs from TCGA were tested for SSMs of which 

33 (4.9%) had somatic RASAL2 mutations. Of these, 6 were considered LOF (3 with 

a deletion resulting in the K389Rfs*7 frameshift, 1 with the G429* stop-gain mutation, 

1 with the R1147* stop-gain mutation and 1 with an insertion causing the E338Gfs*70 

frameshift). 

 

To ensure that hypermethylation of RASAL2 was exclusive to this gene and the 

samples were not experiencing CIMP, samples with extremely high levels of 

methylation across the genome were removed. A mean beta coefficient was calculated 
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from every CpG island for each sample (n=345), approximating a normal distribution. 

Those samples with mean beta greater than 1 standard deviation above the mean for 

the population were classified as CIMP and removed from further analysis (n=41). The 

success of this approach was checked by comparing the co-occurrence of the BRAF 

V600E mutation, which is highly associated with CIMP (Travaglino et al. 2019). A one 

way two proportion Z-test showed that a significantly greater proportion of samples in 

the CIMP group had the BRAF V600E mutation than in the non-CIMP group (17/40, 

42.5% versus 16/232, 0.069% respectively, P=5.1x10-10).  

 

Of the 229 CRC samples from TCGA without CIMP and that were somatically profiled, 

7 had hypermethylation of CpG islands mapping to the promoter region of RASAL2 

(Figure 5.6). Therefore, combined with LOF SSMs, 13 patients had CRCs with 

predicted inactivated RASAL2. 

 

Four out of the 13 patients with inactivated RASAL2 had co-occurring oncogenic 

somatic RAS mutations (30.8%, 2 in KRAS and 2 in NRAS). In comparison, 106/247 

patients without RASAL2 inactivation had co-occurring somatic RAS mutations 

(42.9%, 99 in KRAS and 8 in NRAS, Table 5.4). A one way two proportion Z-test under 

the alternative hypothesis of less oncogenic RAS mutations in the RASAL2 inactivated 

group showed this to be insignificant (P=0.19).  
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Figure 5.5. Expression quantitative trait loci (eQTL) analysis of 
rs12028023 for RASAL2 expression from the GTEx database. (A) 
Table of P-values for association of the SNP and RASAL2 expression in 
49 different tissues. m-value (indicating the posterior probability that the 
effect is shared in each tissue tested in the cross-tissue meta-analysis, 
calculated by METASOFT) is plotted against -log10(P) for each tissue. (B) 
Normalised expression values for RASAL2 by rs12028023 genotype in 
483 cultured fibroblast samples. 
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Figure 5.6. Histogram of mean methylation beta-coefficient per sample (n=304) 

for CpG islands mapping to the RASAL2 promoter region. The red line is set 

2*scaling factor (1.4826)*MAD above the median value, above which samples are 

classified as RASAL2 hypermethylated (n=8). The frequency of the oncogenic RAS 

mutations in samples tested for simple somatic mutations from both groups are shown. 
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Table 5.4. Co-occurrence of oncogenic RAS (KRAS and NRAS) mutations with RASAL2 inactivation. Shows samples tested 

for simple somatic mutations (SSMs) with inactivated RASAL2 (loss of function [LOF] or hypermethylated) and non-inactivated 

RASAL2 from TCGA database. Combined and total groups contain only unique samples.   

RASAL2 status   n Tested for 
SSMs n 

Oncogenic KRAS 
mutation n 

Oncogenic NRAS 
mutation n 

Total oncogenic 
RAS mutations 

n 
% With oncogenic 

RAS mutation  

LOF mutation  6 6 0 1 1 16.7% 
Hypermethylated  8 7 2 1 3 42.9% 

Combined  14 13 2 2 4 30.8% 
        

Non-LOF mutation  27 27 9 0 9 33.3% 
Not hypermethylated  296 222 90 8 98 44.1% 

Combined   321 247 99 8 106 42.9% 
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5.3.8 Gene-set enrichment analysis 

MAGMA gene-set enrichment analysis identified five gene-sets (Golgi cisterna 

membrane, cisterna and stack, monoamine transport and Cul4A-RING E3 ubiquitin 

ligase complex) significantly associated with survival in patients with MAPK-activated 

CRCs after adjusting for multiple testing (q<0.05, Table 5.5). 

 

 

 

Table 5.5. Results for MAGMA gene-set enrichment analysis. Gene-ontology (GO) 

term, full descriptive name, the number of genes in the gene-set, P-value, and false 

discovery rate corrected P-value (q) are shown. Only significant sets with q<0.05 are 

presented. 

 

  

GO term Gene-set name N genes P q 

GO:0032580 Golgi cisterna membrane 23 1.0x10-7 8.1x10-4 

GO:0031985 Golgi cisterna 49 2.0x10-6 7.8x10-3 

GO:0015844 monoamine transport 10 1.5x10-5 3.2x10-2 

GO:0005795 Golgi stack 68 1.6x10-5 3.2x10-2 

GO:0031464 Cul4A-RING E3 ubiquitin ligase 
complex 12 2.0x10-5 3.2x10-2 
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5.4 Discussion 

5.4.1 SNPs potentially associated with survival in patients with MAPK-

activated CRCs 

I sought loci affecting survival in patients with MAPK-activated CRC. Of the 8 

independent loci that passed the threshold for suggestive significance, 3 had 

overlapping genes. Of these, only Ryanodine Receptor 3 (RYR3) has shown previous 

associations with cancer. RYR3 encodes a large protein that forms a calcium channel. 

rs1044129, which is not in LD with the sentinel SNP from this analysis (D’=0.0037 and 

R2=0.0 in the 1000 Genomes Project European population), is in the 3’-UTR of RYR3 

and is a binding site for microRNA-367. In both breast cancer and hepatocellular 

carcinoma, the G allele of rs1044129 is significantly associated with increased risk 

and poorer overall survival (Zhang et al. 2011; Peng et al. 2015). Neither rs1044129 

nor any SNP in suitable LD were included in this analysis. The mechanism of action 

for the sentinel SNP intronic to RYR3 from this analysis is still unknown but warrants 

further study.   

