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Abstract: The COVID-19 pandemic has posed a significant threat to society in recent times, endan-
gering human health, life, and economic well-being. The disease quickly spreads due to the highly
infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research
efforts by the scientific community since its emergence in 2019, no effective therapeutics have been
discovered yet. While some repurposed drugs have been used to control the global outbreak and save
lives, none have proven universally effective, particularly for severely infected patients. Although
the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to
combat current and future infections. This study reviews some of the most promising repurposed
drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse
bio-properties in various biological fields. The study also discusses natural and synthetic indole-
containing compounds with anti-SARS-CoV-2 properties and computer-aided drug design (in silico
studies) for optimizing anti-SARS-CoV-2 hits/leads.

Keywords: indole; COVID-19; SARS-CoV-2; alkaloids; natural; synthetic; in silico

1. Introduction

The indole moiety is one of the most privileged scaffolds in the alkaloid category.
Indole-containing compounds are widely distributed in plants, animals, and microor-
ganisms and represent important pharmacophores that can bind with receptors control-
ling bio-properties [1]. Diverse biological properties have been exhibited by natural
and synthetic indole-containing analogs, including anti-microorganism activities such
as antibacterial [2–5], antifungal [6–8], antiviral [9–14], and mycobacterial [15] action.
Cipargamin (Figure 1), which has an indolyl scaffold, has been identified as a potent
protein synthesis inhibitor in Plasmodium falciparum and has subsequently progressed to
pre-clinical trials as a potential antimalarial drug [16]. Other potential antimalarial can-
didates with the indolyl scaffold have also been reported [17–20]. Anti-diabetic [21,22]
and anti-inflammatory [23–27] properties have also been observed for indole derivatives.
Figure 2 presents some of the indole-containing drugs approved for the treatment of a range
of conditions [1,2,28–38]. Indole-based anticancer drugs and potent agents [28,39–50] are
illustrated in Figure 3 and many indolyl analogs identified as antitumor-active candidates
have also been reported [51–57].
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Figure 1. Cipargamin (NITD609) is in pre-clinical studies as a potential antimalarial drug [16]. 
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Figure 2. Indole-containing drugs against different diseases [29‒38]. 
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The coronavirus disease 2019 (COVID-19) has proved to be one of the most serious 
crises facing human health in recorded history. The disease is caused by the fast-spreading 
infectious virus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), trans-
mitted between humans and threatening human life worldwide. Until 2019, the virus 
strain had not been reported as invasive among humans [58]. The first infection was ini-
tially linked to a fish and wild animal market in Wuhan City, China, at the end of 2019 
before the disease dramatically spread, within a few weeks, to almost all countries of the 
world, affecting millions of people [59]. The World Health Organization (WHO) declared 
a global severe emergency and pandemic in March 2020 [60]. To date (5 July 2023), WHO 
statistics have officially counted/confirmed 767.7 million infected patients with 6.949 mil-
lion deaths worldwide [61]. 

The symptoms of COVID-19 are similar to those observed for many other conditions 
and seasonal diseases (flu is an example) and include cough, runny nose, mild fever, and 
headache. Breathing difficulties, chest pain, and hypertension occur in severe infections 
that require hospitalization in intensive care and oxygen supply [62,63]. The pandemic 
placed many countries under unprecedented economic pressure due to the curtailment of 
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The coronavirus disease 2019 (COVID-19) has proved to be one of the most serious
crises facing human health in recorded history. The disease is caused by the fast-spreading
infectious virus, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), transmit-
ted between humans and threatening human life worldwide. Until 2019, the virus strain
had not been reported as invasive among humans [58]. The first infection was initially
linked to a fish and wild animal market in Wuhan City, China, at the end of 2019 before
the disease dramatically spread, within a few weeks, to almost all countries of the world,
affecting millions of people [59]. The World Health Organization (WHO) declared a global
severe emergency and pandemic in March 2020 [60]. To date (5 July 2023), WHO statistics
have officially counted/confirmed 767.7 million infected patients with 6.949 million deaths
worldwide [61].

The symptoms of COVID-19 are similar to those observed for many other conditions
and seasonal diseases (flu is an example) and include cough, runny nose, mild fever, and
headache. Breathing difficulties, chest pain, and hypertension occur in severe infections that
require hospitalization in intensive care and oxygen supply [62,63]. The pandemic placed
many countries under unprecedented economic pressure due to the curtailment of normal
social activities that affected a significant amount of the global population. The scientific



Molecules 2023, 28, 6603 4 of 50

community, including research institutes, universities, and pharmaceutical companies,
devoted considerable resources to studying the cell biology of SARS-CoV-2, identifying
diagnostic agents, and optimizing effective therapeutics [64].

