
Citation: Eid, M.A.E.; Abouelnaga,

T.G.; Ibrahim, H.A.; Hamad, E.K.I.;

Al-Gburi, A.J.A.; Alghamdi, T.A.H.;

Alathbah, M. Highly Efficient GaN

Doherty Power Amplifier for N78

Sub-6 GHz Band 5G Applications.

Electronics 2023, 12, 4001.

https://doi.org/10.3390/

electronics12194001

Academic Editor: Jung-Dong Park

Received: 19 August 2023

Revised: 17 September 2023

Accepted: 19 September 2023

Published: 22 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Highly Efficient GaN Doherty Power Amplifier for
N78 Sub-6 GHz Band 5G Applications
Mohammed A. Elsayed Eid 1 , Tamer G. Abouelnaga 2 , Hamed A. Ibrahim 1, Ehab K. I. Hamad 3 ,
Ahmed Jamal Abdullah Al-Gburi 4,* , Thamer A. H. Alghamdi 5,6,* and Moath Alathbah 7

1 Electrical Department, Faculty of Technology and Education, Suez University, Suez 43533, Egypt
2 Microstrip Circuits Department, Electronics Research Institute (ERI), Elnozha, Cairo 11843, Egypt
3 Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt;

e.hamad@aswu.edu.eg
4 Center for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan

Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Jalan Hang Tuah Jaya,
Durian Tunggal, Melaka 76100, Malaysia

5 Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
6 Electrical Engineering Department, School of Engineering, Albaha University, Albaha 65799, Saudi Arabia
7 Department of Electrical Engineering, College of Engineering, King Saud University,

Riyadh 11451, Saudi Arabia
* Correspondence: ahmedjamal@utem.edu.my (A.J.A.A.-G.); alghamdit1@cardiff.ac.uk (T.A.H.A.)

Abstract: In this paper, a high-efficiency GaN Doherty power amplifier (DPA) for 5G applications in
the N78 sub-6 GHz band is introduced. The theoretical analysis of the matching networks for the
peak and carrier transistors is presented, with a focus on the impact of unequal power splitting for
both transistors and the recommendation of a post-harmonic suppression network. The proposed
design features an unequal Wilkinson power divider at the input and a post-harmonic suppres-
sion network at the output, both of which are crucial for achieving high efficiency. The Doherty
power amplifier comprises two GaN 10 W HEMTs, measured across the 3.3 GHz to 3.8 GHz band
(the N78 band), and the results reveal significant improvements in gain, output power, drain effi-
ciency, and power-added efficiency. Specifically, the proposed design achieved a power gain of over
12 dB and 42 dBm saturated output power. It also achieved a drain efficiency of 80% at saturation
and a power-added efficiency of 75.2%. Furthermore, the proposed harmonic suppression network
effectively attenuated the harmonics at the output of the amplifier from the second to the fourth order
to more than −50 dB, thus enhancing the device’s linearity.

Keywords: Doherty power amplifier (DPA); GaN HEMT sub-6 GHz for 5G; power divider/combiner;
high efficiency; power combiners; harmonic suppression; unequal Wilkinson power divider

1. Introduction

The demand for high-performance RF power amplifiers (PAs) has surged with the
advent of 5G wireless communication networks. These PAs play a pivotal role in ensur-
ing seamless signal transmission, making them critical components in bridging the gap
between transmitters and receivers. Many applications depend mainly on PAs as detection
systems [1], hyperthermia therapy system [2,3], and wireless communications networks [4].
Some of the most important wireless communication networks are the 5G networks. As 5G
networks continue to expand, particularly with the deployment of small cell networks, the
management of power consumption and heat dissipation in wireless base stations poses
significant challenges for system designers. The exponential growth in data rates and the
increasing complexity of modulation schemes, such as 4096 Quadrature Amplitude Mod-
ulation, mandate PAs that are not only highly efficient but also capable of handling high
peak-to-average power ratios (PAPR). The integration of multiple-input multiple-output
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(MIMO) transmissions further complicates transmitter design, underscoring the need for
wideband, high-efficiency PAs with compact footprints [5].

