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Abstract: Currently, the treatment of Proteus mirabilis infections is considered to be complicated as the
organism has become resistant to numerous antibiotic classes. Therefore, new inhibitors should be
developed, targeting bacterial molecular functions. Methionine tRNA synthetase (MetRS), a member
of the aminoacyl-tRNA synthetase family, is essential for protein biosynthesis offering a promis-
ing target for novel antibiotics discovery. In the context of computer-aided drug design (CADD),
the current research presents the construction and analysis of a comparative homology model for
P. mirabilis MetRS, enabling development of novel inhibitors with greater selectivity. Molecular
Operating Environment (MOE) software was used to build a homology model for P. mirabilis MetRS
using Escherichia coli MetRS as a template. The model was evaluated, and the active site of the target
protein predicted from its sequence using conservation analysis. Molecular dynamic simulations
were performed to evaluate the stability of the modeled protein structure. In order to evaluate the
predicted active site interactions, methionine (the natural substrate of MetRS) and several inhibitors
of bacterial MetRS were docked into the constructed model using MOE. After validation of the
model, pharmacophore-based virtual screening for a systemically prepared dataset of compounds
was performed to prove the feasibility of the proposed model, identifying possible parent compounds
for further development of MetRS inhibitors against P. mirabilis.

Keywords: Proteus mirabilis; homology model; methionyl tRNA synthetase; virtual screening; urinary
tract infections; molecular dynamics

1. Introduction

Proteus mirabilis (P. mirabilis) urinary tract infections can be either symptomatic infec-
tions causing cystitis or pyelonephritis, or asymptomatic infections leading to bacteriuria.
P. mirabilis infections are common among elderly people and patients with type II dia-
betes [1,2]. Moreover, P. mirabilis infections can cause urolithiasis. Catheterized patients
infected with P. mirabilis are highly susceptible to the development of urolithiasis, a compli-
cation in which bladder and kidney stones obstruct the catheter and urinary tract, making
treatment more difficult. Moreover, urosepsis could be developed, which is the major
cause of death due to P. mirabilis infections. In recent studies, P. mirabilis was isolated from
5 to 20% of patients with a bloodstream infection and was found to be the leading cause
of death in 50% of geriatric, hospitalized patients [3,4], as it can progress to potentially
life-threatening urosepsis. In addition to urinary tract infections, P. mirabilis bacteria is a
leading cause of respiratory tract, eye, nose, ear, burn and wound infections; and has been
associated with neonatal meningoencephalitis and osteomyelitis [5,6].
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Treatment of P. mirabilis infection relies on double-strength trimethoprim-sulfamethoxazole
(SXT) (Figure 1) if the local SXT resistance rate is not more than 10–20% [7,8]. Recently,
a wide resistance spectrum ranging from 16 to 83% of P. mirabilis against SXT has devel-
oped [7–9], and, in such cases, an alternative antibiotic therapy is recommended including
fluoroquinolones, nitrofurantoin, or fosfomycin in cases of uncomplicated cystitis. How-
ever, all of these antibiotics have shown some reported resistance (Figure 1) [7,8,10].
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Figure 1. Currently used antibiotics for the treatment of P. mirabilis, all of which have some re-
ported resistance.

In addition to the SXT resistance, P. mirabilis has developed resistance to several
antibiotic classes including β-lactams, fluoroquinolones, nitrofurantoin, fosfomycin, amino-
glycosides, tetracyclines, and sulfonamides [9–11]. P. mirabilis is also highly resistant
to antimicrobial peptides such as polymyxin B, protegrin, LL-37, and defensin [12,13].
Aminoacyl-tRNA synthetase (AaRS) provides a potential wealth of targets in the develop-
ment of drugs against P. mirabilis infections. The aminoacyl tRNA synthetases (AaRSs) are
a group of enzymes that play an important role in protein biosynthesis. AaRSs catalyze the
aminoacylation reaction of the tRNA molecule in the protein synthesis process, through
two main steps. In the first step, the amino acid is activated through reaction with an ATP
molecule, forming aminoacyl adenylate. In the second step, the aminoacyl adenylate reacts
with its cognate tRNA molecule through esterification, and the aminoacyl tRNA is now
ready for the next steps in the protein synthesis pathway. AaRSs are able to bind to and
recognize all of the reactants in this aminoacylation reaction: the amino acid, ATP, and the
cognate tRNA [14]. When any of these stages is inhibited, accumulation of uncharged tRNA
molecules takes place, which bind to ribosomes, causing an interruption in the polypeptide
chain elongation [15]. There are more than 20 types of AaRS enzymes that are classified
into two classes according to the structural features of their active site. The active site of
Class I AaRS enzymes contain a catalytic Rossman fold with two conserved motifs, HIGH
and KMSKS, whereas the active site of class II enzymes has an antiparallel β-sheet structure
with three consensus motifs, I, II, and III in the catalytic center [14–16].