SARS-CoV-2 is a zoonotic single-strand RNA (ssRNA(+)) virus covered by glycopro-
tein spikes and belongs to the Coronaviridae family. It is mainly found in bats, but, for
unknown reasons, was transmitted to the human species, leading to the global pandemic.
The viral RNA genetic material can directly act as viral messenger RNA, producing the
viral protein inside the host cell [65–68]. Numerous waves of viral mutations were detected,
potentially affecting transmissibility and severity in humans. Delta (B.1.617) and Delta
plus (B.1.617.2) are deadlier and more infectious than the other mutations (for example,
Alpha, B.1.1.7; Beta, B.1.351; or Gamma, P.1) [62]. Omicron is more extensively mutated
and was detected in November 2021 with the viral wave spreading worldwide. Although
it has a higher risk of infection/reinfection, it has milder symptoms and lower fatality in
vaccinated people. This may be a factor in the pandemic transitioning to an epidemic [69].

Vaccination is one of the most important means for controlling the development of
a pandemic and saving human lives. The neutralizing antibodies from vaccination can
protect against viral infection or at least result in milder/weaker symptoms upon infection.
In the case of COVID-19, BNT162b2 (Pfizer “USA”/BioNTech “Germany”), mRNA-1273
(Moderna, MA, USA), and AZD1222 (University of Oxford “UK” and AstraZeneca “British-
Swedish”) have been the most prominent vaccines discovered and used worldwide [60,69].
Herd immunity is the aim of large-scale vaccination, and it may limit the extent of infection
and terminate a global pandemic. In the case of COVID-19, evidence for the acquired
immunity in recovered patients was limited, raising questions about the herd immunity
hypothesis. Consequently, the acquired immunity due to vaccination antibodies is not
certain against infection/re-infection [59,70].

Biochemical studies have identified some proteins involved in SARS-CoV-2 infections
(Figure 4 summarizes some) [71], and thus, are potential targets for controlling the infection
and optimizing potential therapeutics.
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The emerging healthcare crisis due to the global outbreak caused by the pathogenic
SARS-CoV-2 virus united the scientific community and the pharmaceutical industry in a
race against time in the search and optimization of any medicinal entity/device/therapeutic
capable of controlling the spread of COVID-19 and bringing back normality [72]. De-novo
drug development usually follows several successive steps. The first is the discovery
of potent and safe agents from among many candidates. Preclinical studies support the
biochemical mode of action and applicability of the agents as potentially therapeutic.
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Clinical trials are essential for assessing success and identifying side effects. The post-
marketing safety monitoring step is necessary to continue the new therapeutics as one of
the available medications. Drug development is, therefore, time-consuming and costly,
requiring about 10–15 years and millions of dollars to progress from the pre-identification
of the potent/lead compound through to the medical store. Only about 10% of the potential
agents are successful [73–75].

In silico studies utilizing various techniques/software can assist in assigning anti-
SARS-CoV-2 agents. This may shorten the time needed for identifying potential enti-
ties to be submitted for in vitro/in vivo testing followed by the clinical trial(s) phases.
In other words, in silico studies are a shortcut to attaining the final targeted therapeu-
tics, saving the time and money required [76,77]. Additionally, drug repurposing/re-
profiling, a strategy that considers the use of approved or investigated drugs outside
the original therapeutic application, can shorten the period needed due to the well-
established safety profile and understood side effects/drawbacks. This approach has
many advantages over developing entirely novel therapeutics, including cost reduction
and lower risk [78–80]. Several antiviral (Remdesivir, GS-441524, Sofosbuvir, Lopinavir,
Ritonavir, Oseltamivir, Triazavirin, Favipiravir, Galidesivir, Danoprevir, Molnupiravir, Nir-
matrelvir), anticancer (Ruxolitinib, Toremifene, Carmofur, Selinexor, Zotatifin, Duvelisib,
Zanubrutinib, Opaganib, Imatinib), antimalarial (Chloroquine, Hydroxychloroquine, Di-
hydroartemisinin, Piperaquine), anti-inflammatory (Ibuprofen, Naproxen, Indomethacin,
Celecoxib), and immunomodulatory (Corticosteroids, Fingolimod, (R)-(+)-Thalidomide,
(S)-(–)-Thalidomide) active agents/drugs have been repurposed for anti-SARS-CoV-2 ap-
plication (Figures 5–7) [63,81–85].
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Figure 5. Repurposed antiviral agents with anti-SARS-CoV-2 properties [63,81–85]. 
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Remdesivir (Figure 5) is a broad-spectrum antiviral agent. It was the first therapeutic
granted approval under emergency-use authorization by the Food and Drug Administra-
tion (FDA) [9,59,73]. Gilead Sciences originally developed it as an anti-Ebola virus agent. It
was approved as a COVID-19 therapeutic with RNA-dependent RNA polymerase (RdRp)
inhibitory properties due to its ability to be metabolized in the infected/host cell analogs
to a nucleoside triphosphate. It can terminate viral replication through RdRp action via
integration in the RNA viral chain [9,86]. Molnupiravir (Lagevrio) (Figure 5) was awarded
FDA approval in December 2021 [87,88]. It also exerts its anti-SARS-CoV-2 activity via
RdRp inhibition [9]. Paxlovid, a combination of Nirmatrelvir and Ritonavir (Figure 5),
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was awarded FDA approval in December 2021 [89]. Ritonavir/Pf-07321332 acts against
SARS-CoV-2 through main protease (Mpro) inhibition [83].