Gallium nitride (GaN) PAs have emerged as promising candidates, particularly for
the 5G sub-6 GHz band. GaN offers advantages such as high power density, efficiency,
and wideband performance. Moreover, GaN technology exhibits low thermal resistance
and can operate at high frequencies, aligning well with the demands of 5G networks. PAs
operating in the FR1 range must efficiently handle complex modulations with high PAPR,
making high-efficiency PAs a necessity [6,7].

Various methods and architectures have been proposed to enhance PA efficiency, es-
pecially at output power back-off (OPBO) levels. These include the Doherty power am-
plifier (DPA) [7–9], Chireix-outphasing PAs [10–12], Envelope Elimination and Restoration
(EER) [13,14], Envelope Tracking (ET) methods [15,16], and Power Combining methods [17,18].

Among these, DPA stands out due to its simplicity, reliability, and excellent linearity.
Recent advancements have expanded its bandwidth through innovative strategies. While
improving DPA bandwidth is critical, it often leads to increased circuit complexity. Strate-
gies like output compensation stages and subsequent matching networks [7,19], an unusual
inverted impedance network [20], and digital approaches [10,12] have been employed. This
paper addresses the challenge of maintaining a DPA’s basic structure while achieving broad
bandwidth and exceptional efficiency.

DPAs are designed to split and combine power at the amplifier’s input and output,
respectively. The power divider circuit, which plays a crucial role in optimizing linearity,
offers an optimal power split ratio based on input power. Various power divider methods,
such as quadrature hybrid couplers [21,22], equal-split Wilkinson’s [23,24], and the dual-
input Doherty technique that utilizes digital input processing for optimal splitting [25,26],
have been explored. In our study, we employed the unequal-split Wilkinson’s method
and included a harmonic suppression circuit at the DPA network’s output to ensure both
linearity and maximum efficiency. In this paper, we present the design and simulation of
a PA based on the CG2H40010F GaN HEMT from Wolfspeed, operating in the 3 GHz to
4 GHz frequency range, covering the 5G N78 band (3.3 GHz–3.8 GHz). The Advanced
Design System (ADS) software version 2022, provided by Keysight Technologies, was
utilized for RF circuit design.

This research contributes significantly to the field of RF power amplifiers for
5G applications. The main contributions include the following:

• Proposed a design for a high-efficiency GaN Doherty power amplifier tailored to the
N78 sub-6 GHz band, the most widely used band in active 5G NR networks.

• Significantly improved PAE by 27% through the incorporation of a 2.5:1 unequal
Wilkinson power divider at the amplifier’s input, in contrast to using an equal Wilkin-
son divider.

• Introduced a seventh-order post-harmonic suppression network that effectively sup-
pressed harmonics from the second to the fourth order to more than−50 dB, enhancing
linearity and PAE.

• Achieved a gain of 12 dB, an output power of 42 dBm, a drain efficiency of 80%, and a
power-added efficiency of 75.2% in the proposed DPA design.

• Validated the simulation results by fabricating and measuring both the power divider
and the harmonic suppression network, showing good agreement.

• The paper serves as a valuable reference for future studies in the field and paves the
way for further enhancements and optimizations in RF PA designs for 5G applications.

Overall, the paper offers a comprehensive and innovative approach to achieving high
efficiency in GaN DPAs, addressing the specific requirements of 5G applications in the N78
band. Its findings contribute to the ongoing development of advanced RF technologies for
enhanced connectivity and performance in the 5G era.

The paper is structured as follows: In Section 2, a revision of the Doherty technique
to improve efficiency was performed. The basic structure and advantages of the Doherty
technique and how to calculate the output power, gain, linearity, and efficiency of that
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technique are discussed. In Section 3, all parts of the proposed DPA design are presented,
including the design of the unequal Wilkinson power divider and the harmonic suppression
network. The expected performance of DPA as a function of both frequency and input
power is presented and discussed in detail in Section 4, in addition to the review and
discussion of simulation results and comparison of this work with the literature. Finally,
Section 5 summarizes the conclusions drawn from this research.

