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Abstract

Although contextualised language models (CLMs) have reduced the need for word

embedding in various NLP tasks, static representations of word meaning remain crucial

in tasks where words have to be encoded without context. Such tasks arise in domains

such as information retrieval. Compared to learning static word embeddings from

scratch, distilling such representations from CLMs has advantages in downstream tasks

[68],[2]. Usually, the embedding of a word w is distilled by feeding random sentences

that mention w to a CLM and extracting the parameters. In this research, we assume

distilling word embeddings from CLMs can be improved by feeding more informative

mentions to a CLM. Therefore, as a first contribution in this thesis, we proposed a

strategy for sentence selection by using a topic model.

Since distilling high-quality word embeddings from CLMs requires many mentions for

each word, we investigate whether we can obtain decent word embeddings by using a

few but carefully selected mentions of each word. As our second contribution, we

explored a range of sentence selection strategies and tested their generated word em-

beddings on various evaluation tasks. We found that 20 informative sentences per word

are sufficient to obtain competitive word embeddings, especially when the sentences

are selected by our proposed strategies.

Besides improving the sentence selection strategy, as our third contribution, we also

studied other strategies for obtaining word embeddings. We found that SBERT embed-

dings capture an aspect of word meaning that is highly complementary to the mention
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embeddings we previously focused on. Therefore, we proposed combining the vectors

generated from these two methods through a contrastive learning model. The results

confirm that combining these vectors leads to more informative word embeddings.

In conclusion, this thesis shows that better static word embeddings can be efficiently

distilled from CLMs by strategically selecting sentences and combining complement-

ary methods.
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Chapter 1

Introduction

Natural language processing (NLP), devoted to making a machine understand and re-

spond to human language, is a fast-growing technology that has profoundly shaped

the world. Intuitively, we can assume that a machine cannot understand a sentence’s

meaning without understanding the meaning of its constituent words. Therefore, word

representation learning is a fundamental research field of natural language processing.

In recent years, the success of pre-trained neural language models has pushed research

frontiers profoundly, bringing word representation learning to the next level by mak-

ing word representations context-sensitive. Motivated by the enormous achievement

of pre-trained language models, this thesis tries to exploit such contextual word repres-

entations to obtain better word representations. The first part of this chapter introduces

the context of this research. Then, the research gaps will be identified in the second

part. Subsequently, the research objectives will be clarified, and their significance will

be justified. Finally, the limitation of this research will be discussed.

1.1 Background

To learn a language and use it in daily life, people need to start by learning its vocab-

ulary before constructing sentences from a group of words [54]. We assume that this

rule also applies to NLP: grasping the meaning of words in a language is the found-

ation for further downstream NLP tasks. However, teaching a machine to understand
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the meaning of a word is difficult. This is because words are more than discrete sym-

bols, with each word triggering a mental representation that reveals its meaning and

reference [77]. In order to make NLP possible, each word should trigger a machine

representation that reflects its meaning. The question is, what kinds of meaning should

a representation contain? As [11] suggested, a good representation should express

general-purpose priors that are not task-specific but would be likely beneficial for a

learning machine to solve AI tasks. In other words, the meaning captured by a word

representation should be general and not task-specific; it can be applied to different

contexts and provide a solid foundation for different downstream tasks.

However, it is difficult to encode the word meaning into something tangible. Although

we can have a discrete symbol representing a concept, its expressed meaning is always

out of touch because it is abstract and sealed in the human mind. As [40] points

out, a solution might be to represent the meaning of a concept as a distribution of

specific properties. For example, the meaning of "banana" can be represented by the

combination of its properties: being curved, yellow, and sweet. Nevertheless, those

defining properties themselves need to be further defined. To avoid this vicious circle, a

concept’s meaning should be represented by quantitative features that can be measured

numerically.

Initially applied in the Information Retrieval (IR) field [91], the vector space model

provides an inspiring way to represent meaning. To represent the meaning of docu-

ments from a given collection, each document is encoded as a list of features corres-

ponding to all words in the collection. Each feature has a numerical value depending

on the number of occurrences of the corresponding word in that document. In other

words, the meaning of any document can be described as a distribution among the

space composed of word occurrences. Driven by this strategy, [91] obtains vector rep-

resentations for documents and then confirms the effectiveness of this representation

learning by exploring the learned vector space. They found that documents with the

same topic tend to cluster together while being apart from the documents in different
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topics. This research backs up the bag-of-words hypothesis: the word pattern used in

a document tends to indicate the document’s meaning [46]. Unlike documents, a word

is usually an independent lexical unit without an inside feature pattern that illustrate its

meaning. Instead, a word’s meaning can often be inferred from its surrounding word

pattern: context. So, for example, when we read a scientific article containing some

words we do not know, we can always infer their meaning from the context where they

occur. Firth [36] famously summarised these phenomena as "you shall know a word by

the company it keeps." Thus, like documents, word meanings can also be represented

by word patterns.

Instead of counting all surrounding words, the word patterns for each word are gen-

erally encoded by language models. A language model is a probability distribution

model over sequences of words [27, 3]. For example, given an incomplete sentence:

"Don’t watch this film because it is ( )", a language model should complete the sen-

tence by assigning a higher probability to negative adjective words rather than positive

ones. Language models are usually trained on an enormous corpus to predict the fol-

lowing words given an incomplete sentence. Then, given the comparison between its

predictions and actual answers, language models can update their hidden parameters

to minimise errors and improve their accuracy. By constantly fine-tuning the hidden

parameters in the corpus, the language model gradually reaches a stable state that pro-

duces correct output given an incomplete sentence. The surrounding word pattern for

each word is then encoded by a list of hidden parameters that give the model the best

overall performance. In other words, the meaning of a word is represented by the

hidden parameters triggered by itself. By extracting the hidden parameters from the

well-trained model triggered by each word, all words obtained their unique vector rep-

resentation. This method of encoding words as fixed-length vectors is also known as

word embedding [27, 3].

Intending to obtain the best word embeddings, considerable studies propose diversified

frameworks. Among those implementations, Word2Vec [74] and CBOW [80] are the
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most popular methods of obtaining word embedding due to their efficiency and high

quality. In addition, their performance on several evaluation tasks confirms that their

word representation preserves word meanings. For example, their vector representa-

tions corresponding to similar words are geometrically closer than those less similar in

the vector space. [74] reported that the relationship between two words can be defined

by subtracting their corresponding word vectors. The following equation can illustrate

this inspiring observation:

Paris− France = Rome− Italy

Furthermore, Word2Vec [74] and CBOW [80] also achieved competitive results on

both intrinsic evaluations and extrinsic evaluations, such as word similarity, word ana-

logy, sentiment analysis, and part-of-speech tagging [108].

The word embeddings mentioned above is also regarded as static word embeddings or

non-contextual word embeddings. This is because each word type only has a single

representation regardless of its context. Although static word embeddings can cap-

ture meanings of words at the type level, they struggle with polysemous disambigu-

ation [81, 7]. For example, a static word representation of the English word "apple"

fails to tell machines whether a high-tech company or a kind of fruit is referred to.

CLMs(Contextual language models) solve this question by giving a word different rep-

resentations. Rather than learning a word embedding for each word at the type level,

CLMs, such as ELMo [81] and BERT [29], can learn contextual word representations

that vary their value from context to context. For example, their vector representa-

tions for the word apple in the context of "apple announced the fifth generation iPod

Touch" is entirely different from their representations in the context of "apple trees are

cultivated worldwide".

Furthermore, as confirmed by several works [100, 32, 25], CLMs have much deeper

and more sophisticated neural network structures thus can capture context in more ef-

fective way. As the result, CLMs obtain great results on many extrinsic evaluation

tasks and outperform NLP models based on static word embedding by a large mar-
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gin [81, 29]. As a representative CLM, BERT obtained state-of-the-art results on el-

even important NLP benchmarks at the time of its introduction. Motivated by this

inspiring achievement, many studies have been conducted to probe the knowledge cap-

tured by CLMs such as BERT. These works [25, 48, 41, 33] confirm that contextual

embeddings from BERT capture rich linguistic knowledge such as syntactic structure,

subject-verb agreement, and semantic role. Furthermore, other works [82, 28, 119]

reveal that BERT also possesses world knowledge, such as knowing Dante was born in

Florence and predicting properties that are never or rarely stated explicitly.

1.2 Research Questions and The Hypothesis

Given the impressive performance of CLMs, static word embeddings have been re-

placed by CLMs in many NLP applications in the last few years. However, contextual

word representations can only represent the word’s meaning at the token level because

they are overly dependent on their local context. Ethayarajh [32] found that the vari-

ation of contextual representation of a single word in BERT is driven by its varying

context rather than the word’s inherent polysemy. Specifically, they find English stop

words, such as "the," "of," and "to," have the most context-specific representations in

BERT, even though those stop words have relatively stable meanings in the English

language.

Moreover, the representation of the general meaning of an independent word or a

concept, regardless of its context, is still required in many NLP applications where

word meaning has to be modelled without sentence context. Instances of such applic-

ations include ontology alignment [59], ontology completion [65], zero-shot learning

[94] and few-shot learning [117, 64, 118]. The ontology alignment task requires the

ontologies designed by different experts to be aligned for integrating knowledge. How-

ever, different experts use various terms ("Conference Dinner" or "Banquet") to denote

the same entities. Static word embeddings can be applied to this task by calculating
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the similarity scores of pairs of terms and determining correspondences between terms.

Besides, in [68], they found that static word vectors can be helpful as “anchors” for im-

proving the representations of CLMs. At the same time, [2] also obtained improved

results by combining BERT with static word vectors.

Instead of going back to learning static word embedding from scratch, distilling static

word vectors from CLMs might be a better way to obtain word representations at the

type level. The most apparent motivation is that the rich knowledge preserved in those

large CLMs provides an excellent resource for extracting meaningful word represent-

ation. The works [25, 48, 119, 82] probing knowledge learned by BERT lend support

to the idea that static word vectors induced from CLM have some inherent advantages

compared to those from standard word embedding models. The other motivation for

distilling static word vectors from CLMs is that we can always build desired word

representations by leveraging the context sentences from domains of interest. For ex-

ample, we can restrict the context of a word to a medicine corpus to obtain the meaning

of that word used in the domain of medicine.

Driven by these motivations, some recent works [31, 16, 105] have explored how to

distil a static word representation from CLMs. The strategy applied in these works is

straightforward. Given a word w, the process of obtaining its static representation from

a CLM consist of the following steps:

1. Finding sentences from a corpus that mentions w

2. Feeding sentences as input into a CLM and obtaining contextual representations

as output.

3. Obtaining the static representation by aggregating all the contextual representa-

tions.

Since usually it is not computationally feasible to run the CLM on all the sentences

mentioning w, a sample of such sentences has to be selected. In the works mentioned
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above, sentences are selected randomly, but random selection may not be optimal.

If we want to use the resulting word vectors in downstream tasks such as zero-shot

learning or ontology completion, we need vectors that capture the salient semantic

properties of words. Intuitively, we should thus favour sentences that best reflect these

properties. For instance, many of the mentions of the word banana on Wikipedia are

about the cultivation and export of bananas, or about some particular banana cultivars.

By learning a static word vector from such sentences, we may end up with a vector that

does not reflect our commonsense understanding of bananas, e.g. the fact that they are

curved, yellow and sweet. This leads to the first research question in this dissertation:

how should these sentences be chosen to distil better static word embedding?

Furthermore, a large number of sentences were used to obtain each word embedding

in the aforementioned works. This process could be computationally too expensive for

many applications, especially when a large vocabulary size is involved. If high-quality

static word vectors can be learned from a few informative mentions, the efficiency of

distilling word embedding from CLMs would be significantly boosted. Given the need

for more research on this specific topic, the second research question in this dissertation

is whether high-quality word embeddings can be learned from just a few mentions of

each word.

Moreover, different strategies of obtaining word embedding from CLMs may be com-

plementary because they usually capture different aspects of contextual information.

For example, from the probing experiments, the representations of the same word

from BERT[29] and SBERT[89] tend to capture complementary aspects of its semantic

meaning. This motivation leads to my dissertation’s third research question: whether

combining representations obtained by different methods result in a better static word

embedding.

To sum up, the hypothesis in this dissertation is that better static word embeddings can

be efficiently distilled from CLMs by strategically selecting sentences and combining

the complementary methods. In order to verify this hypothesis, the following research
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questions are addressed:

1. Can higher-quality word embeddings be obtained by selecting sentences stra-

tegically?

2. Can higher-quality word embeddings be obtained from a few mentions of each

word?

3. Can higher-quality word embeddings be obtained by combining representations

that capture complementary aspects of word meaning?

1.3 Contribution

The primary aim of this thesis is to distil high-quality static English word embeddings

from CLMs. The contributions made through this thesis are:

• We have proposed the use of topic models to improve how mentions for each

word are sampled. Rather than learning a single vector representation for the

target word, we learn one vector for each sufficiently relevant topic. Also, we

proposed to construct the final representation of a word w as a weighted average

of those different topic-specific vectors. The experiments show that sampling

mentions with the topic model can capture a more diversified context, improving

the quality of static word embedding distilled from CLMs.

• We have considered the new challenge of distilling high-quality static word em-

beddings from language models using only a small number of mentions of each

word. We propose a range of strategies for sampling mentions. Based on the

analysis, we found that using Pointwise Mutual Information (PMI) and defini-

tion sentences lead to better static word embeddings. Furthermore, this research

confirms that high-quality word embedding can indeed be obtained from just a

few highly-informative mentions of each word.
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• We have proposed to use SBERT embeddings to capture another aspect of word

meaning that is complementary to the word meaning captured by BERT. Then,

we found that combining SBERT embeddings and BERT is beneficial in word

similarity task and lexical classification task. We also have proposed a strategy

for combining word embeddings through a contrastive learning model and dis-

til low-dimensional embeddings. These embeddings have better neighbourhood

structure, which result in a impressive result on word similarity task.

The overall experimental results of this research support our research hypothesis: better

static word embeddings can be efficiently distilled from CLMs by strategically select-

ing sentences and combining the complementary methods

1.4 Thesis Structure

The remainder of this thesis is organised as follows:

• Chapter 2 – Background and Related Work – provides an in-depth review of

the literature on standard word embeddings, CLMs, ways to distil static word

embedding from CLMs, application of word embedding, and word embedding

evaluation.

• Chapter 3 – Topic-Aware Mention Selection Strategy – aims to answer the first

research question. This chapter proposes the use of topic models to improve how

word mentions are sampled. The topic model used in this research is Latent Di-

richlet Allocation [14]. First, given the collected contexts of each word, Latent

Dirichlet Allocation is applied to partition all the mentions into several clusters

corresponding to different topics. Then, topic-specific vectors for each word are

obtained and evaluated on several benchmarks to test the effect of our proposed

strategy.
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• Chapter 4 – Exploring Other Mention Selection Strategies – aims to answer the

second question by empirically analyzing a range of strategies for selecting men-

tions of a given word w. Each strategy selects a few mentions aiming to max-

imise the captured semantic properties of w. These strategies result in a list of

representations for the word w. Then, these word representations corresponding

to different strategies are evaluated on the benchmarks.

• Chapter 5 – Combining Complementary Aspects of Word Meaning – is focused

on solving the third research question. This chapter proposes combining word

representations from different strategies through a contrastive learning model.

The masked vector representations from BERT and sentence representations

from SBERT are found to be able to capture different aspects of semantic mean-

ing. Given a word w, its mention representation from SBERT and its masked

contextual word representations from BERT are extracted before feeding into a

proposed contrastive learning model. The contrastive learning model then out-

puts a static representation for word s which is evaluated on several benchmark

to answer the third research question.
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Chapter 2

Background and Related Work

2.1 Introduction

This chapter presents a literature review in the area of word embedding, pre-trained

language models and contextualized word embedding before discussing the evaluation

and application of word embedding. This chapter consists of four sections. Section

2.2 gives a general overview of the motivation for word embedding technology. As

the most representative word embedding learning method, Word2Vec is explained in

detail to illustrate the essence of word embedding learning. Several important works

on developing word embedding are also covered and discussed in this section. As

pre-trained neural language models replaced standard word embedding in recent years,

this shift caused a huge change in the research map of natural language processing.

The motivation for this paradigm shift is explained in Section 2.3, where several pre-

trained neural language models are reviewed. As the most representative language

model, BERT, with its underlying framework, is explained in detail. The prevalence

of pre-trained neural language models has motivate research in probing the knowledge

captured by them. Their probing results are also presented and discussed in this section.

The positive results from the above probing works caused a booming research topic,

namely extracting contextualized word embedding from pre-trained language models.

The review of this line of work is discussed in the Section 2.4. The application and

evaluation of word embedding is discussed in the Section 2.5
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2.2 Word embedding

2.2.1 Motivation of Word Embedding

Daily usage words are more than discrete symbols, with each word having complex

meanings that need to be correctly decoded by the human mind. To make a machine

interpret and understand words, the meanings of words need to be captured in their

representation to facilitate downstream NLP tasks. The question is, what form should

word representations take to fulfill this purpose? As [11] suggested, a good representa-

tion should express general-purpose priors that are not task-specific but would be likely

beneficial for a learning machine to solve AI tasks. In natural language processing, a

good representation should capture semantic and common sense knowledge from text

data. To encode diverse and complex meanings, the representation of words needs to

have enough expressive power to fit language knowledge into a manageable system in

which semantic meaning can be measured from the inside.

Initially applied in the Information Retrieval (IR) field, the vector space model has

shed light on how to represent semantic information [3]. To build a representation for

each document from a collection, [91] encode each document to a real-valued and

fixed dimensional vector in which each dimension corresponds to a specific term in the

vocabulary list. Therefore, all documents can be described as distributions among the

space composed of feature terms. Thus, all terms in the collection formulate a vector

space that can describe any document as a vector. This way of obtaining represent-

ation using a vector space is usually called distributed representation. It decomposes

a subject into a list of feature values, with each element measured by its magnitude

on the corresponding feature. Since all documents are represented in a unified vector

space, the meanings of documents can be compared with each other. [91] found that

semantically similar documents are closer to each other when their euclidean distance

is measured. The research from [91] supports the bag-of-words hypothesis: the word

pattern used in a document tends to indicate the document’s relevance. Put another
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way, a document’s word pattern can capture that document’s meaning and be used as a

representation.

Unlike document representation, a word is usually an inseparable lexical unit, so it

does not have a word pattern inside. Instead, a word’s meaning can often be inferred

from its surrounding words: context. For example, when we read a scientific article

containing some words we do not know, we can always infer their meaning from the

context where they occur. Therefore, contextual words can represent the meaning of a

target word.

Instead of representing a word by counting its surrounding words, its context can be

encoded more effectively by a language model’s parameters that assign maximum like-

lihood to the target word. The fixed dimensional word representations obtained by

trained language models are also called word embeddings. The research from [9]

confirms that word embeddings significantly outperforms the word vector obtained by

counting surrounding words. [10] proposed the first neural network language model

that is trained to predict the next word given a preceding context. Neural networks

have rich and deep representation power, which can perform many tasks by tuning

their parameters from hidden layers. In order to become a language model, a neural

network is usually trained on a big corpus, and it constantly predicts the next word via

maximum likelihood estimation given a preceding context. Meanwhile, the parameters

inside the neural network are constantly tuned based on the feedback after each pre-

diction. Once the neural network reaches the best result in predicting the following

words, its well-tuned parameters are frozen and can be taken out as word embeddings

to represent the meanings of words.