Our current discussion builds upon our previous work, which aimed to explore
materials with anti-SARS-CoV-2 properties that could potentially aid in identifying
agents against COVID-19 [9,66,90–93]. Specifically, we examine indole-containing com-
pounds, whether they are naturally occurring or artificially created, that may possess
anti-SARS-CoV-2 properties (Supplementary Materials Table S1).

2. Repurposed Indole-Containing Drugs
2.1. Umifenovir (Arbidol)

Umifenovir (Arbidol) (Figure 8) is a broad-spectrum antiviral drug with inhibitory
properties against both RNA and DNA viruses such as Zika, influenza, hepatitis (HBV,
HCV), ebola, West Nile, and herpes viruses [94,95]. It is one of the drugs that has been repur-
posed against COVID-19 and has IC50 = 4.11 µM against SARS-CoV-2 [96]. It acts through
the inhibition of the lipid envelope thereby limiting contact, and hence, the fusion of the
viral cell (membrane fusion inhibitor) with the host/human cell (targeting S-protein/ACE2
“angiotensin-converting enzyme 2”) [97–100]. Computational studies including molecular
docking (PDB ID: 6LZG) [101] and molecular dynamics [102,103] support the mode of
action. The antioxidant properties of Arbidol have also been attributed to its ability to
react with free radicals. This may indicate that the anti-SARS-CoV-2 bio-properties of
Arbidol arise from several biochemical pathways [94]. Clinical studies have confirmed
the suitability of Arbidol as a monotherapy or in combination with other therapeutics for
COVID-19 patients [104–114]. Some countries (e.g., Russia, China, and Iran [95]) have
awarded licenses to Arbidol for the prevention or treatment of COVID-19 [115].
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A series of Arbidol analogs 1–8 have been synthesized starting from 5-hydroxy-2-
methylindole-3-carboxylate (Scheme 1). Potential binding of the compounds with the spike
glycoprotein (S-protein, ACE2 binding) was determined (Figure 9) revealing no inhibition
rates greater than 20%. Some inhibitory properties at low concentrations were higher than
others but this can be explained in terms of the low solubility of the compounds in aqueous
medium [96].

Arbidol analogs (A1–A36) have also been designed, through in silico studies using
Schrodinger software, as inhibitors of ACE2, which is the key receptor that facilitates the
entrance of the SARS-CoV-2 virus into the host cell (PDB ID: 6LZG) in addition to the
proteases such as furin (PDB ID: 5MIM), TMPRSS2 (transmembrane protease serine 2),
TMPS2 human, and 3CLpro (3 chymotrypsin-like protease, PDB ID: 6LU7), which are essen-
tial for the viral replication. This approach may enable the optimization of multi-targeted
inhibitor agents with potential efficacy against COVID-19, but the lack of experimental
bio-properties data limits progress [116] (Figure 10).
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2.2. Indomethacin

Indomethacin (Figure 7) is a non-steroidal anti-inflammatory (NSAID) and analgesic
drug used worldwide [29,117,118]. It works through the non-selective inhibition of cy-
clooxygenase (COX), which is the key enzyme to produce prostaglandin from arachidonic
acid. Prostaglandin is responsible for inflammation and pain [119]. Inflammation is a
natural response of the human body due to harmful effects. It is associated with many
diseases, including microorganism (bacterial/viral) infections, cancers, and asthma [90].

Although indomethacin does not inhibit the replication of SARS-CoV-2 (infected
Vero E6 bio-assay), studies have reported its potential as a co-treatment for COVID-19
patients due to its potent efficacy against symptoms associated with the disease [120–124].
Some Indomethacin-Remdesivir conjugates-based proteolysis-targeting chimeras (PRO-
TAC) (B1–B4) have been reported with enhanced properties against SARS-CoV-2/NL/2020
and SARS-CoV-2/Padova/2021 strains relative to the parent indomethacin (EC50 = 94.9;
CC50 > 500 µM against SARS-CoV-2/NL/2020) [121] (Figure 11). Conjugation between
these drugs, or similar agents, can be a useful approach for optimizing promising hits/leads
against SARS-CoV-2.
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2.3. Lufotrelvir (PF-07304814)