2. Doherty Power Amplifier

The Doherty power amplifier (DPA), conceived by W.H. Doherty in 1936 [27], is
designed for highly efficient linear power amplification. In Figure 1, we present the
schematic of our proposed DPA, emphasizing its key components. This configuration
includes two amplifiers, the main class AB amplifier (carrier) and the auxiliary class
C amplifier (peak). Two λ/4 transmission lines are integrated for phase correction and
impedance translation, along with active load impedance modulation.
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Figure 1. An illustration of the planned Doherty power amplifier. 
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Figure 1. An illustration of the planned Doherty power amplifier.

In practical terms, the main amplifier efficiently handles low input power, achieving
peak efficiency and voltage levels. However, when it reaches the breakpoint threshold, as
depicted in Figure 2, the auxiliary amplifier dynamically adjusts the load and amplifies
output power while maintaining high voltage levels and efficiency. According to theoretical
considerations [10], the DE at the breakpoint is expected to be equivalent to the efficiency
at saturation and remain consistently high across the entire Doherty region. However, the
presence of parasitic components within the transistors and the knee voltage effect, which
leads to a gradual and smoother activation of the auxiliary transistor, results in a decrease
in the efficiency profile within the Doherty region. Consequently, the efficiency achievable
in practical applications at the breakpoint is typically lower than the efficiency observed
under the saturation point, as demonstrated in Figure 2.
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The DPA’s performance factors include output power, gain, linearity, and efficiency.
Drain efficiency (DE or η) is defined as:

DE = η(%) =
Pout

PDC
× 100 =

0.5Vout ∗ Iout

(Vdc,main ∗ Idc,main) +
(

Vdc,peak ∗ Idc,peak

) ∗ 100, (1)

where Pout and PDC are output DC power provided by the PA, Vout and Iout are output
voltage and current at the fundamental frequency, and Vdc,main Idc,main and Vdc,peak Idc,peak
are the DC power of the main and peak PA, respectively.

Power-added efficiency (PAE) is another efficiency indicator defined as:

PAE(%) =
Pout − Pin

PDC
× 100, (2)

Gain (G) is calculated as:

G(dB) = 10log
(

Pout

Pin

)
[dB], (3)

3. Circuit Design of RF DPA
3.1. Design of Wilkinson Power Divider

Reference [23] indicates that the small-signal gain decreases by 3 dB when the auxiliary
amplifier splits an input signal into two equal-phase output signals using a Wilkinson
power divider (Figure 3). This power divider equally splits the input power (port 1) into
two equal-phase output signals (port 2 and port 3), maintaining matched states and offering
isolation between the output ports. The formulas below demonstrate how to calculate the
Wilkinson power divider parameters [27–41]:

Z1 = Z0

(Pmain
Ppeak

)−1.5

+

(
Pmain
Ppeak

)0.5
0.5

, (4)

Z2 = Z0

(
1 +

Pmain
Ppeak

)0.5(
Pmain
Ppeak

)0.25

, (5)

Z3 = Z0

(
Pmain
Ppeak

)−0.25

, (6)

Z4 = Z0

(
Pmain
Ppeak

)0.25

, (7)

Rw = Z0

(Pmain
Ppeak

)0.5

+

(
Pmain
Ppeak

)−0.5
, (8)

where Z0 represents the normalized impedance (typically 50 Ω), Rw is the isolation resis-
tance, and Pmain and Ppeak represent the output power of the main branch (port 2) and the
auxiliary branch (port 3), respectively.

In our design, we implemented Wilkinson’s power divider with an unequal split
to send more power to the main amplifier, resulting in a significant gain increase while
reducing the auxiliary amplifier’s power demand, allowing it to operate at a less deep
class-C level. By adjusting the division factor (Q) value, defined as Q = Pmain/Ppeak, the
power distribution between ports 2 and 3 can be altered.
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Table 1 displays branch impedances (Z1, Z2, Z3, and Z4) and isolation resistance (Rw)
with varying division factor (Q) values. The values were obtained through simulations
with ADS software, adjusting the division factor to achieve the desired power division
ratio. It is important to note that these values depend on the specific design and substrate
properties, and may vary based on the actual power divider design. The optimal division
factor (Q) for our proposed circuit was determined as 2.5 after considering critical factors,
gain, and PAE, as shown in Figure 4.