Methionyl tRNA synthetase (MetRS) is considered a class I AaRS enzyme expressing
structural features of a class I aminoacyl-tRNA synthetase. Aside from the Rossmann fold
and the signature sequences “HIGH” and “KMSKS” motifs, MetRS also contains connective
peptide (CP) and a zinc finger along with the stem contact (SC) fold domain and C-terminal
alpha-helix bundle domain [17,18].

Virtual screening (VS) is an effective low-cost CADD tool in drug discovery when com-
pared with traditional high-throughput screening (HTS). Ligand-based and structure-based
design are the two approaches for VS [19]. Molecular docking using crystal structures of
target proteins from the protein data bank (PDB) is the most used method for structure-
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based drug design [19,20]. However, targets with unknown 3D crystal structure may
require the use of a homology modeling strategy and pharmacophore modeling tech-
niques. Structure-based or ligand-based pharmacophore could be used to obtain a 3D
pharmacophore model [21]. As there is no crystal structure available for P. mirabilis MetRS,
comparative structure modeling was used to construct a homology model for the P. mirabilis
MetRS enzyme. The P. mirabilis MetRS homology model and its subsequent evaluation
along with pharmacophore-based virtual screening is described.

2. Results and Discussion
2.1. Homology Model and Validation

Initial screening for possible templates for P. mirabilis MetRS amino acid sequence
against the PDB-resolved structures was achieved using a BLAST analysis [22], obtained
from the ExPASy proteomics server [23]. Three structures were identified and considered as
possible templates (Table 1). For a structure to be considered a template, it should be a wild
type, rather than engineered or mutant, have more than 25% of identity with the P. mirabilis
MetRS amino acid sequence, and have the same function. The first three native hits were
bacterial MetRS enzymes of Escherichia coli [24], that was the best template owing to the
high sequence identity (80%), followed by Acenitobacter baumannii (59%), and Pyrococcus
abyss (33%).

Table 1. The first three hits in the P. mirabilis MetRS BLAST results.

Organism PDB Code BLAST a

Score
Sequence
Identity b

Sequence
Identity % Positive % Chain Length E-Value

E. coli 1F4L 964 443/551 80 91 551 0.0
A. baumannii 5URB 697 319/544 59 77 567 0.0

P. abyss 1RQG 380 243/727 33 51 722 2 × 10−120

a The score of BLAST for an alignment is calculated by summing the scores for each aligned position and the
scores for gaps. b (Number of identical residues)/(length of sequence fragment identified by PSI-BLAST).

To obtain more information regarding the best potential template, a phylogenetic
tree was constructed using the phylogeny server [25] in order to determine the relative
distances between various templates and the target sequence (Figure 2). The different evo-
lutionary branching between the prokaryotic and eukaryotic MetRS enzymes is obviously
demonstrated in the constructed phylogenetic tree. The closest homologies to P. mirabilis
in this group of species was the Gram-negative bacteria E. coli (P00959) followed by Pseu-
domonas aeruginosa (Q9HYC7). A lower homology was observed with the Gram-positive
Enterococcus faecalis and Streptococcus pyogenes, with a clear difference observed for the
non-bacterial organisms. A percent identity matrix (Supplementary Figure S1) provided
further validation.
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(A0A3P9BIE1); African clawed frog (Q6PF21); Mycobacterium tuberculosis (P9WFU5); Thermus ther-
mophilus (P23395); Pseudomonas aeruginosa (Q9HYC7); Enterococcus faecalis (Q837B3); Streptococcus
pyogenes (Q9A178); Escherichia coli (P00959); Acinetobacter baumannii (A0A0D5YKJ7); Pyrococcus abyssi
(Q9V011), Staphylococcus aureus (P67578).