2.2.2 Word2Vec

Word2Vec [74] is probably the most influential and representative method for learning

pre-trained word embeddings. Using an simple and shallow neural network, Word2Vec
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Figure 2.1: A diagram of CBOW and Skip-gram.

can learn representations of all words by pushing each target word closer to its con-

textual words in the vector space. Word2Vec provides two ways of learning word

embeddings, they are Skip-gram and Continuous bag-of-words (CBOW). Both meth-

ods are inspired by neural language models while differing in their associated training

tasks. A diagram of both CBOW and Skipgram is presented in Figure 2.1.

Skip-gram is trained to predict the N surrounding context words within a fix-sized

window from a given target word. The input to the Skip-gram is a one-hot vector of

the target word, which is forwarded to a hidden layer of size V × d, where V is the

vocabulary size and d is the embedding dimension. The hidden layer output is then

passed to a softmax layer, generating N probability distributions over the vocabulary

and predicting the most likely context words. Afterward, prediction loss is calculated

by comparing the predicted and actual context words. CBOW, in contrast, is trained to

predict target words from the surrounding context words. For each word, a fix-sized

window of words surrounding the target word is used as the input and fed to the model.

As a multi-hot vector, the input passes from the embedding layer to the softmax layer

to generate a probability distribution over the vocabulary and predict the most likely
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word. Like Skip-gram, prediction loss is calculated at the endpoint by comparing the

predicted and actual context words.

The objective of both Skip-gram and CBOW is to learn the parameters on the em-

bedding layer by minimizing the prediction loss. Thus, both algorithms are trained

in a large corpus while the weights on their embedding layer are constantly updated

until the total loss minimization. Meanwhile, the updated weights on the embedding

layer push together the representation of the target word and its contextual word while

drawing apart the representations of irrelevant words. Once a model is fully-trained on

the training corpus, the weights on the embedding layer are frozen. Then, the vector

representations of every word in the vocabulary can be directly obtained by taking the

learned weights from the embedding layer, either trained by CBOW or skip-gram.

The previous studies confirm the efficiency and effectiveness of word embedding learn-

ing methods proposed by Word2Vec . [74] found that the word embeddings learned

by CBOW and skip-gram can preserve some semantic and syntactic knowledge. [112,

114] found that the word embeddings learned from Word2Vec poses a solid baseline

in several word evaluation benchmarks such as BabelNet Domain and McRae Feature

Norms. Besides, these pre-trained word vectors can be further processed to do down-

stream tasks such as text classification [96, 43], or natural language inference [109, 42].

2.2.3 Development of Word Embeddings

Word2Vec is criticized as only focusing on local word co-occurrence while ignoring

the global statistics: the learned representation of a word is only affected by the sur-

rounding words. So, for example, a stop word "the" might always co-occur with the

target word, say apple, but the word "the" does not tell us anything informative about

what an apple is. Glove[80], as the other most influential word embedding learning

method, can solve this question. By building a global co-occurrence matrix (word by

context) from the corpus, the frequency of words co-occurrence with a given context
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becomes visible. Then, word embeddings can be obtained by factorizing this huge

co-occurrence matrix into a low-dimensional matrix.

The above mentioned two word embeddings learning methods takes the context of a

word to be words that precede and follow the target word. However, words that fall

in this window might be irrelevant to the target word. For example, in the sentence

"Australian scientist discovers star with telescope, word "Australian" modifying the

word "scientists" is not informative to reveal the meaning of the word "discovers." The

above issue can be solved if context can be derived based on the target word’s syntactic

relation. [63] obtain the syntactic context of a word by extracting dependency parse

trees from their original context. With the help of parsing technology, the syntactic

dependency trees can be directly extracted with decent accuracy. Afterward, depend-

ency trees can identify the syntactic relations between contextual words and the target

word. Therefore, only the words that have syntactic relation with the target word are

considered context. Compared with Word2Vec, this change of context improves the

performance of the resulting word embeddings on several evaluation tasks, revealing

its better capability of capturing syntactic similarity.

A problem that the early word embedding learning technologies suffer from is the out-

of-vocabulary issue [60]. Sometimes, words that are not in the training vocabulary

might be found in new data. For example, the word "TensorFlow" might be spotted

in AI articles by a model that does not have this word in its training vocabulary even

though it contains "tensor" and "flow" as two recognized words. This problem can be

eased if the embedding learning model can utilize the internal structure of the words.

FastText [15] propose an extension of the skip-gram model to use the internal struc-

ture of a word to improve word vector representations. Instead of learning vectors for

words directly, FastText represents each word as an n-gram of characters. This change

helps to capture the inner structure of words and forces the embedding model to un-

derstand the meaning of suffixes and prefixes. Once the word has been represented as

character n-grams, a skip-gram model is trained to learn the embeddings. Since the
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model explores the inner structure of words, FastText can learn representations for the

out-of-vocabulary words.

All the embedding learning technologies described above are trained on an unstruc-

tured corpus with free text data. In fact, the knowledge about a target word revealed by

its context in free text is quite limited. For example, the semantic meanings of a word

are unlikely to be explicitly stated in a random sentence that mentions it. That is be-

cause the daily use of language is more likely to use words as tools for communication

rather than giving full explanations. Therefore, utilizing structured datasets such as

knowledge graphs to further enhance the word representation is a natural strategy. To

further enrich the word representation power, ConceptNet-Numberbatch [95] utilizes

the encoded knowledge in ConceptNet, a semantic network of knowledge about word

meanings. First, they convert the pruned ConceptNet to a symmetric term-term matrix

in which each cell represents the sum of all edges through which two terms are related

in some way. Then, the context for each word in this matrix is defined as the terms that

have a direct edge connecting them. Truncated SVD is further applied to this matrix

to reduce the number of its columns to 300. Afterward, they apply retrofitting tech-

nology to push representations of each word towards its original representation and

the representations of its context words. Since retrofitting can enhance any pre-trained

embeddings with a knowledge graph, it paves a way to combine the strength of word

embeddings learned from unstructured and structured data.

Learning word embeddings in multilingual vector spaces is also confirmed to be help-

ful in improving monolingual word embeddings. For example, given the embedding

spaces of two different languages and a dictionary mapping their vocabularies in trans-

lation, [34] project them onto a common vector space such that their translated pairs

are maximally correlated. Specifically, this maximal correlation is realized by applying

canonical correlation analysis (CCA), which measures the linear relationship between

two vectors and finds two optimal projection vectors that maximize the correlation

between their transformed vectors. They report that the transformed word embeddings
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in the common vectors space outperforms its original word embeddings on lexical se-

mantic evaluation tasks.

2.3 Contextualized Language Models

The word embedding technology mentioned above is widely regarded as static word

embeddings or non-contextual word embeddings. This is because each word type only

has an independent global representation regardless of its context. Although static

word embeddings can capture semantic meanings of words at the type level, they

struggle with polysemous disambiguation because of their context-free nature. For

example, a static word representation of the English word "apple" fails to tell readers

whether a high-tech company or a kind of fruit is referred to. Moreover, words in

language usage develop their semantical meaning based on the previous words. For in-

stance, an adjective word before the noun word might modify the meaning of the noun

word significantly. To solve these issues, pre-trained language models take on this chal-

lenge and explore a new strategy for word representation learning. Rather than learning

a word embedding for each word at the type level, pre-trained language models such as

ELMo and BERT are committed to learning contextual word representations that vary

their value from context to context. This idea is realized by representing each word as

a function of the entire input sequence that mentions the word.

2.3.1 The Early Pre-trained Language Models

ELMo [81] is one of the earliest works on pre-trained language models as presented in

Figure 2.2. It adopts L-layers of bidirectional LSTM (Long short-term memory) [50]

(a forward LSTM and a backward LSTM applied to encode both left-to-right and right-

to-life contexts) as feature extractor, and it is trained on a large corpus. The training

objective is the maximum likelihood of the language models in both directions. Driven
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Figure 2.2: A diagram of ELMO.

by this training objective, this bidirectional LSTM-based model needs to correctly pre-

dict the following word based on the preceding words in a sentence and predict the

preceding word based on the following words. Given a sentence, ELMo splits the

sentence into a list of words and represents each word as convolutions of characters

before mapping them to context-independent token representations. By splitting the

input word into groups of characters, ELMo follows the spirit of FastText to tackle the

out-of-vocabulary problem. Then, these context-independent token vectors are fed into

a Bidirectional LSTM in which two hidden representations are assigned to each token.

Since LSTM is a sequential feature extractor which can store preceding information,

the contextual information of the input sentence is retained at hidden parameters cor-

responding to each token. Therefore, representing each token as the hidden parameters

from an LSTM allows a word representation to be contextual. Finally, by aggregat-

ing the contextual representations on all bidirectional LSTMs and the non-contextual

representation from the corresponding position, each word obtains a single vector as
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its contextual representation in that specific sentence. The power of contextual word

representation from ELMo is proved by its state-of-the-art performance across six chal-

lenging NLP problems including question answering, textual entailment and sentiment

analysis, according to [81].

Although bi-directional LSTMs can encode the context from both directions, it is not

designed to encode the interaction between the contextual words from two sides of

the target word due to its sequential natural. Furthermore, LSTMs as a feature ex-

tractor has several limitations that make it less effective compared with Transformer,

a counterpart that is released later. First, LSTMs is a sequential model that processes

sentence word by word so that it does not allow parallel computation. Moreover, the

long-term dependency problem often affects all the RNN-based models [84, 56].To

encode context better and more efficiently, Transformer [104] replace the LSTMs and

almost become the universal feature encoder in NLP applications. On the one hand,

Transformers can directly capture the dependency between every two tokens in the

given sequence, which overcome the issue of long-range dependency in language. On

the other hand, Transformer architecture is not a sequence model; therefore, it allows

parallel computation and can further boost training efficiency. Therefore, most of the

later released pre-trained language models [29] [85] [70] use Transformer architec-

ture as the encoder for context information. OpenAI-GPT [85] is the first pre-trained

language model that uses Transformers as the context feature encoder and the decoder.

However, instead of using a bidirectional language model as the training target, GPT’s

training target is a forward language model which only uses the context preceding the

target word. This training objective encourages the model to learn language generation

and thus comes with the cost of losing contextual information after the target word.

2.3.2 BERT and Its Extensions

BERT(Bidirectional Encoder Representations from Transformers) [29] is the paradigm-

shifting research that dramatically changed the research map in NLP. Like ELMo and
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OpenAI-GPT, BERT is also committed to learning contextualized word embeddings

through a pre-trained neural network language model. However, BERT takes a dif-

ferent approach from ELMo and GPT regarding the training objective. The forward

language model used in GPT ignores the context after the target word that might con-

tain relevant information about the semantic meaning of the target word. Although the

bidirectional language model used in ELMo can capture the context from both sides, it

still cannot encode the interaction between the left and right contexts. For many NLP

downstream tasks, it is vital to use all context information simultaneously. To fully

explore the contextual information of a target word, [29] propose a masked language

model as the new training objective.

Instead of predicting the target word from either the left or right direction, a masked

language model masks a target word and then predicts what that masked word is based

on all surrounding words in the sentence. For example, a target word "apple" is masked

in the following sentence: "In Autumn the [MASK] fall from the tree.", and the model

needs to predict what [MASK] is by inferring from its left context: "in Autumn" and

its right context: "fall from the tree." Therefore, a masked language model can encode

contexts in both directions simultaneously to better represent the meaning of a target

word. Besides the masked language model, the other training task for BERT is next

sentence prediction: BERT is also trained to predict whether two given sentences have

a sequential connection. This training task encourages BERT to capture the semantic

meaning at the sentence level.

Since knowledge about the framework of BERT is essential to understand this thesis,

the structure of BERT is explained here. First, before feeding into the model, the input

sequence of words from the training corpus is preprocessed by tokenizing them into

a list of tokens. By doing so, words are split into smaller subwords so that BERT

represents a word as a collection of characters. Meanwhile, each word in the input

sequence has a 15 percent chance of being replaced with a [MASK] token. Given a

mask token [MASK] and other corrupted word tokens, the model is trained to predict
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Figure 2.3: A diagram of BERT.

its original word based on its context. In addition, a classification token [CLS] is added

at the beginning of the token list to encode the sentence’s meaning, and the sentence-

ending token [SEP] is added at the corresponding position in the token list to mark the

end of a sentence.

Given a list of input tokens, BERT uses three separate embeddings for each token. The

diagram of BERT as presented in 2.3 illustrate its workflow.

• Token embeddings: static trainable vector representation of each input tokens.

• Position embeddings: pre-defined vector indicating the token’s position which

can preserve the sequential order of words in a sentence.

• Segmentation embeddings: used to distinguish two input sentences in support

of next sentence prediction task.
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Then, these three input embeddings are fed to a stack of bidirectional transformer en-

coders from bottom to top. The output of each bidirectional transformer encoder is a

sequence of vectors, in which each vector corresponds to an input token with the same

index. Each bidirectional transformer encoder extracts features from the vectors it re-

ceived from the preceding level before feeding the generated sequence of vectors to the

transformer encoder at the next level. At the top of the final transformer encoder, the

output vectors are multiplied by a learned set of classification weights before passing

them onto a softmax layer. In the end, the probability distribution over the vocabulary

for each masked token is computed to yield the prediction. The cross-entropy loss from

these predictions drives the training process for all the parameters in the model.

Once training is completed, the parameters from the token embedding layer and all

transformer encoders are frozen. Given a sequence of words as input, the token em-

bedding layer of BERT generates a static vector for each token that remains stable

regardless of its context. On the other hand, each transformer encoder generates a

contextualized vector for each token, which reflects the meaning of the token in the

context. If a word does not have a corresponding token in the vocabulary, its vector

representation can be obtained by aggregating the representations of its sub-token.

Liu et al [70] suggests that BERT is significantly under-trained, and they proposed

RoBERTa, an optimized version of BERT, by modifying the key hyperparameters in

BERT. For example, they use much larger mini-batches and learning rates to train the

model. Also, they remove BERT’s next-sentence pre-training objective because this

change slightly improves the model’s downstream task performance. Those modific-

ations of hyperparameters lead RoBERTa to state-of-the-art results on several down-

stream tasks including GLUE (General Language Understanding Evaluation) [107],

SQuAD (The Stanford Question Answering Dataset) [87], and RACE (ReAding Com-

prehension from Examinations) [62]

Zhang et al [121] propose a knowledge-enriched language model ERNIE, a knowledge-

enriched version of BERT. ERNIE is pre-trained on both corpus and knowledge graph.
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Furthermore, by encoding knowledge graph structure into knowledge embeddings and

aligning them with text, ERNIE integrates entity representations in the knowledge

graph into the language model. Therefore, ERNIE not only inherits the linguistic

knowledge from BERT by pre-training the model on a large corpus but also obtains

knowledge of the world through their designed training objective. Their experimental

result shows that ERNIE outperforms BERT on entity typing and relation classification

tasks and is comparable with BERT on GLUE tasks.

2.3.3 Probing The Knowledge Learned by BERT

Since BERT obtained state-of-the-art results on eleven natural language processing

benchmarks, many researchers are inspired to probe what knowledge is captured by

BERT. By analyzing the attention mechanisms of pre-trained language models, [25]

found that BERT can capture the syntactic structure of a free text. [48] found that

Syntax trees are embedded in a linear transformation of a BERT’s word representation

space. Moreover, knowledge of subject-verb agreement [41] and semantic roles [33]

are also reported as existing in BERT. One line of work has focused on analyzing to

what extent language models understand the properties of simple concepts [37] [115]

[67]. Their finding shows that language models outperform word embedding models

such as Word2Vec and GloVe.

Besides linguistics, various forms of world knowledge are also captured in BERT. For

example, [82] find that BERT, without fine-tuning, can correctly predict masked ob-

jects given a cloze sentence such as "Dante was born in [MASK]." Similarly, without

fine-tuning, [28] shows that pre-trained BERT can do novel common-sense knowledge

mining by determining the validity of a given tuple. Finally, [119] found that BERT

can achieve state-of-the-art performance on several knowledge graph completion tasks

by fine-tuning the pre-trained language model on a knowledge graph completion task.

These findings suggest that BERT obtained knowledge about the world during pre-

training.
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However, a survey conducted by [99] demonstrates that although BERT can capture

syntactic structure well, it does not improve performance on tasks that require more

semantic understanding. Furthermore, some research [37] [83] reveals that BERT

cannot do common-sense reasoning unless the knowledge is explicitly written down.

In contrast, [93] found that language models can predict some properties that are never

or rarely stated explicitly. However, the model suffers from over-generalization.

2.4 Obtaining Static Word Embedding from BERT

The rich knowledge stored in the BERT suggests that its contextualized vectors can

represent the meaning of words. However, unlike standard word embeddings, BERT is

designed to solve the NLP tasks directly. Instead of generating pre-trained word fea-

tures and applying them to different frameworks for downstream NLP tasks, the BERT

provides a complete pipeline from generating pre-trained word vectors to deploying

them to various downstream NLP tasks. Therefore, contextualized word vectors from

BERT are regarded as intermediate results that can only represent the word’s meaning

at the token level: the representation constrained by its local context. [32] finds that a

word’s varying contexts, rather than its inherent polysemy, drives its representations to

vary in BERT. For example, they find English stop words, such as "the," "of," and "to,"

have the most context-specific representations in BERT, even though those stop words

have relatively stable functions in the English language. Therefore, the representation

of the general meaning of a word, regardless of its context, cannot be replaced by its

contextualized representation.

Rather than going back to standard word embeddings, the works mentioned above sup-

port the idea that word vectors induced from language models may have some inherent

advantages. As the analysis from [67] revealed, different word embeddings often have

complementary strengths. In particular, [30] argued that learning vectors for a large

vocabulary remain an important advantage of static word embeddings. Therefore, ob-
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taining static word embeddings from pre-trained language models receives increased

attention in the NLP community. The easiest way to get static word representation

from a pre-trained contextual language model is by feeding the model a single word

and extracting the output vector as the representation of that word. However, the word

representation generated in this way is far from ideal [17]. [32] was one of the first to

distill static word vectors from language models as a mechanism for probing how mod-

els such as BERT and GPT-2 [86] capture word meaning. They apply PCA (principle

component analysis) on contextualized vectors from sampled sentences mentioning

the target word and regard their first principal components as the static word vector

for that word. In particular, their static vector extracted from lower layers of BERT

outperforms Glove and FastText on several benchmarks.

[17] compared different strategies for pooling contextualized vectors and getting rep-

resentations of words that are split into multiple sub-word tokens. For each word to be

represented, they sample sentences that mention it and obtain a set of contextualized

representations of that word by aggregating the token representations of its sub-words.