Lufotrelvir (PF-07304814) (Figure 12) is a SARS-CoV-2 main protease (Mpro) inhibitor
developed by Pfizer for intravenous application. The phosphate group is cleaved in vivo
liberating PF-00835231, the effective agent against various viral strains [125].
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properties [127–131] (Figure 14). The correlation between the COVID-19 fatalities in the 
elderly and the decrease in melatonin secretion rate drew attention to a possible applica-
tion of the hormone for treatment [132]. The ability of melatonin as an antioxidant and 
anti-inflammation also suggested a potential role as an anti-SARS-CoV-2 [133]. Due to its 
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2.4. Obatoclax (GX15-070)

Obatoclax (GX15-070) (Figure 13) is an antitumor agent (leukemia, lymphoma, and
lung) via BCL-2 protein inhibition inducing mitochondrial apoptosis and has been subjected
to Phase II clinical trials. It was repurposed for COVID-19 due to its promising properties
against ACE2, thereby blocking cellular entry by the infectious virus [126].
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3. Natural Indole-Containing Compounds
3.1. Melatonin

Melatonin is a natural hormone primarily biosynthesized from tryptophan by the
pinealocytes of the pineal gland in the brain in the dark (hormone of darkness) and trans-
ferred by blood to the body organs from the cerebrospinal fluid. It exerts several biological
properties [127–131] (Figure 14). The correlation between the COVID-19 fatalities in the
elderly and the decrease in melatonin secretion rate drew attention to a possible application
of the hormone for treatment [132]. The ability of melatonin as an antioxidant and anti-
inflammation also suggested a potential role as an anti-SARS-CoV-2 [133]. Due to its safety
profile and diverse bio-properties, numerous reports have considered the role of melatonin
in preventing and treating COVID-19 [134–139]. Clinical studies/observations have sup-
ported its ability to reduce the severity of the disease, shorten the hospitalization period, or
lead to complete recovery upon administration, either as a mono-therapeutic [137–139] or
with other therapeutics, for COVID-19 infected patients [134–136].
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3.2. Neoechinulin A, Echinulin, and Eurocristatine

The natural compounds neoechinulin A, echinulin, and eurocristatine (Figure 15)
can be obtained from organisms such as Aspergillus fumigatus MR2012. Neoechinulin
A and echinulin have Mpro-SARS-CoV-2 inhibitory properties (IC50 = 0.47, 3.90 µM, re-
spectively) [140]. For comparison, the value is (IC50 = 0.36 µM) for GC376, a potent
Mpro-SARS-CoV-2 inhibitor [141].
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Figure 15. Natural neoechinulin A, echinulin, and eurocristatine from Aspergillus fumigatus MR2012
and GC376 (potent Mpro-SARS-CoV-2 inhibitor) [140,141].

Neoechinulin B 11 can be extracted from Eurotium rubrum Hiji025. It has been syn-
thesized in a two-step reaction involving the 2-indole aldehyde 9 and the appropriate
2,5-piperazinedione 10 in basic conditions followed by tetra-n-butylammonium fluoride.
Alternatively, 11 could be obtained from the aldehyde 9 and 2,5-piperazinedione 12 in



Molecules 2023, 28, 6603 16 of 50

the presence of piperidine at 110 ◦C (Scheme 2). Neoechinulin B 11 has anti-SARS-CoV-2
properties (Vero E6, assay, IC50 = 32.9, CC50 > 70 µM) [142].
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4. Synthetic Indole-Containing Compounds
4.1. Isatins

Erdmann and Laurent first isolated isatin (1H-indole-2,3-dione) as an oxidation prod-
uct of indigo using nitric and chromic acids. Isatin is found in humans as a metabolic
derivative of the adrenaline hormone and a component of secretion from the parotid gland
of Bufo frogs. Various isatin derivatives also naturally occur in plants, such as methoxy
phenylpentyl isatins (the melosatin alkaloids) isolated from Melochia tomentosa, a Caribbean
tumorigenic plant. Isatin and its derivatives are an important group of heterocyclic com-
pounds that can serve as precursors for drug synthesis. Since its discovery, a significant
amount of research has been conducted on the synthesis and biological and industrial
applications of isatin.

A series of isatin derivatives 13 have been synthesized through the reaction of aro-
matic amines with hydroxylamine hydrochloride (NH2OH.HCl) and chloral hydrate
[Cl3CCH(OH)2] followed by cyclization with concentrated sulfuric acid (H2SO4) at 90 ◦C
and alkylation (Scheme 3). Some of the synthesized isatin analogs 13 (C1–C29) revealed 3C-
like protease (3CLpro) [or main protease (Mpro)] SARS-CoV-2 inhibitory properties relative
to Tideglusib (positive control) [143] (Figure 16).
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4.2. 2-[(Indol-3-yl)thio]acetamides