2.2. Multiple Sequence and Structural Alignments

Clustal Omega 1.2.4 [26] was used to align the possible template sequences: E. coli
(P00959), A. baumannii (A0A0D5YKJ7), P. abyssi (Q9V011), and A. aeolicus (O67298) MetRSs
with the amino acid sequence of P. mirabilis MetRS (Figure 3). The input set of query
and template sequences have an evolutionary relationship as they are Gram-negative
bacteria. No gap was observed in alignment between the P. mirabilis and E. coli MetRS
sequence and there were very few gaps in the sequence alignment of P. mirabilis, P. abyssi
and A. baumannii MetRS. This result is consistent with the distinction between the two
groups that is explained by the constructed phylogenetic tree. HIGH and KMSKS motifs
are recognized in the proposed sequences of the possible templates and the query enzyme,
indicated by the boxed amino acid residues in Figure 3.
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baumannii, Proteus mirabilus and Escherichia coli using Clustal O in which “*” means that the residues
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conserved substitutions are observed. The residues are colored according to their chemical properties
where red, small hydrophobic (AVFPMILWY); blue, acidic (DE); purple, basic (RHK); green, hydroxyl
+ amine + basic (STYHCNGQ).

The secondary structure prediction for P. mirabilis MetRS using PSIPRED [27] revealed
the high helix content predicted throughout the sequence. The C-terminus had a higher
degree of strands and coils as expected compared with the rest of the protein sequence.
The region of the HIGH motif (Table 2) is a sequence of about ten residues and present in
most homologous enzymes at the sequence positions just before the 22nd residue in the N
terminus of these enzymes. This area of the query sequence was predicted by PSIPRED to
fold in coils and helices (Supplementary Figures S2 and S3).

Table 2. Key amino acid residues of the main template (1F4L).

PDB HIGH Region Motif KMSKS Motif Zinc Binding Residues ATP Binding

1F4L 15–25 333–337 145, 148, 158 and 161 336

The KMSKS motif contains the ATP binding site and has been found in the P. mirabilis
sequence aligned to the E. coli sequence (Table 2). The E. coli 3D structure contains coils
and strands from position 333 to 337 which agrees with the PSIPRED predictions for
the query sequence. The Rossmann fold domain of E. coli, formed by two polypeptide
sequences (residues 6–115 and 252–326), is connected by the connective polypeptide domain
(residues 119–251).

2.3. 3D Homology Model

The lowest energy 3D homology model was constructed using E. coli MetRS (1F4L)
crystal structure through the Molecular Operating Environment (MOE) software [28], as ex-
plained in the experimental section. The homology model was subject to a 200 ns molecular
dynamic (MD) simulation using the Desmond programme of Maestro (Schrödinger) [29,30].
The P. mirabilis MetRS homology model was equilibrated with a small change in Root Mean
Square Deviation (RMSD) from 1.72 Å at 0 ns to 2.65 Å at 200 ns (Figure 4). Root Mean
Square Fluctuation (RMSF) showed areas of higher fluctuation (the loop regions and N-
and C-terminals) and areas of less fluctuation related to the secondary structural elements
(SSE) such as α-helices and β-sheets (Figure 4), consistent with the 48.44% SSE (% helix
35.79, % strand 12.65) in P. mirabilis MetRS.