Then, they obtain the static word vector by aggregating these contextualized represent-

ations. Among different strategies for pooling contextualized word vectors, they found

in their experiments that averaging is the best option. Furthermore, they found that

using 500 sentences for each word led to much better representations than 10 or 100

words. Another finding from this paper is that the performance of the word vectors can

differ substantially depending on which layer of the language model is used for obtain-

ing them. Specifically, they suggest that the optimal layer depends on the number of

sampled mentions, with later layers performing better when many mentions are used.

Building on this insight, [106] found that, on several evaluation tasks, averaging the

representations of the bottom k layers can lead to better results than using the vectors

from any individual layer. Although the optimal value of k depends on the language,

task, and configuration, averaging the representations across all layers consistently

provided close-to-optimal results. These results seem to imply that the knowledge
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learned by BERT is distributed across all hidden layers while word meaning at the type

level is stored at the bottom layers.

This observation is slightly different from the finding of [67], who tried to select

optimum layers of BERT based on validation data. For the word classification bench-

marks, the performance of using the last layer is often similar to either averaging the

first k layers or selecting a single layer based on the validation data. In addition, [67]

also proposed masking the target word when computing the contextualized vectors.

There are two benefits of applying a mask to the target word when extracting its repres-

entation from a language model. First of all, masking the target word force the model

to infer the semantic properties of the marked word rather than irrelevant properties

such as the frequency of input tokens. Second, a static representation of that word can

be obtained as a single vector rather than the aggregation of representations of several

sub-word tokens. Consequently, they only obtain vectors from the final layer, given

that the [MASK] token makes the early layers less informative. For most classifica-

tion datasets, they found that masking the target word led to better results. However,

in word similarity benchmarks, vectors obtained with masking under-performed. This

discrepancy in the two evaluation benchmarks reveals that word vectors obtained in

different ways have complementary strengths.

Several strategies that do not rely on averaging contextualized vectors have also been

proposed. For instance, inspired by GloVe word embedding learning, [38] directly

obtain a semantic co-occurrence matrix from BERT and uses it as input to the GloVe

word embedding method. The benefit of obtaining a semantic co-occurrence matrix

from BERT is that informative word pairs are no longer limited by the local window

used in GloVe. Their experiments on several word similarity datasets show that the

obtained new static vectors can outperform GloVe. Similarly, [44] use a Word2Vec

inspired model, which uses BERT to obtain a vector representation of the context of the

target word, either a sentence or a paragraph. Following the training method of CBOW,

they train a shallow neural network that pushes together the representations of the target
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word and the representation of its context in the vector space. However, their method

performs better than averaging strategies only if a large number of occurrences of each

word were used. A somewhat similar idea was pursued by [113], who proposed a

modification of Skip-gram in which BERT encodings were used to represent contexts.

Instead of learning a single static vector for each word, another line of research focuses

on extracting multiple representations corresponding to different aspects of each word.

For instance, [24] obtain mentions of the same word from BERT and then cluster the

contextual word vectors into multi-prototype vectors. Their resulting multi-prototype

representation is then used to compute word similarity adaptively. Similarly, [5] cluster

contextual word vectors for word sense induction. In addition, [102] showed that

clustering the contextual representations of a given set of words can produce clusters

of semantically related words, which were found to be similar in spirit to LDA topics.

Besides the aforementioned work focusing on distilling word representations, there is

another line of research on deriving sentence embeddings from pre-trained language

models. Although sentence representations can be directly obtained from BERT by

feeding sentences and extracting [CLS] token embedding, the quality of those sen-

tences representations are found to be worse than averaging GloVe embeddings of

words in the input sentences [89]. Almeida and Xexeo [89] present SBERT, (Sentence-

BERT), a modification of the BERT network to derive fixed-size sentence represent-

ations. By adding a pooling layer and siamese and triplet networks on top of BERT,

SBERT is fine-tuned on natural language inference datasets to generate similar repres-

entations for semantically similar sentences. SBERT obtained state-of-the-art perform-

ance on STS benchmark [22] and SentEval benchmark [26], revealing its effectiveness

in capturing sentence meaning and potential to reinforce word embeddings.
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2.5 Application and Evaluation of Static Word Embed-

ding

2.5.1 Applications of Static Word Embedding

In many NLP tasks, Static word embedding is no longer needed because of the effect-

iveness of contextualized language models. However, the representation of the general

meaning of an independent word or a concept, regardless of its context, is still required

in some NLP applications where word meaning has to be modelled without sentence

context. For instance, query terms often need to be modelled without context in in-

formation retrieval, and word vectors are normally used for this [79, 52]. Instances of

such applications even extend to ontology alignment [59], ontology completion [65],

zero-shot learning [94] and few-shot learning [117, 64, 118].

The ontology alignment task aims at integrating knowledge representation models de-

signed by different experts. However, different experts may use various terms ("Con-

ference Dinner" or "Banquet") to denote the same entities. Therefore, generating a set

of correspondences between the entities of different knowledge representation models

is essential to ontology alignment [101]. Static word embeddings can be applied to

this task by calculating the similarity scores of pairs of terms and determining cor-

respondences between terms, thus aligning ontologies [120, 59]. In the same spirit,

static word embedding can be applied to ontology completion tasks. Ontology com-

pletion is finding missing plausible but not logically deducible relations from the given

ontology [66]. As a simple example, consider the following rules.

Beer(x) → R(x)

Gin(x) → R(x)
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Without knowing what the predicate R represents, we can plausibly infer the following

rule:

Wine(x) → R(x)

The reason behind this inference is that all natural properties shared in common by

beer, gin should also be satisfied by wine. Since these natural properties can be cap-

tured by word representations at the type level, we can find all the concepts that have

similar vector representations with the given concepts and find plausible rules to com-

plete ontologies.

Static word embeddings are also useful in zero-shot learning and few-shot learning

where mapping vector space from one domain to another is needed (e.g. mapping

images to labels). Many applications require classifying instances whose classes have

not been seen previously [111]. Considering the following example. Suppose the

training set of an image classification doesn’t have or only have a few instances of

the label "cat" while having enough instance of the label "dog". Can the classifier

recognize the cats shown in the above test set? The answer is YES if the classifier

knows that "dog" and "cat" are similar in vector space of words. Thus, learning a

mapping from the vector spaces of images to a vector space of words is beneficial for

few-shot or even zero-shot learning, especially if the vector space of words can capture

salient semantic properties.

2.5.2 Evaluations of Static Word Embedding

Evaluating vector representations of words is difficult. This is because each entry value

of a vector is measured against the features corresponding to context patterns which

are hard to interpret. Unlike categories designed by human experts, the model learns

these features corresponding to statistic patterns to maximise its overall accuracy in

the training task. Although there have been some works [76, 71, 92, 20] on learning
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interpretable word embedding, most word embeddings are hard to interpret. There-

fore, various methods have been proposed to evaluate the quality of a word embed-

ding. Those evaluation methods can be divided into extrinsic and intrinsic evaluations

[108]. Intrinsic evaluations test the quality of word embeddings by measuring their

syntactic or semantic relationships. In contrast, extrinsic evaluations test the quality of

a word embedding by measuring how much improvement it brings to downstream NLP

tasks. Word embeddings are supposed to perform well in both extrinsic and intrinsic

evaluation.

The most common method of intrinsic evaluations is the Word Analogy task. The

purpose of this task is to rank word pairs based on their degree of similarity. The

similarity between representations of two words is normally calculated by their cosine

similarity defined by:

cos(wi, wj) =
wi · wj

||wi|| · ||wj||

This ranking is compared with a gold standard ranking obtained from human judge-

ment. This task aims to measure how well the human perceived similarity is captured

by the word vector representations [108]. However, the similarity of words pair may be

confused with their relatedness [35]. For example, sea and lake are two similar words,

while sea and beach are two related words. Therefore, word similarity tasks are divided

into semantic similarity and relatedness tests. The datasets that are normally used for

semantic similarity tests are SimLex999[49], SemEval-17[21], and the semantic simil-

arity portion of WordSim[1]. The datasets that are used for the semantic relatedness are

MEN[18], MTurk-771[45], and the semantic relatedness portion of WordSim[1].

Another kind of intrinsic evaluation task is t the lexical classification task. This task

focuses on predicting the semantic properties of individual word representations. For

each semantic property, a separate binary classifier is trained on the training set con-

taining the positive and negative words. The trained classifier is then evaluated based

on its predictions on the test set by calculating the F1 score. The classifier’s perform-

ance on the test set is regarded as an indicator of how well the word embeddings capture
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semantic properties. According to [67], lexical semantic properties can be further di-

vided into commonsense properties (e.g. falcons have wings), taxonomic properties

(e.g. falcons are a type of bird) and topic properties(e.g. falcons are related to the sky).

There are two datasets specifically focusing on commonsense properties: the extension

of the McRae feature norms dataset [72] that was introduced by Forbes et al. [37]1 and

the CSLB Concept Property Norms2. WordNet supersenses dataset3, which groups

nouns into broad categories, focuses on taxonomic properties. The dataset normally

used for evaluating topics properties is BabelNet domains dataset4 [19], which assigns

lexical entities to topic domains.

Although there are also commonly used extrinsic evaluation tasks such as POS (Part-

of-speech) tagging and text classification, ontology completion might be a more relev-

ant extrinsic evaluation task for static word embeddings. This is because the ontology

completion task is an application where word meaning has to be modelled without

sentence context. In this task, word vectors are input features to a graph neural net-

work whose structure is determined by a given ontology or rule base. In particular,

given a rule template such as ⋆(x) ∧ LocatedIn(x, y) → CapitalCity(y), the task is to

predict which concepts can be used for the placeholder ⋆ to make the rule plausible.

Four well-known domain-specific ontologies are normally used for ontology comple-

tion [66]: Wine5, Economy6, Olympics7 and Transport8. Another benchmark for this

task is SUMO9, a large open domain ontology.

1https://github.com/mbforbes/physical-commonsense
2https://cslb.psychol.cam.ac.uk/propnorms
3https://wordnet.princeton.edu/download
4http://lcl.uniroma1.it/babeldomains/
5https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine
6http://reliant.teknowledge.com/DAML/Economy.owl
7http://swat.cse.lehigh.edu/resources/onto/olympics.owl
8http://reliant.teknowledge.com/DAML/Transportation.owl
9http://www.adampease.org/OP/

https://github.com/mbforbes/physical-commonsense
https://cslb.psychol.cam.ac.uk/propnorms
https://wordnet.princeton.edu/download
http://lcl.uniroma1.it/babeldomains/
https://www.w3.org/TR/2003/PR-owl-guide-20031215/wine
http://reliant.teknowledge.com/DAML/Economy.owl
http://swat.cse.lehigh.edu/resources/onto/olympics.owl
http://reliant.teknowledge.com/DAML/Transportation.owl
http://www.adampease.org/OP/
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2.6 Summary

In this chapter, we have discussed the background knowledge related to word embed-

ding learning and contextualized language models. Several important recent works on

distilling static word embeddings from contextualized language models are also dis-

cussed in this chapter. These works provide valuable insight into effectively distilling

static word embeddings from CLMs and pave the foundation for future study. How-

ever, there is a noticeable research gap in this line of work. Most of the works men-

tioned above ignore the association between the quality of mentions of words and the

quality of resulting word representations. They feed random sentences that mention the

target word as input to CLMs and extract its vector representations. This method is less

than optimal because random mentions of a word might not reveal its semantic proper-

ties vital to the downstream application discussed earlier. The next three chapters will

explain how we fill this research gap and distil word embeddings from contextualized

language models using different mention selection strategies.
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Chapter 3

Topic-Aware Mention Selection

3.1 Introduction

In order to distil static representation of a word w from CLMs, randomly selecting

sentences that mention w may not be optimal. If we want to use static word vectors in

downstream tasks such as zero-shot learning or ontology completion, we need vectors

that capture the salient semantic properties of words. Intuitively, we should thus favour

sentences that best reflect these properties. For instance, many of the mentions of the

word banana on Wikipedia are about the cultivation and export of bananas, and about

the specifics of particular banana cultivars. By learning a static word vector from

such sentences, we may end up with a vector that does not reflect our commonsense

understanding of bananas, e.g. the fact that they are curved, yellow and sweet.

The main aim of this chapter is to answer the first research question: can higher-quality

word embeddings be obtained by selecting sentences strategically? To answer this

question, we analyze to what extent topic models such as Latent Dirichlet Allocation

[13] can be applied to selecting sentences and improving word representations. Con-

tinuing the previous example, we may find that the word banana occurs in Wikipedia

articles on the following topics: industry, biology, food or popular culture. We assume

that the topic of food should be a better topic from which to get mentions of banana

than topics of industry and biology. This is because they are more likely to reveal ba-

nanas’ commonsense properties (e.g., edible and sweet). Nevertheless, we found that
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most of the mentions of banana in Wikipedia articles are about the topics of industry

and biology. Therefore, we assume that mentions selected based on relevant topics are

more informative than random mentions in Wikipedia articles. Note that the optimal

selection of topics is task-dependent, e.g. in an NLP system for analyzing financial

news, the economics topic would clearly be more relevant. For this reason, we propose

to learn a word vector for each topic separately. Since the optimal choice of topics

is task-dependent, we then rely on a task-specific supervision signal to make a soft

selection of these topic-specific vectors. These topic-specific vectors for each word

should capture more salient semantic properties and outperform the vectors obtained

from randomly selected mentions in lexical classification tasks.

Another important question is how CLMs should be used to obtain contextualized word

vectors. Given a sentence mentioning w, a model such as BERT-base constructs 12 vec-

tor representations of w, i.e. one for each layer of the transformer stack. Previous work

has suggested to use the average of particular subsets of these vectors. In particular,

Vulic et al. [105] found that lexical semantics is most prevalent in the representations

from the early layers, and that averaging vectors from the first few layers seems to

give good results on many benchmarks. On the other hand, these early layers are least

affected by the sentence context [31], hence such strategies might not be suitable for

learning topic-specific vectors. [67] explore a different strategy, which is to mask the

target word in the given sentence, i.e. to replace the entire word by a single [MASK]

token, and to use the vector representation of this token at the final layer. Their res-

ulting vector representations thus specifically encode what the given sentence reveals

about the target word, making this a natural strategy for learning topic-specific vectors.

Note that there is a clear relationship between this latter strategy and CBOW [73]:

where in CBOW the vector representation of w is obtained by averaging the vector rep-

resentations of the context words that co-occur with w, we similarly represent words

by averaging context representations. The main advantage compared to CBOW thus

comes from the higher-quality context encodings obtained using CLMs. The main
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challenge, as already mentioned, is that considering all the mentions of w and dis-

tilling vectors from contextualized language models can be computationally expens-

ive, whereas this is typically feasible for CBOW (and other standard word embedding

models). Our contributions in this chapter can be summarized as follows1:

• We analyze different strategies for deriving word vectors from CLMs, which rely

on sampling mentions of the target word from a text collection.

• We propose the use of topic models to improve how these mentions are sampled.

In particular, rather than learning a single vector representation for the target

word, we learn one vector for each sufficiently relevant topic.

• We propose to construct the final representation of a word w as a weighted av-

erage of different vectors. This allows us to combine multiple vectors without

increasing the dimensionality of the final representations. We use this approach

for combining different topic-specific vectors and for combining vectors from

different transformer layers.

3.2 Constructing Word Vectors

In Section 3.2.1, we first describe different strategies for deriving static word vectors

from CLMs. Section 3.2.2 subsequently describes how we choose the most relevant

topics for each word, and how we sample topic-specific word mentions. Finally, in

Section 3.2.3 we explain how the resulting topic-specific representations are combined

to obtain task-specific word vectors.

1All code and data to replicate our experiments is available at https://github.com/

Activeyixiao/topic-specific-vector/.

https://github.com/Activeyixiao/topic-specific-vector/
https://github.com/Activeyixiao/topic-specific-vector/
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3.2.1 Obtaining Contextualized Word Vectors

The basics of the BERT contextualised language model was introduced in the Chapter

2. Let us write ws
i for the representation of word w in the ith transformer layer. We will

refer to the representation in the last layer, i.e. ws
12 for BERT-base and ws

24 for BERT-

large, as the output vector. Given a sentence s in which the word w is mentioned,

there are several ways in which BERT and related models can be used to obtain a

vector representation of w. If w consists of a single word-piece, a natural strategy is

to feed the sentence s as input and use the output vector as the representation of w.

However, Vulic et al [106] have found that it can be beneficial to also take into account

some or all of the earlier transformer layers, where fine-grained word senses are mostly

captured in the later layers [88] but word-level lexical semantic features are primarily

found in the earlier layers [105]. For this reason, we will also experiment with models

in which the vectors ws
1, ...,w

s
12 (or ws

1, ...,w
s
24 in the case of BERT-large) are all used.

In particular, our model will construct a weighted average of these vectors, where the

weights will be learned from training data (see Section 3.2.3). For words that consist

of multiple word-pieces, following common practice, we compute the representation

of w as the average of its word-piece vectors. For instance, this strategy was found to

outperform other aggregation strategies in Bommasani et al. [16].

We will also experiment with a strategy that relies on masking. In this case, the word

w is replaced by a single [MASK] token (even if w would normally be tokenized into

more than one word-piece). Let us write ms
w for the output vector corresponding to

this [MASK] token. Since this vector corresponds to BERT’s prediction of what word

is missing, this vector should intuitively capture the properties of w that are asserted in

the given sentence. We can thus expect that these vectors ms
w will be more sensitive

to how the sentences mentioning w are chosen. Note that in this case, we only use the

output layer, as the earlier layers are less contextual [32].

To obtain a static representation of w, we first select a set of sentences s1, ..., sn in

which w is mentioned. Then we compute vector representations ws1 , ...,wsn of w
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from each of these sentences, using any of the aforementioned strategies. Our final

representation w is then obtained by averaging these sentence-specific representations,

i.e.:

w =

∑n
i=1 w

si

∥
∑n

i=1w
si∥

3.2.2 Selecting Topic-Specific Mentions

To construct a vector representation of w, we need to select some sentences s1, ..., sn

mentioning w. While these sentences are normally selected randomly, our hypothesis

in this chapter is that purely random strategies may not be optimal. Intuitively, this is

because the contexts in which the target word w is most frequently mentioned might

not be the most informative ones, i.e. most of the mentions for bananas in Wikipedia

articles are on the topic of industry which are less likely to reveal the common sense

properties of banana. To test this hypothesis, we experiment with a strategy based on

topic models. Our strategy relies on the following steps:

1. Identify the topics which are most relevant for the target word w;

2. For each of the selected topics t, select sentences st1, ..., s
t
n mentioning w from

documents that are closely related to this topic.

For each of the selected topics t, we can then use the sentences st1, ..., s
t
n to construct

a topic-specific vector wt, using any of the strategies from Section 3.2.1. The final

representation of w will be computed as a weighted average of these topic-specific

vectors, as will be explained in Section 3.2.3.