Table 1. Branch Impedances and Isolation Resistance with Sweep of Division Factor (Q).

Q Z1 (Ω) Z2 (Ω) Z3 (Ω) Z4 (Ω) RW (Ω)

0.5 102.988 51.494 59.46 42.045 106.066

1 70.711 70.711 50 50 100

1.5 58.327 87.491 45.18 55.334 102.062

2 51.494 102.988 42.045 59.46 106.066

2.5 47.049 117.622 39.764 62.872 110.68

3 43.869 131.607 37.992 65.804 115.47

3.5 41.45 145.075 36.556 68.389 120.268

4 39.528 158.114 35.355 70.711 125

4.5 37.953 170.787 34.329 72.824 129.636

5 36.628 183.142 33.437 74.767 134.164
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Figure 4. The gain and PAE of the proposed circuit with a sweep of division factor (Q).

The diagram in Figure 5 illustrates the layout and the simulated performance of the unequal
Wilkinson power divider. Return loss was below−17 dB over the entire band (3.3–3.8 GHz).
The isolated port was connected to allow for the insertion of an external resistor.
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3.2. Load Modulation in DPAs

Load modulation in DPAs enhances efficiency and linearity by adjusting the carrier
amplifier’s load impedance, optimizing its efficiency and reducing heat generation. It also
aligns the carrier amplifier’s load with the peaking amplifier’s output power, reducing
distortion and enhancing signal quality. When combined with techniques like bias modula-
tion and envelope tracking, it further improves DPA performance. Both amplifiers employ
an output combiner with quarter-wavelength transmission lines, providing a 90-degree
phase shift and contributing to load modulation. This modulation adjusts the impedance
presented to the PA’s output, varying with the current from the other device, as seen in
Figure 6 [29].
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Figure 6. The schematic diagram of a DPA with the principle of load modulation for adjustment
output impedance of the amplifier.

When the input power is low (in back-off conditions), only the carrier PA is active
and the impedance presented to the peaking PA (ZP) will be ∞. The impedance at the
combination point

(
ZĆ
)

is first transformed to 25 ohms using the 35.35-ohm impedance
transformer as per Equation (9), and the impedance presented to the carrier PA (Z C) is
100 ohms as per Equation (10). When the input power increases, the peaking PA becomes
active. At this time, the output impedance presented to the carrier PA and the peaking
PA are both 50 ohms as per Equation (10). In both conditions, considering the 35.35-ohm
impedance transformer performance, the load impedances of the main and peaking ampli-
fiers change based on given information and the value of impedance at the combination
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point
(
ZĆ
)

lead to 25 Ω. This impedance would be transformed to the output impedance
(RL= 50 Ω) using a 35.35 Ω impedance transformer as depicted in Figure 6.

ZĆ = (ZT)
2/RL, (9)

ZC = (ZI)
2/[R L(1 + (IP/IC)

)
], (10)

3.3. Design of Input- and Output-Matching Networks

The broadband DPA operating from 3.3 GHz to 3.8 GHz, utilizing two 10 W GaN
transistors (CG2H40010F from Cree), was designed to validate our proposed approach. We
performed load-pull simulations on the selected high-power-density device using a drain
bias of 28 V at 3.5 GHz to determine the desired output power and gain, and by using the
source and load impedance values of the device from its datasheet, as displayed in Figure 7.
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Designing DPA matching networks, including an input-matching network (IMN)
and an output-matching network (OMN), is vital for optimizing performance. An IMN
ensures efficient power transfer by matching DPA input impedance to the source, while an
OMN matches the DPA load impedance. Keeping the PA’s output reflection co-efficient
below −10 dB is crucial, and ADS aids in determining actual input and output impedances.
Load-pull simulations reveal power and PAE contours, e.g., CG2H40010F GaN HEMT’s
3.5 GHz performance with 40.26 dBm output power and 60.28% PAE (Figure 8).
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power contours.