Superimposition of the P. mirabilis MetRS model with the main template, E. coli MetRS
(1F4L), using MOE showed a low RMSD of 0.877 Å over 544 amino acid residues indicating
a high degree of similarity (Figure 5).
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(protein structure analysis) evaluation [33] with a z-score of −11.82 compared with the 
template which had a z-score of −12.98 (Figure 7A). The local model quality plot of the 
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2.4. Model Evaluation/Validation

Ramachandran analysis using MolProbity [31] of the P. mirabilis MetRS homology
model and the E. coli MetRS template (pdb 1F4L [32]) indicated that 99.1% (530/535) of
amino acid residues of the homology model were in the allowed regions compared with
99.4% (540/543) in the template with five and three amino acids identified as outliers,
respectively (Figure 6; Supplementary Figures S4 and S5).
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The homology model performed well compared with the template 1F4L in the ProSA
(protein structure analysis) evaluation [33] with a z-score of −11.82 compared with the
template which had a z-score of −12.98 (Figure 7A). The local model quality plot of the
homology morel shows no positive values, which would correspond with problematic or
erroneous parts of the input structure, suggesting a good quality model (Figure 7B).
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2.5. Active Site Validation and Docking

The predicted active site was validated by the Clustal O (1.2.4) multiple sequence
alignment [26] and the alignment service from MOE [28] and by the docking of suitable
ligands into the putative P. mirabilis MetRS model.

Moreover, the binding pocket of the modelled protein structure was predicted by the
Computed Atlas of Surface Topography of Proteins (CASTP) server [34]. Figure 8 shows
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the putative pocket of the homology model. The calculated Richards’ solvent accessible
surface area and volume were estimated as 1833.297 Å2/3252.450 Å3, for the binding site.
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The ligands include methionine, the natural substrate of the MetRS and, as E. coli
MetRS is the closest homologue to P. mirabilis MetRS, the E. coli MetRS inhibitors trifluorome-
thionine (MF3), difluoromethionine (2FM), (1-amino-3-methylsulfanylpropyl)-phosphonic
acid (MPH), methionine phosphinate (MPJ), 5′-O-[N-(L-methionyl)-sulfamoyl] (MSP), and
methioninyl adenylate (MOD) were also used for the docking validation and analysis.

Protein–ligand complexes were generated from docking of these seven ligands (Table 3),
in the P. mirabilis MetRS homology model, with the active site defined as selected amino
acids (Ala12, Leu13, Pro14, Tyr15, Gly23, His24, Glu27, Asp52, Trp253, Ala256, Pro257,
Tyr260, His300, His322, Tyr324, and Val325) identified as the methionyl-AMP pocket by
alignment of the co-crystallized structure of E. coli MetRS with methionyl adenylate (pdb
1PG0) [32].

Table 3. Ligand structures and protein–ligand (P/L) RMSD at 0 and 200 ns.

Ligand Structure P/L RMSD (Å)
0 ns

P/L RMSD (Å)
200 ns

Methionine
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Table 3. Cont.

Ligand Structure P/L RMSD (Å)
0 ns

P/L RMSD (Å)
200 ns

MF3
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The protein–ligand complexes were then subject to 200 ns MD simulations using the
Desmond programme of Maestro (Schrödinger) [29,30].

The smaller methionine and methionine derivatives (MPH, MPJ, 2FM, and MF3)
showed fluctuation and changes in ligand RMSD (Supplementary Figure S6), possibly
owing to the greater conformational flexibility of these small ligands. The most stable
protein–ligand complex of the larger ligands, MSP and methionyl adenylate, was with the
methionyl adenylate ligand while greater fluctuation and change in ligand RMSD was
observed for MSP (Supplementary Figure S6).

In the methionyl adenylate protein–ligand complex, the methionine moiety sits in a
pocket lined by Ala12, Leu13, Pro14, Tyr15, Asp52, Ala256, Pro257, Tyr260, Phe299, and
His300, with binding observed between the thiol group and the backbone of Leu13 and
direct and water-mediated H-bonding observed between the amine group with Asp52
and Pro14. A salt-bridge forms between Lys334 and the phosphate moiety, which also
binds through water molecules and intramolecularly with the ligand amine group. The 2′-
and 3′-hydroxy groups of the ribose ring form H-bonding interactions with Glu27, while
the adenine forms H-bonding interactions through one N in the pyrimidine ring and the
exocyclic amine with Val325 and face-edge π-π interaction with His21 (Figure 9).
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Figure 9. (A) 3D and (B) 2D images of P. mirabilis MetRS—methionyl adenylate (green) protein–ligand
complex after MD simulation illustrating binding site and binding interactions.
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The MSP ligand showed a good overlap with methionyl adenylate in the methionine
and phosphate regions (Figure 10); however, the ribose ring showed a significant change
in conformation, which reflects the change in RMSD observed over the MD simulation
(Table 3; Supplementary Figure S6), and loss of binding between Glu27 and the ribose
hydroxy groups (Figure 10).
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Figure 10. (A) Positioning of MSP (cyan) relative to methionyl adenylate (green) in P. mirabilis MetRS.
(B) Two dimensional image of P. mirabilis MetRS—MSP protein–ligand complex after MD simulation
illustrating binding interactions.