2-[(Indol-3-yl)thio]acetamides 14 (D1–D27) were synthesized through the reaction
of indole derivatives with Bunte salt ethyl acetate-2-sodium thiosulfate in iodine/DMSO
at 60 ◦C followed by hydrolysis (NaOH, EtOH/H2O) and coupling with the appropriate
amine (Scheme 4). Some of the synthesized agents exhibited RdRp inhibitory properties rel-
ative to Remdesivir [144] (Figure 17). Considering these observations (Figure 17) and those
mentioned in Figure 16, it can be concluded that the substituent attached to the indolyl
heterocycle plays a crucial role in the mode of action. Compounds in Figure 16 exhibited
3CLpro inhibitory properties whereas, those of Figure 17 revealed RdRp inhibitory proper-
ties. So, the mutual mode of action may be optimized by manipulating the substitution of
the indolyl heterocycle for assigning potent anti-SARS-CoV-2 agents.
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Figure 17. The inhibitory properties of anti-SARSCoV-2 RdRp (IC50, µM) of the synthesized 2-[(indol-
3-yl)thio)]acetamides 14 (D1–D27) [144].

A set of acetamide-containing indoles (E1–E5) with possible RdRp SARS-CoV-2 in-
hibitory properties have been explored. The efficacy of the most promising agents was
comparable to that of Remdesivir (EC50 = 1.05 µM) [145] (Figure 18).
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Figure 18. Inhibitory properties of SARS-CoV-2 RdRp (HEK293T cells transfected with nsp12) of
acetamide-containing indoles (E1–E5) [145].

4.3. Indole-Chloropyridine Conjugates

A variety of indole-chloropyridine conjugates 15 (F1–F15) were synthesized via re-
action of the appropriate indolecarboxylic acid with 3-chloropyridin-5-ols or 5-amino-3-
chloropyridines using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and dimethy-
laminopyridine (DMAP) in methylene chloride (CH2Cl2) (Scheme 5). Anti-SARS-CoV-2
activities (Vero E6 assay) with 3CLpro inhibitory properties were observed for some of the
synthesized agents [59] (Figure 19).

Molecules 2023, 28, x FOR PEER REVIEW 24 of 57 
 

 

4.3. Indole-Chloropyridine Conjugates 
A variety of indole-chloropyridine conjugates 15 (F1–F15) were synthesized via reac-

tion of the appropriate indolecarboxylic acid with 3-chloropyridin-5-ols or 5-amino-3-
chloropyridines using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and dime-
thylaminopyridine (DMAP) in methylene chloride (CH2Cl2) (Scheme 5). Anti-SARS-CoV-
2 activities (Vero E6 assay) with 3CLpro inhibitory properties were observed for some of 
the synthesized agents [59] (Figure 19). 

N
R

O
HO

R'

+
N

Cl XH
R'' EDC, DMAP, CH2Cl2

N
R

O
X

R'

N
Cl

X = O, NH

R''

15  
Scheme 5. Synthesis of indole-chloropyridine conjugates 15 of potential anti-SARS-CoV-2 proper-
ties [59]. 

Scheme 5. Synthesis of indole-chloropyridine conjugates 15 of potential anti-SARS-CoV-2 proper-
ties [59].



Molecules 2023, 28, 6603 22 of 50Molecules 2023, 28, x FOR PEER REVIEW 25 of 57 
 

 

N
H

O O

N

Cl

F1: EC50
 
against SARS-CoV-2 = 2.8 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.25 µM

N
H

O O

N

Cl

F2: EC50
 
against SARS-CoV-2 = 15 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.32 µM

N
H

F3: EC50
 
against SARS-CoV-2 = 43.7 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.31 µM

O

O
N

Cl

F4: EC50
 
against SARS-CoV-2 = 69.8 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.12 µM

O

O
N

Cl

N
S O

OO2N

F5: EC50
 
against SARS-CoV-2 = 8.1 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.90 µM

N
H

O
O

O
N

Cl

F6: EC50
 
against SARS-CoV-2 = 15 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.073 µM

N

O O

N

Cl

F7: EC50
 
against SARS-CoV-2 = 11.5 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.38 µM

N

O O

N

Cl

F8: EC50
 
against SARS-CoV-2 = 56.7 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.47 µM

N
H

O O

N

Cl
Me

F9: EC50
 
against SARS-CoV-2 = >100 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 10.3 µM

N
H

O O

N
Cl

Me

F10: EC50
 
against SARS-CoV-2 = 3.1 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.59 µM

N
H

O O

N

Cl

Me

 
Figure 19. Cont.