We now explain these two steps in more detail. First, we use Latent Dirichlet Alloca-

tion (LDA) [13] to obtain a representation of each document d in the considered corpus

as a multinomial distribution over m topics. Let us write τi(d) for the weight of topic

i in the representation of document d, where
∑m

i=1 τi(d) = 1. Suppose that the word
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w is mentioned Nw times in the corpus, and let dwj be the document in which the j th

mention of w occurs. Then we define the importance of topic i for word w as follows:

τi(w) =
1

Nw

Nw∑
j=1

τi(d
w
j ) (3.1)

In other words, the importance of topic i for word w is defined as the average import-

ance of topic i for the documents in which w occurs. To select the set of topics Tw that

are relevant to w, we rank the topics from most to least important and then select the

smallest set of topics whose cumulative importance is at least 60%, i.e. Tw is the smal-

lest set of topics such that
∑

ti∈Tw τi(w) ≥ 0.6. The reason for this manually selected

threshold at 60% is to capture the majority of topics and avoid too many less relevant

topics.

For each of the topics ti in Tw we select the corresponding sentences st1, ..., s
t
n as fol-

lows. We rank all the documents in which w is mentioned according to τi(d). Then,

starting with the document with the highest score (i.e. the document for which topic i

is most important), we iterate over the ranked list of documents, selecting all sentences

from these documents in which w is mentioned, until we have obtained a total of n

sentences.

3.2.3 Combining Word Representations

Section 3.2.1 highlighted a number of strategies that could be used to construct a vector

representation of a target word w. As mentioned before, it can be beneficial to combine

vector representations from different transformer layers. To this end, we propose to

learn a weighted average of the different input vectors, using a task specific supervision

signal. In particular, let w1, ...,wk be the different vector representations we have

available for word w (e.g. the vectors from different transformer layers). To combine
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these vectors, we compute a weighted average as follows:

λi =
exp(ai)∑k
j=1 exp(ai)

(3.2)

w =

∑
i λiwi

∥
∑

i λiwi∥
(3.3)

where the scalar parameters a1, ...ak ∈ R are jointly learned with the model in which

w is used. Another possibility would be to concatenate the input vectors w1, ...,wk.

However, this significantly increases the dimensionality of the word representations,

which can be challenging in downstream applications. In initial experiments, we also

confirmed that this concatenation strategy indeed under-performs the use of weighted

averages.

If topic-specific vectors are used, we also want to compute a weighted average of the

available vectors. However, (3.2)–(3.3) cannot be used in this case, because the set of

topics for which topic-specific vectors are available differs from word to word. Let us

write wi
topic for the representation of word w that was obtained for topic ti, where we

assume wi
topic = 0 if ti /∈ Tw. We then define:

µw
i =

exp(bi) · 1[ti ∈ Tw]∑k
j=1 exp(bi) · 1[tj ∈ Tw]

(3.4)

wtopic =

∑
i µ

w
i w

i
topic

∥
∑

i µ
w
i w

i
topic∥

(3.5)

where 1[ti ∈ Tw] = 1 if topic ti is considered to be relevant for word w (i.e. ti ∈ Tw),

and 1[ti ∈ Tw] = 0 otherwise. Note that the softmax function in (3.4) relies on the

scalar parameters b1, ..., bk ∈ R, which are independent of w. However, the softmax

is selectively applied to those topics that are relevant to w, which is why the resulting

weight µw
i is dependent on w, or more precisely, on the set of topics Tw.



42 3.3 Evaluation

3.3 Evaluation

We compare the proposed strategy with standard word embeddings and existing CLM-

based strategies. In Section 3.3.1 we first describe our experimental setup. Section

3.3.2 then provides an overview of the datasets we used for the experiments, where we

focus on lexical classification benchmarks. These benchmarks in particular allow us to

assess how well various semantic properties can be predicted from the word vectors.

The experimental results are discussed in Section 3.3.3 and a qualitative analysis is

presented in Section 3.3.4.

3.3.1 Experimental Setup

We experiment with a number of different strategies for obtaining word vectors:

Clast We take the vector representation of w from the last transformer layer (i.e. ws
12

or ws
24).

Cinput We take the input embedding of w (i.e. w0).

Cavg We take the average of w0,w
s
1, ...,w

s
12 for the base models and w0,w

s
1, ...,w

s
24

for the large models.

Call We use all of w0,w
s
1, ...,w

s
12 as input for the base models, and all of w0,w

s
1, ...,w

s
24

for the large models. These vectors are then aggregated using (3.2)–(3.3), i.e. we

use a learned soft selection of the transformer layers.

Cmask We replace the target word by [MASK] and use the corresponding output vector.

For words consisting of more than one word-piece, we average the corresponding vec-

tors in all cases, except for Cmask where we always end up with a single vector (i.e. we

replace the entire word by a single [MASK] token). We also consider three variants

that rely on topic-specific vectors:
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Tlast We learn topic-specific vectors using the last transformer layers. These vectors

are then used as input to (3.4)–(3.5).

Tavg Similar to the previous case but using the average of all transformer layers.

Tmask Similar to the previous cases but using the output vector of the masked word

mention.

Furthermore, we consider variants of Tlast, Tavg and Tmask in which a standard (i.e.

unweighted) average of the available topic-specific vectors is computed, instead of

relying on (3.4)–(3.5). We will refer to these averaging-based variants as Alast, Aavg

and Amask. As baselines, we also consider the two Word2vec models [73]:

SG 300-dimensional Skip-gram vectors trained on a May 2016 dump of the English

Wikipedia, using a window size of 5 tokens, and minimum frequency threshold

of 10.

CBOW 300-dimensional Continuous Bag-of-Words vectors trained on the same cor-

pus and with the same hyperparameters as SG.

We show results for four pre-trained CLMs [? 69]: BERT-base-uncased, BERT-large-

uncased, RoBERTa-base-uncased, RoBERTa-large-uncased2. As the corpus for sampling

word mentions, we used the same Wikipedia dump as for training the word embeddings

models. For Cmask, Clast, Cavg and Call we selected 500 mentions. For the topic-specific

strategies (Tlast, Tavg and Tmask) we selected 100 mentions per topic. To obtain the

topic assignments, we used Latent Dirichlet Allocation [13] with 25 topics. We set

α = 0.0001 to restrict the total number of topics attributed to a document, and use

default values for the other hyper-parameters3. To select the relevant topics for a given

word w, we find the smallest set of topics whose cumulative importance score τi(w) is

2We used the implementations from https://github.com/huggingface/

transformers.
3We used the implementation from https://radimrehurek.com/gensim/wiki.html.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://radimrehurek.com/gensim/wiki.html
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BERT-base BERT-large RoBERTa-base RoBERTa-large

MC CS SS BD MC CS SS BD MC CS SS BD MC CS SS BD

SG 59.6 54.5 55.6 49.1 59.6 54.5 55.6 49.1 59.6 54.5 55.6 49.1 59.6 54.5 55.6 49.1

CBOW 61.1 50.6 48.4 45.0 61.1 50.6 48.4 45.0 61.1 50.6 48.4 45.0 61.1 50.6 48.4 45.0

Cmask 60.8 51.7 59.7 42.6 61.8 53.4 59.5 42.0 62.5 51.8 58.5 40.0 61.3 53.2 59.2 42.8

Clast 60.0 51.4 59.1 46.1 58.2 53.4 59.0 46.3 56.5 49.4 58.2 42.1 57.9 47.7 58.8 44.9

Cinput 58.8 40.1 50.2 40.3 57.2 42.0 51.7 40.2 45.8 24.1 44.4 37.9 41.2 20.6 52.6 40.0

Cavg 59.9 49.6 59.1 44.2 60.0 47.1 58.9 43.5 55.7 40.7 50.2 41.3 59.5 47.4 58.8 43.9

Call 59.9 51.2 59.5 46.4 61.7 50.7 58.4 42.6 45.3 39.3 52.6 36.7 48.2 40.2 56.6 40.4

Tmask 60.9 54.1 60.5 45.7 62.8 55.0 61.1 45.9 58.6 49.4 56.7 42.1 59.2 50.4 57.2 43.3

Tlast 63.0 51.8 59.7 47.3 62.1 55.8 61.6 49.2 52.3 43.9 54.6 43.3 62.1 48.8 59.5 45.1

Tavg 61.0 52.7 59.6 43.4 65.2 54.8 60.7 48.4 54.5 39.9 55.9 41.5 59.5 47.4 60.0 45.2

Amask 63.1 53.9 59.2 41.4 63.2 56.8 60.6 41.5 64.0 55.3 60.6 40.8 63.4 57.3 62.0 42.3

Alast 62.8 52.4 59.6 44.4 61.4 55.5 60.6 46.7 55.7 36.8 56.5 42. 7 59.6 47.8 59.7 44.5

Aavg 61.3 49.7 57.9 44.4 63.3 52.2 59.4 43.8 57.6 40.6 56.4 39.8 59.4 47.3 58.5 42.4

Cmask-PCA 61.8 52.6 58.8 41.2 62.3 53.2 60.1 41.6 61.5 52.6 59.2 40.3 62.2 51.5 59.1 40.5

Tmask-PCA 63.3 56.2 62.6 46.9 64.4 57.3 60.6 48.0 61.6 55.8 62.5 46.0 65.4 56.3 64.1 46.4

Table 3.1: Results of lexical feature classification experiments for the extended

McRae feature norms (MC), CSLB norms (CS), WordNet Supersenses (SS) and

BabelNet domains (BD). Results are reported in terms of F1 (%) .

at least 60%, with a maximum of 6 topics. In the experiments, we restrict the vocabu-

lary to those words with at least 100 occurrences in Wikipedia.

3.3.2 Datasets

For the experiments, we focus on a number of lexical classification tasks, where cat-

egories of individual words need to be predicted. In particular, we used two datasets

which are focused on commonsense properties (e.g. dangerous): the extension of the
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Dataset Type Words Properties

McRae Commonsense 475 49

CSLB Commonsense 570 54

WN supersenses Taxonomic 24,324 24

BN domains Topical 43,319 34

Table 3.2: Overview of the considered datasets.

McRae feature norms dataset [72] that was introduced by Forbes et al. [37]4 and the

CSLB Concept Property Norms5. We furthermore used the WordNet supersenses data-

set6, which groups nouns into broad categories (e.g. human). Finally, we also used

the BabelNet domains dataset7 [19], which assigns lexical entities to thematic domains

(e.g. music).

In our experiments, we have only considered properties/classes for which sufficient

positive examples are available, i.e. at least 10 for McRae, 30 for CSLB, and 100 for

WordNet supersenses and BabelNet domains. For the McRae dataset, we used the

standard training-validation-test split. For the other datasets, we used random splits of

60% for training, 20% for tuning and 20% for testing. An overview of the datasets is

shown in Table 3.2.

For all datasets, we consider a separate binary classification problem for each prop-

erty and we report the (unweighted) average of the F1 scores for the different proper-

ties. To classify words, we feed their word vector directly to a sigmoid classification

layer. We optimise the network using AdamW with a cross-entropy loss. The batch

size and learning rate were tuned, with possible values chosen from 4,8,16 and 0.01,

0.005, 0.001, 0.0001 respectively. Note that for Call and the topic-specific variants, the

classification network jointly learns the parameters of the classification layer and the

attention weights in (3.2) and (3.4) for combining the input vectors.

4https://github.com/mbforbes/physical-commonsense
5https://cslb.psychol.cam.ac.uk/propnorms
6https://wordnet.princeton.edu/download
7http://lcl.uniroma1.it/babeldomains/

https://github.com/mbforbes/physical-commonsense
https://cslb.psychol.cam.ac.uk/propnorms
https://wordnet.princeton.edu/download
http://lcl.uniroma1.it/babeldomains/
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3.3.3 Results

The results are shown in Table 3.1. Regarding vectors derived from BERT-base and

BERT-large, we consistently see that the topic-specific variants outperform the dif-

ferent C-variants by a small margin. Regarding vectors derived from RoBERTa-base

and RoBERTa-large, the performances of some topic-specific variants drops slightly

while Tmask-PCA and Tavg still outperform all the C-variants in most cases. This con-

firms our main hypothesis, namely that using topic models to determine how context

sentences are selected has effects on the quality of the resulting word representations.

Among the C-variants, the best results are obtained by Cmask. None of the three T-

variants consistently outperforms the others. Surprisingly, the A-variants outperform

the corresponding T-variants in several cases. This suggests that the outperformance

of the topic-specific vectors primarily comes from the fact that the context sentences

for each word were sampled in a more balanced way (i.e. from documents covering a

broader range of topics), rather than from the ability to adapt the topic weights based

on the task. This is a clear benefit for applications, as the A-variants allow us to simply

represent each word as a static word vector.

The performance of SG and CBOW is still competitive. In CSLB and BabelNet Do-

mains, these traditional word embedding models outperform all of the C-variants. This

seems to be related, at least in part, to the lower dimensionality of these vectors. The

classification network has to be learned from a rather small number of examples, es-

pecially for McRae and CSLB. Having 768 or 1024 dimensional input vectors can be

problematic in such cases. To analyse this effect, we used Principal Component Ana-

lysis (PCA) to reduce the dimensionality of the CLM-derived vectors to 300. For this

experiment, we focused in particular on Cmask and Tmask. The results are also shown

in Table 3.1 as Cmask-PCA and Tmask-PCA. As can be seen, this dimensionality reduc-

tion step has a clearly beneficial effect, with Tmask-PCA outperforming all baselines,

except for the BabelNet domains benchmark.

It should be noted that these four evaluation benchmarks focus on different semantic
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properties, i.e. McRae and CSLB focus on commonsense properties, WN supersenses

highlight taxonomic properties, whereas BN domains concentrate on topical proper-

ties. Comparing topic-specific vectors’ performance on four benchmarks provides us

more insight into what kind of semantic properties they capture. The improvements

brought by topic-specific representations over C-variants on BN domains are more

significant than the other three datasets. The poor performance of C-variants on BN

domains shows they struggle with thematic properties. On the other hand, we find that

topic-specific vectors consistently outperform the C-variants on BN domains. This

suggests that our proposed Topic-aware mentions selection strategy makes word rep-

resentation capture more topical properties. We can also find the improved perform-

ance of topic-specific vectors on McRae and CSLB, suggesting that our topic-aware

mentions selection also helps capture commonsense properties. The improvement

brought to WN supersenses benchmark is less significant as C-mask already obtains

decent scores. We assume that C-mask strategy forces the CLMs to prioritize the taxo-

nomic properties modelling [67] so that our topic-aware mention strategy has limited

value to add to it.

3.3.4 Qualitative Analysis

Topic-specific vectors can be expected to focus on different properties, depending on

the chosen topic. In this section, we present a qualitative analysis in support of this

view. In Table 3.3 we list, for a sample of words from the WordNet supersenses dataset,

the top 5 nearest neighbours per topic in terms of cosine similarity. For this analysis,

we used the BERT-base masked embeddings. We can see that for the word ‘partner’,

its topic-specific embeddings correspond to its usage in the context of ‘finance’, ‘stock

market’ and ‘fiction’. These three embeddings roughly correspond to three different

senses of the word8. This de-conflation or implicit disambiguation is also found for

8In fact, we can directly pinpoint these vectors to the following WordNet [75] senses:

partner.n.03, collaborator.n.03 and spouse.n.01.
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WORD TOPIC NEAREST NEIGHBOURS

partner

{research, professor, science, education} beneficiary, creditor, investor, employer, stockholder

{football, republican, coach, senate} lobbyist, bookkeeper, cashier, stockbroker, clerk

{game, book, novel, story} nanny, spouse, lover, friend,secretary

cell

{protein, disease, medical, cancer} lymphocyte, macrophage, axon, astrocyte, organelle

{food, plant, water, gas, power} electrode, electrolyte, cathode, anode, substrate

{physics, mathematics, space, theory} surface, torus, mesh, grid, cone

port

{station, building, railway, historic} harbor, seaport, dock, waterfront, city

{radio, station, fm, software, data} link, gateway, router, line, socket

{game, book, novel, story} version, remake, compilation, patch, modification

bulb

{station, building, railway, historic} lamp, transformer, dynamo, projector, lighting

{protein, disease, medical, cancer} epithelium, ganglion, nucleus, gland, cortex

{species, genus, described, flowers} rootstock, fern, vine, tuber, clover

mail

{station, building, railway, historic} cargo, grain, baggage, coal, livestock

{game, book, novel, story} paper, jewelry, telephone, telegraph, typewriter

{party, election, minister, elected} telemarketing, spam, wiretap, internet, money

fingerprint

{radio, station, fm, software} signature, checksum, bitmap, texture, text

{game, book, novel, story} cadaver, skull, wiretap, body, tooth

{party, election, minister, elected} wiretap, forensics, postmortem, polygraph, check

sky

{greek, ancient, castle, king} underworld, sun, afterlife, zodiac, moon

{river, lake, mountain, island} horizon, ocean, earth, sun, globe

{physics, mathematics, space, theory} ionosphere, sun, globe, earth, heliosphere

strength

{food, plant, water, gas} stiffness, ductility, hardness, permeability, viscosity

{game, book, novel, story} intelligence, agility, charisma, power, telepathy

{army, regiment, navy, ship} morale, firepower, resistance, force, garrison

noon
{physics, mathematics, space, theory} declination, night, equinox, perihelion, latitude

{army, regiment, navy, ship} dawn, sunset, night, morning, shore

galaxy
{physics, mathematics, space, theory} nebula, quasar, pulsar, nova, star

{game, book, novel, story} globe, future, world, planet, nation

Table 3.3: Nearest neighbours of topic-specific embeddings for a sample of words

from the WordNet SuperSenses dataset, using BERT-base embeddings. The top 6

selected samples illustrate clear topic distributions per word sense, and the bottom

4 also show topical properties within the same sense. The most relevant words for

each topic are shown under the column TOPIC.
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Figure 3.1: BERT-base topic-specific vectors when using the output vectors

without using masking (left) and with masking (right). Words have been selec-

ted from the McRae dataset.

words such as ‘cell’, ‘port’, ‘bulb’ or ‘mail’, which shows a striking relevance of the

role of mail in the election topic, being semantically similar in the corresponding vector

space to words such as ‘telemarketing’, ‘spam’ or ‘wiretap’. In the case of ‘fingerprint’,

we can also see some implicit disambiguation (distinguishing between fingerprinting

in computer science, as a form of hashing, and the more traditional sense). However,

we also see a more topical distinction, revealing differences between the role played by

fingerprints in fictional works and forensic research. This tendency of capturing dif-

ferent contexts is more evidently shown in the last four examples. First, for ‘sky’ and

‘strength’, the topic-wise embeddings do not represent different senses of these words,

but rather indicate different types of usage (possibly related to cultural or commonsense

properties). Specifically, we see that the same sense of ‘sky’ is used in mythological,

landscaping and geological contexts. Likewise, ‘strength’ is clustered into different

mentions, but while this word also preserves the same sense, it is clearly used in dif-

ferent contexts: physical, as a human feature, and in military contexts. Finally, ‘noon’
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and ‘galaxy’ (which only occur in two topics), also show this topicality. In both cases,

we have representations that reflect their physics and everyday usages, for the same

senses of these words.