The load-pull simulation revealed input and output impedances of 6.617 + j10.23 Ω and
13.28 + j1.518 Ω. The design employs distributed elements to match the power amplifier’s
input and output sections, fine-tuned across the bandwidth using the Smith chart utility
tool in ADS. Optimized input and output networks were connected to the CG2H40010F,
utilizing TLIN elements converted to MLIN. The final layouts with the optimized input-
and output-matching networks for the main transistor are shown in Figure 9 and include the
gate and drain biasing network. The procedure for designing input- and output-matching
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networks for the auxiliary transistor mirrors the main transistor’s approach. Figure 10
presents the final designs, detailing microstrip line dimensions and gate/drain bias values
for the auxiliary transistor.
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3.4. Stability Analysis

Stability analysis plays a crucial role in DPA design, ensuring the amplifier’s reliability
under various conditions. The stability of a DPA is influenced by several factors, including
impedance matching, load and source impedance, bias settings, and the characteristics
of the power combiner. To function effectively as an RF power amplifier instead of an
oscillator, a DPA must possess a stability factor (K) greater than 1 [30]. One commonly
used method for assessing unconditional stability, where K > 1, is Rollet’s condition, which
relies on the value of K. However, while the K-∆ test provides a mathematical evaluation of
unconditional stability, it does not enable straightforward comparisons between different
devices due to its reliance on two separate parameters. A newer criterion, utilizing a single
parameter µ [31], has been introduced to gauge stability. When µ surpasses 1, the device is
considered unconditionally stable, and higher µ values indicate greater stability.

According to the stability plot in Figure 11, the device is unconditionally stable through
both the K-∆ Test and the µ-Test by adding a 3.3-ohm resistance in the gate pin of both
transistors in the frequency range of 3 to 4 GHz. This finding makes the device appropriate
for the DPA design proposed in the paper.
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3.5. Design of Harmonic Suppression Network

DPA’s post-harmonic suppression network aims to reduce the high-order harmonic
content generated by the amplifier and thus increase the efficiency of our amplifier. This is
achieved by designing the circuit such that the two active devices in the Doherty configura-
tion, the main amplifier and the peaking amplifier, operate out of phase with each other.
The design of a maximally flat (Binomial) low-pass filter, to be fabricated using microstrip
lines, has a cutoff frequency of 4.5 GHz. By following the proposed filter specifications, it
was determined that an order of 7 (N = 7) would suffice. Referencing [32], the prototype
element values can be determined. The next step is to calculate the new filter component
values from capacitors (C′k) and inductors (L′k) by means of Equations (11) and (12).

L′k =
R0Lk
ωc

, (11)

C′k =
Ck

R0ωc
, (12)

where ωc is the cutoff frequency; Lk and Ck are the component values for the original
prototype; and R0 is the nominal characteristic impedance equal to 50 Ω. To increase its re-
liability for use in high-frequency RF circuits, the lumped-element filter can be transformed
into a system of distributed elements, such as open- or short-circuited transmission line
stubs. This conversion can be achieved through the use of Richards’ transformation, which
transforms lumped elements into transmission line sections. The filter elements are then
physically separated by applying Kuroda’s identities to the transmission line sections [32].

Figure 12a presents the electrical transmission line schematic design of the harmonic
suppression network, which has been carefully developed based on the previously dis-
cussed steps. The final layout of the network, shown in Figure 12b, displays the physical
width and length of the design, including the integration of 35.35-ohm impedance trans-
formers at the beginning of the network. To enhance the performance of the network,
an additional series microstrip line has been added to ensure a 50-ohm connection to the
output combiner, ensuring an appropriate width for welding the output port with the load.
To ensure a smooth transition from the electrical microstrip lines shown in Figure 12a to the
physical lines in Figure 12b, and prevent any junction discontinuity, a T-junction model has
been added. To ensure that the performance of the network was not impacted by the addi-
tions made to it, an improvement was made to the network values using the Optimization
Cockpit tool in ADS. The result of this optimization can be seen in the frequency response
of the electromagnetic simulation results for the proposed network, which is displayed in
Figure 13.
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4. Implementation and Simulation Results of the N78 Band Sub-6 GHz DPA