 

5.4.2 Variation in RASAL2 may predict survival in MAPK-activated CRC 

RASAL2 was the most significant gene associated with survival in patients with MAPK-

activated CRCs. RASAL2 encodes a RAS GTPase-activating protein (GAP), which 

negatively regulates the RAS signalling pathway by converting RAS-GTP to RAS-GDP 

(Pan et al. 2018). Although RASAL2 did not pass formal genome-wide significance in 

our screen, its direct interaction with RAS (as one of only fourteen known RAS GAPs) 

(Bernards 2003) makes it an interesting candidate gene. Given that I only had 694 
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patients with MAPK-activated CRCs, it is more likely that I had too few cases to 

achieve the stringent threshold for genome-wide significance. It is noteworthy that the 

rs12028023 A-allele specifically improved survival in patients with KRAS and NRAS 

mutant cancers, but not in those with BRAF mutant cancers, supporting a direct effect 

on the upstream RAS signalling pathway. The lack of association in patients with 

BRAF mutant cancers was unlikely to be due to the small numbers of samples (n=120) 

since I observed this effect in a much smaller group with NRAS mutant cancers (n=44). 

Furthermore, rs12028023 did not influence survival in patients without MAPK activated 

CRCs, nor the subset with Akt-activation, highlighting its specificity to this pathway. 

 

5.4.3 RASAL2 has varying roles in colorectal cancer 

In CRC, RASAL2 inactivation promotes progression and metastasis (Jia et al. 2017) 

possibly via negative modulation of the RAS activation pathway.  Zhang et al. (2019) 

proposed that this was due to an association with the karyopherin nuclear transport 

receptor family member IPO5. They showed that IPO5 is overexpressed in CRC 

tissue, positively associated with clinicopathological characteristics of the disease and 

binds to the nuclear localization sequence of RASAL2, mediating its nuclear 

translocation and thus removing it from the cytoplasm where it negatively regulates 

RAS pathway activation.  

 

However, RASAL2 has also been found to be upregulated in metastatic CRCs with 

higher expression associated with lymph node involvement, distant metastasis, and 

poorer prognosis, possibly via its involvement in the Hippo signalling pathway. 

RASAL2 inhibits the expression of large tumour suppressor kinase 2, increasing the 
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expression of yes-associated protein 1 which is translocated to the nucleus and leads 

to expression of pro-proliferation genes (Pan et al. 2018). 

 

My data suggests that RASAL2’s role in CRC tumorigenesis is likely to be influenced 

by the MAPK-activation status of the patient’s cancer which was not analysed in these 

aforementioned studies and may help explain some of the conflicting data (Zhou et al. 

2019).  

 

 

5.4.4 The varying roles of RASAL2 in other cancers  

RASAL2 was identified as a tumour suppressor in prostate cancer (Min et al. 2010) 

where it is differentially hypermethylated, reducing expression and leading to 

increased cell proliferation and invasion (Tailor et al. 2021). RASAL2 inactivation also 

promotes progression and metastasis in lung (Li and Li 2014) and ovarian (Huang et 

al. 2014) cancers via ERK regulation. In luminal B breast cancers RASAL2 loss 

increases MEK/ERK (extracellular regulated protein kinases) and PI3K/AKT signalling 

to promote invasion, as well as activating NF-kB leading to increased epithelial–

mesenchymal transition (EMT) (McLaughlin et al. 2013).  

 

However, RASAL2 has also shown pro-oncogenic roles in triple-negative breast where 

its downregulation by miR-136 and miR-203 leads to suppression of cell migration, 

EMT and invasion (Feng et al. 2014).  In hepatocellular carcinoma (HCC) RASAL2 is 

hypomethylated, upregulating it and promoting invasiveness; downregulation impairs 

the Akt, RAS-RAF-MEK-ERK and WNT/β-catenin pathways by altering the 

phosphorylation of their effectors (Stefanska et al. 2014). RASAL2 is also the target of 
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miR-203 in HCC, overexpression of which exhibited similar effects to RASAL2 

knockdown (Fang et al. 2017). The varying molecular pathways of RASAL2 action in 

different cancers is summarised in Figure 5.7.  

 

5.4.5 RASAL2 inactivation is not correlated with somatic RAS mutation status  

Due to RASAL2’s negative modulation of the MAPK pathway I hypothesized that 

RASAL2 inactivation would negate the requirement for activating RAS mutations. Due 

to the previously reported differential methylation of RASAL2 in HCC (Stefanska et al. 

2014) and prostate cancer (Tailor et al. 2021) both hypermethylation and somatic 

truncating mutations were used as markers of inactivation. However, there was no 

significant difference in the frequency of oncogenic RAS mutations in CRCs from 

patients with or without RASAL2 inactivation, suggesting no link between RASAL2 

inactivation and RAS mutation status. Therefore, polymorphisms affecting RASAL2 

expression may only have a protective effect in the presence of activating RAS 

mutations that cause aberrant regulation of the MAPK pathway.   
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Figure 5.7. Biological roles of RASAL2 in different cancers. (A) Renal cell 

carcinoma, luminal B breast cancer, bladder cancer, lung adenocarcinoma, ovarian 

cancer and (B) colorectal cancer, hepatocellular cancer, bladder cancer, Luminal B 

breast cancer and triple negative breast cancer. Reproduced from Zhou et al. (2019) 

with permission. 
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5.4.6 Role of differential RASAL2 expression 

Carriers of the rs12028023 A-allele were predicted to have reduced RASAL2 

expression in cultured fibroblasts, but not colonic tissue. A median increase in survival 

of 167 days was observed in patients with MAPK-activated CRCs and 186 days in the 

subset with RAS-mutant CRCs. Importantly, others have shown that reduced RASAL2 

expression is also associated with improved survival in two independent cohorts of 

patients with CRC (Pan et al. 2018), although these were not molecularly stratified by 

MAPK-activation status. However, these data suggest that RASAL2 may represent a 

potential therapeutic target via modulation of its expression and warrant further 

investigation. Furthermore, given RASAL2’s role in tumourigenesis in other cell types 

(Stefanska et al. 2014), I speculate that it may represent a target for intervention in a 

broader range of cancers. 