As a final analysis, In Figure 3.1 we plot a two-dimensional PCA-reduced visualiza-

tion of selected words from the McRae dataset, using two versions of the topic-specific

vectors: Tmask and Tlast. In both cases, BERT-base was used to obtain the vectors. We

select four pairs of concepts which are topically related, which we plot with the same

datapoint marker (animals, plants, weapons and musical instruments). For Tlast, we

can see that the different topic-specific representations of the same word are clustered

together, which is in accordance with the findings from Ethayarajh [31]. For Tmask,

we can see that the representations of words with similar properties (e.g. cheetah and

hyena) become more similar, suggesting that Tmask is more tailored towards model-

ling the semantic properties of words, perhaps at the expense of a reduced ability to

differentiate between closely related words. The case of turnip and peach is particu-

larly striking, as the vectors are clearly separated in the Tlast plot, while being clustered

together in the Tmask plot.

Given the strength of Tmask shown in this qualitative analysis, it’s intriguing that they

fail to give impressive results on the lexical classification tasks. We assume the issue

might originate from the vectors merging process when the topic-specific vectors are

averaged to generate a single vector per word. Taking the average of several topic vec-

tors will likely lose some sensitive semantic information. Although we try to alleviate

the issue by averaging topic-specific vectors based on the learnt topic weight and ex-

pect the most relevant topics to be prioritized, our proposed neural network classifier

can only learn fixed weights for all topics regardless of the activation word. We as-

sume this is the obstacle that makes Tmask fail to fulfil its expected function and realize

its full potential. In principle, this issue can be overcome by learning topic weights

for each word, i.e., the industry topic has high weights for strike and low weights for

banana. Due to the time limitation, this will not be further implemented in this thesis
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and will be left for future work.

3.4 Summary

We have proposed a strategy for learning static word vectors, in which topic models

are used to help select diverse mentions of a given target word and a contextualized

language model is subsequently used to infer vector representations from the selected

mentions. We found that selecting an equal number of mentions per topic outperforms

purely random selection strategies, even though the improvements on some bench-

marks are limited.

We also considered the possibility of learning a weighted average of topic-specific

vector representations, which in principle should allow us to “tune” word representa-

tions to different tasks, by learning task-specific topic importance weights. However,

in practice we found that a standard average of the topic specific vectors leads to a

comparable performance, suggesting that the outperformance of our vectors comes

from the fact that they are obtained from a more diverse set of contexts. Motivated by

this discovery, the research of next chapter aims at obtaining static word embedding

efficiently by exploring more strategies of mention selection.
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Chapter 4

Exploring Other Mention Selection

Strategies

4.1 Introduction

The main aim of this chapter is to answer the second research question: can higher-

quality word embeddings be obtained from a few mentions of each word? This research

question is motivated by the practical desire to distil word vectors from language mod-

els in a more efficient way. We aim to answer this questions by empirically analyzing a

range of strategies for selecting mentions of a given word w. By using those proposed

sentence selection strategies, we expect that a word representation obtained from a few

mentions will be comparable with or even stronger than its counterpart obtained from a

large number of mentions. Furthermore, comparing the effectiveness of different sen-

tence selection strategies can also provide us with insights into how language models

acquire knowledge about word meaning.1:

Specifically, we aim to answer the following questions with our analysis.

• Can we distil high-quality word vectors from language models given a limited

number of mentions for each target word?

1All code and data to replicate our experiments is available at https://github.com/

Activeyixiao/Sentence-Selection-Strategies/.

https://github.com/Activeyixiao/Sentence-Selection-Strategies/
https://github.com/Activeyixiao/Sentence-Selection-Strategies/
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• Does masking the target word still lead to better results in such a setting?

• Can we effectively predict which sentences are most likely to be useful for learn-

ing the meaning of a given word?

4.2 Distilling Word Embeddings

To obtain the vector representation of a word w, we first sample n sentences S1, ..., Sn

mentioning w. Unless noted otherwise, the source corpus from which these sentences

are sampled in our experiments is always Wikipedia, specifically a dump from March

2021. Wikipedia has been used extensively in many areas of NLP, with notable use

cases including lexical semantics [78], knowledge extraction and management, or tax-

onomy learning [97]. For our purposes, moreover, Wikipedia is also a clean resource

for encyclopedic information, which, despite its collective nature, undergoes strict ed-

itorial revisions, and which has a particular structure that we can exploit. We now

discuss the process of sampling our target sentences from Wikipedia. Each of the

sentences S1, ..., Sn is fed through a masked language model such as BERT [? ] or

RoBERTa [69]. From each sentence Si we obtain a contextualised vector wi using one

of the following alternatives that was already explained in the Chapter 3:

• MASK

• LAST

• AVG

Same as the method used in the Chapter 3, the final embedding w of word w is obtained

by averaging the contextualised vector w1, ...,wn.
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4.3 Sentence Selection Strategies

We need a strategy for selecting n sentences that mention a given target word w. Our

baseline strategy, which we will refer to as RAND, is to randomly sample different

sentences from Wikipedia. To avoid poorly structured sentences, we avoid sentences

with more than 60 or fewer than 7 words. We now discuss a number of alternative

sentence selection strategies, aimed at providing us with more informative sentences.

Our hypothesis is that this will allow us to obtain word vectors capturing more semantic

properties from a small number of sentences, which is essential for scaling up the

methods for distilling static word embeddings from language models. Given this focus

on efficiency, we are particularly interested in sentence selection strategies with a low

computational overhead. We first consider two strategies that rely on the structure of

Wikipedia:

• HOME: If there is a Wikipedia article about w, we select the first n sentences

mentioning w from that article. If w does not have a Wikipedia article, we

fall back on RAND. An example sentence mentioning banana obtained by this

strategy is: "A banana is an elongated, edible fruit – botanically a berry – pro-

duced by several kinds of large herbaceous flowering plants in the genus Musa"

• INTRO: We only sample sentences that occur in the introductory section of a

Wikipedia article, regardless of what the article is about. For example, if apple

is mentioned in the introduction section of the Wikipedia article for fruit, that

sentence can be selected to model the semantic properties of apple. Noting that

the Wikipedia style guide2 states that introductory sections should be “written

in a clear, accessible style with a neutral point of view”, this strategy seems to

be a good fit with our requirement of retrieving sentences where core properties

of words are more likely to be mentioned explicitly. An example sentence men-

2https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_

section

https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Lead_section
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tioning banana obtained by this strategy is: "The area produces citrus, olives,

tomatoes and market-garden vegetables, and is one of the few parts of Europe

where commercial banana production is possible".

We also analyse a number of strategies that rely on aspects of the sentences themselves:

• START: We only sample sentences which start with the word w in plural form.

The intuition is that such sentences are likely to express generic knowledge about

w. An example sentence mentioning banana obtained by this strategy is "Bana-

nas must be transported over long distances from the tropics to world markets".

• ENUM: We first select all sentences in which w is preceded or succeeded by a

comma or the word ‘and’. Then we rank these sentences based on the number of

commas, as a simple strategy for prioritizing longer enumerations, and we select

the n highest ranked sentences. The intuition is that enumerations can provide us

with useful knowledge, capturing the fact that the words in the enumeration have

some property in common with w. An example sentence mentioning banana

obtained by this strategy is: "There are also wild relatives of jackfruit, mango,

cardamom, turmeric and banana".

• PMI: For all words that co-occur with w in at least 2 sentences, we compute

their Pointwise Mutual Information (PMI) in an offline preprocessing step. This

PMI score reflects to what extent these words appear more often in the same sen-

tence than would be expected by chance, given their overall frequency. Given a

target word w, we first identify the n words whose PMI score with w is highest.

For each of these n related words, we then randomly select one sentence men-

tioning both words. For example, banana has a high PMI score with fruit. A

selected sentence should mention both words banana and fruit. An example is:

"The common fruits that are used in the preparation include banana, apple, kiwi,

strawberry, papaya, pineapple, mango, and soursop".
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• DEF: We extract the (primary) definition of w from the English fragment of

Wiktionary3. This is a free-content multilingual dictionary that describes words

of many languages using definitions and descriptions in English. An example

definition of banana is "Banana is an elongated, curved tropical fruit that grows

in bunches and has a creamy flesh and a smooth skin".

• GENERIC: We also consider using sentences from GenericsKB [12], a large-

scale resource containing naturally occurring generic sentences originating from

a text corpus or knowledge graph triples. We only select sentences in Generic-

sKB from a text corpus because the sentences generated from knowledge graph

triples tend to be short and artificial. We rank the sentences for a target word

based on their confidence score in GenericsKB and select the top n. An example

sentence is: "Bananas have no fat, cholesterol or sodium".

For all strategies, if there are fewer than n sentences that can be selected, we fall back

to RAND for the remaining sentences.

4.4 Experiments

In this section, we empirically compare the sentence selection strategies from Section

4.3.

Datasets We focus on the problem of predicting semantic properties of words. The

reason is that in applications such as zero-shot learning or ontology completion, what

matters is whether the word vectors capture particular properties. Following the eval-

uation method in Chapter 3, we use the four benchmarks and the same evaluation

method because those four datasets evaluate word representations based on their capa-

city to capture different types of semantic properties. As mentioned in the last chapter

3https://www.wiktionary.org

https://www.wiktionary.org
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McR CSLB WNSS BND

1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20

M
A

S
K

RAND 44.8 57.0 59.8 61.5 31.0 47.4 51.7 53.8 39.3 53.6 56.0 59.1 28.0 36.2 38.0 40.0

INTRO 44.0 57.9 58.7 60.7 34.4 47.3 50.8 53.8 41.6 54.2 56.5 57.6 28.3 36.6 38.5 40.0

HOME 55.3 59.2 61.9 60.0 42.0 50.4 53.2 54.5 45.9 55.2 58.2 58.7 28.9 35.8 37.4 39.1

START 42.1 51.6 54.7 56.8 29.5 44.8 47.4 50.1 38.1 51.0 54.9 56.4 28.3 35.7 38.3 39.9

ENUM 42.9 53.9 55.5 57.1 29.9 43.3 47.8 44.6 41.0 52.5 54.8 56.2 28.3 36.1 39.3 40.0

PMI 56.8 57.0 59.2 61.6 48.9 46.1 54.0 54.4 43.1 55.1 58.3 58.6 29.5 37.6 39.7 41.0

GENERIC 46.7 52.5 55.4 57.0 33.9 45.7 47.8 50.4 36.4 51.3 55.3 57.8 26.0 34.4 36.7 38.8

DEF+HOME 56.9 59.9 62.2 64.1 49.6 50.4 53.2 56.0 49.6 55.2 58.5 59.3 29.2 35.7 37.4 39.1

DEF+RAND 55.6 58.2 59.2 62.6 48.8 49.8 51.8 55.5 50.3 55.2 57.1 58.6 29.3 35.7 37.9 39.4

L
A

S
T

RAND 55.5 59.0 62.3 61.6 46.1 48.3 53.9 53.5 49.4 56.5 58.0 59.0 35.4 42.9 44.7 45.7

INTRO 53.4 58.7 61.5 59.8 43.3 48.8 50.1 51.8 50.2 58.3 58.0 59.1 35.8 42.8 44.8 45.6

HOME 58.3 61.8 62.6 63.0 47.8 48.7 51.8 51.0 52.0 58.3 59.1 59.6 35.7 42.3 43.9 44.9

START 53.7 59.5 58.9 59.8 43.4 52.8 53.2 55.3 45.4 55.4 57.5 58.6 32.6 38.7 40.5 41.5

ENUM 47.4 59.8 58.1 60.0 41.9 47.8 47.3 52.5 49.5 55.3 57.0 57.4 35.3 42.7 43.7 45.4

PMI 55.2 60.0 61.8 63.4 43.9 53.0 54.0 54.4 49.7 57.0 59.1 59.6 36.6 42.2 44.6 45.8

GENERIC 54.3 60.7 59.8 61.1 45.1 49.2 51.2 51.3 50.3 57.3 57.9 58.9 36.1 42.3 43.2 44.3

DEF+HOME 57.0 60.4 61.6 63.0 50.1 48.4 52.5 51.7 55.2 58.3 59.6 59.4 37.2 42.4 44.0 45.1

DEF+RAND 57.6 60.5 58.8 61.9 50.1 49.1 51.5 52.9 55.2 58.0 59.4 59.1 37.2 41.7 44.1 45.5

A
V

G

RAND 56.5 62.7 61.2 60.8 45.4 49.5 50.0 49.1 53.0 56.8 57.7 57.5 39.4 43.5 44.4 45.1

INTRO 57.4 60.1 58.3 58.8 44.4 49.2 49.2 48.0 52.8 57.9 58.3 58.7 38.7 43.7 44.4 44.9

HOME 59.4 60.1 61.1 60.9 47.8 50.3 49.1 48.4 53.7 57.5 58.1 58.5 39.3 43.2 43.6 44.2

START 55.2 61.6 60.2 60.2 45.8 50.5 50.6 51.8 47.5 55.0 57.6 58.0 34.8 39.7 41.0 41.4

ENUM 54.7 59.9 57.8 60.6 43.8 48.1 48.5 48.4 52.1 55.6 56.9 56.8 39.0 42.8 44.0 44.5

PMI 58.5 61.7 63.2 62.2 45.1 50.5 50.5 50.4 53.2 57.8 59.3 58.6 39.5 43.2 44.3 44.6

GENERIC 58.7 61.0 60.1 61.5 42.3 44.6 46.1 46.1 52.6 56.7 57.6 57.7 39.1 43.1 43.4 44.0

DEF+HOME 57.9 60.3 61.5 59.7 49.6 49.3 48.1 46.5 57.6 57.3 58.7 58.9 40.4 43.1 43.7 43.8

DEF+RAND 58.0 60.2 61.3 60.5 49.7 49.6 50.5 51.1 57.6 57.0 58.1 58.1 40.4 43.4 44.5 44.8

Table 4.1: Results for word classification in terms of F1 score. Results were ob-

tained using BERT-base. We report results for 1, 5, 10 and 20 sentences. The best

results for a given benchmark and number of sentences are shown in bold. The

best results within each embedding strategy (i.e. MASK, LAST, AVG) are under-

lined.
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of this thesis, McRae and CSLB focus on commonsense properties, WN supersenses

highlight taxonomic properties, whereas BN domains concentrate on topical proper-

ties. As a downstream task, we also consider the ontology completion benchmark

from [67]. In this case, word vectors are used as input features to a graph neural net-

work, whose structure is determined by a given ontology or rule base. In particular,

given a rule template such as ⋆(x) ∧ LocatedIn(x, y) → CapitalCity(y), the task is to

predict which concepts can be used for the placeholder ⋆ to make the rule plausible.

Experimental Settings For word classification, the experimental settings is same

as the experimental setting in Chapter 3. For ontology completion, we follow the

same evaluation methodology as [67], which restricts the evaluation to concept names

that appear at least twice in Wikipedia. We use the same hyperparameter settings,

and we apply SVD to reduce the dimensionality of the word vectors to 300, as also

suggested by [67]. For the pre-trained language models, we used the implementations

from https://github.com/huggingface/transformers.

Results The results of the word classification experiments are summarized in Table

4.1. For these results, we used BERT-base-uncased; results for other language models

will be discussed below. For the hybrid strategy DEF+HOME we select one sentence

using DEF and the remaining sentences using HOME, and similar for DEF+RAND. Our

main findings can be summarised as follows. First, compared to MASK, we find that

LAST and AVG are far less sensitive to the sentence selection strategy and the number

of sentences. Second, the best results are obtained with MASK in the case of MCR and

CSLB and with LAST in the case of WNSS and BND. Third, RAND is remarkably

competitive, with START, GENERIC, and ENUM underperforming RAND, while INTRO

performs broadly similar. Furthermore, we found that MCR and CSLB are more sens-

itive to our sentence selection strategies than WNSS and BND, which suggests our

sentence selection strategies improve word representations by capturing more com-

monsense semantic properties than taxonomic and topic properties. Overall the best

https://github.com/huggingface/transformers
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Wine Econ Olym Tran SUMO

RAND 16.6 17.2 13.6 8.7 35.2

HOME 18.1 17.9 14.3 9.5 37.9

PMI 16.9 17.6 13.9 8.7 38.6

DEF+HOME 20.1 18.1 16.8 10.0 39.2

BERT-500 23.0 20.0 16.9 11.5 41.4

Table 4.2: Results for the ontology completion experiment (F1 score). Results

were obtained for 20 sentences using BERT-base with the MASK strategy. Wine,

Economy, Olympics and Transport are domain-specific ontologies; SUMO is a

large open-domain ontology.

results are obtained with PMI, HOME, DEF+HOME and DEF+RAND, all of which

clearly outperform RAND. The similar performance of DEF+HOME and DEF+RAND

shows that the presence of the definition plays a critical role. Moreover, note that the

first sentence selected by HOME is typically a definition as well (i.e. the first sentence

of the Wikipedia article). For MASK, we clearly see that DEF+HOME outperforms

HOME and that DEF+RAND outperforms RAND, while for LAST and AVG the advant-

age of adding the definition is less obvious.

The results for ontology completion are shown in Table 4.2. We find that HOME, PMI

and DEF+HOME outperform RAND in almost all cases, with DEF+HOME performing

particularly well. We furthermore note that these results approach the values that were

reported by [67] with 500 randomly selected sentences, which are shown as BERT-500

in Table 4.2.

Statistical Significance Computation As the above results include many dimen-

sions and comparisons, computing statistical significance can help us to know which

increases or decreases in performance are meaningful. In Table 4.3, we compare

each of our proposed strategies with RAND and compute the p value using Wilcoxon

signed-rank test[116]. Since there are seven methods are computed, Bonferroni cor-
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McR CSLB WNSS BND

1 5 10 20 1 5 10 20 1 5 10 20 1 5 10 20
M

A
S

K

INTRO 47.35 83.55 97.7 55.88 96.6 49.36 89.78 81.99 41.07 39.57 67.2 93.68 8.25 35.9 67.02 65.5

HOME 0.008 19.94 44.28 68.16 0.002 5.50 84.21 15.67 0.01 14.84 11.34 41.07 11.21 9.31 3.82 7.69

START 7.10 0.27 0.66 1.80 2.60 68.20 17.23 39.20 2.95 0.46 3.18 10.13 45.11 48.12 40.81 4.56

ENUM 12.23 5.7 2.62 0.04 16.48 7.19 14.44 0.77 57.82 20.02 8.01 8.01 2.59 16.88 26.53 1.01

PMI 44.2 87.74 51.14 53.34 23.9 47.11 47.2 22.63 1.05 1.59 15.63 0.80 0.92 1.55 4.93 5.32

GENERIC 25.3 1.97 11.56 0.61 58.45 95.05 9.05 65.48 11.9 1.70 13.364 54.00 0.89 2.59 0.68 2.81

DEF+HOME 0.50 0.10 71.65 35.17 0.01 0.10 2.00 0.14 0.001 0.003 1.05 4.21 1.75 83.13 44.13 60.01

Table 4.3: Results of statistic significance tests for lexical classification. We test

each selection strategy against RAND and report the p values (%). The statistically

significant p value over critical value (after apply Bonferroni correction) in each

benchmark are shown in bold.