The final circuit design of the DPA is shown in Figure 14 and is composed of several
parts: an unequal Wilkinson power divider to split the input signal, a phase compensation
network to correct the phase difference between the carrier and peaking branches, and
input-matching networks, consisting of two identical CG2H40010F devices. Additionally,
the design features output-matching networks, an impedance inverter network, and a
harmonic suppression network with a 35.35-ohm impedance transformer. To enhance
performance, bypass capacitors with a high Q factor of 500 were added to the DC biasing
line for amplifiers C1, C2, C3, and C4, with capacitance values of 1 pF. The DC coupler
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comprises surface mount device (SMD) capacitors C5, C6, C7, and C8 with capacitance
values of 15 pF. The DPA was fabricated on a Rogers RT/duroid 5880 substrate, which has
a relative dielectric constant (εr) of 2.2, a substrate thickness (H) of 31 mil, a loss tangent
(Tan δ) of 0.0009, and copper conductors with conductivity (σ) of 5.8 × 103 and a thickness
(T) of 0.035 mm. The main and auxiliary amplifiers are powered by the same drain
bias voltage (VDS) of 28 V, with the main gate bias voltage being set at −2.7 V and the
auxiliary gate bias voltage set at −4 V. The scatter parameters of the designed DPA are
displayed in Figure 15. The simulation results indicate that despite a slight shift towards
lower frequencies, the DPA maintained a small-signal gain of approximately 14 dB within
a 600 MHz bandwidth ranging from 3.20 GHz to 3.80 GHz, providing full coverage of
the N78 frequency band. Additionally, input matching was achieved with better than
13 dB across the operating range from 3.20 GHz to 3.90 GHz. The output matching was
approximately 13 dB in the higher portion of the operating band, ranging from 3.2 to
3.9 GHz, but slightly decreased towards the lower end of the band.
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4.1. Simulated DPA Performance

This section presents the results of the designed Doherty power amplifier, including
curves of output power, power gain, and power-added efficiency (PAE). Figure 16 illustrates
the simulated values of output power (Pout), amplifier gain, drain efficiency (DE), and
power-added efficiency (PAE) plotted against the input power (Pin), which is scaled from
0 to 40 dBm. In Figure 16a, it can be observed that the large-signal gain during nominal
operation is approximately 15.7 dB when the input power is at 10 dBm. To achieve a 3 dB
compression point value (P3dB) for our design, the Pin value needs to be set at 29.2 dBm.
Consequently, the output power is approximately 41.8 dBm at P3db when the Pin value is
at 29.2 dBm. The simulated plot of both the drain efficiency and the power-added efficiency
of the proposed DPA design is presented in Figure 16b, when getting 78.4% and 74.3%
of the P3dB, respectively. Compared with the efficiency characteristics of a non-Doherty
power amplifier (class AB) bias conditions, we obtain a PAE at the P3db point of 55% and
58% for DE, as shown in Figure 17. The corresponding intrinsic drain voltage and current
waveforms of the designed DPA are depicted in Figure 18.
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4.2. Performance Comparison of Three DPA Designs

In this section, we present and analyze results for three DPA designs in Figure 19, all
of whose design parts have been discussed previously. The first design, labeled as (EPD
without HS), utilizes an equal Wilkinson power divider but lacks a harmonic suppression
network. The results of this design can be seen in Figure 19 as the solid blue line with
a square symbol. The second design, labeled as (UPD without HS), is another DPA that
employs an unequal Wilkinson power divider and does not include a harmonic suppression
network. In Figure 19, the results of this design are represented by the solid green line
with a triangle symbol. Lastly, the third design, identified by the labeled (UPD with HS),
features an unequal Wilkinson power divider along with a harmonic suppression network.
The results of this design can be seen in Figure 19 as the solid red line with a circle symbol.

This paper proposes adopting the third design of the DPA, which incorporates a
post-harmonic suppression network on the output in addition to an unequal Wilkinson
power divider on the input. The performance of the proposed amplifier in the third design
was compared to the previous two designs, and the results are summarized in Table 2.
The large-signal gain of the amplifier in the proposed design reaches 12 dB, representing a
15% improvement over the first design and a 4% improvement over the second design, as
shown in Figure 19a. There is also an improvement in the output power of the amplifier,
which reaches 41.85 dBm, an increase of 4.6% over the first design and 1.6% over the second
design, as shown in Figure 19b. Although the improvement in gain and output power
values is not substantial due to the harmonic suppression network being considered a load
on the output of the amplifier, its impact is evident in the improved drain efficiency and
power-added efficiency, which reached 75.4% and 70.6%, respectively, representing a 64.6%
and 69.5% improvement over the first design, and a 33.2% and 34.2% improvement over
the second design, as shown in Figure 19c,d.