Molecules 2023, 28, 6603 23 of 50Molecules 2023, 28, x FOR PEER REVIEW 26 of 57 
 

 

F11: EC50
 
against SARS-CoV-2 = 14 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 0.87 µM

N
H

O O

N

Cl

F

F12: EC50
 
against SARS-CoV-2 = >100 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 100 µM

N
H

H
N O

N

Cl

F13: EC50
 
against SARS-CoV-2 = >100 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = >100 µM

N
H

O O

N

Me

Cl

F14: EC50
 
against SARS-CoV-2 = 19.3 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 2.2 µM

N
H

O O

N

Me
Cl

F15: EC50
 
against SARS-CoV-2 = 30 µM

IC50
 
against 3CLpro 

SARS-CoV-2 = 15.3 µM

N
H

O O

N

Cl

Me
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tivity was observed for the compound (EC50 against SARS-CoV-2 = 30.2 µM, IC50 against 
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4.4. Diindole-Substituted Benzimidazole 
The condensation of 3-indolealdehyde with o-phenylenediamine under green condi-

tions (in water at 75 °C) in a 2:1 molar ratio afforded the corresponding diindole-substi-
tuted benzimidazole 17 (Scheme 6). The synthesized agent revealed 92.4% cell viability 
(Vero E6) at 9.0 µM concentration in comparison to 99.23% for Remdesivir at 10 µM. The 
antiviral properties of 17 were supported by the immunofluorescence assay [147]. 

Figure 19. Anti-SARS-CoV-2 and 3CLpro inhibitory properties of the indole-chloropyridine conjugates
15 (F1–F15) [59].

Indomethacin-chloropyridine conjugate 16 (Figure 20) is also possible by utilizing
the same reaction conditions (EDC and DMAP in CH2Cl2, 53% yield). Anti-SARS-CoV-2
activity was observed for the compound (EC50 against SARS-CoV-2 = 30.2 µM, IC50 against
3CLpro SARS-CoV-2 = 5.32 µM) [146].
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4.4. Diindole-Substituted Benzimidazole

The condensation of 3-indolealdehyde with o-phenylenediamine under green condi-
tions (in water at 75 ◦C) in a 2:1 molar ratio afforded the corresponding diindole-substituted
benzimidazole 17 (Scheme 6). The synthesized agent revealed 92.4% cell viability (Vero E6)
at 9.0 µM concentration in comparison to 99.23% for Remdesivir at 10 µM. The antiviral
properties of 17 were supported by the immunofluorescence assay [147].
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4.5. 3-Alkenyl-2-Oxindoles

Anti-SARS-CoV-2 3-alkenyl-2-oxindoles 18 and 19 were obtained through acidic dehy-
dration (HCl/EtOH) from the corresponding 3-hydroxy analogs (Schemes 7 and 8). Some
of the synthesized agents showed potent anti-SARS-CoV-2 properties (Figure 21) relative to
the standards (IC50 = 29.25, 19.78, 1382, CC50 = 356.4, 377.7, 2633 µM for Hydroxychloro-
quine, Chloroquine, and Favipiravir, respectively) in the Vero E6 assay [148].
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4.6. Spiroindoles

Spirocyclic compounds are organic compounds with a rigid, 3D-geometrical structure.
In 1911, A. Pictet and T. Spengler reported the first spiro-analog intermediate. Spiroindole-
containing compounds are important due to the versatile biological properties established
by diverse natural and synthetic analogs originating from the C-3 indolyl ring with many
heterocycles affording various motifs.

Spiroindoles 20 were synthesized through the cycloaddition of azomethine ylide
(obtained from sarcosine and isatins) with 3,5-diylidene-4-piperidones (Scheme 9). Promis-
ing anti-SARS-CoV-2 properties were shown by some of the synthesized agents (I1–I15)
in the Vero E6 assay relative to the standards Hydroxychloroquine, Chloroquine, and
Favipiravir [149] (Figure 22).
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Figure 22. Anti-SARS-CoV-2 properties of spiroindoles 20 (I1–I15) [149]. 
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Anti-SARS-CoV-2 spiroindole-containing compounds bearing a phosphonate group
21 (J1–J3) were recently reported with potential Mpro inhibitory properties, synthesized
through azomethine (generated from the reaction of isatin and sarcosine) reaction with the
appropriate 3,5-bis((E)-ylidene)-1-phosphonate-4-piperidone [150] (Scheme 10).
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It is notable that the spiroindoles with a sulfonyl group (Figure 22) are more promising
anti-SARS-CoV-2 agents relative to those with a phosphonate group.

4.7. Indole with Dual Acting Proteases Inhibitor

Di Sarno [151] reported the synthesis of an indole-containing compound (22) with
potential SARS-CoV-2 protease (Mpro “main protease” and PLpro “papain-like protease”)
inhibitory properties (Scheme 11).
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5. In Silico Predicted Anti-SARS-CoV-2 Indoles

The use of computational techniques is an accessible approach to identifying effective
hits/leads and accelerating the drug discovery program directed towards the development
of anti-SARS-CoV-2, either through repurposing or de novo drug design. Virtual screening
can reduce the time and cost needed for establishing possible bioactive agents. However,
the agents identified by in silico studies still require supporting experimental bio-properties
investigations to realize the benefits of these studies [152,153].