BERT-LARGE ROBERTA-BASE ROBERTA-LARGE

McR CSLB WNSS BND McR CSLB WNSS BND McR CSLB WNSS BND

RAND 62.2 55.6 59.4 39.6 59.8 51.6 57.9 39.0 61.3 55.0 59.5 40.3

HOME 63.2 54.8 59.8 39.0 59.3 48.2 58.0 38.4 61.4 53.4 60.3 40.0

PMI 65.0 55.4 59.7 41.3 63.6 54.0 58.7 39.8 62.7 56.0 60.1 44.1

DEF+HOME 62.9 56.8 59.9 39.1 61.2 50.5 58.5 39.0 63.1 53.4 60.0 39.8

Table 4.4: Comparison of different language models for the word classification

benchmarks. Results are reported in terms of F1 score. All word representations

are obtained from 20 sentences with MASK strategy .

rection is applied so that the critical p value is 0.05/7 ≈ 0.007. The p value of each

strategy below this value is considered statistically significant. It is noticeable that our

well-performed strategies such as DEF+HOME are more statistically significant when

the number of mention is small.

Comparison with Other Language Models In Table 4.4, we present results for

BERT-large-uncased, RoBERTa-base and RoBERTa-large, to complement the results

for BERT-base-uncased from Table 4.1. In accordance with the findings for BERT-
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McR CSLB WNSS BND

BERT-BASE 500 60.8 51.7 58.3 42.6

BERT-LARGE 500 62.2 51.9 60.2 43.0

ROBERTA-BASE 500 61.8 49.7 58.2 40.8

ROBERTA-LARGE 500 60.3 54.0 60.0 42.5

SKIP-GRAM 59.6 54.5 55.6 49.1

CBOW 61.1 50.6 48.4 45.0

Table 4.5: Comparison with the MASK strategy when using 500 randomly

sampled sentences, as well as with static embedding baselines.

base, we can see that the PMI strategy is highly effective, consistently outperforming

RAND. The HOME and DEF+HOME strategies are somewhat less effective in these

cases, especially for the RoBERTa models.

In Table 4.5 we present results from [67] whose vectors were obtained from 500 ran-

domly sampled sentences using the MASK strategy, covering four language models:

BERT-base-uncased, BERT-large-uncased, RoBERTa-base and RoBERTa-large. We

find that the results with 20 sentences from Table 4.4 outperform these vectors (for

MCR and CSLB) or are at least competitive with them (for WNSS and BND), thus

further illustrating the effectiveness of the sentence selection strategies. Table 4.5 also

shows results for traditional static word vectors that were trained with Word2Vec. In

particular, SKIP-GRAM and CBOW vectors were trained on the same Wikipedia dump

that we used for sampling sentences (enwiki-20210320). We used a window size of 5

and a minimum frequency threshold of 10. Somewhat surprisingly, perhaps, the best

overall results for BD are obtained with the SKIP-GRAM vectors. This provides fur-

ther evidence for the observation from [67] that BERT-based vectors are particularly

suitable for capturing taxonomic properties, while struggling with looser forms of se-

mantic relatedness. For the McRae dataset, CBOW achieves the best results in Table

4.5, but without outperforming the best configurations from Table 4.4. The comparat-

ively strong performance of SKIP-GRAM and CBOW for the MCR and CSLB datasets
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McR CSLB WNSS BND

Wikipedia 61.5 53.8 59.1 40.0

Books3 61.0 52.8 58.2 37.1

OpenSubtitles 58.3 45.8 51.9 35.5

Table 4.6: Comparison for the MASK strategy when using 20 randomly sampled

sentences from Wikipedia, Books3, and OpenSubstitles.

may also be explained by the relatively small size of these datasets, which means that

the higher dimensionality of the BERT-based vectors can be sub-optimal.

Comparison with Mention Selections from Other Corpora Besides the Wikipe-

dia corpus we also consider two other corpora. The first corpus is Books3, a large

dataset containing 196640 books derived from a copy of the contents of the Bibliotik
4. The second corpus is OpenSubtitles, an English language corpus of subtitles from

movies and television shows gathered by [103]. We select these two corpora because

they provide an important source of natural use of the English language, which may

prove helpful for sampling high-quality mentions of each word. In order to compare

the effect of mention selection from different corpora, we adopt our baseline strategy

RAND to select 20 random sentences for each word from each corpus. Then, following

the MASK strategy described at the beginning of this chapter, we obtain static word

embeddings from each corpus. Finally, these word embeddings are evaluated on the

lexical classification task. In Table 4.6, we present evaluation results from which we

found that Wikipedia outperforms Books3 and OpenSubtitles in all four benchmarks.

In contrast, OpenSubtitles underperforms in all datasets. Given that the texts in Wikipe-

dia tend to be more informative than the texts in Books3 and OpenSubtitles, this result

suggests that selecting from Wikipedia is more likely to obtain informative mentions

of each word.

4https://twitter.com/theshawwn/status/1320282149329784833

https://twitter.com/theshawwn/status/1320282149329784833
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Experiment without padding random mentions As mentioned before, if fewer

than n sentences can be selected for each selection strategy, we fall back to RAND

for the remaining sentences. However, the number of random sentences might be too

large for many words and and this might prevent us from observing the effect of some

selection strategies. Therefore, we want to eliminate RAND’s effect and measure the

actual benefit of using our proposed selection strategies. Instead of using 20 mentions

for each word, we select the minimum number of mentions that all proposed mention

selection strategies can obtain. However, we found the minimum number of mentions

obtained by all our proposed strategies is 1. For example, HOME has 993 words with

only one mention; START even has 4627 words with only one mention. Since the min-

imum mention in all strategies is 1, the experiment under one mention, as previously

reported in table 4.1, can eliminate the effort of RAND. As discussed in previous para-

graph, HOME and DEF outperform RAND consistently while START and ENUM are

underperforming.

Impact of Word Frequency While SKIP-GRAM and CBOW were found to be sur-

prisingly competitive in the main experiments, these traditional word embedding mod-

els struggle with words that are relatively rare. In such cases, we can expect that the

improved ability of language models to model sentence context would become more

important. To test this hypothesis, we grouped all the words from the test sets of

WNSS and BD into 6 splits, based on their number of occurrences nocc in Wikipe-

dia: nocc ≤ 20; 20 < nocc <= 50; 50 < nocc <= 100; 100 < nocc <= 300;

300 < nocc <= 500; nocc > 500. The F1 score for each of these cases is reported in

Table 4.7. Note that we did not consider MCR and CSLB for this analysis, as they al-

most exclusively consist of frequent words. We also did not consider other mention se-

lection strategies given the limited mentions meeting the selection criteria, i.e. we can-

not find 500 mentions of banana for HOME. The results in Table 4.7 clearly show that

the BERT-based vectors outperform SKIP-GRAM and CBOW for rare words. For BD,

where SKIP-GRAM obtained the best overall results, we can see that the BERT-based
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WORDNET SUPERSENSES

0-20 21-50 51-100 101-300 301-500 >500

RAND 37.7 45.9 53.4 54.8 51.7 55.9

CBOW 26.2 37.3 34.1 43.1 44.1 52.3

SKIP-GRAM 30.3 41.8 42.3 47 51.6 54.3

BABELNET DOMAINS

0-20 21-50 51-100 101-300 301-500 >500

RAND 27.8 30.3 31.5 32.6 34.2 40.1

CBOW 22.1 26.8 22.5 28.4 30.4 50.8

SKIP-GRAM 19.6 28.8 31.1 31.8 37.3 50.2

Table 4.7: Breakdown of results for WNSS and BND in function of word fre-

quency (F1 score). For relatively rare words (up to 300 occurrences in Wikipedia),

the RAND strategy clearly outperforms the CBOW and SKIP-GRAM baselines.

For higher-frequency words, these baselines outperform RAND in the case of BD.

vectors outperform for words occurring up to 300 times in Wikipedia. In contrast, for

the case of BD, for words that occur more than 500 times, CBOW and SKIP-GRAM

performs much better than RAND

Impact of Sentence Length When analyzing the disappointing performance of GEN-

ERIC, we observed that the sentences from GenericsKB tend to be very short. In Table

4.8 we therefore analyze the effect of sentence length. While there is no clear over-

all relationship between sentence length and performance, when selecting (Wikipedia)

sentences consisting of 7 to 15 tokens, the performance noticeably drops. Many of

the sentences from GenericsKB fall within this range, which suggests that the under-

performance of GENERIC may be related to the short length of the selected sentences.

Qualitative Analysis In Tables 4.9, 4.10, 4.11, 4.12, 4.13, and 4.14 we present the

top-5 sentences that were selected for the words “banana","falcon", and "bucket", for
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McR CSLB WNSS BND

7-15 words 57.8 51.5 56.8 39.1

15-25 words 59.4 53.6 57.9 39.5

25-35 words 64.0 50.1 58.1 39.4

35-45 words 60.0 53.3 57.2 40.1

45-55 words 60.3 51.0 58.3 40.1

Table 4.8: Impact of sentence length on the quality of the resulting word vectors.

All results were obtained with BERT-base, using the MASK strategy with 20 sen-

tences .

the different strategies considered in this paper. These examples illustrate some of the

strengths and weaknesses of these strategies. For example, the 5 RAND sentences for

“banana" largely convey information that is irrelevant for learning the meaning of this

word. However, since they sometimes use “banana” in an idiosyncratic way, BERT

may be able to predict that the masked word is banana, which may result in vectors

that behave more like those from the LAST strategy. Meanwhile, the sentences selec-

ted using HOME and PMI are typically more informative (e.g. describing a banana’s

physical appearance; clarifying that banana is an edible plant; etc). The sentences se-

lected using both START and INTRO appear quite meaningful as well, which is at odds

with the relatively poor performance of these methods. The sentences selected using

GENERIC seem to be focused on overly specific properties, which may also help to

explain the poor performance of this strategy. Although this qualitative analysis sug-

gests that better mentions for each word can be selected using our mention selection

strategies, these mention selection strategies no longer pose a clear advantage over ran-

dom selection as the number of mentions accumulates. On the one hand, we assume

that more random mentions of a word make its representation more robust, even if each

mention is not informative. On the other hand, each of our proposed mention strategies

only focuses on a certain aspect of word meaning and fails to capture more diversified

information.
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4.5 Summary

We have considered the new challenge of distilling high-quality static word embed-

dings from language models using only a small number of mentions of each word.

Based on our analysis, the most effective strategies are to select sentences using PMI

and to include a definition of the target word. The success of these strategies makes it

possible to use word embeddings obtained from LMs in applications such as ontology

completion and zero shot learning with minimal computational overhead. However,

as discussed in the qualitative analysis, our proposed mention selection strategies only

focus on a particular aspect of word meaning and fail to capture other aspects. Given

this shortcoming, the research of the next chapter aims at obtaining static word em-

beddings by integrating word representations that capture different aspects of semantic

properties.
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banana

RAND • Born in Puntarenas Province , Lagos ’ parent decided to move to Limón where Cristhian went to school and

worked in banana plantation

• Binding post or banana plug may be used for lower frequency

• In India , vegetarian variety may use potato , calabash , paneer , or banana

•A later claim suggested that Bubbles had died ; Jackson’s press agent Lee Solters quipped to the medium that

when Bubbles heard about his demise he went banana ... Like Mark Twain , his death is grossly exaggerated

and he ’s alive and doing well

HOME •A banana is an elongated, edible fruit – botanically a berry – produced by several kinds of large herbaceous

flowering plants in the genus “Musa"

• In some countries, bananas used for cooking may be called “plantains", distinguishing them from dessert

bananas

• Almost all modern edible seedless (parthenocarp) bananas come from two wild species – “Musa acuminata"

and “Musa balbisiana"

• They are grown in 135 countries, primarily for their fruit, and to a lesser extent to make fiber, banana wine,

and banana beer and as ornamental plants

• The scientific names of most cultivated bananas are Musa acuminata, Musa balbisiana, and Musa × para-

disiaca for the hybrid Musa acuminata × M. balbisiana, depending on their genomic constitution. The old

scientific name for this hybrid, Musa sapientum, is no longer used

INTRO • The area produces citrus, olives, tomatoes and market-garden vegetables, and is one of the few parts of

Europe where commercial banana production is possible

• The work, created in an edition of three, consists of a fresh banana taped to a wall with a piece of duct tape

• They also sell orange, grape, piña colada, coconut champagne (non-alcoholic), and banana daiquiri (non-

alcoholic) fruit drinks

• No banana plantation was left unscathed by the hours-long onslaught of strong winds

• The crops of highest productivity are plantain, banana, coconut, tomatoes, pepper, eggplant, yucca, rice,

beans, maize, "guandules" and sweet potato

PMI • The common fruits that are used in the preparation include banana, apple, kiwi, strawberry, papaya, pine-

apple, mango, and soursop

• Thus the banana producer and distributor Chiquita produces publicity material for the American market

which says that “a plantain is not a banana"

• One day Mitchell posted a photo of herself on Twitter next to a bruised banana in response to trolls who had

compared her freckles to the overripe fruit

• The most important Philippine cooking banana is the saba banana (as well as the very similar cardava banana)

• Their meals consist of cooked or steamed rice wrapped in banana or tara or kau leaves that known as “khau

how" and boiled vegetables

Table 4.9: Example sentences selected for the word banana ( 1) .
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banana

START • Bananas, grown mainly for domestic consumption, amount to a steady annual average crop of 70,000 tons.

• Bananas were introduced into the americas in the 16th century by portuguese sailors who came across the

fruits in west africa, while engaged in commercial ventures and the slave trade"

• Bananas must be transported over long distances from the tropics to world markets

• Bananas was edited at the time by the now-legendary horror author r. l. stine

• Bananas which are turning yellow emit natural ethylene which is characterized by the emission of sweet

scented esters

ENUM • Crops are, for example, cereals (mainly wheat, barley, rye and triticale), soybeans, banana, rice, coffee,

turnips, and red as well as sugar beets

• These have included: bacon maple ale and chocolate, peanut butter, and banana ale

• There are also wild relatives of jackfruit, mango, cardamom, turmeric and banana

• Amelita’s signature dish was an organic rib fillet with shaved ham, banana, and hollandaise sauce.

• Whereas the larger farming plots are utilized for staple crops, families can choose to grow herbs, flowers and

fruit trees (mango, banana, plum, orange, lime) in their personal household garden

GENERIC • Bananas contain more digestible carbohydrates than any other fruit

• Bananas have no fat, cholesterol or sodium

• Bananas do contain serotonin

• Bananas grow on plants

• Bananas contain pectin, a soluble fibre

DEF • Banana is an elongated curved tropical fruit that grows in bunches and has a creamy flesh and a smooth skin

Table 4.10: Example sentences selected for the word banana ( 2) .
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falcon

RAND • This festival focus on Asayel (local camel) and Majahim (dark skinned camel), and also feature falcon

hunting, Saluki and Arabian horse race, and date packing contest

• In a land where mice eat iron, falcons also kidnap children

• While in migration, adult are sometimes preyed on by most of the bird-hunting, larger raptor, especially the

peregrine falcon

• The falcon "Ida" come to Pkharmat every morning

HOME • Adult falcons have thin, tapered wings, which enable them to fly at high speed and change direction rapidly

• Fledgling falcons, in their first year of flying, have longer flight feathers, which make their configuration

more like that of a general-purpose bird such as a broad-wing.

• The falcons are the largest genus in the Falconinae subfamily of Falconidae, which itself also includes another

subfamily comprising caracaras and a few other specie

• The largest falcon is the gyrfalcon at up to 65 cm in length

• As with hawks and owls, falcons exhibit sexual dimorphism, with the females typically larger than the males,

thus allowing a wider range of prey species

INTRO • Peregrine falcons, common kestrels and choughs also nest on the cliffs

• Many other versions of this song with motif of falcon drinking water from Vardar were published at the

beginning of the 20th century in Macedonia (i.e. )

• Common birds are: fantails, kingfishers, tui, kereru, New Zealand falcons

• It consists of a golden falcon (Hawk of Quraish) with a disk in the middle, which shows the UAE flag and

seven stars representing the seven Emirates of the federation

• The school mascot is the falcon and the school colors are scarlet and grey

PMI • The saker falcon is a large hierofalcon, larger than the lanner falcon and almost as large as gyrfalcon at length

with a wingspan of

• Because he is so often shown with a falcon, he came to be considered the patron saint of falconry

• The island has breeding populations of various raptors: golden eagle, buzzard, peregrine falcon, kestrel, hen

harrier and short and long-eared owl

• The arrangement is intriguing, because normally the Horus falcon and the hieroglyphs inside the serekh were

out of reach and independent of one another

• Other birds which can be seen include peregrine falcon, merlin, hen harrier, short-eared owl and ring ouzel

Table 4.11: Example sentences selected for the word falcon ( 1) .
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falcon

START • Falcons of narabedla is a science fiction novel by american writer marion zimmer bradley set in the universe

of her darkover series

• Falcons rookie lt sam baker was hit in the head in the first half and did not return

• Falcons were important in the (formerly often royal) sport of falconry

• Falcons defensive end chuck smith questioned the vikings’ toughness because of the ease with which they

had won during the season

• Falcons and cormorants have long been used for hunting and fishing, respectively

ENUM • The axe did, however, close some country routes including the cuckoo line, the cranleigh line, the steyning

line, the new romney branch line and the bexhill west branch line, plus goods yards including deptford wharf

and falcon lane

• The ford falcon and holden commodore, former chrysler engineers now working for mmal, developed a

wider mid-sized car specific to the australian market.

• The series features two founding members of the team, ant-man and the wasp, and introduces wonder man,

tigra, hawkeye, falcon, vision and scarlet witch

• The word perlin is a falconer’s term for a cross breed of a peregrine falcon and a merlin

• The falcon and the snowman received generally positive notices upon release in 1985 and currently has an

82 percent on rotten tomatoes from 22 critics

GENERIC • Falcons have long, slim wings which taper to pointed tips

• Some falcons eat reptiles

• Falcons are small, speedy birds of prey known for their aerial agility

• Falcons are birds of prey

• Some falcons eat small reptiles

DEF • Falcon is any bird of the genus Falco, all of which are birds of prey

Table 4.12: Example sentences selected for the word falcon ( 2) .