Table 2. Summary of the performance of the three DPA designs.

Design

Parameter Gain (dB) Pout (dBm) DE (%) PAE (%)

Value Improvement Value Improvement Value Improvement Value Improvement

EPD without HS 10.43 - 40 - 45.8 - 41.7 -

UPD without HS 11.54 10% 41.2 3% 56.57 23.5% 52.6 27%

UPD with HS 12 15% 41.85 4.6% 75.4 64.6% 70.6 69.5%
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4.3. The Performance of the Unequal Wilkinson Power Divider

Figure 20 displays a photograph of a 2.5:1 Wilkinson power divider that underwent
fabrication and subsequent connection to a vector network analyzer device. This connection
allowed for the measurement of its circuit S-parameters, focusing on a central frequency of
3.5 GHz. Figure 21 presents a comparison between the measurement and simulation results,
utilizing CST Studio Suite software version 2021, for the proposed unequal divider. The
measurements revealed insertion loss values of approximately 2 dB for S21 and 7.2 dB for
S31, both at 3.5 GHz. Additionally, the output port isolation (S23) exhibited performance
better than 12 dB, indicating effective isolation between the two output ports. The measured
return loss (S11) also surpassed 20.6 dB at 3.4 GHz. However, some inconsistencies between
the simulation and measurement outcomes were observed in Figure 21. These disparities
could be attributed to unforeseen variations that occurred during the fabrication and
assembly processes. Furthermore, the decision to employ two 220 Ω resistors in parallel,
necessitated by the unavailability of a single 110 Ω resistor in the Egyptian market, may
have played a role in these observed discrepancies.
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4.4. The Performance of the Harmonic Suppression Network

Figure 22 displays a photograph of the post-harmonic suppression network that was
fabricated and combined with a 35.35-ohm impedance transformers microstrip line at the
input port and a 50-ohm microstrip line at the network end to allow sufficient soldering
space for the SMA coaxial connectors. The response of the proposed filter was measured
using an R&S® ZVB vector network analyzer from 0 to 16 GHz, and the results are shown
in Figure 23. To make the measurement easy, the source/load impedances of the filter were
set at 50 Ω, and the filter exhibited a seventh-order general Binomial low-pass response
that was visible. The measured response (blue solid line) of the filter had a low-pass
characteristic with a 3 dB cutoff frequency of 4.9 GHz. The insertion loss reached 10 dB
at 5.5 GHz and 26.3 dB at 7 GHz. These measurements were in good agreement with the
simulated results.
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Figure 22. Photograph of the fabricated post-harmonic suppression network.

Figure 24 illustrates the effect of our proposed design (DPA with HS) on the attenuation
output power of harmonics from the second to the fourth order in comparison to the
harmonic content of a conventional DPA (DPA without HS) in terms of input power. The
results demonstrate that the suggested topology provides excellent harmonic suppression
with high efficiency versus input power. Although the Doherty amplifier is a balanced
amplifier, our design considered the fundamental frequency. We incorporated a suggested
harmonic suppression network at the output to prevent the occurrence of harmonics, which
is clearly demonstrated in the harmonic balance simulation results shown in Figure 25. The
impact of the post-harmonic suppression network is illustrated by comparing the harmonic
spectra at the output of the RF amplifier. Figure 25 displays the spectra of four harmonics
for power, voltage, and current obtained from the harmonic balance (HB) simulation.
Each spectrum figure includes DC (0 Hz), fundamental (3.5 GHz), second (7 GHz), third
(10.5 GHz), and fourth (14 GHz) harmonic components. Notably, the values of the second
to fourth harmonics are all below−50 dBm, providing evidence of the effective suppression
achieved by the proposed harmonic suppression network. This successful suppression
contributes to increased amplifier efficiency and improved linearity of the output signal.
These findings are further supported by the simulated time-domain output voltage and
current waveforms for the proposed DPA, as illustrated in Figure 26.
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The proposed DPA components were assembled with the addition of two transmis-
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Figure 26. Steady-state time-domain output voltage and current waveform for proposed DPA.