5.1. SARS-CoV-2 (Main Protease, Mpro) Inhibitor

SARS-CoV-2 main protease (Mpro or 3CLpro) controls many essential viral processes
including maturation, replication, and transcription. This makes it a potential target for
optimizing therapeutics against COVID-19 [154,155]. Paxlovid is a prominent protease
inhibitor approved by the FDA at the end of 2021 for mild and moderately effected pa-
tients. It is a combination of two therapeutics, Nirmatrelvir (3CL protease inhibitor) and
Ritonavir (protease inhibitor, therapeutic against HIV/AIDS). Paxlovid is effective at re-
ducing the hospitalization period when administrated at the beginning of COVID-19
symptoms [156–158].

In this section, representative examples of computationally predicted Mpro SARS-CoV-
2 inhibitors will be highlighted. Jayabal et al. reported the synthesis of 3-substituted indoles
23 through a multi-component green synthetic approach via the reaction of nitroketene
S,S-acetal, diamine-containing compound, 3-formylchromone, and indole in the presence
of In(OTf)3 as a catalyst in refluxing ethanol [62] (Scheme 12). Computationally, some of
the synthesized agents (K1–K6) showed inhibitory properties for SARS-COV-2 Mpro (PDB:
6LU7) and spike glycoprotein (PDB: 7NX7) utilizing Auto Dock-Vina software (v. 1.1.2). For
comparison, Remdesivir binding energy = −7.7, −6.5 kcal/mol is against main protease
6LU7 and spike glycoprotein 7NX7, respectively [62] (Figures 23 and 24).
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Figure 24. (upper) Representation of Remdesivir and predicted 3-substituted indoles 23 reveal-
ing potential properties against 6LU7 [62]. (lower) Representation of Remdesivir and predicted
3-substituted indoles 23 revealing potential properties against 7NX7 [62].

Many mushroom metabolites have potential biological activities. Psilacetin, psilocin,
and psilocybine, which are psilocybin-mushroom components, have been subjected to
Mpro SARS-CoV-2 docking studies (PDB: 6LU7) utilizing AutoDock and AutoDock vina
software. They reveal considerable binding affinity in the protein active site (interac-
tion docking scores = −6.0, −5.4, −5.8 kcal/mol for psilacetin, psilocin, and psilocybine,
respectively) [159] (Figures 25 and 26).
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A series of indolyl chalcones (L1–L25) have also been explored against Mpro (PDB:
6YB7), spike protein (PDB: 6LZG), and RNA-dependent RNA polymerase (PDB: 6M71)
in silico by the blind docking technique utilizing AutoDock Vina v.1.1.2. Some of the
results suggested promising inhibitory properties that may help narrow the search for
anti-SARS-CoV-2 candidates [160] (Figure 27).
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The Schiff bases formed from the condensation of isatin and 2-(1-aminobenzyl)benzimi-
dazole revealed in silico possible Mpro SARS-CoV-2 inhibitory properties (3CL protease,
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PDB: 6LU7, AutoDock 4.2 software). The 5-bromo-substituted analog of bis-Schiff base 24
formed from the condensation of 2-(1-aminobenzyl)benzimidazole and the corresponding
bis-isatin in ethanol containing a few drops of AcOH at room temperature (Scheme 13) is
the most promising [161] (Figure 28).
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6LU7) [161].

A set of 2-oxindole derivatives (M1–M31) with in silico Mpro SARS-CoV-2 inhibitory
properties were mentioned (PDB ID: 6LU7, Molegro Virtual Docker version 7.0.0 Software,
MVD) [162] (Figure 29).
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Figure 29. Oxindoles (M1–M31) with in silico Mpro SARS-CoV-2 properties [162].

A set of isatin-based protease inhibitors was collected from previous publications
followed by in silico high throughput screening in the active pocket of Mpro SARS-CoV-2
(chain-A, PDB: 6M03). The most promising agents (N1–N5) were identified based on the
observed binding affinities (Figure 30). Searching the Zinc drug-like library for similar
analogs followed by virtual screening (AutoDock Vina) identified indole analogs (O1–O3)
with potential inhibitory properties against Mpro SARS-CoV-2 [72] (Figure 31).

Hattori et al. have also reported the in silico Mpro SARS-CoV-2 properties (PDB: 6Y2F,
Maestro Version 10.7.015) in addition to the in vitro activity (Vero E6 assay) of indole-
containing compounds (P1 and P2) [163] (Figure 32).
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Figure 32. Indole-containing compounds (P1, P2) of potential in vitro anti-SARS-CoV-2 and in silico
Mpro properties [163].