The methionine–P. mirabilis MetRS ligand complex showed comparable placement
and binding of methionine as observed for the methionyl moiety of methionyl adenylate
(Figure 4), and this was also observed for MPJ, 2FM, MF3, and for MPH; however, MPH
was observed in the same binding site only at 50 ns while at 100, 150, and 200 ns MPH was
displaced outside the active site (Figure 11 and Figure S7) with the amine group of the ligand
binding with Asp295 rather than Asp52 observed for methionine and the other methionine
derivatives (Supplementary Figure S8). This MD study provides support for the validity
of the AMP/methionine active sites. The model of P. mirabilis–MetAMP protein–ligand
complex is available in ModelArchive at https://modelarchive.org/doi/10.5452/ma-h0jz3.
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Figure 11. Positioning of methionine (orange), MPH (light blue), MPJ (light purple), 2FM (turquoise),
and MF3 (brown) within the methionine binding site compared with adenylate methionine (white),
which sits in the ATP and methionyl amino acid pockets.
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2.6. Recognition and Binding of P. mirabilis MetRS with Cognate tRNAmet

In each living cell, the synthesis of protein usually starts with methionine, which is
supplied to the ribosome as methionyl-tRNAMet produced by MetRS. As a result, there
are two types of the tRNAMet (the initiator tRNAf

Met and the elongator tRNAm
Met) and

the MetRS acylates both, even though they have extremely diverse nucleotide sequences.
Extensive biochemical studies [35] have shown cytosine at the anticodon position (C34) to
primarily control the identity of tRNAMet for L-methionine and the other two anticodon
bases (A35 and U36) are the second most important identity factors [36].

Despite the simple architecture of MetRS, the crystal structure of tRNAMet binding
with E. coli MetRS has remained unresolved. The crystal structure of Aquifex aeolicus MetRS
complexed with tRNAMet has been reported [37] with Asn353, Arg357, and Trp422 of
Aquifex aeolicus MetRS observed to be directly involved in the base specific recognition of
the tRNAMet anticodon. These three amino acids are strictly conserved in the MetRSs from
eubacteria, archaea, and eukaryotes [37].

Proposed interactions of the CAU anticodon in tRNAMet with P. mrabilis MetRS
residues are based on the Clustal alignment of the query enzyme with E. coli and A. aeolicus
(Figure 3) where boxed amino acids residues, present at the C-terminus, are responsible for
recognition and interaction with tRNAMet anticodon bases (Table 4).

Table 4. Amino acids responsible for in the base specific recognition of the tRNAMet anticodon.

A. aeolicus E. coli P. mirabilis

Asn356 Asn391 Asn390
Arg360 Arg395 Arg394
Trp430 Trp461 Trp460

The P. mirabilis tRNAMet sequence, available from the National Centre for Biotechnol-
ogy Information consists of 77 bases, comparable with E. coli. Moreover, the CAU anticodon
positions are also the same (Figure 12).
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Figure 12. Genomic alignment of tRNAmet for P. mirabilis and E. coli, respectively, where boxed
nucleotides are the conserved CAU anticodon and CCA end. “*” indicates identical nucleotide.

Using the RNA fold server [38], the tRNAMet secondary structure of P. mirabilis was
predicted (Figure 13).
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Asn390, Arg394, and Trp460 of P. mirabilis MetRS are involved in binding the anticodon
part of Met-tRNA. The corresponding amino acid residues in the MetRSs of A. aeolicus
and E. coli play the same role. These outcomes are predictable from the literature and
sequence alignments.