 

5.4.7 Relationship between rs12028023 and cell proliferation 

Previous research has shown knockdown of RASAL2 in multiple CRC cell lines 

decreases cell proliferation, anchorage-dependent and -independent growth, cell 

invasion and migration (Pan et al. 2018). Interestingly, I noted that the rs12028023 A-

allele was associated with reduced surface area of the primary tumour in patients with 

MAPK-activated CRCs, potentially supporting a link between reduced RASAL2 

expression and decreased proliferation. 
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5.4.8 Gene-set analysis 

Five gene sets were significant for an association with OS. However, no clear link can 

be seen between these biological pathways and MAPK-activation. Three of the gene-

sets regulate the Golgi apparatus which plays a vital role in normal cell physiology by 

facilitating proliferation, cell survival, migration, cellular homeostasis and cell-cell 

communication, all dysregulated in human cancers (Bui et al. 2021). The Cul4A-RING 

E3 ubiquitin ligase complex is a multi-subunit protein complex which plays a role in 

DNA damage repair, chromatin remodelling, DNA replication, regulation of the cell 

cycle, haematopoiesis, spermatogenesis, and meiosis. The sets constituent genes 

have shown previous associations with CRC, promoting processes like cancer 

progression, proliferation, and metastasis (Ren et al. 2016; Sui et al. 2017) and 

therefore warrant further investigation.  
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Chapter 6: Poly(ADP-Ribose) Polymerase Family Member 11 

may predict survival in patients with wild-type colorectal 

cancer 

6.1 Introduction 

6.1.1 Somatic mutations and prognosis 

Many somatic mutations in CRCs have large prognostic effects (Chapter 1, Section 

1.1.4.2). KRAS mutations occur in approximately 40% of CRCs (Chapter 5, Section 

5.1.1) and confer a significantly worse median OS (Andreyev et al. 1998; Richman et 

al. 2009; Eklof et al. 2013; Cremolini et al. 2015b). Mutations in NRAS, another 

member of the MAPK pathway, have also been shown to reduce median OS (Schirripa 

et al. 2015) but this association has not been widely replicated (Ogura et al. 2014). 

BRAF mutations are strongly associated with poorer prognosis (Tran et al. 2011a; 

Kalady et al. 2012), especially the V600E mutation (Guan et al. 2020). PIK3CA 

mutations are predictive of worse disease-specific survival (Kato et al. 2007), 

progression free survival and OS (Li et al. 2017). MSI has previously been shown to 

confer poor prognosis in mCRC patients (Tran et al. 2011a; Smith et al. 2013) but 

superior prognosis in locally advanced disease patients (Lochhead et al. 2013).  

6.1.2 This study 

In Chapter 3 I performed a genome wide analysis of SNP associations with OS using 

the COIN and COIN-B cohorts. Although I found SNPs at 17 loci suggestive of 

association, I considered whether the somatic genetic background was confounding 

our analyses and masking genome-wide significant variants. I therefore performed a 
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GWAS in patients with CRCs that did not have known somatic mutations affecting 

prognosis, together with a TWAS to support my findings. 

 

 

 

 

 

 

  



Chapter 6 

 151 

6.2 Materials and Methods 

6.2.1 Patients and samples 

1,948 patients from COIN and COIN-B had germline genotyping and survival data 

available. The minimum MAF for SNPs was set at 5% leaving 2.8 million SNPs for 

analysis. See Chapter 2, Section 2.3 for full details on patients, DNA extraction, 

genotyping and QC. 

 

6.2.2 Subset of patients with wild-type CRC 

In Chapter 5, I identified 760 patients without MAPK-activated CRCs (those that were 

wild type for KRAS, NRAS and BRAF). Here, I further excluded patients with CRCs 

harbouring PIK3CA mutations (n=75), MSI (n=19) or that lacked somatic genetic data 

(n=85), leaving 581 patients (393 events) for analyses (an ‘all wild-type’ cohort). 

 

6.2.3 Statistical analyses 

I previously identified clinicopathological factors associated with survival in patients 

from COIN and COIN-B (Chapter 3, Section 3.3.1). Dimensionality reduction was 

performed using PCA to reduce the risk of overfitting (Chapter 2, Section 2.4.2) and 

the first five principal components were selected. I carried out the GWAS for OS under 

an additive model. Gene and gene-set analysis were completed as previously 

described (Chapter 2, Section 2.4.5). 
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Multivariate transcriptome-wide association analysis was completed using GReX 

imputed using whole-blood tissue MASHR-based models (Chapter 2, Section 4.6). 

 

6.2.4 Bioinformatic analyses 

See Chapter 2, Sections 2.4.3, 2.5.1 and 2.3.5 for details on GWAS analysis, 

LocusZoom plots and eQTL analyses, respectively. 

 

I sought an association between Poly(ADP-Ribose) Polymerase Family Member 11 

(PARP11) expression levels in colorectal tumours and survival in 597 CRC patients 

from THPA (Chapter 2, Section 2.3.7). Samples were classified as high expression 

using a threshold of FPKM>1.10 as per THPA recommendations (FPKM>1.64 for 

stage IV patient subset).  
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6.3 Results 

6.3.1 Genome-wide analysis and power considerations 

Genome-wide SNP, gene and gene-set analyses were performed to identify 

determinants of survival using the first five principal components as covariates, which 

explained 72.8% of the total variance for previously established prognostic factors 

(Chapter 2, Section 2.4.2). I had >80% power to detect a hazard ratio of 1.74 for SNPs 

with MAF>0.2 (Chapter 2, Section 2.4.4). No detectable genomic inflation was 

observed (λ=1.07; Figure 6.1). 

 

A single SNP, rs11062901 at 12p13.32 was genome wide significant for survival in 

patients with all wild-type CRCs (HR=1.99, 95% CI=1.6-2.5, P=4.5x10-8). Another 

independent SNP, rs11254422 at 10p14 was just under this threshold (HR=1.99, 95% 

CI=1.5-2.6, P=5.6x10-8; Figure 6.2). Following LD based clumping, a further six 

independent loci passed the threshold for suggestive significance. The lead SNPs, 

summary statistics and any genes they overlap are listed in Table 6.1. 