72 4.5 Summary

bucket

RAND • A microphone picked up the sound from the bucket , which give it a hollow “megaphone" sound

• Another program feature for boy wa the war canoe in which boy went in the lake in two canoe with fire

bucket but no paddle

• In this maneuver it is possible to lower a bucket on a line to the ground in such a way that the bucket remains

stationary on the ground , permitting transfer of material

•In a machine of this type , the gravitational force move the drop against the opposing electrostatic field of the

bucket

• The player only ha a limited supply of slime but slime can be replenished by collecting slime bucket or

completing the mystery word

HOME •A bucket is typically a watertight, vertical cylinder or truncated cone or square, with an open top and a flat

bottom, attached to a semicircular carrying handle called the "bail"

• A bucket is usually an open-top container

• A number of bucket types exist, used for a variety of purposes

• Though not always bucket shaped, lunch boxes are sometimes known as lunch pails or a lunch bucket

• The bucket has been used in many phrases and idioms in the English language, some of which are regional

or specific to the use of English in different English-speaking countries

INTRO • The pissdale was a 17th-century engineering development: prior to this, crewmen either used buckets or,

more frequently, simply urinated over the rails of the ship (though this put them at risk of falling overboard

and drowning, as few sailors had any ability to swim)

• To clean the sponge, they simply washed it in a bucket with water and salt or vinegar

• Linear hashing (LH) is a dynamic data structure which implements a hash table and grows or shrinks one

bucket at a time

• The woman is carrying a dish in her other hand, and a bucket and a broom have been left in the courtyard

• A total of 5,500 bars of soap, 1,600 buckets, 50 baths, and over 180 latrines were distributed to the victims

of the devastated area

PMI • On 17 October 2015 children and parents from the Wiesloch Schiller School () walked to the museum for

their annual outing and saw a demonstration of the bucket chain excavator

• On Saturday 24 February in 1990 Roman, armed with bucket and secateurs arrived, much to Mr. growers

shock when he began picking, himself

• Legion of Doom were the first to be eliminated after being disqualified for attacking The Godwinns with

their own slop bucket

• At approximately 2:40pm an excavator, using a flat scraper bucket to remove the natural clay a few centi-

metres at a time, struck an object

• It’s crowds typically wore baggy clothes and Tie-dye or dayglo colours, with items such as bucket hats,

bandanas, dungaree jeans, ponchos and converse sneakers becoming popular

Table 4.13: Example sentences selected for the word bucket ( 1) .
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bucket

START • Buckets and wells sufficed as a water system for a while, but eventually, the denver water system was created

• Buckets can be managed using either the console provided by amazon s3, programmatically using the aws

sdk, or with the amazon s3 rest application programming interface (api)

• Buckets with plants stand again on the forecourt of the orangery and the extensive areas of herbaceous plants

have been restored

• Buckets were positioned under leaks to prevent rainwater damaging the main reception rooms

• Buckets of shucked oysters were passed through a window into the processing room, where they were rinsed,

weighed and tallied

ENUM • Within that time molly came in with her mop bucket and the colonel and his friends were required to beat a

hasty retreat

• They would pour water down the trough into a bucket, and the ripe berries would sink into the bucket and

the unripe ones would be pushed over the edge to be thrown away.

• Steed allows users to transfer files using ftp and sftp protocols and access their bucket and containers on s3

and azure for storing data in the cloud

• Fuel was moved by belt bucket and scraper conveyors to the fuel bunkers, then delivered to the boilers by

mechanical spreader stokers

• Bleacher and bucket seats from vacaville were added ro redding’s tiger field during the 2014 renovation that

brought the ballpark’s capacity to 1,200 seats

GENERIC • Buckets hanging with several different types of snaps can cause bad eye and nose lacerations

• Most buckets fill with water

• Bucket wheel current meters are of stainless steel, brass, and bronze construction

• Buckets go up and down with the rotation of the shaft

• Most buckets have interiors

DEF • Bucket is a container made of rigid material, often with a handle, used to carry liquids or small items

Table 4.14: Example sentences selected for the word bucket ( 2) .
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Chapter 5

Combining Complementary Aspects of

Word Meaning

5.1 Introduction

Contextual word representations obtained in different ways may capture different as-

pects of word meaning. For example, as we have seen in the Chapter 3 and Chapter 4,

given a word w and its mention in a sentence s, masking this word and extracting the

vector representation of [MASK] can obtain a contextual word embedding. The word

embedding obtained in this way is more likely to capture the semantic properties that

are satisfied by the corresponding concept. As a result, the neighbours of a given word

in the word embedding space are typically its taxonomic siblings. A different approach

could be to take the average of the SBERT embeddings of the sentences where a word

w appears. This also leads to a representation of w. Still, due to how it has been con-

structed, we can expect this representation to capture some topical relatedness because

we assume that mentions of a target word tend to have some topics.

Essentially, the neighbours of a word in the embedding space are then those words

that are likely to belong to the same topic. For some applications, we may need word

vectors that capture both semantic properties and topical relatedness, such as few-shot

learning and ontology completion. In such cases, the vectors that we have considered

in the previous chapters may be too limiting, and underperform standard word embed-
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dings such as skip-gram and GloVe.

Consequently, the research question in this chapter is whether word embeddings that

capture both semantic properties and topical relatedness can be obtained by combin-

ing different representations. Given two vector representations that capture comple-

mentary aspects of the meaning of a single word, the most straightforward way is to

combine them with standard aggregation methods such as concatenation or averaging.

However, averaging two representations of words suffer from information loss. Al-

though concatenating two word embeddings can keep all the information, it doubles

the dimension of embeddings, which can be challenging in downstream applications.

Therefore, a related research question in this chapter is how we can combine com-

plementary word embeddings effectively while not increasing their dimension. This

chapter aims to answer this research question and analyze to what extent our proposed

supervised contrastive learning model can be used to address this issue.

Having been widely applied in computer vision and NLP [39, 51, 58, 57, 55], contrast-

ive learning aims at learning an embedding space in which similar samples are pulled

together while diverse ones are pushed far apart [53]. Based on this learning object-

ive, the embedding space learned by contrastive learning models boosts performances

on different downstream tasks [39, 51, 58]. These studies suggest that contrastive

learning model can capture the inherent general properties from data and generate a

high-quality vector space. Furthermore, contrastive learning models can be applied to

refine the geometry of a vector space by fixing the anisotropy problem. Anisotropy

problem is an issue when the learned embeddings occupy a narrow cone in the vector

space, which severely limits their expressive power. [110, 39] confirm that contrastive

learning models help to make embeddings evenly distributed in the vector space.

Instead of applying a contrastive learning model on each embedding space individually,

we propose a contrastive learning model that can learn from multiple embedding spaces

simultaneously and generate a low-dimensional embedding space that captures salient

features from all the source embeddings. Motivated by this idea, this chapter aims to
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integrate complementary word embeddings through a proposed supervised contrastive

learning model. Specifically, we aim to answer the following question with analysis.

• Does combining word embeddings that capture different aspects of word mean-

ing lead to word representations that capture both semantic properties and topical

relatedness?

• How effective is our proposed contrastive learning model in combining word

embeddings?

5.2 Integrating Word Embeddings

In Section 5.2.1, we first describe two strategies for deriving static word vectors and

show how these embedding capture different aspects of word meaning. 5.2.3 sub-

sequently describes our proposed contrastive learning model and how it is applied to

integrate two word embeddings.

5.2.1 Obtaining Word Embeddings Using Different Methods

To obtain the vector representation of a word w, we first sample n sentences S1, ..., Sn

mentioning w. Following the sampling strategy proposed in Chapter 4 (Def+Home),

the source corpus from which these sentences are sampled in our experiments is Wiki-

pedia, specifically a dump from March 2021. From each sentence Si, we obtain two

vector representations for wi using two following methods:

• BERTW: We replace the word w by a [MASK] token and obtain the vector

representation of this token in the final layer from the language model BERT.

• SBERTS: We take the sentence representation of the mention Si from the lan-

guage model SBERT as the representation for wi.
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In both cases, the final representation of the word w is computed by averaging the

vectors that are obtained from a set of sentences.

Regarding the embeddings obtained from BERTW, we assume that these embeddings

capture the taxonomical aspect of word meaning. This is because these vectors corres-

pond to BERT’s prediction of the missing word which intuitively captures the taxonom-

ical properties of w. The performance of MASK over LAST in the lexical classifica-

tion benchmark from Chapter 3 and Chapter 4 also support this assumption. Regarding

the embeddings obtained from SBERTS, we assume that these embeddings capture the

topic aspect of word meaning. The reason is that the meanings of different sentences

that mention a word w might reveal topics in which w is often involved. We compared

the nearest neighbours of random words from two embedding spaces to confirm our

assumptions by calculating euclidean distances. As is shown in Table 5.5, the first

two columns report the top 10 nearest words measured in vector space of BERTW and

SBERTS, which confirm our assumptions. Therefore, we conclude that those two em-

bedding spaces capture different aspects of words meaning. By applying the above two

methods, each word w ∈ V have two embeddings: wtop ∈ Rn and wtax ∈ Rn.

5.2.2 Identifying Positive Samples

In order to capture salient features from source embeddings, supervised contrastive

learning models require both positive and negative samples for each word w. By

pulling positive samples toward w while pushing negative samples away from w, con-

trastive learning models can learn a better embedding space. In applying supervised

contrastive learning in computer vision, positive samples are usually generated by flip-

ping or cropping the input image [23, 47]. In NLP, positive samples can also be gen-

erated by corrupting the input, such as applying dropout on input vectors [39]. The

purpose of generating the positive samples using data augmentation is to force the

model to ignore the meaningless variances and to capture the salient features.
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Instead of refining the existing source embedding space, the research in this chapter

focuses on learning an embedding space that can retain all the salient features from

two source embedding spaces without increasing its dimension. We assume that the

contrastive learning can capture relevant information by retaining the neighbourhood

structure, which share the similar intuition with manifold learning strategies such as

[90] and [98]. We propose to use the nearest neighbours for each word w in the two

given embedding spaces as its positive samples. Rather than mixing these neighbours

from two given embedding space together, our proposed contrastive learning model

has two projection layers, and each one only use the positive samples from one source

embedding space. The objective of this positive sampling method is to retain the two

aspects of meaning captured by the two given source embeddings. Therefore, given

word w, we assume that its taxonomically similar words are its nearest neighbours

measured in BERTW embedding space. Similarly, we assume that its topically similar

words are its nearest neighbours measured in SBERTS embedding space. As a result,

w has two sets of positive samples corresponding to taxonomic and topical similarity.

5.2.3 Proposed Contrastive Learning Model

This contrastive learning model aims at retaining both aspects of word meaning from

two source embeddings while resulting in a low-dimensional embedding for w ∈ V .

Let w be a word from the vocabulary with w defined as the concatenation of the two

source embeddings:

w = wtop ⊕ wtax

We learn a Encoder, which is a single linear layer, mapping the embedding from w ∈

Rn to a transformed embedding v ∈ Rm, where m < n:

v = Encoder(w)

we also learn two linear mappings Projectiontax and Projectiontop from the embedding
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Figure 5.1: The diagram of the proposed contrastive learning model.

v ∈ Rm to transformed embeddings ztax ∈ Rm and ztop ∈ Rm corresponding to the

structure of embedding spaces from wtax and wtop:

ztax = Projectiontax(v)

ztop = Projectiontop(v)

The diagram of this contrastive learning model is presented in Figure 5.1. To learn

those mappings from the model, we use a loss function that consists of two compon-

ents:

L = Ltax + Ltop

where Ltax encourages v to preserve the information captured by wtax, while Ltop in-

spires v to preserve the information captured by wtop. For the component Ltax we use
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the supervised contrastive loss following [57]. For each word w ∈ V , P (w)tax is the set

of positive examples, which are taxonomically nearest neighbours to w, and N(w)tax

is a set of negative examples, which are the words from the current training batch that

are not taxonomically similar to w. Note that P (w)tax ∪N(w)tax ∪ {w} contains every

word from the given training batch. Then we define:

Ltax = −
∑

w∈Vbatch

1

|P (w)tax|
∑

wj∈P (w)tax

log
exp(cos(ztax, zjtax)/τ))∑

wl∈N(w)tax∪P (w)tax
exp(cos(ztax, zltax)/τ))

Likewise, the component Ltop is defined in similar way:

Ltop = −
∑

w∈Vbatch

1

|P (w)top|
∑

wj∈P (w)top

log
exp(cos(ztop, zjtop)/τ))∑

wl∈N(w)top∪P (w)top
exp(cos(ztop, zltop)/τ))

The temperature value τ in the contrastive loss function was tuned, with possible val-

ues chosen from {2, 1, 0.1, 0.07, 0.001}. The learning objective of this proposed con-

trastive learning model is to retain the taxonomic features and topical feature from its

source embedding spaces through minimizing Ltax and Ltop. We expect the Encoder of

this contrastive learning model can capture salient features from two source embedding

spaces and generate one embedding space that can integrate the taxonomic and topical

aspects of word meaning. To train the model, we repeatedly sample training batches

until we obtain all words in the vocabulary V . Each batch contains 1500 words, and

each word inside is guaranteed to have at least two positive samples for taxonomic

similarity and two positive samples for topical similarity. The training epoch size is set

to 30 when its training loss converges.

5.3 Evaluation

We compare the proposed contrastive learning startegy with the individual BERTW

and SBERTS strategies themselves, as well as with alternative strategies for combining
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these embeddings. In Section 5.3.1 we first describe our experimental setup. In Section

5.3.2, we focus on word similarity benchmarks. These benchmarks allow us to assess

how well the similarities of different word type can be predicted from the word vectors.

This section provides details of datasets and the experiment result analysis. Section

5.3.3 focus on another word embedding evaluation method: lexical classification. In

Section 5.3.5, we present a qualitative analysis on the nearest neighbors of different

word embeddings.

5.3.1 Experiment Setup

We first consider the two source embeddings obtained from the methods as described

in Section5.2.1 and evaluate them individually:

• BERTW

• SBERTS

We consider the three possible ways of combining the source embeddings:

• CONC: concatenation of the BERTW and SBERTS.

• AVG: taking the average of the BERTW and SBERTS.

• PCA: applying Principle Component Analysis (PCA) on the CONC and redu-

cing its dimension to 768 (same dimension as BERTW and SBERTS).

We consider three method of extracting word embeddings from our contrastive learning

model.

• CTencoder: the vector representation from the ENCODER layer of our proposed

contrastive learning model.
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• CTtax: the vector representation from the PROJECTION layer corresponding to

taxonomic similarity of our proposed contrastive learning model.

• CTtopic: the vector representation from the projection layer corresponding to

topic similarity of our proposed contrastive learning model.

We also consider the two standard word embeddings as explained in the Chapter 3:

• SG

• CBOW

5.3.2 Word Similarity

We use word similarity task as an evaluation method. The purpose of this task is to

rank word pairs based on their degree of similarity. This ranking is then compared

with a gold standard ranking obtained from human judgements. We consider three

word similarity datasets that focus on semantic similarity: the semantic similarity por-

tion of WordSim[1], the noun subset of SimLex999[49], and SemEval-17[21]. These

three datasets can help us evaluate the general semantic properties captured by word

representations. We also consider the other three word similarity datasets that focus on

semantic relatedness: the semantic relatedness portion of WordSim[1], the noun subset

of MEN[18], and MTurk-771[45]. Those three datasets can help us evaluate, specific-

ally, the topical aspect of semantic properties captured by word representations. The

results of the experiments on these datasets are shown in Table 5.1. First of all, we find

SBERTS overtake BERTW by a substantial margin in five datasets. Among the five

datasets, MEN, WordSim-REL, and Mturk-771 emphasis on topic aspect of word

meaning, which confirm the strength of SBERTS in capturing topic features. The un-

derperformance of BERTW in Sim-EVl and WordSim-SIM reveals its shortcoming

in representing general semantic properties. Overall, this shows that SBERTS captures

a different aspect of word meaning which is missing from BERTW.
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SimLex-999 Sim-EVl WordSim-SIM MEN WordSim-REL Mturk-771

BERTW 36.8 62.0 49.1 20.6 32.9 46.8

SBERTS 36.9 71.4 60.0 30.1 54.1 60.1

CONC 39.7 73.1 62.8 29.6 54.9 62.7

AVG 38.9 73.0 63.9 30.1 55.7 61.9

PCA 38.7 70.8 65.5 30.0 60.8 61.4

CTtax 38.9 72.3 51.3 19.4 38.2 56.9

CTtopic 34.1 70.1 63 28.6 60.2 59.0

CTencoder 42.5 74.8 67.3 30.4 62.1 65.4

CBOW 39.2 68.4 60.7 25.3 50.8 62.4

SG 38.6 71.2 67.0 28.3 61.0 65.4

Table 5.1: Results for word similarity tasks measured in Spearman correlation.

The best results for a given benchmark are shown in bold.

Furthermore, the three methods of combining source embeddings consistently outper-

form the two source embeddings in five datasets. This result confirms our first hypo-

thesis that BERTW and SBERTS capture complementary aspects of word meaning,

and combining them gives better word representations. The best results are obtained

by CTencoder, which outperforms all other variants in all six tasks. This support our

second hypothesis that our proposed contrastive learning model can effectively cap-

ture both aspects of word meaning from two source embeddings in a low-dimensional

embedding space. Given that the dimension of CTencoder is only half of CONC, it is

a clear benefit for downstream applications that need static word embeddings. The

performance of CTtax and CTtopic are more or less similar with BERTW and SBERTS,

suggesting that the embeddings from two projection layers of our contrastive learning

model resemble the two source embeddings. In addition, the performance of CBOW

and SG shows that those standard word embeddings are still robust and have a clear

advantage over contextualized word embedding in word similarity task.
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5.3.3 Lexical Classification

Following the previous chapters, we use the four benchmarks and the same evalu-

ation method because those four datasets evaluate word representations based on their

capacity to capture different types of semantic properties. As mentioned in the previ-

ous chapters, McRae and CSLB focus on commonsense properties, WN supersenses

highlight taxonomic properties, whereas BN domains concentrate on topical proper-

ties. Furthermore, we add two datasets that focus on concept categorization. The first

dataset BM, introduced by [8], contains 5321 words divided into 56 categories 1. The

second dataset AP, introduced by [4], contains 402 words divided into 21 categories
2. In our experiments, we have only considered properties/classes for which more than

10 positive examples are available. For both datasets, we used random splits of 60%

for training, 20% for tuning and 20% for testing. The datasets are overviewed in Table

5.2.

The results of the experiments on these datasets are shown in Table 5.3. Suprisingly,

SBERTS slightly outperforms BERTW in McR, CSLB, and BM. These results show

the capacity and potential of sentence embedding in capturing commonsense semantic

properties. We also expect that SBERTS can achieve a better result on BND as this

dataset specifically focus on topic features. However, in contrast to our expectation,

SBERTS doesn’t bring any improvement on BND. On the other hand, the experiment

results on WNSS show that BERTW have a clear advantage over SBERTS. This further

confirms the strength of BERTW in capturing the taxonomic aspect of word meaning.

Given the complementary strength of SBERTS and BERTW, the experiment results

confirm that combining them is beneficial in most benchmarks except for AP. However,

this benefit is not impressive as its improvements are limited. Furthermore, opposite to

1https://github.com/vecto-ai/word-benchmarks/blob/master/

word-categorization/monolingual/en/battig.csv
2https://github.com/vecto-ai/word-benchmarks/blob/master/

word-categorization/monolingual/en/ap.csv

https://github.com/vecto-ai/word-benchmarks/blob/master/word-categorization/monolingual/en/battig.csv
https://github.com/vecto-ai/word-benchmarks/blob/master/word-categorization/monolingual/en/battig.csv
https://github.com/vecto-ai/word-benchmarks/blob/master/word-categorization/monolingual/en/ap.csv
https://github.com/vecto-ai/word-benchmarks/blob/master/word-categorization/monolingual/en/ap.csv
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Dataset Words Properties

AP 376 21

BM 2668 55

Table 5.2: Overview of the added two datasets

its outperformance in word similarity task, CTencoder does not bring a clear improve-

ment over other methods of combining source embeddings. Similar to the result from

word similarity benchmarks, both CTtax and CTtax underperform CTencoder in lexical

classification, which confirms that the vector representations from the ENCODER layer

capture both aspects of meaning from two source embeddings. The performance of

PCA is still robust, which confirms its effectiveness on dimension reduction, as we

found in the Chapter 3.