2.7. Systematic Dataset Preparation

A systematic database search was used to select active compounds against MetRS in a
variety of organisms to prepare a dataset of compounds for P. mirabilis MetRS screening.
The selection process followed the PRISMA flowchart [39], as summarized in Figure 14.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 13. Cloverleaf representation of predicted secondary structure of the P. mirabilis tRNAMet. 

Asn390, Arg394, and Trp460 of P. mirabilis MetRS are involved in binding the antico-
don part of Met-tRNA. The corresponding amino acid residues in the MetRSs of A. aeolicus 
and E. coli play the same role. These outcomes are predictable from the literature and se-
quence alignments. 

2.7. Systematic Dataset Preparation 
A systematic database search was used to select active compounds against MetRS in 

a variety of organisms to prepare a dataset of compounds for P. mirabilis MetRS screening. 
The selection process followed the PRISMA flowchart [39], as summarized in Figure 14. 

 
Figure 14. PRISMA 2020 flow diagram for compound selection process through database searches. Figure 14. PRISMA 2020 flow diagram for compound selection process through database searches.

The database search resulted in a total of 109 publications. Elimination of duplicates
resulted in 44 publications with MetRS inhibitory activity against different organisms.
These publications were retrieved and studied to ensure elimination of duplicate and
nonactive compounds. The selection process of one or two of the most active compounds
in each relevant publication resulted in a dataset of thirty-one compounds summarized in
Table 5.
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Table 5. The dataset of compounds and their original target organism as reported.

Compound Target Organism Ref.
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Table 5. Cont.

Compound Target Organism Ref.
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2.8. Pharmacophore-Based Virtual Screening

Three compounds of the prepared library are inhibitors for E. coli MetRS [54–56,63,64].
These compounds along with the natural substrate were used to prepare a 3D pharmacophore
model within MOE [28]. A ten-feature model was generated (Figure 15A) and used to
screen the created library. Initial screening with minimum three features resulted in
29 of the 31 compounds passing the pharmacophoric filter. Further analysis with minimum
four features matched, and a visual inspection of the binding resulted in the choice of one
compound as the most promising inhibitor (Figure 15B) [67]. This compound was able to
match most of the features represented by having an aromatic center (F1), hydrophobic
centroid (F2), several hydrogen bond donor and acceptor features (F3, F5, F6 and F7), and
very close to the donor feature (F10). All these features made the compound able to fit
perfectly in the pocket-forming interactions with some of the key amino acid residues
(Val325, Lys334, and Leu13) to anchor the ligand.
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Figure 15. Pharmacophore-based virtual screening: (A) 3D pharmacophore with ten features; (B) the
most promising compound fitting with the pharmacophoric features in the active site of the model.

Overall, the constructed model of P. mirabilis MetRS (Supplementary Figure S9) shows
the characteristic domains of an AaRS class I enzyme. The model contained 544 amino acid
residues from the 675 residues of the sequence, owing to the disabling of the C-terminus
in the crystal structure of the main template. The secondary structure of these amino acid
residues involved 24 α-helices and 21 β-sheets (Supplementary Figure S3). The architecture
of the active site and the key amino acid residues Val325, Glu27, Lys334, Leu13, and Asp52
necessitate the presence of key pharmacophoric features as indicated in the aromatic center
(F1), hydrophobic centroid (F2), and several possibilities for hydrogen bonding in the
distance between them. Compounds that are able to fit and fill the space between F1 and
F2 with hydrogen bond donors and acceptors in the proper orientation could have the
possibility of inhibiting the enzymatic activity.

3. Materials and Methods
3.1. Homology Search

The P. mirabilis MetRS amino acid sequence was obtained from the ExPASy proteomics
server at the Swiss Bioinformatics Institute [23]. The sequence of the enzyme has the Uniprot
identifier B4ESY6 (SYM_PROMH) and is formed of 675 residues [71]. A homology search
was performed using SIB BLAST service [22,72] accessible through the ExPASy server,
which was used to align the P. mirabilis MetRS amino acid sequence against the sequences
of the 3D-resolved structures in the protein data bank [73] to identify the best homologous
proteins. The alignment parameters and the thresholds, which were used for screening
expected homologues, were used with their default values and BLOSUM62 comparison
matrix. The detailed parameters were described as the following: BLOSUM62 comparison
matrix is utilized for protein with amino acids more than 85. E-expectation value threshold
(E-value) is 10. The phylogeny server [25] was used to construct a phylogenetic tree for the
target protein along with the possible predicted homologous proteins and other selected
MetRS enzymes from diverse organisms.
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3.2. Multiple Sequence and Structure Alignment