 

rs11062901 lies approximately 80Kb upstream of PARP11 and carriers of the T allele 

had a median reduction in survival of 249 days compared to patients homozygous for 

the major (C) allele (Figure 6.3). rs11254422 lies approximately 63Kb downstream of 

Long Intergenic Non-Protein Coding RNA 706 (LINC00706) and 69Kb upstream of 

Long Intergenic Non-Protein Coding RNA 707 (LINC00707). Carriers of the A allele 

had a median reduction in survival of 230 days compared to patients homozygous for 

the major (G) allele (Figure 6.3).  
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Figure 6.1. Single nucleotide polymorphism (SNP) associations with overall survival (OS) (n=581 patients with all wild-type colorectal 
cancer). (A) Manhattan plot: SNPs are ordered by chromosome position and plotted against the -log10(P) for their association with OS. The red 

line represents the threshold for genome wide significance (P=5.0x10-8) and the blue line is the threshold for suggestive significance (P=1.0x10-

5). Covariates included the first 5 principal components representing: World Health Organisation performance status, resection status of the 

primary tumour, white blood cell count, platelet count, alkaline phosphatase levels, number of metastatic sites, metastases within or outside of 

the liver, site of primary tumour, surface area of primary tumour, time from diagnosis to metastases and metachronous versus synchronous 

metastases. (B) Quantile-quantile plot: expected -log10(P-value), under the null hypothesis of no association between genotype and OS, plotted 

against observed -log10(P-value). 
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Figure 6.2. Regional locuszoom plots for the association of single nucleotide 
polymorphisms (SNPs) at (A) 12p13.32 and (B) 10p14 with overall survival (OS) in wild-type 
colorectal cancers (n=581). -log10(P) (y axis) of the SNPs are shown according to their 
chromosomal positions (x axis) for an area 400Kb upstream and downstream of the sentinel SNPs 
(purple), labelled by rsID. The colour intensity of each symbol reflects the extent of linkage 
disequilibrium with the sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0). Genetic 
recombination rates, estimated using 1000 Genomes Project samples, are shown with a blue line. 
Physical positions are based on NCBI build 37 of the human genome. Also shown are the relative 
positions of genes and transcripts mapping to the region of association. Genes have been redrawn 
to show their relative positions; therefore, maps are not to physical scale. 
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Table 6.1 Lead single nucleotide polymorphisms (SNPs) from independent loci 

that reached suggestive significance in a multivariate analysis of overall 

survival in patients with all wild-type advanced CRC (n=581). Cytogenic band, 

minor allele, minor allele frequency in COIN/COIN-B, P-value, hazard ratio and 95% 

confidence intervals are shown for overall survival. Genes overlapping with the SNPs 

attributed to each locus are listed. rs11062901 at 12p13.32 reached the threshold for 

genome-wide significance (P<5.0x10-8, in bold).  

SNP Locus Minor 
Allele MAF HR 95% CI P  Genes 

rs11062901 12p13.32 T 0.060 1.99 1.6-2.5 4.5x10-8  PARP11 

rs11254422 10p14 A 0.071 1.99 1.6-2.6 5.6x10-8  LINC00706, 
LINC00707 

rs35968527 11q23.3 T 0.23 1.49 1.3-1.8 7.9x10-7  TECTA 

rs2820289 1q32.1 T 0.080 1.84 1.4-2.4 1.6x10-6  IPO9-AS1, 
NAV1 

rs6980997 8q23.3 G 0.16 1.58 1.3-1.9 3.3x10-6   

rs12724483 1p13.2 G 0.28 0.69 0.6-0.8 8.4x10-6   

rs10651937 9p21.3 G 0.27 1.43 1.2-1.6 9.0x10-6  FOCAD 

rs6813563 4q24 A 0.36 1.99 1.6-2.5 9.6x10-6  
BDH2, 

CENPE, 
SLC9B1, 
SLC9B2 
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Figure 6.3. Kaplan-Meier plots for the relationship between (A) rs11062901 and (B) rs11254422 genotypes with overall 

survival. Time in days plotted against survival probability for patients homozygous for the major alleles and heterozygous or 

homozygous for the minor alleles. The number of patients still at risk at each time point is shown beneath.
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6.3.2 Gene level association analysis 

In MAGMA gene analysis, PARP11 at 12p13.32, was significantly associated with OS 

in patients with all wild-type CRCs (P=1.4x10-6; Figure 6.4). No gene sets were 

significantly associated with survival.  

 

Figure 6.4.  Manhattan plot of gene associations with overall survival (OS) in 

581 patients with wild-type colorectal cancer. Genes are ordered by chromosome 

position and plotted against the -log10(P) for their association with OS. The red line 

represents the threshold for genome-wide significance (P=2.5x10-6). 
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6.3.3 eQTL analysis  

rs11062901 was an eQTL for PARP11 in 19 of the 49 tissue types tested by GTeX 

(based on an FDR corrected significance threshold for the specific SNP/gene 

combination), with the T allele being predictive of lower normalised expression (Figure 

6.5). However, no significant association was observed in the transverse (P=0.40) or 

sigmoid (P=3.8x10-3) colon. rs11254422 was not an eQTL for any genes. 
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Figure 6.5.  
Expression quantitative trait loci 
(eQTL) analysis of rs11062901 
for PARP11 expression from the 
GTEx database. Table of P-values 
for association of the SNP and 
PARP11 expression in 49 different 
tissues. Significant tissues are 
highlighted in blue. The normalised 
effect size (NES) is defined as the 
slope of the linear regression and 
is computed as the effect of the 
alternative allele (T) relative to the 
reference allele (C). m-value 
(indicating the posterior probability 
that the effect is shared in each 
tissue tested in the cross-tissue 
meta-analysis, calculated by 
METASOFT) is plotted against -
log10(P) for each tissue. 
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6.3.4 Transcriptome-wide analysis 

Gene expression levels were successfully predicted for 5,615 genes in whole-blood tissue 

and tested for an association with OS in patients with all wild-type CRC. The most 

significant gene was MAP4K4 (HR=2.5x1034, 95% CI=1.6x1019-3.6x1049, P=8.91x10-6; 

Figure 6.6) although it did not pass the Bonferroni-corrected threshold for genome wide 

significance (P<8.9x10-6) and is likely a statistical anomaly due to only 4 patients analysed 

having a non-zero GReX. 

 

PARP11 was the second most strongly associated gene with OS (HR=0.093, 95% 

CI=0.03-0.26, P=1.08x10-5). A reduction in PARP11 GReX of 0.23 reduced median OS 

from 639 days to 421 days (Figure 6.7). Two eQTLs were annotated to PARP11 for 

imputation of expression levels. 