Overall, the result from lexical classification supports our first hypothesis that BERTW

and SBERTS capture complementary aspects of word meaning and combining them

gives better word representations. However, the result also suggests that our proposed

contrastive learning model does not bring a clear improvement. Given the outper-

formance of CTencoder in word similarity benchmarks, its underperformance in lexical

classification might be explained by the linear classifications applied in lexical classi-

fication benchmarks. As linear classifiers can extract salient features from input, the

well trained linear classifier might cancel the benefit of embedding space learnt by the

contrastive learning model.

5.3.4 Lexical substitution

Besides the above two evaluation tasks, we also consider lexical substitution task. This

task aims at finding appropriate substitutes for a target word in a sentence. For example,

"great" in the context "He is a great artist" can be substituted by outstanding. Lexical

substitution is normally used for contextualised language models and can be adapted

to evaluate static word embeddings. We consider a specific dataset: ALaSca [61]. This
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McR CSLB WNSS BND AP BM

BERT_w 62.0 54.1 59.3 39.1 70.1 72.0

SBERT_s 63.2 56.1 51.7 39.5 69.3 75.4

CONC 64.0 57.7 60.9 42.5 68.5 74.4

AVG 65.3 56.8 58.2 40.5 67.7 77.1

PCA 63.0 56.3 62.5 43.6 66.8 79.2

CTtax 58.4 50.4 54.2 37.3 66.2 67.3

CTtopic 60.9 54.6 47.7 38.2 63.8 69.6

CTencoder 63.6 56.7 58.5 41.2 70.6 77.2

CBOW 61.1 50.6 48.4 45.0 65.0 72.6

SG 59.6 54.5 55.6 49.1 83.0 80.1

Table 5.3: Results for lexical classification in terms of F1 score. The best results

for a given benchmark are shown in bold.

ALaSca

BERT_sub 0.486

SBERT_sub 0.405

CONC_sub 0.504

Table 5.4: Results for lexical substitution. The best results for a given benchmark

are shown in bold.

dataset contains 35649 questions, and each question has a sentence mentioning a target

word with 10 to 20 substitute options (only one is the correct substitute). For each

question, we calculate the cosine similarity between the sentence’s representation and

its substitutes’ representations. These cosine similarity scores are then ranked from

large to small. Based on the position of the correct substitution in the rank list, we

assign the score 1/rank to it (for example, if the correct substitute is ranked in 3ed

place, we give it a score of 1/3). Once we have completed the 35649 questions, the

final score is obtained by averaging all the scores.

In this experiment, we consider three different methods to do the task.
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• BERT_sub: The cosine similarity is computed between the BERT contextual

representation of the target word in the sentence and the BERT_w representa-

tions of its substitute words.

• SBERT_sub: The cosine similarity is computed between the SBERT represent-

ation of the sentence and the SBERT_s representations of its substitute word.

• CONCA_sub: In this case, the sentence is represented as the concatenation of

the contextual representation of the target word and the SBERT representation

of the sentence. Each of its substitute words is represented by the concatenation

of BERT_w and SBERT_s.

The experimental result shows that CONCA_sub outperforms both BERT_sub and

SBERT_sub, suggesting that BERT and SBERT are complementary and combining

them is beneficial in lexical substitution task, which further support our research as-

sumption.

5.3.5 Qualitative Analysis

In Table 5.5, 5.6, and 5.7, we show the top 10 nearest neighbours of ten randomly

selected words in five embedding spaces: BERTW, SBERTS, CTencoder,CTtax, and

CTtopic. Some of the listed examples clearly illustrate the difference between BERTW

and SBERTS. For example, in the case of spring, the top 10 nearest neighbours

from BERTW include all other seasons, such as winter and fall, whereas the top 10

nearest neighbours from SBERTS are words topically related to spring, such as sand-

wort, spirea, and bloom. This result supports our hypothesis that BERTW captures the

taxonomic aspect of word meaning while SBERTS captures the topic aspect of word

meaning. The nearest neighbours from CTencoder reveal that our proposed contrastive

learning model successfully captures both aspects of word meaning. For instance, in

the case of school, its nearest neighbors from CTencoder contain both topically similar
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words such as education, student and taxonomic similar words like kindergarten, col-

lege. Moreover, rather than simply retaining the geometries of its source embeddings,

CTencoder even generate a better neighbourhood structure by reconciling the two source

embeddings. For example, the top three nearest neighbours of spring in CTencoder are

mid-autumn, late-spring, and mid-summer, which are semantically closer to spring

than the corresponding nearest neighbours in BERTW and SBERTS. Surprisingly,

fall, winter, and sandwort are not included in the top ten near neighbours of spring

even though they are fed as positive examples to the model during training. Likewise,

we also found that the CTencoder sometimes favours one aspect of word meaning over

the other. For example, In the case of job, the top 15 nearest neighbours from CTencoder

do not include taxonomic neighbours handout which is fed as the positive examples

during training. Since the contrastive learning model integrates two aspects of word

meaning by minimizing two loss functions simultaneously during the training, it might

ignore some positive examples to avoid the increased overall loss and thus generate a

better neighbourhood structure.

The embedding spaces of CTtax and CTtopic are more or less similar to the embedding

spaces of BERTW and SBERTS, which are their corresponding learning objectives

during the training. For example, the top three nearest neighbour of school in BERTW

are university,institution, and curriculum, whereas its counterparts in CTtax are cur-

riculum, university, and college. Likewise, the top three nearest neighbour of school

in SBERTS are education,student, and college, whereas its counterparts in CTtop are

student, education, and college. However, like CTencoder, CTtax and CTtopic also have

their own neighbourhood structure that is not the same as its learning target. For ex-

ample, the second nearest neighbour of job in CTtax is chore, which is not found in the

top ten nearest neighbours in BERTW. Likewise, the second nearest neighbour of job

in BERTW is handout, which is ranked below chore by CTtax. This example suggests

that CTtax makes chore closer to job than handout, even though handout is fed as a

positive example during the training.
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5.4 Summary

Based on the experiment results, we found that MASK vectors that we have been study-

ing in the previous two chapters only capture one aspect of word meaning, and that they

can be improved by also modelling topical similarity. In this chapter, we have proposed

to use SBERT embeddings to capture this topical similarity and we found that com-

bining SBERT embeddings and BERT-MASK is beneficial. We also have proposed

a strategy for combining word embeddings through a contrastive learning model that

generate low-dimensional embeddings. For both word similarity and word classifica-

tion, we found that combining the MASK and SBERT vectors leads to improved res-

ults. For word similarity, our contrastive strategy was also consistently better than other

combination strategies, although this benefit was not seen for word classification.
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BERTW SBERTS CTencoder CTtax CTtopic

Top 10 Nearest Neighbors of textbook

casebook coauthored handbook casebook handbook

handbook handbook monograph monograph two-volume

monograph authoritative treatise journal learning

workbook instructive book handbook seminal

tome learning encyclopedia encyclopaedia thesis

encyclopaedia book essay workbook pedagogical

preprints class encyclopaedia tome authoritative

bibliography scholarly two-volume preprints chrestomathy

book seminal thesis brochure bibliography

brochure specialisation bibliography encyclopedia multi-volume

Top 10 Nearest Neighbors of school

university education education curriculum student

institution student student university education

curriculum college curriculum college college

lyceum pre-primary lyceum institute coeducational

education coeducational kindergarten department lyceum

institute state-funded college classroom educational

preschool lyceum university specialism kindergarten

training curriculum madrassahs academy boys-only

kindergarten non-faith pedagogy kindergarten institute

academy university pre-school class curriculum

Top 10 Nearest Neighbors of job

profession employment career position employment

handout career employment chore self-employed

training work-related workplace paperwork career

position employable profession career apprenticeship

hobby apprenticeship training handout work-related

sinecure work-related apprenticeship wait-list workplace

rota menial work-related care receptionist

traineeship workforce freelancer checkbook caseworker

drudgery unemployment trainee training tutoring

career workplace nine-to-five homework internship

Table 5.5: Top 10 nearest neighbors of selected words( 1) .
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BERTW SBERTS CTencoder CTtax CTtopic

Top 10 Nearest Neighbors of map

schematic mapmaking mapmaking atlas mapmaking

document mapmakers atlas schematic atlas

printout atlas topography gazetteer triangulation

horoscope cartography datum cryptogram cartography

photograph topography mapmakers diagram datum

atlas raised-relief cartography flowchart geo

bookmark datum globe abacus topography

microdot surveying geo snapshot heightmap

image geo surveying marker surveying

gazetteer north planisphere facsimile chart

Top 10 Nearest Neighbors of spring

fall sandwort mid-autumn fall early-flowering

mid-summer mayflower late-spring winter meadowsweet

winter spirea mid-summer mid-winter avens

summertime harebell dandelion mid-summer spirea

summer mayapple blooming mid-autumn mayflower

mid-autumn bloom flowered summertime goldilocks

mid-winter meadowsweet bloom late-spring bloom

autumn goldthread wildflower mid-afternoon rosebay

late-spring dogwood lilly late-fall daffodil

late-fall globeflower milkweed autumn twinflower

Top 10 Nearest Neighbors of red

green color yellow-red green yellow

yellow trichromatic crimson yellow purple

yellow-red yellow-red yellow white magenta

sky-blue colour purple blue yellow-red

blue hue violet black hue

maroon crimson magenta yellow-red colour

white red-orange red-orange light-blue violet

light-blue all-red all-red sky-blue cyan

crimson magenta purplish-red pink red-orange

red-white brownish-red colour aquamarine blue

Table 5.6: Top 10 nearest neighbors of selected words( 2) .
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BERTW SBERTS CTencoder CTtax CTtopic

Top 10 Nearest Neighbors of math

civics eighth-graders precalculus civics eighth-graders

numeracy precalculus mathematics study-abroad college-level

mathematics measurer college-level cosmetology student

phonics college-level numeracy undergraduate one-semester

coursework mathematics high-school stenography precalculus

writing aptitude eighth-graders numeracy student-faculty

science summative coursework librarianship measurer

elocution matriculants reading economics numeracy

reading kindergartner measurer science sub-test

stenograph decile aptitude librarianship high-school

Top 10 Nearest Neighbors of small

tiny smallish tiny tiny sized

modest-sized modest-sized modest-sized subterranean tiny

subterranean tiny smallish modest-sized modest-sized

rudimentary sized moderate-sized large nestle

large small-scale sized serpentine include

hollow embayment smaller smaller beneath

broad flat-topped small-scale circular one-inch

circular smaller flat-topped rudimentary cairn

smaller valley-like similar-sized large-sized atop

remote vicinity smaller-scale remote sited

Top 10 Nearest Neighbors of animal

ruminant rearing livestock ruminant wildlife

invertebrate slaughtering wild-animal invertebrate zookeepers

vertebrate wild-animal bovid anuran wild-animal

primate hoofed zookeepers vertebrate road-killed

anuran livestock buffalo human undomesticated

shellfish domesticate camelid shellfish feral

mammal zookeepers piglet amphibian buffalo

homeotherm meat-eating wildlife mammal domesticate

earthworm aurochs camelids amphibia rearing

amphibian graze semi-wild homeotherm domestic

Table 5.7: Top 10 nearest neighbors of selected words( 3) .



94 5.4 Summary



95

Chapter 6

Conclusions and Future Work

This final chapter provides a summary of the research conducted in the thesis. First,

it relates the contributions to the thesis hypothesis and summarises the main findings.

Subsequently, we address each of the considered research questions. It ends by show-

ing some possible directions for future work.

6.1 Thesis Summary and Contributions

The primary motivation for this thesis is learning the representation of words. The pre-

valence of pre-trained language models gives rise to contextualised word embeddings,

which represent words at the token level. However, the meaning of a word at the type

level is missing, which hinders the applications where word meaning has to be mod-

elled in the absence of context, such as ontology completion and few-shot learning.

In order to learn word representation at the type level and take advantage of the rich

knowledge preserved in contextualised language models, this thesis aims to distil static

word embeddings from contextualised language models. The research hypothesis for

this thesis was presented in Chapter 1 as follows: better static word embeddings can

be efficiently distilled from CLMs by strategically selecting sentences and combining

complementary methods. We have developed several methods, as presented in Chapter

3, Chapter 4, and Chapter 5, to test this hypothesis.

After summarising the related work in Chapter 2, Chapter 3 proposed using topic mod-
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els to improve how word mentions are sampled. The topic model used in this re-

search is Latent Dirichlet Allocation. First, given the collected contexts of each word,

Latent Dirichlet Allocation has been applied to partition all the mentions into several

clusters corresponding to different topics. Then, topic-specific vectors for each word

are obtained. Finally, these topic-specific vectors are evaluated on the lexical classific-

ation task, which tests how well various semantic properties can be predicted from the

word vectors. Based on the performances of vectors obtained by different mentioning

strategies, we found that selecting an equal number of mentions per topic outperforms

purely random selection strategies. This result supports the idea that better static word

embeddings can be distilled from CLMs by selecting sentences using the topic model.

In Chapter 4, we considered the new challenge of distilling high-quality static word

embeddings from CLMs using only a small number of mentions of each word. We aim

to solve this challenge by analysing a range of strategies for selecting a few mentions

of a given the word w. Then, we compare these strategies by evaluating their gener-

ated word vectors on lexical classification and ontology completion tasks. Based on

the analysis of the experiment results, we found that using Pointwise Mutual Inform-

ation (PMI) and definition sentences lead to better static word vectors. These word

vectors outperform the vectors obtained from 500 randomly selected mentions on the

four lexical classification benchmarks. This research supports that high-quality word

embedding can be obtained from just a few highly-informative mentions of each word.

In Chapter 5, we found that MASK vectors that we have been studying in the Chapter

3 and Chapter 4 only capture the taxonomic aspect of word meaning and that they can

be further improved by adding the word embeddings that capture the topical aspect

of word meaning. In this chapter, we proposed using SBERT embeddings to capture

this topical aspect of word meaning, and we found that combining SBERT embed-

dings and BERT-MASK is beneficial. We also have proposed a strategy for combining

word embeddings through a contrastive learning model that generates low-dimensional

embeddings. Moreover, the low-dimensional embeddings learnt from this contrastive
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learning model can retain the relevant neighbourhood structure of both SBERT vectors

and MASK vectors. Thus, they preserve two aspects of semantic meaning captured

by SBERT vectors and MASK vectors. We found that combining the MASK and

SBERT vectors improves results for both word similarity and classification tasks. Our

contrastive strategy was consistently better than other combination strategies in all 6

word similarity benchmarks.

To conclude, the experimental results obtained from Chapter 3, Chapter 4, and Chapter

5 show that the quality of word embeddings distilled from CLMs are improved by

applying the methods we proposed. This result supports our research hypothesis that

better static word embeddings can be efficiently distilled from CLMs by strategically

selecting sentences and combining complementary methods.

6.2 Research Questions

In this section, the research questions previously identified in Chapter 1 will be re-

visited and discussed regarding the relation between each question and the research

conducted in this thesis.

• Research Question 1: Can higher-quality word embeddings be obtained by se-

lecting sentences strategically?

To answer this question, we adopted different strategies to select sentences and

evaluated the quality of the word vectors obtained by those strategies. We selec-

ted sentences using topic models in Chapter 3 and other strategies in Chapter 4.

The evaluation results from both chapters suggest that strategic sentence selec-

tion leads to more informative sentences, generating better word embeddings.

• Research Question 2: Can higher-quality word embeddings be obtained from a

few mentions of each word?
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To answer this question, we restricted the number of mentions to 20 at max-

imum and explored a range of sentence selection strategies. The finding from

Chapter 4 shows that 20 mentions of each word obtained using PMI and defin-

ition sentences lead to word vectors that outperform word vectors obtained by

500 random mentions. This result suggests that higher-quality word embeddings

can be obtained by just a few mentions of each word with the help of strategic

selections.

• Research Question 3: Can higher-quality word embeddings be obtained by

combining representations that capture complementary aspects of word mean-

ing?

The research from Chapter 5 found that MASK vectors are good at capturing

the taxonomic aspect of word meaning. In contrast, SBERT vectors exhibits

expertise in capturing the topic aspect of word meaning. These two methods of

obtaining word embeddings are complementary. The evaluation result supports

that combining MASK and SBERT improves word embeddings.

6.3 Future Work

This section discusses possible approaches to extend the research presented in this

thesis for potential future work.

• Obtaining Word Embeddings by Fine-tuning CLMs:

The strategies proposed in this research to distil static word embeddings from

CLMs without fine-turning or prompting CLMs are far from optimum. This is

because CLMs are trained to do tasks such as next-word-prediction, which prior-

itise the parameters setting that might be less optimal for distilling word embed-

dings. On the other hand, fine-tuning CLMs on tasks such as lexical classifica-

tion can encourage CLMs to shift their focus to model the semantic properties
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of words. Likewise, this also can be achieved by prompting CLMs.Therefore,

distilling word vectors by fine-turning or prompting CLMs can be the next step

to continue the research in this thesis.

• Mention Generation by Large Language Models

Although the mention selection strategies proposed in this thesis can be applied

to obtain more informative mentions, their effectiveness depend on the quantity

and the quality of the available corpus from which the mentions are sampled.

Given the limited computation power, increasing the size of corpus to select the

mentions can be time consuming and thus inefficient. On the other hand, large

language models are generally trained in massive corpora, capable of generat-

ing high-quality sentences. For example, ChatGPT, a large language genera-

tion model released by OpenAI company, have impressive capacity to engage

in human-like dialogue based on a prompt. This makes large language models

excellent options for obtaining informative mentions efficiently. Specifically, we

can collecting high quality mentions by prompting large langugae models, such

as asking: "can you please give me more information about w". Therefore, gen-

erating mentions from large language models can be more efficient and effective

in obtaining informative sentences and produce even better word representations.

• Improving Word Representations for Under-Resourced Languages

Acquiring large amounts of data is essential to build NLP applications. It is

not an issue for most representative languages, such as English, Chinese, and

Spanish, as they have large language communities that generate data day by day.

However, there are over 6000 languages used in this world [6], and many of them

are under-resourced. Therefore, it is not feasible to build language models such

as BERT or even word embeddings such as Word2Vec for languages that don’t

have enough data. As mentioned in the previous chapters, one application of

static word embeddings is zero-shot or few-shot learning. Suppose we can align

the word vector space of English and an under-resourced language by learning
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a matrix. In that case, we can improve the vector representations of words in an

under-resourced language and facilitate its NLP application.
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