The query enzyme sequence was aligned with the protein sequences of the most
related MetRS templates: Escherichia coli (pdb: 1F4L), Acenitobacter baumannii (pdb: 5URB),
and Pyrococcus abyssi (pdb: 1RQG), using Clustal Omega 1.2.4 [26]. The local alignment
of these sequences is useful to detect the conserved residues and the structural motifs:
HIGH region, KMSKS motifs together with the zinc metal and the ATP binding sites. The
revealed results are vital to understand not only the expected structural similarities but also
the functional similarities between these enzymes. The secondary structure of P. mirabilis
MetRS and the closest template (1F4L) were determined using PSIPRED v4.0 [27].

3.3. 3D Model Building

The molecular experiments were accomplished using Molecular Operating Environ-
ment (MOE) 2019.0102 molecular modeling software [28]. Homology models were con-
structed using MOE-Homology using AMBER99 forcefield [74], which uses a dictionary to
set the partial charges of atoms in amino acids. The final homology model was constructed
using the E. coli MetRS (1F4L) crystal structure. Ten intermediate models were generated,
and the final model was taken as the Cartesian average of all the constructed intermediate
models. All minimizations were performed until RMSD gradient of 0.05 kcal mol−1Å−1

with the specified forcefield and partial charges automatically calculated.

3.4. Model Validation

Stereochemical quality of the polypeptide backbone and side chains was assessed
using the MolProbity server [31] via assessing both residue-by-residue geometry and
overall structural geometry. The ProSA server [33] was used to check defaults in the three-
dimensional structure of the protein based on statistical analysis. Validation data from the
template (1F4L) were used as the baseline to evaluate the model.

3.5. Molecular Dynamics and Docking Studies

Methionine, as the natural substrate, was built as a ligand through MOE-Builder [28].
Structures of ligands were acquired from the relevant complex E. coli crystal structures (PDB
codes: 1PFW (MF3), 1PFV (2FM), 1P7P (MPH), 1PFU (MPJ), 1PFY (MSP), and 1PG0 (MOD)
and then each ligand’s energy was minimized, and a ligand database was generated.

Docking and molecular dynamics simulations were performed as previously de-
scribed [75,76]. Docking studies, using the constructed model, were performed to generate
protein–ligand complexes, using MOE [28] until a RMSD gradient of 0.01 kcal mol−1 Å−1

with the MMFF94 forcefield (ligands) and partial charges were automatically calculated.
The active site was defined using the site finder in MOE. Additionally, the Computed
Atlas for Surface Topography of Proteins (CASTP) server was utilized for prediction of the
active pockets of the protein, using a 1.4 Å probe and at default settings [34]. Docking was
performed using the Alpha Triangle placement to determine the poses, refinement of the
results was performed using the MMFF94 forcefield, and rescoring of the refined results
was completed using the London ∆G scoring function.

MD simulations were run on the protein–ligand complexes using the Desmond pro-
gramme of Schrödinger [29,30]. Overlapping water molecules were deleted, and the
systems were neutralized with Na+ ions and salt concentration of 0.15 M. Force-field
parameters for the complexes were assigned using the OPLS_2005 forcefield, that is, a
200 ns molecular dynamic run in the NPT ensemble (T 1⁄4 300 K) at a constant pressure
of 1 bar. Energy and trajectory atomic coordinate data were recorded at each 1.2 ns. The
model of P. mirabilis–MetAMP protein–ligand complex is available in ModelArchive at
https://modelarchive.org/doi/10.5452/ma-h0jz3.

Prime/MMGBAS, available in Schrödinger Prime suite, was used to calculate the
binding free energy of the ligands with P. mirabilis MetRS model.