Figure 6.6. Manhattan plot of associations between predicted gene expression levels in 
whole-blood tissue and overall survival (OS) in 581 patients with wild-type colorectal 
cancers. Genes are ordered by chromosome position and plotted against the -log10(P) for their 
association with OS. The red line represents the threshold for significance (P=8.9x10-6 based on 
a Bonferroni correction for 5,615 independent tests). 
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Figure 6.7. Kaplan-Meier plot for the relationship of genetically regulated gene 
expression (GReX) of PARP11 in whole-blood tissue and overall survival in 579 
patients with wild-type colorectal cancer. Time in days is plotted against survival 

probability for the 3 varying levels of GReX. The number of patients still at risk at each 

time point is shown beneath. 

 

6.3.5 Analysis of PARP11 expression and survival in THPA   

PARP11 expression in tumour tissue was not associated with survival time in 597 

unrelated patients (124 events) with colorectal tumours from THPA (P=0.14), nor in a 

subset with stage IV disease (n=83, events=39, P=0.63). 
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6.4 Discussion 

6.4.1 Unmasking of a novel locus associated with survival 

In my previous genome-wide analysis of OS in 1,926 unstratified patients from COIN and 

COIN-B, rs11062901 was not suggestive of association with survival in the SNP analyses 

(all COIN/COIN-B P=0.035, HR=1.17, 95% CI=1.01-1.36), and PARP11 was not 

identified in the MAGMA gene level analyses (q=0.47; Chapter 3, Section 3.3). By 

excluding patients with CRCs carrying known somatic prognostic biomarkers, I have now 

shown that rs11062901 in PARP11 and PARP11 itself have a genome wide significant 

effect on survival. These data suggest that by excluding the known somatic biomarkers, 

I have effectively unmasked new genetic loci affecting survival. I have also started to 

understand the underlying mechanism. rs11062901 is associated with expression of 

PARP11 in numerous tissues and PARP11 expression itself was just under the threshold 

for genome-wide significance for survival in my TWAS. These data strongly suggest that 

decreased PARP11 expression directly impairs survival outcomes. Data from the THPA 

suggests that this is not specifically due to expression levels in the colorectum and 

suggests a more general non-tissue specific mechanism. 

6.4.2 PARP11 expression and the tumour microenvironment  

The tumour microenvironment (TME) has been shown to have an immunosuppressive 

effect; tumour cells can avoid normal immunosurveillance by manipulation of cytokines 

and the reprogramming of immune cells, allowing for progression of CRC and other 

cancers. Regulatory T (Treg) cells, myeloid derived suppressor cells, cancer associated 
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fibroblasts, mast cells and tumour associated macrophages all create hostile conditions 

for the tumoricidal immune responses, including recruitment of CD8+ cytotoxic T 

lymphocytes (CTLs) (Zhang et al. 2020). Treg cells release adenosine which increases 

expression and hyperactivation of PARP11 in CTLs, which aids in the ubiquitination and 

degradation of IFNAR1, without which the normal immune response is hindered. PARP11 

ablation in mice prevented loss of IFNAR1 and inhibited tumour growth due to increased 

CTL tumoricidal activity (Zhang et al. 2022). Therefore, I would expect that reduced 

PARP11 expression would lead to improved prognosis in CRC patients by reducing 

IFNAR1 degradation.  

 

In contrast to this, I have shown that germline variants that are predictive of reduced 

PARP11 expression in whole blood show a detrimental effect on prognosis. This could 

be due to the tissue used in the TWAS; tumoricidal immune activity would be localised to 

the tumour or metastatic sites, not whole-blood. A cross-tissue TWAS analysis (Chapter 

1, Section 1.3.1) could help elucidate on the organism-wide effects of PARP11 GReX on 

CRC survival. However, this would still be susceptible to the limitations of imputing gene 

expression using germline variation, including potential bias in reference eQTL panels, 

and so direct measurement of expression in tumour tissue by RNA-sequencing would be 

more appropriate. No filtering for the number of annotated SNPs per gene was performed 

when selecting genes for the association analysis and so multiple genes had expression 

imputation based on the effects of a single eQTL. However, PARP11 used 2 SNPs in its 

imputation and the use of the singular most significant eQTL from the expression 
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reference panel is considered sufficient in many TWAS methodologies, despite losing 

some statistical power (Cao et al. 2022; Oliver et al. 2022). 

 

6.4.3 Independent loci that passed the threshold for suggestive significance 

The second most significant independent locus at 10p14 was not mapped to any coding 

genes and the sentinel SNP rs11254422 was not an eQTL in the GTeX database. 

However, the SNP does lie approximately 69Kb upstream of the oncogene LINC00707 

which has been shown to be upregulated in CRC tissue. High expression levels of 

LINC00707 are predictive of advanced tumour stage, large size, distant metastasis, 

lymphatic metastasis, and poorer survival (Shao et al. 2019; Zhu et al. 2019; Wang et al. 

2020). rs11254422 is also 172Kb downstream of the gene Protein Kinase C Theta 

(PRKCQ) and approximately 167Kb upstream of PRKCQ Antisense RNA 1 (PRKCQ-

AS1). PRKCQ encodes PKC theta, a serine/threonine kinase that has been shown to 

promote growth, anoikis resistance, EMT and invasion in triple-negative breast cancer 

(Byerly et al. 2020). The long non-coding RNA PRKCQ-AS1 has been shown to be 

overexpressed in CRC tissue and associated with poorer prognosis, possibly via 

mediation of the miR-1287-5p/YBX1 pathway (Cui et al. 2020).  