The proposed DPA components were assembled with the addition of two transmission
lines for 50-ohm impedance at the input and output ports. Optimizing these transmission
lines, converted from electrical lengths to physical dimensions, yielded the highest results
via EM simulation (Figure 27). This simulation confirms the DPA’s proper operation within
the 3.3–3.8 GHz frequency range, as seen in Figure 27. The parameters of gain, output
power, DE, and PAE at the center frequency of 3.5 GHz are presented. Notably, maximum
PAE and DE values reach around 75.2% and 80%, respectively, while the amplifier achieves
a large-signal gain exceeding 12 dB and an output power of approximately 42 dBm. As
previously discussed, the proposed DPA structure significantly enhances PAE, DE, and
gain. These improvements were investigated by implementing an unequal Wilkinson
power divider at the amplifier’s input and introducing a harmonic suppression network at
the output.

Table 3 offers a performance summary of the DPA designed in this study, comparing it
with other studies focusing on Doherty amplifier design within the 6 GHz frequency band
for 5G applications. Wherever feasible, we have used the same device for comparison, with
the assessments relying on simulation results. Our proposed DPA, as discussed earlier,
achieved notable PAE levels and demonstrated a broad bandwidth. This performance
aligns with existing technologies in this frequency range, affirming the suitability of our
straightforward and efficient broadband approach for 5G applications in the N78 band.
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Table 3. Performance comparison of this work with similar works based on simulation.

Ref. Frequency (GHz) Pout (dBm) PAE (%) Gain (dB) Transistor

[6] 2.8–3.3 43–44.2 62–76.5 (DE) 8–13.5 CGH40010F
[7] 2.9–3.3 43.9–44.7 70.8–73.3 (DE) 6–11 CGH40010F
[33] 4.5–5.3 39.5 44–54 11 HIWAFER 0.25 µm GaN
[34] 1.7–2.2 42.5 58–72 8.2–10.2 10 W Cree GaN HEMT
[35] 1.2–1.6 33 60 19 GaAs pHEMT
[36] 1.4–2.1 34 35.7 12.7 CGH40010F
[37] 3.4–3.8 43 70 8 CG2H40010F
[38] 3.5–4 41.7 49.6 11.1 CGH40006S
[39] 4.1–5.6 38.4–39.5 41.2–49 8.3–11.2 GaN MMIC
[40] 3–3.6 43–44 55–66 (DE) 12 CGH40010F

This Work 3.3–3.8 42 75.2 12.2 CG2H40010F

5. Conclusions

In conclusion, this paper proposed a design for a high-efficiency GaN Doherty power
amplifier for 5G applications within the band of 3.3 to 3.8 GHz and compared its results
to those of the traditional DPA design. This paper implemented an unequal Wilkinson
power divider, which significantly boosted PAE from 41.7% to 52.6% compared to the
traditional DPA design. Additionally, we introduced a seventh-order post-harmonic sup-
pression network at the amplifier’s output, effectively attenuating second- to fourth-order
harmonics to levels exceeding −50 dB. This enhancement not only improved linearity but
also contributed to an overall increase in PAE, reaching 70.6% compared to the traditional
DPA design. Consequently, our DPA design, incorporating both the unequal power divider
and the post-harmonic suppression circuit, comprehensively enhances power amplifier
performance in terms of gain, output power, and efficiency. To verify the simulation results,
both the power divider and the harmonic suppression network were fabricated and mea-
sured. The simulation and measurement results are compared and showed good agreement,
with some discrepancies due to unexpected variations during fabrication and assembly.
The proposed DPA design achieved a gain of 12 dB, an output power of 42 dBm, a drain
efficiency of 80%, and a power-added efficiency of 75.2%. These results demonstrate the
suitability of the proposed power amplifier design for 5G applications in the sub-6 GHz
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N78 band, which is the most widely used band in active 5G NR networks. Additionally,
this research represents a noteworthy contribution to the field of RF power amplifiers for
5G applications and offers potential avenues for further studies in this domain.
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