∆G (bind) = E_complex (minimized) − (E_ligand (minimized) + E_receptor (minimized))

https://modelarchive.org/doi/10.5452/ma-h0jz3
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The mean ∆G (bind) values were calculated from each 10 frames of the final 100 ns of
the 200 ns MD simulation (frames 500–1000), and the average generated ∆G was from each
energy minimized frame using the equation shown above.

3.6. Systemic Dataset Preparation

The three databases, Web of Science, Scopus, and PubMed, were searched through the
advanced search tool. Methionyl tRNA synthetase or MetRS, and inhibitors or derivatives
were used as determinant keywords. To be eligible, the article had to be an original research
article, available in the English language. The selected article must contain biological
evaluation data against MetRS. The most active compound(s) was selected to be added to
the database.

3.7. Pharmacophore Query

The system was prepared using the default settings for MOE [28], specifically the
Amber10:EHT forcefield, solvation R-filed, and Receptor strength 5000. The docking
poses for the ligands were loaded and superimposed with common features selected from
the consensus to form the pharmacophore features (Figure 15A). Relevant features were
selected. The search allowed for a partial match with a minimum of three or four features
with best match determined from the rscore value (the sum of the individual feature
(F1–F10) rscores) and visual inspection of fit and binding in the active site.

4. Conclusions

In silico development of a P. mirabilis MetRS homology model has been explored
using E. coli MetRS as a template. The constructed model topology and domains were
compatible with the characteristics of Class I AaRS enzymes. Docking and molecular
dynamics simulations of the selected ligands provide the validity of the AMP/methionine
active site. In the methionyl adenylate protein–ligand complex, the methionine moiety sits
in a pocket lined by Ala12, Leu13, Pro14, Tyr15, Asp52, Ala256, Pro257, Tyr260, Phe299, and
His300, with binding observed between the thiol group and backbone of Leu13 and direct
and water mediated H-bonding observed between the amine group with Asp52 and Pro14.
A salt-bridge forms between Lys334 and the phosphate moiety, which also binds through
water molecules and intramolecularly with the ligand amine group. Asn390, Arg394, and
Trp460, at the C-terminal, recognize and interact with tRNAMet anticodon bases. Exploring
the complete putative model with its active binding site and the key binding amino acid
residues served as a crucial step in the development of novel antibiotics with greater
selectivity using rational drug design. The prepared model was used to apply a virtual
screening approach on a systematically prepared library of compounds and demonstrated
applicability in finding promising compounds to be used as lead compounds for P. mirabilis
MetRS inhibitors. The architecture of the active site and the main key amino acid residues
Val325, Glu27, Lys334, Leu13, and Asp52 necessitated the presence of key pharmacophoric
features as indicated in the aromatic center (F1), hydrophobic centroid (F2), and hydrogen
bonding in the distance between these centers. The confirmation of the findings through
laboratory experiments will be considered in a further study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16091263/s1, Figure S1: percent identity matrix created by
Clustal alignment with P. mirabilis MetRS highlighted; Figure S2: amino acid sequence of P. mirabilis
MetRS presenting α-helices in pink color, β-sheets in yellow color, loops in grey color; Figure S3:
predicted query P. mirabilis MetRS sequence secondary structure; Figure S4. Ramachandran plots—
P. mirabilis MetRS homology model (MolProbability); Figure S5. Ramachandran plots—E. coli MetRS
template (1F4L) (MolProbability); Figure S6. RMSD plots of protein–ligand complexes over 200 ns MD
simulation; Figure S7. 2D ligand interactions of the final frame of the protein–ligand complexes after
200 ns MD simulation; Figure S8. (A) change in position of MPH over 200 ns MD simulation: 50 ns
(light pink), 100 ns (green), 150 ns (orange) and 200 ns (turquoise). (B) 2D ligand interactions of the
P. mirabilis MetRS-MPH complex at 50, 100, 150 and 200 ns MD simulation; Figure S9: final P. mirabilis

https://www.mdpi.com/article/10.3390/ph16091263/s1
https://www.mdpi.com/article/10.3390/ph16091263/s1
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MetRS homology model with the characteristic domains in ribbon representation: Rossmann fold:
red; connective peptide (CP): green; KMSKS domain: yellow; anticodon domain: purple.
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