 

I believe the association of SNPs with OS at this locus, which contains several 

oncogenes, makes it an interesting candidate for further study. However, relying on 

physical proximity alone can be a poor method for identifying causal genes. eQTL studies 

have suggested that two-thirds of the causal genes at significant GWAS loci are not the 

closest (Brænne et al. 2015; Zhu et al. 2016). Further QTL annotation for the lead SNPs 
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could include DNA methylation, protein expression, chromatin acetylation/chromatin 

accessibility and exon splicing. I have also previously discussed possible mechanisms of 

SNP effects on more distant genes (Chapter 4, Section 4.4.1). Differential expression 

analyses of the genes at this locus in samples from the COIN and COIN-B cohort could 

also find any potential associations with the SNPs of interest and CRC prognosis.  
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Chapter 7: General discussion 

7.1 Novel findings and implications from my work 

7.1.1 Germline prognostic biomarkers 

I aimed to identify novel germline biomarkers of CRC survival to aid in patient care and 

management. Prior to this study, only a single variant in CDH1 has been robustly 

validated as a prognostic germline biomarker despite many GWAS studies of CRC 

survival time (Chapter 1, Section 1.1.4.3). It is possible that this is due to the heterogeneity 

observed in CRC; many clinicopathological and somatic factors have prognostic effects 

that potentially eclipse the role of germline variants with smaller effect sizes. For this 

GWAS analysis, I have analysed the deeply phenotyped COIN and COIN-B cohorts for 

many of the established prognostic factors and, where possible, adjusted the regression 

analyses for those that showed a significant association with OS. In doing so, germline 

biomarkers of small effect may show an association with OS without the confounding 

effects of other factors, such as tumour surface area and resection status. 

 

Although no variants reached strict genome-wide significance in the unstratified GWAS 

of all COIN and COIN-B patients, rs79612564 intronic to ERBB4 was of suggestive 

significance (Chapter 3, Section 3.3.3). The minor (C) allele occurs in approximately 30% 

of Europeans and I showed it to be associated with a decrease in life expectancy of 

mCRC patients, with supporting mechanistic data. This finding was then nominally 

validated in mCRC patients from SOCCS and reached genome-wide significance when 
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meta-analysed with COIN and COIN-B. ERBB4 is one of four members of the EGFR 

subfamily, which can heterodimerize with EGFR and activate downstream pathways such 

as PI3K-AKT-mTOR and MAPK/ERK (Lee et al. 2002).  

 

7.1.2 Anatomy-specific germline biomarkers 

It could be that the previous lack of evidence for germline prognostic biomarkers is due 

to the grouping of CRC cohorts for higher-powered analyses. By sub-grouping patient 

samples by primary tumour location, Labadie et al. (2022) observed site-specific germline 

variants associated with CRC survival. I replicated the effect of rs144717887 at 14q31.3 

as a prognostic marker for proximal colon CRCs. I also identified the gene PI4K2B as 

significantly associated with OS in distal colon cancers specifically (Chapter 4, Section 

4.3.3). The minor allele of the most significant variant mapped to PI4K2B was predictive 

of higher PI4K2B expression, which is associated with poorer survival in a separate 

cohort. Overall, these findings support the hypothesis that due to the differing 

embryological origins of gut tissues there may be tumour site-specific germline variation 

that is predictive of survival for CRC. Further studies should consider this when designing 

analyses.  

 

7.1.3 Germline variation could identify treatment targets in difficult to treat 

cancers 

MAPK-activated CRCs are difficult to treat due to their resistance to anti-EGFR antibody 

therapies (Chapter 2, Section 1.1.3.5). I aimed to find germline variation predictive of 
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survival in patients with these CRCs as a marker of potential treatment targets. In gene-

level analysis of patients with MAPK-activated CRCs, RASAL2 was the most strongly 

associated gene with OS, specifically in those with KRAS-mutant cancers. RASAL2 

directly interacts with RAS and so represents a strong candidate gene and potential 

therapy target. Upregulating RASAL2 could enhance its GTPase activity converting RAS 

GTP to its inactive form. 

 

7.1.4 Germline biomarkers in patients with CRCs without somatic prognostic 

mutations 

Somatic mutations have considerable effects on disease progression and prognosis 

(Chapter 1, Section 1.1.4.2). By removing patients with known somatic prognostic 

biomarkers from the GWAS analysis I hoped to further remove any confounding effects 

on prognosis and identify germline markers of smaller effect size. A significant association 

between OS and PARP11 was observed. This gene was not significant under any of the 

previous analyses, supporting the hypothesis that prognostic germline alleles can be 

detected on a cleaner somatic background.  

 

PARP11 remains a poorly studied gene in the context of CRC. However, one study 

observed that ablation of PARP11 hindered tumour growth in a mouse model via 

regulation of the TME (Zhang et al. 2022). This contrasts with the TWAS analysis 

presented here; reduced PARP11 expression was strongly, but not significantly, 

associated with poorer survival in whole-blood tissue. One explanation for this could be 

the tissue specificity of expression-based analyses.  
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7.2 Strengths and limitations  

7.2.1 Validation cohorts 

Due to the lack of a significant difference in survival time between treatment arms in COIN 

and COIN-B (Chapter 2, Section 2.3.1) I was able to combine all patient groups into a 

relatively large clinical cohort with a wealth of clinicopathological and somatic data 

available for analysis. However, the gold-standard for biomarker discovery remains 

replication of any statistical associations in external patient cohorts to ensure they are not 

chance findings (Kraft et al. 2009). Unfortunately, I was unable to find suitable validation 

cohorts to properly replicate the associations in chapters 5 and 6, as few clinical studies 

collected the necessary somatic data. As such, the SNP associations with survival could 

be chance findings unique to the COIN and COIN-B cohorts. I was able to replicate 

anatomy specific variation observed in COIN and COIN-B using the UK Biobank, as well 

as one of the findings from Labadie et al. (2022) in proximal colon tumours. In Chapter 3, 

rs79612564 (2q34, intronic to ERBB4) nominally validated in mCRC patients from 

SOCCS, but not from ISACC. This is possibly due to the confounding effects of other 

clinical and pathological factors that could not be adjusted for in the population-based 

studies. 
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7.2.2 “I (may not) Have the Power!” 

In line with recommended GWAS QC measures and the sample size of this study, 

MAF≥0.05 was set for inclusion of SNPs in all GWAS. At this threshold I only had sufficient 

(>80%) power to detect genome-wide significant SNP associations with a HR>1.69 under 

an additive model in the 1,926-patient cohort. The 493 patients with distal colon cancers 

represent the smallest stratified sample and had an equivalent detectable HR>2.78. 