2-Indole-containing compounds 25 were obtained through the reaction of indole, furan-
2-ylmethylenehydrazine, and appropriate aldehyde in ethanol (Scheme 14). Considerable
activity against SARS-CoV-2 spike glycoprotein (PDB: 6WPT, Schrodinger 12.4 software)
was observed for some of the synthesized agents [164] (Figure 33).
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A computational study considered food chemicals and components named as dark
chemical matters could predict some effective anti-SARS-CoV-2 hits. Compound ID:
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ZINC4217536 (ZINC database) was mentioned as a promising antiviral active agent due to
docking observations in Mpro of SARS-CoV-2 (PDB ID 6LU7) utilizing MOE (Molecular
Operating Environment v.2019 software). It reveals hydrogen bonding interaction with
CYS145 and GLU166 in addition to a π-interaction with HIS41 (all these amino acids are the
key components of the protein active site). Compound ID: ZINC95567760, which contains
a fused indolyl heterocycle, also reveals a promising docking interaction in the PDB: 6LU7.
Hydrogen bonding interaction with CYS145, in addition to π-interactions with GLU166
and GLY143, support these assumptions [165] (Figure 34).

Molecules 2023, 28, x FOR PEER REVIEW 48 of 57 
 

 

to docking observations in Mpro of SARS-CoV-2 (PDB ID 6LU7) utilizing MOE (Molecular 
Operating Environment v.2019 software). It reveals hydrogen bonding interaction with 
CYS145 and GLU166 in addition to a π-interaction with HIS41 (all these amino acids are 
the key components of the protein active site). Compound ID: ZINC95567760, which con-
tains a fused indolyl heterocycle, also reveals a promising docking interaction in the PDB: 
6LU7. Hydrogen bonding interaction with CYS145, in addition to π-interactions with 
GLU166 and GLY143, support these assumptions [165] (Figure 34). 

 
Figure 34. 2D-docking interaction of Compounds ID: ZINC4217536 and ZINC95567760 in PDB ID 
6LU7 [165]. 

5.2. RdRp (RNA-Dependent RNA Polymerase) Inhibitor 
The RdRp enzyme is one of the most reliable targets for optimizing potent antiviral 

therapeutics. This is attributed to its ability to terminate the viral RNA replication in ad-
dition to the lack of any similar RdRp in the host cell, thus minimizing off-target effects 
[9,166]. 

A computational study has also explored isatin analogs (Q1–Q10) for the identifica-
tion of promising RdRp SARS-CoV-2 inhibitor agents (PDB ID: 7BTF, AutoDock); the most 
promising compounds discovered are exhibited in Figure 35 [167]. 

Figure 34. 2D-docking interaction of Compounds ID: ZINC4217536 and ZINC95567760 in PDB ID
6LU7 [165].

5.2. RdRp (RNA-Dependent RNA Polymerase) Inhibitor

The RdRp enzyme is one of the most reliable targets for optimizing potent antivi-
ral therapeutics. This is attributed to its ability to terminate the viral RNA replication
in addition to the lack of any similar RdRp in the host cell, thus minimizing off-target
effects [9,166].

A computational study has also explored isatin analogs (Q1–Q10) for the identification
of promising RdRp SARS-CoV-2 inhibitor agents (PDB ID: 7BTF, AutoDock); the most
promising compounds discovered are exhibited in Figure 35 [167].

López-López et al. [168] have pointed out that an analysis of ChEMBL (chemical
database of bioactive agents created by the European Bioinformatics Institute) indicates
that 10 µM is a convenient benchmark by which to differentiate active from inactive
compounds. Assigning such parameters can help distinguish between active and inactive
compounds as well as help improve effectiveness. Structure activity/property relationship
(SAR/APR) software can assist with this aspect. Manipulating the chemical structure
based on the physic-chemical parameters (descriptors) can turn the inactive or mildly
active agents into potent effective ones. This explains the interest of medicinal chemistry
researchers in QSAR/QSPR studies [119,169,170].
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6. Conclusions

COVID-19 has proven to be one of the most serious crises facing human health in
recorded history. The scientific community has been tirelessly working to optimize effective
therapeutics. While vaccination has been successful in controlling the pandemic, research
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into the effective treatment of current and future mutants remains crucial. One area of focus
has been on the indole scaffold, which includes many alkaloid categories and has shown
promise in the fight against COVID-19. Repurposed indole-containing drugs, as well as
various natural and synthetic indole analogs, have been investigated for anti-SARS-CoV-2
efficacy. In silico studies were utilized to generate new hits and optimize leads against
SARS-CoV-2. 3-Alkenyl-2-oxindoles and spiroindoles are potentially valuable anti-SARS-
CoV-2 agents that can be synthesized in a regio-selective approach. From the cited reports,
it can be concluded that indole-containing compounds are important lead molecules and
can be further optimized for the development of potential agents against SARS-CoV-2.

Supplementary Materials: The following supporting information can be downloaded at:
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