Despite these GWAS analyses being some of the largest of their kind in mCRC, these 

effect sizes are still unlikely to be observed in common germline variant analysis. For 

example, the only robustly validated germline biomarker of survival, rs9929218 at 16q22, 

only had a HR of 1.28 (95% CI=1.14-1.43) in the combined analysis of training and 

validation cohorts (Smith et al. 2015). Of all the 205 CRC risk SNPs outlined in Fernadez-

Rozadilla et al. (2023), only a single variant, rs201395236 at 1q44 (Lu et al. 2019), had 

an observed beta coefficient greater than that detectable in my largest analysis (beta=-

0.528, equivalent in magnitude of effect to HR=1.70).  

 

Multiple testing correction was observed throughout this work. The most used method 

was Bonferroni correction (Armstrong 2014) as it is the de facto standard for many of the 

analyses performed, including the genome-wide significance threshold (Chapter 1, 

Section 1.2.2.3). However, Bonferroni correction is considered overly conservative in 

many cases (Perneger 1998), possibly increasing the false-negative rate. A less 

conservative FDR adjustment of P-values may be more appropriate for many of these 

analyses (Benjamini and Hochberg 1995), such as gene-level MAGMA analysis. There is 

also the ‘winner’s curse’ (Bazerman and Samuelson 1983) to consider. This describes 
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the phenomenon where estimators of association and effect size for significant findings 

are often upwardly biased in discovery cohorts, leading to ascertainment bias. If effect 

sizes are initially overestimated, then follow up studies will be underpowered and fail. 

Therefore I may not have had sufficient power to replicate the true effect size in the 

external cohorts available (Xiao and Boehnke 2009).  

7.2.3  From variation to causation 

The main aim of this study was to identify germline variants that could predict patient 

prognosis. However, of equal importance is deciphering the exact biological mechanisms 

by which these genetic variants have an effect and therefore better understand CRC 

disease progression. This can prove difficult, as significant GWAS hits are likely capturing 

the effect of causal variants due to LD rather than being the causal variants themselves, 

misleading downstream mechanistic analyses (Uffelmann et al. 2021). Also, the hits are 

most often intergenic, sometimes intronic and rarely protein coding, making their 

interpretation more difficult. 

  

MAGMA gene-based analysis (de Leeuw et al. 2015) allows for individual SNP 

associations to be annotated to genes by chromosomal position and their cumulative 

association used to test for the association of genes with the phenotype of interest. For 

this study the SNP annotation window was set to 35Kb upstream of the gene transcription 

zone and 10Kb downstream, based upon examples from the current literature (Sey et al. 

2020; Liu et al. 2021). This is to capture variation in the promoter regions of genes and 

any other cis regulatory elements that could potentially affect gene expression. However, 

there are no universally agreed values for this window and there is evidence that 
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variations in window size can have large effects on the number of significant associations, 

despite not affecting power (de Leeuw et al. 2015). In future it may be important to study 

the effect of varying the window size on any significant findings.  

 

In Chapter 3 I used MAGMA version v1.07. It was later found by Yurko et al. (2021) that 

this version had an inflated false-positive rate, especially for larger genes, due to its 

implementation of Brown’s approximation of Fisher’s method for combining dependent 

SNP-level P-values to adjust for their LD-induced covariance. In response, Leeuw et al. 

(2020) amended the SNP-wise mean model in MAGMA v1.08. However, no significant 

gene or gene-set associations were reported in the Chapter 3 analyses using the earlier 

version of MAGMA, making the inflated false-positive rate unimpactful upon this study. 

 

eQTL and the transcriptome-wide analyses made use of the GTEx reference dataset 

(Chapter 2, Section 2.3.5) to find associations between candidate SNPs and gene 

expression, elucidating on causal mechanisms of SNP effect. A causal SNP that is also 

an eQTL could be falsely capturing the effect of another eQTL due to LD and so is a false 

positive mechanistic finding. Colocalization analysis, using software tools such as 

eCAVIAR (Hormozdiari et al. 2016) and HyPrColoc (Foley et al. 2021) determines 

whether a single SNP is responsible for both the eQTL and GWAS signals. This could 

improve the reliability of some causal inferences made in this study, such as the A allele 

of rs313566 potentially increasing the expression of PI4K2B and thus improving 

prognosis in patients with distal colon tumours (Chapter 4, Section 4.3.3).  

 



Chapter 7 

 175 

Expression analyses are highly tissue specific, with some variants having inverse effects 

in different cell types (Mizuno and Okada 2019). This has made interpretation of the 

identified eQTLs difficult as mCRC is an extremely heterogeneous disease that affects 

many tissues throughout the body outside of the colon. Whole blood expression panels 

are often used in TWAS analyses (Wainberg et al. 2019), as seen in Chapter 6. This is to 

maximise power as whole blood is the second most analysed tissue in the GTEx dataset 

after skeletal muscle (n=755 and 803, respectively). Also, whole blood is considered a 

suitable surrogate when there are no clear candidate tissues of interest due to its sharing 

of >80% of the transcriptome with colon, brain, heart, kidney, liver, lung, prostate, spleen 

and stomach tissue (Liew et al. 2006; Mehta et al. 2013). However, in this study the 

surrogate tissue has not assisted in narrowing down the true biological mechanisms and 

tissues in which the expression of these genes is having an effect. Therefore, further 

individual TWAS analyses in other candidate tissues are warranted, or a multi-tissue 

approach (Chapter 1, Section 1.3.1), preferably using direct RNA-sequencing information 

instead of imputed GReX levels. One such multi-tissue approach is UTMOST (Unified 

Test for MOlecular SignaTures; https://github.com/Joker-Jerome/UTMOST), a statistical 

framework for producing cross-tissue expression imputation and gene-level association 

analysis (Hu et al. 2019).  

 

7.2.4 Clinical utility 

Only a select few somatic genetic markers of CRC prognosis are routinely used by 

clinicians. Examples include BRAF V600E and KRAS mutations due to their effect sizes 

and effect on treatment options (Chapter 1, Section 1.1.4.2). The clinical utility of germline 

https://github.com/Joker-Jerome/UTMOST
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variants with smaller effect sizes as standalone markers is very low.  However, like many 

phenotypes studied by GWAS (Visscher et al. 2017; Uffelmann et al. 2021), CRC 

prognosis could prove to be highly polygenic, making the cumulative effect of many 

germline associations an effective predictive tool. Evidence for this comes from the gene-

sets significantly associated with OS presented here, such as ‘Negative regulation of 

phospholipid biosynthetic process’ in rectal cancers (Chapter 4, Section 4.3.4) and ‘Golgi 

cisterna membrane’ in MAPK-activated cancers (Chapter 5, Section 5.3.8). By annotating 

SNPs to genes and then genes to gene-sets I tested the cumulative association of these 

SNPs across large sections of the genome. Therefore, the significant association 

between OS and these gene-sets may suggest a polygenic model of inheritance. 

 

Polygenic risk scores (PRS) allow us to use GWAS summary statistics to quantify the 

cumulative effect of SNP variation across the genome on a trait of interest, such as CRC 

prognosis. PRS are calculated by multiplying the count of DNA variants with 

predetermined trait-specific effect sizes and provide useful predictive models of an 

individual’s genetic susceptibility to a trait (Wray et al. 2021). SNPs are most often 

selected by assigning a threshold for significance from a discovery GWAS, adjusting this 

threshold to maximise the PRS specificity and sensitivity in a training dataset and then 

testing its validity in a validation cohort. The number of included SNPs can vary greatly 

by P-value threshold, but there are also effect size (reported as odds ratio or beta 

coefficient) shrinkage techniques that allow for inclusion of all SNPs from the discovery 

cohort regardless of association (Choi et al. 2020). In a clinical setting it is likely that a 

PRS would be calculated via a custom genotyping panel containing all the SNPs of 
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interest. Any strongly associated SNPs with relevant validation, such as those presented 

in this study, could be included in this SNP panel, or imputed in separately.  

 

Despite no PRS existing for CRC prognosis due to the low number of significantly 

associated loci, PRS models have been extensively tested for CRC risk. Sassano et al. 

(2022) reviewed 33 independent studies and found that the addition of these genetic 

factors to models containing traditional risk-factors enhanced the area under the curve 

(AUC) values by an average of 0.040 (range 0.010-0.084), although most could still not 

reach the preferred threshold for discriminatory accuracy (AUC>0.70) (Swets 1988). The 

models also had heterogeneity in their methodology (some used unweighted allele 

counts) and size (4-696 SNPs included). It was found that including a greater number of 

SNPs in the models did not improve the model’s predictive accuracy. 

 

The predictive power of PRS is limited to the contribution of common genetic variation on 

the trait and ignores the potentially large effects of environmental factors and rare variants 

undiscoverable by traditional GWAS methods (Wray et al. 2021). Current estimates of the 

typical PRS sensitivity for disease risk prediction are 10-15% when specificity is set to 

95%. That is, when the number of people with high PRS not developing the disease is 

reduced to below 5% the PRS will accurately predict 10-15% of people who will go on to 

develop the disease (Sud et al. 2023). There is also debate of the clinical validity of PRS 

versus their clinical utility. In a recent systematic review of PRS it was found that many 

studies demonstrated their effectiveness for  disease prediction (clinical validity) but none 

were able to show an unequivocal improvement for patient outcomes (clinical utility) 
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(Kumuthini et al. 2022). If the clinical utility rates do not improve, especially considering 

the economic cost of screening, it is unlikely that we will see their widespread use anytime 

soon.  

  

7.2.5 Transferability and ethics 

To reduce the effects of population stratification on false-positive rates it is necessary to 

reduce GWAS populations to a single genetic ancestry. Because of differing LD structures 

and allele frequencies, germline variants identified by GWAS that are not robustly verified 

as causal cannot be generalised to genetic ancestries outside of these studied 

populations (Carlson et al. 2013; Uffelmann et al. 2021). This especially applies to PRS; 

a recent study of PRS across populations found that their predictive accuracy is inversely 

proportional to the Euclidian distance of genetic principle components for the target 

population from those of the discovery cohort (Ding et al. 2023). Due to the availability of 

data, most GWAS studies use individuals of European ancestry leaving other populations 

severely understudied, particularly those of low socio-economic status. This reduces the 

global clinical utility of GWAS findings and leads to ethical concerns around diversity and 

inclusion, as these individuals cannot receive the health benefits. As researchers we 

should be working to make our outputs more generalisable and future study could include 

other diverse genetic ancestries. 
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7.3 Future work 

Although the imputation quality of rs79612564 had a >99% concordance with the 

independent KASPar genotyping (Chapter 3, Section 3.3.3) it may be important to confirm 

the genotyping accuracy for the other SNP biomarkers presented in this thesis, especially 

those with a lower imputation quality score.  

 

RNA-sequencing of the COIN and COIN-B tumour samples could allow for more reliable 

eQTL and transcriptome-wide survival analyses and act as replication for THPA findings 

presented throughout this thesis. Differential expression analysis between healthy and 

disease tissues could identify dysregulated genes and pathways in CRC tumours. 

Similarly, a methylome-wide association study would enable the integration of DNA 

methylation reference datasets with the COIN and COIN-B SNP genotyping to study the 

effects of epigenetic regulation on CRC prognosis. This has already been used to identify 

novel loci associated with CRC risk (Fernandez-Rozadilla et al. 2023). 

 

Replication of the prognostic biomarkers presented in Chapters 5 and 6 is vital for their 

utility. As somatic mutation testing becomes more prevalent in the clinic and medical 

records are linked to biobank size datasets, it may become viable to form suitable 

validation cohorts of MAPK-activated and wild-type mCRC patients. Wet lab-based 

techniques could also be used to test the validity of the candidate therapeutic targets 

identified here, such as RASAL2. One study found that RASAL2 ablation in a mouse 

model of luminal B breast cancer resulted in enhanced metastasis via upregulation of 

MEK/ERK and PI3K/AKT signalling (Olsen et al. 2017). A similar study of RASAL2 
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upregulation in a CRC mouse model or cell lines with activating-KRAS mutations could 

help confirm a similar mechanism in MAPK-activated CRCs and therefore its relevance 

as a therapeutic target.  

 

7.4 Outlook  

The work in this thesis has identified novel germline prognostic biomarkers for mCRC 

patients by tumour location and somatic mutation status, as well as potential therapeutic 

targets. While many of these SNPs and genes have relatively small effect sizes and have 

not yet been robustly validated in external replication cohorts due to lack of available data, 

their inclusion in polygenic models of CRC prognosis could be of clinical utility in the 

future.  
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